text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False, ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(input_tensor=hidden_states, temb=temb) hidden_states = motion_module(hidden_states, num_frames=num_frames) output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states=hidden_states) output_states = output_states + (hidden_states,)
1,001
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
return hidden_states, output_states
1,001
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class CrossAttnDownBlockMotion(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads: int = 1, cross_attention_dim: int = 1280, output_scale_factor: float = 1.0, downsample_padding: int = 1, add_downsample: bool = True, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, attention_type: str = "default", temporal_cross_attention_dim: Optional[int] = None, temporal_num_attention_heads: int = 8,
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
temporal_max_seq_length: int = 32, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, temporal_double_self_attention: bool = True, ): super().__init__() resnets = [] attentions = [] motion_modules = []
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.has_cross_attention = True self.num_attention_heads = num_attention_heads # support for variable transformer layers per block if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = (transformer_layers_per_block,) * num_layers elif len(transformer_layers_per_block) != num_layers: raise ValueError( f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" ) # support for variable transformer layers per temporal block if isinstance(temporal_transformer_layers_per_block, int): temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers elif len(temporal_transformer_layers_per_block) != num_layers: raise ValueError( f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" )
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) )
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels,
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) )
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
motion_modules.append( AnimateDiffTransformer3D( num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn="geglu", positional_embeddings="sinusoidal", num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads, double_self_attention=temporal_double_self_attention, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules)
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op", ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, num_frames: int = 1, encoder_attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, additional_residuals: Optional[torch.Tensor] = None, ): if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") output_states = () blocks = list(zip(self.resnets, self.attentions, self.motion_modules)) for i, (resnet, attn, motion_module) in enumerate(blocks): if torch.is_grad_enabled() and self.gradient_checkpointing:
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = resnet(input_tensor=hidden_states, temb=temb)
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
hidden_states = attn( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] hidden_states = motion_module( hidden_states, num_frames=num_frames, ) # apply additional residuals to the output of the last pair of resnet and attention blocks if i == len(blocks) - 1 and additional_residuals is not None: hidden_states = hidden_states + additional_residuals output_states = output_states + (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states=hidden_states)
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
output_states = output_states + (hidden_states,) return hidden_states, output_states
1,002
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class CrossAttnUpBlockMotion(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads: int = 1, cross_attention_dim: int = 1280, output_scale_factor: float = 1.0, add_upsample: bool = True, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, attention_type: str = "default", temporal_cross_attention_dim: Optional[int] = None,
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
temporal_num_attention_heads: int = 8, temporal_max_seq_length: int = 32, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, ): super().__init__() resnets = [] attentions = [] motion_modules = []
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.has_cross_attention = True self.num_attention_heads = num_attention_heads # support for variable transformer layers per block if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = (transformer_layers_per_block,) * num_layers elif len(transformer_layers_per_block) != num_layers: raise ValueError( f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(transformer_layers_per_block)}" )
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# support for variable transformer layers per temporal block if isinstance(temporal_transformer_layers_per_block, int): temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers elif len(temporal_transformer_layers_per_block) != num_layers: raise ValueError( f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(temporal_transformer_layers_per_block)}" ) for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) )
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels,
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) motion_modules.append( AnimateDiffTransformer3D( num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn="geglu", positional_embeddings="sinusoidal", num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads, ) )
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False self.resolution_idx = resolution_idx
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, num_frames: int = 1, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) )
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
blocks = zip(self.resnets, self.attentions, self.motion_modules) for resnet, attn, motion_module in blocks: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if torch.is_grad_enabled() and self.gradient_checkpointing:
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = resnet(input_tensor=hidden_states, temb=temb)
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
hidden_states = attn( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] hidden_states = motion_module( hidden_states, num_frames=num_frames, ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size) return hidden_states
1,003
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class UpBlockMotion(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_upsample: bool = True, temporal_cross_attention_dim: Optional[int] = None, temporal_num_attention_heads: int = 8, temporal_max_seq_length: int = 32, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, ): super().__init__() resnets = [] motion_modules = []
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# support for variable transformer layers per temporal block if isinstance(temporal_transformer_layers_per_block, int): temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers elif len(temporal_transformer_layers_per_block) != num_layers: raise ValueError( f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" ) for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) )
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
motion_modules.append( AnimateDiffTransformer3D( num_attention_heads=temporal_num_attention_heads, in_channels=out_channels, num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, activation_fn="geglu", positional_embeddings="sinusoidal", num_positional_embeddings=temporal_max_seq_length, attention_head_dim=out_channels // temporal_num_attention_heads, ) ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.gradient_checkpointing = False self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, upsample_size=None, num_frames: int = 1, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) )
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
blocks = zip(self.resnets, self.motion_modules) for resnet, motion_module in blocks: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs)
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False, ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(input_tensor=hidden_states, temb=temb) hidden_states = motion_module(hidden_states, num_frames=num_frames) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size) return hidden_states
1,004
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class UNetMidBlockCrossAttnMotion(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, transformer_layers_per_block: Union[int, Tuple[int]] = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, num_attention_heads: int = 1, output_scale_factor: float = 1.0, cross_attention_dim: int = 1280, dual_cross_attention: bool = False, use_linear_projection: bool = False, upcast_attention: bool = False, attention_type: str = "default", temporal_num_attention_heads: int = 1, temporal_cross_attention_dim: Optional[int] = None, temporal_max_seq_length: int = 32, temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, ): super().__init__()
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.has_cross_attention = True self.num_attention_heads = num_attention_heads resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # support for variable transformer layers per block if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = (transformer_layers_per_block,) * num_layers elif len(transformer_layers_per_block) != num_layers: raise ValueError( f"`transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}." )
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# support for variable transformer layers per temporal block if isinstance(temporal_transformer_layers_per_block, int): temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers elif len(temporal_transformer_layers_per_block) != num_layers: raise ValueError( f"`temporal_transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}." )
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# there is always at least one resnet resnets = [ ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] motion_modules = []
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
for i in range(num_layers): if not dual_cross_attention: attentions.append( Transformer2DModel( num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, attention_type=attention_type, ) ) else: attentions.append( DualTransformer2DModel( num_attention_heads, in_channels // num_attention_heads, in_channels=in_channels, num_layers=1,
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, ) ) resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) motion_modules.append( AnimateDiffTransformer3D( num_attention_heads=temporal_num_attention_heads, attention_head_dim=in_channels // temporal_num_attention_heads, in_channels=in_channels,
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
num_layers=temporal_transformer_layers_per_block[i], norm_num_groups=resnet_groups, cross_attention_dim=temporal_cross_attention_dim, attention_bias=False, positional_embeddings="sinusoidal", num_positional_embeddings=temporal_max_seq_length, activation_fn="geglu", ) )
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, num_frames: int = 1, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") hidden_states = self.resnets[0](input_tensor=hidden_states, temb=temb)
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules) for attn, resnet, motion_module in blocks: hidden_states = attn( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(motion_module), hidden_states, temb, **ckpt_kwargs, ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = motion_module( hidden_states, num_frames=num_frames, ) hidden_states = resnet(input_tensor=hidden_states, temb=temb) return hidden_states
1,005
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class MotionModules(nn.Module): def __init__( self, in_channels: int, layers_per_block: int = 2, transformer_layers_per_block: Union[int, Tuple[int]] = 8, num_attention_heads: Union[int, Tuple[int]] = 8, attention_bias: bool = False, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", norm_num_groups: int = 32, max_seq_length: int = 32, ): super().__init__() self.motion_modules = nn.ModuleList([]) if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = (transformer_layers_per_block,) * layers_per_block elif len(transformer_layers_per_block) != layers_per_block: raise ValueError( f"The number of transformer layers per block must match the number of layers per block, " f"got {layers_per_block} and {len(transformer_layers_per_block)}" )
1,006
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
for i in range(layers_per_block): self.motion_modules.append( AnimateDiffTransformer3D( in_channels=in_channels, num_layers=transformer_layers_per_block[i], norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads, positional_embeddings="sinusoidal", num_positional_embeddings=max_seq_length, ) )
1,006
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin): @register_to_config def __init__( self, block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), motion_layers_per_block: Union[int, Tuple[int]] = 2, motion_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]] = 1, motion_mid_block_layers_per_block: int = 1, motion_transformer_layers_per_mid_block: Union[int, Tuple[int]] = 1, motion_num_attention_heads: Union[int, Tuple[int]] = 8, motion_norm_num_groups: int = 32, motion_max_seq_length: int = 32, use_motion_mid_block: bool = True, conv_in_channels: Optional[int] = None, ): """Container to store AnimateDiff Motion Modules
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
Args: block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each UNet block. motion_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 2): The number of motion layers per UNet block. motion_transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple[int]]`, *optional*, defaults to 1): The number of transformer layers to use in each motion layer in each block. motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1): The number of motion layers in the middle UNet block. motion_transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1): The number of transformer layers to use in each motion layer in the middle block. motion_num_attention_heads (`int` or `Tuple[int]`, *optional*, defaults to 8):
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
The number of heads to use in each attention layer of the motion module. motion_norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use in each group normalization layer of the motion module. motion_max_seq_length (`int`, *optional*, defaults to 32): The maximum sequence length to use in the motion module. use_motion_mid_block (`bool`, *optional*, defaults to True): Whether to use a motion module in the middle of the UNet. """
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
super().__init__() down_blocks = [] up_blocks = [] if isinstance(motion_layers_per_block, int): motion_layers_per_block = (motion_layers_per_block,) * len(block_out_channels) elif len(motion_layers_per_block) != len(block_out_channels): raise ValueError( f"The number of motion layers per block must match the number of blocks, " f"got {len(block_out_channels)} and {len(motion_layers_per_block)}" ) if isinstance(motion_transformer_layers_per_block, int): motion_transformer_layers_per_block = (motion_transformer_layers_per_block,) * len(block_out_channels)
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if isinstance(motion_transformer_layers_per_mid_block, int): motion_transformer_layers_per_mid_block = ( motion_transformer_layers_per_mid_block, ) * motion_mid_block_layers_per_block elif len(motion_transformer_layers_per_mid_block) != motion_mid_block_layers_per_block: raise ValueError( f"The number of layers per mid block ({motion_mid_block_layers_per_block}) " f"must match the length of motion_transformer_layers_per_mid_block ({len(motion_transformer_layers_per_mid_block)})" )
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if isinstance(motion_num_attention_heads, int): motion_num_attention_heads = (motion_num_attention_heads,) * len(block_out_channels) elif len(motion_num_attention_heads) != len(block_out_channels): raise ValueError( f"The length of the attention head number tuple in the motion module must match the " f"number of block, got {len(motion_num_attention_heads)} and {len(block_out_channels)}" ) if conv_in_channels: # input self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1) else: self.conv_in = None
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
for i, channel in enumerate(block_out_channels): output_channel = block_out_channels[i] down_blocks.append( MotionModules( in_channels=output_channel, norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn="geglu", attention_bias=False, num_attention_heads=motion_num_attention_heads[i], max_seq_length=motion_max_seq_length, layers_per_block=motion_layers_per_block[i], transformer_layers_per_block=motion_transformer_layers_per_block[i], ) )
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if use_motion_mid_block: self.mid_block = MotionModules( in_channels=block_out_channels[-1], norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn="geglu", attention_bias=False, num_attention_heads=motion_num_attention_heads[-1], max_seq_length=motion_max_seq_length, layers_per_block=motion_mid_block_layers_per_block, transformer_layers_per_block=motion_transformer_layers_per_mid_block, ) else: self.mid_block = None reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0]
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
reversed_motion_layers_per_block = list(reversed(motion_layers_per_block)) reversed_motion_transformer_layers_per_block = list(reversed(motion_transformer_layers_per_block)) reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) for i, channel in enumerate(reversed_block_out_channels): output_channel = reversed_block_out_channels[i] up_blocks.append( MotionModules( in_channels=output_channel, norm_num_groups=motion_norm_num_groups, cross_attention_dim=None, activation_fn="geglu", attention_bias=False, num_attention_heads=reversed_motion_num_attention_heads[i], max_seq_length=motion_max_seq_length, layers_per_block=reversed_motion_layers_per_block[i] + 1, transformer_layers_per_block=reversed_motion_transformer_layers_per_block[i],
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
) )
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.down_blocks = nn.ModuleList(down_blocks) self.up_blocks = nn.ModuleList(up_blocks) def forward(self, sample): pass
1,007
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): r""" A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). """ _supports_gradient_checkpointing = True
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
@register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, down_block_types: Tuple[str, ...] = ( "CrossAttnDownBlockMotion", "CrossAttnDownBlockMotion", "CrossAttnDownBlockMotion", "DownBlockMotion", ), up_block_types: Tuple[str, ...] = ( "UpBlockMotion", "CrossAttnUpBlockMotion", "CrossAttnUpBlockMotion", "CrossAttnUpBlockMotion", ), block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), layers_per_block: Union[int, Tuple[int]] = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: int = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
reverse_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None, temporal_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, reverse_temporal_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None, transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None, temporal_transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = 1, use_linear_projection: bool = False, num_attention_heads: Union[int, Tuple[int, ...]] = 8, motion_max_seq_length: int = 32, motion_num_attention_heads: Union[int, Tuple[int, ...]] = 8, reverse_motion_num_attention_heads: Optional[Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...]]] = None, use_motion_mid_block: bool = True, mid_block_layers: int = 1, encoder_hid_dim: Optional[int] = None, encoder_hid_dim_type: Optional[str] = None,
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
addition_embed_type: Optional[str] = None, addition_time_embed_dim: Optional[int] = None, projection_class_embeddings_input_dim: Optional[int] = None, time_cond_proj_dim: Optional[int] = None, ): super().__init__()
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.sample_size = sample_size # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): raise ValueError( f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." ) if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): raise ValueError( f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." ) if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: for layer_number_per_block in transformer_layers_per_block: if isinstance(layer_number_per_block, list): raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if ( isinstance(temporal_transformer_layers_per_block, list) and reverse_temporal_transformer_layers_per_block is None ): for layer_number_per_block in temporal_transformer_layers_per_block: if isinstance(layer_number_per_block, list): raise ValueError( "Must provide 'reverse_temporal_transformer_layers_per_block` if using asymmetrical motion module in UNet." ) # input conv_in_kernel = 3 conv_out_kernel = 3 conv_in_padding = (conv_in_kernel - 1) // 2 self.conv_in = nn.Conv2d( in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding ) # time time_embed_dim = block_out_channels[0] * 4 self.time_proj = Timesteps(block_out_channels[0], True, 0) timestep_input_dim = block_out_channels[0]
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.time_embedding = TimestepEmbedding( timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim ) if encoder_hid_dim_type is None: self.encoder_hid_proj = None if addition_embed_type == "text_time": self.add_time_proj = Timesteps(addition_time_embed_dim, True, 0) self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) # class embedding self.down_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(down_block_types) if isinstance(cross_attention_dim, int): cross_attention_dim = (cross_attention_dim,) * len(down_block_types) if isinstance(layers_per_block, int): layers_per_block = [layers_per_block] * len(down_block_types)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if isinstance(reverse_transformer_layers_per_block, int): reverse_transformer_layers_per_block = [reverse_transformer_layers_per_block] * len(down_block_types) if isinstance(temporal_transformer_layers_per_block, int): temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types) if isinstance(reverse_temporal_transformer_layers_per_block, int): reverse_temporal_transformer_layers_per_block = [reverse_temporal_transformer_layers_per_block] * len( down_block_types ) if isinstance(motion_num_attention_heads, int): motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if down_block_type == "CrossAttnDownBlockMotion": down_block = CrossAttnDownBlockMotion( in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], downsample_padding=downsample_padding, add_downsample=not is_final_block, use_linear_projection=use_linear_projection, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length,
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], ) elif down_block_type == "DownBlockMotion": down_block = DownBlockMotion( in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, num_layers=layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_downsample=not is_final_block, downsample_padding=downsample_padding, temporal_num_attention_heads=motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], ) else: raise ValueError(
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
"Invalid `down_block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`" )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.down_blocks.append(down_block) # mid if transformer_layers_per_mid_block is None: transformer_layers_per_mid_block = ( transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1 )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if use_motion_mid_block: self.mid_block = UNetMidBlockCrossAttnMotion( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False, use_linear_projection=use_linear_projection, num_layers=mid_block_layers, temporal_num_attention_heads=motion_num_attention_heads[-1], temporal_max_seq_length=motion_max_seq_length, transformer_layers_per_block=transformer_layers_per_mid_block, temporal_transformer_layers_per_block=temporal_transformer_layers_per_mid_block, )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
else: self.mid_block = UNetMidBlock2DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False, use_linear_projection=use_linear_projection, num_layers=mid_block_layers, transformer_layers_per_block=transformer_layers_per_mid_block, ) # count how many layers upsample the images self.num_upsamplers = 0
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_num_attention_heads = list(reversed(num_attention_heads)) reversed_layers_per_block = list(reversed(layers_per_block)) reversed_cross_attention_dim = list(reversed(cross_attention_dim)) reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) if reverse_transformer_layers_per_block is None: reverse_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) if reverse_temporal_transformer_layers_per_block is None: reverse_temporal_transformer_layers_per_block = list(reversed(temporal_transformer_layers_per_block)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if up_block_type == "CrossAttnUpBlockMotion": up_block = CrossAttnUpBlockMotion( in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, resolution_idx=i, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reverse_transformer_layers_per_block[i], resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, num_attention_heads=reversed_num_attention_heads[i], cross_attention_dim=reversed_cross_attention_dim[i], add_upsample=add_upsample, use_linear_projection=use_linear_projection, temporal_num_attention_heads=reversed_motion_num_attention_heads[i],
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
temporal_max_seq_length=motion_max_seq_length, temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i], ) elif up_block_type == "UpBlockMotion": up_block = UpBlockMotion( in_channels=input_channel, prev_output_channel=prev_output_channel, out_channels=output_channel, temb_channels=time_embed_dim, resolution_idx=i, num_layers=reversed_layers_per_block[i] + 1, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_upsample=add_upsample, temporal_num_attention_heads=reversed_motion_num_attention_heads[i], temporal_max_seq_length=motion_max_seq_length,
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i], ) else: raise ValueError( "Invalid `up_block_type` encountered. Must be one of `CrossAttnUpBlockMotion` or `UpBlockMotion`" )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
self.up_blocks.append(up_block) prev_output_channel = output_channel # out if norm_num_groups is not None: self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps ) self.conv_act = nn.SiLU() else: self.conv_norm_out = None self.conv_act = None conv_out_padding = (conv_out_kernel - 1) // 2 self.conv_out = nn.Conv2d( block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding ) @classmethod def from_unet2d( cls, unet: UNet2DConditionModel, motion_adapter: Optional[MotionAdapter] = None, load_weights: bool = True, ): has_motion_adapter = motion_adapter is not None if has_motion_adapter: motion_adapter.to(device=unet.device)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# check compatibility of number of blocks if len(unet.config["down_block_types"]) != len(motion_adapter.config["block_out_channels"]): raise ValueError("Incompatible Motion Adapter, got different number of blocks")
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# check layers compatibility for each block if isinstance(unet.config["layers_per_block"], int): expanded_layers_per_block = [unet.config["layers_per_block"]] * len(unet.config["down_block_types"]) else: expanded_layers_per_block = list(unet.config["layers_per_block"]) if isinstance(motion_adapter.config["motion_layers_per_block"], int): expanded_adapter_layers_per_block = [motion_adapter.config["motion_layers_per_block"]] * len( motion_adapter.config["block_out_channels"] ) else: expanded_adapter_layers_per_block = list(motion_adapter.config["motion_layers_per_block"]) if expanded_layers_per_block != expanded_adapter_layers_per_block: raise ValueError("Incompatible Motion Adapter, got different number of layers per block")
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459 config = dict(unet.config) config["_class_name"] = cls.__name__ down_blocks = [] for down_blocks_type in config["down_block_types"]: if "CrossAttn" in down_blocks_type: down_blocks.append("CrossAttnDownBlockMotion") else: down_blocks.append("DownBlockMotion") config["down_block_types"] = down_blocks up_blocks = [] for down_blocks_type in config["up_block_types"]: if "CrossAttn" in down_blocks_type: up_blocks.append("CrossAttnUpBlockMotion") else: up_blocks.append("UpBlockMotion") config["up_block_types"] = up_blocks
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if has_motion_adapter: config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"] config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"] config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"] config["layers_per_block"] = motion_adapter.config["motion_layers_per_block"] config["temporal_transformer_layers_per_mid_block"] = motion_adapter.config[ "motion_transformer_layers_per_mid_block" ] config["temporal_transformer_layers_per_block"] = motion_adapter.config[ "motion_transformer_layers_per_block" ] config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# For PIA UNets we need to set the number input channels to 9 if motion_adapter.config["conv_in_channels"]: config["in_channels"] = motion_adapter.config["conv_in_channels"] # Need this for backwards compatibility with UNet2DConditionModel checkpoints if not config.get("num_attention_heads"): config["num_attention_heads"] = config["attention_head_dim"] expected_kwargs, optional_kwargs = cls._get_signature_keys(cls) config = FrozenDict({k: config.get(k) for k in config if k in expected_kwargs or k in optional_kwargs}) config["_class_name"] = cls.__name__ model = cls.from_config(config) if not load_weights: return model
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Logic for loading PIA UNets which allow the first 4 channels to be any UNet2DConditionModel conv_in weight # while the last 5 channels must be PIA conv_in weights. if has_motion_adapter and motion_adapter.config["conv_in_channels"]: model.conv_in = motion_adapter.conv_in updated_conv_in_weight = torch.cat( [unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1 ) model.conv_in.load_state_dict({"weight": updated_conv_in_weight, "bias": unet.conv_in.bias}) else: model.conv_in.load_state_dict(unet.conv_in.state_dict()) model.time_proj.load_state_dict(unet.time_proj.state_dict()) model.time_embedding.load_state_dict(unet.time_embedding.state_dict())
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if any( isinstance(proc, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) for proc in unet.attn_processors.values() ): attn_procs = {} for name, processor in unet.attn_processors.items(): if name.endswith("attn1.processor"): attn_processor_class = ( AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor ) attn_procs[name] = attn_processor_class() else: attn_processor_class = ( IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor ) attn_procs[name] = attn_processor_class( hidden_size=processor.hidden_size, cross_attention_dim=processor.cross_attention_dim,
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
scale=processor.scale, num_tokens=processor.num_tokens, ) for name, processor in model.attn_processors.items(): if name not in attn_procs: attn_procs[name] = processor.__class__() model.set_attn_processor(attn_procs) model.config.encoder_hid_dim_type = "ip_image_proj" model.encoder_hid_proj = unet.encoder_hid_proj
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
for i, down_block in enumerate(unet.down_blocks): model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict()) if hasattr(model.down_blocks[i], "attentions"): model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict()) if model.down_blocks[i].downsamplers: model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict()) for i, up_block in enumerate(unet.up_blocks): model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict()) if hasattr(model.up_blocks[i], "attentions"): model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict()) if model.up_blocks[i].upsamplers: model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict())
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict()) model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict()) if unet.conv_norm_out is not None: model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict()) if unet.conv_act is not None: model.conv_act.load_state_dict(unet.conv_act.state_dict()) model.conv_out.load_state_dict(unet.conv_out.state_dict()) if has_motion_adapter: model.load_motion_modules(motion_adapter) # ensure that the Motion UNet is the same dtype as the UNet2DConditionModel model.to(unet.dtype) return model def freeze_unet2d_params(self) -> None: """Freeze the weights of just the UNet2DConditionModel, and leave the motion modules unfrozen for fine tuning. """ # Freeze everything for param in self.parameters(): param.requires_grad = False
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Unfreeze Motion Modules for down_block in self.down_blocks: motion_modules = down_block.motion_modules for param in motion_modules.parameters(): param.requires_grad = True for up_block in self.up_blocks: motion_modules = up_block.motion_modules for param in motion_modules.parameters(): param.requires_grad = True if hasattr(self.mid_block, "motion_modules"): motion_modules = self.mid_block.motion_modules for param in motion_modules.parameters(): param.requires_grad = True
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None: for i, down_block in enumerate(motion_adapter.down_blocks): self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict()) for i, up_block in enumerate(motion_adapter.up_blocks): self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict()) # to support older motion modules that don't have a mid_block if hasattr(self.mid_block, "motion_modules"): self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict()) def save_motion_modules( self, save_directory: str, is_main_process: bool = True, safe_serialization: bool = True, variant: Optional[str] = None, push_to_hub: bool = False, **kwargs, ) -> None: state_dict = self.state_dict()
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Extract all motion modules motion_state_dict = {} for k, v in state_dict.items(): if "motion_modules" in k: motion_state_dict[k] = v adapter = MotionAdapter( block_out_channels=self.config["block_out_channels"], motion_layers_per_block=self.config["layers_per_block"], motion_norm_num_groups=self.config["norm_num_groups"], motion_num_attention_heads=self.config["motion_num_attention_heads"], motion_max_seq_length=self.config["motion_max_seq_length"], use_motion_mid_block=self.config["use_motion_mid_block"], ) adapter.load_state_dict(motion_state_dict) adapter.save_pretrained( save_directory=save_directory, is_main_process=is_main_process, safe_serialization=safe_serialization, variant=variant, push_to_hub=push_to_hub, **kwargs, )
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
@property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys())
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) def disable_forward_chunking(self) -> None: def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self) -> None: """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
def _set_gradient_checkpointing(self, module, value: bool = False) -> None: if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)): module.gradient_checkpointing = value # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None: r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stage blocks where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ for i, upsample_block in enumerate(self.up_blocks): setattr(upsample_block, "s1", s1) setattr(upsample_block, "s2", s2) setattr(upsample_block, "b1", b1) setattr(upsample_block, "b2", b2)
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu def disable_freeu(self) -> None: """Disables the FreeU mechanism.""" freeu_keys = {"s1", "s2", "b1", "b2"} for i, upsample_block in enumerate(self.up_blocks): for k in freeu_keys: if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: setattr(upsample_block, k, None) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None
1,008
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py