text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
for _ in range(num_layers):
attentions.append(
Transformer2DModel(
in_channels // num_attention_heads,
num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
in_channels // num_attention_heads,
num_attention_heads,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
resnets.append(
ResnetBlock2D( | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
in_channels,
in_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
) | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions) | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
hidden_states = self.resnets[0](hidden_states, temb)
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
for attn, temp_attn, resnet, temp_conv in zip(
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
):
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames, | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames) | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states | 982 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class CrossAttnDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
downsample_padding: int = 1,
add_downsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
):
super().__init__()
resnets = []
attentions = []
temp_attentions = []
temp_convs = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
attentions.append(
Transformer2DModel( | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs) | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions) | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Dict[str, Any] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
# TODO(Patrick, William) - attention mask is not used
output_states = () | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,) | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states, output_states | 983 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class DownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
temp_convs = [] | 984 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs) | 984 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
num_frames: int = 1,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
output_states += (hidden_states,) | 984 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states | 984 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class CrossAttnUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resolution_idx: Optional[int] = None,
):
super().__init__()
resnets = []
temp_convs = []
attentions = []
temp_attentions = [] | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
attentions.append(
Transformer2DModel(
out_channels // num_attention_heads,
num_attention_heads, | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
)
)
temp_attentions.append(
TransformerTemporalModel(
out_channels // num_attention_heads,
num_attention_heads,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
self.temp_attentions = nn.ModuleList(temp_attentions) | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.Tensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Dict[str, Any] = None,
) -> torch.Tensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
) | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
# TODO(Patrick, William) - attention mask is not used
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states,
num_frames=num_frames,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states | 985 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class UpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_upsample: bool = True,
resolution_idx: Optional[int] = None,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels | 986 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs) | 986 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
temb: Optional[torch.Tensor] = None,
upsample_size: Optional[int] = None,
num_frames: int = 1,
) -> torch.Tensor:
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | 986 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
hidden_states, res_hidden_states = apply_freeu(
self.resolution_idx,
hidden_states,
res_hidden_states,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states | 986 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class MidBlockTemporalDecoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
attention_head_dim: int = 512,
num_layers: int = 1,
upcast_attention: bool = False,
):
super().__init__()
resnets = []
attentions = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=None,
eps=1e-6,
temporal_eps=1e-5,
merge_factor=0.0,
merge_strategy="learned",
switch_spatial_to_temporal_mix=True,
)
) | 987 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
attentions.append(
Attention(
query_dim=in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
eps=1e-6,
upcast_attention=upcast_attention,
norm_num_groups=32,
bias=True,
residual_connection=True,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(
self,
hidden_states: torch.Tensor,
image_only_indicator: torch.Tensor,
):
hidden_states = self.resnets[0](
hidden_states,
image_only_indicator=image_only_indicator,
)
for resnet, attn in zip(self.resnets[1:], self.attentions):
hidden_states = attn(hidden_states)
hidden_states = resnet(
hidden_states,
image_only_indicator=image_only_indicator,
) | 987 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states | 987 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class UpBlockTemporalDecoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_layers: int = 1,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=None,
eps=1e-6,
temporal_eps=1e-5,
merge_factor=0.0,
merge_strategy="learned",
switch_spatial_to_temporal_mix=True,
)
)
self.resnets = nn.ModuleList(resnets) | 988 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(
self,
hidden_states: torch.Tensor,
image_only_indicator: torch.Tensor,
) -> torch.Tensor:
for resnet in self.resnets:
hidden_states = resnet(
hidden_states,
image_only_indicator=image_only_indicator,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states | 988 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class UNetMidBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
# support for variable transformer layers per block
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
# there is always at least one resnet
resnets = [
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
]
attentions = [] | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
for i in range(num_layers):
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.resnets[0](
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
else:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
hidden_states = resnet(
hidden_states, | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
temb,
image_only_indicator=image_only_indicator,
) | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states | 989 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class DownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
add_downsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.resnets = nn.ModuleList(resnets) | 990 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
for resnet in self.resnets:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward | 990 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
output_states = output_states + (hidden_states,) | 990 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states | 990 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class CrossAttnDownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_downsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-6,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets) | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=1,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
blocks = list(zip(self.resnets, self.attentions))
for resnet, attn in blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
) | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,) | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states, output_states | 991 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class UpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
resnet_eps: float = 1e-6,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
self.resnets = nn.ModuleList(resnets) | 992 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
temb: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
upsample_size: Optional[int] = None,
) -> torch.Tensor:
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if torch.is_grad_enabled() and self.gradient_checkpointing: | 992 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward | 992 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size) | 992 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
return hidden_states | 992 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class CrossAttnUpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_upsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.Tensor,
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
upsample_size: Optional[int] = None,
) -> torch.Tensor:
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if torch.is_grad_enabled() and self.gradient_checkpointing: # TODO | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states, | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
image_only_indicator=image_only_indicator,
return_dict=False,
)[0] | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states | 993 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_3d_blocks.py |
class UVit2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
@register_to_config
def __init__(
self,
# global config
hidden_size: int = 1024,
use_bias: bool = False,
hidden_dropout: float = 0.0,
# conditioning dimensions
cond_embed_dim: int = 768,
micro_cond_encode_dim: int = 256,
micro_cond_embed_dim: int = 1280,
encoder_hidden_size: int = 768,
# num tokens
vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded
codebook_size: int = 8192,
# `UVit2DConvEmbed`
in_channels: int = 768,
block_out_channels: int = 768,
num_res_blocks: int = 3,
downsample: bool = False,
upsample: bool = False,
block_num_heads: int = 12,
# `TransformerLayer`
num_hidden_layers: int = 22,
num_attention_heads: int = 16,
# `Attention`
attention_dropout: float = 0.0,
# `FeedForward`
intermediate_size: int = 2816,
# `Norm` | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
layer_norm_eps: float = 1e-6,
ln_elementwise_affine: bool = True,
sample_size: int = 64,
):
super().__init__() | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias)
self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.embed = UVit2DConvEmbed(
in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
)
self.cond_embed = TimestepEmbedding(
micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias
)
self.down_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample,
False,
) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine)
self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
self.transformer_layers = nn.ModuleList(
[
BasicTransformerBlock(
dim=hidden_size,
num_attention_heads=num_attention_heads,
attention_head_dim=hidden_size // num_attention_heads,
dropout=hidden_dropout,
cross_attention_dim=hidden_size,
attention_bias=use_bias,
norm_type="ada_norm_continuous",
ada_norm_continous_conditioning_embedding_dim=hidden_size,
norm_elementwise_affine=ln_elementwise_affine,
norm_eps=layer_norm_eps,
ada_norm_bias=use_bias,
ff_inner_dim=intermediate_size,
ff_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_hidden_layers)
]
) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias)
self.up_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample=False,
upsample=upsample,
)
self.mlm_layer = ConvMlmLayer(
block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
pass | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
micro_cond_embeds = get_timestep_embedding(
micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
)
micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1))
pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1)
pooled_text_emb = pooled_text_emb.to(dtype=self.dtype)
pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype)
hidden_states = self.embed(input_ids) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
hidden_states = self.down_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
hidden_states = self.project_to_hidden_norm(hidden_states)
hidden_states = self.project_to_hidden(hidden_states)
for layer in self.transformer_layers:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def layer_(*args):
return checkpoint(layer, *args)
else:
layer_ = layer | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
hidden_states = layer_(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs={"pooled_text_emb": pooled_text_emb},
)
hidden_states = self.project_from_hidden_norm(hidden_states)
hidden_states = self.project_from_hidden(hidden_states)
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = self.up_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
logits = self.mlm_layer(hidden_states)
return logits | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys()) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor) | 994 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
class UVit2DConvEmbed(nn.Module):
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
super().__init__()
self.embeddings = nn.Embedding(vocab_size, in_channels)
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
def forward(self, input_ids):
embeddings = self.embeddings(input_ids)
embeddings = self.layer_norm(embeddings)
embeddings = embeddings.permute(0, 3, 1, 2)
embeddings = self.conv(embeddings)
return embeddings | 995 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
class UVitBlock(nn.Module):
def __init__(
self,
channels,
num_res_blocks: int,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample: bool,
upsample: bool,
):
super().__init__()
if downsample:
self.downsample = Downsample2D(
channels,
use_conv=True,
padding=0,
name="Conv2d_0",
kernel_size=2,
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
)
else:
self.downsample = None | 996 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
self.res_blocks = nn.ModuleList(
[
ConvNextBlock(
channels,
layer_norm_eps,
ln_elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
)
for i in range(num_res_blocks)
]
)
self.attention_blocks = nn.ModuleList(
[
SkipFFTransformerBlock(
channels,
block_num_heads,
channels // block_num_heads,
hidden_size,
use_bias,
attention_dropout,
channels,
attention_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_res_blocks)
]
) | 996 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
if upsample:
self.upsample = Upsample2D(
channels,
use_conv_transpose=True,
kernel_size=2,
padding=0,
name="conv",
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
interpolate=False,
)
else:
self.upsample = None
def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
if self.downsample is not None:
x = self.downsample(x)
for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
x = res_block(x, pooled_text_emb) | 996 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
batch_size, channels, height, width = x.shape
x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
x = attention_block(
x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
)
x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
if self.upsample is not None:
x = self.upsample(x)
return x | 996 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
class ConvNextBlock(nn.Module):
def __init__(
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
):
super().__init__()
self.depthwise = nn.Conv2d(
channels,
channels,
kernel_size=3,
padding=1,
groups=channels,
bias=use_bias,
)
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
self.channelwise_act = nn.GELU()
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
self.channelwise_dropout = nn.Dropout(hidden_dropout)
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
def forward(self, x, cond_embeds):
x_res = x | 997 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
x = self.depthwise(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.channelwise_linear_1(x)
x = self.channelwise_act(x)
x = self.channelwise_norm(x)
x = self.channelwise_linear_2(x)
x = self.channelwise_dropout(x)
x = x.permute(0, 3, 1, 2)
x = x + x_res
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
return x | 997 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
class ConvMlmLayer(nn.Module):
def __init__(
self,
block_out_channels: int,
in_channels: int,
use_bias: bool,
ln_elementwise_affine: bool,
layer_norm_eps: float,
codebook_size: int,
):
super().__init__()
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
logits = self.conv2(hidden_states)
return logits | 998 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/uvit_2d.py |
class UNetMotionOutput(BaseOutput):
"""
The output of [`UNetMotionOutput`].
Args:
sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
"""
sample: torch.Tensor | 999 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
class AnimateDiffTransformer3D(nn.Module):
"""
A Transformer model for video-like data. | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlock` attention should contain a bias parameter.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
This is fixed during training since it is used to learn a number of position embeddings.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
activation functions.
norm_elementwise_affine (`bool`, *optional*):
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
double_self_attention (`bool`, *optional*):
Configure if each `TransformerBlock` should contain two self-attention layers.
positional_embeddings: (`str`, *optional*):
The type of positional embeddings to apply to the sequence input before passing use.
num_positional_embeddings: (`int`, *optional*):
The maximum length of the sequence over which to apply positional embeddings.
""" | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
double_self_attention: bool = True,
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
double_self_attention=double_self_attention,
norm_elementwise_affine=norm_elementwise_affine,
positional_embeddings=positional_embeddings,
num_positional_embeddings=num_positional_embeddings,
)
for _ in range(num_layers)
]
) | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
self.proj_out = nn.Linear(inner_dim, in_channels)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.LongTensor] = None,
timestep: Optional[torch.LongTensor] = None,
class_labels: Optional[torch.LongTensor] = None,
num_frames: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
"""
The [`AnimateDiffTransformer3D`] forward method. | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
Input hidden_states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
num_frames (`int`, *optional*, defaults to 1): | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
The number of frames to be processed per batch. This is used to reshape the hidden states.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
Returns:
torch.Tensor:
The output tensor.
"""
# 1. Input
batch_frames, channel, height, width = hidden_states.shape
batch_size = batch_frames // num_frames
residual = hidden_states
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
hidden_states = self.proj_in(input=hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
) | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
# 3. Output
hidden_states = self.proj_out(input=hidden_states)
hidden_states = (
hidden_states[None, None, :]
.reshape(batch_size, height, width, num_frames, channel)
.permute(0, 3, 4, 1, 2)
.contiguous()
)
hidden_states = hidden_states.reshape(batch_frames, channel, height, width)
output = hidden_states + residual
return output | 1,000 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
class DownBlockMotion(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
add_downsample: bool = True,
downsample_padding: int = 1,
temporal_num_attention_heads: Union[int, Tuple[int]] = 1,
temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32,
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
temporal_double_self_attention: bool = True,
):
super().__init__()
resnets = []
motion_modules = [] | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
# support for variable transformer layers per temporal block
if isinstance(temporal_transformer_layers_per_block, int):
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
elif len(temporal_transformer_layers_per_block) != num_layers:
raise ValueError(
f"`temporal_transformer_layers_per_block` must be an integer or a tuple of integers of length {num_layers}"
)
# support for variable number of attention head per temporal layers
if isinstance(temporal_num_attention_heads, int):
temporal_num_attention_heads = (temporal_num_attention_heads,) * num_layers
elif len(temporal_num_attention_heads) != num_layers:
raise ValueError(
f"`temporal_num_attention_heads` must be an integer or a tuple of integers of length {num_layers}"
) | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
motion_modules.append(
AnimateDiffTransformer3D(
num_attention_heads=temporal_num_attention_heads[i],
in_channels=out_channels,
num_layers=temporal_transformer_layers_per_block[i],
norm_num_groups=resnet_groups, | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
cross_attention_dim=temporal_cross_attention_dim,
attention_bias=False,
activation_fn="geglu",
positional_embeddings="sinusoidal",
num_positional_embeddings=temporal_max_seq_length,
attention_head_dim=out_channels // temporal_num_attention_heads[i],
double_self_attention=temporal_double_self_attention,
)
) | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
num_frames: int = 1,
*args,
**kwargs,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
output_states = ()
blocks = zip(self.resnets, self.motion_modules)
for resnet, motion_module in blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs) | 1,001 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/unets/unet_motion_model.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.