hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a1aea6fbd848c726e5b5cdb1953e414611ea0a6
5,954
py
Python
models/user.py
jungor/android_final_project
28fe804912d72935066c507ed2f2a5d05bf8eccc
[ "MIT" ]
null
null
null
models/user.py
jungor/android_final_project
28fe804912d72935066c507ed2f2a5d05bf8eccc
[ "MIT" ]
1
2015-12-05T11:25:59.000Z
2015-12-05T11:25:59.000Z
models/user.py
jungor/android_final_project
28fe804912d72935066c507ed2f2a5d05bf8eccc
[ "MIT" ]
null
null
null
# -*-coding:utf-8 -*- import base64 import os import re from datetime import datetime from consts import * from bson.objectid import ObjectId from db import get_db IMG_DIR = os.path.join(os.path.dirname(__file__), os.pardir, "static", "img", "user") class User(object): @property def uid(self): return self._uid @uid.setter def uid(self, value): if value: self._uid = value else: raise ValueError("You did not provide valid uid") @property def name(self): return self._name @name.setter def name(self, value): if value: self._name = value else: raise ValueError("You did not provide valid name") @property def pwd(self): return self._pwd @pwd.setter def pwd(self, value): if value: self._pwd = value else: raise ValueError("You did not provide valid pwd") @property def sex(self): return self._sex @sex.setter def sex(self, value): try: value = int(value) if value in xrange(2): self._sex = value else: raise ValueError("You did not provide valid sex") except ValueError, e: raise e @property def major(self): return self._major @major.setter def major(self, value): try: value = int(value) if value in xrange(999): self._major = value else: raise ValueError("You did not provide valid major") except ValueError, e: raise e @property def grade(self): return self._grade @grade.setter def grade(self, value): try: value = int(value) if value in xrange(4): self._grade = value else: raise ValueError("You did not provide valid grade") except ValueError, e: raise e @property def avatar_url(self): return self._avatar_url @avatar_url.setter def avatar_url(self, value): if value: value = base64.b64decode(value) now = re.sub(r'[ :.]', '-', str(datetime.now())) path = os.path.join(IMG_DIR, str(self.name) + "_avatar" + now + ".png") avatar_file = open(path, 'wb') avatar_file.write(value) self._avatar_url = SERVER_ROOT_URL + '/static/' + '/'.join(path.split('/')[-3:]) avatar_file.close() else: raise ValueError("You did not provide valid avatar") def __init__(self, name, pwd, sex, major, grade, avatar=None, uid=None, **kwargs): super(User, self).__init__() self._uid = None self._name = None self._pwd = None self._sex = None self._major = None self._grade = None self._avatar_url = SERVER_ROOT_URL + "/static/img/user/default_avatar.png" self._new_psw = None self.name = name self.pwd = pwd self.sex = sex self.major = major self.grade = grade if avatar: self.avatar_url = avatar if uid: self.uid = uid def save(self): db = get_db() if self.uid: db["Users"].update( { "_id": ObjectId(self.uid), }, { "name": self.name, "pwd": self.pwd, "sex": self.sex, "major": self.major, "grade": self.grade, "avatar_url": self.avatar_url, }, ) else: uid_obj = db["Users"].insert( { "name": self.name, "pwd": self.pwd, "sex": self.sex, "major": self.major, "grade": self.grade, "like": [], "collect": [], "avatar_url": self.avatar_url, } ) self.uid = str(uid_obj) @classmethod def is_name_exist(cls, name): db = get_db() doc = db["Users"].find_one({"name": name}) if doc: return True else: return False @classmethod def authenticate(cls, name, pwd): if cls.is_name_exist(name): db = get_db() doc = db["Users"].find_one({"name": name, "pwd": pwd}) return doc else: return None @classmethod def get(cls, uid): db = get_db() doc = db["Users"].find_one({"_id": ObjectId(uid)}) if doc: print doc u = cls(**doc) u._avatar_url = doc["avatar_url"] u.uid = uid return u else: return None @classmethod def like(cls, uid, aid): db = get_db() db["Users"].update( {"_id": ObjectId(uid)}, {"$addToSet": {"like": aid}} ) @classmethod def unlike(cls, uid, aid): db = get_db() db["Users"].update( {"_id": ObjectId(uid)}, {"$pull": {"like": aid}} ) @classmethod def collect(cls, uid, aid): db = get_db() db["Users"].update( {"_id": ObjectId(uid)}, {"$addToSet": {"collect": aid}} ) @classmethod def uncollect(cls, uid, aid): db = get_db() db["Users"].update( {"_id": ObjectId(uid)}, {"$pull": {"collect": aid}} ) @classmethod def reset(cls): db = get_db() db["Users"].remove({}) if __name__ == "__main__": pass
25.663793
92
0.466913
4a1aea710154c40b5236f835aee4867d3f950469
3,392
py
Python
follow.py
ligongzzz/AC-SJTU-OJ
a6e3bffd1c025ac114dd9a6ebec9bafbf0b5360a
[ "MIT" ]
1
2019-08-11T15:11:07.000Z
2019-08-11T15:11:07.000Z
follow.py
ligongzzz/AC-SJTU-OJ
a6e3bffd1c025ac114dd9a6ebec9bafbf0b5360a
[ "MIT" ]
null
null
null
follow.py
ligongzzz/AC-SJTU-OJ
a6e3bffd1c025ac114dd9a6ebec9bafbf0b5360a
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver import ActionChains import time import logging logging.basicConfig(filename="test.log", filemode="w", format="%(asctime)s %(name)s:%(levelname)s:%(message)s", datefmt="%d-%M-%Y %H:%M:%S", level=logging.INFO) # Hyper Parameters SLEEP_TIME = 3 print('题目跟踪器,跟踪OJ上别人刷的题目') username = input('您的用户名:') password = input('您的密码:') problem_to_solve = None option = webdriver.ChromeOptions() option.add_argument('--headless') option.add_argument('--no-sandbox') browser = webdriver.Chrome(options=option) last_code = None print('正在登录...') browser.get("https://acm.sjtu.edu.cn/OnlineJudge") input_username = browser.find_element(By.NAME, 'username') input_password = browser.find_element(By.NAME, 'password') btn_login = browser.find_element(By.NAME, 'action') actions = ActionChains(browser) actions.send_keys_to_element(input_username, username) actions.send_keys_to_element(input_password, password) actions.click(btn_login) actions.perform() print('登录成功!') logging.info('登录完成') while True: try: browser.get('https://acm.sjtu.edu.cn/OnlineJudge/status#') while True: time.sleep(SLEEP_TIME) browser.refresh() print('获取最新提交编号......') cur_code = browser.find_element( By.XPATH, '//*[@id="status"]/tbody/tr[1]/td[1]/a').text if last_code != cur_code: last_code = cur_code user_submit: str = browser.find_element( By.XPATH, '//*[@id="status"]/tbody/tr[1]/td[2]').text [user_id, _] = user_submit.split() print('提交的用户是', user_id) if user_id == username: print('无新的提交') logging.warning('无新的提交') continue elif user_id != '魔卡少女': print('不是魔卡少女的提交') logging.log('找到非指定目标的提交') continue problem_to_solve = browser.find_element( By.XPATH, '//*[@id="status"]/tbody/tr[1]/td[3]/a[1]').text print('找到新的提交,题号是', problem_to_solve) logging.log('找到新的提交,题号是'+problem_to_solve) break else: print('无新的提交') logging.warning('无新的提交') print("正在获取代码......") browser.get( 'https://raw.githubusercontent.com/ligongzzz/SJTU-OJ/master/Code/Project' + problem_to_solve + '/Project' + problem_to_solve + '/源.cpp') print('代码获取成功!') code_to_input = browser.find_element_by_xpath('/html/body/pre').text print(code_to_input) print('正在提交代码......') browser.get("https://acm.sjtu.edu.cn/OnlineJudge/submit") input_problem = browser.find_element(By.NAME, 'problem') input_code = browser.find_element(By.NAME, 'code') btn_submit = browser.find_element( By.XPATH, '//*[@id="wrap"]/div/form/fieldset/div[4]/button') actions = ActionChains(browser) actions.send_keys_to_element(input_problem, problem_to_solve) actions.send_keys_to_element(input_code, code_to_input) actions.click(btn_submit) actions.perform() print('提交完成') browser.refresh() except: print('抱歉!出现错误')
33.584158
111
0.6023
4a1aea946a5b4bcc07a470c873889b850e38bd82
14,026
py
Python
networkx-1.8.1/networkx/readwrite/edgelist.py
lthurlow/Boolean-Constrained-Routing
d60a648d17d5dadaa0fb5ef9961fcea9d9784dfe
[ "MIT" ]
12
2015-03-25T20:20:26.000Z
2021-11-14T19:44:56.000Z
networkx-1.8.1/networkx/readwrite/edgelist.py
lthurlow/Boolean-Constrained-Routing
d60a648d17d5dadaa0fb5ef9961fcea9d9784dfe
[ "MIT" ]
71
2015-01-05T16:50:55.000Z
2020-09-30T19:17:47.000Z
networkx-1.8.1/networkx/readwrite/edgelist.py
lthurlow/Boolean-Constrained-Routing
d60a648d17d5dadaa0fb5ef9961fcea9d9784dfe
[ "MIT" ]
14
2015-02-15T22:19:18.000Z
2020-09-30T18:54:54.000Z
""" ********** Edge Lists ********** Read and write NetworkX graphs as edge lists. The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge. Format ------ You can read or write three formats of edge lists with these functions. Node pairs with no data:: 1 2 Python dictionary as data:: 1 2 {'weight':7, 'color':'green'} Arbitrary data:: 1 2 7 green """ __author__ = """Aric Hagberg (hagberg@lanl.gov)\nDan Schult (dschult@colgate.edu)""" # Copyright (C) 2004-2011 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. __all__ = ['generate_edgelist', 'write_edgelist', 'parse_edgelist', 'read_edgelist', 'read_weighted_edgelist', 'write_weighted_edgelist'] from networkx.utils import open_file, make_str import networkx as nx def generate_edgelist(G, delimiter=' ', data=True): """Generate a single line of the graph G in edge list format. Parameters ---------- G : NetworkX graph delimiter : string, optional Separator for node labels data : bool or list of keys If False generate no edge data. If True use a dictionary representation of edge data. If a list of keys use a list of data values corresponding to the keys. Returns ------- lines : string Lines of data in adjlist format. Examples -------- >>> G = nx.lollipop_graph(4, 3) >>> G[1][2]['weight'] = 3 >>> G[3][4]['capacity'] = 12 >>> for line in nx.generate_edgelist(G, data=False): ... print(line) 0 1 0 2 0 3 1 2 1 3 2 3 3 4 4 5 5 6 >>> for line in nx.generate_edgelist(G): ... print(line) 0 1 {} 0 2 {} 0 3 {} 1 2 {'weight': 3} 1 3 {} 2 3 {} 3 4 {'capacity': 12} 4 5 {} 5 6 {} >>> for line in nx.generate_edgelist(G,data=['weight']): ... print(line) 0 1 0 2 0 3 1 2 3 1 3 2 3 3 4 4 5 5 6 See Also -------- write_adjlist, read_adjlist """ if data is True or data is False: for e in G.edges(data=data): yield delimiter.join(map(make_str,e)) else: for u,v,d in G.edges(data=True): e=[u,v] try: e.extend(d[k] for k in data) except KeyError: pass # missing data for this edge, should warn? yield delimiter.join(map(make_str,e)) @open_file(1,mode='wb') def write_edgelist(G, path, comments="#", delimiter=' ', data=True, encoding = 'utf-8'): """Write graph as a list of edges. Parameters ---------- G : graph A NetworkX graph path : file or string File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. comments : string, optional The character used to indicate the start of a comment delimiter : string, optional The string used to separate values. The default is whitespace. data : bool or list, optional If False write no edge data. If True write a string representation of the edge data dictionary.. If a list (or other iterable) is provided, write the keys specified in the list. encoding: string, optional Specify which encoding to use when writing file. Examples -------- >>> G=nx.path_graph(4) >>> nx.write_edgelist(G, "test.edgelist") >>> G=nx.path_graph(4) >>> fh=open("test.edgelist",'wb') >>> nx.write_edgelist(G, fh) >>> nx.write_edgelist(G, "test.edgelist.gz") >>> nx.write_edgelist(G, "test.edgelist.gz", data=False) >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7,color='red') >>> nx.write_edgelist(G,'test.edgelist',data=False) >>> nx.write_edgelist(G,'test.edgelist',data=['color']) >>> nx.write_edgelist(G,'test.edgelist',data=['color','weight']) See Also -------- write_edgelist() write_weighted_edgelist() """ for line in generate_edgelist(G, delimiter, data): line+='\n' path.write(line.encode(encoding)) def parse_edgelist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True): """Parse lines of an edge list representation of a graph. Returns ------- G: NetworkX Graph The graph corresponding to lines data : bool or list of (label,type) tuples If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data. create_using: NetworkX graph container, optional Use given NetworkX graph for holding nodes or edges. nodetype : Python type, optional Convert nodes to this type. comments : string, optional Marker for comment lines delimiter : string, optional Separator for node labels create_using: NetworkX graph container Use given NetworkX graph for holding nodes or edges. Examples -------- Edgelist with no data: >>> lines = ["1 2", ... "2 3", ... "3 4"] >>> G = nx.parse_edgelist(lines, nodetype = int) >>> G.nodes() [1, 2, 3, 4] >>> G.edges() [(1, 2), (2, 3), (3, 4)] Edgelist with data in Python dictionary representation: >>> lines = ["1 2 {'weight':3}", ... "2 3 {'weight':27}", ... "3 4 {'weight':3.0}"] >>> G = nx.parse_edgelist(lines, nodetype = int) >>> G.nodes() [1, 2, 3, 4] >>> G.edges(data = True) [(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})] Edgelist with data in a list: >>> lines = ["1 2 3", ... "2 3 27", ... "3 4 3.0"] >>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),)) >>> G.nodes() [1, 2, 3, 4] >>> G.edges(data = True) [(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})] See Also -------- read_weighted_edgelist """ from ast import literal_eval if create_using is None: G=nx.Graph() else: try: G=create_using G.clear() except: raise TypeError("create_using input is not a NetworkX graph type") for line in lines: p=line.find(comments) if p>=0: line = line[:p] if not len(line): continue # split line, should have 2 or more s=line.strip().split(delimiter) if len(s)<2: continue u=s.pop(0) v=s.pop(0) d=s if nodetype is not None: try: u=nodetype(u) v=nodetype(v) except: raise TypeError("Failed to convert nodes %s,%s to type %s." %(u,v,nodetype)) if len(d)==0 or data is False: # no data or data type specified edgedata={} elif data is True: # no edge types specified try: # try to evaluate as dictionary edgedata=dict(literal_eval(' '.join(d))) except: raise TypeError( "Failed to convert edge data (%s) to dictionary."%(d)) else: # convert edge data to dictionary with specified keys and type if len(d)!=len(data): raise IndexError( "Edge data %s and data_keys %s are not the same length"% (d, data)) edgedata={} for (edge_key,edge_type),edge_value in zip(data,d): try: edge_value=edge_type(edge_value) except: raise TypeError( "Failed to convert %s data %s to type %s." %(edge_key, edge_value, edge_type)) edgedata.update({edge_key:edge_value}) G.add_edge(u, v, attr_dict=edgedata) return G @open_file(0,mode='rb') def read_edgelist(path, comments="#", delimiter=None, create_using=None, nodetype=None, data=True, edgetype=None, encoding='utf-8'): """Read a graph from a list of edges. Parameters ---------- path : file or string File or filename to write. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. comments : string, optional The character used to indicate the start of a comment. delimiter : string, optional The string used to separate values. The default is whitespace. create_using : Graph container, optional, Use specified container to build graph. The default is networkx.Graph, an undirected graph. nodetype : int, float, str, Python type, optional Convert node data from strings to specified type data : bool or list of (label,type) tuples Tuples specifying dictionary key names and types for edge data edgetype : int, float, str, Python type, optional OBSOLETE Convert edge data from strings to specified type and use as 'weight' encoding: string, optional Specify which encoding to use when reading file. Returns ------- G : graph A networkx Graph or other type specified with create_using Examples -------- >>> nx.write_edgelist(nx.path_graph(4), "test.edgelist") >>> G=nx.read_edgelist("test.edgelist") >>> fh=open("test.edgelist", 'rb') >>> G=nx.read_edgelist(fh) >>> fh.close() >>> G=nx.read_edgelist("test.edgelist", nodetype=int) >>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph()) Edgelist with data in a list: >>> textline = '1 2 3' >>> fh = open('test.edgelist','w') >>> d = fh.write(textline) >>> fh.close() >>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),)) >>> G.nodes() [1, 2] >>> G.edges(data = True) [(1, 2, {'weight': 3.0})] See parse_edgelist() for more examples of formatting. See Also -------- parse_edgelist Notes ----- Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) """ lines = (line.decode(encoding) for line in path) return parse_edgelist(lines,comments=comments, delimiter=delimiter, create_using=create_using, nodetype=nodetype, data=data) def write_weighted_edgelist(G, path, comments="#", delimiter=' ', encoding='utf-8'): """Write graph G as a list of edges with numeric weights. Parameters ---------- G : graph A NetworkX graph path : file or string File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed. comments : string, optional The character used to indicate the start of a comment delimiter : string, optional The string used to separate values. The default is whitespace. encoding: string, optional Specify which encoding to use when writing file. Examples -------- >>> G=nx.Graph() >>> G.add_edge(1,2,weight=7) >>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist') See Also -------- read_edgelist() write_edgelist() write_weighted_edgelist() """ write_edgelist(G,path, comments=comments, delimiter=delimiter, data=('weight',), encoding = encoding) def read_weighted_edgelist(path, comments="#", delimiter=None, create_using=None, nodetype=None, encoding='utf-8'): """Read a graph as list of edges with numeric weights. Parameters ---------- path : file or string File or filename to write. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed. comments : string, optional The character used to indicate the start of a comment. delimiter : string, optional The string used to separate values. The default is whitespace. create_using : Graph container, optional, Use specified container to build graph. The default is networkx.Graph, an undirected graph. nodetype : int, float, str, Python type, optional Convert node data from strings to specified type encoding: string, optional Specify which encoding to use when reading file. Returns ------- G : graph A networkx Graph or other type specified with create_using Notes ----- Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.) Example edgelist file format. With numeric edge data:: # read with # >>> G=nx.read_weighted_edgelist(fh) # source target data a b 1 a c 3.14159 d e 42 """ return read_edgelist(path, comments=comments, delimiter=delimiter, create_using=create_using, nodetype=nodetype, data=(('weight',float),), encoding = encoding ) # fixture for nose tests def teardown_module(module): import os os.unlink('test.edgelist') os.unlink('test.edgelist.gz') os.unlink('test.weighted.edgelist')
30.163441
85
0.578212
4a1aeb89360699c1e71483b2cd1eebf531596c0f
5,331
py
Python
src/data_management/tests.py
tee-huynh/pipeline-profiles
1bdbe28f3d8d2d9b0be1546253a9af5e6cf95060
[ "MIT" ]
null
null
null
src/data_management/tests.py
tee-huynh/pipeline-profiles
1bdbe28f3d8d2d9b0be1546253a9af5e6cf95060
[ "MIT" ]
null
null
null
src/data_management/tests.py
tee-huynh/pipeline-profiles
1bdbe28f3d8d2d9b0be1546253a9af5e6cf95060
[ "MIT" ]
null
null
null
import unittest from incidents import process_incidents from conditions import process_conditions from util import most_common import pandas as pd class TestUtil(unittest.TestCase): testData = {'row_1': [5, 3, 2, 1, 0, 0, 0, 1], 'row_2': ['e', 'a', 'b', 'c', 'd', 'e', 'e', 'c']} df = pd.DataFrame.from_dict(testData, orient='columns') def testMostCommonText1(self): meta = {} meta = most_common(self.df, meta, "row_2", "testTop1", top=1) self.assertEqual(meta["testTop1"], "e") def testMostCommonNumber1(self): meta = {} meta = most_common(self.df, meta, "row_1", "testTop1", top=1) self.assertEqual(meta["testTop1"], "0") def testMostCommonText2(self): meta = {} meta = most_common(self.df, meta, "row_2", "testTop2", top=2) self.assertEqual(meta["testTop2"], {'e': 3, 'c': 2}) class TestNovaIncidents(unittest.TestCase): df, volume, meta = process_incidents(remote=False, companies=['NOVA Gas Transmission Ltd.'], test=True, lang='en') dfFR, volumeFR, metaFR = process_incidents(remote=False, companies=['NOVA Gas Transmission Ltd.'], test=True, lang='fr') def countIncidentType(self, iType, df): count = 0 for t in df['Incident Types']: if iType in t: count = count + 1 return count def testEngEqualToFra(self): self.assertEqual(len(self.df), len(self.dfFR)) self.assertEqual(self.countIncidentType("Adverse Environmental Effects", self.df), self.countIncidentType("Effets environnementaux négatifs", self.dfFR)) self.assertEqual(self.meta["seriousEvents"]["Adverse Environmental Effects"], self.metaFR["seriousEvents"]["Adverse Environmental Effects"]) self.assertEqual(self.meta["seriousEvents"]["Serious Injury (CER or TSB)"], self.metaFR["seriousEvents"]["Serious Injury (CER or TSB)"]) self.assertEqual(self.meta["seriousEvents"]["Fatality"], self.metaFR["seriousEvents"]["Fatality"]) def testTotal(self): self.assertEqual(len(self.df), 330) # total incidents for NGTL self.assertEqual(len(self.volume), 89) # total release incidents def testIncidentTypes(self): # test on full NGTL data self.assertEqual(self.countIncidentType("Adverse Environmental Effects", self.df), 7) self.assertEqual(self.countIncidentType("Serious Injury (CER or TSB)", self.df), 12) self.assertEqual(self.countIncidentType("Fatality", self.df), 1) # test on calcualted sumamry metadata self.assertEqual(self.meta["seriousEvents"]["Adverse Environmental Effects"], 7) self.assertEqual(self.meta["seriousEvents"]["Serious Injury (CER or TSB)"], 12) self.assertEqual(self.meta["seriousEvents"]["Fatality"], 1) def testVariableCounts(self): substance = self.volume[self.volume['Substance'] == "Natural Gas - Sweet"].copy() status = self.volume[self.volume['Status'] == "Closed"].copy() year = self.volume[self.volume['Year'] == 2013].copy() self.assertEqual(len(substance), 83) self.assertEqual(len(status), 82) self.assertEqual(len(year), 2) trueSubstanceRelease = 38370485 self.assertTrue(trueSubstanceRelease-1 <= int(substance['Approximate Volume Released'].sum()) <= trueSubstanceRelease+1) trueStatusRelease = 26871755 self.assertTrue(trueStatusRelease-1 <= int(status['Approximate Volume Released'].sum()) <= trueStatusRelease) trueYearRelease = 20800000 self.assertTrue(trueYearRelease-1 <= int(year['Approximate Volume Released'].sum()) <= trueYearRelease+1) def testTrends(self): year = self.volume[self.volume['Year'] == 2016].copy() self.assertEqual(len(year), 8) class NovaTotalConditions(unittest.TestCase): company_df, regions, mapMeta, meta = process_conditions(remote=False, companies=['NOVA Gas Transmission Ltd.'], test=True, lang='en') def testCompanyData(self): in_Progress = self.company_df[self.company_df['Condition Status'] == "In Progress"].copy().reset_index(drop=True) closed = self.company_df[self.company_df['Condition Status'] == "Closed"].copy().reset_index(drop=True) self.assertEqual(len(self.company_df), 1569) self.assertEqual(len(in_Progress), 157) self.assertEqual(len(closed), 1412) def testMeta(self): self.assertEqual(self.meta["summary"]["Closed"], 1367) self.assertEqual(self.meta["summary"]["In Progress"], 151) self.assertEqual(self.meta["summary"]["notOnMap"]["total"], 51) self.assertEqual(self.meta["summary"]["notOnMap"]["status"]["Closed"], 45) self.assertEqual(self.meta["summary"]["notOnMap"]["status"]["In Progress"], 6) total = self.meta["summary"]["Closed"] + self.meta["summary"]["In Progress"] + self.meta["summary"]["notOnMap"]["total"] self.assertEqual(total, 1569) def testMapMeta(self): red_deer = self.mapMeta[self.mapMeta['id'] == "Red Deer"].copy().reset_index(drop=True) self.assertEqual(red_deer.loc[0, "In Progress"], 9) self.assertEqual(red_deer.loc[0, "Closed"], 35) if __name__ == "__main__": unittest.main()
48.027027
137
0.652035
4a1aebb48fc7d88ed33340ab791a35d1f3cf70d1
13,848
py
Python
canvasapi/outcome.py
jessemcbride/canvasapi
a8f802f10ea372e8934ac0b51cef499c4fd4f172
[ "MIT" ]
null
null
null
canvasapi/outcome.py
jessemcbride/canvasapi
a8f802f10ea372e8934ac0b51cef499c4fd4f172
[ "MIT" ]
null
null
null
canvasapi/outcome.py
jessemcbride/canvasapi
a8f802f10ea372e8934ac0b51cef499c4fd4f172
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals from six import python_2_unicode_compatible from canvasapi.canvas_object import CanvasObject from canvasapi.paginated_list import PaginatedList from canvasapi.util import combine_kwargs, obj_or_id @python_2_unicode_compatible class Outcome(CanvasObject): def __str__(self): return "{} ({})".format(self.title, self.url) def update(self, **kwargs): """ Modify an existing outcome. :calls: `PUT /api/v1/outcomes/:id \ <https://canvas.instructure.com/doc/api/outcomes.html#method.outcomes_api.update>`_ :returns: True if updated, False otherwise. :rtype: bool """ response = self._requester.request( 'PUT', 'outcomes/{}'.format(self.id), _kwargs=combine_kwargs(**kwargs) ) if 'id' in response.json(): super(Outcome, self).set_attributes(response.json()) return 'id' in response.json() @python_2_unicode_compatible class OutcomeLink(CanvasObject): def __str__(self): return "Group {} with Outcome {} ({})".format( self.outcome_group, self.outcome, self.url ) def context_ref(self): if self.context_type == 'Course': return 'courses/{}'.format(self.context_id) elif self.context_type == 'Account': return 'accounts/{}'.format(self.context_id) def get_outcome(self): """ Return the linked outcome :calls: `GET /api/v1/outcomes/:id \ <https://canvas.instructure.com/doc/api/outcomes.html#method.outcomes_api.show>`_ :returns: Outcome object that was in the OutcomeLink :rtype: :class:`canvasapi.outcome.Outcome` """ oid = self.outcome['id'] response = self._requester.request( 'GET', 'outcomes/{}'.format(oid) ) return Outcome(self._requester, response.json()) def get_outcome_group(self): """ Return the linked outcome group :calls: `GET /api/v1/global/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.show>`_ or `GET /api/v1/accounts/:account_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.show>`_ or `GET /api/v1/courses/:course_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.show>`_ :returns: Linked outcome group object. :rtype: :class:`canvasapi.outcome.OutcomeGroup` """ ogid = self.outcome_group['id'] response = self._requester.request( 'GET', '{}/outcome_groups/{}'.format(self.context_ref(), ogid) ) return OutcomeGroup(self._requester, response.json()) @python_2_unicode_compatible class OutcomeGroup(CanvasObject): def __str__(self): return "{} ({})".format(self.title, self.url) def context_ref(self): if self.context_type == 'Course': return 'courses/{}'.format(self.context_id) elif self.context_type == 'Account': return 'accounts/{}'.format(self.context_id) elif self.context_type is None: return 'global' def update(self, **kwargs): """ Update an outcome group. :calls: `PUT /api/v1/global/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.update>`_ or `PUT /api/v1/accounts/:account_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.update>`_ or `PUT /api/v1/courses/:course_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.update>`_ :returns: True if updated, False otherwise. :rtype: bool """ response = self._requester.request( 'PUT', '{}/outcome_groups/{}'.format(self.context_ref(), self.id), _kwargs=combine_kwargs(**kwargs) ) if 'id' in response.json(): super(OutcomeGroup, self).set_attributes(response.json()) return 'id' in response.json() def delete(self): """ Delete an outcome group. :calls: `DELETE /api/v1/global/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.destroy>`_ or `DELETE /api/v1/accounts/:account_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.destroy>`_ or `DELETE /api/v1/courses/:course_id/outcome_groups/:id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.destroy>`_ :returns: True if successful, false if failed. :rtype: bool """ response = self._requester.request( 'DELETE', '{}/outcome_groups/{}'.format(self.context_ref(), self.id) ) if 'id' in response.json(): super(OutcomeGroup, self).set_attributes(response.json()) return 'id' in response.json() def list_linked_outcomes(self, **kwargs): """ List linked outcomes. :calls: `GET /api/v1/global/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.outcomes>`_ or `GET /api/v1/accounts/:account_id/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.outcomes>`_ or `GET /api/v1/courses/:course_id/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.outcomes>`_ :returns: Paginated List of Outcomes linked to the group. :rtype: :class:`canvasapi.paginated_list.PaginatedList` of :class:`canvasapi.outcome.OutcomeLink` """ return PaginatedList( OutcomeLink, self._requester, 'GET', '{}/outcome_groups/{}/outcomes'.format(self.context_ref(), self.id), _kwargs=combine_kwargs(**kwargs) ) def link_existing(self, outcome): """ Link to an existing Outcome. :calls: `PUT /api/v1/global/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ or `PUT /api/v1/accounts/:account_id/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ or `PUT /api/v1/courses/:course_id/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ :param outcome: The object or ID of the outcome. :type outcome: :class:`canvasapi.outcome.Outcome` or int :returns: OutcomeLink object with current OutcomeGroup and newly linked Outcome. :rtype: :class:`canvasapi.outcome.OutcomeLink` """ outcome_id = obj_or_id(outcome, "outcome", (Outcome,)) response = self._requester.request( 'PUT', '{}/outcome_groups/{}/outcomes/{}'.format( self.context_ref(), self.id, outcome_id ) ) return OutcomeLink(self._requester, response.json()) def link_new(self, title, **kwargs): """ Create a new Outcome and link it to this OutcomeGroup :calls: `POST /api/v1/global/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ or `POST /api/v1/accounts/:account_id/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ or `POST /api/v1/courses/:course_id/outcome_groups/:id/outcomes \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.link>`_ :param title: The title of the new outcome. :type title: str :returns: OutcomeLink object with current OutcomeGroup and newly linked Outcome. :rtype: :class:`canvasapi.outcome.OutcomeLink` """ response = self._requester.request( 'POST', '{}/outcome_groups/{}/outcomes'.format(self.context_ref(), self.id), title=title, _kwargs=combine_kwargs(**kwargs) ) return OutcomeLink(self._requester, response.json()) def unlink_outcome(self, outcome): """ Remove an Outcome from and OutcomeLink :calls: `DELETE /api/v1/global/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.unlink>`_ or `DELETE /api/v1/accounts/:account_id/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.unlink>`_ or `DELETE /api/v1/courses/:course_id/outcome_groups/:id/outcomes/:outcome_id \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.unlink>`_ :param outcome: The object or ID of the outcome. :type outcome: :class:`canvasapi.outcome.Outcome` or int :returns: True if successful, false if failed. :rtype: bool """ outcome_id = obj_or_id(outcome, "outcome", (Outcome,)) response = self._requester.request( 'DELETE', '{}/outcome_groups/{}/outcomes/{}'.format( self.context_ref(), self.id, outcome_id ) ) if 'context_id' in response.json(): super(OutcomeGroup, self).set_attributes(response.json()) return 'context_id' in response.json() def list_subgroups(self): """ List subgroups. :calls: `GET /api/v1/global/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.subgroups>`_ or `GET /api/v1/accounts/:account_id/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.subgroups>`_ or `GET /api/v1/courses/:course_id/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.subgroups>`_ :returns: Paginated List of OutcomeGroups linked to the current group. :rtype: :class:`canvasapi.paginated_list.PaginatedList` of :class:`canvasapi.outcome.OutcomeGroup` """ return PaginatedList( OutcomeGroup, self._requester, 'GET', '{}/outcome_groups/{}/subgroups'.format(self.context_ref(), self.id) ) def create_subgroup(self, title, **kwargs): """ Create a subgroup of the current group :calls: `POST /api/v1/global/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.create>`_ or `POST /api/v1/accounts/:account_id/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.create>`_ or `POST /api/v1/courses/:course_id/outcome_groups/:id/subgroups \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.create>`_ :param title: The title of the subgroup. :type title: str :returns: Itself as an OutcomeGroup object. :rtype: :class:`canvasapi.outcome.OutcomeGroup` """ response = self._requester.request( 'POST', '{}/outcome_groups/{}/subgroups'.format(self.context_ref(), self.id), title=title, _kwargs=combine_kwargs(**kwargs) ) return OutcomeGroup(self._requester, response.json()) def import_outcome_group(self, outcome_group): """ Import an outcome group as a subgroup into the current outcome group :calls: `POST /api/v1/global/outcome_groups/:id/import \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.import>`_ or `POST /api/v1/accounts/:account_id/outcome_groups/:id/import \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.import>`_ or `POST /api/v1/courses/:course_id/outcome_groups/:id/import \ <https://canvas.instructure.com/doc/api/outcome_groups.html#method.outcome_groups_api.import>`_ :param outcome: The object or ID of the outcome group to import. :type outcome: :class:`canvasapi.outcome.OutcomeGroup` or int :returns: Itself as an OutcomeGroup object. :rtype: :class:`canvasapi.outcome.OutcomeGroup` """ source_outcome_group_id = obj_or_id(outcome_group, "outcome_group", (OutcomeGroup,)) response = self._requester.request( 'POST', '{}/outcome_groups/{}/import'.format(self.context_ref(), self.id), source_outcome_group_id=source_outcome_group_id ) return OutcomeGroup(self._requester, response.json())
40.255814
110
0.635615
4a1aebd074cc9e878e1bd267603039b5dc94d4e2
2,495
py
Python
sdk/python/pulumi_azure_native/fluidrelay/v20210312preview/get_fluid_relay_server_keys.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/fluidrelay/v20210312preview/get_fluid_relay_server_keys.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/fluidrelay/v20210312preview/get_fluid_relay_server_keys.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetFluidRelayServerKeysResult', 'AwaitableGetFluidRelayServerKeysResult', 'get_fluid_relay_server_keys', ] @pulumi.output_type class GetFluidRelayServerKeysResult: """ The set of available keys for this server. """ def __init__(__self__, key1=None, key2=None): if key1 and not isinstance(key1, str): raise TypeError("Expected argument 'key1' to be a str") pulumi.set(__self__, "key1", key1) if key2 and not isinstance(key2, str): raise TypeError("Expected argument 'key2' to be a str") pulumi.set(__self__, "key2", key2) @property @pulumi.getter def key1(self) -> str: """ The primary key for this server """ return pulumi.get(self, "key1") @property @pulumi.getter def key2(self) -> str: """ The secondary key for this server """ return pulumi.get(self, "key2") class AwaitableGetFluidRelayServerKeysResult(GetFluidRelayServerKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetFluidRelayServerKeysResult( key1=self.key1, key2=self.key2) def get_fluid_relay_server_keys(name: Optional[str] = None, resource_group: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetFluidRelayServerKeysResult: """ The set of available keys for this server. :param str name: The resource name. :param str resource_group: The resource group containing the resource. """ __args__ = dict() __args__['name'] = name __args__['resourceGroup'] = resource_group if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:fluidrelay/v20210312preview:getFluidRelayServerKeys', __args__, opts=opts, typ=GetFluidRelayServerKeysResult).value return AwaitableGetFluidRelayServerKeysResult( key1=__ret__.key1, key2=__ret__.key2)
31.582278
165
0.658116
4a1aec5d013f97ed9c394ca65e13fd219099c810
1,006
py
Python
estrutura-repeticao-while/ex069.py
TacilioRodriguez/Python
0b98dc8336e014046c579b387013b2871024e3d0
[ "Unlicense" ]
null
null
null
estrutura-repeticao-while/ex069.py
TacilioRodriguez/Python
0b98dc8336e014046c579b387013b2871024e3d0
[ "Unlicense" ]
null
null
null
estrutura-repeticao-while/ex069.py
TacilioRodriguez/Python
0b98dc8336e014046c579b387013b2871024e3d0
[ "Unlicense" ]
null
null
null
""" Crie um programa que leia a idade e o sexo de varias pessoas. A cada pessoa cadastrada, o programa deverá perguntar se o usuario quer ou nao continuar. No final, mostre: A) quantas pessoas tem mais de 18 anos B) quantos homens foram cadastrados C) quantas mulheres tem mais de 20 anos Colocar validação para digitação errada nas opções de pergunta. """ M = 0 maiores18 = 0 F = 0 prosseguir = ' ' while True: idade = int(input('Digite a idade: ')) sexo = ' ' while sexo not in 'MFmf:': sexo = str(input('Digite o sexo [M/F]: ')).strip().upper()[0] if idade > 18: maiores18 = maiores18 + 1 if sexo == 'M': M = M + 1 if idade > 20 and sexo == 'F': F = F + 1 continuar = ' ' while continuar not in 'SN': continuar = str(input('Quer continuar [S/N]: ')).strip().upper()[0] if continuar == 'N': break print(f'Tem {maiores18} mais de 18 anos. Foram cadastrados {M} Homens, e existem {F} mulheres com mais de 20 anos ')
27.944444
116
0.624254
4a1aed34058ac112f25c30aa936aae2040388c1e
5,146
py
Python
glue_astronomy/translators/tests/test_ccddata.py
ibusko/glue-astronomy
42d4188eb7b4ac29be66a218168564425decadba
[ "BSD-3-Clause" ]
null
null
null
glue_astronomy/translators/tests/test_ccddata.py
ibusko/glue-astronomy
42d4188eb7b4ac29be66a218168564425decadba
[ "BSD-3-Clause" ]
null
null
null
glue_astronomy/translators/tests/test_ccddata.py
ibusko/glue-astronomy
42d4188eb7b4ac29be66a218168564425decadba
[ "BSD-3-Clause" ]
null
null
null
import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy import units as u from astropy.nddata import CCDData from astropy.wcs import WCS from glue.core import Data, DataCollection from glue.core.component import Component from glue.core.coordinates import Coordinates WCS_CELESTIAL = WCS(naxis=2) WCS_CELESTIAL.wcs.ctype = ['RA---TAN', 'DEC--TAN'] WCS_CELESTIAL.wcs.set() @pytest.mark.parametrize('with_wcs', (False, True)) def test_to_ccddata(with_wcs): if with_wcs: coords = WCS_CELESTIAL else: coords = None data = Data(label='image', coords=coords) data.add_component(Component(np.array([[3.4, 2.3], [-1.1, 0.3]]), units='Jy'), 'x') image = data.get_object(CCDData, attribute=data.id['x']) assert image.wcs is (WCS_CELESTIAL if with_wcs else None) assert_allclose(image.data, [[3.4, 2.3], [-1.1, 0.3]]) assert image.unit is u.Jy data.add_subset(data.id['x'] > 1, label='bright') image_subset = data.get_subset_object(cls=CCDData, subset_id=0, attribute=data.id['x']) assert image_subset.wcs is (WCS_CELESTIAL if with_wcs else None) assert_allclose(image_subset.data, [[3.4, 2.3], [-1.1, 0.3]]) assert image_subset.unit is u.Jy assert_equal(image_subset.mask, [[0, 0], [1, 1]]) def test_to_ccddata_unitless(): data = Data(label='image', coords=WCS_CELESTIAL) data.add_component(Component(np.array([[3.4, 2.3], [-1.1, 0.3]])), 'x') image = data.get_object(CCDData, attribute=data.id['x']) assert_allclose(image.data, [[3.4, 2.3], [-1.1, 0.3]]) assert image.unit is u.one def test_to_ccddata_invalid(): data = Data(label='not-an-image') data.add_component(Component(np.array([3.4, 2.3, -1.1, 0.3]), units='Jy'), 'x') with pytest.raises(ValueError) as exc: data.get_object(CCDData, attribute=data.id['x']) assert exc.value.args[0] == 'Only 2-dimensional datasets can be converted to CCDData' class FakeCoordinates(Coordinates): def pixel_to_world_values(self, *pixel): raise NotImplementedError() def world_to_pixel_values(self, *pixel): raise NotImplementedError() coords = FakeCoordinates(n_dim=2) coords.low_level_wcs = coords data = Data(label='image-with-custom-coords', coords=coords) data.add_component(Component(np.array([[3, 4], [4, 5]]), units='Jy'), 'x') with pytest.raises(TypeError) as exc: data.get_object(CCDData, attribute=data.id['x']) assert exc.value.args[0] == 'data.coords should be an instance of Coordinates or WCS' def test_to_ccddata_default_attribute(): data = Data(label='image', coords=WCS_CELESTIAL) with pytest.raises(ValueError) as exc: data.get_object(CCDData) assert exc.value.args[0] == 'Data object has no attributes.' data.add_component(Component(np.array([[3, 4], [5, 6]]), units='Jy'), 'x') image = data.get_object(CCDData) assert_allclose(image.data, [[3, 4], [5, 6]]) assert image.unit is u.Jy data.add_component(Component(np.array([[3, 4], [5, 6]]), units='Jy'), 'y') with pytest.raises(ValueError) as exc: data.get_object(CCDData) assert exc.value.args[0] == ('Data object has more than one attribute, so ' 'you will need to specify which one to use as ' 'the flux for the spectrum using the attribute= ' 'keyword argument.') @pytest.mark.parametrize('with_wcs', (False, True)) def test_from_ccddata(with_wcs): if with_wcs: wcs = WCS_CELESTIAL else: wcs = None spec = CCDData([[2, 3], [4, 5]] * u.Jy, wcs=wcs) data_collection = DataCollection() data_collection['image'] = spec data = data_collection['image'] assert isinstance(data, Data) assert len(data.main_components) == 1 assert data.main_components[0].label == 'data' assert_allclose(data['data'], [[2, 3], [4, 5]]) component = data.get_component('data') assert component.units == 'Jy' # Check round-tripping image_new = data.get_object(attribute='data') assert isinstance(image_new, CCDData) assert image_new.wcs is (WCS_CELESTIAL if with_wcs else None) assert_allclose(image_new.data, [[2, 3], [4, 5]]) assert image_new.unit is u.Jy def test_meta_round_trip(): wcs = WCS(naxis=2) wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN'] meta = {'BUNIT': 'Jy/beam', 'some_variable': 10} spec = CCDData([[2, 3], [4, 5]] * u.Jy, wcs=wcs, meta=meta) data_collection = DataCollection() data_collection['image'] = spec data = data_collection['image'] assert isinstance(data, Data) assert len(data.meta) == 2 assert data.meta['BUNIT'] =='Jy/beam' assert data.meta['some_variable'] == 10 # Check round-tripping image_new = data.get_object(attribute='data') assert isinstance(image_new, CCDData) assert len(image_new.meta) == 2 assert image_new.meta['BUNIT'] =='Jy/beam' assert image_new.meta['some_variable'] == 10
31.187879
89
0.64691
4a1aed945c56c94672fdc7dc8dc7f64e3f1f4f80
2,696
py
Python
esocial/__init__.py
alexdemari/libesocial
de095354c19c34995454b6781e7dd844732c8e05
[ "Apache-2.0" ]
null
null
null
esocial/__init__.py
alexdemari/libesocial
de095354c19c34995454b6781e7dd844732c8e05
[ "Apache-2.0" ]
null
null
null
esocial/__init__.py
alexdemari/libesocial
de095354c19c34995454b6781e7dd844732c8e05
[ "Apache-2.0" ]
null
null
null
# Copyright 2018, Qualita Seguranca e Saude Ocupacional. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """eSocial Library Module with functions and classes to validate and sign eSocial XML events and access eSocial government webservices to send and retrieve events batchs. """ __version__ = '0.0.1.rc1' # __esocial_version__ = '2.4.02' __esocial_version__ = '2.5.00' __xsd_versions__ = { 'send': { 'version': '1.1.1', 'xsd': 'EnvioLoteEventos-v{}.xsd', }, 'retrieve': { 'version': '1.0.0', 'xsd': 'ConsultaLoteEventos-v{}.xsd', }, 'send_return': { 'version': '1.1.0', 'xsd': 'RetornoEnvioLoteEventos-v{}.xsd', }, 'event_return': { 'version': '1.2.1', 'xsd': 'RetornoEvento-v{}.xsd' }, 'process_return': { 'version': '1.3.0', 'xsd': 'RetornoProcessamentoLote-v{}.xsd', }, # new on 1.5 - Communication Package 'view_employer_event_id': { 'version': '1.0.0', 'xsd': 'ConsultaIdentificadoresEventosEmpregador-v{}.xsd' }, 'view_table_event_id': { 'version': '1.0.0', 'xsd': 'ConsultaIdentificadoresEventosTabela-v{}.xsd' }, 'view_employee_event_id': { 'version': '1.0.0', 'xsd': 'ConsultaIdentificadoresEventosTrabalhador-v{}.xsd' }, 'view_event_id_return':{ 'version': '1.0.0', 'xsd': 'RetornoConsultaIdentificadoresEventos-v{}.xsd' }, } _TARGET = 'tests' _WS_URL = { 'tests': { 'send': 'https://webservices.producaorestrita.esocial.gov.br/servicos/empregador/enviarloteeventos/WsEnviarLoteEventos.svc?wsdl', 'retrieve': 'https://webservices.producaorestrita.esocial.gov.br/servicos/empregador/consultarloteeventos/WsConsultarLoteEventos.svc?wsdl', }, 'production': { 'send': 'https://webservices.envio.esocial.gov.br/servicos/empregador/enviarloteeventos/WsEnviarLoteEventos.svc?wsdl', 'retrieve': 'https://webservices.consulta.esocial.gov.br/servicos/empregador/consultarloteeventos/WsConsultarLoteEventos.svc?wsdl', } }
34.564103
147
0.642433
4a1aed974801cd5b46bcd9a954da90dfa7be5645
4,585
py
Python
model_1/utils.py
narcomey/mri-superresolution
2918dcd5bae93ab988961ee24b07e0dbd735f517
[ "MIT" ]
20
2019-01-22T01:30:39.000Z
2021-09-02T09:46:52.000Z
model_1/utils.py
Edenkut/mri-superresolution
2918dcd5bae93ab988961ee24b07e0dbd735f517
[ "MIT" ]
1
2020-10-28T14:48:09.000Z
2020-10-28T14:48:09.000Z
model_1/utils.py
Edenkut/mri-superresolution
2918dcd5bae93ab988961ee24b07e0dbd735f517
[ "MIT" ]
7
2019-03-04T01:51:32.000Z
2021-02-25T16:49:23.000Z
import pydicom import os import math import numpy as np import png from config import config import tensorlayer as tl import matplotlib.pyplot as plt ## Extra functions used in main.py ## def load_info(path): data = {} all_patient_folders = tl.files.load_folder_list(path=path) all_patient_folders = [folder for folder in all_patient_folders if folder[len(path)+1:-1] in str(config.patient_numbers)] all_patient_folders.sort(key=tl.files.natural_keys) nfolders = len(all_patient_folders) if nfolders % 2 != 0: nfolders -= 1 print("[*] Unpackaging patient files (" + str(nfolders) + ")") for i in range(0,nfolders,2): patient_str = str(config.patient_numbers[int(i/2)]) print("Loading patient: " + patient_str) hr_folder = all_patient_folders[i] print(hr_folder) lr_folder = all_patient_folders[i+1] print(lr_folder) hr_data = [] hr_files = tl.files.load_file_list(path=hr_folder, regx='.*.npy', printable=False, keep_prefix=False) hr_files.sort(key=tl.files.natural_keys) for file in hr_files: hr_data.append(tl.files.load_npy_to_any(path=hr_folder + "/", name=file)) lr_data = [] lr_files = tl.files.load_file_list(path=lr_folder, regx='.*.npy', printable=False, keep_prefix=False) lr_files.sort(key=tl.files.natural_keys) for file in lr_files: lr_data.append(tl.files.load_npy_to_any(path=lr_folder + "/", name=file)) data[patient_str] = [lr_data, hr_data] return data def convert_to_png(path): ds = pydicom.dcmread(path) shape = ds.pixel_array.shape # Convert to float to avoid overflow or underflow losses. image_2d = ds.pixel_array.astype(float) # Rescaling grey scale between 0-255 image_2d_scaled = (np.maximum(image_2d,0) / image_2d.max()) * 255.0 # Convert to uint image_2d_scaled = np.uint8(image_2d_scaled) # Write the PNG file destination = 'test.png' with open(destination, 'wb') as png_file: w = png.Writer(shape[1], shape[0], greyscale=True) w.write(png_file, image_2d_scaled) def write_pairs_to_file(path, data_pairs): with open(path, 'w') as f: for i, patient in enumerate(data_pairs): f.write("{}\n".format("Patient " + str(config.patient_numbers[i]))) for dcm_index in patient: f.write("{}\n".format(dcm_index)) def load_scan(path): all_slices = [pydicom.read_file(path + '/' + s, force = True) for s in os.listdir(path)] slice_list = [] incomplete_slices = [] for slice in all_slices: if hasattr(slice, 'InstanceNumber'): slice_list.append(slice) else: incomplete_slices.append(slice) slice_list.sort(key = lambda x: int(x.InstanceNumber)) try: slice_thickness = np.abs(slice_list[0].ImagePositionPatient[2] - slice_list[1].ImagePositionPatient[2]) except: slice_thickness = np.abs(slice_list[0].SliceLocation - slice_list[1].SliceLocation) for s in slice_list: s.SliceThickness = slice_thickness return slice_list def plot_iterative_losses(losses): n = list(range(len(losses['mse_loss']))) f, axarr = plt.subplots(2, sharex=True) axarr[0].plot(n, losses['d_loss']) axarr[0].set_title('Discriminator Loss') axarr[1].plot(n, losses['g_loss']) axarr[1].set_title('Generator Loss') axarr[1].set(xlabel='Iteration') for ax in axarr.flat: ax.set(ylabel='Loss') plt.savefig("iter_main_losses.png") plt.figure() f, axarr = plt.subplots(3, sharex=True) axarr[0].plot(n, losses['mse_loss']) axarr[0].set_title('MSE Loss') axarr[1].plot(n, losses['adv_loss']) axarr[1].set_title('Adversarial Loss') axarr[2].plot(n, losses['vgg_loss']) axarr[2].set_title('VGG Loss') axarr[2].set(xlabel='Iteration') for ax in axarr.flat: ax.set(ylabel='Loss') plt.savefig("iter_all_losses.png") def plot_total_losses(losses): n = list(range(len(losses['d_loss']))) f, axarr = plt.subplots(2, sharex=True) axarr[0].plot(n, losses['d_loss']) axarr[0].set_title('Discriminator Loss') axarr[1].plot(n, losses['g_loss']) axarr[1].set_title('Generator Loss') axarr[1].set(xlabel='Epoch') for ax in axarr.flat: ax.set(ylabel='Loss') plt.savefig('epoch_total_losses') def mse(gen, target): err = np.sum((gen.astype("float") - target.astype("float")) ** 2) err /= float(gen.shape[0] * gen.shape[1]) return err
35.269231
125
0.652563
4a1aede361c118b119eeeebe7f7feea4c7a2d13f
124
py
Python
posthog/models/filters/__init__.py
msnitish/posthog
cb86113f568e72eedcb64b5fd00c313d21e72f90
[ "MIT" ]
null
null
null
posthog/models/filters/__init__.py
msnitish/posthog
cb86113f568e72eedcb64b5fd00c313d21e72f90
[ "MIT" ]
null
null
null
posthog/models/filters/__init__.py
msnitish/posthog
cb86113f568e72eedcb64b5fd00c313d21e72f90
[ "MIT" ]
null
null
null
# flake8: noqa from .filter import Filter from .path_filter import PathFilter from .retention_filter import RetentionFilter
24.8
45
0.83871
4a1aeed41fcc319890a10778173fd9465196f61a
8,214
py
Python
backend/balance/utils.py
Kodeworks/budsjetteringssystem
30b8c2ef0522847c316e466d299a59470e73f712
[ "MIT" ]
6
2019-06-14T08:25:49.000Z
2019-09-18T18:38:04.000Z
backend/balance/utils.py
Kodeworks/liquidator-frontend
30b8c2ef0522847c316e466d299a59470e73f712
[ "MIT" ]
113
2019-06-13T09:09:42.000Z
2019-09-21T16:43:49.000Z
backend/balance/utils.py
Kodeworks/budsjetteringssystem
30b8c2ef0522847c316e466d299a59470e73f712
[ "MIT" ]
2
2019-10-21T18:07:01.000Z
2019-12-08T07:11:40.000Z
import datetime from dateutil.relativedelta import relativedelta from typing import Any from dataclasses import dataclass from django.db.models import Q from transaction.models import Transaction, RecurringTransaction from transaction.utils import RecurringTransactionOccurence from .models import BankBalance day = datetime.timedelta(days=1) @dataclass class Balance: """Estimates the balance of an account from the transactions in the account.""" company_id: int date: datetime.date money: int @classmethod def from_bank_balance(cls, bank_balance): return cls(company_id=bank_balance.company.pk, date=bank_balance.date, money=bank_balance.money) @classmethod def get_transaction_balances(cls, company_id, start_date, end_date, start_balance=0): """Helper method that accumulates balances from transactions.""" balances = {} balance = start_balance transaction_queryset = Transaction.objects.filter(company=company_id, date__gte=start_date, date__lte=end_date) recurring_transactions = RecurringTransaction.get_all_occurences(company_id, start_date, end_date, False) transactions = {} for transaction in transaction_queryset: money = transaction.money if transaction.type != Transaction.INCOME: money = -money if transaction.date in transactions: transactions[transaction.date] += money else: transactions[transaction.date] = money for recurring, dates in recurring_transactions: money = recurring.template.money if recurring.template.type != Transaction.INCOME: money = -money for date in dates: if date in transactions: transactions[date] += money else: transactions[date] = money # We loop through the dictionary, sorted by date for date, money in sorted(transactions.items(), key=lambda x: x[0]): balance += money balances[date] = cls(company_id=company_id, date=date, money=balance) return balances @classmethod def for_date_range(cls, company_id, start_date, end_date, include_bank_balances=False): """Get all balances in a date range.""" balances = {} balance = cls.for_date(company_id, start_date - day, True).money bank_balances = BankBalance.objects.filter(company=company_id, date__gte=start_date, date__lte=end_date) if not bank_balances: balances = cls.get_transaction_balances(company_id, start_date, end_date, balance) else: if bank_balances[0].date != start_date: period_end = bank_balances[0].date if include_bank_balances: period_end -= day balances.update(cls.get_transaction_balances(company_id, start_date, period_end, balance)) elif not include_bank_balances: balances.update(cls.get_transaction_balances(company_id, start_date, start_date, balance)) for i, bank_balance in enumerate(bank_balances): if include_bank_balances: balances[bank_balance.date] = cls.from_bank_balance(bank_balance) balance = bank_balance.money period_start = bank_balance.date + day if len(bank_balances) > i + 1: period_end = bank_balances[i + 1].date if not include_bank_balances: period_end -= day else: period_end = end_date balances.update(cls.get_transaction_balances(company_id, period_start, period_end, balance)) return list(balances.values()) @classmethod def for_date(cls, company_id, date, include_bank_balances=False): """Get the balance for a date.""" transactions = Transaction.objects.filter(company=company_id, date__lte=date) try: date_filter = Q(date__lte=date) if include_bank_balances else Q(date__lt=date) last_bank_balance = BankBalance.objects.filter(date_filter, company=company_id).latest('date') balance = last_bank_balance.money if last_bank_balance.date == date: return cls.from_bank_balance(last_bank_balance) else: transactions = transactions.filter(date__gt=last_bank_balance.date) recurring_transactions = RecurringTransaction.get_all_occurences(company_id, last_bank_balance.date + day, date, False) except BankBalance.DoesNotExist: balance = 0 recurring_transactions = RecurringTransaction.get_all_occurences(company_id, datetime.date.min, date, False) for transaction in transactions: if transaction.type == Transaction.INCOME: balance += transaction.money else: balance -= transaction.money for recurring, dates in recurring_transactions: for _ in dates: if recurring.template.type == Transaction.INCOME: balance += recurring.template.money else: balance -= recurring.template.money return cls(company_id=company_id, date=date, money=balance) @dataclass class Month: """A collection of useful financial information for a month.""" year: int month: int start_balance: int lowest_balance: Balance transactions: Any recurring: Any balances: Any bank_balances: Any @classmethod def get(cls, company_id, year, month): """Get a Month given a year and month.""" month_start = datetime.date(year, month, 1) month_end = month_start + relativedelta(day=31) filter = Q(company=company_id, date__gte=month_start, date__lte=month_end) start_balance = Balance.for_date(company_id, month_start - relativedelta(days=1)) balances = Balance.for_date_range(company_id, month_start, month_end) transactions = Transaction.objects.filter(filter) bank_balances = BankBalance.objects.filter(filter) recurring = [RecurringTransactionOccurence(recurring, dates) for recurring, dates in RecurringTransaction.get_all_occurences(company_id, month_start, month_end)] # If there isn't a balance for the first day of the month we include the incoming # balance in the calculation of the lowest balance if balances and balances[0].date == month_start: lowest_balance = balances[0] elif bank_balances and bank_balances[0].date == month_start: lowest_balance = bank_balances[0] else: lowest_balance = start_balance lowest_balance = min(list(balances) + list(bank_balances) + [lowest_balance], key=lambda x: x.money) return cls(year, month, start_balance.money, lowest_balance, transactions, recurring, balances, bank_balances) @classmethod def for_date_range(cls, company_id, start_date, end_date): if end_date < start_date: return [] month = start_date.month year = start_date.year end_month = end_date.month end_year = end_date.year result = [] while (month <= end_month and year <= end_year) or year < end_year: result.append(cls.get(company_id, year, month)) month += 1 if month == 13: month = 1 year += 1 return result
40.663366
119
0.603482
4a1aef934526bfa4bd4d257db171a95ca6fc835c
807
py
Python
ejabberd_python3d/defaults/arguments.py
Dedaldino3D/ejabberd-python3d
4ff4474347b89ecfda48ff05b76d3a8b3c983046
[ "MIT" ]
4
2020-11-04T02:33:06.000Z
2021-08-29T23:55:47.000Z
ejabberd_python3d/defaults/arguments.py
Dedaldino3D/ejabberd-python3d
4ff4474347b89ecfda48ff05b76d3a8b3c983046
[ "MIT" ]
null
null
null
ejabberd_python3d/defaults/arguments.py
Dedaldino3D/ejabberd-python3d
4ff4474347b89ecfda48ff05b76d3a8b3c983046
[ "MIT" ]
1
2021-09-26T01:49:23.000Z
2021-09-26T01:49:23.000Z
from __future__ import unicode_literals from ..abc.api import APIArgument from ..serializers import StringSerializer, IntegerSerializer, PositiveIntegerSerializer, BooleanSerializer, \ LogLevelSerializer, ListSerializer, GenericSerializer class GenericArgument(APIArgument): serializer_class = GenericSerializer class StringArgument(APIArgument): serializer_class = StringSerializer class IntegerArgument(APIArgument): serializer_class = IntegerSerializer class PositiveIntegerArgument(APIArgument): serializer_class = PositiveIntegerSerializer class BooleanArgument(APIArgument): serializer_class = BooleanSerializer class LogLevelArgument(APIArgument): serializer_class = LogLevelSerializer class ListArgument(APIArgument): serializer_class = ListSerializer
23.735294
110
0.825279
4a1af0b97095df4a8b9e51d9985d490e32a23d55
78
py
Python
shellprofile.py
lambdamusic/scigraph-cli
ef5060e849ee9541f047f44c315833c9a2db2f9f
[ "Apache-2.0" ]
2
2021-04-18T10:24:01.000Z
2021-04-28T12:09:17.000Z
shellprofile.py
lambdamusic/PyScigraph
ef5060e849ee9541f047f44c315833c9a2db2f9f
[ "Apache-2.0" ]
2
2019-07-04T09:21:59.000Z
2019-07-04T17:03:07.000Z
shellprofile.py
lambdamusic/PyScigraph
ef5060e849ee9541f047f44c315833c9a2db2f9f
[ "Apache-2.0" ]
null
null
null
# startup file for ipython # $ ipython startup.py -i from pyscigraph import *
19.5
26
0.74359
4a1af28d0a620d86e10b1d428db9eb9c79838f57
16,768
py
Python
slowfast/utils/checkpoint.py
coldmanck/VidHOI
523e9297202e869cfff70736336dabb35faf8d00
[ "Apache-2.0" ]
26
2021-05-26T12:17:46.000Z
2022-03-24T10:30:22.000Z
slowfast/utils/checkpoint.py
coldmanck/VidHOI
523e9297202e869cfff70736336dabb35faf8d00
[ "Apache-2.0" ]
4
2021-06-24T07:14:37.000Z
2022-03-31T07:51:20.000Z
slowfast/utils/checkpoint.py
coldmanck/VidHOI
523e9297202e869cfff70736336dabb35faf8d00
[ "Apache-2.0" ]
7
2021-05-31T14:43:13.000Z
2022-03-03T13:32:18.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Functions that handle saving and loading of checkpoints.""" import copy import numpy as np import os import pickle from collections import OrderedDict import torch from fvcore.common.file_io import PathManager import slowfast.utils.distributed as du import slowfast.utils.logging as logging from slowfast.utils.c2_model_loading import get_name_convert_func logger = logging.get_logger(__name__) def make_checkpoint_dir(path_to_job): """ Creates the checkpoint directory (if not present already). Args: path_to_job (string): the path to the folder of the current job. """ checkpoint_dir = os.path.join(path_to_job, "checkpoints") # Create the checkpoint dir from the master process if du.is_master_proc() and not PathManager.exists(checkpoint_dir): try: PathManager.mkdirs(checkpoint_dir) except Exception: pass return checkpoint_dir def get_checkpoint_dir(path_to_job): """ Get path for storing checkpoints. Args: path_to_job (string): the path to the folder of the current job. """ return os.path.join(path_to_job, "checkpoints") def get_path_to_checkpoint(path_to_job, epoch): """ Get the full path to a checkpoint file. Args: path_to_job (string): the path to the folder of the current job. epoch (int): the number of epoch for the checkpoint. """ name = "checkpoint_epoch_{:05d}.pyth".format(epoch) return os.path.join(get_checkpoint_dir(path_to_job), name) def get_last_checkpoint(path_to_job): """ Get the last checkpoint from the checkpointing folder. Args: path_to_job (string): the path to the folder of the current job. """ d = get_checkpoint_dir(path_to_job) names = PathManager.ls(d) if PathManager.exists(d) else [] names = [f for f in names if "checkpoint" in f] assert len(names), "No checkpoints found in '{}'.".format(d) # Sort the checkpoints by epoch. name = sorted(names)[-1] return os.path.join(d, name) def has_checkpoint(path_to_job): """ Determines if the given directory contains a checkpoint. Args: path_to_job (string): the path to the folder of the current job. """ d = get_checkpoint_dir(path_to_job) files = PathManager.ls(d) if PathManager.exists(d) else [] return any("checkpoint" in f for f in files) def is_checkpoint_epoch(cfg, cur_epoch, multigrid_schedule=None): """ Determine if a checkpoint should be saved on current epoch. Args: cfg (CfgNode): configs to save. cur_epoch (int): current number of epoch of the model. multigrid_schedule (List): schedule for multigrid training. """ if cur_epoch + 1 == cfg.SOLVER.MAX_EPOCH: return True if multigrid_schedule is not None: prev_epoch = 0 for s in multigrid_schedule: if cur_epoch < s[-1]: period = max( (s[-1] - prev_epoch) // cfg.MULTIGRID.EVAL_FREQ + 1, 1 ) return (s[-1] - 1 - cur_epoch) % period == 0 prev_epoch = s[-1] return (cur_epoch + 1) % cfg.TRAIN.CHECKPOINT_PERIOD == 0 def save_checkpoint(path_to_job, model, optimizer, epoch, cfg): """ Save a checkpoint. Args: model (model): model to save the weight to the checkpoint. optimizer (optim): optimizer to save the historical state. epoch (int): current number of epoch of the model. cfg (CfgNode): configs to save. """ # Save checkpoints only from the master process. if not du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS): return # Ensure that the checkpoint dir exists. PathManager.mkdirs(get_checkpoint_dir(path_to_job)) # Omit the DDP wrapper in the multi-gpu setting. sd = model.module.state_dict() if cfg.NUM_GPUS > 1 else model.state_dict() normalized_sd = sub_to_normal_bn(sd) # Record the state. checkpoint = { "epoch": epoch, "model_state": normalized_sd, "optimizer_state": optimizer.state_dict(), "cfg": cfg.dump(), } # Write the checkpoint. path_to_checkpoint = get_path_to_checkpoint(path_to_job, epoch + 1) with PathManager.open(path_to_checkpoint, "wb") as f: torch.save(checkpoint, f) return path_to_checkpoint def inflate_weight(state_dict_2d, state_dict_3d): """ Inflate 2D model weights in state_dict_2d to the 3D model weights in state_dict_3d. The details can be found in: Joao Carreira, and Andrew Zisserman. "Quo vadis, action recognition? a new model and the kinetics dataset." Args: state_dict_2d (OrderedDict): a dict of parameters from a 2D model. state_dict_3d (OrderedDict): a dict of parameters from a 3D model. Returns: state_dict_inflated (OrderedDict): a dict of inflated parameters. """ state_dict_inflated = OrderedDict() for k, v2d in state_dict_2d.items(): assert k in state_dict_3d.keys() v3d = state_dict_3d[k] # Inflate the weight of 2D conv to 3D conv. if len(v2d.shape) == 4 and len(v3d.shape) == 5: logger.info( "Inflate {}: {} -> {}: {}".format(k, v2d.shape, k, v3d.shape) ) # Dimension need to be match. assert v2d.shape[-2:] == v3d.shape[-2:] assert v2d.shape[:2] == v3d.shape[:2] v3d = ( v2d.unsqueeze(2).repeat(1, 1, v3d.shape[2], 1, 1) / v3d.shape[2] ) elif v2d.shape == v3d.shape: v3d = v2d else: logger.info( "Unexpected {}: {} -|> {}: {}".format( k, v2d.shape, k, v3d.shape ) ) state_dict_inflated[k] = v3d.clone() return state_dict_inflated def load_checkpoint( path_to_checkpoint, model, data_parallel=True, optimizer=None, inflation=False, convert_from_caffe2=False, ): """ Load the checkpoint from the given file. If inflation is True, inflate the 2D Conv weights from the checkpoint to 3D Conv. Args: path_to_checkpoint (string): path to the checkpoint to load. model (model): model to load the weights from the checkpoint. data_parallel (bool): if true, model is wrapped by torch.nn.parallel.DistributedDataParallel. optimizer (optim): optimizer to load the historical state. inflation (bool): if True, inflate the weights from the checkpoint. convert_from_caffe2 (bool): if True, load the model from caffe2 and convert it to pytorch. Returns: (int): the number of training epoch of the checkpoint. """ assert PathManager.exists( path_to_checkpoint ), "Checkpoint '{}' not found".format(path_to_checkpoint) # Account for the DDP wrapper in the multi-gpu setting. ms = model.module if data_parallel else model if convert_from_caffe2: with PathManager.open(path_to_checkpoint, "rb") as f: caffe2_checkpoint = pickle.load(f, encoding="latin1") state_dict = OrderedDict() name_convert_func = get_name_convert_func() for key in caffe2_checkpoint["blobs"].keys(): converted_key = name_convert_func(key) converted_key = c2_normal_to_sub_bn(converted_key, ms.state_dict()) if converted_key in ms.state_dict(): c2_blob_shape = caffe2_checkpoint["blobs"][key].shape model_blob_shape = ms.state_dict()[converted_key].shape # Load BN stats to Sub-BN. if ( len(model_blob_shape) == 1 and len(c2_blob_shape) == 1 and model_blob_shape[0] > c2_blob_shape[0] and model_blob_shape[0] % c2_blob_shape[0] == 0 ): caffe2_checkpoint["blobs"][key] = np.concatenate( [caffe2_checkpoint["blobs"][key]] * (model_blob_shape[0] // c2_blob_shape[0]) ) c2_blob_shape = caffe2_checkpoint["blobs"][key].shape if c2_blob_shape == tuple(model_blob_shape): state_dict[converted_key] = torch.tensor( caffe2_checkpoint["blobs"][key] ).clone() logger.info( "{}: {} => {}: {}".format( key, c2_blob_shape, converted_key, tuple(model_blob_shape), ) ) else: logger.warn( "!! {}: {} does not match {}: {}".format( key, c2_blob_shape, converted_key, tuple(model_blob_shape), ) ) else: if not any( prefix in key for prefix in ["momentum", "lr", "model_iter"] ): logger.warn( "!! {}: can not be converted, got {}".format( key, converted_key ) ) ms.load_state_dict(state_dict, strict=False) epoch = -1 else: # Load the checkpoint on CPU to avoid GPU mem spike. with PathManager.open(path_to_checkpoint, "rb") as f: checkpoint = torch.load(f, map_location="cpu") model_state_dict_3d = ( model.module.state_dict() if data_parallel else model.state_dict() ) checkpoint["model_state"] = normal_to_sub_bn( checkpoint["model_state"], model_state_dict_3d ) if inflation: # Try to inflate the model. inflated_model_dict = inflate_weight( checkpoint["model_state"], model_state_dict_3d ) ms.load_state_dict(inflated_model_dict, strict=False) else: ms.load_state_dict(checkpoint["model_state"]) # Load the optimizer state (commonly not done when fine-tuning) if optimizer: optimizer.load_state_dict(checkpoint["optimizer_state"]) if "epoch" in checkpoint.keys(): epoch = checkpoint["epoch"] else: epoch = -1 return epoch def sub_to_normal_bn(sd): """ Convert the Sub-BN paprameters to normal BN parameters in a state dict. There are two copies of BN layers in a Sub-BN implementation: `bn.bn` and `bn.split_bn`. `bn.split_bn` is used during training and "compute_precise_bn". Before saving or evaluation, its stats are copied to `bn.bn`. We rename `bn.bn` to `bn` and store it to be consistent with normal BN layers. Args: sd (OrderedDict): a dict of parameters whitch might contain Sub-BN parameters. Returns: new_sd (OrderedDict): a dict with Sub-BN parameters reshaped to normal parameters. """ new_sd = copy.deepcopy(sd) modifications = [ ("bn.bn.running_mean", "bn.running_mean"), ("bn.bn.running_var", "bn.running_var"), ("bn.split_bn.num_batches_tracked", "bn.num_batches_tracked"), ] to_remove = ["bn.bn.", ".split_bn."] for key in sd: for before, after in modifications: if key.endswith(before): new_key = key.split(before)[0] + after new_sd[new_key] = new_sd.pop(key) for rm in to_remove: if rm in key and key in new_sd: del new_sd[key] for key in new_sd: if key.endswith("bn.weight") or key.endswith("bn.bias"): if len(new_sd[key].size()) == 4: assert all(d == 1 for d in new_sd[key].size()[1:]) new_sd[key] = new_sd[key][:, 0, 0, 0] return new_sd def c2_normal_to_sub_bn(key, model_keys): """ Convert BN parameters to Sub-BN parameters if model contains Sub-BNs. Args: key (OrderedDict): source dict of parameters. mdoel_key (OrderedDict): target dict of parameters. Returns: new_sd (OrderedDict): converted dict of parameters. """ if "bn.running_" in key: if key in model_keys: return key new_key = key.replace("bn.running_", "bn.split_bn.running_") if new_key in model_keys: return new_key else: return key def normal_to_sub_bn(checkpoint_sd, model_sd): """ Convert BN parameters to Sub-BN parameters if model contains Sub-BNs. Args: checkpoint_sd (OrderedDict): source dict of parameters. model_sd (OrderedDict): target dict of parameters. Returns: new_sd (OrderedDict): converted dict of parameters. """ for key in model_sd: if key not in checkpoint_sd: if "bn.split_bn." in key: load_key = key.replace("bn.split_bn.", "bn.") bn_key = key.replace("bn.split_bn.", "bn.bn.") checkpoint_sd[key] = checkpoint_sd.pop(load_key) checkpoint_sd[bn_key] = checkpoint_sd[key] for key in model_sd: if key in checkpoint_sd: model_blob_shape = model_sd[key].shape c2_blob_shape = checkpoint_sd[key].shape if ( len(model_blob_shape) == 1 and len(c2_blob_shape) == 1 and model_blob_shape[0] > c2_blob_shape[0] and model_blob_shape[0] % c2_blob_shape[0] == 0 ): before_shape = checkpoint_sd[key].shape checkpoint_sd[key] = torch.cat( [checkpoint_sd[key]] * (model_blob_shape[0] // c2_blob_shape[0]) ) logger.info( "{} {} -> {}".format( key, before_shape, checkpoint_sd[key].shape ) ) return checkpoint_sd def load_test_checkpoint(cfg, model): """ Loading checkpoint logic for testing. """ # Load a checkpoint to test if applicable. if cfg.TEST.CHECKPOINT_FILE_PATH != "": # If no checkpoint found in MODEL_VIS.CHECKPOINT_FILE_PATH or in the current # checkpoint folder, try to load checkpoint from # TEST.CHECKPOINT_FILE_PATH and test it. logger.info(f'Loading checkingpoint from {cfg.TEST.CHECKPOINT_FILE_PATH}') load_checkpoint( cfg.TEST.CHECKPOINT_FILE_PATH, model, cfg.NUM_GPUS > 1, None, inflation=False, convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2", ) elif has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR) load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1) elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "": # If no checkpoint found in TEST.CHECKPOINT_FILE_PATH or in the current # checkpoint folder, try to load checkpoint from # TRAIN.CHECKPOINT_FILE_PATH and test it. load_checkpoint( cfg.TRAIN.CHECKPOINT_FILE_PATH, model, cfg.NUM_GPUS > 1, None, inflation=False, convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2", ) else: logger.info( "Unknown way of loading checkpoint. Using with random initialization, only for debugging." ) def load_train_checkpoint(cfg, model, optimizer): """ Loading checkpoint logic for training. """ if cfg.TRAIN.AUTO_RESUME and has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = get_last_checkpoint(cfg.OUTPUT_DIR) logger.info("Load from last checkpoint, {}.".format(last_checkpoint)) checkpoint_epoch = load_checkpoint( last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer ) start_epoch = checkpoint_epoch + 1 elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "": logger.info("Load from given checkpoint file.") checkpoint_epoch = load_checkpoint( cfg.TRAIN.CHECKPOINT_FILE_PATH, model, cfg.NUM_GPUS > 1, optimizer, inflation=cfg.TRAIN.CHECKPOINT_INFLATE, convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2", ) start_epoch = checkpoint_epoch + 1 else: logger.info("Training from scratch.") start_epoch = 0 return start_epoch
36.611354
102
0.594823
4a1af30560eb80ea58379dc76f0da7237be65b96
2,886
py
Python
cymunk/examples/point_query.py
WeilerWebServices/Kivy
54e3438156eb0c853790fd3cecc593f09123f892
[ "MIT" ]
18
2015-03-17T07:04:58.000Z
2017-04-24T13:05:00.000Z
cymunk/examples/point_query.py
WeilerWebServices/Kivy
54e3438156eb0c853790fd3cecc593f09123f892
[ "MIT" ]
10
2017-08-04T18:33:27.000Z
2021-05-10T03:35:56.000Z
cymunk/examples/point_query.py
WeilerWebServices/Kivy
54e3438156eb0c853790fd3cecc593f09123f892
[ "MIT" ]
13
2015-03-12T02:38:37.000Z
2017-02-21T21:25:06.000Z
"""This example showcase point queries by highlighting the shape under the mouse pointer. """ __version__ = "$Id:$" __docformat__ = "reStructuredText" import random import sys import pygame from pygame.locals import * from pygame.color import * import cymunk as pm from cymunk import Vec2d import pygame_util def main(): pygame.init() screen = pygame.display.set_mode((600, 600)) clock = pygame.time.Clock() running = True ### Physics stuff space = pm.Space() space.gravity = Vec2d(0.0, -900.0) ## Balls balls = [] ### walls static_lines = [pm.Segment(space.static_body, Vec2d(111.0, 280.0), Vec2d(407.0, 246.0), 1.0) ,pm.Segment(space.static_body, Vec2d(407.0, 246.0), Vec2d(407.0, 343.0), 1.0) ] space.add(static_lines) ticks_to_next_ball = 10 while running: for event in pygame.event.get(): if event.type == QUIT: running = False elif event.type == KEYDOWN and event.key == K_ESCAPE: running = False elif event.type == KEYDOWN and event.key == K_p: pygame.image.save(screen, "point_query.png") ticks_to_next_ball -= 1 if ticks_to_next_ball <= 0: ticks_to_next_ball = 100 mass = 10 radius = 25 inertia = pm.moment_for_circle(mass, 0, radius, Vec2d(0,0)) body = pm.Body(mass, inertia) x = random.randint(115,350) body.position = x, 400 shape = pm.Circle(body, radius, Vec2d(0,0)) #shape.color = THECOLORS["lightgrey"] space.add(body, shape) balls.append(shape) ### Clear screen screen.fill(THECOLORS["white"]) ### Draw stuff pygame_util.draw(screen, space) balls_to_remove = [] for ball in balls: if ball.body.position.y < 200: balls_to_remove.append(ball) for ball in balls_to_remove: space.remove(ball, ball.body) balls.remove(ball) mouse_pos = pygame_util.get_mouse_pos(screen) shape = space.point_query_first(Vec2d(mouse_pos)) if shape is not None: if hasattr(shape, "radius"): r = shape.radius + 4 else: r = 10 p = pygame_util.to_pygame(shape.body.position, screen) pygame.draw.circle(screen, THECOLORS["red"], p, int(r), 2) ### Update physics dt = 1.0/60.0 for x in range(1): space.step(dt) ### Flip screen pygame.display.flip() clock.tick(50) pygame.display.set_caption("fps: " + str(clock.get_fps())) if __name__ == '__main__': sys.exit(main())
27.75
97
0.546085
4a1af4503d66c861611869f7c6048c9b9514c0e4
16,301
py
Python
CAP-newCluster/train_cap.py
ZoRoronoa/Camera-Aware-Proxy
352f900bbae330f18c2bfe2b3f2516fb4e31adea
[ "Apache-2.0" ]
null
null
null
CAP-newCluster/train_cap.py
ZoRoronoa/Camera-Aware-Proxy
352f900bbae330f18c2bfe2b3f2516fb4e31adea
[ "Apache-2.0" ]
null
null
null
CAP-newCluster/train_cap.py
ZoRoronoa/Camera-Aware-Proxy
352f900bbae330f18c2bfe2b3f2516fb4e31adea
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function, absolute_import import argparse import os.path as osp import numpy as np import sys import torch from torch import nn from torch.backends import cudnn from torch.utils.data import DataLoader from reid.datasets.target_dataset import DA from reid import models from reid.models import stb_net from reid.trainers import Trainer from reid.evaluators import Evaluator from reid.utils.data import transforms as T from reid.utils.data.preprocessor import Preprocessor, UnsupervisedTargetPreprocessor, ClassUniformlySampler from reid.utils.logging import Logger from reid.loss import CAPMemory from bisect import bisect_right from reid.utils.evaluation_metrics.retrieval import PersonReIDMAP from reid.utils.meters import CatMeter from reid.img_grouping import img_association from ChannelAug import ChannelAdap, ChannelAdapGray, ChannelExchange, ChannelRandomErasing def get_data(data_dir, target, height, width, batch_size, re=0, workers=8): dataset = DA(data_dir, target, generate_propagate_data=True) normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) num_classes = dataset.num_train_ids test_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.ToTensor(), normalizer, ]) ca_transformer = T.Compose([ T.Pad(10), T.RandomCrop((288, 144)), T.RandomHorizontalFlip(), T.ToTensor(), normalizer, ChannelRandomErasing(probability = 0.5), ChannelExchange(gray = 2) ]) propagate_loader = DataLoader( UnsupervisedTargetPreprocessor(dataset.target_train_original, root=osp.join(dataset.target_images_dir, dataset.target_train_path), num_cam=dataset.target_num_cam, transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) ca_propagate_loader = DataLoader( UnsupervisedTargetPreprocessor(dataset.target_train_original, root=osp.join(dataset.target_images_dir, dataset.target_train_path), num_cam=dataset.target_num_cam, transform=ca_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) query_loader = DataLoader( Preprocessor(dataset.query, root=osp.join(dataset.target_images_dir, dataset.query_path), transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) gallery_loader = DataLoader( Preprocessor(dataset.gallery, root=osp.join(dataset.target_images_dir, dataset.gallery_path), transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) return dataset, num_classes, query_loader, gallery_loader, propagate_loader, ca_propagate_loader def update_train_loader(dataset, train_samples, updated_label, height, width, batch_size, re, workers, all_img_cams, sample_position=7): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.RandomHorizontalFlip(p=0.5), T.Pad(10), T.RandomCrop((height, width)), T.ToTensor(), normalizer, T.RandomErasing(EPSILON=re) ]) ca_transformer = T.Compose([ T.Pad(10), T.RandomCrop((288, 144)), T.RandomHorizontalFlip(), T.ToTensor(), normalizer, ChannelRandomErasing(probability = 0.5), ChannelExchange(gray = 2) ]) # obtain global accumulated label from pseudo label and cameras pure_label = updated_label[updated_label>=0] pure_cams = all_img_cams[updated_label>=0] accumulate_labels = np.zeros(pure_label.shape, pure_label.dtype) prev_id_count = 0 id_count_each_cam = [] for this_cam in np.unique(pure_cams): percam_labels = pure_label[pure_cams == this_cam] unique_id = np.unique(percam_labels) id_count_each_cam.append(len(unique_id)) id_dict = {ID: i for i, ID in enumerate(unique_id.tolist())} for i in range(len(percam_labels)): percam_labels[i] = id_dict[percam_labels[i]] accumulate_labels[pure_cams == this_cam] = percam_labels + prev_id_count prev_id_count += len(unique_id) print(' sum(id_count_each_cam)= {}'.format(sum(id_count_each_cam))) new_accum_labels = -1*np.ones(updated_label.shape, updated_label.dtype) new_accum_labels[updated_label>=0] = accumulate_labels # update sample list new_train_samples = [] for sample in train_samples: lbl = updated_label[sample[3]] if lbl != -1: assert(new_accum_labels[sample[3]]>=0) new_sample = sample + (lbl, new_accum_labels[sample[3]]) new_train_samples.append(new_sample) target_train_loader = DataLoader( UnsupervisedTargetPreprocessor(new_train_samples, root=osp.join(dataset.target_images_dir, dataset.target_train_path), num_cam=dataset.target_num_cam, transform=ca_transformer, has_pseudo_label=True), batch_size=batch_size, num_workers=workers, pin_memory=True, drop_last=True, sampler=ClassUniformlySampler(new_train_samples, class_position=sample_position, k=4)) return target_train_loader, len(new_train_samples) class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__(self, optimizer, milestones, gamma=0.1, warmup_factor=1.0 / 3, warmup_iters=500, warmup_method="linear", last_epoch=-1): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones,) if warmup_method not in ("constant", "linear"): raise ValueError( "Only 'constant' or 'linear' warmup_method accepted" "got {}".format(warmup_method) ) self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch) def get_lr(self): warmup_factor = 1 if self.last_epoch < self.warmup_iters: if self.warmup_method == "constant": warmup_factor = self.warmup_factor elif self.warmup_method == "linear": alpha = float(self.last_epoch) / float(self.warmup_iters) warmup_factor = self.warmup_factor * (1 - alpha) + alpha return [ base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch) for base_lr in self.base_lrs ] def test_model(model, query_loader, gallery_loader): model.eval() # meters query_features_meter, query_pids_meter, query_cids_meter = CatMeter(), CatMeter(), CatMeter() gallery_features_meter, gallery_pids_meter, gallery_cids_meter = CatMeter(), CatMeter(), CatMeter() # init dataset loaders = [query_loader, gallery_loader] # compute query and gallery features with torch.no_grad(): for loader_id, loader in enumerate(loaders): for data in loader: images = data[0] pids = data[2] cids = data[3] images = images.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) features = model(images) # save as query features if loader_id == 0: query_features_meter.update(features.data) query_pids_meter.update(pids) query_cids_meter.update(cids) # save as gallery features elif loader_id == 1: gallery_features_meter.update(features.data) gallery_pids_meter.update(pids) gallery_cids_meter.update(cids) query_features = query_features_meter.get_val_numpy() gallery_features = gallery_features_meter.get_val_numpy() # compute mAP and rank@k result = PersonReIDMAP( query_features, query_cids_meter.get_val_numpy(), query_pids_meter.get_val_numpy(), gallery_features, gallery_cids_meter.get_val_numpy(), gallery_pids_meter.get_val_numpy(), dist='cosine') return result.mAP, result.CMC[0], result.CMC[4], result.CMC[9], result.CMC[19] def main(args): cudnn.benchmark = True device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Redirect print to both console and log file if not args.evaluate: sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt')) print('log_dir= ', args.logs_dir) # Print logs print('args= ', args) saved_label = [] # Create data loaders dataset, num_classes, query_loader, gallery_loader, propagate_loader, propagate_loader_ca = get_data( args.data_dir, args.target, args.height, args.width, args.batch_size, args.re, args.workers) # Create model model = stb_net.MemoryBankModel(out_dim=2048, use_bnneck=args.use_bnneck) # Create memory bank cap_memory = CAPMemory(beta=args.inv_beta, alpha=args.inv_alpha, all_img_cams=dataset.target_train_all_img_cams) # Set model # model = nn.DataParallel(model.to(device)) model = model.to(device) cap_memory = cap_memory.to(device) print(args.load_ckpt) # Load from checkpoint if len(args.load_ckpt)>0: print(' Loading pre-trained model: {}'.format(args.load_ckpt)) trained_dict = torch.load(args.load_ckpt) filtered_trained_dict = {k: v for k, v in trained_dict.items() if not k.startswith('module.classifier')} for k in filtered_trained_dict.keys(): if 'embeding' in k: print('pretrained model has key= {}'.format(k)) model_dict = model.state_dict() model_dict.update(filtered_trained_dict) model.load_state_dict(model_dict) # Evaluator if args.evaluate: print("Test:") eval_results = test_model(model, query_loader, gallery_loader) print('rank1: %.4f, rank5: %.4f, rank10: %.4f, rank20: %.4f, mAP: %.4f' % (eval_results[1], eval_results[2], eval_results[3], eval_results[4], eval_results[0])) return # Optimizer params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = args.base_lr weight_decay = args.weight_decay params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] optimizer = torch.optim.Adam(params) lr_scheduler = WarmupMultiStepLR(optimizer, args.milestones, gamma=0.1, warmup_factor=0.01, warmup_iters=10) # Trainer trainer = Trainer(model, cap_memory) # Start training # len mark all_len = [] for epoch in range(args.epochs): lr_scheduler.step(epoch) # image grouping print('Epoch {} image grouping:'.format(epoch)) updated_label, init_intra_id_feat = img_association(model, propagate_loader_ca, min_sample=4, eps=args.thresh, rerank=True, k1=20, k2=6, intra_id_reinitialize=True) updated_len = len(updated_label[updated_label >= 0]) all_len.append(updated_len) ratio = (max(all_len[max(0, epoch-4):]) - min(all_len[max(0, epoch-4):])) / min(all_len[max(0, epoch-4):]) print(all_len) print("Min last five: ", min(all_len[max(0, epoch-4):])) print("Max last five: ", max(all_len[max(0, epoch-4):])) print("Rat last five: ", ratio) if ratio < 0.01 and ratio > 0.001: saved_label = updated_label print("Max length ===>" + str(updated_len)) np.save(osp.join(args.logs_dir, str(epoch)+"label.npy"), saved_label) # break # all_len.append(updated_len) # update train loader new_train_loader, loader_size = update_train_loader(dataset, dataset.target_train, updated_label, args.height, args.width, args.batch_size, args.re, args.workers, dataset.target_train_all_img_cams, sample_position=5) num_batch = int(float(loader_size)/args.batch_size) # train an epoch trainer.train(epoch, new_train_loader, optimizer, num_batch=num_batch, all_pseudo_label=torch.from_numpy(updated_label).to(torch.device('cuda')), init_intra_id_feat=init_intra_id_feat) # test if (epoch+1)%5 == 0: torch.save(model.state_dict(), osp.join(args.logs_dir, 'final_model_epoch_'+str(epoch+1)+'.pth')) print('Epoch ' + str(epoch + 1)+ ' Model saved.') print('Test with epoch {} model:'.format(epoch)) eval_results = test_model(model, query_loader, gallery_loader) print(' rank1: %.4f, rank5: %.4f, rank10: %.4f, rank20: %.4f, mAP: %.4f' % (eval_results[1], eval_results[2], eval_results[3], eval_results[4], eval_results[0])) # save final model if (epoch+1)%args.epochs == 0: torch.save(model.state_dict(), osp.join(args.logs_dir, 'final_model_epoch_'+str(epoch+1)+'.pth')) print('Final Model saved.') if __name__ == '__main__': parser = argparse.ArgumentParser(description="Camera Aware Proxies for Unsupervised Person Re-ID") # target dataset parser.add_argument('--target', type=str, default='market') # imgs setting parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--workers', type=int, default=8) parser.add_argument('--height', type=int, default=288, help="input height, default: 288") parser.add_argument('--width', type=int, default=144, help="input width, default: 144") # random erasing parser.add_argument('--re', type=float, default=0.5) # model parser.add_argument('--arch', type=str, default='resnet50', choices=models.names()) parser.add_argument('--features', type=int, default=2048) parser.add_argument('--dropout', type=float, default=0.5) parser.add_argument('--use_bnneck', action='store_true', default=True) parser.add_argument('--pool_type', type=str, default='avgpool') # optimizer parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=5e-4) parser.add_argument('--base_lr', type=float, default=0.00035) # for adam parser.add_argument('--milestones',type=int, nargs='+', default=[20, 40]) # for adam # training configs parser.add_argument('--resume', type=str, default='', metavar='PATH') parser.add_argument('--evaluate', action='store_true', help="evaluation only", default=False) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--print_freq', type=int, default=1) # misc working_dir = osp.dirname(osp.abspath(__file__)) parser.add_argument('--data_dir', type=str, metavar='PATH', default=osp.join(working_dir, 'data')) parser.add_argument('--logs_dir', type=str, metavar='PATH', default=osp.join(working_dir, 'logs')) parser.add_argument('--load_ckpt', type=str, default='') # loss learning parser.add_argument('--inv_alpha', type=float, default=0.2, help='update rate for the memory') parser.add_argument('--inv_beta', type=float, default=0.07, help='temperature for contrastive loss') parser.add_argument('--thresh', type=int, default=0.5, help='threshold for clustering') args = parser.parse_args() # args.load_ckpt = '' # args.evaluate = False # args.use_bnneck = True main(args) # CUDA_VISIBLE_DEVICES=0 python train_cap.py --target 'VeRi' --data_dir '/home/xxx/folder/dataset' --logs_dir 'VeRi_logs'
43.469333
130
0.653886
4a1af489ef332b1169d5f2a65ae593761883ecb4
2,868
py
Python
examples/addressable/plot_pairing.py
d-michail/python-jheaps
65e1f4036b125dc065dc4398bf2eac0e95726f7a
[ "Apache-2.0" ]
null
null
null
examples/addressable/plot_pairing.py
d-michail/python-jheaps
65e1f4036b125dc065dc4398bf2eac0e95726f7a
[ "Apache-2.0" ]
null
null
null
examples/addressable/plot_pairing.py
d-michail/python-jheaps
65e1f4036b125dc065dc4398bf2eac0e95726f7a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Pairing Heap ============ In this example we create a pairing heap. """ # %% # Start by importing the package. import jheaps # %% # Create the pairing heap using the following factory method. By default all # addressable heaps have `float` keys and `int` values. This can be adjusted by # parameters `key_type` and `value_type` in the factory method which can take # values `float`, `int`, `object`. heap = jheaps.create_addressable_pairing_heap() # %% # Adding elements can be performed using insert. We next add an element with key # equal to 3.14 and value 100. Moreover, we add a few more elements. heap.insert(3.14, 100) for i in range(1, 100): heap.insert(i, 1000+i) # %% # Now our heap has 100 elements. print ('Total elements so far: {}'.format(len(heap))) # %% # If we never need to refer to that element, except from possible accessing it when # its key is minimum in the heap, we are done. Otherwise, when inserting an element we # are presented with a `handle` which we can later use to refer to that particular element. handle1 = heap.insert(15.3, 200) # %% # Using the handle we can print the key and value of the element print('key: {}, value: {}'.format(handle1.key, handle1.value)) # %% # We can also adjust its value handle1.value = 250 print('key: {}, value: {}'.format(handle1.key, handle1.value)) # %% # Adjusting the key is more limited as we can only increase an element's priority, thus decrease # its key. We next find the minimum element in the heap and make the element referred by # `handle1` as the new minimum. cur_min_key = heap.find_min().key handle1.decrease_key(cur_min_key - 1.0) print('key: {}, value: {}'.format(handle1.key, handle1.value)) # %% # Method `find_min` returns a handle to the current minimum element. handle2 = heap.find_min() print('key: {}, value: {}'.format(handle2.key, handle2.value)) # %% # Method `delete_min` deletes the minimum element and returns a handle. Be # careful with that handle as it allows you to read the key and read/write the # value but calling any other method (such as `decrease_key` or `delete`) on that handle # will raise an error. handle3 = heap.delete_min() print('key: {}, value: {}'.format(handle3.key, handle3.value)) # %% # Except from decreasing the key, handles are also useful when we want to delete an element # which is not the element with the minimum key. We next insert an element and then remove it. # print('Size of heap before insertion: {}'.format(len(heap))) handle4 = heap.insert(50.5, 103) print('Size of heap after insertion: {}'.format(len(heap))) handle4.delete() print('Size of heap after deletion: {}'.format(len(heap))) # %% # Clearing the heap can be done using method `clear`. heap.clear() print('Size of heap: {}'.format(len(heap))) print('Heap is empty: {}'.format(heap.is_empty()))
29.265306
96
0.703626
4a1af5b5d95dd5f188851af83e59e0a056cd8ace
2,551
py
Python
gdal/swig/python/samples/gdal_create_pdf.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,100
2015-01-02T10:33:40.000Z
2022-03-31T02:06:51.000Z
gdal/swig/python/samples/gdal_create_pdf.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
3,496
2015-01-06T16:53:30.000Z
2022-03-31T20:18:51.000Z
gdal/swig/python/samples/gdal_create_pdf.py
jpapadakis/gdal
f07aa15fd65af36b04291303cc6834c87f662814
[ "MIT" ]
2,036
2015-01-08T20:22:12.000Z
2022-03-31T10:24:08.000Z
#!/usr/bin/env python3 ############################################################################### # $Id$ # # Project: GDAL samples # Purpose: Create a PDF from a XML composition file # Author: Even Rouault <even.rouault at spatialys.com> # ############################################################################### # Copyright (c) 2019, Even Rouault<even.rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys from osgeo import gdal def Usage(): print('Usage: gdal_create_pdf composition.xml out.pdf') return -1 def gdal_create_pdf(argv): srcfile = None targetfile = None argv = gdal.GeneralCmdLineProcessor(argv) if argv is None: return -1 for i in range(1, len(argv)): if argv[i][0] == '-': print('Unrecognized option : %s' % argv[i]) return Usage() elif srcfile is None: srcfile = argv[i] elif targetfile is None: targetfile = argv[i] else: print('Unexpected option : %s' % argv[i]) return Usage() if srcfile is None or targetfile is None: return Usage() out_ds = gdal.GetDriverByName("PDF").Create( targetfile, 0, 0, 0, gdal.GDT_Unknown, options = ['COMPOSITION_FILE=' + srcfile]) return 0 if out_ds else 1 def main(argv): gdal_create_pdf(argv) if __name__ == '__main__': sys.exit(main(sys.argv))
33.565789
79
0.618581
4a1af670f8a09d280d6e32299623e0cec09043bc
1,410
py
Python
venv/Lib/site-packages/nbconvert/preprocessors/convertfigures.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
1,367
2015-05-24T22:59:22.000Z
2022-03-31T07:44:02.000Z
venv/Lib/site-packages/nbconvert/preprocessors/convertfigures.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
1,534
2015-05-08T21:47:15.000Z
2022-03-31T10:09:31.000Z
venv/Lib/site-packages/nbconvert/preprocessors/convertfigures.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
586
2015-05-17T01:21:02.000Z
2022-03-24T17:06:05.000Z
"""Module containing a preprocessor that converts outputs in the notebook from one format to another. """ # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. from .base import Preprocessor from traitlets import Unicode class ConvertFiguresPreprocessor(Preprocessor): """ Converts all of the outputs in a notebook from one format to another. """ from_format = Unicode(help='Format the converter accepts').tag(config=True) to_format = Unicode(help='Format the converter writes').tag(config=True) def __init__(self, **kw): """ Public constructor """ super().__init__(**kw) def convert_figure(self, data_format, data): raise NotImplementedError() def preprocess_cell(self, cell, resources, cell_index): """ Apply a transformation on each cell, See base.py """ # Loop through all of the datatypes of the outputs in the cell. for output in cell.get('outputs', []): if output.output_type in {'execute_result', 'display_data'} \ and self.from_format in output.data \ and self.to_format not in output.data: output.data[self.to_format] = self.convert_figure( self.from_format, output.data[self.from_format]) return cell, resources
28.77551
79
0.641844
4a1af6d2cced2568784ab2693ef705eaf738a125
357
py
Python
setup.py
JKamlah/akf-dbTools
bd7b661485ba578b0a3e8ae6d1a0e1601b5dc0d6
[ "Apache-2.0" ]
1
2019-02-26T22:19:08.000Z
2019-02-26T22:19:08.000Z
setup.py
JKamlah/akf-dbTools
bd7b661485ba578b0a3e8ae6d1a0e1601b5dc0d6
[ "Apache-2.0" ]
null
null
null
setup.py
JKamlah/akf-dbTools
bd7b661485ba578b0a3e8ae6d1a0e1601b5dc0d6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3.6 import sys assert sys.version_info[0]==3 and sys.version_info[1]>=6,\ "Ýou must install and use akf-dbTools with Python version 3.6 or higher" from distutils.core import setup setup( name='akf_dbTools', version='1.0', author='jkamlah', description='Tools for the Aktienfuehrer Database', packages=[''], )
22.3125
76
0.691877
4a1af799308031e8c1a4337b9d991cb6bafb489f
4,801
py
Python
docs/conf.py
NullConvergence/pydriller
e75cbe1ce90e1d317973915cf79ed03fb09988a0
[ "Apache-2.0" ]
583
2018-04-09T09:48:47.000Z
2022-03-23T17:27:10.000Z
docs/conf.py
NullConvergence/pydriller
e75cbe1ce90e1d317973915cf79ed03fb09988a0
[ "Apache-2.0" ]
195
2018-05-25T08:10:58.000Z
2022-03-29T09:28:37.000Z
docs/conf.py
NullConvergence/pydriller
e75cbe1ce90e1d317973915cf79ed03fb09988a0
[ "Apache-2.0" ]
134
2018-04-10T12:57:34.000Z
2022-03-29T13:40:35.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../')) # -- Project information ----------------------------------------------------- project = 'PyDriller' copyright = '2018, Davide Spadini' author = 'Davide Spadini' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'PyDrillerdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PyDriller.tex', 'PyDriller Documentation', 'Davide Spadini', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pydriller', 'PyDriller Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PyDriller', 'PyDriller Documentation', author, 'PyDriller', 'One line description of project.', 'Miscellaneous'), ]
31.175325
79
0.655905
4a1af7c9f88360ce23709ca597d7f49be82921e3
3,707
py
Python
tests/test_connection.py
hulu316/zoonado
cb06102f95e7da9c0e418bb9e327045e012a1497
[ "Apache-2.0" ]
12
2016-04-14T09:55:38.000Z
2018-01-07T13:12:47.000Z
tests/test_connection.py
hulu316/zoonado
cb06102f95e7da9c0e418bb9e327045e012a1497
[ "Apache-2.0" ]
16
2016-07-21T09:45:38.000Z
2017-09-22T19:06:14.000Z
tests/test_connection.py
hulu316/zoonado
cb06102f95e7da9c0e418bb9e327045e012a1497
[ "Apache-2.0" ]
8
2016-07-21T09:06:37.000Z
2019-07-26T05:48:00.000Z
from mock import patch, Mock, call from tornado import testing, concurrent from zoonado.protocol.connect import ConnectRequest, ConnectResponse from zoonado import connection class ConnectionTests(testing.AsyncTestCase): def setUp(self): super(ConnectionTests, self).setUp() self.response_buffer = bytearray() tcpclient_patcher = patch.object(connection, "tcpclient") mock_tcpclient = tcpclient_patcher.start() self.addCleanup(tcpclient_patcher.stop) self.mock_client = mock_tcpclient.TCPClient.return_value stream = Mock() self.mock_client.connect.return_value = self.future_value(stream) def read_some(num_bytes): result = self.response_buffer[:num_bytes] del self.response_buffer[:num_bytes] return self.future_value(result) def read_all(): result = self.response_buffer[:] self.response_buffer = bytearray() return self.future_value(result) stream.write.return_value = self.future_value(None) stream.read_bytes.side_effect = read_some stream.read_until_close.side_effect = read_all def future_value(self, value): f = concurrent.Future() f.set_result(value) return f def future_error(self, exception): f = concurrent.Future() f.set_exception(exception) return f @testing.gen_test def test_connect_gets_version_info(self): self.response_buffer.extend( b"""Zookeeper version: 3.4.6-1569965, built on 02/20/2014 09:09 GMT Latency min/avg/max: 0/0/1137 Received: 21462 Sent: 21474 Connections: 2 Outstanding: 0 Zxid: 0x11171 Mode: standalone Node count: 232""" ) conn = connection.Connection("local", 9999, Mock()) yield conn.connect() self.assertEqual(conn.version_info, (3, 4, 6)) self.assertEqual(conn.start_read_only, False) self.mock_client.connect.assert_has_calls([ call("local", 9999), call("local", 9999), ]) @testing.gen_test def test_send_connect_returns_none_on_error(self): conn = connection.Connection("local", 9999, Mock()) conn.stream = Mock() conn.stream.write.return_value = self.future_value(None) conn.stream.read_bytes.return_value = self.future_error(Exception("!")) result = yield conn.send_connect( ConnectRequest( protocol_version=0, last_seen_zxid=0, timeout=8000, session_id=0, password=b'\x00', read_only=False, ) ) self.assertEqual(result, None) @patch.object(connection.Connection, "read_response") @testing.gen_test def test_send_connect(self, read_response): conn = connection.Connection("local", 9999, Mock()) conn.stream = Mock() conn.stream.write.return_value = self.future_value(None) response = ConnectResponse( protocol_version=0, timeout=7000, session_id=123456, password=b"\xc3" ) read_response.return_value = self.future_value( ( 23, # xid 123, # zxid response, # response ) ) result = yield conn.send_connect( ConnectRequest( protocol_version=0, last_seen_zxid=0, timeout=8000, session_id=0, password=b'\x00', read_only=False, ) ) self.assertEqual(result, (123, response))
28.083333
79
0.602913
4a1af7e7bc6853ffea4aeb34caa943077cb20582
3,215
py
Python
examples/pipelines/multiple_subjects_bold.py
salma1601/process-asl-old
eaafb0c46b132be14005b52eb54b86d30364ec32
[ "BSD-3-Clause" ]
1
2020-03-11T13:59:04.000Z
2020-03-11T13:59:04.000Z
examples/pipelines/multiple_subjects_bold.py
salma1601/process-asl-old
eaafb0c46b132be14005b52eb54b86d30364ec32
[ "BSD-3-Clause" ]
4
2016-02-19T18:24:50.000Z
2016-02-19T18:24:58.000Z
examples/pipelines/multiple_subjects_bold.py
salma1601/process-asl-old
eaafb0c46b132be14005b52eb54b86d30364ec32
[ "BSD-3-Clause" ]
null
null
null
""" =============================== Multiple subjects pipeline demo =============================== A basic multiple subjects pipeline for BOLD data. """ import os import matplotlib.pylab as plt import nipype.interfaces.spm as spm from nipype.caching import Memory from nilearn import plotting from procasl import datasets, preprocessing, _utils # Load the dataset subjects_parent_directory = os.path.join(os.path.expanduser('~/procasl_data'), 'heroes') heroes = datasets.load_heroes_dataset( subjects=(0, 4, 9), subjects_parent_directory=subjects_parent_directory, dataset_pattern={'anat': 't1mri/acquisition1/anat*.nii', 'BOLD EPI': 'fMRI/acquisition1/vismot1_BOLDepi*.nii'}) current_directory = os.getcwd() # Loop over subjects for (func_file, anat_file) in zip( heroes['BOLD EPI'], heroes['anat']): # Create a memory context subject_directory = os.path.relpath(anat_file, subjects_parent_directory) subject_directory = subject_directory.split(os.sep)[0] cache_directory = os.path.join(os.path.expanduser('~/CODE/process-asl'), 'procasl_cache', 'heroes', subject_directory) if not os.path.exists(cache_directory): os.mkdir(cache_directory) os.chdir(cache_directory) # nipype saves .m scripts in current directory mem = Memory(cache_directory) # Realign EPIs realign = mem.cache(spm.Realign) out_realign = realign( in_files=func_file, register_to_mean=True) # Coregister anat to mean EPIs coregister = mem.cache(spm.Coregister) out_coregister = coregister( target=out_realign.outputs.mean_image, source=anat_file, write_interp=3, jobtype='estimate') # Segment anat segment = mem.cache(spm.Segment) out_segment = segment( data=anat_file, gm_output_type=[True, False, True], wm_output_type=[True, False, True], csf_output_type=[True, False, True], save_bias_corrected=True) # Normalize anat normalize_anat = mem.cache(spm.Normalize) out_normalize_anat = normalize_anat( parameter_file=out_segment.outputs.transformation_mat, apply_to_files=[out_coregister.outputs.coregistered_source], write_voxel_sizes=_utils.get_vox_dims(anat_file), write_interp=1, jobtype='write') # Normalize EPIs normalize_func = mem.cache(spm.Normalize) out_normalize_func = normalize_func( parameter_file=out_segment.outputs.transformation_mat, apply_to_files=[out_realign.outputs.realigned_files], write_voxel_sizes=_utils.get_vox_dims(func_file), write_interp=1, jobtype='write') # Smooth EPIs smooth = mem.cache(spm.Smooth) out_smooth = smooth( in_files=out_normalize_func.outputs.normalized_files, fwhm=[5., 5., 5.]) # Plot mean smoothed EPI average = preprocessing.Average() average.inputs.in_file = out_smooth.outputs.smoothed_files out_average = average.run() plotting.plot_epi(out_average.outputs.mean_image) plt.show() os.chdir(current_directory)
32.806122
78
0.669673
4a1af8ca2063597c35f3eba72a5bbbf162a4176f
633
py
Python
manage.py
anonshubh/eCommerce-rostores-
7503e855d650556e216c42fc1c5b95a42bb9c501
[ "Apache-2.0" ]
null
null
null
manage.py
anonshubh/eCommerce-rostores-
7503e855d650556e216c42fc1c5b95a42bb9c501
[ "Apache-2.0" ]
null
null
null
manage.py
anonshubh/eCommerce-rostores-
7503e855d650556e216c42fc1c5b95a42bb9c501
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ecommerce_src.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.772727
77
0.685624
4a1af93dd899de187ed6c5fef3691c8c6f5554f5
5,600
py
Python
mmdet3d/models/model_utils/transformer.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
2,216
2020-07-09T19:10:11.000Z
2022-03-31T12:39:26.000Z
mmdet3d/models/model_utils/transformer.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
1,174
2020-07-10T07:02:28.000Z
2022-03-31T12:38:56.000Z
mmdet3d/models/model_utils/transformer.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
681
2020-07-09T19:40:06.000Z
2022-03-31T11:02:24.000Z
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn.bricks.registry import ATTENTION from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING, MultiheadAttention from torch import nn as nn @ATTENTION.register_module() class GroupFree3DMHA(MultiheadAttention): """A warpper for torch.nn.MultiheadAttention for GroupFree3D. This module implements MultiheadAttention with identity connection, and positional encoding used in DETR is also passed as input. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. attn_drop (float): A Dropout layer on attn_output_weights. Default 0.0. proj_drop (float): A Dropout layer. Default 0.0. dropout_layer (obj:`ConfigDict`): The dropout_layer used when adding the shortcut. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. batch_first (bool): Key, Query and Value are shape of (batch, n, embed_dim) or (n, batch, embed_dim). Default to False. """ def __init__(self, embed_dims, num_heads, attn_drop=0., proj_drop=0., dropout_layer=dict(type='DropOut', drop_prob=0.), init_cfg=None, batch_first=False, **kwargs): super().__init__(embed_dims, num_heads, attn_drop, proj_drop, dropout_layer, init_cfg, batch_first, **kwargs) def forward(self, query, key, value, identity, query_pos=None, key_pos=None, attn_mask=None, key_padding_mask=None, **kwargs): """Forward function for `GroupFree3DMHA`. **kwargs allow passing a more general data flow when combining with other operations in `transformerlayer`. Args: query (Tensor): The input query with shape [num_queries, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. key (Tensor): The key tensor with shape [num_keys, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. If None, the ``query`` will be used. Defaults to None. value (Tensor): The value tensor with same shape as `key`. Same in `nn.MultiheadAttention.forward`. Defaults to None. If None, the `key` will be used. identity (Tensor): This tensor, with the same shape as x, will be used for the identity link. If None, `x` will be used. Defaults to None. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. If not None, it will be added to `x` before forward function. Defaults to None. key_pos (Tensor): The positional encoding for `key`, with the same shape as `key`. Defaults to None. If not None, it will be added to `key` before forward function. If None, and `query_pos` has the same shape as `key`, then `query_pos` will be used for `key_pos`. Defaults to None. attn_mask (Tensor): ByteTensor mask with shape [num_queries, num_keys]. Same in `nn.MultiheadAttention.forward`. Defaults to None. key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. Same in `nn.MultiheadAttention.forward`. Defaults to None. Returns: Tensor: forwarded results with shape [num_queries, bs, embed_dims]. """ if hasattr(self, 'operation_name'): if self.operation_name == 'self_attn': value = value + query_pos elif self.operation_name == 'cross_attn': value = value + key_pos else: raise NotImplementedError( f'{self.__class__.name} ' f"can't be used as {self.operation_name}") else: value = value + query_pos return super(GroupFree3DMHA, self).forward( query=query, key=key, value=value, identity=identity, query_pos=query_pos, key_pos=key_pos, attn_mask=attn_mask, key_padding_mask=key_padding_mask, **kwargs) @POSITIONAL_ENCODING.register_module() class ConvBNPositionalEncoding(nn.Module): """Absolute position embedding with Conv learning. Args: input_channel (int): input features dim. num_pos_feats (int): output position features dim. Defaults to 288 to be consistent with seed features dim. """ def __init__(self, input_channel, num_pos_feats=288): super().__init__() self.position_embedding_head = nn.Sequential( nn.Conv1d(input_channel, num_pos_feats, kernel_size=1), nn.BatchNorm1d(num_pos_feats), nn.ReLU(inplace=True), nn.Conv1d(num_pos_feats, num_pos_feats, kernel_size=1)) def forward(self, xyz): """Forward pass. Args: xyz (Tensor): (B, N, 3) the coordinates to embed. Returns: Tensor: (B, num_pos_feats, N) the embeded position features. """ xyz = xyz.permute(0, 2, 1) position_embedding = self.position_embedding_head(xyz) return position_embedding
40.28777
79
0.591607
4a1af94e9c3ceea7bf149d4bea4c94ab708cbe53
911
py
Python
problems/tests/test_container_with_most_water.py
vinta/fuck-coding-interviews
915ff55963430e81134a35f65f511e5684c52f11
[ "MIT" ]
590
2020-06-17T08:26:47.000Z
2022-03-30T18:47:32.000Z
problems/tests/test_container_with_most_water.py
parvathirajan/fuck-coding-interviews
915ff55963430e81134a35f65f511e5684c52f11
[ "MIT" ]
12
2020-07-14T09:24:32.000Z
2020-11-02T03:43:47.000Z
problems/tests/test_container_with_most_water.py
parvathirajan/fuck-coding-interviews
915ff55963430e81134a35f65f511e5684c52f11
[ "MIT" ]
75
2020-07-29T06:50:13.000Z
2022-03-13T16:14:57.000Z
# coding: utf-8 import unittest from problems.container_with_most_water import Solution from problems.container_with_most_water import Solution2 class TestCase(unittest.TestCase): def setUp(self): self.solution = Solution() def test(self): self.assertEqual(self.solution.maxArea([1, 8, 6, 2, 5, 4, 8, 3, 7]), 49) self.assertEqual(self.solution.maxArea([2, 3, 4, 5, 18, 17, 6]), 17) self.assertEqual(self.solution.maxArea([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]), 25) class TestCase2(unittest.TestCase): def setUp(self): self.solution = Solution2() def test(self): self.assertEqual(self.solution.maxArea([1, 8, 6, 2, 5, 4, 8, 3, 7]), 49) self.assertEqual(self.solution.maxArea([2, 3, 4, 5, 18, 17, 6]), 17) self.assertEqual(self.solution.maxArea([10, 9, 8, 7, 6, 5, 4, 3, 2, 1]), 25) if __name__ == '__main__': unittest.main()
30.366667
84
0.63337
4a1af99257d748ac15c2663d24dcc4f3108006b0
7,623
py
Python
servicestack/utils.py
ServiceStack/servicestack-python
57577d94e9c32334c9604e5881f9f96b93a0fddb
[ "BSD-3-Clause" ]
3
2021-07-03T17:50:05.000Z
2021-07-12T17:08:33.000Z
servicestack/utils.py
ServiceStack/servicestack-python
57577d94e9c32334c9604e5881f9f96b93a0fddb
[ "BSD-3-Clause" ]
null
null
null
servicestack/utils.py
ServiceStack/servicestack-python
57577d94e9c32334c9604e5881f9f96b93a0fddb
[ "BSD-3-Clause" ]
null
null
null
import base64 import json import re from datetime import datetime, timezone, timedelta from typing import Optional, Any from .log import Log def lowercase(string): return str(string).lower() def uppercase(string): return str(string).upper() def snakecase(string): string = re.sub(r"[\-\.\s]", '_', str(string)) if not string: return string return lowercase(string[0]) + re.sub(r"[A-Z]", lambda matched: '_' + lowercase(matched.group(0)), string[1:]) def camelcase(string): string = re.sub(r"\w[\s\W]+\w", '', str(string)) if not string: return string return lowercase(string[0]) + re.sub(r"[\-_\.\s]([a-z])", lambda matched: uppercase(matched.group(1)), string[1:]) def capitalcase(string: str): string = str(string) if not string: return string return uppercase(string[0]) + string[1:] def pascalcase(string: str): return capitalcase(camelcase(string)) def titlecase(string): return ' '.join([capitalcase(word) for word in snakecase(string).split("_")]) def clean_camelcase(key: str): use_key = camelcase(key) if use_key[-1] == '_': use_key = use_key[0:-1] return use_key def ex_message(e: Exception): if hasattr(e, 'message'): return e.message return str(e) def log(o: Any): print(o) return o def index_of(target: str, needle: str): try: return target.index(needle) except ValueError: return -1 def last_index_of(target: str, needle: str): try: return target.rindex(needle) except ValueError: return -1 def left_part(str_val: Optional[str], needle: str): if str_val is None: return None pos = index_of(str_val, needle) return str_val if pos == -1 else str_val[:pos] def right_part(str_val: Optional[str], needle: str): if str_val is None: return None pos = index_of(str_val, needle) return str_val if pos == -1 else str_val[pos + len(needle):] def last_left_part(str_val: Optional[str], needle: str): if str_val is None: return None pos = last_index_of(str_val, needle) return str_val if pos == -1 else str_val[:pos] def last_right_part(str_val: Optional[str], needle: str): if str_val is None: return None pos = last_index_of(str_val, needle) return str_val if pos == -1 else str_val[pos + len(needle):] def split_on_first(s: Optional[str], c: str): if str is None or str == "": return [s] pos = index_of(s, c) if pos >= 0: return [s[:pos], s[pos + 1:]] return [s] def split_on_last(s: Optional[str], c: str): if str is None or str == "": return [s] pos = last_index_of(s, c) if pos >= 0: return [s[:pos], s[pos + 1:]] return [s] def to_timespan(duration: timedelta): total_seconds = duration.total_seconds() whole_seconds = total_seconds // 1 seconds = whole_seconds sec = int(seconds % 60 if seconds >= 60 else seconds) seconds = seconds // 60 min = int(seconds % 60) seconds = seconds // 60 hours = int(seconds % 60) days = seconds // 24 remaining_secs = float(sec + (total_seconds - whole_seconds)) sb = ["P"] if days > 0: sb.append(f"{days}D") if days == 0 or hours + min + sec + remaining_secs > 0: sb.append("T") if hours > 0: sb.append(f"{hours}H") if min > 0: sb.append(f"{min}M") if remaining_secs > 0: sec_fmt = "{:.7f}".format(remaining_secs) sec_fmt = sec_fmt.rstrip('0') sec_fmt = sec_fmt.rstrip('.') sb.append(sec_fmt) sb.append("S") elif len(sb) == 2: # PT sb.append("0S") xsd = ''.join(sb) # print(f"XSD: {xsd}, {days}:{hours}:{min}:{remaining_secs}") return xsd def from_timespan(s: Optional[str]): if s is None: return None days = 0 hours = 0 minutes = 0 seconds = 0 ms = 0.0 if s[0] != "P": raise ValueError(f"{s} is not a valid XSD Duration") s = s[1:] # strip P t = split_on_first(s, 'T') has_time = len(t) == 2 d = split_on_first(t[0], 'D') if len(d) == 2: days = int(d[0]) if has_time: h = split_on_first(t[1], 'H') if len(h) == 2: hours = int(h[0]) m = split_on_first(h[len(h) - 1], 'M') if len(m) == 2: minutes = int(m[0]) s = split_on_first(m[len(m) - 1], 'S') if len(s) == 2: ms = float(s[0]) seconds = int(ms) ms -= seconds # print(f"\n\ntimedelta({str})[{has_time}] = {hours}:{minutes}:{seconds}\n\n") return timedelta(days=days, hours=hours, minutes=minutes, seconds=seconds, milliseconds=int(ms * 1000)) _MIN_UTC_DATE = datetime.min.replace(tzinfo=timezone.utc) _MIN_EPOCH = _MIN_UTC_DATE.timestamp() _MAX_UTC_DATE = datetime.max.replace(tzinfo=timezone.utc) def to_datetime(date: datetime): try: return f"/Date({int(date.timestamp() * 1000)})/" except Exception as e: Log.debug(f"to_datetime({date}): e") return None def from_datetime(json_date: str): if json_date.startswith("/Date("): epoch_and_zone = left_part(right_part(json_date, "("), ")") epoch_str = epoch_and_zone if index_of(epoch_and_zone[1:], '-') >= 0: epoch_str = last_left_part(epoch_and_zone, '-') if index_of(epoch_and_zone[1:], '+') >= 0: epoch_str = last_left_part(epoch_and_zone, '+') epoch = int(epoch_str) try: return datetime.fromtimestamp(epoch / 1000, timezone.utc) except Exception as e: if epoch < _MIN_EPOCH: return _MIN_UTC_DATE else: return _MAX_UTC_DATE # need to reduce to 6f precision and remove trailing Z has_sec_fraction = index_of(json_date, '.') >= 0 is_utc = json_date.endswith('Z') if is_utc: json_date = json_date[0:-1] if has_sec_fraction: sec_fraction = last_right_part(json_date, '.') tz = '' if '+' in sec_fraction: tz = '+' + right_part(sec_fraction, '+') sec_fraction = left_part(sec_fraction, '+') elif '-' in sec_fraction: sec_fraction = left_part(sec_fraction, '-') if len(sec_fraction) > 6: json_date = last_left_part(json_date, '.') + '.' + sec_fraction[0:6] + tz if is_utc: return datetime.fromisoformat(json_date).replace(tzinfo=timezone.utc) else: return datetime.fromisoformat(json_date) def to_bytearray(value: Optional[bytes]): if value is None: return None return base64.b64encode(value).decode('ascii') def from_bytearray(base64str: Optional[str]): return base64.b64decode(base64str) def from_base64url_safe(input_str: str): output = input_str output = output.replace('-', '+') output = output.replace('_', '/') pad = len(output) % 4 if pad == 2: output += "==" elif pad == 3: output += "=" elif pad != 0: raise ValueError("Illegal base46url string!") return base64.b64decode(output) def _decode_base64url_payload(payload: str): payload_bytes = from_base64url_safe(payload) payload_json = payload_bytes.decode('utf-8') return json.loads(payload_json) def inspect_jwt(jwt: str): head = _decode_base64url_payload(left_part(jwt, '.')) body = _decode_base64url_payload(left_part(right_part(jwt, '.'), '.')) exp = int(body['exp']) return head, body, datetime.fromtimestamp(exp, timezone.utc)
26.747368
118
0.599239
4a1afa3059a4ff0d3f5701a8c02d7add860eb0bd
1,094
py
Python
transform_pdf2image/__init__.py
SilasPDJ/maeportifolios_desktop_etc
a341648c8161251d42055155f6fd99fd388d9f2d
[ "MIT" ]
null
null
null
transform_pdf2image/__init__.py
SilasPDJ/maeportifolios_desktop_etc
a341648c8161251d42055155f6fd99fd388d9f2d
[ "MIT" ]
null
null
null
transform_pdf2image/__init__.py
SilasPDJ/maeportifolios_desktop_etc
a341648c8161251d42055155f6fd99fd388d9f2d
[ "MIT" ]
null
null
null
from defs_utils import * import pdf2image import os def transforma_pdf_em_img_por_materia(materia, pdf_path=None): searched = materia if pdf_path: list_files = list_dir(complete_name(searched, pre=pdf_path), True) else: list_files = list_dir(complete_name(searched), True) volta = os.getcwd() for file in list_files: pages = pdf2image.convert_from_path(file) print(file) os.chdir(volta) for e, page in enumerate(pages): e_cont = e+1 dir_name = '../MATERIAS_CRIA_FILES' dir_name += '\\'+searched+'\\' dir_name += file.split('\\')[-1].split('-')[0] for folder in dir_name.split('\\'): try: os.chdir(folder) except (FileNotFoundError): os.mkdir(folder) os.chdir(folder) os.chdir(volta) real = '\\'.join(os.path.realpath(__file__).split('\\')[:-1]) page.save(f'{real}\\{dir_name}\\out-{e_cont}.jpg', 'JPEG') print(dir_name)
30.388889
74
0.546618
4a1afb0f9ebda44be292a02b42237425cbdf6b60
5,465
py
Python
mediagoblin/tools/exif.py
stenwt/mediagoblin-quickstart-openshift
4a728c4b3b988c59eb9a43ad1ae1ca5edf8bc3c2
[ "CC0-1.0" ]
1
2016-02-10T18:22:42.000Z
2016-02-10T18:22:42.000Z
mediagoblin/tools/exif.py
stenwt/mediagoblin-quickstart-openshift
4a728c4b3b988c59eb9a43ad1ae1ca5edf8bc3c2
[ "CC0-1.0" ]
1
2016-04-19T13:03:17.000Z
2016-04-19T13:03:17.000Z
mediagoblin/tools/exif.py
stenwt/mediagoblin-quickstart-openshift
4a728c4b3b988c59eb9a43ad1ae1ca5edf8bc3c2
[ "CC0-1.0" ]
null
null
null
# GNU MediaGoblin -- federated, autonomous media hosting # Copyright (C) 2011, 2012 MediaGoblin contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from mediagoblin.tools.extlib.EXIF import process_file, Ratio from mediagoblin.processing import BadMediaFail from mediagoblin.tools.translate import pass_to_ugettext as _ # A list of tags that should be stored for faster access USEFUL_TAGS = [ 'Image Make', 'Image Model', 'EXIF FNumber', 'EXIF Flash', 'EXIF FocalLength', 'EXIF ExposureTime', 'EXIF ApertureValue', 'EXIF ExposureMode', 'EXIF ISOSpeedRatings', 'EXIF UserComment', ] def exif_image_needs_rotation(exif_tags): """ Returns True if EXIF orientation requires rotation """ return 'Image Orientation' in exif_tags \ and exif_tags['Image Orientation'].values[0] != 1 def exif_fix_image_orientation(im, exif_tags): """ Translate any EXIF orientation to raw orientation Cons: - REDUCES IMAGE QUALITY by recompressig it Pros: - Prevents neck pain """ # Rotate image if 'Image Orientation' in exif_tags: rotation_map = { 3: 180, 6: 270, 8: 90} orientation = exif_tags['Image Orientation'].values[0] if orientation in rotation_map.keys(): im = im.rotate( rotation_map[orientation]) return im def extract_exif(filename): """ Returns EXIF tags found in file at ``filename`` """ exif_tags = {} try: image = open(filename) exif_tags = process_file(image, details=False) except IOError: raise BadMediaFail(_('Could not read the image file.')) return exif_tags def clean_exif(exif): ''' Clean the result from anything the database cannot handle ''' # Discard any JPEG thumbnail, for database compatibility # and that I cannot see a case when we would use it. # It takes up some space too. disabled_tags = [ 'Thumbnail JPEGInterchangeFormatLength', 'JPEGThumbnail', 'Thumbnail JPEGInterchangeFormat'] clean_exif = {} for key, value in exif.items(): if not key in disabled_tags: clean_exif[key] = _ifd_tag_to_dict(value) return clean_exif def _ifd_tag_to_dict(tag): ''' Takes an IFD tag object from the EXIF library and converts it to a dict that can be stored as JSON in the database. ''' data = { 'printable': tag.printable, 'tag': tag.tag, 'field_type': tag.field_type, 'field_offset': tag.field_offset, 'field_length': tag.field_length, 'values': None} if isinstance(tag.printable, str): # Force it to be decoded as UTF-8 so that it'll fit into the DB data['printable'] = tag.printable.decode('utf8', 'replace') if type(tag.values) == list: data['values'] = [] for val in tag.values: if isinstance(val, Ratio): data['values'].append( _ratio_to_list(val)) else: data['values'].append(val) else: if isinstance(tag.values, str): # Force UTF-8, so that it fits into the DB data['values'] = tag.values.decode('utf8', 'replace') else: data['values'] = tag.values return data def _ratio_to_list(ratio): return [ratio.num, ratio.den] def get_useful(tags): useful = {} for key, tag in tags.items(): if key in USEFUL_TAGS: useful[key] = tag return useful def get_gps_data(tags): """ Processes EXIF data returned by EXIF.py """ gps_data = {} if not 'Image GPSInfo' in tags: return gps_data try: dms_data = { 'latitude': tags['GPS GPSLatitude'], 'longitude': tags['GPS GPSLongitude']} for key, dat in dms_data.items(): gps_data[key] = ( lambda v: float(v[0].num) / float(v[0].den) \ + (float(v[1].num) / float(v[1].den) / 60) \ + (float(v[2].num) / float(v[2].den) / (60 * 60)) )(dat.values) if tags['GPS GPSLatitudeRef'].values == 'S': gps_data['latitude'] /= -1 if tags['GPS GPSLongitudeRef'].values == 'W': gps_data['longitude'] /= -1 except KeyError: pass try: gps_data['direction'] = ( lambda d: float(d.num) / float(d.den) )(tags['GPS GPSImgDirection'].values[0]) except KeyError: pass try: gps_data['altitude'] = ( lambda a: float(a.num) / float(a.den) )(tags['GPS GPSAltitude'].values[0]) except KeyError: pass return gps_data
27.462312
77
0.602013
4a1afb13d9994c623e04975e34046bc4e82b850a
9,783
py
Python
syft/grid/private_grid.py
shubhamsingh987/PySyft
ff967e3735bd7d47667d1d3e5038ba1493ca2e90
[ "Apache-2.0" ]
1
2020-05-25T13:44:29.000Z
2020-05-25T13:44:29.000Z
syft/grid/private_grid.py
shubhamsingh987/PySyft
ff967e3735bd7d47667d1d3e5038ba1493ca2e90
[ "Apache-2.0" ]
2
2020-03-09T09:17:06.000Z
2020-04-09T13:33:12.000Z
syft/grid/private_grid.py
shubhamsingh987/PySyft
ff967e3735bd7d47667d1d3e5038ba1493ca2e90
[ "Apache-2.0" ]
null
null
null
import random import torch from typing import Any from typing import Tuple from typing import Dict from typing import Union # Syft imports import syft from syft.grid.abstract_grid import AbstractGrid from syft.workers.node_client import NodeClient from syft.execution.plan import Plan from syft.frameworks.torch.tensors.interpreters.additive_shared import AdditiveSharingTensor class PrivateGridNetwork(AbstractGrid): def __init__(self, *workers): super().__init__() self.workers = list(workers) self._connect_all_nodes(self.workers, NodeClient) def search(self, *query) -> Dict[Any, Any]: """ Searches over a collection of workers, returning pointers to the results grouped by worker. Args: query : List of tags used to identify the desired tensor. Returns: results : list of pointers with pointers that matches with tags. """ results = {} for worker in self.workers: worker_results = syft.local_worker.request_search(query, location=worker) if len(worker_results) > 0: results[worker.id] = worker_results return results def serve_model( self, model, id: str, mpc: bool = False, allow_remote_inference: bool = False, allow_download: bool = False, n_replica: int = 1, ): """ Choose some node(s) on grid network to host a unencrypted / encrypted model. Args: model: Model to be hosted. id: Model's ID. mpc: Boolean flag to host a plain text / encrypted model allow_remote_inference: Allow to run inference remotely. allow_download: Allow to copy the model and run it locally. n_replica: Number of copies distributed through grid network. Raises: RuntimeError: If grid network doesn't have enough nodes to replicate the model. NotImplementedError: If workers used by grid network aren't grid nodes. """ # If workers used by grid network aren't grid nodes. if not self._check_node_type(self.workers, NodeClient): raise NotImplementedError if n_replica > len(self.workers): raise RuntimeError("Not enough nodes!") else: nodes = random.sample(self.workers, n_replica) for i in range(len(nodes)): if not mpc: # Host plain-text model nodes[i].serve_model( model, model_id=id, allow_download=allow_download, allow_remote_inference=allow_remote_inference, ) else: # Host encrypted model self._host_encrypted_model(model) def run_remote_inference(self, id: str, data: torch.Tensor, mpc: bool = False) -> torch.Tensor: """ Search for a specific model registered on grid network, if found, It will run inference. Args: id : Model's ID. dataset : Data used to run inference. mpc: Boolean flag to run a plain text / encrypted model Returns: Tensor : Inference's result. Raises: NotImplementedError: If workers used by grid network aren't grid nodes. RuntimeError: If model id not found. """ # If workers used by grid network aren't grid nodes. if not self._check_node_type(self.workers, NodeClient): raise NotImplementedError if not mpc: result = self._run_unencrypted_inference(id, data) else: result = self._run_encrypted_inference(id, data) return result def query_model_hosts( self, id: str, mpc: bool = False ) -> Union["NodeClient", Tuple["NodeClient"]]: """ Search for node host from a specific model registered on grid network, if found, It will return the frist host/ set of hosts that contains the desired model. Args: id : Model's ID. data : Data used to run inference. mpc : Boolean flag to search for a plain text / encrypted model Returns: workers : First worker that contains the desired model. Raises: NotImplementedError: If workers used by grid network aren't grid nodes. RuntimeError: If model id not found. """ # If workers used by grid network aren't grid nodes. if not self._check_node_type(self.workers, NodeClient): raise NotImplementedError # Search for non mpc models. if not mpc: for node in self.workers: if id in node.models: return node else: # Search for MPC models return self._query_encrypted_model_hosts(id) def _host_encrypted_model(self, model, n_shares: int = 4): """ This method wiil choose some grid nodes at grid network to host an encrypted model. Args: model: Model to be hosted. n_shares: number of workers used by MPC protocol. Raise: RuntimeError : If grid network doesn't have enough workers to host an encrypted model or if model is not a plan. """ # Verify if this network have enough workers. if n_shares > len(self.workers): raise RuntimeError("Not enough nodes!") elif n_shares < self.SMPC_HOST_CHUNK: raise RuntimeError("Not enough shares to perform MPC operations!") else: # Select N workers in your set of workers. nodes = random.sample(self.workers, n_shares) # Model needs to be a plan if isinstance(model, Plan): host = nodes[0] # Host mpc_nodes = nodes[1:-1] # Shares crypto_provider = nodes[-1] # Crypto Provider # SMPC Share model.fix_precision().share(*mpc_nodes, crypto_provider=crypto_provider) # Host model p_model = model.send(host) # Save a pointer reference to this model in database. host.serve_model( p_model, model_id=model.id, allow_download=False, allow_remote_inference=False, mpc=True, ) # If model isn't a plan else: raise RuntimeError("Model needs to be a plan to be encrypted!") def _query_encrypted_model_hosts(self, id: str) -> Tuple["NodeClient"]: """ Search for an encrypted model and return its mpc nodes. Args: id: Model's ID. Returns: Tuple : Tuple structure containing Host, MPC Nodes and crypto provider. Raises: RuntimeError: If model id not found. """ host = self.query_model_hosts(id) # If it's registered on grid nodes. if host: model = host.search(id)[0].get(deregister_ptr=False) mpc_nodes = set() crypto_provider = None # Check every state used by this plan for state_id in model.state.state_ids: hook = host.hook obj = hook.local_worker.object_store.get_obj(state_id) # Decrease in Tensor Hierarchy. # (we want be a AdditiveSharingTensor to recover workers/crypto_provider addresses) while not isinstance(obj, AdditiveSharingTensor): obj = obj.child # Get a list of mpc nodes. nodes = map(lambda x: hook.local_worker._known_workers.get(x), obj.child.keys()) mpc_nodes.update(set(nodes)) if obj.crypto_provider: crypto_provider = obj.crypto_provider return (host, mpc_nodes, crypto_provider) else: raise RuntimeError("Model ID not found!") def _run_unencrypted_inference(self, id: str, data) -> torch.Tensor: """ Search for a plain-text model registered on grid network, if found, It will run inference. Args: id : Model's ID. dataset : Data used to run inference. Returns: Tensor : Inference's result. Raises: RuntimeError: If model id not found. """ node = self.query_model_hosts(id) if node: response = node.run_remote_inference(model_id=id, data=data) return torch.tensor(response) else: raise RuntimeError("Model not found on Grid Network!") def _run_encrypted_inference(self, id: str, data) -> torch.Tensor: """ Search for an encrypted model and perform inference. Args: model_id: Model's ID. data: Dataset to be shared/inferred. copy: Boolean flag to perform encrypted inference without lose plan. Returns: Tensor: Inference's result. Raises: RuntimeError: If model id not found. """ host, mpc_nodes, crypto_provider = self._query_encrypted_model_hosts(id) # Share your dataset to same SMPC Workers shared_data = data.fix_precision().share(*mpc_nodes, crypto_provider=crypto_provider) # Perform Inference fetched_plan = host.hook.local_worker.fetch_plan(id, host, copy=True) return fetched_plan(shared_data).get().float_prec()
37.626923
99
0.58295
4a1afba6eb93a9791748d83c20ca870bda2e06bb
10,926
py
Python
tests/test_checker/test_noqa.py
lensvol/wemake-python-styleguide
aec33f0855c6a6f0d853de37b958b9b33c4428d0
[ "MIT" ]
null
null
null
tests/test_checker/test_noqa.py
lensvol/wemake-python-styleguide
aec33f0855c6a6f0d853de37b958b9b33c4428d0
[ "MIT" ]
15
2020-02-22T11:09:46.000Z
2020-02-27T16:36:54.000Z
tests/test_checker/test_noqa.py
lensvol/wemake-python-styleguide
aec33f0855c6a6f0d853de37b958b9b33c4428d0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Integration tests definition. These are integration tests for several things: 1. that violation is active and enabled 2. that violation is raised for the bad code 3. that line number where violation is raised is correct 4. that `noqa` works Docs: https://wemake-python-stylegui.de/en/latest/pages/api/contributing.html """ import re import subprocess import types from collections import Counter import pytest from wemake_python_styleguide.compat.constants import PY38 #: Used to find violations' codes in output. ERROR_PATTERN = re.compile(r'(WPS\d{3})') #: List of ignored violations that we do not cover with `noqa` comments. IGNORED_VIOLATIONS = ( 'WPS201', # it is a module level violation 'WPS202', # since our test case is complex, that's fine 'WPS203', # it is a module level violation 'WPS204', # our tests have a lot of overused expressions 'WPS226', # we have a lot of ugly strings inside 'WPS400', # it is a module level violation 'WPS402', # we obviously use a lot of `noqa` comments ) #: Number and count of violations that would be raised. VERSION_SPECIFIC = types.MappingProxyType({ 'WPS216': 1, 'WPS224': 1, 'WPS307': 1, 'WPS332': 0, # TODO: add test case, only works for `>= python3.8` 'WPS416': int(not PY38), # only works for `< python3.8` 'WPS451': int(PY38), # only works for `>= python3.8` 'WPS602': 2, }) #: Number and count of violations that would be raised. SHOULD_BE_RAISED = types.MappingProxyType({ 'WPS000': 0, # logically unacceptable. 'WPS100': 0, # logically unacceptable. 'WPS101': 0, # logically unacceptable. 'WPS102': 0, # logically unacceptable. 'WPS110': 3, 'WPS111': 1, 'WPS112': 1, 'WPS113': 1, 'WPS114': 1, 'WPS115': 1, 'WPS116': 1, 'WPS117': 1, 'WPS118': 1, 'WPS119': 1, 'WPS120': 1, 'WPS121': 1, 'WPS122': 1, 'WPS123': 1, 'WPS200': 0, # logically unacceptable. 'WPS201': 0, # defined in ignored violations. 'WPS202': 0, # defined in ignored violations. 'WPS203': 0, # defined in ignored violations. 'WPS204': 0, # defined in ignored violations. 'WPS210': 1, 'WPS211': 1, 'WPS212': 1, 'WPS213': 1, 'WPS214': 1, 'WPS215': 1, 'WPS216': 0, # defined in version specific table. 'WPS217': 1, 'WPS218': 1, 'WPS219': 1, 'WPS220': 1, 'WPS221': 2, 'WPS222': 1, 'WPS223': 1, 'WPS224': 0, # defined in version specific table. 'WPS225': 1, 'WPS226': 0, # defined in ignored violations. 'WPS227': 1, 'WPS228': 1, 'WPS229': 1, 'WPS230': 1, 'WPS231': 1, 'WPS232': 0, # logically unacceptable. 'WPS233': 1, 'WPS234': 1, 'WPS300': 1, 'WPS301': 1, 'WPS302': 1, 'WPS303': 1, 'WPS304': 1, 'WPS305': 1, 'WPS306': 2, 'WPS307': 0, # defined in version specific table. 'WPS308': 1, 'WPS309': 1, 'WPS310': 4, 'WPS311': 1, 'WPS312': 1, 'WPS313': 1, 'WPS314': 1, 'WPS315': 1, 'WPS316': 1, 'WPS317': 1, 'WPS318': 3, 'WPS319': 2, 'WPS320': 2, 'WPS321': 1, 'WPS322': 1, 'WPS323': 1, 'WPS324': 1, 'WPS325': 1, 'WPS326': 1, 'WPS327': 1, 'WPS328': 2, 'WPS329': 1, 'WPS330': 1, 'WPS331': 1, 'WPS332': 0, # defined in version specific table. 'WPS333': 1, 'WPS334': 1, 'WPS335': 1, 'WPS336': 1, 'WPS337': 1, 'WPS338': 1, 'WPS339': 1, 'WPS340': 1, 'WPS341': 1, 'WPS342': 1, 'WPS343': 1, 'WPS344': 1, 'WPS345': 1, 'WPS346': 1, 'WPS347': 1, 'WPS348': 1, 'WPS349': 1, 'WPS350': 1, 'WPS351': 1, 'WPS352': 1, 'WPS353': 1, 'WPS354': 1, 'WPS355': 1, 'WPS356': 1, 'WPS400': 0, # defined in ignored violations. 'WPS401': 0, # logically unacceptable. 'WPS402': 0, # defined in ignored violations. 'WPS403': 0, # logically unacceptable. 'WPS404': 1, 'WPS405': 1, 'WPS406': 1, 'WPS407': 1, 'WPS408': 1, 'WPS409': 1, 'WPS410': 1, 'WPS411': 0, # logically unacceptable. 'WPS412': 0, # logically unacceptable. 'WPS413': 1, 'WPS414': 1, 'WPS415': 1, 'WPS416': 0, # defined in version specific table. 'WPS417': 1, 'WPS418': 1, 'WPS419': 1, 'WPS420': 2, 'WPS421': 1, 'WPS422': 1, 'WPS423': 1, 'WPS424': 1, 'WPS425': 1, 'WPS426': 1, 'WPS427': 1, 'WPS428': 2, 'WPS429': 1, 'WPS430': 1, 'WPS431': 2, 'WPS432': 2, 'WPS433': 1, 'WPS434': 1, 'WPS435': 1, 'WPS436': 1, 'WPS437': 1, 'WPS438': 4, 'WPS439': 1, 'WPS440': 1, 'WPS441': 1, 'WPS442': 2, 'WPS443': 1, 'WPS444': 1, 'WPS445': 1, 'WPS446': 1, 'WPS447': 1, 'WPS448': 1, 'WPS449': 1, 'WPS450': 1, 'WPS451': 0, # defined in version specific table. 'WPS500': 1, 'WPS501': 1, 'WPS502': 2, 'WPS503': 1, 'WPS504': 1, 'WPS505': 1, 'WPS506': 1, 'WPS507': 1, 'WPS508': 1, 'WPS509': 1, 'WPS510': 1, 'WPS511': 1, 'WPS512': 1, 'WPS513': 1, 'WPS514': 1, 'WPS515': 1, 'WPS516': 1, 'WPS517': 2, 'WPS518': 1, 'WPS519': 1, 'WPS520': 1, 'WPS521': 1, 'WPS522': 1, 'WPS523': 1, 'WPS524': 1, 'WPS525': 2, 'WPS526': 1, 'WPS527': 1, 'WPS528': 1, 'WPS529': 1, 'WPS530': 1, 'WPS600': 1, 'WPS601': 1, 'WPS602': 0, # defined in version specific table. 'WPS603': 1, 'WPS604': 2, 'WPS605': 1, 'WPS606': 1, 'WPS607': 1, 'WPS608': 1, 'WPS609': 1, 'WPS610': 1, 'WPS611': 1, 'WPS612': 1, 'WPS613': 1, }) # Violations which may be tweaked by `i_control_code` option: SHOULD_BE_RAISED_NO_CONTROL = types.MappingProxyType({ 'WPS113': 0, 'WPS412': 0, 'WPS413': 0, }) def _assert_errors_count_in_output( output, errors, all_violations, total=True, ): found_errors = Counter( (match.group(0) for match in ERROR_PATTERN.finditer(output)), ) if total: for violation in all_violations: key = 'WPS{0}'.format(str(violation.code).zfill(3)) assert key in errors, 'Unlisted #noqa violation' for found_error, found_count in found_errors.items(): assert found_error in errors, 'Violation without a #noqa count' assert found_count == errors.get(found_error), found_error assert set( filter(lambda key: errors[key] != 0, errors), ) - found_errors.keys() == set() def test_codes(all_violations): """Ensures that all violations are listed.""" assert len(SHOULD_BE_RAISED) == len(all_violations) @pytest.mark.parametrize(('filename', 'violations', 'total'), [ ('noqa.py', SHOULD_BE_RAISED, True), pytest.param( 'noqa_pre38.py', VERSION_SPECIFIC, 0, marks=pytest.mark.skipif(PY38, reason='ast changes on 3.8'), ), pytest.param( 'noqa38.py', VERSION_SPECIFIC, 0, marks=pytest.mark.skipif(not PY38, reason='ast changes on 3.8'), ), ]) def test_noqa_fixture_disabled( absolute_path, all_violations, filename, violations, total, ): """End-to-End test to check that all violations are present.""" process = subprocess.Popen( [ 'flake8', '--ignore', ','.join(IGNORED_VIOLATIONS), '--disable-noqa', '--isolated', '--select', 'WPS', absolute_path('fixtures', 'noqa', filename), ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) stdout, _ = process.communicate() _assert_errors_count_in_output(stdout, violations, all_violations, total) def test_noqa_fixture_disabled_no_control( absolute_path, all_controlled_violations, ): """End-to-End test to check rules controlled by `i_control_code` option.""" process = subprocess.Popen( [ 'flake8', '--i-dont-control-code', '--disable-noqa', '--isolated', '--select', 'WPS', absolute_path('fixtures', 'noqa', 'noqa_controlled.py'), ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) stdout, _ = process.communicate() _assert_errors_count_in_output( stdout, SHOULD_BE_RAISED_NO_CONTROL, all_controlled_violations, ) assert len(SHOULD_BE_RAISED_NO_CONTROL) == len(all_controlled_violations) def test_noqa_fixture(absolute_path): """End-to-End test to check that `noqa` works.""" process = subprocess.Popen( [ 'flake8', '--ignore', ','.join(IGNORED_VIOLATIONS), '--isolated', '--select', 'WPS', absolute_path('fixtures', 'noqa', 'noqa.py'), ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) stdout, _ = process.communicate() assert stdout.count('WPS') == 0 def test_noqa_fixture_without_ignore(absolute_path): """End-to-End test to check that `noqa` works without ignores.""" process = subprocess.Popen( [ 'flake8', '--isolated', '--select', 'WPS', absolute_path('fixtures', 'noqa', 'noqa.py'), ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) stdout, _ = process.communicate() for violation in IGNORED_VIOLATIONS: assert stdout.count(violation) > 0 def test_noqa_fixture_diff(absolute_path, all_violations): """Ensures that our linter works in ``diff`` mode.""" process = subprocess.Popen( [ 'diff', '-uN', # is required to ignore missing files 'missing_file', # is required to transform file to diff absolute_path('fixtures', 'noqa', 'noqa.py'), ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) output = subprocess.check_output( [ 'flake8', '--ignore', ','.join(IGNORED_VIOLATIONS), '--disable-noqa', '--isolated', '--diff', # is required to test diffs! ;) '--exit-zero', # to allow failures ], stdin=process.stdout, stderr=subprocess.PIPE, universal_newlines=True, encoding='utf8', ) process.communicate() _assert_errors_count_in_output(output, SHOULD_BE_RAISED, all_violations)
24.013187
79
0.557295
4a1afc1740039135e924ff75b23e5ff08fc748ff
14,018
py
Python
crop_engine/nlde/operators/polybindjoin.py
Lars-H/slurp
0c7c8a5ca62145bedaff5791d6f54337674da2ea
[ "MIT" ]
1
2021-06-29T07:59:50.000Z
2021-06-29T07:59:50.000Z
crop_engine/nlde/operators/polybindjoin.py
Lars-H/slurp
0c7c8a5ca62145bedaff5791d6f54337674da2ea
[ "MIT" ]
null
null
null
crop_engine/nlde/operators/polybindjoin.py
Lars-H/slurp
0c7c8a5ca62145bedaff5791d6f54337674da2ea
[ "MIT" ]
null
null
null
""" Created on Sep 4, 2020 Physical operator that implements a JOIN. The intermediate results are stored in queues and processed incrementally. @author: Lars Heling """ from multiprocessing import Queue, Value, Process from Queue import Empty import math from operatorstructures import Tuple, Record, RJTTail from time import time from random import randint from nlde.util.misc import compatible_solutions from nlde.operators.independent_operator import IndependentOperator import logging logger = logging.getLogger("nlde_debug") class Poly_Bind_Join(object): def __init__(self, id_operator, joinvars, eddies, eddy=None, left_card=-1): self.left_table = dict() self.right_table = dict() self.id_operator = id_operator self.vars = joinvars self.eof = Tuple("EOF", 0, 0, set(), self.id_operator) self.eddies = eddies if eddy: self.eddy = eddy else: self.eddy = randint(1, self.eddies) self.left = None self.right = None self.qresults = None self.sources = None self.probing = Value('i', 1) self.independent_inputs = 1 self.results_per_source = {} self.left_est_card = left_card self.produced_tuples = 0 # Config self.__type2limit = { "tpf" : 1, "brtpf" : 30, "sparql" : 50 } def __str__(self): return str("Poly Bind Join") @staticmethod def symmetric(): return False def execute(self, inputs, out): # Executes the Xnjoin. self.left = inputs[0] self.right = inputs[1] self.qresults = out self.limits = {} self.reservoir = {} self.tables = {} # Stats for deciding swicth tuples_left_cnt = 0 right_requests = int(math.ceil(self.right.query.cardinality / 100.0)) switch_left_count = right_requests - self.left_est_card relevant_sources = self.right.query.sources.keys() for ldf_source in relevant_sources: self.limits[ldf_source] = self.__type2limit.get(ldf_source.split("@")[0], 1) self.reservoir[ldf_source] = list() self.tables[ldf_source] = {} self.results_per_source[ldf_source] = 0 # Get tuples from queue. tuple1 = self.left.get(True) tuples_left_cnt +=1 switch_mode = False # # Get the tuples from the queues. while not(tuple1.data == "EOF"): for ldf_server in [k for k, v in sorted(self.results_per_source.items(), key=lambda item: item[1], reverse=True)]: self.stage1(tuple1, self.right, ldf_server) # Check whether to switch: if tuples_left_cnt > switch_left_count and tuples_left_cnt > self.left_est_card: switch_mode = True break tuple1 = self.left.get(True) tuples_left_cnt += 1 if switch_mode: logger.debug("NLJ: Switching Mode to Hash Join") logger.debug("Left tuples expected : {}; received: {}; switch count: {}; right_plan request remaining: {}". format(self.left_est_card, tuples_left_cnt, switch_left_count, right_requests)) self.hash_join_mode() else: for ldf_server in relevant_sources: self.stage1(tuple1, self.right, ldf_server) # Add EOF to queue. #self.probing.value = 1 tuple1.done = tuple1.done | pow(2, self.id_operator) tuple1.ready = self.right.sources_desc[self.right.sources.keys()[0]] | tuple1.ready tuple1.sources = set(tuple1.sources) | set([self.right.sources.keys()[0]]) tuple1.from_operator = self.id_operator tuple1.tuples_produced.update({self.id_operator : self.produced_tuples}) self.to_queue(tuple1) self.probing.value = 0 # Stage 1: While one of the sources is sending data. def stage1(self, tuple1, right, ldf_server): if tuple1.data != "EOF" and tuple1 != "EOF": # Check if the data is already in its sources tuple table rtuple = self.probe_table_of_source(tuple1, right, ldf_server, self.tables[ldf_server]) if rtuple: self.reservoir[ldf_server].append(rtuple) if len(self.reservoir[ldf_server]) >= self.limits[ldf_server]: self.probe_tuples_from_source(self.reservoir[ldf_server], right, ldf_server, self.tables[ldf_server]) self.reservoir[ldf_server] = list()#set() elif len(self.reservoir[ldf_server]) > 0: resevoir = list() for res_tuple in self.reservoir[ldf_server]: rtuple = self.probe_table_of_source(res_tuple, right, ldf_server, self.tables[ldf_server]) if rtuple: resevoir.append(rtuple) self.probe_tuples_from_source(resevoir, right, ldf_server, self.tables[ldf_server]) def to_queue(self, res, source): self.produced_tuples += 1 self.results_per_source[source] = self.results_per_source.get(source, 0) + 1 self.qresults[self.eddy].put(res) def probe_table_of_source(self, rtuple, right, ldf_server, tuple_rjttable): # Get the value(s) of the operator variable(s) in the tuple. resource = '' for var in self.vars: resource = resource + str(rtuple.data[var]) probe_ts = time() # If the resource is in table, produce results. if resource in tuple_rjttable.keys(): tuple_rjttable.get(resource).setRJTProbeTS(probe_ts) list_records = tuple_rjttable[resource].records # For each match, produce the results (solution mappings). for record in list_records: res = {} if record.tuple.data == "EOF": break # Merge solution mappings. res.update(record.tuple.data) res.update(rtuple.data) # Update ready and done vectors. ready = record.tuple.ready | rtuple.ready done = record.tuple.done | rtuple.done | pow(2, self.id_operator) sources = list(set(record.tuple.sources) | set(rtuple.sources)) # Create solution mapping. res = Tuple(res, ready, done, sources, self.id_operator) # Send solution mapping to eddy operators. self.to_queue(res, ldf_server) return None else: return rtuple def probe_tuples_from_source(self, tuple_list, right, ldf_server, tuple_rjttable): probe_ts = time() if len(tuple_list) > 0: instances = [] for rtuple in tuple_list: instance = {} for v in self.vars: instance.update({v: rtuple.data[v]}) instances.append(instance) # Contact the sources. qright = Queue() right.execute(self.vars, instances, qright, ldf_server=ldf_server) # Get the tuples from right_plan queue. tuple2 = qright.get(True) self.sources = tuple2.sources # Empty result set. if (tuple2 == "EOF") or (tuple2.data == "EOF"): # For all tested tuples add the tail to the records for tested_tuple in tuple_list: resource = '' for var in self.vars: resource = resource + str(tested_tuple.data[var]) record = Record(tuple2, probe_ts, time(), float("inf")) tail = RJTTail(record, float("inf")) tuple_rjttable[resource] = tail # Non-empty result set. while (tuple2 != "EOF") and (tuple2.data != "EOF"): rtuple_added = False for rtuple in tuple_list: if not compatible_solutions(rtuple.data, tuple2.data): continue # Create solution mapping. data = {} data.update(tuple2.data) data.update(rtuple.data) # Update ready and done vectors of solution mapping. ready = tuple2.ready | rtuple.ready done = tuple2.done | rtuple.done | pow(2, self.id_operator) sources = list(set(tuple2.sources) | set(rtuple.sources)) # Create tuple. res = Tuple(data, ready, done, sources, self.id_operator) # Introduce the results of contacting the sources in the corresponding table. record = Record(tuple2, probe_ts, time(), float("inf")) resource = '' for var in self.vars: resource = resource + str(rtuple.data[var]) # Send tuple to eddy operators. self.to_queue(res, ldf_server) if resource in tuple_rjttable.keys() and not rtuple_added: tuple_rjttable.get(resource).updateRecords(record) tuple_rjttable.get(resource).setRJTProbeTS(probe_ts) else: tail = RJTTail(record, float("inf")) tuple_rjttable[resource] = tail rtuple_added = True # Get next solution. tuple2 = qright.get(True) # Close queue for this sources. qright.close() def hash_join_mode(self): self.p_list = [] # Create Independent Operator for the right_plan side self.right_operator = IndependentOperator(self.right.sources.keys()[0], self.right.server, self.right.query, self.right.sources_desc, eofs_desc=self.right.sources_desc) # Create Queue for it self.right = Queue() p2 = Process(target=self.right_operator.execute, args=(None, self.right, None, self.p_list,)) # Execute Operator p2.start() self.p_list.append(p2.pid) while True: self.probing.value = 1 # Try to get and process tuple from left_plan queue. try: tuple1 = self.left.get(False) self.stage1_hash_join(tuple1, self.left_table, self.right_table) except Empty: # Empty: in tuple1 = self.left_plan.get(False), when the queue is empty. self.probing.value = 0 pass except TypeError: # TypeError: in resource = resource + tuple[var], when the tuple is "EOF". pass except IOError: # IOError: when a tuple is received, but the alarm is fired. pass # Try to get and process tuple from right_plan queue. try: tuple2 = self.right.get(False) self.stage1_hash_join(tuple2, self.right_table, self.left_table) except Empty: # Empty: in tuple2 = self.right_plan.get(False), when the queue is empty. self.probing.value = 0 pass except TypeError: # TypeError: in resource = resource + tuple[var], when the tuple is "EOF". pass except IOError: # IOError: when a tuple is received, but the alarm is fired. pass # Stage 1: While one of the sources is sending data. def stage1_hash_join(self, tuple1, tuple_rjttable, other_rjttable): # Get the value(s) of the operator variable(s) in the tuple. resource = '' if tuple1.data != "EOF": for var in self.vars: try: resource = resource + str(tuple1.data[var]) except Exception as e: raise e else: resource = "EOF" # Probe the tuple against its RJT table. probe_ts = self.probe_hash_table(tuple1, resource, tuple_rjttable) # Create the records. record = Record(tuple1, probe_ts, time(), float("inf")) # Insert the record in the corresponding RJT table. if resource in other_rjttable: other_rjttable.get(resource).updateRecords(record) other_rjttable.get(resource).setRJTProbeTS(probe_ts) else: tail = RJTTail(record, probe_ts) other_rjttable[resource] = tail def probe_hash_table(self, tuple1, resource, rjttable): # Probe a tuple against its corresponding table. probe_ts = time() # If the resource is in the table, produce results. if resource in rjttable: rjttable.get(resource).setRJTProbeTS(probe_ts) list_records = rjttable[resource].records # For each matching solution mapping, generate an answer. for record in list_records: if resource != "EOF": # Merge solution mappings. data = {} data.update(record.tuple.data) data.update(tuple1.data) else: data = "EOF" # Update ready and done vectors. ready = record.tuple.ready | tuple1.ready done = record.tuple.done | tuple1.done | pow(2, self.id_operator) sources = list(set(record.tuple.sources) | set(tuple1.sources)) # Create tuple. res = Tuple(data, ready, done, sources, self.id_operator) # Send tuple to eddy operators. self.qresults[self.eddy].put(res) return probe_ts
36.316062
119
0.561278
4a1afd48f810330751f66a32b111580451ef4b7a
12,886
py
Python
tests/objects/fibers_test.py
3d-pli/fastpli
fe90ac53a7e78d122696bebb4816f4cb953cdb72
[ "MIT" ]
13
2020-03-21T10:40:36.000Z
2022-03-20T17:27:56.000Z
tests/objects/fibers_test.py
3d-pli/fastpli
fe90ac53a7e78d122696bebb4816f4cb953cdb72
[ "MIT" ]
11
2021-01-30T07:21:52.000Z
2021-03-16T15:24:41.000Z
tests/objects/fibers_test.py
3d-pli/fastpli
fe90ac53a7e78d122696bebb4816f4cb953cdb72
[ "MIT" ]
6
2020-08-27T07:19:30.000Z
2021-07-20T08:49:11.000Z
import unittest import numpy as np import fastpli.objects import fastpli.tools class MainTest(unittest.TestCase): def setUp(self): self.fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]]) self.fiber_bundle = fastpli.objects.FiberBundle(self.fiber.copy()) self.fiber_bundles = fastpli.objects.FiberBundles(self.fiber.copy()) def test_init(self): fastpli.objects.FiberBundle() fastpli.objects.FiberBundles() a = np.array([0, 0, 0, 0]) _ = fastpli.objects.Fiber([[0, 0, 0, 1], [0, 0, 1, 2]]) f = fastpli.objects.Fiber(a) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) f = fastpli.objects.Fiber(f) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) fb = fastpli.objects.FiberBundle([a]) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(f) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(fb) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fbs = fastpli.objects.FiberBundles([[a]]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(f) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles([f, f]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(fbs) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) fbs = fastpli.objects.FiberBundles([[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]]) for fb in fbs: self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) def test_type(self): self.assertTrue(isinstance(self.fiber[:], np.ndarray)) self.assertTrue(self.fiber[:].dtype == float) self.assertTrue( fastpli.objects.Fiber([[1, 1, 1, 1]], np.float32).dtype == np.float32) def test_layers(self): fastpli.objects.FiberBundle(self.fiber_bundle, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fastpli.objects.FiberBundles(self.fiber_bundles, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]]) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) fb = fastpli.objects.FiberBundle(fb, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fbs = [[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]] fbs = fastpli.objects.FiberBundles(fbs, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]] * len(fbs)) def test_resize(self): fiber = self.fiber.scale(10) self.assertTrue(np.array_equal(fiber[:], self.fiber[:] * 10)) fb = self.fiber_bundle.scale(10) for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fbs = self.fiber_bundles.scale(10) for fb in fbs: for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fiber = self.fiber.scale(10, mode='points') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2] * 10)) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber = self.fiber.scale(10, mode='radii') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2])) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1] * 10)) def test_rotation(self): fiber = self.fiber.rotate(fastpli.tools.rotation.x(0)) self.assertTrue(np.array_equal(self.fiber[:], fiber[:])) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90))) self.assertTrue( np.allclose(fiber[:], np.array([[0, 0, 0, 1], [1, -1, 1, 2]]))) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) fiber_bundle = self.fiber_bundle.rotate( fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.allclose(f[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) for fb in self.fiber_bundles: for f in fb: fiber = f.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) def test_translate(self): fiber = self.fiber.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber_bundle = self.fiber_bundle.translate([1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) for fb in self.fiber_bundles: for f in fb: fiber = f.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) def test_apply(self): # Fiber fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fiber_ = fiber.apply(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:] + 1, fiber_[:])) fiber_ = fiber.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:, :-1] + 1, fiber_[:, :-1])) self.assertTrue(np.array_equal(fiber[:, -1], fiber_[:, -1])) fiber_ = fiber.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:, :-1], fiber_[:, :-1])) self.assertTrue(np.array_equal(fiber[:, -1] + 1, fiber_[:, -1])) # FiberBundle fb = fastpli.objects.FiberBundle([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fb_ = fb.apply(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:] + 1, fb_[0][:])) fb_ = fb.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:, :-1] + 1, fb_[0][:, :-1])) self.assertTrue(np.array_equal(fb[0][:, -1], fb_[0][:, -1])) fb_ = fb.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:, :-1], fb_[0][:, :-1])) self.assertTrue(np.array_equal(fb[0][:, -1] + 1, fb_[0][:, -1])) # FiberBundles fbs = fastpli.objects.FiberBundles([[[0, 0, 0, 1], [1, 1, 1, 2]]], dtype=float) fbs_ = fbs.apply(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue(np.array_equal(fbs[0][0][:] + 1, fbs_[0][0][:])) fbs_ = fbs.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue( np.array_equal(fbs[0][0][::, :-1] + 1, fbs_[0][0][:, :-1])) self.assertTrue(np.array_equal(fbs[0][0][:, -1], fbs_[0][0][:, -1])) fbs_ = fbs.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue(np.array_equal(fbs[0][0][:, :-1], fbs_[0][0][:, :-1])) self.assertTrue(np.array_equal(fbs[0][0][:, -1] + 1, fbs_[0][0][:, -1])) def test_cut(self): fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fibers = fiber.cut([[-10] * 3, [10] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2], [10, 10, 10, 2], [0, 0, 0, 1]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber_bundle = fastpli.objects.FiberBundle(fiber) cut_fb = fiber_bundle.cut([[-5] * 3, [5] * 3]) fibers = cut_fb self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber_bundles = fastpli.objects.FiberBundles(fiber) cut_fbs = fiber_bundles.cut([[-5] * 3, [5] * 3]) fibers = cut_fbs[0] self.assertTrue(len(cut_fbs) == 1) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2]]) fibers = fiber.cut([[5] * 3, [6] * 3]) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) if __name__ == '__main__': unittest.main()
45.214035
80
0.489524
4a1afe6dc9e9e63e177b561ffba25552d61d05bc
190
py
Python
back/sales/serializers.py
Marthox1999/UV-Energy
8827c4ff1ffae574d7f13ec6d733b3eda68424f9
[ "MIT" ]
null
null
null
back/sales/serializers.py
Marthox1999/UV-Energy
8827c4ff1ffae574d7f13ec6d733b3eda68424f9
[ "MIT" ]
58
2020-02-22T20:46:15.000Z
2021-04-08T21:16:28.000Z
back/sales/serializers.py
MarthoxG/UV-Energy
8827c4ff1ffae574d7f13ec6d733b3eda68424f9
[ "MIT" ]
null
null
null
from rest_framework import serializers from sales.models import Bill class BillSerializers(serializers.ModelSerializer): class Meta: model = Bill fields = '__all__'
15.833333
51
0.721053
4a1afe722010932db730f3b81c3a3f0b99f086fc
211,625
py
Python
library/Box2D/Box2D.py
foxik/pybox2d
bdfd1d1120338b9e31615df25c4e4400cf9a42a4
[ "Zlib" ]
null
null
null
library/Box2D/Box2D.py
foxik/pybox2d
bdfd1d1120338b9e31615df25c4e4400cf9a42a4
[ "Zlib" ]
null
null
null
library/Box2D/Box2D.py
foxik/pybox2d
bdfd1d1120338b9e31615df25c4e4400cf9a42a4
[ "Zlib" ]
null
null
null
# This file was automatically generated by SWIG (http://www.swig.org). # Version 4.0.2 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info as _swig_python_version_info if _swig_python_version_info < (2, 7, 0): raise RuntimeError("Python 2.7 or later required") # Import the low-level C/C++ module if __package__ or "." in __name__: from . import _Box2D else: import _Box2D try: import builtins as __builtin__ except ImportError: import __builtin__ _swig_new_instance_method = _Box2D.SWIG_PyInstanceMethod_New _swig_new_static_method = _Box2D.SWIG_PyStaticMethod_New def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) def _swig_setattr_nondynamic_instance_variable(set): def set_instance_attr(self, name, value): if name == "thisown": self.this.own(value) elif name == "this": set(self, name, value) elif hasattr(self, name) and isinstance(getattr(type(self), name), property): set(self, name, value) else: raise AttributeError("You cannot add instance attributes to %s" % self) return set_instance_attr def _swig_setattr_nondynamic_class_variable(set): def set_class_attr(cls, name, value): if hasattr(cls, name) and not isinstance(getattr(cls, name), property): set(cls, name, value) else: raise AttributeError("You cannot add class attributes to %s" % cls) return set_class_attr def _swig_add_metaclass(metaclass): """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass""" def wrapper(cls): return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy()) return wrapper class _SwigNonDynamicMeta(type): """Meta class to enforce nondynamic attributes (no new attributes) for a class""" __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__) import weakref def _dir_filter(self): """ Using introspection, mimic dir() by adding up all of the __dicts__ for the current class and all base classes (type(self).__mro__ returns all of the classes that make it up) Basically filters by: __x__ OK __x bad _classname bad """ def check(s): if s.startswith('__'): if s.endswith('__'): return True else: return False else: for typename in typenames: if typename in s: return False return True keys = sum([list(c.__dict__.keys()) for c in type(self).__mro__],[]) keys += list(self.__dict__.keys()) typenames = ["_%s" % c.__name__ for c in type(self).__mro__] ret = [s for s in list(set(keys)) if check(s)] ret.sort() return ret def _init_kwargs(self, **kwargs): cls = self.__class__ for key, value in kwargs.items(): try: getattr(cls, key) except AttributeError: raise AttributeError('Invalid keyword argument "%s" for %s' % (key, cls)) try: setattr(self, key, value) except Exception as ex: raise ex.__class__('Failed on kwargs for %s.%s: %s' \ % (self.__class__.__name__, key, ex)) def _init_jointdef_kwargs(self, bodyA=None, bodyB=None, **kwargs): if bodyA is not None or bodyB is not None: # Make sure that bodyA and bodyB are defined before the rest _init_kwargs(self, bodyA=bodyA, bodyB=bodyB) _init_kwargs(self, **kwargs) _repr_attrs = {'b2AABB': ['center', 'extents', 'lowerBound', 'perimeter', 'upperBound', 'valid', ], 'b2Body': ['active', 'angle', 'angularDamping', 'angularVelocity', 'awake', 'bullet', 'contacts', 'fixedRotation', 'fixtures', 'inertia', 'joints', 'linearDamping', 'linearVelocity', 'localCenter', 'mass', 'massData', 'position', 'sleepingAllowed', 'transform', 'type', 'userData', 'worldCenter', ], 'b2BodyDef': ['active', 'allowSleep', 'angle', 'angularDamping', 'angularVelocity', 'awake', 'bullet', 'fixedRotation', 'fixtures', 'inertiaScale', 'linearDamping', 'linearVelocity', 'position', 'shapeFixture', 'shapes', 'type', 'userData', ], 'b2BroadPhase': ['proxyCount', ], 'b2CircleShape': ['childCount', 'pos', 'radius', 'type', ], 'b2ClipVertex': ['id', 'v', ], 'b2Color': ['b', 'bytes', 'g', 'list', 'r', ], 'b2Contact': ['childIndexA', 'childIndexB', 'enabled', 'fixtureA', 'fixtureB', 'manifold', 'touching', 'worldManifold', ], 'b2ContactEdge': ['contact', 'other', ], 'b2ContactFeature': ['indexA', 'indexB', 'typeA', 'typeB', ], 'b2ContactID': ['cf', 'key', ], 'b2ContactImpulse': ['normalImpulses', 'tangentImpulses', ], 'b2ContactManager': ['allocator', 'broadPhase', 'contactCount', 'contactFilter', 'contactList', 'contactListener', ], 'b2ContactPoint': ['fixtureA', 'fixtureB', 'normal', 'position', 'state', ], 'b2DistanceInput': ['proxyA', 'proxyB', 'transformA', 'transformB', 'useRadii', ], 'b2DistanceJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'dampingRatio', 'frequency', 'length', 'type', 'userData', ], 'b2DistanceJointDef': ['anchorA', 'anchorB', 'bodyA', 'bodyB', 'collideConnected', 'dampingRatio', 'frequencyHz', 'length', 'localAnchorA', 'localAnchorB', 'type', 'userData', ], 'b2DistanceOutput': ['distance', 'iterations', 'pointA', 'pointB', ], 'b2DistanceProxy': ['m_buffer', 'shape', 'vertices', ], 'b2Draw': ['flags', ], 'b2DrawExtended': ['center', 'convertVertices', 'flags', 'flipX', 'flipY', 'offset', 'screenSize', 'zoom', ], 'b2EdgeShape': ['all_vertices', 'childCount', 'hasVertex0', 'hasVertex3', 'radius', 'type', 'vertex0', 'vertex1', 'vertex2', 'vertex3', 'vertexCount', 'vertices', ], 'b2Filter': ['categoryBits', 'groupIndex', 'maskBits', ], 'b2Fixture': ['body', 'density', 'filterData', 'friction', 'massData', 'restitution', 'sensor', 'shape', 'type', 'userData', ], 'b2FixtureDef': ['categoryBits', 'density', 'filter', 'friction', 'groupIndex', 'isSensor', 'maskBits', 'restitution', 'shape', 'userData', ], 'b2FixtureProxy': ['aabb', 'childIndex', 'fixture', 'proxyId', ], 'b2FrictionJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'maxForce', 'maxTorque', 'type', 'userData', ], 'b2FrictionJointDef': ['anchor', 'bodyA', 'bodyB', 'collideConnected', 'localAnchorA', 'localAnchorB', 'maxForce', 'maxTorque', 'type', 'userData', ], 'b2GearJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'ratio', 'type', 'userData', ], 'b2GearJointDef': ['bodyA', 'bodyB', 'collideConnected', 'joint1', 'joint2', 'ratio', 'type', 'userData', ], 'b2Jacobian': ['angularA', 'angularB', 'linearA', 'linearB', ], 'b2Joint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'type', 'userData', ], 'b2JointDef': ['bodyA', 'bodyB', 'collideConnected', 'type', 'userData', ], 'b2JointEdge': ['joint', 'other', ], 'b2WheelJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'maxMotorTorque', 'motorEnabled', 'motorSpeed', 'speed', 'springDampingRatio', 'springFrequencyHz', 'translation', 'type', 'userData', ], 'b2WheelJointDef': ['anchor', 'axis', 'bodyA', 'bodyB', 'collideConnected', 'dampingRatio', 'enableMotor', 'frequencyHz', 'localAnchorA', 'localAnchorB', 'localAxisA', 'maxMotorTorque', 'motorSpeed', 'type', 'userData', ], 'b2ChainShape': ['childCount', 'edges', 'radius', 'type', 'vertexCount', 'vertices', ], 'b2Manifold': ['localNormal', 'localPoint', 'pointCount', 'points', 'type_', ], 'b2ManifoldPoint': ['id', 'isNew', 'localPoint', 'normalImpulse', 'tangentImpulse', ], 'b2MassData': ['I', 'center', 'mass', ], 'b2Mat22': ['angle', 'col1', 'col2', 'inverse', ], 'b2Mat33': ['col1', 'col2', 'col3', ], 'b2MouseJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'dampingRatio', 'frequency', 'maxForce', 'target', 'type', 'userData', ], 'b2MouseJointDef': ['bodyA', 'bodyB', 'collideConnected', 'dampingRatio', 'frequencyHz', 'maxForce', 'target', 'type', 'userData', ], 'b2Pair': ['proxyIdA', 'proxyIdB', ], 'b2PolygonShape': ['box', 'centroid', 'childCount', 'normals', 'radius', 'type', 'valid', 'vertexCount', 'vertices', ], 'b2PrismaticJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'limitEnabled', 'limits', 'lowerLimit', 'maxMotorForce', 'motorEnabled', 'motorSpeed', 'speed', 'translation', 'type', 'upperLimit', 'userData', ], 'b2PrismaticJointDef': ['anchor', 'axis', 'bodyA', 'bodyB', 'collideConnected', 'enableLimit', 'enableMotor', 'localAnchorA', 'localAnchorB', 'localAxis1', 'lowerTranslation', 'maxMotorForce', 'motorSpeed', 'referenceAngle', 'type', 'upperTranslation', 'userData', ], 'b2PulleyJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'groundAnchorA', 'groundAnchorB', 'length1', 'length2', 'ratio', 'type', 'userData', ], 'b2PulleyJointDef': ['anchorA', 'anchorB', 'bodyA', 'bodyB', 'collideConnected', 'groundAnchorA', 'groundAnchorB', 'lengthA', 'lengthB', 'localAnchorA', 'localAnchorB', 'maxLengthA', 'maxLengthB', 'ratio', 'type', 'userData', ], 'b2RayCastInput': ['maxFraction', 'p1', 'p2', ], 'b2RayCastOutput': ['fraction', 'normal', ], 'b2RevoluteJoint': ['active', 'anchorA', 'anchorB', 'angle', 'bodyA', 'bodyB', 'limitEnabled', 'limits', 'lowerLimit', 'maxMotorTorque', 'motorEnabled', 'motorSpeed', 'speed', 'type', 'upperLimit', 'userData', ], 'b2RevoluteJointDef': ['anchor', 'bodyA', 'bodyB', 'collideConnected', 'enableLimit', 'enableMotor', 'localAnchorA', 'localAnchorB', 'lowerAngle', 'maxMotorTorque', 'motorSpeed', 'referenceAngle', 'type', 'upperAngle', 'userData', ], 'b2RopeJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'limitState', 'maxLength', 'type', 'userData', ], 'b2RopeJointDef': ['anchorA', 'anchorB', 'bodyA', 'bodyB', 'collideConnected', 'localAnchorA', 'localAnchorB', 'maxLength', 'type', 'userData', ], 'b2Shape': ['childCount', 'radius', 'type', ], 'b2Sweep': ['a', 'a0', 'alpha0', 'c', 'c0', 'localCenter', ], 'b2TOIInput': ['proxyA', 'proxyB', 'sweepA', 'sweepB', 'tMax', ], 'b2TOIOutput': ['state', 't', ], 'b2Transform': ['R', 'angle', 'position', ], 'b2Vec2': ['length', 'lengthSquared', 'skew', 'tuple', 'valid', 'x', 'y', ], 'b2Vec3': ['length', 'lengthSquared', 'tuple', 'valid', 'x', 'y', 'z', ], 'b2Version': ['major', 'minor', 'revision', ], 'b2WeldJoint': ['active', 'anchorA', 'anchorB', 'bodyA', 'bodyB', 'type', 'userData', ], 'b2WeldJointDef': ['anchor', 'bodyA', 'bodyB', 'collideConnected', 'localAnchorA', 'localAnchorB', 'referenceAngle', 'type', 'userData', ], 'b2World': ['autoClearForces', 'bodies', 'bodyCount', 'contactCount', 'contactFilter', 'contactListener', 'contactManager', 'contacts', 'continuousPhysics', 'destructionListener', 'gravity', 'jointCount', 'joints', 'locked', 'proxyCount', 'renderer', 'subStepping', 'warmStarting', ], 'b2WorldManifold': ['normal', 'points', ], } MAX_REPR_DEPTH = 4 MAX_REPR_STR_LEN = 250 MAX_REPR_SUB_LINES = 10 REPR_INDENT = 4 _repr_state = {} def _format_repr(obj): """ Dynamically creates the object representation string for `obj`. Attributes found in _repr_attrs[class_name] will be included. """ global _repr_state if 'spaces' not in _repr_state: _repr_state['spaces'] = 0 if 'depth' not in _repr_state: _repr_state['depth'] = 1 else: _repr_state['depth'] += 1 if _repr_state['depth'] > MAX_REPR_DEPTH: _repr_state['depth'] -= 1 return '%s(max recursion depth hit)' % (' ' * _repr_state['spaces']) class_line = '%s(' % (obj.__class__.__name__, ) orig_spaces = _repr_state['spaces'] ret = [] props = _repr_attrs.get(obj.__class__.__name__, []) try: prop_spacing = _repr_state['spaces'] + len(class_line.lstrip()) separator = '\n' + ' ' * prop_spacing for prop in props: _repr_state['spaces'] = len(prop) + 1 try: s = repr(getattr(obj, prop)) except Exception as ex: s = '(repr: %s)' % ex lines = s.split('\n') if len(lines) > MAX_REPR_SUB_LINES: length_ = 0 for i, line_ in enumerate(lines[:MAX_REPR_SUB_LINES]): length_ += len(line_) if length_ > MAX_REPR_STR_LEN: ending_delim = [] for j in s[::-1]: if j in ')]}': ending_delim.insert(0, j) else: break ret[-1] = '%s... %s' % (ret[-1], ''.join(ending_delim)) break if i == 0: ret.append('%s=%s' % (prop, line_)) else: ret.append(line_) else: ret.append('%s=%s' % (prop, lines[0].lstrip())) if len(lines) > 1: ret.extend(lines[1:]) ret[-1] += ',' finally: _repr_state['depth'] -= 1 _repr_state['spaces'] = orig_spaces if 1<= len(ret) <= 3: # Closing parenthesis on same line ret[-1] += ')' return ''.join(ret) else: # Closing parenthesis on next line ret.append(')') return '%s%s' % (class_line, separator.join(ret)) __jointeq = _Box2D.__jointeq __bodyeq = _Box2D.__bodyeq __shapeeq = _Box2D.__shapeeq __fixtureeq = _Box2D.__fixtureeq __b2ComputeCentroid = _Box2D.__b2ComputeCentroid b2CheckVertices = _Box2D.b2CheckVertices b2CheckPolygon = _Box2D.b2CheckPolygon RAND_LIMIT = _Box2D.RAND_LIMIT b2Random = _Box2D.b2Random b2_epsilon = 1.192092896e-07 class _indexable_generator(list): def __init__(self, iter): list.__init__(self) self.iter=iter self.__full=False def __len__(self): self.__fill_list__() return super(_indexable_generator, self).__len__() def __iter__(self): for item in self.iter: self.append(item) yield item self.__full=True def __fill_list__(self): for item in self.iter: self.append(item) self.__full=True def __getitem__(self, i): """Support indexing positive/negative elements of the generator, but no slices. If you want those, use list(generator)""" if not self.__full: if i < 0: self.__fill_list__() elif i >= list.__len__(self): diff=i-list.__len__(self)+1 for j in range(diff): value = next(self.iter) self.append(value) return super(_indexable_generator, self).__getitem__(i) def _generator_from_linked_list(first): if first: one = first while one: yield one one = one.next def _list_from_linked_list(first): if not first: return [] one = first lst = [] while one: lst.append(one) one = one.next # linked lists are stored in reverse order from creation order lst.reverse() return lst # Support using == on bodies, joints, and shapes def b2ShapeCompare(a, b): if not isinstance(a, b2Shape) or not isinstance(b, b2Shape): return False return __shapeeq(a, b) def b2BodyCompare(a, b): if not isinstance(a, b2Body) or not isinstance(b, b2Body): return False return __bodyeq(a, b) def b2JointCompare(a, b): if not isinstance(a, b2Joint) or not isinstance(b, b2Joint): return False return __jointeq(a, b) def b2FixtureCompare(a, b): if not isinstance(a, b2Fixture) or not isinstance(b, b2Fixture): return False return __fixtureeq(a, b) _b2Distance = _Box2D._b2Distance import collections b2DistanceResult = collections.namedtuple('b2DistanceResult', 'pointA pointB distance iterations') def b2Distance(shapeA=None, idxA=0, shapeB=None, idxB=0, transformA=None, transformB=None, useRadii=True): """ Compute the closest points between two shapes. Can be called one of two ways: + b2Distance(b2DistanceInput) This uses the b2DistanceInput structure, where you define your own distance proxies Or more conveniently using kwargs: + b2Distance(shapeA=.., idxA=0, shapeB=.., idxB=0, transformA=.., transformB=.., useRadii=True) Returns a namedtuple in the form: b2DistanceResult(pointA=(ax, ay), pointB=(bx, by), distance, iterations) """ if isinstance(shapeA, b2DistanceInput): out = _b2Distance(shapeA) else: out = _b2Distance(shapeA, idxA, shapeB, idxB, transformA, transformB, useRadii) return b2DistanceResult(pointA=tuple(out.pointA), pointB=tuple(out.pointB), distance=out.distance, iterations=out.iterations) b2GetPointStates = _Box2D.b2GetPointStates class b2ContactPoint(object): r"""Proxy of C++ b2ContactPoint class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2ContactPoint_swiginit(self,_Box2D.new_b2ContactPoint()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ContactPoint fixtureA = property(_Box2D.b2ContactPoint_fixtureA_get, _Box2D.b2ContactPoint_fixtureA_set, doc=r"""fixtureA : p.b2Fixture""") fixtureB = property(_Box2D.b2ContactPoint_fixtureB_get, _Box2D.b2ContactPoint_fixtureB_set, doc=r"""fixtureB : p.b2Fixture""") normal = property(_Box2D.b2ContactPoint_normal_get, _Box2D.b2ContactPoint_normal_set, doc=r"""normal : b2Vec2""") position = property(_Box2D.b2ContactPoint_position_get, _Box2D.b2ContactPoint_position_set, doc=r"""position : b2Vec2""") state = property(_Box2D.b2ContactPoint_state_get, _Box2D.b2ContactPoint_state_set, doc=r"""state : b2PointState""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactPoint___hash__) def __repr__(self): return _format_repr(self) # Register b2ContactPoint in _Box2D: _Box2D.b2ContactPoint_swigregister(b2ContactPoint) b2Globals = _Box2D.b2Globals _b2TimeOfImpact = _Box2D._b2TimeOfImpact def b2TimeOfImpact(shapeA=None, idxA=0, shapeB=None, idxB=0, sweepA=None, sweepB=None, tMax=0.0): """ Compute the upper bound on time before two shapes penetrate. Time is represented as a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate, non-tunneling collision. If you change the time interval, you should call this function again. Note: use b2Distance to compute the contact point and normal at the time of impact. Can be called one of several ways: + b2TimeOfImpact(b2TOIInput) # utilizes the b2TOIInput structure, where you define your own proxies Or utilizing kwargs: + b2TimeOfImpact(shapeA=a, shapeB=b, idxA=0, idxB=0, sweepA=sa, sweepB=sb, tMax=t) Where idxA and idxB are optional and used only if the shapes are loops (they indicate which section to use.) sweep[A,B] are of type b2Sweep. Returns a tuple in the form: (output state, time of impact) Where output state is in b2TOIOutput.[ e_unknown, e_failed, e_overlapped, e_touching, e_separated ] """ if isinstance(shapeA, b2TOIInput): toi_input = shapeA out = _b2TimeOfImpact(toi_input) else: out = _b2TimeOfImpact(shapeA, idxA, shapeB, idxB, sweepA, sweepB, tMax) return (out.state, out.t) class b2AssertException(object): r"""Proxy of C++ b2AssertException class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2AssertException___hash__) def __repr__(self): return _format_repr(self) def __init__(self): r"""__init__(b2AssertException self) -> b2AssertException""" _Box2D.b2AssertException_swiginit(self, _Box2D.new_b2AssertException()) __swig_destroy__ = _Box2D.delete_b2AssertException # Register b2AssertException in _Box2D: _Box2D.b2AssertException_swigregister(b2AssertException) b2_pi = _Box2D.b2_pi b2_maxManifoldPoints = _Box2D.b2_maxManifoldPoints b2_maxPolygonVertices = _Box2D.b2_maxPolygonVertices b2_aabbExtension = _Box2D.b2_aabbExtension b2_aabbMultiplier = _Box2D.b2_aabbMultiplier b2_linearSlop = _Box2D.b2_linearSlop b2_angularSlop = _Box2D.b2_angularSlop b2_polygonRadius = _Box2D.b2_polygonRadius b2_maxSubSteps = _Box2D.b2_maxSubSteps b2_maxTOIContacts = _Box2D.b2_maxTOIContacts b2_velocityThreshold = _Box2D.b2_velocityThreshold b2_maxLinearCorrection = _Box2D.b2_maxLinearCorrection b2_maxAngularCorrection = _Box2D.b2_maxAngularCorrection b2_maxTranslation = _Box2D.b2_maxTranslation b2_maxTranslationSquared = _Box2D.b2_maxTranslationSquared b2_maxRotation = _Box2D.b2_maxRotation b2_maxRotationSquared = _Box2D.b2_maxRotationSquared b2_baumgarte = _Box2D.b2_baumgarte b2_toiBaugarte = _Box2D.b2_toiBaugarte b2_timeToSleep = _Box2D.b2_timeToSleep b2_linearSleepTolerance = _Box2D.b2_linearSleepTolerance b2_angularSleepTolerance = _Box2D.b2_angularSleepTolerance b2Alloc = _Box2D.b2Alloc b2Free = _Box2D.b2Free b2Log = _Box2D.b2Log class b2Version(object): r"""Version numbering scheme. See http://en.wikipedia.org/wiki/Software_versioning""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr major = property(_Box2D.b2Version_major_get, _Box2D.b2Version_major_set, doc=r"""major : int32""") minor = property(_Box2D.b2Version_minor_get, _Box2D.b2Version_minor_set, doc=r"""minor : int32""") revision = property(_Box2D.b2Version_revision_get, _Box2D.b2Version_revision_set, doc=r"""revision : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Version___hash__) def __repr__(self): return _format_repr(self) def __repr__(self): return "b2Version(%s.%s.%s)" % (self.major, self.minor, self.revision) def __init__(self, **kwargs): _Box2D.b2Version_swiginit(self,_Box2D.new_b2Version()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Version # Register b2Version in _Box2D: _Box2D.b2Version_swigregister(b2Version) b2IsValid = _Box2D.b2IsValid b2InvSqrt = _Box2D.b2InvSqrt class b2Vec2(object): r"""A 2D column vector.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr SetZero = _swig_new_instance_method(_Box2D.b2Vec2_SetZero) Set = _swig_new_instance_method(_Box2D.b2Vec2_Set) __neg__ = _swig_new_instance_method(_Box2D.b2Vec2___neg__) __call__ = _swig_new_instance_method(_Box2D.b2Vec2___call__) __add_vector = _swig_new_instance_method(_Box2D.b2Vec2___add_vector) __sub_vector = _swig_new_instance_method(_Box2D.b2Vec2___sub_vector) __mul_float = _swig_new_instance_method(_Box2D.b2Vec2___mul_float) __Length = _swig_new_instance_method(_Box2D.b2Vec2___Length) __LengthSquared = _swig_new_instance_method(_Box2D.b2Vec2___LengthSquared) Normalize = _swig_new_instance_method(_Box2D.b2Vec2_Normalize) __IsValid = _swig_new_instance_method(_Box2D.b2Vec2___IsValid) __Skew = _swig_new_instance_method(_Box2D.b2Vec2___Skew) x = property(_Box2D.b2Vec2_x_get, _Box2D.b2Vec2_x_set, doc=r"""x : float32""") y = property(_Box2D.b2Vec2_y_get, _Box2D.b2Vec2_y_set, doc=r"""y : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Vec2___hash__) def __repr__(self): return _format_repr(self) def __init__(self, *args): r""" __init__(b2Vec2 self, float32 x, float32 y) -> b2Vec2 __init__(b2Vec2 self) -> b2Vec2 __init__(b2Vec2 self, b2Vec2 other) -> b2Vec2 Construct using coordinates. """ _Box2D.b2Vec2_swiginit(self, _Box2D.new_b2Vec2(*args)) __iter__ = lambda self: iter( (self.x, self.y) ) __eq__ = lambda self, other: self.__equ(other) __ne__ = lambda self,other: not self.__equ(other) def __repr__(self): return "b2Vec2(%g,%g)" % (self.x, self.y) def __len__(self): return 2 def __neg__(self): return b2Vec2(-self.x, -self.y) def copy(self): """ Return a copy of the vector. Remember that the following: a = b2Vec2() b = a Does not copy the vector itself, but b now refers to a. """ return b2Vec2(self.x, self.y) __copy__ = copy def __iadd__(self, other): self.__add_vector(other) return self def __isub__(self, other): self.__sub_vector(other) return self def __imul__(self, a): self.__mul_float(a) return self def __itruediv__(self, a): self.__div_float(a) return self def __idiv__(self, a): self.__div_float(a) return self def __set(self, x, y): self.x = x self.y = y def __nonzero__(self): return self.x!=0.0 or self.y!=0.0 tuple = property(lambda self: (self.x, self.y), lambda self, value: self.__set(*value)) length = property(__Length, None) lengthSquared = property(__LengthSquared, None) valid = property(__IsValid, None) skew = property(__Skew, None) cross = _swig_new_instance_method(_Box2D.b2Vec2_cross) __getitem__ = _swig_new_instance_method(_Box2D.b2Vec2___getitem__) __setitem__ = _swig_new_instance_method(_Box2D.b2Vec2___setitem__) __equ = _swig_new_instance_method(_Box2D.b2Vec2___equ) dot = _swig_new_instance_method(_Box2D.b2Vec2_dot) __truediv__ = _swig_new_instance_method(_Box2D.b2Vec2___truediv__) __div__ = _swig_new_instance_method(_Box2D.b2Vec2___div__) __mul__ = _swig_new_instance_method(_Box2D.b2Vec2___mul__) __add__ = _swig_new_instance_method(_Box2D.b2Vec2___add__) __sub__ = _swig_new_instance_method(_Box2D.b2Vec2___sub__) __rmul__ = _swig_new_instance_method(_Box2D.b2Vec2___rmul__) __rdiv__ = _swig_new_instance_method(_Box2D.b2Vec2___rdiv__) __div_float = _swig_new_instance_method(_Box2D.b2Vec2___div_float) __swig_destroy__ = _Box2D.delete_b2Vec2 # Register b2Vec2 in _Box2D: _Box2D.b2Vec2_swigregister(b2Vec2) class b2Vec3(object): r"""A 2D column vector with 3 elements.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr SetZero = _swig_new_instance_method(_Box2D.b2Vec3_SetZero) Set = _swig_new_instance_method(_Box2D.b2Vec3_Set) __neg__ = _swig_new_instance_method(_Box2D.b2Vec3___neg__) __add_vector = _swig_new_instance_method(_Box2D.b2Vec3___add_vector) __sub_vector = _swig_new_instance_method(_Box2D.b2Vec3___sub_vector) __mul_float = _swig_new_instance_method(_Box2D.b2Vec3___mul_float) x = property(_Box2D.b2Vec3_x_get, _Box2D.b2Vec3_x_set, doc=r"""x : float32""") y = property(_Box2D.b2Vec3_y_get, _Box2D.b2Vec3_y_set, doc=r"""y : float32""") z = property(_Box2D.b2Vec3_z_get, _Box2D.b2Vec3_z_set, doc=r"""z : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Vec3___hash__) def __repr__(self): return _format_repr(self) def __init__(self, *args): r""" __init__(b2Vec3 self, float32 x, float32 y, float32 z) -> b2Vec3 __init__(b2Vec3 self) -> b2Vec3 __init__(b2Vec3 self, b2Vec3 other) -> b2Vec3 __init__(b2Vec3 self, b2Vec2 other) -> b2Vec3 Construct using coordinates. """ _Box2D.b2Vec3_swiginit(self, _Box2D.new_b2Vec3(*args)) __iter__ = lambda self: iter( (self.x, self.y, self.z) ) __eq__ = lambda self, other: (self.x == other.x and self.y == other.y and self.z == other.z) __ne__ = lambda self, other: (self.x != other.x or self.y != other.y or self.z != other.z) def __repr__(self): return "b2Vec3(%g,%g,%g)" % (self.x, self.y, self.z) def __len__(self): return 3 def __neg__(self): return b2Vec3(-self.x, -self.y, -self.z) def copy(self): """ Return a copy of the vector. Remember that the following: a = b2Vec3() b = a Does not copy the vector itself, but b now refers to a. """ return b2Vec3(self.x, self.y, self.z) __copy__ = copy def __iadd__(self, other): self.__add_vector(other) return self def __isub__(self, other): self.__sub_vector(other) return self def __imul__(self, a): self.__mul_float(a) return self def __itruediv__(self, a): self.__div_float(a) return self def __idiv__(self, a): self.__div_float(a) return self def dot(self, v): """ Dot product with v (list/tuple or b2Vec3) """ if isinstance(v, (list, tuple)): return self.x*v[0] + self.y*v[1] + self.z*v[2] else: return self.x*v.x + self.y*v.y + self.z*v.z def __set(self, x, y, z): self.x = x self.y = y self.z = z def __nonzero__(self): return self.x!=0.0 or self.y!=0.0 or self.z!=0.0 tuple = property(lambda self: (self.x, self.y, self.z), lambda self, value: self.__set(*value)) length = property(_Box2D.b2Vec3___Length, None) lengthSquared = property(_Box2D.b2Vec3___LengthSquared, None) valid = property(_Box2D.b2Vec3___IsValid, None) cross = _swig_new_instance_method(_Box2D.b2Vec3_cross) __getitem__ = _swig_new_instance_method(_Box2D.b2Vec3___getitem__) __setitem__ = _swig_new_instance_method(_Box2D.b2Vec3___setitem__) __IsValid = _swig_new_instance_method(_Box2D.b2Vec3___IsValid) __Length = _swig_new_instance_method(_Box2D.b2Vec3___Length) __LengthSquared = _swig_new_instance_method(_Box2D.b2Vec3___LengthSquared) __truediv__ = _swig_new_instance_method(_Box2D.b2Vec3___truediv__) __div__ = _swig_new_instance_method(_Box2D.b2Vec3___div__) __mul__ = _swig_new_instance_method(_Box2D.b2Vec3___mul__) __add__ = _swig_new_instance_method(_Box2D.b2Vec3___add__) __sub__ = _swig_new_instance_method(_Box2D.b2Vec3___sub__) __rmul__ = _swig_new_instance_method(_Box2D.b2Vec3___rmul__) __rdiv__ = _swig_new_instance_method(_Box2D.b2Vec3___rdiv__) __div_float = _swig_new_instance_method(_Box2D.b2Vec3___div_float) __swig_destroy__ = _Box2D.delete_b2Vec3 # Register b2Vec3 in _Box2D: _Box2D.b2Vec3_swigregister(b2Vec3) class b2Mat22(object): r"""A 2-by-2 matrix. Stored in column-major order.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr SetIdentity = _swig_new_instance_method(_Box2D.b2Mat22_SetIdentity) SetZero = _swig_new_instance_method(_Box2D.b2Mat22_SetZero) __GetInverse = _swig_new_instance_method(_Box2D.b2Mat22___GetInverse) Solve = _swig_new_instance_method(_Box2D.b2Mat22_Solve) col1 = property(_Box2D.b2Mat22_col1_get, _Box2D.b2Mat22_col1_set, doc=r"""col1 : b2Vec2""") col2 = property(_Box2D.b2Mat22_col2_get, _Box2D.b2Mat22_col2_set, doc=r"""col2 : b2Vec2""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Mat22___hash__) def __repr__(self): return _format_repr(self) def __init__(self, *args): r""" __init__(b2Mat22 self, b2Vec2 c1, b2Vec2 c2) -> b2Mat22 __init__(b2Mat22 self, float32 a11, float32 a12, float32 a21, float32 a22) -> b2Mat22 __init__(b2Mat22 self) -> b2Mat22 Construct this matrix using an angle. This matrix becomes an orthonormal rotation matrix. """ _Box2D.b2Mat22_swiginit(self, _Box2D.new_b2Mat22(*args)) __GetAngle = _swig_new_instance_method(_Box2D.b2Mat22___GetAngle) __SetAngle = _swig_new_instance_method(_Box2D.b2Mat22___SetAngle) # Read-only inverse = property(__GetInverse, None) angle = property(__GetAngle, __SetAngle) ex = property(lambda self: self.col1, lambda self, v: setattr(self, 'col1', v)) ey = property(lambda self: self.col2, lambda self, v: setattr(self, 'col2', v)) set = __SetAngle __mul__ = _swig_new_instance_method(_Box2D.b2Mat22___mul__) __add__ = _swig_new_instance_method(_Box2D.b2Mat22___add__) __sub__ = _swig_new_instance_method(_Box2D.b2Mat22___sub__) __iadd = _swig_new_instance_method(_Box2D.b2Mat22___iadd) __isub = _swig_new_instance_method(_Box2D.b2Mat22___isub) __swig_destroy__ = _Box2D.delete_b2Mat22 # Register b2Mat22 in _Box2D: _Box2D.b2Mat22_swigregister(b2Mat22) class b2Mat33(object): r"""A 3-by-3 matrix. Stored in column-major order.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr SetZero = _swig_new_instance_method(_Box2D.b2Mat33_SetZero) Solve33 = _swig_new_instance_method(_Box2D.b2Mat33_Solve33) Solve22 = _swig_new_instance_method(_Box2D.b2Mat33_Solve22) GetInverse22 = _swig_new_instance_method(_Box2D.b2Mat33_GetInverse22) GetSymInverse33 = _swig_new_instance_method(_Box2D.b2Mat33_GetSymInverse33) col1 = property(_Box2D.b2Mat33_col1_get, _Box2D.b2Mat33_col1_set, doc=r"""col1 : b2Vec3""") col2 = property(_Box2D.b2Mat33_col2_get, _Box2D.b2Mat33_col2_set, doc=r"""col2 : b2Vec3""") col3 = property(_Box2D.b2Mat33_col3_get, _Box2D.b2Mat33_col3_set, doc=r"""col3 : b2Vec3""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Mat33___hash__) def __repr__(self): return _format_repr(self) def __init__(self, *args): r""" __init__(b2Mat33 self, b2Vec3 c1, b2Vec3 c2, b2Vec3 c3) -> b2Mat33 __init__(b2Mat33 self) -> b2Mat33 Construct this matrix using columns. """ _Box2D.b2Mat33_swiginit(self, _Box2D.new_b2Mat33(*args)) ex = property(lambda self: self.col1, lambda self, v: setattr(self, 'col1', v)) ey = property(lambda self: self.col2, lambda self, v: setattr(self, 'col2', v)) ez = property(lambda self: self.col3, lambda self, v: setattr(self, 'col3', v)) __mul__ = _swig_new_instance_method(_Box2D.b2Mat33___mul__) __add__ = _swig_new_instance_method(_Box2D.b2Mat33___add__) __sub__ = _swig_new_instance_method(_Box2D.b2Mat33___sub__) __iadd = _swig_new_instance_method(_Box2D.b2Mat33___iadd) __isub = _swig_new_instance_method(_Box2D.b2Mat33___isub) __swig_destroy__ = _Box2D.delete_b2Mat33 # Register b2Mat33 in _Box2D: _Box2D.b2Mat33_swigregister(b2Mat33) class b2Rot(object): r"""Proxy of C++ b2Rot class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): r""" __init__(b2Rot self) -> b2Rot __init__(b2Rot self, float32 angle) -> b2Rot """ _Box2D.b2Rot_swiginit(self, _Box2D.new_b2Rot(*args)) __SetAngle = _swig_new_instance_method(_Box2D.b2Rot___SetAngle) SetIdentity = _swig_new_instance_method(_Box2D.b2Rot_SetIdentity) __GetAngle = _swig_new_instance_method(_Box2D.b2Rot___GetAngle) GetXAxis = _swig_new_instance_method(_Box2D.b2Rot_GetXAxis) GetYAxis = _swig_new_instance_method(_Box2D.b2Rot_GetYAxis) s = property(_Box2D.b2Rot_s_get, _Box2D.b2Rot_s_set, doc=r"""s : float32""") c = property(_Box2D.b2Rot_c_get, _Box2D.b2Rot_c_set, doc=r"""c : float32""") angle = property(__GetAngle, __SetAngle) x_axis = property(GetXAxis, None) y_axis = property(GetYAxis, None) __mul__ = _swig_new_instance_method(_Box2D.b2Rot___mul__) __swig_destroy__ = _Box2D.delete_b2Rot # Register b2Rot in _Box2D: _Box2D.b2Rot_swigregister(b2Rot) class b2Transform(object): r"""A transform contains translation and rotation. It is used to represent the position and orientation of rigid frames.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): r""" __init__(b2Transform self) -> b2Transform __init__(b2Transform self, b2Vec2 position, b2Rot rotation) -> b2Transform Initialize using a position vector and a rotation matrix. """ _Box2D.b2Transform_swiginit(self, _Box2D.new_b2Transform(*args)) SetIdentity = _swig_new_instance_method(_Box2D.b2Transform_SetIdentity) Set = _swig_new_instance_method(_Box2D.b2Transform_Set) position = property(_Box2D.b2Transform_position_get, _Box2D.b2Transform_position_set, doc=r"""position : b2Vec2""") q = property(_Box2D.b2Transform_q_get, _Box2D.b2Transform_q_set, doc=r"""q : b2Rot""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Transform___hash__) def __repr__(self): return _format_repr(self) __get_rotation_matrix = _swig_new_instance_method(_Box2D.b2Transform___get_rotation_matrix) def __get_angle(self): return self.q.angle def __set_angle(self, angle): self.q.angle = angle def __set_rotation_matrix(self, rot_matrix): self.q.angle = rot_matrix.angle angle = property(__get_angle, __set_angle) R = property(__get_rotation_matrix, __set_rotation_matrix) __mul__ = _swig_new_instance_method(_Box2D.b2Transform___mul__) __swig_destroy__ = _Box2D.delete_b2Transform # Register b2Transform in _Box2D: _Box2D.b2Transform_swigregister(b2Transform) class b2Sweep(object): r"""This describes the motion of a body/shape for TOI computation. Shapes are defined with respect to the body origin, which may no coincide with the center of mass. However, to support dynamics we must interpolate the center of mass position.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr Advance = _swig_new_instance_method(_Box2D.b2Sweep_Advance) Normalize = _swig_new_instance_method(_Box2D.b2Sweep_Normalize) localCenter = property(_Box2D.b2Sweep_localCenter_get, _Box2D.b2Sweep_localCenter_set, doc=r"""localCenter : b2Vec2""") c0 = property(_Box2D.b2Sweep_c0_get, _Box2D.b2Sweep_c0_set, doc=r"""c0 : b2Vec2""") c = property(_Box2D.b2Sweep_c_get, _Box2D.b2Sweep_c_set, doc=r"""c : b2Vec2""") a0 = property(_Box2D.b2Sweep_a0_get, _Box2D.b2Sweep_a0_set, doc=r"""a0 : float32""") a = property(_Box2D.b2Sweep_a_get, _Box2D.b2Sweep_a_set, doc=r"""a : float32""") alpha0 = property(_Box2D.b2Sweep_alpha0_get, _Box2D.b2Sweep_alpha0_set, doc=r"""alpha0 : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Sweep___hash__) def __repr__(self): return _format_repr(self) GetTransform = _swig_new_instance_method(_Box2D.b2Sweep_GetTransform) def __init__(self, **kwargs): _Box2D.b2Sweep_swiginit(self,_Box2D.new_b2Sweep()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Sweep # Register b2Sweep in _Box2D: _Box2D.b2Sweep_swigregister(b2Sweep) b2DistanceSquared = _Box2D.b2DistanceSquared b2Dot = _Box2D.b2Dot b2Cross = _Box2D.b2Cross b2Mul22 = _Box2D.b2Mul22 b2Mul = _Box2D.b2Mul b2MulT = _Box2D.b2MulT b2Abs = _Box2D.b2Abs b2Min = _Box2D.b2Min b2Max = _Box2D.b2Max b2Clamp = _Box2D.b2Clamp b2NextPowerOfTwo = _Box2D.b2NextPowerOfTwo b2IsPowerOfTwo = _Box2D.b2IsPowerOfTwo class b2ContactFeature(object): r"""The features that intersect to form the contact point This must be 4 bytes or less.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr e_vertex = _Box2D.b2ContactFeature_e_vertex e_face = _Box2D.b2ContactFeature_e_face indexA = property(_Box2D.b2ContactFeature_indexA_get, _Box2D.b2ContactFeature_indexA_set, doc=r"""indexA : uint8""") indexB = property(_Box2D.b2ContactFeature_indexB_get, _Box2D.b2ContactFeature_indexB_set, doc=r"""indexB : uint8""") typeA = property(_Box2D.b2ContactFeature_typeA_get, _Box2D.b2ContactFeature_typeA_set, doc=r"""typeA : uint8""") typeB = property(_Box2D.b2ContactFeature_typeB_get, _Box2D.b2ContactFeature_typeB_set, doc=r"""typeB : uint8""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactFeature___hash__) def __repr__(self): return _format_repr(self) def __init__(self): r""" __init__(b2ContactFeature self) -> b2ContactFeature The features that intersect to form the contact point This must be 4 bytes or less. """ _Box2D.b2ContactFeature_swiginit(self, _Box2D.new_b2ContactFeature()) __swig_destroy__ = _Box2D.delete_b2ContactFeature # Register b2ContactFeature in _Box2D: _Box2D.b2ContactFeature_swigregister(b2ContactFeature) b2Vec2_zero = b2Globals.b2Vec2_zero b2_nullFeature = b2Globals.b2_nullFeature class b2ContactID(object): r"""Proxy of C++ b2ContactID class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr cf = property(_Box2D.b2ContactID_cf_get, _Box2D.b2ContactID_cf_set, doc=r"""cf : b2ContactFeature""") key = property(_Box2D.b2ContactID_key_get, _Box2D.b2ContactID_key_set, doc=r"""key : uint32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactID___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2ContactID_swiginit(self,_Box2D.new_b2ContactID()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ContactID # Register b2ContactID in _Box2D: _Box2D.b2ContactID_swigregister(b2ContactID) class b2ManifoldPoint(object): r"""A manifold point is a contact point belonging to a contact manifold. It holds details related to the geometry and dynamics of the contact points. The local point usage depends on the manifold type: -e_circles: the local center of circleB -e_faceA: the local center of cirlceB or the clip point of polygonB -e_faceB: the clip point of polygonA This structure is stored across time steps, so we keep it small. Note: the impulses are used for internal caching and may not provide reliable contact forces, especially for high speed collisions.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr localPoint = property(_Box2D.b2ManifoldPoint_localPoint_get, _Box2D.b2ManifoldPoint_localPoint_set, doc=r"""localPoint : b2Vec2""") normalImpulse = property(_Box2D.b2ManifoldPoint_normalImpulse_get, _Box2D.b2ManifoldPoint_normalImpulse_set, doc=r"""normalImpulse : float32""") tangentImpulse = property(_Box2D.b2ManifoldPoint_tangentImpulse_get, _Box2D.b2ManifoldPoint_tangentImpulse_set, doc=r"""tangentImpulse : float32""") id = property(_Box2D.b2ManifoldPoint_id_get, _Box2D.b2ManifoldPoint_id_set, doc=r"""id : b2ContactID""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ManifoldPoint___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2ManifoldPoint_swiginit(self,_Box2D.new_b2ManifoldPoint()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ManifoldPoint # Register b2ManifoldPoint in _Box2D: _Box2D.b2ManifoldPoint_swigregister(b2ManifoldPoint) class b2Manifold(object): r""" A manifold for two touching convex shapes. Box2D supports multiple types of contact: clip point versus plane with radius point versus point with radius (circles) The local point usage depends on the manifold type: -e_circles: the local center of circleA -e_faceA: the center of faceA -e_faceB: the center of faceB Similarly the local normal usage: -e_circles: not used -e_faceA: the normal on polygonA -e_faceB: the normal on polygonB We store contacts in this way so that position correction can account for movement, which is critical for continuous physics. All contact scenarios must be expressed in one of these types. This structure is stored across time steps, so we keep it small. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr e_circles = _Box2D.b2Manifold_e_circles e_faceA = _Box2D.b2Manifold_e_faceA e_faceB = _Box2D.b2Manifold_e_faceB localNormal = property(_Box2D.b2Manifold_localNormal_get, _Box2D.b2Manifold_localNormal_set, doc=r"""localNormal : b2Vec2""") localPoint = property(_Box2D.b2Manifold_localPoint_get, _Box2D.b2Manifold_localPoint_set, doc=r"""localPoint : b2Vec2""") type_ = property(_Box2D.b2Manifold_type__get, _Box2D.b2Manifold_type__set, doc=r"""type_ : b2Manifold::Type""") pointCount = property(_Box2D.b2Manifold_pointCount_get, _Box2D.b2Manifold_pointCount_set, doc=r"""pointCount : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Manifold___hash__) def __repr__(self): return _format_repr(self) def __GetPoints(self): return [self.__GetPoint(i) for i in range(self.pointCount)] points = property(__GetPoints, None) __GetPoint = _swig_new_instance_method(_Box2D.b2Manifold___GetPoint) def __init__(self, **kwargs): _Box2D.b2Manifold_swiginit(self,_Box2D.new_b2Manifold()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Manifold # Register b2Manifold in _Box2D: _Box2D.b2Manifold_swigregister(b2Manifold) class b2WorldManifold(object): r"""This is used to compute the current state of a contact manifold.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr Initialize = _swig_new_instance_method(_Box2D.b2WorldManifold_Initialize) normal = property(_Box2D.b2WorldManifold_normal_get, _Box2D.b2WorldManifold_normal_set, doc=r"""normal : b2Vec2""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2WorldManifold___hash__) def __repr__(self): return _format_repr(self) __get_points = _swig_new_instance_method(_Box2D.b2WorldManifold___get_points) points = property(__get_points, None) def __init__(self, **kwargs): _Box2D.b2WorldManifold_swiginit(self,_Box2D.new_b2WorldManifold()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2WorldManifold # Register b2WorldManifold in _Box2D: _Box2D.b2WorldManifold_swigregister(b2WorldManifold) b2_nullState = _Box2D.b2_nullState b2_addState = _Box2D.b2_addState b2_persistState = _Box2D.b2_persistState b2_removeState = _Box2D.b2_removeState class b2ClipVertex(object): r"""Used for computing contact manifolds.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr v = property(_Box2D.b2ClipVertex_v_get, _Box2D.b2ClipVertex_v_set, doc=r"""v : b2Vec2""") id = property(_Box2D.b2ClipVertex_id_get, _Box2D.b2ClipVertex_id_set, doc=r"""id : b2ContactID""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ClipVertex___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2ClipVertex_swiginit(self,_Box2D.new_b2ClipVertex()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ClipVertex # Register b2ClipVertex in _Box2D: _Box2D.b2ClipVertex_swigregister(b2ClipVertex) class b2RayCastInput(object): r"""Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr p1 = property(_Box2D.b2RayCastInput_p1_get, _Box2D.b2RayCastInput_p1_set, doc=r"""p1 : b2Vec2""") p2 = property(_Box2D.b2RayCastInput_p2_get, _Box2D.b2RayCastInput_p2_set, doc=r"""p2 : b2Vec2""") maxFraction = property(_Box2D.b2RayCastInput_maxFraction_get, _Box2D.b2RayCastInput_maxFraction_set, doc=r"""maxFraction : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RayCastInput___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2RayCastInput_swiginit(self,_Box2D.new_b2RayCastInput()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2RayCastInput # Register b2RayCastInput in _Box2D: _Box2D.b2RayCastInput_swigregister(b2RayCastInput) class b2RayCastOutput(object): r"""Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2 come from b2RayCastInput.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr normal = property(_Box2D.b2RayCastOutput_normal_get, _Box2D.b2RayCastOutput_normal_set, doc=r"""normal : b2Vec2""") fraction = property(_Box2D.b2RayCastOutput_fraction_get, _Box2D.b2RayCastOutput_fraction_set, doc=r"""fraction : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RayCastOutput___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2RayCastOutput_swiginit(self,_Box2D.new_b2RayCastOutput()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2RayCastOutput # Register b2RayCastOutput in _Box2D: _Box2D.b2RayCastOutput_swigregister(b2RayCastOutput) class b2AABB(object): r"""An axis aligned bounding box.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __IsValid = _swig_new_instance_method(_Box2D.b2AABB___IsValid) __GetCenter = _swig_new_instance_method(_Box2D.b2AABB___GetCenter) __GetExtents = _swig_new_instance_method(_Box2D.b2AABB___GetExtents) __GetPerimeter = _swig_new_instance_method(_Box2D.b2AABB___GetPerimeter) Combine = _swig_new_instance_method(_Box2D.b2AABB_Combine) RayCast = _swig_new_instance_method(_Box2D.b2AABB_RayCast) lowerBound = property(_Box2D.b2AABB_lowerBound_get, _Box2D.b2AABB_lowerBound_set, doc=r"""lowerBound : b2Vec2""") upperBound = property(_Box2D.b2AABB_upperBound_get, _Box2D.b2AABB_upperBound_set, doc=r"""upperBound : b2Vec2""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2AABB___hash__) def __repr__(self): return _format_repr(self) # Read-only valid = property(__IsValid, None) extents = property(__GetExtents, None) center = property(__GetCenter, None) perimeter = property(__GetPerimeter, None) __contains__ = _swig_new_instance_method(_Box2D.b2AABB___contains__) overlaps = _swig_new_instance_method(_Box2D.b2AABB_overlaps) def __init__(self, **kwargs): _Box2D.b2AABB_swiginit(self,_Box2D.new_b2AABB()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2AABB # Register b2AABB in _Box2D: _Box2D.b2AABB_swigregister(b2AABB) b2CollideCircles = _Box2D.b2CollideCircles b2CollidePolygonAndCircle = _Box2D.b2CollidePolygonAndCircle b2CollidePolygons = _Box2D.b2CollidePolygons b2CollideEdgeAndCircle = _Box2D.b2CollideEdgeAndCircle b2CollideEdgeAndPolygon = _Box2D.b2CollideEdgeAndPolygon b2ClipSegmentToLine = _Box2D.b2ClipSegmentToLine b2TestOverlap = _Box2D.b2TestOverlap class _b2Vec2Array(object): r"""Proxy of C++ _b2Vec2Array class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, nelements): r"""__init__(_b2Vec2Array self, size_t nelements) -> _b2Vec2Array""" _Box2D._b2Vec2Array_swiginit(self, _Box2D.new__b2Vec2Array(nelements)) __swig_destroy__ = _Box2D.delete__b2Vec2Array __getitem__ = _swig_new_instance_method(_Box2D._b2Vec2Array___getitem__) __setitem__ = _swig_new_instance_method(_Box2D._b2Vec2Array___setitem__) cast = _swig_new_instance_method(_Box2D._b2Vec2Array_cast) frompointer = _swig_new_static_method(_Box2D._b2Vec2Array_frompointer) # Register _b2Vec2Array in _Box2D: _Box2D._b2Vec2Array_swigregister(_b2Vec2Array) _b2Vec2Array_frompointer = _Box2D._b2Vec2Array_frompointer e_convertVertices = _Box2D.e_convertVertices class b2Color(object): r"""Color for debug drawing. Each value has the range [0,1].""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr Set = _swig_new_instance_method(_Box2D.b2Color_Set) r = property(_Box2D.b2Color_r_get, _Box2D.b2Color_r_set, doc=r"""r : float32""") g = property(_Box2D.b2Color_g_get, _Box2D.b2Color_g_set, doc=r"""g : float32""") b = property(_Box2D.b2Color_b_get, _Box2D.b2Color_b_set, doc=r"""b : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Color___hash__) def __repr__(self): return _format_repr(self) def __init__(self, *args): r""" __init__(b2Color self) -> b2Color __init__(b2Color self, float32 r, float32 g, float32 b) -> b2Color __init__(b2Color self, b2Color other) -> b2Color Color for debug drawing. Each value has the range [0,1]. """ _Box2D.b2Color_swiginit(self, _Box2D.new_b2Color(*args)) __get_bytes = _swig_new_instance_method(_Box2D.b2Color___get_bytes) __iter__ = lambda self: iter((self.r, self.g, self.b)) __eq__ = lambda self, other: self.__equ(other) __ne__ = lambda self,other: not self.__equ(other) def __repr__(self): return "b2Color(%g,%g,%g)" % (self.r, self.g, self.b) def __len__(self): return 3 def __copy__(self): return b2Color(self.r, self.g, self.b) def copy(self): return b2Color(self.r, self.g, self.b) def __set_bytes(self, value): if len(value) != 3: raise ValueError('Expected length 3 list') self.r, self.g, self.b = value[0]/255, value[1]/255, value[2]/255 def __set_tuple(self, value): if len(value) != 3: raise ValueError('Expected length 3 list') self.r, self.g, self.b = value[0], value[1], value[2] def __nonzero__(self): return self.r!=0.0 or self.g!=0.0 or self.b!=0.0 list = property(lambda self: list(self), __set_tuple) bytes = property(__get_bytes, __set_bytes) __getitem__ = _swig_new_instance_method(_Box2D.b2Color___getitem__) __setitem__ = _swig_new_instance_method(_Box2D.b2Color___setitem__) __truediv__ = _swig_new_instance_method(_Box2D.b2Color___truediv__) __add__ = _swig_new_instance_method(_Box2D.b2Color___add__) __sub__ = _swig_new_instance_method(_Box2D.b2Color___sub__) __div__ = _swig_new_instance_method(_Box2D.b2Color___div__) __rmul__ = _swig_new_instance_method(_Box2D.b2Color___rmul__) __mul__ = _swig_new_instance_method(_Box2D.b2Color___mul__) __isub = _swig_new_instance_method(_Box2D.b2Color___isub) __itruediv = _swig_new_instance_method(_Box2D.b2Color___itruediv) __idiv = _swig_new_instance_method(_Box2D.b2Color___idiv) __imul = _swig_new_instance_method(_Box2D.b2Color___imul) __iadd = _swig_new_instance_method(_Box2D.b2Color___iadd) __equ = _swig_new_instance_method(_Box2D.b2Color___equ) __swig_destroy__ = _Box2D.delete_b2Color # Register b2Color in _Box2D: _Box2D.b2Color_swigregister(b2Color) class b2Draw(object): r"""Implement and register this class with a b2Worldto provide debug drawing of physics entities in your game.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): if self.__class__ == b2Draw: _self = None else: _self = self _Box2D.b2Draw_swiginit(self,_Box2D.new_b2Draw(_self, )) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Draw e_shapeBit = _Box2D.b2Draw_e_shapeBit e_jointBit = _Box2D.b2Draw_e_jointBit e_aabbBit = _Box2D.b2Draw_e_aabbBit e_pairBit = _Box2D.b2Draw_e_pairBit e_centerOfMassBit = _Box2D.b2Draw_e_centerOfMassBit __SetFlags = _swig_new_instance_method(_Box2D.b2Draw___SetFlags) __GetFlags = _swig_new_instance_method(_Box2D.b2Draw___GetFlags) AppendFlags = _swig_new_instance_method(_Box2D.b2Draw_AppendFlags) ClearFlags = _swig_new_instance_method(_Box2D.b2Draw_ClearFlags) DrawPolygon = _swig_new_instance_method(_Box2D.b2Draw_DrawPolygon) DrawSolidPolygon = _swig_new_instance_method(_Box2D.b2Draw_DrawSolidPolygon) DrawCircle = _swig_new_instance_method(_Box2D.b2Draw_DrawCircle) DrawSolidCircle = _swig_new_instance_method(_Box2D.b2Draw_DrawSolidCircle) DrawSegment = _swig_new_instance_method(_Box2D.b2Draw_DrawSegment) DrawTransform = _swig_new_instance_method(_Box2D.b2Draw_DrawTransform) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Draw___hash__) def __repr__(self): return _format_repr(self) _flag_entries = [ ['drawShapes', e_shapeBit], ['drawJoints', e_jointBit ], ['drawAABBs', e_aabbBit ], ['drawPairs', e_pairBit ], ['drawCOMs', e_centerOfMassBit ], ['convertVertices', e_convertVertices ], ] def _SetFlags(self, value): flags = 0 for name_, mask in self._flag_entries: if name_ in value and value[name_]: flags |= mask self.__SetFlags(flags) def _GetFlags(self): flags = self.__GetFlags() ret={} for name_, mask in self._flag_entries: ret[name_]=((flags & mask)==mask) return ret flags=property(_GetFlags, _SetFlags, doc='Sets whether or not shapes, joints, etc. will be drawn.') def __disown__(self): self.this.disown() _Box2D.disown_b2Draw(self) return weakref.proxy(self) # Register b2Draw in _Box2D: _Box2D.b2Draw_swigregister(b2Draw) class b2DrawExtended(b2Draw): r"""Proxy of C++ b2DrawExtended class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr convertVertices = property(_Box2D.b2DrawExtended_convertVertices_get, _Box2D.b2DrawExtended_convertVertices_set, doc=r"""convertVertices : bool""") center = property(_Box2D.b2DrawExtended_center_get, _Box2D.b2DrawExtended_center_set, doc=r"""center : b2Vec2""") offset = property(_Box2D.b2DrawExtended_offset_get, _Box2D.b2DrawExtended_offset_set, doc=r"""offset : b2Vec2""") zoom = property(_Box2D.b2DrawExtended_zoom_get, _Box2D.b2DrawExtended_zoom_set, doc=r"""zoom : float32""") screenSize = property(_Box2D.b2DrawExtended_screenSize_get, _Box2D.b2DrawExtended_screenSize_set, doc=r"""screenSize : b2Vec2""") flipY = property(_Box2D.b2DrawExtended_flipY_get, _Box2D.b2DrawExtended_flipY_set, doc=r"""flipY : bool""") flipX = property(_Box2D.b2DrawExtended_flipX_get, _Box2D.b2DrawExtended_flipX_set, doc=r"""flipX : bool""") __Convert = _swig_new_instance_method(_Box2D.b2DrawExtended___Convert) to_screen = _swig_new_instance_method(_Box2D.b2DrawExtended_to_screen) DrawPolygon = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawPolygon) DrawSolidPolygon = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawSolidPolygon) DrawCircle = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawCircle) DrawSolidCircle = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawSolidCircle) DrawSegment = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawSegment) DrawTransform = _swig_new_instance_method(_Box2D.b2DrawExtended_DrawTransform) __SetFlags = _swig_new_instance_method(_Box2D.b2DrawExtended___SetFlags) __swig_destroy__ = _Box2D.delete_b2DrawExtended def __init__(self, **kwargs): if self.__class__ == b2DrawExtended: _self = None else: _self = self _Box2D.b2DrawExtended_swiginit(self,_Box2D.new_b2DrawExtended(_self, )) _init_kwargs(self, **kwargs) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DrawExtended___hash__) def __repr__(self): return _format_repr(self) def __disown__(self): self.this.disown() _Box2D.disown_b2DrawExtended(self) return weakref.proxy(self) # Register b2DrawExtended in _Box2D: _Box2D.b2DrawExtended_swigregister(b2DrawExtended) class b2MassData(object): r"""This holds the mass data computed for a shape.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr mass = property(_Box2D.b2MassData_mass_get, _Box2D.b2MassData_mass_set, doc=r"""mass : float32""") center = property(_Box2D.b2MassData_center_get, _Box2D.b2MassData_center_set, doc=r"""center : b2Vec2""") I = property(_Box2D.b2MassData_I_get, _Box2D.b2MassData_I_set, doc=r"""I : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2MassData___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2MassData_swiginit(self,_Box2D.new_b2MassData()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2MassData # Register b2MassData in _Box2D: _Box2D.b2MassData_swigregister(b2MassData) b2_chunkSize = b2Globals.b2_chunkSize b2_maxBlockSize = b2Globals.b2_maxBlockSize b2_blockSizes = b2Globals.b2_blockSizes b2_chunkArrayIncrement = b2Globals.b2_chunkArrayIncrement class b2Shape(object): r"""A shape is used for collision detection. You can create a shape however you like. Shapes used for simulation in b2Worldare created automatically when a b2Fixtureis created. Shapes may encapsulate a one or more child shapes.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr e_circle = _Box2D.b2Shape_e_circle e_edge = _Box2D.b2Shape_e_edge e_polygon = _Box2D.b2Shape_e_polygon e_chain = _Box2D.b2Shape_e_chain e_typeCount = _Box2D.b2Shape_e_typeCount __swig_destroy__ = _Box2D.delete_b2Shape __GetType = _swig_new_instance_method(_Box2D.b2Shape___GetType) __GetChildCount = _swig_new_instance_method(_Box2D.b2Shape___GetChildCount) TestPoint = _swig_new_instance_method(_Box2D.b2Shape_TestPoint) RayCast = _swig_new_instance_method(_Box2D.b2Shape_RayCast) __ComputeAABB = _swig_new_instance_method(_Box2D.b2Shape___ComputeAABB) __ComputeMass = _swig_new_instance_method(_Box2D.b2Shape___ComputeMass) radius = property(_Box2D.b2Shape_radius_get, _Box2D.b2Shape_radius_set, doc=r"""radius : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Shape___hash__) def __repr__(self): return _format_repr(self) __eq__ = b2ShapeCompare __ne__ = lambda self,other: not b2ShapeCompare(self,other) # Read-only type = property(__GetType, None) def getAsType(self): return self @property def childCount(self): """ Get the number of child primitives. """ return self.__GetChildCount() def getAABB(self, transform, childIndex): """ Given a transform, compute the associated axis aligned bounding box for a child shape. """ if childIndex >= self.childCount: raise ValueError('Child index should be at most childCount=%d' % self.childCount) aabb=b2AABB() self.__ComputeAABB(aabb, transform, childIndex) return aabb def getMass(self, density): """ Compute the mass properties of this shape using its dimensions and density. The inertia tensor is computed about the local origin. """ m=b2MassData() self.__ComputeMass(m, density) return m # Register b2Shape in _Box2D: _Box2D.b2Shape_swigregister(b2Shape) class b2CircleShape(b2Shape): r"""A circle shape.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2CircleShape_swiginit(self,_Box2D.new_b2CircleShape()) _init_kwargs(self, **kwargs) pos = property(_Box2D.b2CircleShape_pos_get, _Box2D.b2CircleShape_pos_set, doc=r"""pos : b2Vec2""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2CircleShape___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2CircleShape # Register b2CircleShape in _Box2D: _Box2D.b2CircleShape_swigregister(b2CircleShape) class b2EdgeShape(b2Shape): r"""A line segment (edge) shape. These can be connected in chains or loops to other edge shapes. The connectivity information is used to ensure correct contact normals.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2EdgeShape_swiginit(self,_Box2D.new_b2EdgeShape()) _init_kwargs(self, **kwargs) __Set = _swig_new_instance_method(_Box2D.b2EdgeShape___Set) vertex1 = property(_Box2D.b2EdgeShape_vertex1_get, _Box2D.b2EdgeShape_vertex1_set, doc=r"""vertex1 : b2Vec2""") vertex2 = property(_Box2D.b2EdgeShape_vertex2_get, _Box2D.b2EdgeShape_vertex2_set, doc=r"""vertex2 : b2Vec2""") vertex0 = property(_Box2D.b2EdgeShape_vertex0_get, _Box2D.b2EdgeShape_vertex0_set, doc=r"""vertex0 : b2Vec2""") vertex3 = property(_Box2D.b2EdgeShape_vertex3_get, _Box2D.b2EdgeShape_vertex3_set, doc=r"""vertex3 : b2Vec2""") hasVertex0 = property(_Box2D.b2EdgeShape_hasVertex0_get, _Box2D.b2EdgeShape_hasVertex0_set, doc=r"""hasVertex0 : bool""") hasVertex3 = property(_Box2D.b2EdgeShape_hasVertex3_get, _Box2D.b2EdgeShape_hasVertex3_set, doc=r"""hasVertex3 : bool""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2EdgeShape___hash__) def __repr__(self): return _format_repr(self) def __repr__(self): return "b2EdgeShape(vertices: %s)" % (self.vertices) @property def all_vertices(self): """Returns all of the vertices as a list of tuples [ (x0,y0), (x1,y1), (x2,y2) (x3,y3) ] Note that the validity of vertices 0 and 4 depend on whether or not hasVertex0 and hasVertex3 are set. """ return [tuple(self.vertex0), tuple(self.vertex1), tuple(self.vertex2), tuple(self.vertex3)] def __get_vertices(self): """Returns the basic vertices as a list of tuples [ (x1,y1), (x2,y2) ] To include the supporting vertices, see 'all_vertices' If you want to set vertex3 but not vertex0, pass in None for vertex0. """ return [tuple(self.vertex1), tuple(self.vertex2)] def __set_vertices(self, vertices): if len(vertices)==2: self.vertex1, self.vertex2=vertices self.hasVertex0=False self.hasVertex3=False elif len(vertices)==3: self.vertex0, self.vertex1, self.vertex2=vertices self.hasVertex0=(vertices[0] != None) self.hasVertex3=False elif len(vertices)==4: self.vertex0, self.vertex1, self.vertex2, self.vertex3=vertices self.hasVertex0=(vertices[0] != None) self.hasVertex3=True else: raise ValueError('Expected from 2 to 4 vertices.') @property def vertexCount(self): """ Returns the number of valid vertices (as in, it counts whether or not hasVertex0 or hasVertex3 are set) """ if self.hasVertex0 and self.hasVertex3: return 4 elif self.hasVertex0 or self.hasVertex3: return 3 else: return 2 def __iter__(self): """ Iterates over the vertices in the Edge """ for v in self.vertices: yield v vertices=property(__get_vertices, __set_vertices) __swig_destroy__ = _Box2D.delete_b2EdgeShape # Register b2EdgeShape in _Box2D: _Box2D.b2EdgeShape_swigregister(b2EdgeShape) class b2ChainShape(b2Shape): r"""A loop shape is a free form sequence of line segments that form a circular list. The loop may cross upon itself, but this is not recommended for smooth collision. The loop has double sided collision, so you can use inside and outside collision. Therefore, you may use any winding order. Since there may be many vertices, they are allocated using b2Alloc.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2ChainShape_swiginit(self,_Box2D.new_b2ChainShape()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ChainShape CreateLoop = _swig_new_instance_method(_Box2D.b2ChainShape_CreateLoop) CreateChain = _swig_new_instance_method(_Box2D.b2ChainShape_CreateChain) SetPrevVertex = _swig_new_instance_method(_Box2D.b2ChainShape_SetPrevVertex) SetNextVertex = _swig_new_instance_method(_Box2D.b2ChainShape_SetNextVertex) __GetChildEdge = _swig_new_instance_method(_Box2D.b2ChainShape___GetChildEdge) m_prevVertex = property(_Box2D.b2ChainShape_m_prevVertex_get, _Box2D.b2ChainShape_m_prevVertex_set, doc=r"""m_prevVertex : b2Vec2""") m_nextVertex = property(_Box2D.b2ChainShape_m_nextVertex_get, _Box2D.b2ChainShape_m_nextVertex_set, doc=r"""m_nextVertex : b2Vec2""") m_hasPrevVertex = property(_Box2D.b2ChainShape_m_hasPrevVertex_get, _Box2D.b2ChainShape_m_hasPrevVertex_set, doc=r"""m_hasPrevVertex : bool""") m_hasNextVertex = property(_Box2D.b2ChainShape_m_hasNextVertex_get, _Box2D.b2ChainShape_m_hasNextVertex_set, doc=r"""m_hasNextVertex : bool""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ChainShape___hash__) def __repr__(self): return _format_repr(self) __get_vertices = _swig_new_instance_method(_Box2D.b2ChainShape___get_vertices) def __repr__(self): return "b2ChainShape(vertices: %s)" % (self.vertices) def getChildEdge(self, index): if childIndex >= self.childCount: raise ValueError('Child index should be at most childCount=%d' % self.childCount) edge=b2EdgeShape() self.__GetChildEdge(edge, index) return edge @property def edges(self): return [self.getChildEdge(i) for i in range(self.childCount)] @property def vertexCount(self): return self.__get_count() def __get_vertices(self): """Returns all of the vertices as a list of tuples [ (x1,y1), (x2,y2) ... (xN,yN) ]""" return [ (self.__get_vertex(i).x, self.__get_vertex(i).y ) for i in range(0, self.vertexCount)] def __iter__(self): """ Iterates over the vertices in the Chain """ for v in self.vertices: yield v def __set_vertices(self, values, loop=True): if not values or not isinstance(values, (list, tuple)) or (len(values) < 2): raise ValueError('Expected tuple or list of length >= 2.') for i,value in enumerate(values): if isinstance(value, (tuple, list)): if len(value) != 2: raise ValueError('Expected tuple or list of length 2, got length %d' % len(value)) for j in value: if not isinstance(j, (int, float)): raise ValueError('Expected int or float values, got %s' % (type(j))) elif isinstance(value, b2Vec2): pass else: raise ValueError('Expected tuple, list, or b2Vec2, got %s' % type(value)) vecs=_b2Vec2Array(len(values)) for i, value in enumerate(values): if isinstance(value, b2Vec2): vecs[i]=value else: vecs[i]=b2Vec2(value) self.__create(vecs, len(values), loop) vertices = property(__get_vertices, __set_vertices) vertices_chain = property(__get_vertices, lambda self, v : self.__set_vertices(v, loop=False)) vertices_loop = vertices __create = _swig_new_instance_method(_Box2D.b2ChainShape___create) __get_vertex = _swig_new_instance_method(_Box2D.b2ChainShape___get_vertex) __get_count = _swig_new_instance_method(_Box2D.b2ChainShape___get_count) # Register b2ChainShape in _Box2D: _Box2D.b2ChainShape_swigregister(b2ChainShape) class b2PolygonShape(b2Shape): r"""A convex polygon. It is assumed that the interior of the polygon is to the left of each edge. Polygons have a maximum number of vertices equal to b2_maxPolygonVertices. In most cases you should not need many vertices for a convex polygon.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2PolygonShape_swiginit(self,_Box2D.new_b2PolygonShape()) _init_kwargs(self, **kwargs) SetAsBox = _swig_new_instance_method(_Box2D.b2PolygonShape_SetAsBox) Validate = _swig_new_instance_method(_Box2D.b2PolygonShape_Validate) centroid = property(_Box2D.b2PolygonShape_centroid_get, _Box2D.b2PolygonShape_centroid_set, doc=r"""centroid : b2Vec2""") vertexCount = property(_Box2D.b2PolygonShape_vertexCount_get, _Box2D.b2PolygonShape_vertexCount_set, doc=r"""vertexCount : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2PolygonShape___hash__) def __repr__(self): return _format_repr(self) __get_vertices = _swig_new_instance_method(_Box2D.b2PolygonShape___get_vertices) __get_normals = _swig_new_instance_method(_Box2D.b2PolygonShape___get_normals) def __repr__(self): return "b2PolygonShape(vertices: %s)" % (self.vertices) def __clear_vertices(self): self.vertexCount=0 for i in range(0, b2_maxPolygonVertices): self.set_vertex(i, 0, 0) def __set_vertices(self, values): if not values: self.__clear_vertices() else: if len(values) < 2 or len(values) > b2_maxPolygonVertices: raise ValueError('Expected tuple or list of length >= 2 and less than b2_maxPolygonVertices=%d, got length %d.' % (b2_maxPolygonVertices, len(values))) for i,value in enumerate(values): if isinstance(value, (tuple, list, b2Vec2)): if len(value) != 2: raise ValueError('Expected tuple or list of length 2, got length %d' % len(value)) self.set_vertex(i, *value) else: raise ValueError('Expected tuple, list, or b2Vec2, got %s' % type(value)) self.vertexCount=i+1 # follow along in case of an exception to indicate valid number set self.__set_vertices_internal() # calculates normals, centroid, etc. def __iter__(self): """ Iterates over the vertices in the polygon """ for v in self.vertices: yield v def __IsValid(self): return b2CheckPolygon(self) valid = property(__IsValid, None, doc="Checks the polygon to see if it can be properly created. Raises ValueError for invalid shapes.") vertices = property(__get_vertices, __set_vertices, doc="All of the vertices as a list of tuples [ (x1,y1), (x2,y2) ... (xN,yN) ]") normals = property(__get_normals, None, doc="All of the normals as a list of tuples [ (x1,y1), (x2,y2) ... (xN,yN) ]") box = property(None, lambda self, value: self.SetAsBox(*value), doc="Property replacement for running SetAsBox (Write-only)") __get_vertex = _swig_new_instance_method(_Box2D.b2PolygonShape___get_vertex) __get_normal = _swig_new_instance_method(_Box2D.b2PolygonShape___get_normal) set_vertex = _swig_new_instance_method(_Box2D.b2PolygonShape_set_vertex) __set_vertices_internal = _swig_new_instance_method(_Box2D.b2PolygonShape___set_vertices_internal) __swig_destroy__ = _Box2D.delete_b2PolygonShape # Register b2PolygonShape in _Box2D: _Box2D.b2PolygonShape_swigregister(b2PolygonShape) b2_nullNode = _Box2D.b2_nullNode class b2TreeNode(object): r"""Proxy of C++ b2TreeNode class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr IsLeaf = _swig_new_instance_method(_Box2D.b2TreeNode_IsLeaf) aabb = property(_Box2D.b2TreeNode_aabb_get, _Box2D.b2TreeNode_aabb_set, doc=r"""aabb : b2AABB""") child1 = property(_Box2D.b2TreeNode_child1_get, _Box2D.b2TreeNode_child1_set, doc=r"""child1 : int32""") child2 = property(_Box2D.b2TreeNode_child2_get, _Box2D.b2TreeNode_child2_set, doc=r"""child2 : int32""") height = property(_Box2D.b2TreeNode_height_get, _Box2D.b2TreeNode_height_set, doc=r"""height : int32""") def __init__(self): r"""__init__(b2TreeNode self) -> b2TreeNode""" _Box2D.b2TreeNode_swiginit(self, _Box2D.new_b2TreeNode()) __swig_destroy__ = _Box2D.delete_b2TreeNode # Register b2TreeNode in _Box2D: _Box2D.b2TreeNode_swigregister(b2TreeNode) class b2Pair(object): r"""Proxy of C++ b2Pair class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr proxyIdA = property(_Box2D.b2Pair_proxyIdA_get, _Box2D.b2Pair_proxyIdA_set, doc=r"""proxyIdA : int32""") proxyIdB = property(_Box2D.b2Pair_proxyIdB_get, _Box2D.b2Pair_proxyIdB_set, doc=r"""proxyIdB : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Pair___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2Pair_swiginit(self,_Box2D.new_b2Pair()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Pair # Register b2Pair in _Box2D: _Box2D.b2Pair_swigregister(b2Pair) class b2BroadPhase(object): r"""The broad-phase is used for computing pairs and performing volume queries and ray casts. This broad-phase does not persist pairs. Instead, this reports potentially new pairs. It is up to the client to consume the new pairs and to track subsequent overlap.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr e_nullProxy = _Box2D.b2BroadPhase_e_nullProxy def __init__(self): r""" __init__(b2BroadPhase self) -> b2BroadPhase The broad-phase is used for computing pairs and performing volume queries and ray casts. This broad-phase does not persist pairs. Instead, this reports potentially new pairs. It is up to the client to consume the new pairs and to track subsequent overlap. """ _Box2D.b2BroadPhase_swiginit(self, _Box2D.new_b2BroadPhase()) __swig_destroy__ = _Box2D.delete_b2BroadPhase MoveProxy = _swig_new_instance_method(_Box2D.b2BroadPhase_MoveProxy) TouchProxy = _swig_new_instance_method(_Box2D.b2BroadPhase_TouchProxy) GetFatAABB = _swig_new_instance_method(_Box2D.b2BroadPhase_GetFatAABB) TestOverlap = _swig_new_instance_method(_Box2D.b2BroadPhase_TestOverlap) __GetProxyCount = _swig_new_instance_method(_Box2D.b2BroadPhase___GetProxyCount) __GetTreeHeight = _swig_new_instance_method(_Box2D.b2BroadPhase___GetTreeHeight) __GetTreeBalance = _swig_new_instance_method(_Box2D.b2BroadPhase___GetTreeBalance) __GetTreeQuality = _swig_new_instance_method(_Box2D.b2BroadPhase___GetTreeQuality) ShiftOrigin = _swig_new_instance_method(_Box2D.b2BroadPhase_ShiftOrigin) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2BroadPhase___hash__) def __repr__(self): return _format_repr(self) proxyCount=property(__GetProxyCount, None) treeHeight=property(__GetTreeHeight, None) treeBalance=property(__GetTreeBalance, None) treeQuality=property(__GetTreeQuality, None) # Register b2BroadPhase in _Box2D: _Box2D.b2BroadPhase_swigregister(b2BroadPhase) b2PairLessThan = _Box2D.b2PairLessThan class b2DistanceProxy(object): r"""A distance proxy is used by the GJK algorithm. It encapsulates any shape.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, shape, index=0): _Box2D.b2DistanceProxy_swiginit(self,_Box2D.new_b2DistanceProxy()) self.Set(shape, index) Set = _swig_new_instance_method(_Box2D.b2DistanceProxy_Set) GetSupport = _swig_new_instance_method(_Box2D.b2DistanceProxy_GetSupport) GetSupportVertex = _swig_new_instance_method(_Box2D.b2DistanceProxy_GetSupportVertex) __get_vertex_count = _swig_new_instance_method(_Box2D.b2DistanceProxy___get_vertex_count) __get_vertex = _swig_new_instance_method(_Box2D.b2DistanceProxy___get_vertex) m_buffer = property(_Box2D.b2DistanceProxy_m_buffer_get, _Box2D.b2DistanceProxy_m_buffer_set, doc=r"""m_buffer : a(2).b2Vec2""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DistanceProxy___hash__) def __repr__(self): return _format_repr(self) def __get_vertices(self): """Returns all of the vertices as a list of tuples [ (x1,y1), (x2,y2) ... (xN,yN) ]""" return [ (self.__get_vertex(i).x, self.__get_vertex(i).y ) for i in range(0, self.__get_vertex_count())] vertices = property(__get_vertices, None) __swig_destroy__ = _Box2D.delete_b2DistanceProxy # Register b2DistanceProxy in _Box2D: _Box2D.b2DistanceProxy_swigregister(b2DistanceProxy) class b2DistanceInput(object): r"""Input for b2Distance. You have to option to use the shape radii in the computation. Even""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr proxyA = property(_Box2D.b2DistanceInput_proxyA_get, _Box2D.b2DistanceInput_proxyA_set, doc=r"""proxyA : b2DistanceProxy""") proxyB = property(_Box2D.b2DistanceInput_proxyB_get, _Box2D.b2DistanceInput_proxyB_set, doc=r"""proxyB : b2DistanceProxy""") transformA = property(_Box2D.b2DistanceInput_transformA_get, _Box2D.b2DistanceInput_transformA_set, doc=r"""transformA : b2Transform""") transformB = property(_Box2D.b2DistanceInput_transformB_get, _Box2D.b2DistanceInput_transformB_set, doc=r"""transformB : b2Transform""") useRadii = property(_Box2D.b2DistanceInput_useRadii_get, _Box2D.b2DistanceInput_useRadii_set, doc=r"""useRadii : bool""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DistanceInput___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2DistanceInput_swiginit(self,_Box2D.new_b2DistanceInput()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2DistanceInput # Register b2DistanceInput in _Box2D: _Box2D.b2DistanceInput_swigregister(b2DistanceInput) class b2DistanceOutput(object): r"""Output for b2Distance.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr pointA = property(_Box2D.b2DistanceOutput_pointA_get, _Box2D.b2DistanceOutput_pointA_set, doc=r"""pointA : b2Vec2""") pointB = property(_Box2D.b2DistanceOutput_pointB_get, _Box2D.b2DistanceOutput_pointB_set, doc=r"""pointB : b2Vec2""") distance = property(_Box2D.b2DistanceOutput_distance_get, _Box2D.b2DistanceOutput_distance_set, doc=r"""distance : float32""") iterations = property(_Box2D.b2DistanceOutput_iterations_get, _Box2D.b2DistanceOutput_iterations_set, doc=r"""iterations : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DistanceOutput___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2DistanceOutput_swiginit(self,_Box2D.new_b2DistanceOutput()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2DistanceOutput # Register b2DistanceOutput in _Box2D: _Box2D.b2DistanceOutput_swigregister(b2DistanceOutput) class b2TOIInput(object): r"""Input parameters for b2TimeOfImpact.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr proxyA = property(_Box2D.b2TOIInput_proxyA_get, _Box2D.b2TOIInput_proxyA_set, doc=r"""proxyA : b2DistanceProxy""") proxyB = property(_Box2D.b2TOIInput_proxyB_get, _Box2D.b2TOIInput_proxyB_set, doc=r"""proxyB : b2DistanceProxy""") sweepA = property(_Box2D.b2TOIInput_sweepA_get, _Box2D.b2TOIInput_sweepA_set, doc=r"""sweepA : b2Sweep""") sweepB = property(_Box2D.b2TOIInput_sweepB_get, _Box2D.b2TOIInput_sweepB_set, doc=r"""sweepB : b2Sweep""") tMax = property(_Box2D.b2TOIInput_tMax_get, _Box2D.b2TOIInput_tMax_set, doc=r"""tMax : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2TOIInput___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2TOIInput_swiginit(self,_Box2D.new_b2TOIInput()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2TOIInput # Register b2TOIInput in _Box2D: _Box2D.b2TOIInput_swigregister(b2TOIInput) class b2TOIOutput(object): r"""Proxy of C++ b2TOIOutput class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr e_unknown = _Box2D.b2TOIOutput_e_unknown e_failed = _Box2D.b2TOIOutput_e_failed e_overlapped = _Box2D.b2TOIOutput_e_overlapped e_touching = _Box2D.b2TOIOutput_e_touching e_separated = _Box2D.b2TOIOutput_e_separated state = property(_Box2D.b2TOIOutput_state_get, _Box2D.b2TOIOutput_state_set, doc=r"""state : b2TOIOutput::State""") t = property(_Box2D.b2TOIOutput_t_get, _Box2D.b2TOIOutput_t_set, doc=r"""t : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2TOIOutput___hash__) def __repr__(self): return _format_repr(self) def __init__(self): r"""__init__(b2TOIOutput self) -> b2TOIOutput""" _Box2D.b2TOIOutput_swiginit(self, _Box2D.new_b2TOIOutput()) __swig_destroy__ = _Box2D.delete_b2TOIOutput # Register b2TOIOutput in _Box2D: _Box2D.b2TOIOutput_swigregister(b2TOIOutput) b2_staticBody = _Box2D.b2_staticBody b2_kinematicBody = _Box2D.b2_kinematicBody b2_dynamicBody = _Box2D.b2_dynamicBody class b2BodyDef(object): r"""A body definition holds all the data needed to construct a rigid body. You can safely re-use body definitions. Shapes are added to a body after construction.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2BodyDef_swiginit(self,_Box2D.new_b2BodyDef()) _init_kwargs(self, **kwargs) type = property(_Box2D.b2BodyDef_type_get, _Box2D.b2BodyDef_type_set, doc=r"""type : b2BodyType""") position = property(_Box2D.b2BodyDef_position_get, _Box2D.b2BodyDef_position_set, doc=r"""position : b2Vec2""") angle = property(_Box2D.b2BodyDef_angle_get, _Box2D.b2BodyDef_angle_set, doc=r"""angle : float32""") linearVelocity = property(_Box2D.b2BodyDef_linearVelocity_get, _Box2D.b2BodyDef_linearVelocity_set, doc=r"""linearVelocity : b2Vec2""") angularVelocity = property(_Box2D.b2BodyDef_angularVelocity_get, _Box2D.b2BodyDef_angularVelocity_set, doc=r"""angularVelocity : float32""") linearDamping = property(_Box2D.b2BodyDef_linearDamping_get, _Box2D.b2BodyDef_linearDamping_set, doc=r"""linearDamping : float32""") angularDamping = property(_Box2D.b2BodyDef_angularDamping_get, _Box2D.b2BodyDef_angularDamping_set, doc=r"""angularDamping : float32""") allowSleep = property(_Box2D.b2BodyDef_allowSleep_get, _Box2D.b2BodyDef_allowSleep_set, doc=r"""allowSleep : bool""") awake = property(_Box2D.b2BodyDef_awake_get, _Box2D.b2BodyDef_awake_set, doc=r"""awake : bool""") fixedRotation = property(_Box2D.b2BodyDef_fixedRotation_get, _Box2D.b2BodyDef_fixedRotation_set, doc=r"""fixedRotation : bool""") bullet = property(_Box2D.b2BodyDef_bullet_get, _Box2D.b2BodyDef_bullet_set, doc=r"""bullet : bool""") active = property(_Box2D.b2BodyDef_active_get, _Box2D.b2BodyDef_active_set, doc=r"""active : bool""") gravityScale = property(_Box2D.b2BodyDef_gravityScale_get, _Box2D.b2BodyDef_gravityScale_set, doc=r"""gravityScale : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2BodyDef___hash__) def __repr__(self): return _format_repr(self) __GetUserData = _swig_new_instance_method(_Box2D.b2BodyDef___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2BodyDef___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2BodyDef_ClearUserData) userData = property(__GetUserData, __SetUserData) def __del__(self): self.ClearUserData() _fixtures = None _shapes = None _shapeFixture = None @property def fixtures(self): return self._fixtures @fixtures.setter def fixtures(self, fixtures): if isinstance(fixtures, b2FixtureDef): self._fixtures = [fixtures] else: self._fixtures = list(fixtures) @property def shapes(self): return self._shapes @shapes.setter def shapes(self, shapes): if isinstance(shapes, b2Shape): self._shapes = [shapes] else: self._shapes = list(shapes) @property def shapeFixture(self): return self._shapeFixture @shapeFixture.setter def shapeFixture(self, fixture): self._shapeFixture = fixture __swig_destroy__ = _Box2D.delete_b2BodyDef # Register b2BodyDef in _Box2D: _Box2D.b2BodyDef_swigregister(b2BodyDef) class b2Body(object): r"""A rigid body. These are created via b2World::CreateBody.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __SetTransform = _swig_new_instance_method(_Box2D.b2Body___SetTransform) __GetTransform = _swig_new_instance_method(_Box2D.b2Body___GetTransform) __GetPosition = _swig_new_instance_method(_Box2D.b2Body___GetPosition) __GetAngle = _swig_new_instance_method(_Box2D.b2Body___GetAngle) __GetWorldCenter = _swig_new_instance_method(_Box2D.b2Body___GetWorldCenter) __GetLocalCenter = _swig_new_instance_method(_Box2D.b2Body___GetLocalCenter) __SetLinearVelocity = _swig_new_instance_method(_Box2D.b2Body___SetLinearVelocity) __GetLinearVelocity = _swig_new_instance_method(_Box2D.b2Body___GetLinearVelocity) __SetAngularVelocity = _swig_new_instance_method(_Box2D.b2Body___SetAngularVelocity) __GetAngularVelocity = _swig_new_instance_method(_Box2D.b2Body___GetAngularVelocity) ApplyForce = _swig_new_instance_method(_Box2D.b2Body_ApplyForce) ApplyForceToCenter = _swig_new_instance_method(_Box2D.b2Body_ApplyForceToCenter) ApplyTorque = _swig_new_instance_method(_Box2D.b2Body_ApplyTorque) ApplyLinearImpulse = _swig_new_instance_method(_Box2D.b2Body_ApplyLinearImpulse) ApplyAngularImpulse = _swig_new_instance_method(_Box2D.b2Body_ApplyAngularImpulse) __GetMass = _swig_new_instance_method(_Box2D.b2Body___GetMass) __GetInertia = _swig_new_instance_method(_Box2D.b2Body___GetInertia) GetMassData = _swig_new_instance_method(_Box2D.b2Body_GetMassData) __SetMassData = _swig_new_instance_method(_Box2D.b2Body___SetMassData) ResetMassData = _swig_new_instance_method(_Box2D.b2Body_ResetMassData) GetWorldPoint = _swig_new_instance_method(_Box2D.b2Body_GetWorldPoint) GetWorldVector = _swig_new_instance_method(_Box2D.b2Body_GetWorldVector) GetLocalPoint = _swig_new_instance_method(_Box2D.b2Body_GetLocalPoint) GetLocalVector = _swig_new_instance_method(_Box2D.b2Body_GetLocalVector) GetLinearVelocityFromWorldPoint = _swig_new_instance_method(_Box2D.b2Body_GetLinearVelocityFromWorldPoint) GetLinearVelocityFromLocalPoint = _swig_new_instance_method(_Box2D.b2Body_GetLinearVelocityFromLocalPoint) __GetLinearDamping = _swig_new_instance_method(_Box2D.b2Body___GetLinearDamping) __SetLinearDamping = _swig_new_instance_method(_Box2D.b2Body___SetLinearDamping) __GetAngularDamping = _swig_new_instance_method(_Box2D.b2Body___GetAngularDamping) __SetAngularDamping = _swig_new_instance_method(_Box2D.b2Body___SetAngularDamping) __GetGravityScale = _swig_new_instance_method(_Box2D.b2Body___GetGravityScale) __SetGravityScale = _swig_new_instance_method(_Box2D.b2Body___SetGravityScale) __SetType = _swig_new_instance_method(_Box2D.b2Body___SetType) __GetType = _swig_new_instance_method(_Box2D.b2Body___GetType) __SetBullet = _swig_new_instance_method(_Box2D.b2Body___SetBullet) __IsBullet = _swig_new_instance_method(_Box2D.b2Body___IsBullet) __SetSleepingAllowed = _swig_new_instance_method(_Box2D.b2Body___SetSleepingAllowed) __IsSleepingAllowed = _swig_new_instance_method(_Box2D.b2Body___IsSleepingAllowed) __SetAwake = _swig_new_instance_method(_Box2D.b2Body___SetAwake) __IsAwake = _swig_new_instance_method(_Box2D.b2Body___IsAwake) __SetActive = _swig_new_instance_method(_Box2D.b2Body___SetActive) __IsActive = _swig_new_instance_method(_Box2D.b2Body___IsActive) __SetFixedRotation = _swig_new_instance_method(_Box2D.b2Body___SetFixedRotation) __IsFixedRotation = _swig_new_instance_method(_Box2D.b2Body___IsFixedRotation) __GetFixtureList_internal = _swig_new_instance_method(_Box2D.b2Body___GetFixtureList_internal) __GetJointList_internal = _swig_new_instance_method(_Box2D.b2Body___GetJointList_internal) __GetContactList_internal = _swig_new_instance_method(_Box2D.b2Body___GetContactList_internal) __GetNext = _swig_new_instance_method(_Box2D.b2Body___GetNext) __GetWorld = _swig_new_instance_method(_Box2D.b2Body___GetWorld) Dump = _swig_new_instance_method(_Box2D.b2Body_Dump) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Body___hash__) def __repr__(self): return _format_repr(self) DestroyFixture = _swig_new_instance_method(_Box2D.b2Body_DestroyFixture) __CreateFixture = _swig_new_instance_method(_Box2D.b2Body___CreateFixture) __GetUserData = _swig_new_instance_method(_Box2D.b2Body___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2Body___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2Body_ClearUserData) userData = property(__GetUserData, __SetUserData) __eq__ = b2BodyCompare __ne__ = lambda self,other: not b2BodyCompare(self,other) def __GetMassData(self): """ Get a b2MassData object that represents this b2Body NOTE: To just get the mass, use body.mass """ ret = b2MassData() ret.center=self.localCenter ret.I = self.inertia ret.mass = self.mass return ret def __SetInertia(self, inertia): """ Set the body's inertia """ md = self.massData md.I = inertia self.massData=md def __SetMass(self, mass): """ Set the body's mass """ md = self.massData md.mass = mass self.massData=md def __SetLocalCenter(self, lcenter): """ Set the body's local center """ md = self.massData md.center = lcenter self.massData=md def __iter__(self): """ Iterates over the fixtures in the body """ for fixture in self.fixtures: yield fixture def __CreateShapeFixture(self, type_, **kwargs): """ Internal function to handle creating circles, polygons, etc. without first creating a fixture. type_ is b2Shape. """ shape=type_() fixture=b2FixtureDef(shape=shape) for key, value in kwargs.items(): # Note that these hasattrs use the types to get around # the fact that some properties are write-only (like 'box' in # polygon shapes), and as such do not show up with 'hasattr'. if hasattr(type_, key): to_set=shape elif hasattr(b2FixtureDef, key): to_set=fixture else: raise AttributeError('Property %s not found in either %s or b2FixtureDef' % (key, type_.__name__)) try: setattr(to_set, key, value) except Exception as ex: raise ex.__class__('Failed on kwargs, class="%s" key="%s": %s' \ % (to_set.__class__.__name__, key, ex)) return self.CreateFixture(fixture) def CreatePolygonFixture(self, **kwargs): """ Create a polygon shape without an explicit fixture definition. Takes kwargs; you can pass in properties for either the polygon or the fixture to this function. For example: CreatePolygonFixture(box=(1, 1), friction=0.2, density=1.0) where 'box' is a property from the polygon shape, and 'friction' and 'density' are from the fixture definition. """ return self.__CreateShapeFixture(b2PolygonShape, **kwargs) def CreateCircleFixture(self, **kwargs): """ Create a circle shape without an explicit fixture definition. Takes kwargs; you can pass in properties for either the circle or the fixture to this function. For example: CreateCircleFixture(radius=0.2, friction=0.2, density=1.0) where 'radius' is a property from the circle shape, and 'friction' and 'density' are from the fixture definition. """ return self.__CreateShapeFixture(b2CircleShape, **kwargs) def CreateEdgeFixture(self, **kwargs): """ Create a edge shape without an explicit fixture definition. Takes kwargs; you can pass in properties for either the edge or the fixture to this function. For example: CreateEdgeFixture(vertices=[(0,0),(1,0)], friction=0.2, density=1.0) where 'vertices' is a property from the edge shape, and 'friction' and 'density' are from the fixture definition. """ return self.__CreateShapeFixture(b2EdgeShape, **kwargs) def CreateLoopFixture(self, **kwargs): """ Create a loop shape without an explicit fixture definition. Takes kwargs; you can pass in properties for either the loop or the fixture to this function. For example: CreateLoopFixture(vertices=[...], friction=0.2, density=1.0) where 'vertices' is a property from the loop shape, and 'friction' and 'density' are from the fixture definition. """ return self.__CreateShapeFixture(b2ChainShape, **kwargs) CreateChainFixture = CreateLoopFixture def CreateFixturesFromShapes(self, shapes=None, shapeFixture=None): """ Create fixture(s) on the body from one or more shapes, and optionally a single fixture definition. Takes kwargs; examples of valid combinations are as follows: CreateFixturesFromShapes(shapes=b2CircleShape(radius=0.2)) CreateFixturesFromShapes(shapes=b2CircleShape(radius=0.2), shapeFixture=b2FixtureDef(friction=0.2)) CreateFixturesFromShapes(shapes=[b2CircleShape(radius=0.2), b2PolygonShape(box=[1,2])]) """ if shapes==None: raise TypeError('At least one shape required') if shapeFixture==None: shapeFixture=b2FixtureDef() oldShape=None else: oldShape = shapeFixture.shape ret=None try: if isinstance(shapes, (list, tuple)): ret = [] for shape in shapes: shapeFixture.shape = shape ret.append(self.__CreateFixture(shapeFixture)) else: shapeFixture.shape=shapes ret = self.__CreateFixture(shapeFixture) finally: shapeFixture.shape=oldShape return ret def CreateFixture(self, defn=None, **kwargs): """ Create a fixtures on the body. Takes kwargs; examples of valid combinations are as follows: CreateFixture(b2FixtureDef(shape=s, restitution=0.2, ...)) CreateFixture(shape=s, restitution=0.2, ...) """ if defn is not None and isinstance(defn, b2FixtureDef): return self.__CreateFixture(defn) else: if 'shape' not in kwargs: raise ValueError('Must specify the shape for the fixture') return self.__CreateFixture(b2FixtureDef(**kwargs)) def CreateEdgeChain(self, edge_list): """ Creates a body a set of connected edge chains. Expects edge_list to be a list of vertices, length >= 2. """ prev=None if len(edge_list) < 2: raise ValueError('Edge list length >= 2') shape=b2EdgeShape(vertices=[list(i) for i in edge_list[0:2]]) self.CreateFixturesFromShapes(shape) prev = edge_list[1] for edge in edge_list[1:]: if len(edge) != 2: raise ValueError('Vertex length != 2, "%s"' % list(edge)) shape.vertices = [list(prev), list(edge)] self.CreateFixturesFromShapes(shape) prev=edge # Read-write properties sleepingAllowed = property(__IsSleepingAllowed, __SetSleepingAllowed) angularVelocity = property(__GetAngularVelocity, __SetAngularVelocity) linearVelocity = property(__GetLinearVelocity, __SetLinearVelocity) awake = property(__IsAwake, __SetAwake) angularDamping = property(__GetAngularDamping, __SetAngularDamping) fixedRotation = property(__IsFixedRotation, __SetFixedRotation) linearDamping = property(__GetLinearDamping, __SetLinearDamping) bullet = property(__IsBullet, __SetBullet) type = property(__GetType, __SetType) active = property(__IsActive, __SetActive) angle = property(__GetAngle, lambda self, angle: self.__SetTransform(self.position, angle)) transform = property(__GetTransform, lambda self, value: self.__SetTransform(*value)) massData = property(__GetMassData, __SetMassData) mass = property(__GetMass, __SetMass) localCenter = property(__GetLocalCenter, __SetLocalCenter) inertia = property(__GetInertia, __SetInertia) position = property(__GetPosition, lambda self, pos: self.__SetTransform(pos, self.angle)) gravityScale = property(__GetGravityScale, __SetGravityScale) # Read-only joints = property(lambda self: _list_from_linked_list(self.__GetJointList_internal()), None, doc="""All joints connected to the body as a list. NOTE: This re-creates the list on every call. See also joints_gen.""") contacts = property(lambda self: _list_from_linked_list(self.__GetContactList_internal()), None, doc="""All contacts related to the body as a list. NOTE: This re-creates the list on every call. See also contacts_gen.""") fixtures = property(lambda self: _list_from_linked_list(self.__GetFixtureList_internal()), None, doc="""All fixtures contained in this body as a list. NOTE: This re-creates the list on every call. See also fixtures_gen.""") joints_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetJointList_internal())), None, doc="""Indexable generator of the connected joints to this body. NOTE: When not using the whole list, this may be preferable to using 'joints'.""") contacts_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetContactList_internal())), None, doc="""Indexable generator of the related contacts. NOTE: When not using the whole list, this may be preferable to using 'contacts'.""") fixtures_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetFixtureList_internal())), None, doc="""Indexable generator of the contained fixtures. NOTE: When not using the whole list, this may be preferable to using 'fixtures'.""") next = property(__GetNext, None) worldCenter = property(__GetWorldCenter, None) world = property(__GetWorld, None) # Register b2Body in _Box2D: _Box2D.b2Body_swigregister(b2Body) class b2Filter(object): r"""This holds contact filtering data.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2Filter_swiginit(self,_Box2D.new_b2Filter()) _init_kwargs(self, **kwargs) categoryBits = property(_Box2D.b2Filter_categoryBits_get, _Box2D.b2Filter_categoryBits_set, doc=r"""categoryBits : uint16""") maskBits = property(_Box2D.b2Filter_maskBits_get, _Box2D.b2Filter_maskBits_set, doc=r"""maskBits : uint16""") groupIndex = property(_Box2D.b2Filter_groupIndex_get, _Box2D.b2Filter_groupIndex_set, doc=r"""groupIndex : int16""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Filter___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2Filter # Register b2Filter in _Box2D: _Box2D.b2Filter_swigregister(b2Filter) class b2FixtureDef(object): r"""A fixture definition is used to create a fixture. This class defines an abstract fixture definition. You can reuse fixture definitions safely.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2FixtureDef_swiginit(self,_Box2D.new_b2FixtureDef()) _init_kwargs(self, **kwargs) shape = property(_Box2D.b2FixtureDef_shape_get, _Box2D.b2FixtureDef_shape_set, doc=r"""shape : p.q(const).b2Shape""") friction = property(_Box2D.b2FixtureDef_friction_get, _Box2D.b2FixtureDef_friction_set, doc=r"""friction : float32""") restitution = property(_Box2D.b2FixtureDef_restitution_get, _Box2D.b2FixtureDef_restitution_set, doc=r"""restitution : float32""") density = property(_Box2D.b2FixtureDef_density_get, _Box2D.b2FixtureDef_density_set, doc=r"""density : float32""") isSensor = property(_Box2D.b2FixtureDef_isSensor_get, _Box2D.b2FixtureDef_isSensor_set, doc=r"""isSensor : bool""") filter = property(_Box2D.b2FixtureDef_filter_get, _Box2D.b2FixtureDef_filter_set, doc=r"""filter : b2Filter""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2FixtureDef___hash__) def __repr__(self): return _format_repr(self) __GetUserData = _swig_new_instance_method(_Box2D.b2FixtureDef___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2FixtureDef___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2FixtureDef_ClearUserData) userData = property(__GetUserData, __SetUserData) def __del__(self): self.ClearUserData() def __SetCategoryBits(self, value): self.filter.categoryBits=value def __SetGroupIndex(self, value): self.filter.groupIndex=value def __SetMaskBits(self, value): self.filter.maskBits=value categoryBits=property(lambda self: self.filter.categoryBits, __SetCategoryBits) groupIndex=property(lambda self: self.filter.groupIndex, __SetGroupIndex) maskBits=property(lambda self: self.filter.maskBits, __SetMaskBits) __swig_destroy__ = _Box2D.delete_b2FixtureDef # Register b2FixtureDef in _Box2D: _Box2D.b2FixtureDef_swigregister(b2FixtureDef) class b2FixtureProxy(object): r"""This proxy is used internally to connect fixtures to the broad-phase.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr aabb = property(_Box2D.b2FixtureProxy_aabb_get, _Box2D.b2FixtureProxy_aabb_set, doc=r"""aabb : b2AABB""") fixture = property(_Box2D.b2FixtureProxy_fixture_get, _Box2D.b2FixtureProxy_fixture_set, doc=r"""fixture : p.b2Fixture""") childIndex = property(_Box2D.b2FixtureProxy_childIndex_get, _Box2D.b2FixtureProxy_childIndex_set, doc=r"""childIndex : int32""") proxyId = property(_Box2D.b2FixtureProxy_proxyId_get, _Box2D.b2FixtureProxy_proxyId_set, doc=r"""proxyId : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2FixtureProxy___hash__) def __repr__(self): return _format_repr(self) def __init__(self): r""" __init__(b2FixtureProxy self) -> b2FixtureProxy This proxy is used internally to connect fixtures to the broad-phase. """ _Box2D.b2FixtureProxy_swiginit(self, _Box2D.new_b2FixtureProxy()) __swig_destroy__ = _Box2D.delete_b2FixtureProxy # Register b2FixtureProxy in _Box2D: _Box2D.b2FixtureProxy_swigregister(b2FixtureProxy) class b2Fixture(object): r""" A fixture is used to attach a shape to a body for collision detection. A fixture inherits its transform from its parent. Fixtures hold additional non-geometric data such as friction, collision filters, etc. Fixtures are created via b2Body::CreateFixture. WARNING: you cannot reuse fixtures. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __GetType = _swig_new_instance_method(_Box2D.b2Fixture___GetType) __GetShape = _swig_new_instance_method(_Box2D.b2Fixture___GetShape) __SetSensor = _swig_new_instance_method(_Box2D.b2Fixture___SetSensor) __IsSensor = _swig_new_instance_method(_Box2D.b2Fixture___IsSensor) __SetFilterData = _swig_new_instance_method(_Box2D.b2Fixture___SetFilterData) __GetFilterData = _swig_new_instance_method(_Box2D.b2Fixture___GetFilterData) Refilter = _swig_new_instance_method(_Box2D.b2Fixture_Refilter) __GetBody = _swig_new_instance_method(_Box2D.b2Fixture___GetBody) __GetNext = _swig_new_instance_method(_Box2D.b2Fixture___GetNext) TestPoint = _swig_new_instance_method(_Box2D.b2Fixture_TestPoint) RayCast = _swig_new_instance_method(_Box2D.b2Fixture_RayCast) __GetMassData = _swig_new_instance_method(_Box2D.b2Fixture___GetMassData) __SetDensity = _swig_new_instance_method(_Box2D.b2Fixture___SetDensity) __GetDensity = _swig_new_instance_method(_Box2D.b2Fixture___GetDensity) __GetFriction = _swig_new_instance_method(_Box2D.b2Fixture___GetFriction) __SetFriction = _swig_new_instance_method(_Box2D.b2Fixture___SetFriction) __GetRestitution = _swig_new_instance_method(_Box2D.b2Fixture___GetRestitution) __SetRestitution = _swig_new_instance_method(_Box2D.b2Fixture___SetRestitution) GetAABB = _swig_new_instance_method(_Box2D.b2Fixture_GetAABB) Dump = _swig_new_instance_method(_Box2D.b2Fixture_Dump) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Fixture___hash__) def __repr__(self): return _format_repr(self) __GetUserData = _swig_new_instance_method(_Box2D.b2Fixture___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2Fixture___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2Fixture_ClearUserData) userData = property(__GetUserData, __SetUserData) __swig_destroy__ = _Box2D.delete_b2Fixture __eq__ = b2FixtureCompare __ne__ = lambda self,other: not b2FixtureCompare(self,other) # Read-write properties friction = property(__GetFriction, __SetFriction) restitution = property(__GetRestitution, __SetRestitution) filterData = property(__GetFilterData, __SetFilterData) sensor = property(__IsSensor, __SetSensor) density = property(__GetDensity, __SetDensity) # Read-only next = property(__GetNext, None) type = property(__GetType, None) shape = property(__GetShape, None) body = property(__GetBody, None) @property def massData(self): md=b2MassData() self.__GetMassData(md) return md # Register b2Fixture in _Box2D: _Box2D.b2Fixture_swigregister(b2Fixture) class b2DestructionListener(object): r"""Joints and fixtures are destroyed when their associated body is destroyed. Implement this listener so that you may nullify references to these joints and shapes.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _Box2D.delete_b2DestructionListener SayGoodbye = _swig_new_instance_method(_Box2D.b2DestructionListener_SayGoodbye) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DestructionListener___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): if self.__class__ == b2DestructionListener: _self = None else: _self = self _Box2D.b2DestructionListener_swiginit(self,_Box2D.new_b2DestructionListener(_self, )) _init_kwargs(self, **kwargs) def __disown__(self): self.this.disown() _Box2D.disown_b2DestructionListener(self) return weakref.proxy(self) # Register b2DestructionListener in _Box2D: _Box2D.b2DestructionListener_swigregister(b2DestructionListener) class b2ContactFilter(object): r"""Implement this class to provide collision filtering. In other words, you can implement this class if you want finer control over contact creation.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _Box2D.delete_b2ContactFilter ShouldCollide = _swig_new_instance_method(_Box2D.b2ContactFilter_ShouldCollide) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactFilter___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): if self.__class__ == b2ContactFilter: _self = None else: _self = self _Box2D.b2ContactFilter_swiginit(self,_Box2D.new_b2ContactFilter(_self, )) _init_kwargs(self, **kwargs) def __disown__(self): self.this.disown() _Box2D.disown_b2ContactFilter(self) return weakref.proxy(self) # Register b2ContactFilter in _Box2D: _Box2D.b2ContactFilter_swigregister(b2ContactFilter) class b2ContactImpulse(object): r"""Contact impulses for reporting. Impulses are used instead of forces because sub-step forces may approach infinity for rigid body collisions. These match up one-to-one with the contact points in b2Manifold.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr count = property(_Box2D.b2ContactImpulse_count_get, _Box2D.b2ContactImpulse_count_set, doc=r"""count : int32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactImpulse___hash__) def __repr__(self): return _format_repr(self) __get_normal_impulses = _swig_new_instance_method(_Box2D.b2ContactImpulse___get_normal_impulses) __get_tangent_impulses = _swig_new_instance_method(_Box2D.b2ContactImpulse___get_tangent_impulses) normalImpulses = property(__get_normal_impulses, None) tangentImpulses = property(__get_tangent_impulses, None) def __init__(self, **kwargs): _Box2D.b2ContactImpulse_swiginit(self,_Box2D.new_b2ContactImpulse()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ContactImpulse # Register b2ContactImpulse in _Box2D: _Box2D.b2ContactImpulse_swigregister(b2ContactImpulse) class b2ContactListener(object): r""" Implement this class to get contact information. You can use these results for things like sounds and game logic. You can also get contact results by traversing the contact lists after the time step. However, you might miss some contacts because continuous physics leads to sub-stepping. Additionally you may receive multiple callbacks for the same contact in a single time step. You should strive to make your callbacks efficient because there may be many callbacks per time step. WARNING: You cannot create/destroy Box2D entities inside these callbacks. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _Box2D.delete_b2ContactListener BeginContact = _swig_new_instance_method(_Box2D.b2ContactListener_BeginContact) EndContact = _swig_new_instance_method(_Box2D.b2ContactListener_EndContact) PreSolve = _swig_new_instance_method(_Box2D.b2ContactListener_PreSolve) PostSolve = _swig_new_instance_method(_Box2D.b2ContactListener_PostSolve) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactListener___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): if self.__class__ == b2ContactListener: _self = None else: _self = self _Box2D.b2ContactListener_swiginit(self,_Box2D.new_b2ContactListener(_self, )) _init_kwargs(self, **kwargs) def __disown__(self): self.this.disown() _Box2D.disown_b2ContactListener(self) return weakref.proxy(self) # Register b2ContactListener in _Box2D: _Box2D.b2ContactListener_swigregister(b2ContactListener) class b2QueryCallback(object): r"""Callback class for AABB queries. See b2World::Query""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _Box2D.delete_b2QueryCallback ReportFixture = _swig_new_instance_method(_Box2D.b2QueryCallback_ReportFixture) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2QueryCallback___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): if self.__class__ == b2QueryCallback: _self = None else: _self = self _Box2D.b2QueryCallback_swiginit(self,_Box2D.new_b2QueryCallback(_self, )) _init_kwargs(self, **kwargs) def __disown__(self): self.this.disown() _Box2D.disown_b2QueryCallback(self) return weakref.proxy(self) # Register b2QueryCallback in _Box2D: _Box2D.b2QueryCallback_swigregister(b2QueryCallback) class b2RayCastCallback(object): r"""Callback class for ray casts. See b2World::RayCast""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _Box2D.delete_b2RayCastCallback ReportFixture = _swig_new_instance_method(_Box2D.b2RayCastCallback_ReportFixture) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RayCastCallback___hash__) def __repr__(self): return _format_repr(self) def __init__(self): r""" __init__(b2RayCastCallback self) -> b2RayCastCallback Callback class for ray casts. See b2World::RayCast """ if self.__class__ == b2RayCastCallback: _self = None else: _self = self _Box2D.b2RayCastCallback_swiginit(self, _Box2D.new_b2RayCastCallback(_self, )) def __disown__(self): self.this.disown() _Box2D.disown_b2RayCastCallback(self) return weakref.proxy(self) # Register b2RayCastCallback in _Box2D: _Box2D.b2RayCastCallback_swigregister(b2RayCastCallback) class b2Profile(object): r"""Proxy of C++ b2Profile class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr step = property(_Box2D.b2Profile_step_get, _Box2D.b2Profile_step_set, doc=r"""step : float32""") collide = property(_Box2D.b2Profile_collide_get, _Box2D.b2Profile_collide_set, doc=r"""collide : float32""") solve = property(_Box2D.b2Profile_solve_get, _Box2D.b2Profile_solve_set, doc=r"""solve : float32""") solveInit = property(_Box2D.b2Profile_solveInit_get, _Box2D.b2Profile_solveInit_set, doc=r"""solveInit : float32""") solveVelocity = property(_Box2D.b2Profile_solveVelocity_get, _Box2D.b2Profile_solveVelocity_set, doc=r"""solveVelocity : float32""") solvePosition = property(_Box2D.b2Profile_solvePosition_get, _Box2D.b2Profile_solvePosition_set, doc=r"""solvePosition : float32""") broadphase = property(_Box2D.b2Profile_broadphase_get, _Box2D.b2Profile_broadphase_set, doc=r"""broadphase : float32""") solveTOI = property(_Box2D.b2Profile_solveTOI_get, _Box2D.b2Profile_solveTOI_set, doc=r"""solveTOI : float32""") def __init__(self): r"""__init__(b2Profile self) -> b2Profile""" _Box2D.b2Profile_swiginit(self, _Box2D.new_b2Profile()) __swig_destroy__ = _Box2D.delete_b2Profile # Register b2Profile in _Box2D: _Box2D.b2Profile_swigregister(b2Profile) class b2SolverData(object): r"""Proxy of C++ b2SolverData class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr step = property(_Box2D.b2SolverData_step_get, _Box2D.b2SolverData_step_set, doc=r"""step : b2TimeStep""") positions = property(_Box2D.b2SolverData_positions_get, _Box2D.b2SolverData_positions_set, doc=r"""positions : p.b2Position""") velocities = property(_Box2D.b2SolverData_velocities_get, _Box2D.b2SolverData_velocities_set, doc=r"""velocities : p.b2Velocity""") def __init__(self): r"""__init__(b2SolverData self) -> b2SolverData""" _Box2D.b2SolverData_swiginit(self, _Box2D.new_b2SolverData()) __swig_destroy__ = _Box2D.delete_b2SolverData # Register b2SolverData in _Box2D: _Box2D.b2SolverData_swigregister(b2SolverData) class b2ContactManager(object): r"""Proxy of C++ b2ContactManager class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): r"""__init__(b2ContactManager self) -> b2ContactManager""" _Box2D.b2ContactManager_swiginit(self, _Box2D.new_b2ContactManager()) AddPair = _swig_new_instance_method(_Box2D.b2ContactManager_AddPair) FindNewContacts = _swig_new_instance_method(_Box2D.b2ContactManager_FindNewContacts) Destroy = _swig_new_instance_method(_Box2D.b2ContactManager_Destroy) Collide = _swig_new_instance_method(_Box2D.b2ContactManager_Collide) broadPhase = property(_Box2D.b2ContactManager_broadPhase_get, _Box2D.b2ContactManager_broadPhase_set, doc=r"""broadPhase : b2BroadPhase""") contactList = property(_Box2D.b2ContactManager_contactList_get, _Box2D.b2ContactManager_contactList_set, doc=r"""contactList : p.b2Contact""") contactCount = property(_Box2D.b2ContactManager_contactCount_get, _Box2D.b2ContactManager_contactCount_set, doc=r"""contactCount : int32""") contactFilter = property(_Box2D.b2ContactManager_contactFilter_get, _Box2D.b2ContactManager_contactFilter_set, doc=r"""contactFilter : p.b2ContactFilter""") contactListener = property(_Box2D.b2ContactManager_contactListener_get, _Box2D.b2ContactManager_contactListener_set, doc=r"""contactListener : p.b2ContactListener""") allocator = property(_Box2D.b2ContactManager_allocator_get, _Box2D.b2ContactManager_allocator_set, doc=r"""allocator : p.b2BlockAllocator""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactManager___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2ContactManager # Register b2ContactManager in _Box2D: _Box2D.b2ContactManager_swigregister(b2ContactManager) b2_stackSize = b2Globals.b2_stackSize b2_maxStackEntries = b2Globals.b2_maxStackEntries class b2World(object): r"""The world class manages all physics entities, dynamic simulation, and asynchronous queries. The world also contains efficient memory management facilities.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, gravity=(0, -10), doSleep=True, **kwargs): """__init__(self, gravity=(0, -10), doSleep=True, **kwargs) -> b2World Additional kwargs like contactListener will be passed after the world is created. Examples: b2World(gravity=(0,-10), doSleep=True) b2World(contactListener=myListener) """ self.__data = {} _Box2D.b2World_swiginit(self,_Box2D.new_b2World(gravity)) self.allowSleeping = doSleep for key, value in kwargs.items(): try: setattr(self, key, value) except Exception as ex: raise ex.__class__('Failed on kwargs, class="%s" key="%s": %s' \ % (self.__class__.__name__, key, ex)) __swig_destroy__ = _Box2D.delete_b2World __SetDestructionListener_internal = _swig_new_instance_method(_Box2D.b2World___SetDestructionListener_internal) __SetContactFilter_internal = _swig_new_instance_method(_Box2D.b2World___SetContactFilter_internal) __SetContactListener_internal = _swig_new_instance_method(_Box2D.b2World___SetContactListener_internal) __SetDebugDraw_internal = _swig_new_instance_method(_Box2D.b2World___SetDebugDraw_internal) Step = _swig_new_instance_method(_Box2D.b2World_Step) ClearForces = _swig_new_instance_method(_Box2D.b2World_ClearForces) DrawDebugData = _swig_new_instance_method(_Box2D.b2World_DrawDebugData) QueryAABB = _swig_new_instance_method(_Box2D.b2World_QueryAABB) RayCast = _swig_new_instance_method(_Box2D.b2World_RayCast) __GetBodyList_internal = _swig_new_instance_method(_Box2D.b2World___GetBodyList_internal) __GetJointList_internal = _swig_new_instance_method(_Box2D.b2World___GetJointList_internal) __GetContactList_internal = _swig_new_instance_method(_Box2D.b2World___GetContactList_internal) SetAllowSleeping = _swig_new_instance_method(_Box2D.b2World_SetAllowSleeping) GetAllowSleeping = _swig_new_instance_method(_Box2D.b2World_GetAllowSleeping) __SetWarmStarting = _swig_new_instance_method(_Box2D.b2World___SetWarmStarting) __GetWarmStarting = _swig_new_instance_method(_Box2D.b2World___GetWarmStarting) __SetContinuousPhysics = _swig_new_instance_method(_Box2D.b2World___SetContinuousPhysics) __GetContinuousPhysics = _swig_new_instance_method(_Box2D.b2World___GetContinuousPhysics) __SetSubStepping = _swig_new_instance_method(_Box2D.b2World___SetSubStepping) __GetSubStepping = _swig_new_instance_method(_Box2D.b2World___GetSubStepping) __GetProxyCount = _swig_new_instance_method(_Box2D.b2World___GetProxyCount) __GetBodyCount = _swig_new_instance_method(_Box2D.b2World___GetBodyCount) __GetJointCount = _swig_new_instance_method(_Box2D.b2World___GetJointCount) __GetContactCount = _swig_new_instance_method(_Box2D.b2World___GetContactCount) GetTreeHeight = _swig_new_instance_method(_Box2D.b2World_GetTreeHeight) GetTreeBalance = _swig_new_instance_method(_Box2D.b2World_GetTreeBalance) GetTreeQuality = _swig_new_instance_method(_Box2D.b2World_GetTreeQuality) __SetGravity = _swig_new_instance_method(_Box2D.b2World___SetGravity) __GetGravity = _swig_new_instance_method(_Box2D.b2World___GetGravity) __IsLocked = _swig_new_instance_method(_Box2D.b2World___IsLocked) __SetAutoClearForces = _swig_new_instance_method(_Box2D.b2World___SetAutoClearForces) __GetAutoClearForces = _swig_new_instance_method(_Box2D.b2World___GetAutoClearForces) ShiftOrigin = _swig_new_instance_method(_Box2D.b2World_ShiftOrigin) __GetContactManager = _swig_new_instance_method(_Box2D.b2World___GetContactManager) GetProfile = _swig_new_instance_method(_Box2D.b2World_GetProfile) Dump = _swig_new_instance_method(_Box2D.b2World_Dump) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2World___hash__) def __repr__(self): return _format_repr(self) __CreateBody = _swig_new_instance_method(_Box2D.b2World___CreateBody) __CreateJoint = _swig_new_instance_method(_Box2D.b2World___CreateJoint) DestroyBody = _swig_new_instance_method(_Box2D.b2World_DestroyBody) DestroyJoint = _swig_new_instance_method(_Box2D.b2World_DestroyJoint) def __iter__(self): """ Iterates over the bodies in the world """ for body in self.bodies: yield body def CreateDynamicBody(self, **kwargs): """ Create a single dynamic body in the world. Accepts only kwargs to a b2BodyDef. For more information, see CreateBody and b2BodyDef. """ kwargs['type'] = b2_dynamicBody return self.CreateBody(**kwargs) def CreateKinematicBody(self, **kwargs): """ Create a single kinematic body in the world. Accepts only kwargs to a b2BodyDef. For more information, see CreateBody and b2BodyDef. """ kwargs['type'] = b2_kinematicBody return self.CreateBody(**kwargs) def CreateStaticBody(self, **kwargs): """ Create a single static body in the world. Accepts only kwargs to a b2BodyDef. For more information, see CreateBody and b2BodyDef. """ kwargs['type'] = b2_staticBody return self.CreateBody(**kwargs) def CreateBody(self, defn=None, **kwargs): """ Create a body in the world. Takes a single b2BodyDef argument, or kwargs to pass to a temporary b2BodyDef. world.CreateBody(position=(1,2), angle=1) is short for: world.CreateBody(b2BodyDef(position=(1,2), angle=1)) If the definition (or kwargs) sets 'fixtures', they will be created on the newly created body. A single fixture is also accepted. CreateBody(..., fixtures=[]) This is short for: body = CreateBody(...) for fixture in []: body.CreateFixture(fixture) 'shapes' and 'shapeFixture' are also accepted: CreateBody(..., shapes=[], shapeFixture=b2FixtureDef()) This is short for: body = CreateBody(...) body.CreateFixturesFromShapes(shapes=[], shapeFixture=b2FixtureDef()) """ if defn is not None: if not isinstance(defn, b2BodyDef): raise TypeError('Expected b2BodyDef') else: defn = b2BodyDef(**kwargs) body=self.__CreateBody(defn) if defn.fixtures: if isinstance(defn.fixtures, (list, tuple)): for fixture in defn.fixtures: body.CreateFixture(fixture) else: body.CreateFixture(defn.fixtures) if defn.shapes: body.CreateFixturesFromShapes(shapes=defn.shapes, shapeFixture=defn.shapeFixture) if 'massData' in kwargs: body.massData=kwargs['massData'] if 'localCenter' in kwargs: body.localCenter=kwargs['localCenter'] if 'inertia' in kwargs: body.inertia=kwargs['inertia'] if 'mass' in kwargs: body.mass=kwargs['mass'] return body def CreateDistanceJoint(self, **kwargs): """ Create a single b2DistanceJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2DistanceJointDef(**kwargs)) def CreateRopeJoint(self, **kwargs): """ Create a single b2RopeJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2RopeJointDef(**kwargs)) def CreateFrictionJoint(self, **kwargs): """ Create a single b2FrictionJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2FrictionJointDef(**kwargs)) def CreateGearJoint(self, **kwargs): """ Create a single b2GearJoint. Only accepts kwargs to the joint definition. Raises ValueError if either joint1 or joint2 is left unset. """ if 'joint1' not in kwargs or 'joint2' not in kwargs: raise ValueError('Gear joint requires that both joint1 and joint2 be set') return self.__CreateJoint(b2GearJointDef(**kwargs)) def CreateWheelJoint(self, **kwargs): """ Create a single b2WheelJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2WheelJointDef(**kwargs)) def CreateMouseJoint(self, **kwargs): """ Create a single b2MouseJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2MouseJointDef(**kwargs)) def CreatePrismaticJoint(self, **kwargs): """ Create a single b2PrismaticJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2PrismaticJointDef(**kwargs)) def CreatePulleyJoint(self, **kwargs): """ Create a single b2PulleyJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2PulleyJointDef(**kwargs)) def CreateRevoluteJoint(self, **kwargs): """ Create a single b2RevoluteJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2RevoluteJointDef(**kwargs)) def CreateWeldJoint(self, **kwargs): """ Create a single b2WeldJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2WeldJointDef(**kwargs)) def CreateMotorJoint(self, **kwargs): """ Create a single b2MotorJoint. Only accepts kwargs to the joint definition. Raises ValueError if either bodyA or bodyB is left unset. """ if 'bodyA' not in kwargs or 'bodyB' not in kwargs: raise ValueError('Requires at least bodyA and bodyB be set') return self.__CreateJoint(b2MotorJointDef(**kwargs)) def CreateJoint(self, defn=None, type=None, **kwargs): """ Create a joint in the world. Takes a single b2JointDef argument, or kwargs to pass to a temporary b2JointDef. All of these are exactly equivalent: world.CreateJoint(type=b2RevoluteJoint, bodyA=body, bodyB=body2) world.CreateJoint(type=b2RevoluteJointDef, bodyA=body, bodyB=body2) world.CreateJoint(b2RevoluteJointDef(bodyA=body, bodyB=body2)) """ if defn is not None: if not isinstance(defn, b2JointDef): raise TypeError('Expected b2JointDef') if defn.bodyA is None or defn.bodyB is None: raise ValueError('bodyA and bodyB must be set') else: if type is not None: if issubclass(type, b2JointDef): class_type = type elif issubclass(type, b2Joint): # a b2Joint passed in, so get the b2JointDef class_type = globals()[type.__name__ + 'Def'] else: raise TypeError('Expected "type" to be a b2Joint or b2JointDef') else: raise TypeError('Expected "type" to be a b2Joint or b2JointDef') defn = class_type(**kwargs) if isinstance(defn, b2GearJointDef): if not defn.joint1 or not defn.joint2: raise ValueError('Gear joint requires that both joint1 and joint2 be set') else: if not defn.bodyA or not defn.bodyB: raise ValueError('Body or bodies not set (bodyA, bodyB)') return self.__CreateJoint(defn) # The logic behind these functions is that they increase the refcount # of the listeners as you set them, so it is no longer necessary to keep # a copy on your own. Upon destruction of the object, it should be cleared # also clearing the refcount of the function. # Now using it also to buffer previously write-only values in the shadowed # class to make them read-write. def __GetData(self, name): return self.__data.get(name) def __SetData(self, name, value, fcn): self.__data[name] = value fcn(value) # Read-write properties gravity = property(__GetGravity, __SetGravity) autoClearForces = property(__GetAutoClearForces, __SetAutoClearForces) destructionListener = property(lambda self: self.__GetData('destruction'), lambda self, fcn: self.__SetData('destruction', fcn, self.__SetDestructionListener_internal)) contactListener= property(lambda self: self.__GetData('contact'), lambda self, fcn: self.__SetData('contact', fcn, self.__SetContactListener_internal)) contactFilter= property(lambda self: self.__GetData('contactfilter'), lambda self, fcn: self.__SetData('contactfilter', fcn, self.__SetContactFilter_internal)) renderer= property(lambda self: self.__GetData('renderer'), lambda self, fcn: self.__SetData('renderer', fcn, self.__SetDebugDraw_internal)) continuousPhysics = property(__GetContinuousPhysics, __SetContinuousPhysics) warmStarting = property(__GetWarmStarting, __SetWarmStarting) subStepping = property(__GetSubStepping, __SetSubStepping) # Read-only contactManager= property(__GetContactManager, None) contactCount = property(__GetContactCount, None) bodyCount = property(__GetBodyCount, None) jointCount = property(__GetJointCount, None) proxyCount = property(__GetProxyCount, None) joints = property(lambda self: _list_from_linked_list(self.__GetJointList_internal()), None, doc="""All joints in the world. NOTE: This re-creates the list on every call. See also joints_gen.""") bodies = property(lambda self: _list_from_linked_list(self.__GetBodyList_internal()), None, doc="""All bodies in the world. NOTE: This re-creates the list on every call. See also bodies_gen.""") contacts= property(lambda self: _list_from_linked_list(self.__GetContactList_internal()), None, doc="""All contacts in the world. NOTE: This re-creates the list on every call. See also contacts_gen.""") joints_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetJointList_internal())), None, doc="""Indexable generator of the connected joints to this body. NOTE: When not using the whole list, this may be preferable to using 'joints'.""") bodies_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetBodyList_internal())), None, doc="""Indexable generator of all bodies. NOTE: When not using the whole list, this may be preferable to using 'bodies'.""") contacts_gen = property(lambda self: _indexable_generator(_generator_from_linked_list(self.__GetContactList_internal())), None, doc="""Indexable generator of all contacts. NOTE: When not using the whole list, this may be preferable to using 'contacts'.""") locked = property(__IsLocked, None) # Register b2World in _Box2D: _Box2D.b2World_swigregister(b2World) b2MixFriction = _Box2D.b2MixFriction b2MixRestitution = _Box2D.b2MixRestitution class b2ContactEdge(object): r"""A contact edge is used to connect bodies and contacts together in a contact graph where each body is a node and each contact is an edge. A contact edge belongs to a doubly linked list maintained in each attached body. Each contact has two contact nodes, one for each attached body.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr other = property(_Box2D.b2ContactEdge_other_get, _Box2D.b2ContactEdge_other_set, doc=r"""other : p.b2Body""") contact = property(_Box2D.b2ContactEdge_contact_get, _Box2D.b2ContactEdge_contact_set, doc=r"""contact : p.b2Contact""") prev = property(_Box2D.b2ContactEdge_prev_get, _Box2D.b2ContactEdge_prev_set, doc=r"""prev : p.b2ContactEdge""") next = property(_Box2D.b2ContactEdge_next_get, _Box2D.b2ContactEdge_next_set, doc=r"""next : p.b2ContactEdge""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2ContactEdge___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2ContactEdge_swiginit(self,_Box2D.new_b2ContactEdge()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2ContactEdge # Register b2ContactEdge in _Box2D: _Box2D.b2ContactEdge_swigregister(b2ContactEdge) class b2Contact(object): r"""The class manages contact between two shapes. A contact exists for each overlapping AABB in the broad-phase (except if filtered). Therefore a contact object may exist that has no contact points.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __GetManifold = _swig_new_instance_method(_Box2D.b2Contact___GetManifold) __GetWorldManifold_internal = _swig_new_instance_method(_Box2D.b2Contact___GetWorldManifold_internal) __IsTouching = _swig_new_instance_method(_Box2D.b2Contact___IsTouching) __SetEnabled = _swig_new_instance_method(_Box2D.b2Contact___SetEnabled) __IsEnabled = _swig_new_instance_method(_Box2D.b2Contact___IsEnabled) __GetNext = _swig_new_instance_method(_Box2D.b2Contact___GetNext) __GetFixtureA = _swig_new_instance_method(_Box2D.b2Contact___GetFixtureA) __GetChildIndexA = _swig_new_instance_method(_Box2D.b2Contact___GetChildIndexA) __GetFixtureB = _swig_new_instance_method(_Box2D.b2Contact___GetFixtureB) __GetChildIndexB = _swig_new_instance_method(_Box2D.b2Contact___GetChildIndexB) __SetFriction = _swig_new_instance_method(_Box2D.b2Contact___SetFriction) __GetFriction = _swig_new_instance_method(_Box2D.b2Contact___GetFriction) ResetFriction = _swig_new_instance_method(_Box2D.b2Contact_ResetFriction) __SetRestitution = _swig_new_instance_method(_Box2D.b2Contact___SetRestitution) __GetRestitution = _swig_new_instance_method(_Box2D.b2Contact___GetRestitution) ResetRestitution = _swig_new_instance_method(_Box2D.b2Contact_ResetRestitution) __SetTangentSpeed = _swig_new_instance_method(_Box2D.b2Contact___SetTangentSpeed) __GetTangentSpeed = _swig_new_instance_method(_Box2D.b2Contact___GetTangentSpeed) Evaluate = _swig_new_instance_method(_Box2D.b2Contact_Evaluate) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Contact___hash__) def __repr__(self): return _format_repr(self) def __GetWorldManifold(self): ret=b2WorldManifold() self.__GetWorldManifold_internal(ret) return ret # Read-write properties enabled = property(__IsEnabled, __SetEnabled) # Read-only next = property(__GetNext, None) fixtureB = property(__GetFixtureB, None) fixtureA = property(__GetFixtureA, None) manifold = property(__GetManifold, None) childIndexA = property(__GetChildIndexA, None) childIndexB = property(__GetChildIndexB, None) worldManifold = property(__GetWorldManifold, None) touching = property(__IsTouching, None) friction = property(__GetFriction, __SetFriction) restitution = property(__GetRestitution, __SetRestitution) tangentSpeed = property(__GetTangentSpeed, __SetTangentSpeed) # Register b2Contact in _Box2D: _Box2D.b2Contact_swigregister(b2Contact) e_wheelJoint = _Box2D.e_wheelJoint e_ropeJoint = _Box2D.e_ropeJoint class b2Jacobian(object): r"""Proxy of C++ b2Jacobian class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr linear = property(_Box2D.b2Jacobian_linear_get, _Box2D.b2Jacobian_linear_set, doc=r"""linear : b2Vec2""") angularA = property(_Box2D.b2Jacobian_angularA_get, _Box2D.b2Jacobian_angularA_set, doc=r"""angularA : float32""") angularB = property(_Box2D.b2Jacobian_angularB_get, _Box2D.b2Jacobian_angularB_set, doc=r"""angularB : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Jacobian___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2Jacobian_swiginit(self,_Box2D.new_b2Jacobian()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2Jacobian # Register b2Jacobian in _Box2D: _Box2D.b2Jacobian_swigregister(b2Jacobian) class b2JointEdge(object): r"""A joint edge is used to connect bodies and joints together in a joint graph where each body is a node and each joint is an edge. A joint edge belongs to a doubly linked list maintained in each attached body. Each joint has two joint nodes, one for each attached body.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr other = property(_Box2D.b2JointEdge_other_get, _Box2D.b2JointEdge_other_set, doc=r"""other : p.b2Body""") joint = property(_Box2D.b2JointEdge_joint_get, _Box2D.b2JointEdge_joint_set, doc=r"""joint : p.b2Joint""") prev = property(_Box2D.b2JointEdge_prev_get, _Box2D.b2JointEdge_prev_set, doc=r"""prev : p.b2JointEdge""") next = property(_Box2D.b2JointEdge_next_get, _Box2D.b2JointEdge_next_set, doc=r"""next : p.b2JointEdge""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2JointEdge___hash__) def __repr__(self): return _format_repr(self) def __init__(self, **kwargs): _Box2D.b2JointEdge_swiginit(self,_Box2D.new_b2JointEdge()) _init_kwargs(self, **kwargs) __swig_destroy__ = _Box2D.delete_b2JointEdge # Register b2JointEdge in _Box2D: _Box2D.b2JointEdge_swigregister(b2JointEdge) class b2JointDef(object): r"""Joint definitions are used to construct joints.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2JointDef_swiginit(self,_Box2D.new_b2JointDef()) _init_kwargs(self, **kwargs) type = property(_Box2D.b2JointDef_type_get, _Box2D.b2JointDef_type_set, doc=r"""type : b2JointType""") bodyA = property(_Box2D.b2JointDef_bodyA_get, _Box2D.b2JointDef_bodyA_set, doc=r"""bodyA : p.b2Body""") bodyB = property(_Box2D.b2JointDef_bodyB_get, _Box2D.b2JointDef_bodyB_set, doc=r"""bodyB : p.b2Body""") collideConnected = property(_Box2D.b2JointDef_collideConnected_get, _Box2D.b2JointDef_collideConnected_set, doc=r"""collideConnected : bool""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2JointDef___hash__) def __repr__(self): return _format_repr(self) __GetUserData = _swig_new_instance_method(_Box2D.b2JointDef___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2JointDef___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2JointDef_ClearUserData) userData = property(__GetUserData, __SetUserData) def __del__(self): self.ClearUserData() def to_kwargs(self): """ Returns a dictionary representing this joint definition """ def is_prop(attr): try: is_property = isinstance(getattr(cls, attr), property) except AttributeError: return False return is_property and attr not in skip_props skip_props = ['anchor', 'anchorA', 'anchorB', 'axis'] cls = type(self) return {attr: getattr(self, attr) for attr in dir(self) if is_prop(attr) } __swig_destroy__ = _Box2D.delete_b2JointDef # Register b2JointDef in _Box2D: _Box2D.b2JointDef_swigregister(b2JointDef) class b2Joint(object): r"""The base joint class. Joints are used to constraint two bodies together in various fashions. Some joints also feature limits and motors.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __GetType = _swig_new_instance_method(_Box2D.b2Joint___GetType) __GetBodyA = _swig_new_instance_method(_Box2D.b2Joint___GetBodyA) __GetBodyB = _swig_new_instance_method(_Box2D.b2Joint___GetBodyB) __GetAnchorA = _swig_new_instance_method(_Box2D.b2Joint___GetAnchorA) __GetAnchorB = _swig_new_instance_method(_Box2D.b2Joint___GetAnchorB) GetReactionForce = _swig_new_instance_method(_Box2D.b2Joint_GetReactionForce) GetReactionTorque = _swig_new_instance_method(_Box2D.b2Joint_GetReactionTorque) __GetNext = _swig_new_instance_method(_Box2D.b2Joint___GetNext) __IsActive = _swig_new_instance_method(_Box2D.b2Joint___IsActive) __GetCollideConnected = _swig_new_instance_method(_Box2D.b2Joint___GetCollideConnected) Dump = _swig_new_instance_method(_Box2D.b2Joint_Dump) ShiftOrigin = _swig_new_instance_method(_Box2D.b2Joint_ShiftOrigin) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2Joint___hash__) def __repr__(self): return _format_repr(self) __GetUserData = _swig_new_instance_method(_Box2D.b2Joint___GetUserData) __SetUserData = _swig_new_instance_method(_Box2D.b2Joint___SetUserData) ClearUserData = _swig_new_instance_method(_Box2D.b2Joint_ClearUserData) userData = property(__GetUserData, __SetUserData) __eq__ = b2JointCompare __ne__ = lambda self,other: not b2JointCompare(self,other) # Read-only next = property(__GetNext, None) bodyA = property(__GetBodyA, None) bodyB = property(__GetBodyB, None) type = property(__GetType, None) active = property(__IsActive, None) anchorB = property(__GetAnchorB, None) anchorA = property(__GetAnchorA, None) collideConnected = property(__GetCollideConnected, None) def getAsType(self): """ Backward compatibility """ return self # Register b2Joint in _Box2D: _Box2D.b2Joint_swigregister(b2Joint) class b2DistanceJointDef(b2JointDef): r""" Distance joint definition. This requires defining an anchor point on both bodies and the non-zero length of the distance joint. The definition uses local anchor points so that the initial configuration can violate the constraint slightly. This helps when saving and loading a game. WARNING: Do not use a zero or short length. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2DistanceJointDef_swiginit(self,_Box2D.new_b2DistanceJointDef()) _init_jointdef_kwargs(self, **kwargs) if 'localAnchorA' in kwargs and 'localAnchorB' in kwargs and 'length' not in kwargs: self.__update_length() Initialize = _swig_new_instance_method(_Box2D.b2DistanceJointDef_Initialize) localAnchorA = property(_Box2D.b2DistanceJointDef_localAnchorA_get, _Box2D.b2DistanceJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2DistanceJointDef_localAnchorB_get, _Box2D.b2DistanceJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") length = property(_Box2D.b2DistanceJointDef_length_get, _Box2D.b2DistanceJointDef_length_set, doc=r"""length : float32""") frequencyHz = property(_Box2D.b2DistanceJointDef_frequencyHz_get, _Box2D.b2DistanceJointDef_frequencyHz_set, doc=r"""frequencyHz : float32""") dampingRatio = property(_Box2D.b2DistanceJointDef_dampingRatio_get, _Box2D.b2DistanceJointDef_dampingRatio_set, doc=r"""dampingRatio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DistanceJointDef___hash__) def __repr__(self): return _format_repr(self) def __update_length(self): if self.bodyA and self.bodyB: d = self.anchorB - self.anchorA self.length = d.length def __set_anchorA(self, value): if not self.bodyA: raise ValueError('bodyA not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.__update_length() def __set_anchorB(self, value): if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorB=self.bodyB.GetLocalPoint(value) self.__update_length() def __get_anchorA(self): if not self.bodyA: raise ValueError('bodyA not set.') return self.bodyA.GetWorldPoint(self.localAnchorA) def __get_anchorB(self): if not self.bodyB: raise ValueError('bodyB not set.') return self.bodyB.GetWorldPoint(self.localAnchorB) anchorA = property(__get_anchorA, __set_anchorA, doc="""Body A's anchor in world coordinates. Getting the property depends on both bodyA and localAnchorA. Setting the property requires that bodyA be set.""") anchorB = property(__get_anchorB, __set_anchorB, doc="""Body B's anchor in world coordinates. Getting the property depends on both bodyB and localAnchorB. Setting the property requires that bodyB be set.""") __swig_destroy__ = _Box2D.delete_b2DistanceJointDef # Register b2DistanceJointDef in _Box2D: _Box2D.b2DistanceJointDef_swigregister(b2DistanceJointDef) class b2DistanceJoint(b2Joint): r"""A distance joint constrains two points on two bodies to remain at a fixed distance from each other. You can view this as a massless, rigid rod.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2DistanceJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2DistanceJoint_GetLocalAnchorB) __SetLength = _swig_new_instance_method(_Box2D.b2DistanceJoint___SetLength) __GetLength = _swig_new_instance_method(_Box2D.b2DistanceJoint___GetLength) __SetFrequency = _swig_new_instance_method(_Box2D.b2DistanceJoint___SetFrequency) __GetFrequency = _swig_new_instance_method(_Box2D.b2DistanceJoint___GetFrequency) __SetDampingRatio = _swig_new_instance_method(_Box2D.b2DistanceJoint___SetDampingRatio) __GetDampingRatio = _swig_new_instance_method(_Box2D.b2DistanceJoint___GetDampingRatio) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2DistanceJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties length = property(__GetLength, __SetLength) frequency = property(__GetFrequency, __SetFrequency) dampingRatio = property(__GetDampingRatio, __SetDampingRatio) __swig_destroy__ = _Box2D.delete_b2DistanceJoint # Register b2DistanceJoint in _Box2D: _Box2D.b2DistanceJoint_swigregister(b2DistanceJoint) class b2FrictionJointDef(b2JointDef): r"""Friction joint definition.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2FrictionJointDef_swiginit(self,_Box2D.new_b2FrictionJointDef()) _init_jointdef_kwargs(self, **kwargs) Initialize = _swig_new_instance_method(_Box2D.b2FrictionJointDef_Initialize) localAnchorA = property(_Box2D.b2FrictionJointDef_localAnchorA_get, _Box2D.b2FrictionJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2FrictionJointDef_localAnchorB_get, _Box2D.b2FrictionJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") maxForce = property(_Box2D.b2FrictionJointDef_maxForce_get, _Box2D.b2FrictionJointDef_maxForce_set, doc=r"""maxForce : float32""") maxTorque = property(_Box2D.b2FrictionJointDef_maxTorque_get, _Box2D.b2FrictionJointDef_maxTorque_set, doc=r"""maxTorque : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2FrictionJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchor(self, value): if not self.bodyA: raise ValueError('bodyA not set.') if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchor(self): if self.bodyA: return self.bodyA.GetWorldPoint(self.localAnchorA) if self.bodyB: return self.bodyB.GetWorldPoint(self.localAnchorB) raise ValueError('Neither body was set; unable to get world point.') anchor = property(__get_anchor, __set_anchor, doc="""The anchor in world coordinates. Getting the property depends on either bodyA and localAnchorA or bodyB and localAnchorB. Setting the property requires that both bodies be set.""") __swig_destroy__ = _Box2D.delete_b2FrictionJointDef # Register b2FrictionJointDef in _Box2D: _Box2D.b2FrictionJointDef_swigregister(b2FrictionJointDef) class b2FrictionJoint(b2Joint): r"""Friction joint. This is used for top-down friction. It provides 2D translational friction and angular friction.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2FrictionJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2FrictionJoint_GetLocalAnchorB) __SetMaxForce = _swig_new_instance_method(_Box2D.b2FrictionJoint___SetMaxForce) __GetMaxForce = _swig_new_instance_method(_Box2D.b2FrictionJoint___GetMaxForce) __SetMaxTorque = _swig_new_instance_method(_Box2D.b2FrictionJoint___SetMaxTorque) __GetMaxTorque = _swig_new_instance_method(_Box2D.b2FrictionJoint___GetMaxTorque) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2FrictionJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties maxForce = property(__GetMaxForce, __SetMaxForce) maxTorque = property(__GetMaxTorque, __SetMaxTorque) __swig_destroy__ = _Box2D.delete_b2FrictionJoint # Register b2FrictionJoint in _Box2D: _Box2D.b2FrictionJoint_swigregister(b2FrictionJoint) class b2GearJointDef(b2JointDef): r"""Gear joint definition. This definition requires two existing revolute or prismatic joints (any combination will work). The provided joints must attach a dynamic body to a static body.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2GearJointDef_swiginit(self,_Box2D.new_b2GearJointDef()) _init_kwargs(self, **kwargs) joint1 = property(_Box2D.b2GearJointDef_joint1_get, _Box2D.b2GearJointDef_joint1_set, doc=r"""joint1 : p.b2Joint""") joint2 = property(_Box2D.b2GearJointDef_joint2_get, _Box2D.b2GearJointDef_joint2_set, doc=r"""joint2 : p.b2Joint""") ratio = property(_Box2D.b2GearJointDef_ratio_get, _Box2D.b2GearJointDef_ratio_set, doc=r"""ratio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2GearJointDef___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2GearJointDef # Register b2GearJointDef in _Box2D: _Box2D.b2GearJointDef_swigregister(b2GearJointDef) class b2GearJoint(b2Joint): r""" A gear joint is used to connect two joints together. Either joint can be a revolute or prismatic joint. You specify a gear ratio to bind the motions together: coordinate1 + ratio * coordinate2 = constant The ratio can be negative or positive. If one joint is a revolute joint and the other joint is a prismatic joint, then the ratio will have units of length or units of 1/length. WARNING: The revolute and prismatic joints must be attached to fixed bodies (which must be body1 on those joints). """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetJoint1 = _swig_new_instance_method(_Box2D.b2GearJoint_GetJoint1) GetJoint2 = _swig_new_instance_method(_Box2D.b2GearJoint_GetJoint2) __SetRatio = _swig_new_instance_method(_Box2D.b2GearJoint___SetRatio) __GetRatio = _swig_new_instance_method(_Box2D.b2GearJoint___GetRatio) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2GearJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties ratio = property(__GetRatio, __SetRatio) __swig_destroy__ = _Box2D.delete_b2GearJoint # Register b2GearJoint in _Box2D: _Box2D.b2GearJoint_swigregister(b2GearJoint) class b2MotorJointDef(b2JointDef): r"""Proxy of C++ b2MotorJointDef class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, bodyA=None, bodyB=None, **kwargs): _Box2D.b2MotorJointDef_swiginit(self,_Box2D.new_b2MotorJointDef()) _init_jointdef_kwargs(self, bodyA=bodyA, bodyB=bodyB, **kwargs) if bodyA is not None and bodyB is not None: if not kwargs: self.Initialize(bodyA, bodyB) Initialize = _swig_new_instance_method(_Box2D.b2MotorJointDef_Initialize) linearOffset = property(_Box2D.b2MotorJointDef_linearOffset_get, _Box2D.b2MotorJointDef_linearOffset_set, doc=r"""linearOffset : b2Vec2""") angularOffset = property(_Box2D.b2MotorJointDef_angularOffset_get, _Box2D.b2MotorJointDef_angularOffset_set, doc=r"""angularOffset : float32""") maxForce = property(_Box2D.b2MotorJointDef_maxForce_get, _Box2D.b2MotorJointDef_maxForce_set, doc=r"""maxForce : float32""") maxTorque = property(_Box2D.b2MotorJointDef_maxTorque_get, _Box2D.b2MotorJointDef_maxTorque_set, doc=r"""maxTorque : float32""") correctionFactor = property(_Box2D.b2MotorJointDef_correctionFactor_get, _Box2D.b2MotorJointDef_correctionFactor_set, doc=r"""correctionFactor : float32""") __swig_destroy__ = _Box2D.delete_b2MotorJointDef # Register b2MotorJointDef in _Box2D: _Box2D.b2MotorJointDef_swigregister(b2MotorJointDef) class b2MotorJoint(b2Joint): r"""Proxy of C++ b2MotorJoint class.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __SetLinearOffset = _swig_new_instance_method(_Box2D.b2MotorJoint___SetLinearOffset) __GetLinearOffset = _swig_new_instance_method(_Box2D.b2MotorJoint___GetLinearOffset) __SetAngularOffset = _swig_new_instance_method(_Box2D.b2MotorJoint___SetAngularOffset) __GetAngularOffset = _swig_new_instance_method(_Box2D.b2MotorJoint___GetAngularOffset) __SetMaxForce = _swig_new_instance_method(_Box2D.b2MotorJoint___SetMaxForce) __GetMaxForce = _swig_new_instance_method(_Box2D.b2MotorJoint___GetMaxForce) __SetMaxTorque = _swig_new_instance_method(_Box2D.b2MotorJoint___SetMaxTorque) __GetMaxTorque = _swig_new_instance_method(_Box2D.b2MotorJoint___GetMaxTorque) # Read-write properties maxForce = property(__GetMaxForce, __SetMaxForce) maxTorque = property(__GetMaxTorque, __SetMaxTorque) linearOffset = property(__GetLinearOffset, __SetLinearOffset) angularOffset = property(__GetAngularOffset, __SetAngularOffset) __swig_destroy__ = _Box2D.delete_b2MotorJoint # Register b2MotorJoint in _Box2D: _Box2D.b2MotorJoint_swigregister(b2MotorJoint) class b2MouseJointDef(b2JointDef): r"""Mouse joint definition. This requires a world target point, tuning parameters, and the time step.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2MouseJointDef_swiginit(self,_Box2D.new_b2MouseJointDef()) _init_kwargs(self, **kwargs) target = property(_Box2D.b2MouseJointDef_target_get, _Box2D.b2MouseJointDef_target_set, doc=r"""target : b2Vec2""") maxForce = property(_Box2D.b2MouseJointDef_maxForce_get, _Box2D.b2MouseJointDef_maxForce_set, doc=r"""maxForce : float32""") frequencyHz = property(_Box2D.b2MouseJointDef_frequencyHz_get, _Box2D.b2MouseJointDef_frequencyHz_set, doc=r"""frequencyHz : float32""") dampingRatio = property(_Box2D.b2MouseJointDef_dampingRatio_get, _Box2D.b2MouseJointDef_dampingRatio_set, doc=r"""dampingRatio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2MouseJointDef___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2MouseJointDef # Register b2MouseJointDef in _Box2D: _Box2D.b2MouseJointDef_swigregister(b2MouseJointDef) class b2MouseJoint(b2Joint): r"""A mouse joint is used to make a point on a body track a specified world point. This a soft constraint with a maximum force. This allows the constraint to stretch and without applying huge forces. NOTE: this joint is not documented in the manual because it was developed to be used in the testbed. If you want to learn how to use the mouse joint, look at the testbed.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __SetTarget = _swig_new_instance_method(_Box2D.b2MouseJoint___SetTarget) __GetTarget = _swig_new_instance_method(_Box2D.b2MouseJoint___GetTarget) __SetMaxForce = _swig_new_instance_method(_Box2D.b2MouseJoint___SetMaxForce) __GetMaxForce = _swig_new_instance_method(_Box2D.b2MouseJoint___GetMaxForce) __SetFrequency = _swig_new_instance_method(_Box2D.b2MouseJoint___SetFrequency) __GetFrequency = _swig_new_instance_method(_Box2D.b2MouseJoint___GetFrequency) __SetDampingRatio = _swig_new_instance_method(_Box2D.b2MouseJoint___SetDampingRatio) __GetDampingRatio = _swig_new_instance_method(_Box2D.b2MouseJoint___GetDampingRatio) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2MouseJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties maxForce = property(__GetMaxForce, __SetMaxForce) frequency = property(__GetFrequency, __SetFrequency) dampingRatio = property(__GetDampingRatio, __SetDampingRatio) target = property(__GetTarget, __SetTarget) __swig_destroy__ = _Box2D.delete_b2MouseJoint # Register b2MouseJoint in _Box2D: _Box2D.b2MouseJoint_swigregister(b2MouseJoint) class b2PrismaticJointDef(b2JointDef): r""" Prismatic joint definition. This requires defining a line of motion using an axis and an anchor point. The definition uses local anchor points and a local axis so that the initial configuration can violate the constraint slightly. The joint translation is zero when the local anchor points coincide in world space. Using local anchors and a local axis helps when saving and loading a game. WARNING: at least one body should by dynamic with a non-fixed rotation. """ thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2PrismaticJointDef_swiginit(self,_Box2D.new_b2PrismaticJointDef()) _init_jointdef_kwargs(self, **kwargs) if self.bodyA and self.bodyB and 'referenceAngle' not in kwargs: self.referenceAngle = self.bodyB.angle - self.bodyA.angle Initialize = _swig_new_instance_method(_Box2D.b2PrismaticJointDef_Initialize) localAnchorA = property(_Box2D.b2PrismaticJointDef_localAnchorA_get, _Box2D.b2PrismaticJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2PrismaticJointDef_localAnchorB_get, _Box2D.b2PrismaticJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") localAxisA = property(_Box2D.b2PrismaticJointDef_localAxisA_get, _Box2D.b2PrismaticJointDef_localAxisA_set, doc=r"""localAxisA : b2Vec2""") referenceAngle = property(_Box2D.b2PrismaticJointDef_referenceAngle_get, _Box2D.b2PrismaticJointDef_referenceAngle_set, doc=r"""referenceAngle : float32""") enableLimit = property(_Box2D.b2PrismaticJointDef_enableLimit_get, _Box2D.b2PrismaticJointDef_enableLimit_set, doc=r"""enableLimit : bool""") lowerTranslation = property(_Box2D.b2PrismaticJointDef_lowerTranslation_get, _Box2D.b2PrismaticJointDef_lowerTranslation_set, doc=r"""lowerTranslation : float32""") upperTranslation = property(_Box2D.b2PrismaticJointDef_upperTranslation_get, _Box2D.b2PrismaticJointDef_upperTranslation_set, doc=r"""upperTranslation : float32""") enableMotor = property(_Box2D.b2PrismaticJointDef_enableMotor_get, _Box2D.b2PrismaticJointDef_enableMotor_set, doc=r"""enableMotor : bool""") maxMotorForce = property(_Box2D.b2PrismaticJointDef_maxMotorForce_get, _Box2D.b2PrismaticJointDef_maxMotorForce_set, doc=r"""maxMotorForce : float32""") motorSpeed = property(_Box2D.b2PrismaticJointDef_motorSpeed_get, _Box2D.b2PrismaticJointDef_motorSpeed_set, doc=r"""motorSpeed : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2PrismaticJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchor(self, value): if not self.bodyA: raise ValueError('bodyA not set.') if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchor(self): if self.bodyA: return self.bodyA.GetWorldPoint(self.localAnchorA) if self.bodyB: return self.bodyB.GetWorldPoint(self.localAnchorB) raise ValueError('Neither body was set; unable to get world point.') def __set_axis(self, value): if not self.bodyA: raise ValueError('bodyA not set.') self.localAxisA=self.bodyA.GetLocalVector(value) def __get_axis(self): if not self.bodyA: raise ValueError('Body A unset; unable to get world vector.') return self.bodyA.GetWorldVector(self.localAxisA) anchor = property(__get_anchor, __set_anchor, doc="""The anchor in world coordinates. Getting the property depends on either bodyA and localAnchorA or bodyB and localAnchorB. Setting the property requires that both bodies be set.""") axis = property(__get_axis, __set_axis, doc="""The world translation axis on bodyA. Getting the property depends on bodyA and localAxisA. Setting the property requires that bodyA be set.""") __swig_destroy__ = _Box2D.delete_b2PrismaticJointDef # Register b2PrismaticJointDef in _Box2D: _Box2D.b2PrismaticJointDef_swigregister(b2PrismaticJointDef) class b2PrismaticJoint(b2Joint): r"""A prismatic joint. This joint provides one degree of freedom: translation along an axis fixed in body1. Relative rotation is prevented. You can use a joint limit to restrict the range of motion and a joint motor to drive the motion or to model joint friction.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2PrismaticJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2PrismaticJoint_GetLocalAnchorB) GetLocalAxisA = _swig_new_instance_method(_Box2D.b2PrismaticJoint_GetLocalAxisA) GetReferenceAngle = _swig_new_instance_method(_Box2D.b2PrismaticJoint_GetReferenceAngle) __GetJointTranslation = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetJointTranslation) __GetJointSpeed = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetJointSpeed) __IsLimitEnabled = _swig_new_instance_method(_Box2D.b2PrismaticJoint___IsLimitEnabled) __EnableLimit = _swig_new_instance_method(_Box2D.b2PrismaticJoint___EnableLimit) __GetLowerLimit = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetLowerLimit) __GetUpperLimit = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetUpperLimit) SetLimits = _swig_new_instance_method(_Box2D.b2PrismaticJoint_SetLimits) __IsMotorEnabled = _swig_new_instance_method(_Box2D.b2PrismaticJoint___IsMotorEnabled) __EnableMotor = _swig_new_instance_method(_Box2D.b2PrismaticJoint___EnableMotor) __SetMotorSpeed = _swig_new_instance_method(_Box2D.b2PrismaticJoint___SetMotorSpeed) __GetMotorSpeed = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetMotorSpeed) __SetMaxMotorForce = _swig_new_instance_method(_Box2D.b2PrismaticJoint___SetMaxMotorForce) __GetMaxMotorForce = _swig_new_instance_method(_Box2D.b2PrismaticJoint___GetMaxMotorForce) GetMotorForce = _swig_new_instance_method(_Box2D.b2PrismaticJoint_GetMotorForce) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2PrismaticJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties motorSpeed = property(__GetMotorSpeed, __SetMotorSpeed) motorEnabled = property(__IsMotorEnabled, __EnableMotor) limitEnabled = property(__IsLimitEnabled, __EnableLimit) upperLimit = property(__GetUpperLimit, lambda self, v: self.SetLimits(self.lowerLimit, v)) lowerLimit = property(__GetLowerLimit, lambda self, v: self.SetLimits(v, self.upperLimit)) limits = property(lambda self: (self.lowerLimit, self.upperLimit), lambda self, v: self.SetLimits(*v) ) maxMotorForce = property(__GetMaxMotorForce, __SetMaxMotorForce) # Read-only translation = property(__GetJointTranslation, None) speed = property(__GetJointSpeed, None) __swig_destroy__ = _Box2D.delete_b2PrismaticJoint # Register b2PrismaticJoint in _Box2D: _Box2D.b2PrismaticJoint_swigregister(b2PrismaticJoint) class b2PulleyJointDef(b2JointDef): r"""Pulley joint definition. This requires two ground anchors, two dynamic body anchor points, max lengths for each side, and a pulley ratio.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2PulleyJointDef_swiginit(self,_Box2D.new_b2PulleyJointDef()) _init_jointdef_kwargs(self, **kwargs) self.__init_pulley__(**kwargs) def __init_pulley__(self, anchorA=None, anchorB=None, lengthA=None, lengthB=None, groundAnchorA=None, groundAnchorB=None, maxLengthA=None, maxLengthB=None, ratio=None, **kwargs): lengthA_set, lengthB_set = False, False if anchorA is not None or anchorB is not None: # Some undoing -- if the user specified the length, we might # have overwritten it, so reset it. if lengthA is not None: self.lengthA = lengthA lengthA_set = True if lengthB is not None: self.lengthB = lengthB lengthB_set = True if anchorA is not None and groundAnchorA is not None and lengthA is None: d1 = self.anchorA - self.groundAnchorA self.lengthA = d1.length lengthA_set = True if anchorB is not None and groundAnchorB is not None and lengthB is None: d2 = self.anchorB - self.groundAnchorB self.lengthB = d2.length lengthB_set=True if ratio is not None: # Ratio too small? assert(self.ratio > globals()['b2_epsilon']) if lengthA_set and lengthB_set and maxLengthA is None and maxLengthB is None: C = self.lengthA + self.ratio * self.lengthB self.maxLengthA = C - self.ratio * b2_minPulleyLength self.maxLengthB = (C - b2_minPulleyLength) / self.ratio Initialize = _swig_new_instance_method(_Box2D.b2PulleyJointDef_Initialize) groundAnchorA = property(_Box2D.b2PulleyJointDef_groundAnchorA_get, _Box2D.b2PulleyJointDef_groundAnchorA_set, doc=r"""groundAnchorA : b2Vec2""") groundAnchorB = property(_Box2D.b2PulleyJointDef_groundAnchorB_get, _Box2D.b2PulleyJointDef_groundAnchorB_set, doc=r"""groundAnchorB : b2Vec2""") localAnchorA = property(_Box2D.b2PulleyJointDef_localAnchorA_get, _Box2D.b2PulleyJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2PulleyJointDef_localAnchorB_get, _Box2D.b2PulleyJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") lengthA = property(_Box2D.b2PulleyJointDef_lengthA_get, _Box2D.b2PulleyJointDef_lengthA_set, doc=r"""lengthA : float32""") lengthB = property(_Box2D.b2PulleyJointDef_lengthB_get, _Box2D.b2PulleyJointDef_lengthB_set, doc=r"""lengthB : float32""") ratio = property(_Box2D.b2PulleyJointDef_ratio_get, _Box2D.b2PulleyJointDef_ratio_set, doc=r"""ratio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2PulleyJointDef___hash__) def __repr__(self): return _format_repr(self) def __update_length(self): if self.bodyA: d1 = self.anchorA - self.groundAnchorA self.lengthA = d1.length if self.bodyB: d1 = self.anchorB - self.groundAnchorB self.lengthB = d1.length def __set_anchorA(self, value): if not self.bodyA: raise ValueError('bodyA not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.__update_length() def __set_anchorB(self, value): if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorB=self.bodyB.GetLocalPoint(value) self.__update_length() def __get_anchorA(self): if not self.bodyA: raise ValueError('bodyA not set.') return self.bodyA.GetWorldPoint(self.localAnchorA) def __get_anchorB(self): if not self.bodyB: raise ValueError('bodyB not set.') return self.bodyB.GetWorldPoint(self.localAnchorB) anchorA = property(__get_anchorA, __set_anchorA, doc="""Body A's anchor in world coordinates. Getting the property depends on both bodyA and localAnchorA. Setting the property requires that bodyA be set.""") anchorB = property(__get_anchorB, __set_anchorB, doc="""Body B's anchor in world coordinates. Getting the property depends on both bodyB and localAnchorB. Setting the property requires that bodyB be set.""") __swig_destroy__ = _Box2D.delete_b2PulleyJointDef # Register b2PulleyJointDef in _Box2D: _Box2D.b2PulleyJointDef_swigregister(b2PulleyJointDef) b2_minPulleyLength = b2Globals.b2_minPulleyLength class b2PulleyJoint(b2Joint): r"""The pulley joint is connected to two bodies and two fixed ground points. The pulley supports a ratio such that: length1 + ratio * length2 <= constant Yes, the force transmitted is scaled by the ratio. The pulley also enforces a maximum length limit on both sides. This is useful to prevent one side of the pulley hitting the top.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr __GetGroundAnchorA = _swig_new_instance_method(_Box2D.b2PulleyJoint___GetGroundAnchorA) __GetGroundAnchorB = _swig_new_instance_method(_Box2D.b2PulleyJoint___GetGroundAnchorB) __GetLengthA = _swig_new_instance_method(_Box2D.b2PulleyJoint___GetLengthA) __GetLengthB = _swig_new_instance_method(_Box2D.b2PulleyJoint___GetLengthB) __GetRatio = _swig_new_instance_method(_Box2D.b2PulleyJoint___GetRatio) GetCurrentLengthA = _swig_new_instance_method(_Box2D.b2PulleyJoint_GetCurrentLengthA) GetCurrentLengthB = _swig_new_instance_method(_Box2D.b2PulleyJoint_GetCurrentLengthB) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2PulleyJoint___hash__) def __repr__(self): return _format_repr(self) # Read-only groundAnchorB = property(__GetGroundAnchorB, None) groundAnchorA = property(__GetGroundAnchorA, None) ratio = property(__GetRatio, None) lengthB = length2 = property(__GetLengthB, None) lengthA = length1 = property(__GetLengthA, None) __swig_destroy__ = _Box2D.delete_b2PulleyJoint # Register b2PulleyJoint in _Box2D: _Box2D.b2PulleyJoint_swigregister(b2PulleyJoint) class b2RevoluteJointDef(b2JointDef): r"""Revolute joint definition. This requires defining an anchor point where the bodies are joined. The definition uses local anchor points so that the initial configuration can violate the constraint slightly. You also need to specify the initial relative angle for joint limits. This helps when saving and loading a game. The local anchor points are measured from the body's origin rather than the center of mass because: 1. you might not know where the center of mass will be. 2. if you add/remove shapes from a body and recompute the mass, the joints will be broken.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2RevoluteJointDef_swiginit(self,_Box2D.new_b2RevoluteJointDef()) _init_jointdef_kwargs(self, **kwargs) if self.bodyA and self.bodyB and 'referenceAngle' not in kwargs: self.referenceAngle = self.bodyB.angle - self.bodyA.angle Initialize = _swig_new_instance_method(_Box2D.b2RevoluteJointDef_Initialize) localAnchorA = property(_Box2D.b2RevoluteJointDef_localAnchorA_get, _Box2D.b2RevoluteJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2RevoluteJointDef_localAnchorB_get, _Box2D.b2RevoluteJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") referenceAngle = property(_Box2D.b2RevoluteJointDef_referenceAngle_get, _Box2D.b2RevoluteJointDef_referenceAngle_set, doc=r"""referenceAngle : float32""") enableLimit = property(_Box2D.b2RevoluteJointDef_enableLimit_get, _Box2D.b2RevoluteJointDef_enableLimit_set, doc=r"""enableLimit : bool""") lowerAngle = property(_Box2D.b2RevoluteJointDef_lowerAngle_get, _Box2D.b2RevoluteJointDef_lowerAngle_set, doc=r"""lowerAngle : float32""") upperAngle = property(_Box2D.b2RevoluteJointDef_upperAngle_get, _Box2D.b2RevoluteJointDef_upperAngle_set, doc=r"""upperAngle : float32""") enableMotor = property(_Box2D.b2RevoluteJointDef_enableMotor_get, _Box2D.b2RevoluteJointDef_enableMotor_set, doc=r"""enableMotor : bool""") motorSpeed = property(_Box2D.b2RevoluteJointDef_motorSpeed_get, _Box2D.b2RevoluteJointDef_motorSpeed_set, doc=r"""motorSpeed : float32""") maxMotorTorque = property(_Box2D.b2RevoluteJointDef_maxMotorTorque_get, _Box2D.b2RevoluteJointDef_maxMotorTorque_set, doc=r"""maxMotorTorque : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RevoluteJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchor(self, value): if not self.bodyA: raise ValueError('bodyA not set.') if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchor(self): if self.bodyA: return self.bodyA.GetWorldPoint(self.localAnchorA) if self.bodyB: return self.bodyB.GetWorldPoint(self.localAnchorB) raise ValueError('Neither body was set; unable to get world point.') anchor = property(__get_anchor, __set_anchor, doc="""The anchor in world coordinates. Getting the property depends on either bodyA and localAnchorA or bodyB and localAnchorB. Setting the property requires that both bodies be set.""") __swig_destroy__ = _Box2D.delete_b2RevoluteJointDef # Register b2RevoluteJointDef in _Box2D: _Box2D.b2RevoluteJointDef_swigregister(b2RevoluteJointDef) class b2RevoluteJoint(b2Joint): r"""A revolute joint constrains two bodies to share a common point while they are free to rotate about the point. The relative rotation about the shared point is the joint angle. You can limit the relative rotation with a joint limit that specifies a lower and upper angle. You can use a motor to drive the relative rotation about the shared point. A maximum motor torque is provided so that infinite forces are not generated.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2RevoluteJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2RevoluteJoint_GetLocalAnchorB) GetReferenceAngle = _swig_new_instance_method(_Box2D.b2RevoluteJoint_GetReferenceAngle) __GetJointAngle = _swig_new_instance_method(_Box2D.b2RevoluteJoint___GetJointAngle) __GetJointSpeed = _swig_new_instance_method(_Box2D.b2RevoluteJoint___GetJointSpeed) __IsLimitEnabled = _swig_new_instance_method(_Box2D.b2RevoluteJoint___IsLimitEnabled) __EnableLimit = _swig_new_instance_method(_Box2D.b2RevoluteJoint___EnableLimit) __GetLowerLimit = _swig_new_instance_method(_Box2D.b2RevoluteJoint___GetLowerLimit) __GetUpperLimit = _swig_new_instance_method(_Box2D.b2RevoluteJoint___GetUpperLimit) SetLimits = _swig_new_instance_method(_Box2D.b2RevoluteJoint_SetLimits) __IsMotorEnabled = _swig_new_instance_method(_Box2D.b2RevoluteJoint___IsMotorEnabled) __EnableMotor = _swig_new_instance_method(_Box2D.b2RevoluteJoint___EnableMotor) __SetMotorSpeed = _swig_new_instance_method(_Box2D.b2RevoluteJoint___SetMotorSpeed) __GetMotorSpeed = _swig_new_instance_method(_Box2D.b2RevoluteJoint___GetMotorSpeed) __SetMaxMotorTorque = _swig_new_instance_method(_Box2D.b2RevoluteJoint___SetMaxMotorTorque) GetMaxMotorTorque = _swig_new_instance_method(_Box2D.b2RevoluteJoint_GetMaxMotorTorque) GetMotorTorque = _swig_new_instance_method(_Box2D.b2RevoluteJoint_GetMotorTorque) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RevoluteJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties motorSpeed = property(__GetMotorSpeed, __SetMotorSpeed) upperLimit = property(__GetUpperLimit, lambda self, v: self.SetLimits(self.lowerLimit, v)) lowerLimit = property(__GetLowerLimit, lambda self, v: self.SetLimits(v, self.upperLimit)) limits = property(lambda self: (self.lowerLimit, self.upperLimit), lambda self, v: self.SetLimits(*v) ) motorEnabled = property(__IsMotorEnabled, __EnableMotor) limitEnabled = property(__IsLimitEnabled, __EnableLimit) # Read-only angle = property(__GetJointAngle, None) speed = property(__GetJointSpeed, None) # Write-only maxMotorTorque = property(None, __SetMaxMotorTorque) __swig_destroy__ = _Box2D.delete_b2RevoluteJoint # Register b2RevoluteJoint in _Box2D: _Box2D.b2RevoluteJoint_swigregister(b2RevoluteJoint) class b2RopeJointDef(b2JointDef): r"""Rope joint definition. This requires two body anchor points and a maximum lengths. Note: by default the connected objects will not collide. see collideConnected in b2JointDef.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2RopeJointDef_swiginit(self,_Box2D.new_b2RopeJointDef()) _init_jointdef_kwargs(self, **kwargs) localAnchorA = property(_Box2D.b2RopeJointDef_localAnchorA_get, _Box2D.b2RopeJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2RopeJointDef_localAnchorB_get, _Box2D.b2RopeJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") maxLength = property(_Box2D.b2RopeJointDef_maxLength_get, _Box2D.b2RopeJointDef_maxLength_set, doc=r"""maxLength : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RopeJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchorA(self, value): if not self.bodyA: raise ValueError('bodyA not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) def __set_anchorB(self, value): if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchorA(self): if not self.bodyA: raise ValueError('bodyA not set.') return self.bodyA.GetWorldPoint(self.localAnchorA) def __get_anchorB(self): if not self.bodyB: raise ValueError('bodyB not set.') return self.bodyB.GetWorldPoint(self.localAnchorB) anchorA = property(__get_anchorA, __set_anchorA, doc="""Body A's anchor in world coordinates. Getting the property depends on both bodyA and localAnchorA. Setting the property requires that bodyA be set.""") anchorB = property(__get_anchorB, __set_anchorB, doc="""Body B's anchor in world coordinates. Getting the property depends on both bodyB and localAnchorB. Setting the property requires that bodyB be set.""") __swig_destroy__ = _Box2D.delete_b2RopeJointDef # Register b2RopeJointDef in _Box2D: _Box2D.b2RopeJointDef_swigregister(b2RopeJointDef) class b2RopeJoint(b2Joint): r"""A rope joint enforces a maximum distance between two points on two bodies. It has no other effect. Warning: if you attempt to change the maximum length during the simulation you will get some non-physical behavior. A model that would allow you to dynamically modify the length would have some sponginess, so I chose not to implement it that way. See b2DistanceJointif you want to dynamically control length.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2RopeJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2RopeJoint_GetLocalAnchorB) SetMaxLength = _swig_new_instance_method(_Box2D.b2RopeJoint_SetMaxLength) __GetMaxLength = _swig_new_instance_method(_Box2D.b2RopeJoint___GetMaxLength) __GetLimitState = _swig_new_instance_method(_Box2D.b2RopeJoint___GetLimitState) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2RopeJoint___hash__) def __repr__(self): return _format_repr(self) # Read-only properties maxLength = property(__GetMaxLength, None) limitState = property(__GetLimitState, None) # Read-write properties __swig_destroy__ = _Box2D.delete_b2RopeJoint # Register b2RopeJoint in _Box2D: _Box2D.b2RopeJoint_swigregister(b2RopeJoint) class b2WeldJointDef(b2JointDef): r"""Weld joint definition. You need to specify local anchor points where they are attached and the relative body angle. The position of the anchor points is important for computing the reaction torque.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2WeldJointDef_swiginit(self,_Box2D.new_b2WeldJointDef()) _init_jointdef_kwargs(self, **kwargs) if self.bodyA and self.bodyB and 'referenceAngle' not in kwargs: self.referenceAngle = self.bodyB.angle - self.bodyA.angle Initialize = _swig_new_instance_method(_Box2D.b2WeldJointDef_Initialize) localAnchorA = property(_Box2D.b2WeldJointDef_localAnchorA_get, _Box2D.b2WeldJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2WeldJointDef_localAnchorB_get, _Box2D.b2WeldJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") referenceAngle = property(_Box2D.b2WeldJointDef_referenceAngle_get, _Box2D.b2WeldJointDef_referenceAngle_set, doc=r"""referenceAngle : float32""") frequencyHz = property(_Box2D.b2WeldJointDef_frequencyHz_get, _Box2D.b2WeldJointDef_frequencyHz_set, doc=r"""frequencyHz : float32""") dampingRatio = property(_Box2D.b2WeldJointDef_dampingRatio_get, _Box2D.b2WeldJointDef_dampingRatio_set, doc=r"""dampingRatio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2WeldJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchor(self, value): if not self.bodyA: raise ValueError('bodyA not set.') if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchor(self): if self.bodyA: return self.bodyA.GetWorldPoint(self.localAnchorA) if self.bodyB: return self.bodyB.GetWorldPoint(self.localAnchorB) raise ValueError('Neither body was set; unable to get world point.') anchor = property(__get_anchor, __set_anchor, doc="""The anchor in world coordinates. Getting the property depends on either bodyA and localAnchorA or bodyB and localAnchorB. Setting the property requires that both bodies be set.""") __swig_destroy__ = _Box2D.delete_b2WeldJointDef # Register b2WeldJointDef in _Box2D: _Box2D.b2WeldJointDef_swigregister(b2WeldJointDef) class b2WeldJoint(b2Joint): r"""A weld joint essentially glues two bodies together. A weld joint may distort somewhat because the island constraint solver is approximate.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2WeldJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2WeldJoint_GetLocalAnchorB) GetReferenceAngle = _swig_new_instance_method(_Box2D.b2WeldJoint_GetReferenceAngle) SetFrequency = _swig_new_instance_method(_Box2D.b2WeldJoint_SetFrequency) GetFrequency = _swig_new_instance_method(_Box2D.b2WeldJoint_GetFrequency) SetDampingRatio = _swig_new_instance_method(_Box2D.b2WeldJoint_SetDampingRatio) GetDampingRatio = _swig_new_instance_method(_Box2D.b2WeldJoint_GetDampingRatio) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2WeldJoint___hash__) def __repr__(self): return _format_repr(self) __swig_destroy__ = _Box2D.delete_b2WeldJoint # Register b2WeldJoint in _Box2D: _Box2D.b2WeldJoint_swigregister(b2WeldJoint) class b2WheelJointDef(b2JointDef): r"""Line joint definition. This requires defining a line of motion using an axis and an anchor point. The definition uses local anchor points and a local axis so that the initial configuration can violate the constraint slightly. The joint translation is zero when the local anchor points coincide in world space. Using local anchors and a local axis helps when saving and loading a game.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, **kwargs): _Box2D.b2WheelJointDef_swiginit(self,_Box2D.new_b2WheelJointDef()) _init_jointdef_kwargs(self, **kwargs) Initialize = _swig_new_instance_method(_Box2D.b2WheelJointDef_Initialize) localAnchorA = property(_Box2D.b2WheelJointDef_localAnchorA_get, _Box2D.b2WheelJointDef_localAnchorA_set, doc=r"""localAnchorA : b2Vec2""") localAnchorB = property(_Box2D.b2WheelJointDef_localAnchorB_get, _Box2D.b2WheelJointDef_localAnchorB_set, doc=r"""localAnchorB : b2Vec2""") localAxisA = property(_Box2D.b2WheelJointDef_localAxisA_get, _Box2D.b2WheelJointDef_localAxisA_set, doc=r"""localAxisA : b2Vec2""") enableMotor = property(_Box2D.b2WheelJointDef_enableMotor_get, _Box2D.b2WheelJointDef_enableMotor_set, doc=r"""enableMotor : bool""") maxMotorTorque = property(_Box2D.b2WheelJointDef_maxMotorTorque_get, _Box2D.b2WheelJointDef_maxMotorTorque_set, doc=r"""maxMotorTorque : float32""") motorSpeed = property(_Box2D.b2WheelJointDef_motorSpeed_get, _Box2D.b2WheelJointDef_motorSpeed_set, doc=r"""motorSpeed : float32""") frequencyHz = property(_Box2D.b2WheelJointDef_frequencyHz_get, _Box2D.b2WheelJointDef_frequencyHz_set, doc=r"""frequencyHz : float32""") dampingRatio = property(_Box2D.b2WheelJointDef_dampingRatio_get, _Box2D.b2WheelJointDef_dampingRatio_set, doc=r"""dampingRatio : float32""") __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2WheelJointDef___hash__) def __repr__(self): return _format_repr(self) def __set_anchor(self, value): if not self.bodyA: raise ValueError('bodyA not set.') if not self.bodyB: raise ValueError('bodyB not set.') self.localAnchorA=self.bodyA.GetLocalPoint(value) self.localAnchorB=self.bodyB.GetLocalPoint(value) def __get_anchor(self): if self.bodyA: return self.bodyA.GetWorldPoint(self.localAnchorA) if self.bodyB: return self.bodyB.GetWorldPoint(self.localAnchorB) raise ValueError('Neither body was set; unable to get world point.') def __set_axis(self, value): if not self.bodyA: raise ValueError('bodyA not set.') self.localAxisA=self.bodyA.GetLocalVector(value) def __get_axis(self): if self.bodyA: return self.bodyA.GetWorldVector(self.localAxisA) raise ValueError('Body A unset; unable to get world vector.') anchor = property(__get_anchor, __set_anchor, doc="""The anchor in world coordinates. Getting the property depends on either bodyA and localAnchorA or bodyB and localAnchorB. Setting the property requires that both bodies be set.""") axis = property(__get_axis, __set_axis, doc="""The world translation axis on bodyA. Getting the property depends on bodyA and localAxisA. Setting the property requires that bodyA be set.""") __swig_destroy__ = _Box2D.delete_b2WheelJointDef # Register b2WheelJointDef in _Box2D: _Box2D.b2WheelJointDef_swigregister(b2WheelJointDef) class b2WheelJoint(b2Joint): r"""A line joint. This joint provides two degrees of freedom: translation along an axis fixed in body1 and rotation in the plane. You can use a joint limit to restrict the range of motion and a joint motor to drive the rotation or to model rotational friction. This joint is designed for vehicle suspensions.""" thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr GetLocalAnchorA = _swig_new_instance_method(_Box2D.b2WheelJoint_GetLocalAnchorA) GetLocalAnchorB = _swig_new_instance_method(_Box2D.b2WheelJoint_GetLocalAnchorB) GetLocalAxisA = _swig_new_instance_method(_Box2D.b2WheelJoint_GetLocalAxisA) __GetJointTranslation = _swig_new_instance_method(_Box2D.b2WheelJoint___GetJointTranslation) __GetJointSpeed = _swig_new_instance_method(_Box2D.b2WheelJoint___GetJointSpeed) __IsMotorEnabled = _swig_new_instance_method(_Box2D.b2WheelJoint___IsMotorEnabled) __EnableMotor = _swig_new_instance_method(_Box2D.b2WheelJoint___EnableMotor) __SetMotorSpeed = _swig_new_instance_method(_Box2D.b2WheelJoint___SetMotorSpeed) __GetMotorSpeed = _swig_new_instance_method(_Box2D.b2WheelJoint___GetMotorSpeed) __SetMaxMotorTorque = _swig_new_instance_method(_Box2D.b2WheelJoint___SetMaxMotorTorque) __GetMaxMotorTorque = _swig_new_instance_method(_Box2D.b2WheelJoint___GetMaxMotorTorque) GetMotorTorque = _swig_new_instance_method(_Box2D.b2WheelJoint_GetMotorTorque) __SetSpringFrequencyHz = _swig_new_instance_method(_Box2D.b2WheelJoint___SetSpringFrequencyHz) __GetSpringFrequencyHz = _swig_new_instance_method(_Box2D.b2WheelJoint___GetSpringFrequencyHz) __SetSpringDampingRatio = _swig_new_instance_method(_Box2D.b2WheelJoint___SetSpringDampingRatio) __GetSpringDampingRatio = _swig_new_instance_method(_Box2D.b2WheelJoint___GetSpringDampingRatio) __dir__ = _dir_filter __hash__ = _swig_new_instance_method(_Box2D.b2WheelJoint___hash__) def __repr__(self): return _format_repr(self) # Read-write properties motorSpeed = property(__GetMotorSpeed, __SetMotorSpeed) motorEnabled = property(__IsMotorEnabled, __EnableMotor) maxMotorTorque = property(__GetMaxMotorTorque, __SetMaxMotorTorque) springFrequencyHz = property(__GetSpringFrequencyHz , __SetSpringFrequencyHz) springDampingRatio = property(__GetSpringDampingRatio , __SetSpringDampingRatio) # Read-only speed = property(__GetJointSpeed, None) translation = property(__GetJointTranslation, None) __swig_destroy__ = _Box2D.delete_b2WheelJoint # Register b2WheelJoint in _Box2D: _Box2D.b2WheelJoint_swigregister(b2WheelJoint) # Backward-compatibility b2LoopShape = b2ChainShape # Initialize the alternative namespace b2.*, and clean-up the # dir listing of Box2D by removing *_swigregister. # # To see what this is, try import Box2D; print(dir(Box2D.b2)) from . import b2 s=None to_remove=[] for s in locals(): if s.endswith('_swigregister'): to_remove.append(s) elif s!='b2' and s.startswith('b2'): if s[2]=='_': # Covers b2_* setattr(b2, s[3].lower() + s[4:], locals()[s]) else: # The other b2* if s[3].isupper(): setattr(b2, s[2:], locals()[s]) else: setattr(b2, s[2].lower() + s[3:], locals()[s]) for s in to_remove: del locals()[s] del s del to_remove
44.116114
576
0.710994
4a1afe9231a6916c3253642209c929f2ccbc7138
25,335
py
Python
sktime/benchmarking/evaluation.py
brettkoonce/sktime
6336247bad0dac8692aa4b911c267f401dea4163
[ "BSD-3-Clause" ]
1
2020-09-02T19:39:59.000Z
2020-09-02T19:39:59.000Z
sktime/benchmarking/evaluation.py
brettkoonce/sktime
6336247bad0dac8692aa4b911c267f401dea4163
[ "BSD-3-Clause" ]
2
2020-04-20T12:26:42.000Z
2020-04-22T17:09:14.000Z
sktime/benchmarking/evaluation.py
brettkoonce/sktime
6336247bad0dac8692aa4b911c267f401dea4163
[ "BSD-3-Clause" ]
1
2022-02-14T18:19:01.000Z
2022-02-14T18:19:01.000Z
__author__ = ["Viktor Kazakov", "Markus Löning", "Aaron Bostrom"] __all__ = ["Evaluator"] import itertools import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy import stats from scipy.stats import ranksums from scipy.stats import ttest_ind from sktime.benchmarking.base import BaseResults from sktime.exceptions import NotEvaluatedError plt.style.use("seaborn-ticks") class Evaluator: """ Analyze results of machine learning experiments. """ def __init__(self, results): if not isinstance(results, BaseResults): raise ValueError("`results` must inherit from BaseResults") self.results = results self._metric_dicts = [] # preallocate dataframe for metrics self._metrics = pd.DataFrame( columns=["dataset", "strategy", "cv_fold"]) self._metrics_by_strategy_dataset = pd.DataFrame( columns=["dataset", "strategy"]) self._metrics_by_strategy = pd.DataFrame(columns=["strategy"]) # keep track of metric names self._metric_names = [] @property def metric_names(self): return self._metric_names @property def metrics(self): self._check_is_evaluated() return self._metrics @property def metrics_by_strategy(self): self._check_is_evaluated() return self._metrics_by_strategy @property def metrics_by_strategy_dataset(self): self._check_is_evaluated() return self._metrics_by_strategy_dataset def evaluate(self, metric, train_or_test="test", cv_fold="all"): """ Calculates the average prediction error per estimator as well as the prediction error achieved by each estimator on individual datasets. """ # check input if isinstance(cv_fold, int) and cv_fold >= 0: cv_folds = [cv_fold] # if single fold, make iterable elif cv_fold == "all": cv_folds = np.arange(self.results.cv.get_n_splits()) if len(cv_folds) == 0: raise ValueError() else: raise ValueError( f"`cv_fold` must be either positive integer (>=0) or 'all', " f"but found: {type(cv_fold)}") # load all predictions for cv_fold in cv_folds: for result in self.results.load_predictions( cv_fold=cv_fold, train_or_test=train_or_test): # unwrap result object strategy_name = result.strategy_name dataset_name = result.dataset_name # index = result.index y_true = result.y_true y_pred = result.y_pred # y_proba = result.y_proba # compute metric mean, stderr = metric.compute(y_true, y_pred) # store results metric_dict = { "dataset": dataset_name, "strategy": strategy_name, "cv_fold": cv_fold, self._get_column_name(metric.name, suffix="mean"): mean, self._get_column_name(metric.name, suffix="stderr"): stderr } self._metric_dicts.append(metric_dict) # update metrics dataframe with computed metrics metrics = pd.DataFrame(self._metric_dicts) self._metrics = self._metrics.merge(metrics, how="outer") # aggregate results # aggregate over cv folds metrics_by_strategy_dataset = self._metrics.groupby( ["dataset", "strategy"], as_index=False).agg(np.mean).drop( columns="cv_fold") self._metrics_by_strategy_dataset = \ self._metrics_by_strategy_dataset.merge( metrics_by_strategy_dataset, how="outer") # aggregate over cv folds and datasets metrics_by_strategy = metrics_by_strategy_dataset.groupby( ["strategy"], as_index=False).agg(np.mean) self._metrics_by_strategy = self._metrics_by_strategy.merge( metrics_by_strategy, how="outer") # append metric names self._metric_names.append(metric.name) # return aggregated results return self._metrics_by_strategy def plot_boxplots(self, metric_name=None, **kwargs): """Box plot of metric""" self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) column = self._get_column_name(metric_name, suffix="mean") fig, ax = plt.subplots(1) self.metrics_by_strategy_dataset.boxplot(by="strategy", column=column, grid=False, ax=ax, **kwargs) ax.set(title=f"{metric_name} by strategy", xlabel="strategies", ylabel=metric_name) fig.suptitle(None) plt.tight_layout() return fig, ax def rank(self, metric_name=None, ascending=False): """ Calculates the average ranks based on the performance of each estimator on each dataset """ self._check_is_evaluated() if not isinstance(ascending, bool): raise ValueError( f"`ascending` must be boolean, but found: {type(ascending)}") metric_name = self._validate_metric_name(metric_name) column = self._get_column_name(metric_name, suffix="mean") ranked = (self.metrics_by_strategy_dataset .loc[:, ["dataset", "strategy", column]] .set_index("strategy") .groupby("dataset") .rank(ascending=ascending) .reset_index() .groupby("strategy") .mean() .rename(columns={column: f"{metric_name}_mean_rank"}) .reset_index()) return ranked def t_test(self, metric_name=None): """ Runs t-test on all possible combinations between the estimators. """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) t_df = pd.DataFrame() perms = itertools.product(metrics_per_estimator_dataset.keys(), repeat=2) values = np.array([]) for perm in perms: x = np.array(metrics_per_estimator_dataset[perm[0]]) y = np.array(metrics_per_estimator_dataset[perm[1]]) t_stat, p_val = ttest_ind(x, y) t_test = { "estimator_1": perm[0], "estimator_2": perm[1], "t_stat": t_stat, "p_val": p_val } t_df = t_df.append(t_test, ignore_index=True) values = np.append(values, t_stat) values = np.append(values, p_val) index = t_df["estimator_1"].unique() values_names = ["t_stat", "p_val"] col_idx = pd.MultiIndex.from_product([index, values_names]) values_reshaped = values.reshape(len(index), len(values_names) * len(index)) values_df_multiindex = pd.DataFrame(values_reshaped, index=index, columns=col_idx) return t_df, values_df_multiindex def sign_test(self, metric_name=None): """ Non-parametric test for test for consistent differences between pairs of observations. See `<https://en.wikipedia.org/wiki/Sign_test>`_ for details about the test and `<https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy .stats.binom_test.html>`_ for details about the scipy implementation. """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) sign_df = pd.DataFrame() perms = itertools.product(metrics_per_estimator_dataset.keys(), repeat=2) for perm in perms: x = np.array(metrics_per_estimator_dataset[perm[0]]) y = np.array(metrics_per_estimator_dataset[perm[1]]) signs = np.sum([i[0] > i[1] for i in zip(x, y)]) n = len(x) p_val = stats.binom_test(signs, n) sign_test = { "estimator_1": perm[0], "estimator_2": perm[1], "p_val": p_val } sign_df = sign_df.append(sign_test, ignore_index=True) sign_df_pivot = sign_df.pivot(index="estimator_1", columns="estimator_2", values="p_val") return sign_df, sign_df_pivot def ranksum_test(self, metric_name=None): """ Non-parametric test for testing consistent differences between pairs of obeservations. The test counts the number of observations that are greater, smaller and equal to the mean `<http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test>`_. """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) ranksum_df = pd.DataFrame() perms = itertools.product(metrics_per_estimator_dataset.keys(), repeat=2) values = np.array([]) for perm in perms: x = metrics_per_estimator_dataset[perm[0]] y = metrics_per_estimator_dataset[perm[1]] t_stat, p_val = ranksums(x, y) ranksum = { "estimator_1": perm[0], "estimator_2": perm[1], "t_stat": t_stat, "p_val": p_val } ranksum_df = ranksum_df.append(ranksum, ignore_index=True) values = np.append(values, t_stat) values = np.append(values, p_val) index = ranksum_df["estimator_1"].unique() values_names = ["t_stat", "p_val"] col_idx = pd.MultiIndex.from_product([index, values_names]) values_reshaped = values.reshape(len(index), len(values_names) * len(index)) values_df_multiindex = pd.DataFrame(values_reshaped, index=index, columns=col_idx) return ranksum_df, values_df_multiindex def t_test_with_bonferroni_correction(self, metric_name=None, alpha=0.05): """ correction used to counteract multiple comparissons https://en.wikipedia.org/wiki/Bonferroni_correction """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) df_t_test, _ = self.t_test(metric_name=metric_name) idx_estim_1 = df_t_test["estimator_1"].unique() idx_estim_2 = df_t_test["estimator_2"].unique() estim_1 = len(idx_estim_1) estim_2 = len(idx_estim_2) critical_value = alpha / (estim_1 * estim_2) bonfer_test = df_t_test["p_val"] <= critical_value bonfer_test_reshaped = bonfer_test.values.reshape(estim_1, estim_2) bonfer_df = pd.DataFrame(bonfer_test_reshaped, index=idx_estim_1, columns=idx_estim_2) return bonfer_df def wilcoxon_test(self, metric_name=None): """http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test `Wilcoxon signed-rank test <https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test>`_. Tests whether two related paired samples come from the same distribution. In particular, it tests whether the distribution of the differences x-y is symmetric about zero """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) wilcoxon_df = pd.DataFrame() values = np.array([]) prod = itertools.product(metrics_per_estimator_dataset.keys(), repeat=2) for p in prod: estim_1 = p[0] estim_2 = p[1] w, p_val = stats.wilcoxon(metrics_per_estimator_dataset[p[0]], metrics_per_estimator_dataset[p[1]]) w_test = { "estimator_1": estim_1, "estimator_2": estim_2, "statistic": w, "p_val": p_val } wilcoxon_df = wilcoxon_df.append(w_test, ignore_index=True) values = np.append(values, w) values = np.append(values, p_val) index = wilcoxon_df["estimator_1"].unique() values_names = ["statistic", "p_val"] col_idx = pd.MultiIndex.from_product([index, values_names]) values_reshaped = values.reshape(len(index), len(values_names) * len(index)) values_df_multiindex = pd.DataFrame(values_reshaped, index=index, columns=col_idx) return wilcoxon_df, values_df_multiindex def friedman_test(self, metric_name=None): """ The Friedman test is a non-parametric statistical test used to detect differences in treatments across multiple test attempts. The procedure involves ranking each row (or block) together, then considering the values of ranks by columns. Implementation used: `scipy.stats <https://docs.scipy.org/doc/scipy-0.15.1/reference /generated/scipy.stats.friedmanchisquare.html>`_. """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) friedman_test = stats.friedmanchisquare( *[metrics_per_estimator_dataset[k] for k in metrics_per_estimator_dataset.keys()]) values = [friedman_test[0], friedman_test[1]] values_df = pd.DataFrame([values], columns=["statistic", "p_value"]) return friedman_test, values_df def nemenyi(self, metric_name=None): """ Post-hoc test run if the `friedman_test` reveals statistical significance. For more information see `Nemenyi test <https://en.wikipedia.org/wiki/Nemenyi_test>`_. Implementation used `scikit-posthocs <https://github.com/maximtrp/scikit-posthocs>`_. """ # lazy import to avoid hard dependency from scikit_posthocs import posthoc_nemenyi self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) metrics_per_estimator_dataset = \ self._get_metrics_per_estimator_dataset( metric_name) strategy_dict = pd.DataFrame(metrics_per_estimator_dataset) strategy_dict = strategy_dict.melt(var_name="groups", value_name="values") nemenyi = posthoc_nemenyi(strategy_dict, val_col="values", group_col="groups") return nemenyi def plot_critical_difference_diagram(self, metric_name=None, alpha=0.1): """Plot critical difference diagrams References: ----------- original implementation by Aaron Bostrom, modified by Markus Löning """ self._check_is_evaluated() metric_name = self._validate_metric_name(metric_name) column = self._get_column_name(metric_name, suffix="mean") data = (self.metrics_by_strategy_dataset .copy() .loc[:, ["dataset", "strategy", column]] .pivot(index="strategy", columns="dataset", values=column) .values ) n_strategies, n_datasets = data.shape # [N,k] = size(s); correct labels = self.results.strategy_names r = np.argsort(data, axis=0) S = np.sort(data, axis=0) idx = n_strategies * np.tile(np.arange(n_datasets), (n_strategies, 1)).T + r.T R = np.asfarray(np.tile(np.arange(n_strategies) + 1, (n_datasets, 1))) S = S.T for i in range(n_datasets): for j in range(n_strategies): index = S[i, j] == S[i, :] R[i, index] = np.mean(R[i, index], dtype=np.float64) r = np.asfarray(r) r.T.flat[idx] = R r = r.T if alpha == 0.01: qalpha = [0.000, 2.576, 2.913, 3.113, 3.255, 3.364, 3.452, 3.526, 3.590, 3.646, 3.696, 3.741, 3.781, 3.818, 3.853, 3.884, 3.914, 3.941, 3.967, 3.992, 4.015, 4.037, 4.057, 4.077, 4.096, 4.114, 4.132, 4.148, 4.164, 4.179, 4.194, 4.208, 4.222, 4.236, 4.249, 4.261, 4.273, 4.285, 4.296, 4.307, 4.318, 4.329, 4.339, 4.349, 4.359, 4.368, 4.378, 4.387, 4.395, 4.404, 4.412, 4.420, 4.428, 4.435, 4.442, 4.449, 4.456] elif alpha == 0.05: qalpha = [0.000, 1.960, 2.344, 2.569, 2.728, 2.850, 2.948, 3.031, 3.102, 3.164, 3.219, 3.268, 3.313, 3.354, 3.391, 3.426, 3.458, 3.489, 3.517, 3.544, 3.569, 3.593, 3.616, 3.637, 3.658, 3.678, 3.696, 3.714, 3.732, 3.749, 3.765, 3.780, 3.795, 3.810, 3.824, 3.837, 3.850, 3.863, 3.876, 3.888, 3.899, 3.911, 3.922, 3.933, 3.943, 3.954, 3.964, 3.973, 3.983, 3.992, 4.001, 4.009, 4.017, 4.025, 4.032, 4.040, 4.046] elif alpha == 0.1: qalpha = [0.000, 1.645, 2.052, 2.291, 2.460, 2.589, 2.693, 2.780, 2.855, 2.920, 2.978, 3.030, 3.077, 3.120, 3.159, 3.196, 3.230, 3.261, 3.291, 3.319, 3.346, 3.371, 3.394, 3.417, 3.439, 3.459, 3.479, 3.498, 3.516, 3.533, 3.550, 3.567, 3.582, 3.597, 3.612, 3.626, 3.640, 3.653, 3.666, 3.679, 3.691, 3.703, 3.714, 3.726, 3.737, 3.747, 3.758, 3.768, 3.778, 3.788, 3.797, 3.806, 3.814, 3.823, 3.831, 3.838, 3.846] else: raise Exception("alpha must be 0.01, 0.05 or 0.1") cd = qalpha[n_strategies - 1] * np.sqrt( n_strategies * (n_strategies + 1) / (6 * n_datasets)) # set up plot fig, ax = plt.subplots(1) ax.set_xlim(-0.5, 1.5) ax.set_ylim(0, 140) ax.set_axis_off() tics = np.tile(np.array(np.arange(n_strategies)) / (n_strategies - 1), (3, 1)) plt.plot(tics.flatten("F"), np.tile([100, 105, 100], (1, n_strategies)).flatten(), linewidth=2, color="black") tics = np.tile( (np.array(range(0, n_strategies - 1)) / ( n_strategies - 1)) + 0.5 / (n_strategies - 1), (3, 1)) plt.plot(tics.flatten("F"), np.tile([100, 102.5, 100], (1, n_strategies - 1)).flatten(), linewidth=1, color="black") plt.plot([0, 0, 0, cd / (n_strategies - 1), cd / (n_strategies - 1), cd / (n_strategies - 1)], [127, 123, 125, 125, 123, 127], linewidth=1, color="black") plt.text(0.5 * cd / (n_strategies - 1), 130, "CD", fontsize=12, horizontalalignment="center") for i in range(n_strategies): plt.text(i / (n_strategies - 1), 110, str(n_strategies - i), fontsize=12, horizontalalignment="center") # compute average ranks r = np.mean(r, axis=0) idx = np.argsort(r, axis=0) r = np.sort(r, axis=0) # compute statistically similar cliques clique = np.tile(r, (n_strategies, 1)) - np.tile(np.vstack(r.T), (1, n_strategies)) clique[clique < 0] = np.inf clique = clique < cd for i in range(n_strategies - 1, 0, -1): if np.all(clique[i - 1, clique[i, :]] == clique[i, clique[i, :]]): clique[i, :] = 0 n = np.sum(clique, 1) clique = clique[n > 1, :] n = np.size(clique, 0) for i in range(np.int(np.ceil(n_strategies / 2))): plt.plot([(n_strategies - r[i]) / (n_strategies - 1), (n_strategies - r[i]) / (n_strategies - 1), 1.2], [100, 100 - 5 * (n + 1) - 10 * (i + 1), 100 - 5 * (n + 1) - 10 * (i + 1)], color="black") plt.text(1.2, 100 - 5 * (n + 1) - 10 * (i + 1) + 2, "%.2f" % r[i], fontsize=10, horizontalalignment="right") plt.text(1.25, 100 - 5 * (n + 1) - 10 * (i + 1), labels[idx[i]], fontsize=12, verticalalignment="center", horizontalalignment="left") # labels displayed on the left for i in range(np.int(np.ceil(n_strategies / 2)), n_strategies): plt.plot([(n_strategies - r[i]) / (n_strategies - 1), (n_strategies - r[i]) / (n_strategies - 1), -0.2], [100, 100 - 5 * (n + 1) - 10 * (n_strategies - i), 100 - 5 * (n + 1) - 10 * (n_strategies - i)], color="black") plt.text(-0.2, 100 - 5 * (n + 1) - 10 * (n_strategies - i) + 2, "%.2f" % r[i], fontsize=10, horizontalalignment="left") plt.text(-0.25, 100 - 5 * (n + 1) - 10 * (n_strategies - i), labels[idx[i]], fontsize=12, verticalalignment="center", horizontalalignment="right") # group cliques of statistically similar classifiers for i in range(np.size(clique, 0)): R = r[clique[i, :]] plt.plot([ ((n_strategies - np.min(R)) / (n_strategies - 1)) + 0.015, ((n_strategies - np.max(R)) / (n_strategies - 1)) - 0.015 ], [100 - 5 * (i + 1), 100 - 5 * (i + 1)], linewidth=6, color="black") plt.show() return fig, ax def _get_column_name(self, metric_name, suffix="mean"): """Helper function to get column name in computed metrics dataframe""" return f"{metric_name}_{suffix}" def _check_is_evaluated(self): """Check if evaluator has evaluated any metrics""" if len(self._metric_names) == 0: raise NotEvaluatedError( "This evaluator has not evaluated any metric yet. Please call " "'evaluate' with the appropriate arguments before using this " "method.") def _validate_metric_name(self, metric_name): """Check if metric has already been evaluated""" if metric_name is None: metric_name = self._metric_names[ -1] # if None, use the last evaluated metric if metric_name not in self._metric_names: raise ValueError( f"{metric_name} has not been evaluated yet. Please call " f"'evaluate' with the appropriate arguments first") return metric_name def _get_metrics_per_estimator_dataset(self, metric_name): """Helper function to get old format back, to be deprecated""" # TODO deprecate in favor of new pandas data frame based data # representation column = f"{metric_name}_mean" df = self.metrics_by_strategy_dataset.loc[:, ["strategy", "dataset", column]].set_index( "strategy") d = {} for strategy in df.index: val = df.loc[strategy, column].tolist() val = [val] if not isinstance(val, list) else val d[strategy] = val return d def _get_metrics_per_estimator(self, metric_name): """Helper function to get old format back, to be deprecated""" # TODO deprecate in favor of new pandas data frame based data # representation columns = ["strategy", "dataset", f"{metric_name}_mean", f"{metric_name}_stderr"] df = self.metrics_by_strategy_dataset.loc[:, columns] d = {} for dataset in df.dataset.unique(): results = [] for strategy in df.strategy.unique(): row = df.loc[ (df.strategy == strategy) & (df.dataset == dataset), :] m = row["accuracy_mean"].values[0] s = row["accuracy_stderr"].values[0] results.append([strategy, m, s]) d[dataset] = results return d
40.536
79
0.552122
4a1aff91e7fac7cab3d7a78ff13185b5b0136043
920
py
Python
docs/conf.py
sandialabs/ufjc
cfaaf3ccc5af7eefb2c3f8ffc0ee09523f24bd4a
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
sandialabs/ufjc
cfaaf3ccc5af7eefb2c3f8ffc0ee09523f24bd4a
[ "BSD-3-Clause" ]
1
2022-03-22T16:22:05.000Z
2022-03-22T16:22:05.000Z
docs/conf.py
sandialabs/ufjc
cfaaf3ccc5af7eefb2c3f8ffc0ee09523f24bd4a
[ "BSD-3-Clause" ]
null
null
null
import os import sys sys.path.insert(0, os.path.abspath("../../")) project = 'uFJC' author = 'Michael R. Buche, Scott J. Grutzik' copyright = '2022 National Technology & Engineering Solutions of Sandia, \ LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, \ the U.S. Government retains certain rights in this software' templates_path = ['_templates'] html_static_path = ['_static'] html_theme = 'sphinx_rtd_theme' html_theme_options = {'navigation_depth': 8} extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'matplotlib.sphinxext.plot_directive', 'sphinxcontrib.bibtex' ] latex_engine = 'xelatex' bibtex_bibfiles = ['main.bib'] bibtex_default_style = 'plain' plot_html_show_formats = False plot_html_show_source_link = False plot_include_source = True add_module_names = False plot_rcparams = {'font.size': 10} plot_formats = [('png', 300)]
29.677419
74
0.733696
4a1affea23e5fcddb4bb64d99df74bac6ccf77e9
3,174
py
Python
sandbox/apps/python/multigrid/jacobi3D/builder.py
bollu/polymage
517657142cc3ae74e9daff3b41a0257d6a4ce2b6
[ "Apache-2.0" ]
10
2016-07-22T06:53:11.000Z
2021-02-19T06:22:00.000Z
sandbox/apps/python/multigrid/jacobi3D/builder.py
bollu/polymage
517657142cc3ae74e9daff3b41a0257d6a4ce2b6
[ "Apache-2.0" ]
null
null
null
sandbox/apps/python/multigrid/jacobi3D/builder.py
bollu/polymage
517657142cc3ae74e9daff3b41a0257d6a4ce2b6
[ "Apache-2.0" ]
2
2017-11-21T20:29:36.000Z
2021-05-21T01:52:05.000Z
from __init__ import * import sys import subprocess sys.path.insert(0, ROOT+'apps/python/') from cpp_compiler import c_compile from loader import load_lib from polymage_vcycle import v_cycle from polymage_wcycle import w_cycle from compiler import * from constructs import * def code_gen(pipe, file_name, app_data): print("") print("[builder]: writing the code to", file_name, "...") code = pipe.generate_code(is_extern_c_func=True, are_io_void_ptrs=True) f = open(file_name, 'w') f.write(code.__str__()) f.close() return def generate_graph(pipe, file_name, app_data): graph_file = file_name+".dot" png_graph = file_name+".png" print("") print("[builder]: writing the graph dot file to", graph_file, "...") graph = pipe.pipeline_graph graph.write(graph_file) print("[builder]: ... DONE") dotty_str = "dot -Tpng "+graph_file+" -o "+png_graph print("") print("[builder]: drawing the graph using dotty to", png_graph) print(">", dotty_str) subprocess.check_output(dotty_str, shell=True) print("[builder]: ... DONE") return def build_mg_cycle(app_data): pipe_data = app_data['pipe_data'] cycle_type = app_data['cycle'] if cycle_type == 'V': # construct the multigrid v-cycle pipeline mg = v_cycle(app_data) elif cycle_type == 'W': # construct the multigrid w-cycle pipeline mg = w_cycle(app_data) n = pipe_data['n'] live_outs = [mg] pipe_name = app_data['cycle_name'] p_estimates = [(n, app_data['n'])] p_constraints = [ Condition(n, "==", app_data['n']) ] t_size = [8, 8, 32] g_size = 6 opts = [] if app_data['early_free']: opts += ['early_free'] if app_data['optimize_storage']: opts += ['optimize_storage'] if app_data['pool_alloc']: opts += ['pool_alloc'] if app_data['multipar']: opts += ['multipar'] mg_pipe = buildPipeline(live_outs, param_estimates=p_estimates, param_constraints=p_constraints, tile_sizes = t_size, group_size = g_size, options = opts, pipe_name = pipe_name) return mg_pipe def create_lib(build_func, pipe_name, app_data): mode = app_data['mode'] app_args = app_data['app_args'] pipe_src = pipe_name+".cpp" pipe_so = pipe_name+".so" graph_gen = app_data['graph_gen'] if build_func != None: if mode == 'new': # build the polymage pipeline pipe = build_func(app_data) # draw the pipeline graph to a png file if graph_gen: generate_graph(pipe, pipe_name, app_data) # generate pipeline cpp source code_gen(pipe, pipe_src, app_data) #fi #fi if mode != 'ready': # compile the cpp code c_compile(pipe_src, pipe_so, app_data) #fi # load the shared library lib_func_name = "pipeline_"+pipe_name load_lib(pipe_so, lib_func_name, app_data) return
26.45
72
0.597984
4a1b001d2b36301f84ff069cca47108aaca79809
10,274
py
Python
build/plugins/gobuild.py
notimesea/catboost
1d3e0744f1d6c6d74d724878dc9fe92076c8b1ce
[ "Apache-2.0" ]
2
2019-08-11T22:21:41.000Z
2019-08-28T23:40:44.000Z
build/plugins/gobuild.py
TakeOver/stochasticrank
45f9c701785bb952c59c704a2bfe878d5cbb01e4
[ "Apache-2.0" ]
null
null
null
build/plugins/gobuild.py
TakeOver/stochasticrank
45f9c701785bb952c59c704a2bfe878d5cbb01e4
[ "Apache-2.0" ]
1
2020-10-17T09:28:08.000Z
2020-10-17T09:28:08.000Z
import base64 import itertools import md5 import os from _common import rootrel_arc_src, tobuilddir import ymake runtime_cgo_path = os.path.join('runtime', 'cgo') runtime_msan_path = os.path.join('runtime', 'msan') runtime_race_path = os.path.join('runtime', 'race') arc_project_prefix = 'a.yandex-team.ru/' import_runtime_cgo_false = { 'norace': (runtime_cgo_path, runtime_msan_path, runtime_race_path), 'race': (runtime_cgo_path, runtime_msan_path), } import_syscall_false = { 'norace': (runtime_cgo_path), 'race': (runtime_cgo_path, runtime_race_path), } def get_appended_values(unit, key): value = [] raw_value = unit.get(key) if raw_value: value = filter(lambda x: len(x) > 0, raw_value.split(' ')) assert len(value) == 0 or value[0] == '$' + key return value[1:] if len(value) > 0 else value def compare_versions(version1, version2): v1 = tuple(str(int(x)).zfill(8) for x in version1.split('.')) v2 = tuple(str(int(x)).zfill(8) for x in version2.split('.')) if v1 == v2: return 0 return 1 if v1 < v2 else -1 def go_package_name(unit): name = unit.get('GO_PACKAGE_VALUE') if not name: name = unit.get('GO_TEST_IMPORT_PATH') if name: name = os.path.basename(os.path.normpath(name)) elif unit.get('MODULE_TYPE') == 'PROGRAM': name = 'main' else: name = unit.get('REALPRJNAME') return name def need_lint(path): return not path.startswith('$S/vendor/') and not path.startswith('$S/contrib/') def on_go_process_srcs(unit): """ _GO_PROCESS_SRCS() macro processes only 'CGO' files. All remaining *.go files and other input files are currently processed by a link command of the GO module (GO_LIBRARY, GO_PROGRAM) """ srcs_files = get_appended_values(unit, 'GO_SRCS_VALUE') asm_files = [] c_files = [] cxx_files = [] ev_files = [] go_files = [] in_files = [] proto_files = [] s_files = [] syso_files = [] classifed_files = { '.c': c_files, '.cc': cxx_files, '.cpp': cxx_files, '.cxx': cxx_files, '.ev': ev_files, '.go': go_files, '.in': in_files, '.proto': proto_files, '.s': asm_files, '.syso': syso_files, '.C': cxx_files, '.S': s_files, } # Classify files specifed in _GO_SRCS() macro by extension and process CGO_EXPORT keyword # which can preceed C/C++ files only is_cgo_export = False for f in srcs_files: _, ext = os.path.splitext(f) ext_files = classifed_files.get(ext) if ext_files is not None: if is_cgo_export: is_cgo_export = False if ext in ('.c', '.cc', '.cpp', '.cxx', '.C'): unit.oncopy_file_with_context([f, f, 'OUTPUT_INCLUDES', '${BINDIR}/_cgo_export.h']) f = '${BINDIR}/' + f else: ymake.report_configure_error('Unmatched CGO_EXPORT keyword in SRCS()/_GO_SRCS() macro') ext_files.append(f) elif f == 'CGO_EXPORT': is_cgo_export = True else: # FIXME(snermolaev): We can report an unsupported files for _GO_SRCS here pass if is_cgo_export: ymake.report_configure_error('Unmatched CGO_EXPORT keyword in SRCS()/_GO_SRCS() macro') for f in go_files: if f.endswith('_test.go'): ymake.report_configure_error('file {} must be listed in GO_TEST_SRCS() or GO_XTEST_SRCS() macros'.format(f)) go_test_files = get_appended_values(unit, 'GO_TEST_SRCS_VALUE') go_xtest_files = get_appended_values(unit, 'GO_XTEST_SRCS_VALUE') for f in go_test_files + go_xtest_files: if not f.endswith('_test.go'): ymake.report_configure_error('file {} should not be listed in GO_TEST_SRCS() or GO_XTEST_SRCS() macros'.format(f)) is_test_module = unit.enabled('GO_TEST_MODULE') # Add gofmt style checks if unit.enabled('_GO_FMT_ADD_CHECK'): resolved_go_files = [] go_source_files = [] if is_test_module and unit.get(['GO_TEST_FOR_DIR']) else go_files for path in itertools.chain(go_source_files, go_test_files, go_xtest_files): if path.endswith('.go'): resolved = unit.resolve_arc_path([path]) if resolved != path and need_lint(resolved): resolved_go_files.append(resolved) if resolved_go_files: basedirs = {} for f in resolved_go_files: basedir = os.path.dirname(f) if basedir not in basedirs: basedirs[basedir] = [] basedirs[basedir].append(f) for basedir in basedirs: unit.onadd_check(['gofmt'] + basedirs[basedir]) # Go coverage instrumentation (NOTE! go_files list is modified here) if is_test_module and unit.enabled('GO_TEST_COVER'): cover_info = [] for f in go_files: if f.endswith('_test.go'): continue cover_var = 'GoCover' + base64.b32encode(f).rstrip('=') cover_file = unit.resolve_arc_path(f) unit.on_go_gen_cover_go([cover_file, cover_var]) if cover_file.startswith('$S/'): cover_file = arc_project_prefix + cover_file[3:] cover_info.append('{}:{}'.format(cover_var, cover_file)) # go_files should be empty now since the initial list shouldn't contain # any non-go or go test file. The value of go_files list will be used later # to update the value of GO_SRCS_VALUE go_files = [] unit.set(['GO_COVER_INFO_VALUE', ' '.join(cover_info)]) # We have cleaned up the list of files from GO_SRCS_VALUE var and we have to update # the value since it is used in module command line unit.set(['GO_SRCS_VALUE', ' '.join(itertools.chain(go_files, asm_files, syso_files))]) unit_path = unit.path() # Add go vet check if unit.enabled('_GO_VET_ADD_CHECK') and need_lint(unit_path): vet_report_file_name = os.path.join(unit_path, '{}{}'.format(unit.filename(), unit.get('GO_VET_REPORT_EXT'))) unit.onadd_check(["govet", '$(BUILD_ROOT)/' + tobuilddir(vet_report_file_name)[3:]]) for f in ev_files: ev_proto_file = '{}.proto'.format(f) unit.oncopy_file_with_context([f, ev_proto_file]) proto_files.append(ev_proto_file) # Process .proto files for f in proto_files: unit.on_go_proto_cmd(f) # Process .in files for f in in_files: unit.onsrc(f) # Generate .symabis for .s files (starting from 1.12 version) if compare_versions('1.12', unit.get('GOSTD_VERSION')) >= 0 and len(asm_files) > 0: unit.on_go_compile_symabis(asm_files) # Process cgo files cgo_files = get_appended_values(unit, 'CGO_SRCS_VALUE') cgo_cflags = [] if len(c_files) + len(cxx_files) + len(s_files) + len(cgo_files) > 0: if is_test_module: go_test_for_dir = unit.get('GO_TEST_FOR_DIR') if go_test_for_dir and go_test_for_dir.startswith('$S/'): cgo_cflags.append(os.path.join('-I${ARCADIA_ROOT}', go_test_for_dir[3:])) cgo_cflags.append('-I$CURDIR') unit.oncgo_cflags(cgo_cflags) cgo_cflags = get_appended_values(unit, 'CGO_CFLAGS_VALUE') for f in itertools.chain(c_files, cxx_files, s_files): unit.onsrc([f] + cgo_cflags) if len(cgo_files) > 0: if not unit.enabled('CGO_ENABLED'): ymake.report_configure_error('trying to build with CGO (CGO_SRCS is non-empty) when CGO is disabled') import_path = rootrel_arc_src(unit_path, unit) go_std_root = unit.get('GOSTD') + os.path.sep if import_path.startswith(go_std_root): import_path = import_path[len(go_std_root):] if import_path != runtime_cgo_path: unit.onpeerdir(os.path.join(go_std_root, runtime_cgo_path)) race_mode = 'race' if unit.enabled('RACE') else 'norace' import_runtime_cgo = 'false' if import_path in import_runtime_cgo_false[race_mode] else 'true' import_syscall = 'false' if import_path in import_syscall_false[race_mode] else 'true' args = [import_path] + cgo_files + ['FLAGS', '-import_runtime_cgo=' + import_runtime_cgo, '-import_syscall=' + import_syscall] unit.on_go_compile_cgo1(args) cgo2_cflags = get_appended_values(unit, 'CGO2_CFLAGS_VALUE') for f in cgo_files: if f.endswith('.go'): unit.onsrc([f[:-2] + 'cgo2.c'] + cgo_cflags + cgo2_cflags) else: ymake.report_configure_error('file {} should not be listed in CGO_SRCS() macros'.format(f)) args = [go_package_name(unit)] + cgo_files if len(c_files) > 0: args += ['C_FILES'] + c_files if len(s_files) > 0: args += ['S_FILES'] + s_files if len(syso_files) > 0: args += ['OBJ_FILES'] + syso_files unit.on_go_compile_cgo2(args) def on_go_resource(unit, *args): args = list(args) files = args[::2] keys = args[1::2] suffix_md5 = md5.new('@'.join(args)).hexdigest() resource_go = os.path.join("resource.{}.res.go".format(suffix_md5)) unit.onpeerdir(["library/go/core/resource"]) if len(files) != len(keys): ymake.report_configure_error("last file {} is missing resource key".format(files[-1])) for i, (key, filename) in enumerate(zip(keys, files)): if not key: ymake.report_configure_error("file key must be non empty") return if filename == "-" and "=" not in key: ymake.report_configure_error("key \"{}\" must contain = sign".format(key)) return # quote key, to avoid automatic substitution of filename by absolute # path in RUN_PROGRAM args[2*i+1] = "notafile" + args[2*i+1] files = [file for file in files if file != "-"] unit.onrun_program([ "library/go/core/resource/cc", "-package", go_package_name(unit), "-o", resource_go] + list(args) + [ "IN"] + files + [ "OUT", resource_go])
38.051852
134
0.619233
4a1b007ac6101853ed6782014e9c1c301c76847a
1,965
py
Python
tesla_powerwall/error.py
bdraco/tesla_powerwall
dbf4493796c13e08fef2e8ddda547ad9ef1e2469
[ "Apache-2.0" ]
null
null
null
tesla_powerwall/error.py
bdraco/tesla_powerwall
dbf4493796c13e08fef2e8ddda547ad9ef1e2469
[ "Apache-2.0" ]
null
null
null
tesla_powerwall/error.py
bdraco/tesla_powerwall
dbf4493796c13e08fef2e8ddda547ad9ef1e2469
[ "Apache-2.0" ]
null
null
null
class PowerwallError(Exception): def __init__(self, msg): super().__init__(msg) class APIError(PowerwallError): def __init__(self, error): super().__init__("Powerwall api error: {}".format(error)) class MissingAttributeError(APIError): def __init__(self, response: dict, attribute: str, url: str = None): self.response = response self.attribute = attribute self.url = url if url is None: super().__init__( "The attribute '{}' is expected in the response but is missing.".format( attribute ) ) else: super().__init__( "The attribute '{}' is expected in the response for '{}' but is missing.".format( attribute, url ) ) class PowerwallUnreachableError(PowerwallError): def __init__(self, reason=None): msg = "Powerwall is unreachable" self.reason = reason if reason is not None: msg = "{}: {}".format(msg, reason) super().__init__(msg) class AccessDeniedError(PowerwallError): def __init__(self, resource, error=None, message=None): self.resource = resource self.error = error self.message = message msg = "Access denied for resource {}".format(resource) if error is not None: if message is not None: msg = "{}: {}: {}".format(msg, error, message) else: msg = "{}: {}".format(msg, error) super().__init__(msg) class MeterNotAvailableError(PowerwallError): def __init__(self, meter, available_meters): self.meter = meter self.available_meters = available_meters super().__init__( "Meter {} is not available at your powerwall. Following meters are available: {} ".format( meter.value, available_meters ) )
31.190476
102
0.567939
4a1b007b3fe733e486c2f26f0976a154b8f3c152
3,239
py
Python
example/pybbm_private_messages/settings.py
skolsuper/pybbm_private_messages
0c89b5b0e07074902c51f7c85c418295118e5933
[ "MIT" ]
2
2015-08-30T08:44:05.000Z
2015-08-30T08:44:13.000Z
example/pybbm_private_messages/settings.py
skolsuper/pybbm_private_messages
0c89b5b0e07074902c51f7c85c418295118e5933
[ "MIT" ]
1
2015-08-29T09:55:28.000Z
2015-08-29T09:55:28.000Z
example/pybbm_private_messages/settings.py
skolsuper/pybbm_private_messages
0c89b5b0e07074902c51f7c85c418295118e5933
[ "MIT" ]
null
null
null
""" Django settings for pybbm_private_messages project. Generated by 'django-admin startproject' using Django 1.8.4. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'agg#lu3aj)8r8=2e@!7mn115p$$nf^ue1+@fv!083p$ze#le56' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_select2', 'easy_thumbnails', 'private_messages', 'pybb', 'registration', 'debug_toolbar', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'pybbm_private_messages.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'base_templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'private_messages.context_processors.unread_messages', 'pybb.context_processors.processor', ], }, }, ] WSGI_APPLICATION = 'pybbm_private_messages.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') DEBUG_TOOLBAR = { 'JQUERY_URL': 'admin/js/jquery.js' } SELECT2_BOOTSTRAP = True # Pybbm PYBB_AVATAR_WIDTH = 120 PYBB_AVATAR_HEIGHT = 120
25.706349
71
0.702377
4a1b00bb2c504076f63b9f948855ea613e074a5f
242
py
Python
allauth/socialaccount/providers/auth0_provider/urls.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/auth0_provider/urls.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
allauth/socialaccount/providers/auth0_provider/urls.py
Fuzzwah/django-allauth
071cbef1388bb61a563d3e41197bd5b7c26664d2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from allauth.socialaccount.providers.auth0_provider.provider import Auth0Provider from allauth.socialaccount.providers.oauth2_provider.urls import default_urlpatterns urlpatterns = default_urlpatterns(Auth0Provider)
34.571429
84
0.842975
4a1b028ae17a1b31ba2ea25ec82b164e403adb1a
6,868
py
Python
src/tests/TestJustIntonation.py
ytyaru/Python.MusicTheory.Temperament.JustIntonation.201709221413
0c4e24a2b35ef985ed3697659525b02667958b34
[ "CC0-1.0" ]
null
null
null
src/tests/TestJustIntonation.py
ytyaru/Python.MusicTheory.Temperament.JustIntonation.201709221413
0c4e24a2b35ef985ed3697659525b02667958b34
[ "CC0-1.0" ]
null
null
null
src/tests/TestJustIntonation.py
ytyaru/Python.MusicTheory.Temperament.JustIntonation.201709221413
0c4e24a2b35ef985ed3697659525b02667958b34
[ "CC0-1.0" ]
null
null
null
#!python3.6 import unittest import math from MusicTheory.temperament.JustIntonation import JustIntonation from MusicTheory.temperament.FundamentalTone import FundamentalTone from MusicTheory.scale.Scale import Scale from MusicTheory.scale.ScaleIntervals import ScaleIntervals from MusicTheory.pitch.PitchClass import PitchClass from MusicTheory.pitch.OctaveClass import OctaveClass from MusicTheory.pitch.NoteNumber import NoteNumber import Framework.ConstMeta """ JustIntonationのテスト。 """ class TestJustIntonation(unittest.TestCase): def test_init_Default(self): j = JustIntonation() self.assertTrue(isinstance(j.FundamentalTone, FundamentalTone)) self.assertEqual(440, j.FundamentalTone.Hz) self.assertEqual(9, j.FundamentalTone.PitchClass) self.assertEqual(5, j.FundamentalTone.OctaveClass) self.assertTrue(isinstance(j.Scale, Scale)) self.assertTrue(j.Scale.Key == 0) self.assertTrue(j.Scale.Intervals == ScaleIntervals.Major) def test_init_None(self): j = JustIntonation(None,None) self.assertTrue(isinstance(j.FundamentalTone, FundamentalTone)) self.assertEqual(440, j.FundamentalTone.Hz) self.assertEqual(9, j.FundamentalTone.PitchClass) self.assertEqual(5, j.FundamentalTone.OctaveClass) self.assertTrue(isinstance(j.Scale, Scale)) self.assertTrue(j.Scale.Key == 0) self.assertTrue(j.Scale.Intervals == ScaleIntervals.Major) def test_init_set(self): f = FundamentalTone(hz=432, pitchClass=9, octaveClass=5) s = Scale(0, ScaleIntervals.Minor) j = JustIntonation(f, s) self.assertTrue(isinstance(j.FundamentalTone, FundamentalTone)) self.assertEqual(432, j.FundamentalTone.Hz) self.assertEqual(9, j.FundamentalTone.PitchClass) self.assertEqual(5, j.FundamentalTone.OctaveClass) self.assertTrue(isinstance(j.Scale, Scale)) self.assertTrue(j.Scale.Key == 0) self.assertTrue(j.Scale.Intervals == ScaleIntervals.Minor) del f with self.assertRaises(ReferenceError) as ex: print(j.FundamentalTone) self.assertIn('weakly-referenced object no longer exists', str(ex.exception)) del s with self.assertRaises(ReferenceError) as ex: print(j.Scale) self.assertIn('weakly-referenced object no longer exists', str(ex.exception)) def test_init_Invalid_Type_FundamentalTone(self): with self.assertRaises(TypeError) as ex: j = JustIntonation('') self.assertIn('引数fundamentalToneはFundamentalTone型にしてください。', str(ex.exception)) def test_init_Scale_Type_FundamentalTone(self): with self.assertRaises(TypeError) as ex: j = JustIntonation(None, '') self.assertIn('引数scaleはScale型にしてください。', str(ex.exception)) def test_Get_A4(self): print('基音=A4(440Hz) 調=A4') f = FundamentalTone(hz=440, pitchClass=9, octaveClass=5) s = Scale(9, ScaleIntervals.Major) j = JustIntonation(f, s) for p in range(PitchClass.Max+1): print(j.GetFrequency(p, 5)) #正解の基準がない。出た数値が正解ということにする。 def test_Get_C4(self): print('基音=A4(440Hz) 調=C4') f = FundamentalTone(hz=440, pitchClass=9, octaveClass=5) s = Scale(0, ScaleIntervals.Major) j = JustIntonation(f, s) for p in range(PitchClass.Max+1): print(j.GetFrequency(p, 5)) #正解の基準がない。出た数値が正解ということにする。 print('純正律の周波数において、正解の基準が見つけられなかった。出た数値が正解ということにする。') """ def test_Get(self): print('test_Get') e = EqualTemperament() expecteds = [261,277,293,311,329,349,369,391,415,440,466,493] for p in range(PitchClass.Max+1): print(e.GetFrequency(p, 5)) self.assertEqual(expecteds[p], math.floor(e.GetFrequency(p, 5))) def test_Get_MinOctave(self): print('test_Get_MinOctave') e = EqualTemperament() expecteds = [261,277,293,311,329,349,369,391,415,440,466,493] for p in range(PitchClass.Max+1): print(e.GetFrequency(p, 0)) self.assertEqual(math.floor(expecteds[p]/math.pow(2,5)), math.floor(e.GetFrequency(p, 0))) def test_Get_MaxOctave(self): print('test_Get_MaxOctave') e = EqualTemperament() expecteds = [8372,8869,9397,9956,10548,11175,11839,12543] for p in range(PitchClass.Max+1): if p + (10 * (PitchClass.Max+1)) < 128: print(e.GetFrequency(p, 10)) self.assertEqual(expecteds[p], math.floor(e.GetFrequency(p, 10))) def test_Get_Low(self): print('test_Get_Low') e = EqualTemperament() expecteds = [261,277,293,311,329,349,369,391,415,440,466,493] for p in range(PitchClass.Max+1): print(e.GetFrequency(p, 5-1)) self.assertEqual(math.floor(expecteds[p]/2), math.floor(e.GetFrequency(p, 5-1))) def test_Get_Hi(self): print('test_Get_Low') e = EqualTemperament() expecteds = [261,277,293,311,329,349,369,391,415,440,466,493] for p in range(PitchClass.Max+1): print(e.GetFrequency(p, 5+1)) self.assertIn(math.floor(e.GetFrequency(p, 5+1)), [math.floor(expecteds[p]*2), math.floor(expecteds[p]*2)+1]) def test_Get_Invalid_Type_PitchClass(self): e = EqualTemperament() with self.assertRaises(TypeError) as ex: e.GetFrequency('pitch', 5) self.assertIn('引数pitchClassはint型にしてください。', str(ex.exception)) def test_Get_Invalid_Type_OctaveClass(self): e = EqualTemperament() with self.assertRaises(TypeError) as ex: e.GetFrequency(9, 'octave') self.assertIn('引数octaveはint型にしてください。', str(ex.exception)) def test_Get_OutOfRange_Pitch_Min(self): e = EqualTemperament() with self.assertRaises(ValueError) as ex: e.GetFrequency(-1, 5) self.assertIn(f'引数pitchClassは{PitchClass.Min}〜{PitchClass.Max}までの整数値にしてください。', str(ex.exception)) def test_Get_OutOfRange_Pitch_Max(self): e = EqualTemperament() with self.assertRaises(ValueError) as ex: e.GetFrequency(12, 5) self.assertIn(f'引数pitchClassは{PitchClass.Min}〜{PitchClass.Max}までの整数値にしてください。', str(ex.exception)) def test_Get_OutOfRange_Octave_Min(self): e = EqualTemperament() with self.assertRaises(ValueError) as ex: e.GetFrequency(9, -1) self.assertIn('引数octaveは0〜10の値にしてください。', str(ex.exception)) def test_Get_OutOfRange_Octave_Max(self): e = EqualTemperament() with self.assertRaises(ValueError) as ex: e.GetFrequency(9, 11) self.assertIn('引数octaveは0〜10の値にしてください。', str(ex.exception)) """ if __name__ == '__main__': unittest.main()
44.888889
121
0.660891
4a1b02a3d2b451a8c03590500003f7dfc339fa5b
3,332
py
Python
examples/ex_cnn_cascade_training_face_detection/preprocess_negative.py
KayaDevSolutions/deepgaze
a6d444c70bb75ffcfc23d3b31a0567711fb956a7
[ "MIT" ]
1,653
2016-05-06T02:56:08.000Z
2022-03-26T16:34:30.000Z
examples/ex_cnn_cascade_training_face_detection/preprocess_negative.py
KayaDevSolutions/deepgaze
a6d444c70bb75ffcfc23d3b31a0567711fb956a7
[ "MIT" ]
94
2016-04-09T04:40:08.000Z
2022-03-31T08:52:17.000Z
examples/ex_cnn_cascade_training_face_detection/preprocess_negative.py
KayaDevSolutions/deepgaze
a6d444c70bb75ffcfc23d3b31a0567711fb956a7
[ "MIT" ]
514
2016-08-28T01:47:56.000Z
2022-01-30T13:42:39.000Z
#!/usr/bin/env python # The MIT License (MIT) # Copyright (c) 2017 Massimiliano Patacchiola # https://mpatacchiola.github.io # https://mpatacchiola.github.io/blog/ # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np from six.moves import cPickle as pickle import cv2 import os import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('-s', '--img_size', required=True, help='The size of the images: 12, 24, 48') parser.add_argument('-i', '--input_directory', required=True, help='The directory containing the images') args = vars(parser.parse_args()) img_size = int(args['img_size']) # size to resize the image to image_list = list() dataset_path = args['input_directory'] # "./detection/pos_faces" counter = 1 for root, dirs, files in os.walk(dataset_path): for filename in files: if filename.endswith(".jpg"): image_path = os.path.join(root, filename) image = cv2.imread(image_path) image_dimension = image.shape[0] if image_dimension >= img_size: print("Image number ..... " + str(counter)) print("Image name ..... " + str(filename)) print("Image dimension ..... " + str(image_dimension)) print("") image_rescaled = cv2.resize(image, (img_size,img_size), interpolation = cv2.INTER_AREA) image_list.append(image_rescaled) counter += 1 else: print("Image rejected!") print("Image name ..... " + str(filename)) print("Image dimension ..... " + str(image_dimension)) print("") # Creating the dataset tot_images = counter training_label = np.zeros((tot_images, 2)) training_label[:,1] = 1 training_dataset = np.asarray(image_list) # Store in pickle pickle_file = "./negative_dataset_" + str(img_size) + "net_" + str(tot_images) + ".pickle" print("Saving the dataset in: " + pickle_file) print("... ") try: print("Opening the file...") f = open(pickle_file, 'wb') save = {'training_dataset': training_dataset, 'training_label': training_label} print("Training dataset: ", training_dataset.shape) print("Training label: ", training_label.shape) print("Saving the file...") pickle.dump(save, f, pickle.HIGHEST_PROTOCOL) print("Closing the file...") f.close() print("") print("The dataset has been saved and it is ready for the training! \n") print("") except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise if __name__ == "__main__": main()
39.666667
141
0.602041
4a1b03043b73c3778abaa3869d3682c6dbd77061
1,153
py
Python
parsers/pyBSRP/build/lib/bsrp/protocols/clearchanneljson.py
uky-transport-data-science/BSR_parsers
2d3a34b76481b94c74df8ab406340eb62aac28ab
[ "Apache-2.0" ]
4
2019-12-27T13:33:33.000Z
2022-01-20T14:08:22.000Z
parsers/pyBSRP/build/lib/bsrp/protocols/clearchanneljson.py
uky-transport-data-science/BSR_parsers
2d3a34b76481b94c74df8ab406340eb62aac28ab
[ "Apache-2.0" ]
null
null
null
parsers/pyBSRP/build/lib/bsrp/protocols/clearchanneljson.py
uky-transport-data-science/BSR_parsers
2d3a34b76481b94c74df8ab406340eb62aac28ab
[ "Apache-2.0" ]
1
2021-03-16T16:20:40.000Z
2021-03-16T16:20:40.000Z
# Parser: bici (e.g., barcelona) import json, re def parse(df, data, utc): # df is a dict with the following keys: # [u'feedurl', u'feedname', u'bssid', u'format', u'feedurl2', u'keyreq', u'parsername', u'rid'] # parse out desired info # does the file have valid content try: json_data = json.loads(data) except ValueError: print(utc + ' ' + df['bssid'] + " Parsing JSON failed for " + df['feedurl']) return False # capture clean results in clean_stations_list # stnid, lat, lng, docks, bikes, spaces, name clean_stations_list = [] for stn in json_data: if stn['status'] == 'OPN': active = 'yes' else: active = 'no' clean_stations_list.append([stn['id'], stn['lat'], stn['lon'], str(int(stn['bikes']) + int(stn['slots'])), stn['bikes'], stn['slots'], stn['name'].encode('utf8'), active]) # check if we have some data if len(clean_stations_list) == 0: print(utc + ' ' + df['bssid'] + " Parser did not find any station's data.") return False return clean_stations_list
32.942857
180
0.570685
4a1b037f7bfb6c7698b71f965e6759fb806ae1ee
17,221
py
Python
kivymd/list.py
pigogames/KivyMD
54767e9cd9552df19676af9d105700a06b2c8d71
[ "MIT" ]
null
null
null
kivymd/list.py
pigogames/KivyMD
54767e9cd9552df19676af9d105700a06b2c8d71
[ "MIT" ]
null
null
null
kivymd/list.py
pigogames/KivyMD
54767e9cd9552df19676af9d105700a06b2c8d71
[ "MIT" ]
1
2021-06-08T12:44:30.000Z
2021-06-08T12:44:30.000Z
""" Lists ===== Copyright (c) 2015 Andrés Rodríguez and KivyMD contributors - KivyMD library up to version 0.1.2 Copyright (c) 2019 Ivanov Yuri and KivyMD contributors - KivyMD library version 0.1.3 and higher For suggestions and questions: <kivydevelopment@gmail.com> This file is distributed under the terms of the same license, as the Kivy framework. `Material Design spec, Lists <https://material.io/design/components/lists.html>`_ The class :class:`MDList` in combination with a ListItem like :class:`OneLineListItem` will create a list that expands as items are added to it, working nicely with Kivy's :class:`~kivy.uix.scrollview.ScrollView`. Example ------- Kv Lang: .. code-block:: python ScrollView: do_scroll_x: False # Important for MD compliance MDList: OneLineListItem: text: "Single-line item" TwoLineListItem: text: "Two-line item" secondary_text: "Secondary text here" ThreeLineListItem: text: "Three-line item" secondary_text: "This is a multi-line label where you can "\ "fit more text than usual" Python: .. code-block:: python # Sets up ScrollView with MDList, as normally used in Android: sv = ScrollView() ml = MDList() sv.add_widget(ml) contacts = ["Paula", "John", "Kate", "Vlad"] for c in contacts: ml.add_widget( OneLineListItem( text=c ) ) Advanced usage -------------- Due to the variety in sizes and controls in the MD spec, this module suffers from a certain level of complexity to keep the widgets compliant, flexible and performant. For this KivyMD provides ListItems that try to cover the most common usecases, when those are insufficient, there's a base class called :class:`ListItem` which you can use to create your own ListItems. This documentation will only cover the provided ones, for custom implementations please refer to this module's source code. Text only ListItems ------------------- - :class:`~OneLineListItem` - :class:`~TwoLineListItem` - :class:`~ThreeLineListItem` These are the simplest ones. The :attr:`~ListItem.text` attribute changes the text in the most prominent line, while :attr:`~ListItem.secondary_text` changes the second and third line. If there are only two lines, :attr:`~ListItem.secondary_text` will shorten the text to fit in case it is too long; if a third line is available, it will instead wrap the text to make use of it. ListItems with widget containers -------------------------------- - :class:`~OneLineAvatarListItem` - :class:`~TwoLineAvatarListItem` - :class:`~ThreeLineAvatarListItem` - :class:`~OneLineIconListItem` - :class:`~TwoLineIconListItem` - :class:`~ThreeLineIconListItem` - :class:`~OneLineAvatarIconListItem` - :class:`~TwoLineAvatarIconListItem` - :class:`~ThreeLineAvatarIconListItem` These widgets will take other widgets that inherit from :class:`~ILeftBody`, :class:`ILeftBodyTouch`, :class:`~IRightBody` or :class:`~IRightBodyTouch` and put them in their corresponding container. As the name implies, :class:`~ILeftBody` and :class:`~IRightBody` will signal that the widget goes into the left or right container, respectively. :class:`~ILeftBodyTouch` and :class:`~IRightBodyTouch` do the same thing, except these widgets will also receive touch events that occur within their surfaces. Python example: .. code-block:: python class ContactPhoto(ILeftBody, AsyncImage): pass class MessageButton(IRightBodyTouch, MDIconButton): phone_number = StringProperty() def on_release(self): # sample code: Dialer.send_sms(phone_number, "Hey! What's up?") pass # Sets up ScrollView with MDList, as normally used in Android: sv = ScrollView() ml = MDList() sv.add_widget(ml) contacts = [ ["Annie", "555-24235", "http://myphotos.com/annie.png"], ["Bob", "555-15423", "http://myphotos.com/bob.png"], ["Claire", "555-66098", "http://myphotos.com/claire.png"] ] for c in contacts: item = TwoLineAvatarIconListItem( text=c[0], secondary_text=c[1] ) item.add_widget(ContactPhoto(source=c[2])) item.add_widget(MessageButton(phone_number=c[1]) ml.add_widget(item) API --- """ from kivy.lang import Builder from kivy.metrics import dp from kivy.properties import ObjectProperty, StringProperty, NumericProperty,\ ListProperty, OptionProperty from kivy.uix.behaviors import ButtonBehavior from kivy.uix.floatlayout import FloatLayout from kivy.uix.gridlayout import GridLayout import kivymd.material_resources as m_res from kivymd.ripplebehavior import RectangularRippleBehavior from kivymd.theming import ThemableBehavior from kivymd.font_definitions import theme_font_styles Builder.load_string(''' #:import m_res kivymd.material_resources <MDList> cols: 1 size_hint_y: None height: self._min_list_height padding: 0, self._list_vertical_padding <BaseListItem> size_hint_y: None canvas: Color: rgba: self.theme_cls.divider_color if root.divider is not None\ else (0, 0, 0, 0) Line: points: (root.x ,root.y, root.x+self.width, root.y)\ if root.divider == 'Full' else\ (root.x+root._txt_left_pad, root.y,\ root.x+self.width-root._txt_left_pad-root._txt_right_pad,\ root.y) BoxLayout: id: _text_container orientation: 'vertical' pos: root.pos padding: root._txt_left_pad, root._txt_top_pad,\ root._txt_right_pad, root._txt_bot_pad MDLabel: id: _lbl_primary text: root.text font_style: root.font_style theme_text_color: root.theme_text_color text_color: root.text_color size_hint_y: None height: self.texture_size[1] markup: True shorten_from: 'right' shorten: True MDLabel: id: _lbl_secondary text: '' if root._num_lines == 1 else root.secondary_text font_style: root.secondary_font_style theme_text_color: root.secondary_theme_text_color text_color: root.secondary_text_color size_hint_y: None height: 0 if root._num_lines == 1 else self.texture_size[1] shorten: True if root._num_lines == 2 else False shorten_from: 'right' markup: True <OneLineAvatarListItem> BoxLayout: id: _left_container size_hint: None, None x: root.x + dp(16) y: root.y + root.height/2 - self.height/2 size: dp(40), dp(40) <ThreeLineAvatarListItem> BoxLayout: id: _left_container size_hint: None, None x: root.x + dp(16) y: root.y + root.height - root._txt_top_pad - self.height - dp(5) size: dp(40), dp(40) <OneLineIconListItem> BoxLayout: id: _left_container size_hint: None, None x: root.x + dp(16) y: root.y + root.height/2 - self.height/2 size: dp(48), dp(48) <ThreeLineIconListItem> BoxLayout: id: _left_container size_hint: None, None x: root.x + dp(16) y: root.y + root.height - root._txt_top_pad - self.height - dp(5) size: dp(48), dp(48) <OneLineRightIconListItem> BoxLayout: id: _right_container size_hint: None, None x: root.x + root.width - m_res.HORIZ_MARGINS - self.width y: root.y + root.height/2 - self.height/2 size: dp(48), dp(48) <ThreeLineRightIconListItem> BoxLayout: id: _right_container size_hint: None, None x: root.x + root.width - m_res.HORIZ_MARGINS - self.width y: root.y + root.height/2 - self.height/2 size: dp(48), dp(48) <OneLineAvatarIconListItem> BoxLayout: id: _right_container size_hint: None, None x: root.x + root.width - m_res.HORIZ_MARGINS - self.width y: root.y + root.height/2 - self.height/2 size: dp(48), dp(48) <TwoLineAvatarIconListItem> BoxLayout: id: _right_container size_hint: None, None x: root.x + root.width - m_res.HORIZ_MARGINS - self.width y: root.y + root.height/2 - self.height/2 size: dp(48), dp(48) <ThreeLineAvatarIconListItem> BoxLayout: id: _right_container size_hint: None, None x: root.x + root.width - m_res.HORIZ_MARGINS - self.width y: root.y + root.height - root._txt_top_pad - self.height - dp(5) size: dp(48), dp(48) ''') class MDList(GridLayout): """ListItem container. Best used in conjunction with a :class:`kivy.uix.ScrollView`. When adding (or removing) a widget, it will resize itself to fit its children, plus top and bottom paddings as described by the MD spec. """ selected = ObjectProperty() _min_list_height = dp(16) _list_vertical_padding = dp(8) icon = StringProperty() def add_widget(self, widget, index=0, canvas=None): super().add_widget(widget, index, canvas) self.height += widget.height def remove_widget(self, widget): super().remove_widget(widget) self.height -= widget.height class BaseListItem(ThemableBehavior, RectangularRippleBehavior, ButtonBehavior, FloatLayout): """Base class to all ListItems. Not supposed to be instantiated on its own. """ text = StringProperty() """Text shown in the first line. :attr:`text` is a :class:`~kivy.properties.StringProperty` and defaults to "". """ text_color = ListProperty(None) """ Text color used if theme_text_color is set to 'Custom' """ font_style = OptionProperty('Subtitle1', options=theme_font_styles) theme_text_color = StringProperty('Primary', allownone=True) """ Theme text color for primary text """ secondary_text = StringProperty() """Text shown in the second and potentially third line. The text will wrap into the third line if the ListItem's type is set to \'one-line\'. It can be forced into the third line by adding a \\n escape sequence. :attr:`secondary_text` is a :class:`~kivy.properties.StringProperty` and defaults to "". """ secondary_text_color = ListProperty(None) """ Text color used for secondary text if secondary_theme_text_color is set to 'Custom' """ secondary_theme_text_color = StringProperty('Secondary', allownone=True) """ Theme text color for secondary primary text """ secondary_font_style = OptionProperty('Body1', options=theme_font_styles) divider = OptionProperty('Full', options=['Full', 'Inset', None], allownone=True) _txt_left_pad = NumericProperty(dp(16)) _txt_top_pad = NumericProperty() _txt_bot_pad = NumericProperty() _txt_right_pad = NumericProperty(m_res.HORIZ_MARGINS) _num_lines = 2 class ILeftBody: """Pseudo-interface for widgets that go in the left container for ListItems that support it. Implements nothing and requires no implementation, for annotation only. """ pass class ILeftBodyTouch: """Same as :class:`~ILeftBody`, but allows the widget to receive touch events instead of triggering the ListItem's ripple effect """ pass class IRightBody: """Pseudo-interface for widgets that go in the right container for ListItems that support it. Implements nothing and requires no implementation, for annotation only. """ pass class IRightBodyTouch: """Same as :class:`~IRightBody`, but allows the widget to receive touch events instead of triggering the ListItem's ripple effect """ pass class ContainerSupport: """Overrides add_widget in a ListItem to include support for I*Body widgets when the appropiate containers are present. """ _touchable_widgets = ListProperty() def add_widget(self, widget, index=0): if issubclass(widget.__class__, ILeftBody): self.ids._left_container.add_widget(widget) elif issubclass(widget.__class__, ILeftBodyTouch): self.ids._left_container.add_widget(widget) self._touchable_widgets.append(widget) elif issubclass(widget.__class__, IRightBody): self.ids._right_container.add_widget(widget) elif issubclass(widget.__class__, IRightBodyTouch): self.ids._right_container.add_widget(widget) self._touchable_widgets.append(widget) else: return super().add_widget(widget) def remove_widget(self, widget): super().remove_widget(widget) if widget in self._touchable_widgets: self._touchable_widgets.remove(widget) def on_touch_down(self, touch): if self.propagate_touch_to_touchable_widgets(touch, 'down'): return super().on_touch_down(touch) def on_touch_move(self, touch, *args): if self.propagate_touch_to_touchable_widgets(touch, 'move', *args): return super().on_touch_move(touch, *args) def on_touch_up(self, touch): if self.propagate_touch_to_touchable_widgets(touch, 'up'): return super().on_touch_up(touch) def propagate_touch_to_touchable_widgets(self, touch, touch_event, *args): triggered = False for i in self._touchable_widgets: if i.collide_point(touch.x, touch.y): triggered = True if touch_event == 'down': i.on_touch_down(touch) elif touch_event == 'move': i.on_touch_move(touch, *args) elif touch_event == 'up': i.on_touch_up(touch) return triggered class OneLineListItem(BaseListItem): """A one line list item""" _txt_top_pad = NumericProperty(dp(16)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) _num_lines = 1 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(48) class TwoLineListItem(BaseListItem): """A two line list item""" _txt_top_pad = NumericProperty(dp(20)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(72) class ThreeLineListItem(BaseListItem): """A three line list item""" _txt_top_pad = NumericProperty(dp(16)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) _num_lines = 3 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(88) class OneLineAvatarListItem(ContainerSupport, BaseListItem): _txt_left_pad = NumericProperty(dp(72)) _txt_top_pad = NumericProperty(dp(20)) _txt_bot_pad = NumericProperty(dp(19)) # dp(24) - dp(5) _num_lines = 1 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(56) class TwoLineAvatarListItem(OneLineAvatarListItem): _txt_top_pad = NumericProperty(dp(20)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) _num_lines = 2 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(72) class ThreeLineAvatarListItem(ContainerSupport, ThreeLineListItem): _txt_left_pad = NumericProperty(dp(72)) class OneLineIconListItem(ContainerSupport, OneLineListItem): _txt_left_pad = NumericProperty(dp(72)) class TwoLineIconListItem(OneLineIconListItem): _txt_top_pad = NumericProperty(dp(20)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) _num_lines = 2 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(72) class ThreeLineIconListItem(ContainerSupport, ThreeLineListItem): _txt_left_pad = NumericProperty(dp(72)) class OneLineRightIconListItem(ContainerSupport, OneLineListItem): # dp(40) = dp(16) + dp(24): _txt_right_pad = NumericProperty(dp(40) + m_res.HORIZ_MARGINS) class TwoLineRightIconListItem(OneLineRightIconListItem): _txt_top_pad = NumericProperty(dp(20)) _txt_bot_pad = NumericProperty(dp(15)) # dp(20) - dp(5) _num_lines = 2 def __init__(self, **kwargs): super().__init__(**kwargs) self.height = dp(72) class ThreeLineRightIconListItem(ContainerSupport, ThreeLineListItem): # dp(40) = dp(16) + dp(24): _txt_right_pad = NumericProperty(dp(40) + m_res.HORIZ_MARGINS) class OneLineAvatarIconListItem(OneLineAvatarListItem): # dp(40) = dp(16) + dp(24): _txt_right_pad = NumericProperty(dp(40) + m_res.HORIZ_MARGINS) class TwoLineAvatarIconListItem(TwoLineAvatarListItem): # dp(40) = dp(16) + dp(24): _txt_right_pad = NumericProperty(dp(40) + m_res.HORIZ_MARGINS) class ThreeLineAvatarIconListItem(ThreeLineAvatarListItem): # dp(40) = dp(16) + dp(24): _txt_right_pad = NumericProperty(dp(40) + m_res.HORIZ_MARGINS)
29.897569
81
0.657976
4a1b0447bc6a57ace04a072cae09d8a467840072
965
py
Python
sampler2.py
benthomasson/zeromq_capnproto_test
fc33f85f0c68148060fa78dc78edf7d334e1f791
[ "Apache-2.0" ]
null
null
null
sampler2.py
benthomasson/zeromq_capnproto_test
fc33f85f0c68148060fa78dc78edf7d334e1f791
[ "Apache-2.0" ]
null
null
null
sampler2.py
benthomasson/zeromq_capnproto_test
fc33f85f0c68148060fa78dc78edf7d334e1f791
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import capnp # noqa import measurements_capnp import psutil import zmq import time import datetime from itertools import count context = zmq.Context() socket = context.socket(zmq.PUB) socket.bind("tcp://*:5559") counter = count(0) def sample(): timestamp = datetime.datetime.utcnow().isoformat() sample = measurements_capnp.Measurements.new_message() sample.timestamp = timestamp sample.id = next(counter) sample.cpu.cpu = psutil.cpu_percent() mem = psutil.virtual_memory() sample.memory.total = mem.total sample.memory.available = mem.available sample.memory.percent = mem.percent sample.memory.used = mem.used sample.memory.free = mem.free sample.memory.active = mem.active sample.memory.inactive = mem.inactive socket.send_multipart([b"Measurements", sample.to_bytes()]) while True: sample() time.sleep(0.1)
24.74359
63
0.719171
4a1b0551137d80a5c0e2d4758d79fcdf2021ba87
535
py
Python
django/djangoproject/burger_restaurant/migrations/0016_alter_order_order_status.py
Mango-Smoothie/Burger_Restaurant
858ac08d0791a536993ce253c6741b4b073d4e84
[ "MIT" ]
1
2021-11-30T14:13:41.000Z
2021-11-30T14:13:41.000Z
django/djangoproject/burger_restaurant/migrations/0016_alter_order_order_status.py
Mango-Smoothie/Burger_Restaurant
858ac08d0791a536993ce253c6741b4b073d4e84
[ "MIT" ]
null
null
null
django/djangoproject/burger_restaurant/migrations/0016_alter_order_order_status.py
Mango-Smoothie/Burger_Restaurant
858ac08d0791a536993ce253c6741b4b073d4e84
[ "MIT" ]
null
null
null
# Generated by Django 3.2.8 on 2021-11-29 13:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('burger_restaurant', '0015_alter_customer_options'), ] operations = [ migrations.AlterField( model_name='order', name='order_status', field=models.CharField(choices=[('Not Started', 'Not Started'), ('In Progress', 'In Progress'), ('Finished', 'Finished')], max_length=100, verbose_name='Order Status'), ), ]
28.157895
180
0.629907
4a1b05ca6d1001e5da9f3754ccd44ddc9731f7b1
1,926
py
Python
tests/test_init_extra.py
google/evojax
d5b450b1834683e8b2196d081d8602fc14f262d9
[ "Apache-2.0" ]
365
2022-02-08T07:41:33.000Z
2022-03-31T23:35:35.000Z
tests/test_init_extra.py
google/evojax
d5b450b1834683e8b2196d081d8602fc14f262d9
[ "Apache-2.0" ]
16
2022-02-13T11:29:53.000Z
2022-03-31T11:00:34.000Z
tests/test_init_extra.py
google/evojax
d5b450b1834683e8b2196d081d8602fc14f262d9
[ "Apache-2.0" ]
24
2022-02-11T04:19:35.000Z
2022-03-15T02:44:35.000Z
# Copyright 2022 The EvoJAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class TestTask: def test_mnist(self): import sys if sys.version_info.major == 3 and sys.version_info.minor <= 9: # python<=3.9, required by the optional torchvision (see https://pypi.org/project/torchvision/) from evojax.task.mnist import MNIST _ = MNIST() assert True def test_mdkp(self): from evojax.task.mdkp import MDKP _ = MDKP() assert True class TestPolicy: pass class TestAlgo: def test_cma(self): from evojax.algo import CMA _ = CMA(pop_size=16, param_size=16) assert True def test_simple_ga(self): from evojax.algo import SimpleGA _ = SimpleGA(pop_size=16, param_size=16) assert True def test_open_es(self): import sys if sys.version_info.major == 3 and sys.version_info.minor >= 7: # python>=3.7, required by the optional evosax from evojax.algo import OpenES _ = OpenES(pop_size=16, param_size=16) assert True def test_ars(self): import sys if sys.version_info.major == 3 and sys.version_info.minor >= 7: # python>=3.7, required by the optional evosax from evojax.algo import ARS _ = ARS(pop_size=16, param_size=16) assert True
31.064516
107
0.646417
4a1b0632906bc73b224de08cf337f803b06ec06a
263
py
Python
django_fastapi/api/admin.py
sfcol/fast-api-django
849f6055b580024f409a6a6e215284f818d57323
[ "MIT" ]
null
null
null
django_fastapi/api/admin.py
sfcol/fast-api-django
849f6055b580024f409a6a6e215284f818d57323
[ "MIT" ]
null
null
null
django_fastapi/api/admin.py
sfcol/fast-api-django
849f6055b580024f409a6a6e215284f818d57323
[ "MIT" ]
null
null
null
from django.contrib import admin from api.models import Item , User @admin.register(Item) class ItemAdmin(admin.ModelAdmin): list_display = ("id", "title") @admin.register(User) class ItemAdmin(admin.ModelAdmin): list_display = ("id", "name", "email")
21.916667
42
0.718631
4a1b06b1db20c4fff4a19d1079b2dc471f00817e
4,793
py
Python
kubernetes/client/models/v1_label_selector.py
craigtracey/python
177564c655c0ea3f9cf38e61ca275ef6c6256aab
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_label_selector.py
craigtracey/python
177564c655c0ea3f9cf38e61ca275ef6c6256aab
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_label_selector.py
craigtracey/python
177564c655c0ea3f9cf38e61ca275ef6c6256aab
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.9.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1LabelSelector(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'match_expressions': 'list[V1LabelSelectorRequirement]', 'match_labels': 'dict(str, str)' } attribute_map = { 'match_expressions': 'matchExpressions', 'match_labels': 'matchLabels' } def __init__(self, match_expressions=None, match_labels=None): """ V1LabelSelector - a model defined in Swagger """ self._match_expressions = None self._match_labels = None self.discriminator = None if match_expressions is not None: self.match_expressions = match_expressions if match_labels is not None: self.match_labels = match_labels @property def match_expressions(self): """ Gets the match_expressions of this V1LabelSelector. matchExpressions is a list of label selector requirements. The requirements are ANDed. :return: The match_expressions of this V1LabelSelector. :rtype: list[V1LabelSelectorRequirement] """ return self._match_expressions @match_expressions.setter def match_expressions(self, match_expressions): """ Sets the match_expressions of this V1LabelSelector. matchExpressions is a list of label selector requirements. The requirements are ANDed. :param match_expressions: The match_expressions of this V1LabelSelector. :type: list[V1LabelSelectorRequirement] """ self._match_expressions = match_expressions @property def match_labels(self): """ Gets the match_labels of this V1LabelSelector. matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed. :return: The match_labels of this V1LabelSelector. :rtype: dict(str, str) """ return self._match_labels @match_labels.setter def match_labels(self, match_labels): """ Sets the match_labels of this V1LabelSelector. matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is \"key\", the operator is \"In\", and the values array contains only \"value\". The requirements are ANDed. :param match_labels: The match_labels of this V1LabelSelector. :type: dict(str, str) """ self._match_labels = match_labels def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1LabelSelector): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
30.922581
269
0.606718
4a1b08b538c2c588b39e1f8899c4466f64b04ffe
9,525
py
Python
xesmf/tests/test_backend.py
andersy005/xESMF
3b23a7ee6b5a580882bd62cd1ef5bf7062f4ba4d
[ "MIT" ]
1
2020-11-07T18:55:41.000Z
2020-11-07T18:55:41.000Z
xesmf/tests/test_backend.py
andersy005/xESMF
3b23a7ee6b5a580882bd62cd1ef5bf7062f4ba4d
[ "MIT" ]
null
null
null
xesmf/tests/test_backend.py
andersy005/xESMF
3b23a7ee6b5a580882bd62cd1ef5bf7062f4ba4d
[ "MIT" ]
null
null
null
import os import ESMF import numpy as np import pytest import xarray as xr from numpy.testing import assert_almost_equal, assert_equal import xesmf as xe from xesmf.backend import ( add_corner, esmf_grid, esmf_locstream, esmf_regrid_apply, esmf_regrid_build, esmf_regrid_finalize, warn_f_contiguous, warn_lat_range, ) from xesmf.smm import apply_weights, read_weights # We use pure numpy arrays to test backend # xarray DataSet is only used at the very beginning as a quick way to make data coord_names = ['lon', 'lat', 'lon_b', 'lat_b'] ds_in = xe.util.grid_global(20, 12) lon_in, lat_in, lon_b_in, lat_b_in = [ds_in[name].values for name in coord_names] ds_out = xe.util.grid_global(15, 9) lon_out, lat_out, lon_b_out, lat_b_out = [ds_out[name].values for name in coord_names] # shortcut to test a single grid lon, lat, lon_b, lat_b = [lon_in, lat_in, lon_b_in, lat_b_in] # input test data ds_in['data'] = xe.data.wave_smooth(ds_in['lon'], ds_in['lat']) data_in = ds_in['data'].values # reference output data, calculated analytically ds_out['data_ref'] = xe.data.wave_smooth(ds_out['lon'], ds_out['lat']) data_ref = ds_out['data_ref'].values # 4D data to test broadcasting, increasing linearly with time and lev ds_in.coords['time'] = np.arange(1, 11) ds_in.coords['lev'] = np.arange(1, 51) ds_in['data4D'] = ds_in['time'] * ds_in['lev'] * ds_in['data'] data4D_in = ds_in['data4D'].values def test_warn_f_on_array(): a = np.zeros([2, 2], order='C') with pytest.warns(UserWarning): warn_f_contiguous(a) def test_warn_f_on_grid(): # should throw a warning if not passing transpose with pytest.warns(UserWarning): esmf_grid(lon, lat) def test_warn_lat_range(): # latitude goes to -100 (invalid value) ds_temp = xe.util.grid_2d(-180, 180, 10, -100, 90, 5) with pytest.warns(UserWarning): warn_lat_range(ds_temp['lat'].values) with pytest.warns(UserWarning): warn_lat_range(ds_temp['lat_b'].values) def test_esmf_grid_with_corner(): # only center coordinate, no corners # remember to pass transpose (F-ordered) to backend grid = esmf_grid(lon.T, lat.T) # make sure coordinate values agree assert_equal(grid.coords[0][0], lon.T) assert_equal(grid.coords[0][1], lat.T) # make sure meta data agree assert not grid.has_corners # no corner yet! assert grid.staggerloc == [True, False, False, False] assert grid.coord_sys is ESMF.CoordSys.SPH_DEG assert grid.rank == 2 assert_equal(grid.size[0], lon.T.shape) assert_equal(grid.upper_bounds[0], lon.T.shape) assert_equal(grid.lower_bounds[0], np.array([0, 0])) # now add corner information add_corner(grid, lon_b.T, lat_b.T) # coordinate values assert_equal(grid.coords[3][0], lon_b.T) assert_equal(grid.coords[3][1], lat_b.T) # metadata assert grid.has_corners # should have corner now assert grid.staggerloc == [True, False, False, True] assert_equal(grid.size[3], lon_b.T.shape) assert_equal(grid.upper_bounds[3], lon_b.T.shape) assert_equal(grid.lower_bounds[3], np.array([0, 0])) def test_esmf_build_bilinear(): grid_in = esmf_grid(lon_in.T, lat_in.T) grid_out = esmf_grid(lon_out.T, lat_out.T) regrid = esmf_regrid_build(grid_in, grid_out, 'bilinear') assert regrid.unmapped_action is ESMF.UnmappedAction.IGNORE assert regrid.regrid_method is ESMF.RegridMethod.BILINEAR # they should share the same memory regrid.srcfield.grid is grid_in regrid.dstfield.grid is grid_out esmf_regrid_finalize(regrid) def test_esmf_extrapolation(): grid_in = esmf_grid(lon_in.T, lat_in.T) grid_out = esmf_grid(lon_out.T, lat_out.T) regrid = esmf_regrid_build(grid_in, grid_out, 'bilinear') data_out_esmpy = esmf_regrid_apply(regrid, data_in.T).T # without extrapolation, the first and last lines/columns = 0 assert data_out_esmpy[0, 0] == 0 regrid = esmf_regrid_build( grid_in, grid_out, 'bilinear', extrap_method='inverse_dist', extrap_num_src_pnts=3, extrap_dist_exponent=1, ) data_out_esmpy = esmf_regrid_apply(regrid, data_in.T).T # the 3 closest points in data_in are 2.010, 2.005, and 1.992. The result should be roughly equal to 2.0 assert np.round(data_out_esmpy[0, 0], 1) == 2.0 def test_regrid(): # use conservative regridding as an example, # since it is the most well-tested studied one in papers # TODO: possible to break this long test into smaller tests? # not easy due to strong dependencies. grid_in = esmf_grid(lon_in.T, lat_in.T) grid_out = esmf_grid(lon_out.T, lat_out.T) # no corner info yet, should not be able to use conservative with pytest.raises(ValueError): esmf_regrid_build(grid_in, grid_out, 'conservative') # now add corners add_corner(grid_in, lon_b_in.T, lat_b_in.T) add_corner(grid_out, lon_b_out.T, lat_b_out.T) # also write to file for scipy regridding filename = 'test_weights.nc' if os.path.exists(filename): os.remove(filename) regrid = esmf_regrid_build(grid_in, grid_out, 'conservative', filename=filename) assert regrid.regrid_method is ESMF.RegridMethod.CONSERVE # apply regridding using ESMPy's native method data_out_esmpy = esmf_regrid_apply(regrid, data_in.T).T rel_err = (data_out_esmpy - data_ref) / data_ref # relative error assert np.max(np.abs(rel_err)) < 0.05 # apply regridding using scipy weights = read_weights(filename, lon_in.size, lon_out.size) shape_in = lon_in.shape shape_out = lon_out.shape data_out_scipy = apply_weights(weights, data_in, shape_in, shape_out) # must be almost exactly the same as esmpy's result! assert_almost_equal(data_out_scipy, data_out_esmpy) # finally, test broadcasting with scipy # TODO: need to test broadcasting with ESMPy backend? # We only use Scipy in frontend, and ESMPy is just for backend benchmark # However, it is useful to compare performance and show scipy is 3x faster data4D_out = apply_weights(weights, data4D_in, shape_in, shape_out) # data over broadcasting dimensions should agree assert_almost_equal(data4D_in.mean(axis=(2, 3)), data4D_out.mean(axis=(2, 3)), decimal=10) # clean-up esmf_regrid_finalize(regrid) os.remove(filename) def test_regrid_periodic_wrong(): # not using periodic grid grid_in = esmf_grid(lon_in.T, lat_in.T) grid_out = esmf_grid(lon_out.T, lat_out.T) assert grid_in.num_peri_dims == 0 assert grid_in.periodic_dim is None regrid = esmf_regrid_build(grid_in, grid_out, 'bilinear') data_out_esmpy = esmf_regrid_apply(regrid, data_in.T).T rel_err = (data_out_esmpy - data_ref) / data_ref # relative error assert np.max(np.abs(rel_err)) == 1.0 # some data will be missing # clean-up esmf_regrid_finalize(regrid) def test_regrid_periodic_correct(): # only need to specific periodic for input grid grid_in = esmf_grid(lon_in.T, lat_in.T, periodic=True) grid_out = esmf_grid(lon_out.T, lat_out.T) assert grid_in.num_peri_dims == 1 assert grid_in.periodic_dim == 0 # the first axis, longitude regrid = esmf_regrid_build(grid_in, grid_out, 'bilinear') data_out_esmpy = esmf_regrid_apply(regrid, data_in.T).T rel_err = (data_out_esmpy - data_ref) / data_ref # relative error assert np.max(np.abs(rel_err)) < 0.065 # clean-up esmf_regrid_finalize(regrid) def test_esmf_locstream(): lon = np.arange(5) lat = np.arange(5) ls = esmf_locstream(lon, lat) assert isinstance(ls, ESMF.LocStream) lon2d, lat2d = np.meshgrid(lon, lat) with pytest.raises(ValueError): ls = esmf_locstream(lon2d, lat2d) with pytest.raises(ValueError): ls = esmf_locstream(lon, lat2d) with pytest.raises(ValueError): ls = esmf_locstream(lon2d, lat) grid_in = esmf_grid(lon_in.T, lat_in.T, periodic=True) esmf_regrid_build(grid_in, ls, 'bilinear') esmf_regrid_build(ls, grid_in, 'nearest_s2d') def test_read_weights(tmp_path): fn = tmp_path / 'weights.nc' grid_in = esmf_grid(lon_in.T, lat_in.T) grid_out = esmf_grid(lon_out.T, lat_out.T) regrid_memory = esmf_regrid_build(grid_in, grid_out, method='bilinear') esmf_regrid_build(grid_in, grid_out, method='bilinear', filename=str(fn)) w = regrid_memory.get_weights_dict(deep_copy=True) sm = read_weights(w, lon_in.size, lon_out.size) # Test Path and string to netCDF file against weights dictionary np.testing.assert_array_equal( read_weights(fn, lon_in.size, lon_out.size).todense(), sm.todense() ) np.testing.assert_array_equal( read_weights(str(fn), lon_in.size, lon_out.size).todense(), sm.todense() ) # Test xr.Dataset np.testing.assert_array_equal( read_weights(xr.open_dataset(fn), lon_in.size, lon_out.size).todense(), sm.todense(), ) # Test COO matrix np.testing.assert_array_equal( read_weights(sm, lon_in.size, lon_out.size).todense(), sm.todense() ) # Test failures with pytest.raises(IOError): read_weights(tmp_path / 'wrong_file.nc', lon_in.size, lon_out.size) with pytest.raises(ValueError): read_weights({}, lon_in.size, lon_out.size) with pytest.raises(ValueError): ds = xr.open_dataset(fn) read_weights(ds.drop_vars('col'), lon_in.size, lon_out.size)
31.963087
108
0.704147
4a1b08c8b936516598b7726342a6673b22bfe56c
906
py
Python
tests/core/full_node/ram_db.py
Tony4467/littlelambocoin-blockchain
3d4f2b577cd5a2feb324fca50e0981a728583aee
[ "Apache-2.0" ]
null
null
null
tests/core/full_node/ram_db.py
Tony4467/littlelambocoin-blockchain
3d4f2b577cd5a2feb324fca50e0981a728583aee
[ "Apache-2.0" ]
null
null
null
tests/core/full_node/ram_db.py
Tony4467/littlelambocoin-blockchain
3d4f2b577cd5a2feb324fca50e0981a728583aee
[ "Apache-2.0" ]
null
null
null
from typing import Tuple import aiosqlite from littlelambocoin.consensus.blockchain import Blockchain from littlelambocoin.consensus.constants import ConsensusConstants from littlelambocoin.full_node.block_store import BlockStore from littlelambocoin.full_node.coin_store import CoinStore from littlelambocoin.full_node.hint_store import HintStore from littlelambocoin.util.db_wrapper import DBWrapper async def create_ram_blockchain(consensus_constants: ConsensusConstants) -> Tuple[aiosqlite.Connection, Blockchain]: connection = await aiosqlite.connect(":memory:") db_wrapper = DBWrapper(connection) block_store = await BlockStore.create(db_wrapper) coin_store = await CoinStore.create(db_wrapper) hint_store = await HintStore.create(db_wrapper) blockchain = await Blockchain.create(coin_store, block_store, consensus_constants, hint_store) return connection, blockchain
43.142857
116
0.833333
4a1b08de3dff2447956a0e48d01430ec0adb024f
3,044
py
Python
train.py
Stanford-ILIAD/RL_Routing
309beadebad84ec46fdad75b688848e36f10b214
[ "MIT" ]
4
2021-07-23T01:14:36.000Z
2022-03-05T06:24:57.000Z
train.py
Stanford-ILIAD/RL_Routing
309beadebad84ec46fdad75b688848e36f10b214
[ "MIT" ]
null
null
null
train.py
Stanford-ILIAD/RL_Routing
309beadebad84ec46fdad75b688848e36f10b214
[ "MIT" ]
1
2021-10-04T20:38:17.000Z
2021-10-04T20:38:17.000Z
import os from baselines.common import tf_util as U from baselines import logger from baselines.common import set_global_seeds import gym import gym_trafficnetwork from mpi4py import MPI from baselines.bench import Monitor sim_duration = 5.0 # hours network_type = 'multiOD' # type 'parallel' or 'general' or 'multiOD' P = 3 # number of paths (only for parallel -- the general network graph is defined inside its environment file) accident_param = 0.6 # expected number of accidents in 1 hour def train(env, seed, model_path=None): from baselines.ppo1 import mlp_policy, pposgd_simple U.make_session(num_cpu=1).__enter__() def policy_fn(name, ob_space, ac_space): return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space, hid_size=256, num_hid_layers=2) rank = MPI.COMM_WORLD.Get_rank() workerseed = seed + 10000 * rank if seed is not None else None set_global_seeds(workerseed) env_max_step_size = env.max_step_size env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank))) env.seed(workerseed) pi = pposgd_simple.learn(env, policy_fn, max_timesteps=4e7, timesteps_per_actorbatch=4*env_max_step_size, # we used 32 CPUs clip_param=0.2, entcoeff=0.005, optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, schedule='linear', ) env.close() if model_path: U.save_state(model_path) return pi def main(): logger.configure() if network_type.lower() == 'parallel': filename = 'ParallelNetworkP' + str(P) + 'Accidents' + str(1 if accident_param > 0 else 0) env = gym.make('ParallelNetwork-v0') elif network_type.lower() == 'general': filename = 'GeneralNetworkAccidents' + str(1 if accident_param > 0 else 0) env = gym.make('GeneralNetwork-v0') elif network_type.lower() == 'multiod': filename = 'GeneralNetworkMultiODAccidents' + str(1 if accident_param > 0 else 0) env = gym.make('GeneralNetworkMultiOD-v0') else: assert False, 'network_type is invalid.' model_path = os.path.join('trained_models', filename) env.set('sim_duration', sim_duration) # hours env.set('start_empty', False) env.set('start_from_equilibrium', False) if network_type.lower() == 'parallel': env.set('P', P) env.set('init_learn_rate', 0.5) env.set('constant_learn_rate', True) env.set('accident_param', accident_param) # expected number of accidents in 1 hour env.set('demand', [[[0.346,0.519],[0.346,0.519]],[[0.346,0.519],[0.346,0.519]]]) # human-driven and autonomous cars per second, respectively env.set('demand_noise_std', [[[0.0346,0.0519],[0.0346,0.0519]],[[0.0346,0.0519],[0.0346,0.0519]]]) # human-driven and autonomous cars per second, respectively # train the model train(env, seed=None, model_path=model_path) if __name__ == '__main__': main()
39.532468
162
0.672799
4a1b095a3afe086c3d2da056a45356bf53b3d58d
166
py
Python
habr_art_stat/exceptins.py
nikolnikon/otus_web_habr_art_stats
c53d03a481e666229ad998ee3f488d69972db820
[ "MIT" ]
null
null
null
habr_art_stat/exceptins.py
nikolnikon/otus_web_habr_art_stats
c53d03a481e666229ad998ee3f488d69972db820
[ "MIT" ]
null
null
null
habr_art_stat/exceptins.py
nikolnikon/otus_web_habr_art_stats
c53d03a481e666229ad998ee3f488d69972db820
[ "MIT" ]
null
null
null
class ParseError(Exception): def __init__(self, message=None): super(ParseError, self).__init__('Ошибка при парсинге сайта habr.com. {}'.format(message))
41.5
98
0.716867
4a1b0babd7102c80c9c56c4f69d8a858ed32af90
1,211
py
Python
A_Structured_Self-attentive_Sentence_Embedding_cls/build_vocab.py
aisolab/nlp_implementation
21ea6e3f5737e7074bdd8dd190e5f5172f86f6bf
[ "MIT" ]
181
2019-03-11T11:55:17.000Z
2020-05-25T04:50:21.000Z
A_Structured_Self-attentive_Sentence_Embedding_cls/build_vocab.py
aisolab/nlp_implementation
21ea6e3f5737e7074bdd8dd190e5f5172f86f6bf
[ "MIT" ]
13
2019-06-28T02:39:20.000Z
2020-05-12T07:10:14.000Z
Convolutional_Neural_Networks_for_Sentence_Classification/build_vocab.py
aisolab/nlp_implementation
21ea6e3f5737e7074bdd8dd190e5f5172f86f6bf
[ "MIT" ]
38
2019-03-13T00:57:28.000Z
2020-05-21T09:45:03.000Z
import itertools import pickle import gluonnlp as nlp import pandas as pd from pathlib import Path from model.utils import Vocab from model.split import split_morphs from utils import Config from collections import Counter # loading dataset nsmc_dir = Path("nsmc") config = Config("conf/dataset/nsmc.json") tr = pd.read_csv(config.train, sep="\t").loc[:, ["document", "label"]] # extracting morph in sentences list_of_tokens = tr["document"].apply(split_morphs).tolist() # generating the vocab token_counter = Counter(itertools.chain.from_iterable(list_of_tokens)) tmp_vocab = nlp.Vocab( counter=token_counter, min_freq=10, bos_token=None, eos_token=None ) # connecting SISG embedding with vocab ptr_embedding = nlp.embedding.create("fasttext", source="wiki.ko") tmp_vocab.set_embedding(ptr_embedding) array = tmp_vocab.embedding.idx_to_vec.asnumpy() vocab = Vocab( tmp_vocab.idx_to_token, padding_token="<pad>", unknown_token="<unk>", bos_token=None, eos_token=None, ) vocab.embedding = array # saving vocab with open(nsmc_dir / "vocab.pkl", mode="wb") as io: pickle.dump(vocab, io) config.update({"vocab": str(nsmc_dir / "vocab.pkl")}) config.save("conf/dataset/nsmc.json")
26.911111
70
0.752271
4a1b0c5694ff2e41ac0bbffcd75eaa23ba0d26a3
4,551
py
Python
src/modeline.py
tweakoz/zed64
c0231444418999191182d53d9319bf7978422bfb
[ "CC-BY-3.0" ]
4
2015-06-04T01:14:43.000Z
2018-06-16T05:45:57.000Z
src/modeline.py
tweakoz/zed64
c0231444418999191182d53d9319bf7978422bfb
[ "CC-BY-3.0" ]
null
null
null
src/modeline.py
tweakoz/zed64
c0231444418999191182d53d9319bf7978422bfb
[ "CC-BY-3.0" ]
null
null
null
import os, sys from myhdl import * from stdlib import * ########################################################### # pixelclocks ########################################################### # pixel_clocks[6], // 148.5 # pixel_clocks[5], // 74.25 # pixel_clocks[4], // 108mhz # pixel_clocks[3], // 40 # pixel_clocks[2], // 36 # pixel_clocks[1], // 27 # pixel_clocks[0], // 13.5 ########################################################### # mode lines ########################################################### #Modeline syntax: #dotclk(mhz) #hdisp hsyncstart hsyncend htotal #vdisp vsyncstart vsyncend vtotal #[flags] ########################################################### # HDTV works on sony ########################################################### #ModeLine "1920x1080" 148.50 1920 2008 2052 2200 1080 1084 1088 1125 -HSync -VSync #ModeLine "ATSC-720-60p" 74.25 1280 1320 1376 1650 720 722 728 750 mode_1080p = ( "1080p", 6, # 148.5 1920,2008,2052,2200,True, 1080,1084,1088,1125,True ) mode_720p = ( "720p", 5, # 74.25 1280,1320,1376,1650,False, 720,722,728,750,False ) ########################################################### # VESA works on sony ########################################################### #ModeLine "640x480 85hz" 36.00 640 696 752 832 480 481 484 509 -HSync -VSync #ModeLine "720x480" 27.00 720 736 798 858 480 489 495 525 -HSync -VSync #ModeLine "800x600" 40.00 800 840 968 1056 600 601 605 628 +HSync +VSync #ModeLine "1280x1024" 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +HSync +VSync mode_320t = ( "320test", 2, # 36, 320,324,328,332,True, 240,242,244,248,True ) mode_vga85 = ( "vga85", 2, # 36, 640,696,752,832,True, 480,481,484,509,True ) mode_ntscp = ( "ntscp", 1, # 27 720,736,798,858,True, 480,489,495,525,True ) mmode_svga60 = ( "svga60", 3, # 40 800,840,968,1056,False, 600,601,605,628,False ) mode_1024p = ( "1024p", 4, # 108 1280,1328,1440,1688,False, 1024,1025,1028,1066,False ) mode_test = ( "test", 4, # 108 128,130,132,134,False, 128,136,144,152,False ) modelist = [ mode_ntscp, mmode_svga60, mode_720p, mode_1024p ] #modelist = [ mode_test, mode_test, mode_test, mode_test ] ########################################################### mode_hsi,mode_hdisp,mode_hstart,mode_hend,mode_htot = [],[],[],[],[] mode_vsi,mode_vdisp,mode_vstart,mode_vend,mode_vtot = [],[],[],[],[] ########################################################### for item in modelist: name = item[0] clockid = item[1] mode_hdisp.append( item[2] ) mode_hstart.append( item[3] ) mode_hend.append( item[4] ) mode_htot.append( item[5] ) mode_hsi.append( item[6] ) mode_vdisp.append( item[7] ) mode_vstart.append( item[8] ) mode_vend.append( item[9] ) mode_vtot.append( item[10] ) mode_vsi.append( item[11] ) ########################################################### def rom(dout, addr, contents): @always_comb def read(): dout.next = contents[int(addr)] return read ########################################################### def verout(vparams,name,obj,dwidth,awidth,contents): dout = Signal(intbv(0)[dwidth:]) addr = Signal(intbv(0)[awidth:]) ios = vparams.ios outfolder = vparams.outfolder toVerilog.name = name toVerilog.timescale = vparams.timescale veri_inst = toVerilog(rom, dout, addr, contents ) os.system("mv %s.v %s/" % (name,outfolder) ) os.system("mv tb_%s.v %s/" % (name,outfolder) ) ########################################################### def gen_verilog( vparams ): verout( vparams, "modeline_hsi", rom, 1, 2, tuple(mode_hsi) ) verout( vparams, "modeline_hdisp", rom, 12, 2, tuple(mode_hdisp) ) verout( vparams, "modeline_hstart", rom, 12, 2, tuple(mode_hstart) ) verout( vparams, "modeline_hend", rom, 12, 2, tuple(mode_hend) ) verout( vparams, "modeline_htot", rom, 12, 2, tuple(mode_htot) ) verout( vparams, "modeline_vsi", rom, 1, 2, tuple(mode_vsi) ) verout( vparams, "modeline_vdisp", rom, 12, 2, tuple(mode_vdisp) ) verout( vparams, "modeline_vstart", rom, 12, 2, tuple(mode_vstart) ) verout( vparams, "modeline_vend", rom, 12, 2, tuple(mode_vend) ) verout( vparams, "modeline_vtot", rom, 12, 2, tuple(mode_vtot) ) ###########################################################
32.049296
82
0.511536
4a1b0da87656dc787def3e0421d400d2a72e7c03
3,774
py
Python
core/confdb/syntax/virtualrouter/protocols/vrrp/base.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
core/confdb/syntax/virtualrouter/protocols/vrrp/base.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
core/confdb/syntax/virtualrouter/protocols/vrrp/base.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# ---------------------------------------------------------------------- # ConfDB virtual-router <name> protocols vrrp syntax # ---------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from ....defs import DEF from ....patterns import ANY, INTEGER, IP_ADDRESS, UNIT_NAME, BOOL VRRP_SYNTAX = DEF( "vrrp", [ DEF( "group", [ DEF( ANY, [ DEF("description", [DEF(ANY, name="description", gen="make_vrrp_group")]), DEF( "virtual-address", [ DEF( "inet", [DEF(IP_ADDRESS, name="address", gen="make_vrrp_address")], ), DEF( "inet6", [DEF(IP_ADDRESS, name="address", gen="make_vrrp_address6")], ), ], ), DEF( "interface", [DEF(UNIT_NAME, name="interface", gen="make_vrrp_interface")], ), DEF("priority", [DEF(INTEGER, name="priority", gen="make_vrrp_priority")]), DEF( "authentication", [ DEF( "plain-text", [ DEF( "key", [DEF(ANY, name="key", gen="make_vrrp_plain_key")], ) ], ), DEF( "md5", [DEF("key", [DEF(ANY, name="key", gen="make_vrrp_md5_key")])], ), ], ), DEF( "timers", [ DEF( "advertise-interval", [ DEF( INTEGER, name="interval", gen="make_vrrp_advertise_interval", ) ], ) ], ), DEF( "preempt", [ DEF( "enabled", [DEF(BOOL, name="enabled", gen="make_vrrp_preempt")] ), DEF( "timer", [DEF(INTEGER, name="timer", gen="make_vrrp_preempt_timer")], ), ], ), ], name="group", multi=True, required=True, ) ], required=True, ) ], )
39.726316
99
0.222576
4a1b0dcc53e4c376a7325c4a14a7d8d4bfe1cd94
9,927
py
Python
Minesweeper.py
LuizHenriquePy/Minesweeper
23e4d3a2bcb6ef6c0a05a14bd77ab66284c6a568
[ "MIT" ]
null
null
null
Minesweeper.py
LuizHenriquePy/Minesweeper
23e4d3a2bcb6ef6c0a05a14bd77ab66284c6a568
[ "MIT" ]
null
null
null
Minesweeper.py
LuizHenriquePy/Minesweeper
23e4d3a2bcb6ef6c0a05a14bd77ab66284c6a568
[ "MIT" ]
null
null
null
from random import randint from tkinter import * from tkinter.messagebox import showinfo from functools import partial NEIGHBORS = [ lambda x, y: (x - 1, y - 1), # top left lambda x, y: (x - 1, y), # top lambda x, y: (x - 1, y + 1), # top right lambda x, y: (x, y - 1), # left lambda x, y: (x, y + 1), # right lambda x, y: (x + 1, y - 1), # bottom left lambda x, y: (x + 1, y), # bottom lambda x, y: (x + 1, y + 1) # bottom right ] class Matrix: def __init__(self, numberOfRows, numberOfColumns, numberOfMines): self.numberOfRows = numberOfRows self.numberOfColumns = numberOfColumns self.numberOfMines = numberOfMines self.neighbors = NEIGHBORS def creates_the_matrix(self): self.matrix = [[0 for x in range(self.numberOfColumns)] for x in range(self.numberOfRows)] def put_mines_in_the_matrix(self): while True: self.minePositions = [] self.creates_the_matrix() while len(self.minePositions) != self.numberOfMines: minePosition = [randint(0, self.numberOfRows - 1), randint(0, self.numberOfColumns - 1)] if minePosition not in self.minePositions: self.minePositions.append(minePosition) self.matrix[minePosition[0]][minePosition[1]] = 'M' if self.checks_if_there_are_accumulated_mines_in_the_matrix(self.matrix): break def checks_if_there_are_accumulated_mines_in_the_matrix(self, matrix): for x in range(self.numberOfRows): for y in range(self.numberOfColumns): numberOfMines = 0 numberOfNeighbors = 0 for neighborPosition in self.neighbors: try: xN, yN = neighborPosition(x, y) if xN < 0 or yN < 0: raise IndexError numberOfNeighbors += 1 if self.matrix[xN][yN] == 'M': numberOfMines += 1 except IndexError: pass if numberOfNeighbors == numberOfMines: return False return True def put_number_in_the_matrix(self): for x, y in self.minePositions: for positionNeighbor in self.neighbors: try: xN, yN = positionNeighbor(x, y) if xN < 0 or yN < 0: raise IndexError if self.matrix[xN][yN] != 'M': self.matrix[xN][yN] += 1 except IndexError: pass def main(self): self.creates_the_matrix() self.put_mines_in_the_matrix() self.put_number_in_the_matrix() return self.matrix class Minesweeper: def __init__(self, window, matrix): self.matrix = matrix self.x = len(self.matrix) self.y = len(self.matrix[0]) self.window = window self.flags = [] self.mines = [] self.neighbors = NEIGHBORS self.matrixButtons = [[y for y in range(self.y)] for x in range(self.x)] self.game_creator() self.window.resizable(0, 0) self.window.title('Minesweeper') self.window.mainloop() def game_creator(self): if self.x > 25: size = 15 self.window.geometry(f"{self.y * size}x{self.x * size}") self.images('big') else: size = 21 self.window.geometry(f"{self.y * size}x{self.x * size}") self.images('small') for x in range(self.x): for y in range(self.y): pos = [x, y] label = Label(self.window, borderwidth=1, relief='groove', bg='darkgrey') self.matrixButtons[x][y] = Button(self.window, image = self.bgButton) self.matrixButtons[x][y].bind("<Button-3>", partial(self.right_click, self.matrixButtons[x][y])) if self.matrix[x][y] == 'M': self.mines.append(self.matrixButtons[x][y]) self.matrixButtons[x][y].config(command = partial(self.game_over, self.matrixButtons[x][y], label)) label.config(image = self.mine) else: self.matrixButtons[x][y].config(command = partial(self.left_click, self.matrixButtons[x][y], pos)) self.put_pictures(x, y, label) label.place(x= y*size, y = x*size) self.matrixButtons[x][y].place(x= y*size, y = x*size) def put_pictures(self, x, y, label): if self.matrix[x][y] == 0: label.config(image = self.zero) if self.matrix[x][y] == 1: label.config(image = self.one) if self.matrix[x][y] == 2: label.config(image = self.two) if self.matrix[x][y] == 3: label.config(image = self.three) if self.matrix[x][y] == 4: label.config(image = self.four) if self.matrix[x][y] == 5: label.config(image = self.five) if self.matrix[x][y] == 6: label.config(image = self.six) if self.matrix[x][y] == 7: label.config(image = self.seven) def images(self, gameSize): if gameSize == 'big': self.zero = PhotoImage(file = "images/bigGame/zero.png") self.one = PhotoImage(file = "images/bigGame/one.png") self.two = PhotoImage(file = "images/bigGame/two.png") self.three = PhotoImage(file = "images/bigGame/three.png") self.four = PhotoImage(file = "images/bigGame/four.png") self.five = PhotoImage(file = "images/bigGame/five.png") self.six = PhotoImage(file = "images/bigGame/six.png") self.seven = PhotoImage(file = "images/bigGame/seven.png") self.mine = PhotoImage(file = "images/bigGame/mine.png") self.explosion= PhotoImage(file = "images/bigGame/explosion.png") self.flag = PhotoImage(file = "images/bigGame/flag.png") self.bgButton = PhotoImage(file = "images/bigGame/backgroundButton.png") if gameSize == 'small': self.zero = PhotoImage(file = "images/smallGame/zero.png") self.one = PhotoImage(file = "images/smallGame/one.png") self.two = PhotoImage(file = "images/smallGame/two.png") self.three = PhotoImage(file = "images/smallGame/three.png") self.four = PhotoImage(file = "images/smallGame/four.png") self.five = PhotoImage(file = "images/smallGame/five.png") self.six = PhotoImage(file = "images/smallGame/six.png") self.seven = PhotoImage(file = "images/smallGame/seven.png") self.mine = PhotoImage(file = "images/smallGame/mine.png") self.explosion= PhotoImage(file = "images/smallGame/explosion.png") self.flag = PhotoImage(file = "images/smallGame/flag.png") self.bgButton = PhotoImage(file = "images/smallGame/backgroundButton.png") def left_click(self, button, pos): x, y = pos self.deletedButtons = [] button.destroy() self.deletedButtons.append(button) if self.matrix[x][y] == 0: self.delete_blank_buttons(x, y) def delete_blank_buttons(self, x, y): for func in self.neighbors: try: xN, yN = func(x, y) if xN < 0 or yN < 0: raise IndexError if self.matrix[xN][yN] != 'M': if self.matrixButtons[xN][yN] not in self.deletedButtons: if self.matrixButtons[xN][yN] not in self.flags: self.matrixButtons[xN][yN].destroy() self.deletedButtons.append(self.matrixButtons[xN][yN]) if self.matrix[xN][yN] == 0: self.delete_blank_buttons(xN, yN) except IndexError: pass def right_click(self, button, event): if button['state'] == 'normal': self.flags.append(button) button.config(image = self.flag) button['state'] = 'disabled' self.victory() else: self.flags.remove(button) button.config(image = self.bgButton) button['state'] = 'normal' self.victory() def victory(self): for button in self.mines: if button not in self.flags: return if len(self.flags) != len(self.mines): return showinfo("You win!", "You win!") self.window.destroy() def game_over(self, button, label): button.destroy() label.config(image = self.explosion) showinfo("Game Over!", "Game Over") self.window.destroy() if __name__ == '__main__': while True: rows = int(input("Type number of rows: ")) columns = int(input("Type number of columns: ")) mines = int(input("Type number of mines: ")) window = Tk() matrix = Matrix(rows, columns, mines).main() Minesweeper(window, matrix) r = str(input("Continue? ")).upper() if r[0] == 'N': break
30.925234
119
0.512642
4a1b0f518917525eb00db9f6a88103b2567315a8
1,327
py
Python
goodline_iptv/xmltv.py
nsadovskiy/goodline_tv
6f745ae05a22031a36cb5cedc6b627cbf7ba6512
[ "MIT" ]
1
2016-03-27T08:57:35.000Z
2016-03-27T08:57:35.000Z
goodline_iptv/xmltv.py
nsadovskiy/goodline_tv
6f745ae05a22031a36cb5cedc6b627cbf7ba6512
[ "MIT" ]
null
null
null
goodline_iptv/xmltv.py
nsadovskiy/goodline_tv
6f745ae05a22031a36cb5cedc6b627cbf7ba6512
[ "MIT" ]
null
null
null
from xml.dom import minidom from aiofiles import open as open_file from xml.etree.ElementTree import Element, SubElement, tostring class XmltvBuilder(object): def __init__(self, timezone='+0700'): self.timezone = timezone self.root = Element('tv') self.root.set('generator-info-name', 'Preved') self.root.set('generator-info-url', 'http://www.medved.info') def add_channel(self, epg_id, name, icon): channel = SubElement(self.root, 'channel', id=epg_id) name_element = SubElement(channel, 'display-name') name_element.text = name icon_element = SubElement(channel, 'icon') icon_element.text = icon def add_track(self, epg, time_begin, time_end, name): programme = SubElement(self.root, 'programme', start=f'{time_begin.strftime("%Y%m%d%H%M%S")} {self.timezone}', stop=f'{time_end.strftime("%Y%m%d%H%M%S")} {self.timezone}', channel=f'{epg}' ) title = SubElement(programme, 'title', lang='ru') title.text = name async def save(self, path): async with open_file(path, mode='w') as f: await f.write(self.to_string()) def to_string(self): return minidom.parseString(tostring(self.root, encoding='unicode')).toprettyxml(indent=' ')
32.365854
99
0.632253
4a1b116b628eb5ca05179824f1b5cc53db4e7f88
1,802
py
Python
Source/Tests/index.py
JuanDiegoMontoya/2D_Game_Engine
b2b026de9d5e0953331cb5a4db55bb6cacf5b55e
[ "MIT" ]
3
2021-07-12T08:06:13.000Z
2021-12-22T15:03:09.000Z
Source/Tests/index.py
JuanDiegoMontoya/3D_Voxel_Engine
b2b026de9d5e0953331cb5a4db55bb6cacf5b55e
[ "MIT" ]
null
null
null
Source/Tests/index.py
JuanDiegoMontoya/3D_Voxel_Engine
b2b026de9d5e0953331cb5a4db55bb6cacf5b55e
[ "MIT" ]
2
2021-02-07T04:20:51.000Z
2021-07-12T08:06:14.000Z
# some coordinate tests (not unit tests) import operator as op from functools import reduce SIZE = 32 def ID3D(x, y, z, h, w): return (x + h * (y + w * z)) def TestID3D(): for z in range(SIZE): for x in range(SIZE): for y in range(SIZE): print(ID3D(x, y, z, SIZE, SIZE)) def TestBitAnd(): print(1) def ncr(n, r): if (r > n): return 0 r = min(r, n-r) numer = reduce(op.mul, range(n, n-r, -1), 1) denom = reduce(op.mul, range(1, r+1), 1) return numer / denom def nCr(n, k): if (k > n): return 0 sum = 1; for i in range(1, k + 1): sum = sum * ((n + 1 - i) / i) # '//' means integer division return sum def Bernstein(n, v, t): return nCr(n, v) * pow(t, v) * pow(1 - t, n - v); def DeCasteljau(t): sum = 0; for i in range(Degree + 1): sum = sum + nCr(Degree, i) * Bernstein(Degree, i, t); return sum; WIDTH = 10 HEIGHT = 11 DEPTH = 12 # "1"D to 3D coord def ID23D(index): k = index // (WIDTH * HEIGHT) j = (index % (WIDTH * HEIGHT)) // WIDTH i = index - j * WIDTH - k * WIDTH * HEIGHT return int(i),int(j),int(k) def main(): #for x in range(-256, 256): #print(x & SIZE) """# test n choose k function w/ "confirmed" correct one for n in range(0, 5): for r in range (0, 5): if (ncr(n, r) != nCr(n, r)): print(n, r, "incorrect") #""" """# test DeCasteljau function for various t for t in range(20): print(DeCasteljau()) #""" #"""# test flatten function (ID23D) # assume 10*10*10 grid for x in range(WIDTH): for y in range(HEIGHT): for z in range(DEPTH): index = x + y * WIDTH + z * WIDTH * HEIGHT i, j, k = ID23D(index) print(x, y, z) print(i, j, k) print((x,y,z) == (i,j,k)) print() #""" if __name__ == '__main__': main()
21.710843
62
0.54495
4a1b12414bcc56bf3d31c02cc2c8fad0676ad374
161,315
py
Python
pandas/io/pytables.py
JimStearns206/pandas
ceaf85233d434a226b23f891465b4abfdc602e46
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/io/pytables.py
JimStearns206/pandas
ceaf85233d434a226b23f891465b4abfdc602e46
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
null
null
null
pandas/io/pytables.py
JimStearns206/pandas
ceaf85233d434a226b23f891465b4abfdc602e46
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "BSD-3-Clause" ]
null
null
null
""" High level interface to PyTables for reading and writing pandas data structures to disk """ # pylint: disable-msg=E1101,W0613,W0603 from datetime import datetime, date import time import re import copy import itertools import warnings import os from pandas.core.dtypes.common import ( is_list_like, is_categorical_dtype, is_timedelta64_dtype, is_datetime64tz_dtype, is_datetime64_dtype, _ensure_object, _ensure_int64, _ensure_platform_int) from pandas.core.dtypes.missing import array_equivalent import numpy as np from pandas import (Series, DataFrame, Panel, Panel4D, Index, MultiIndex, Int64Index, isnull, concat, SparseSeries, SparseDataFrame, PeriodIndex, DatetimeIndex, TimedeltaIndex) from pandas.core import config from pandas.io.common import _stringify_path from pandas.core.sparse.array import BlockIndex, IntIndex from pandas.core.base import StringMixin from pandas.io.formats.printing import adjoin, pprint_thing from pandas.errors import PerformanceWarning from pandas.core.common import _asarray_tuplesafe from pandas.core.algorithms import match, unique from pandas.core.categorical import Categorical, _factorize_from_iterables from pandas.core.internals import (BlockManager, make_block, _block2d_to_blocknd, _factor_indexer, _block_shape) from pandas.core.index import _ensure_index from pandas import compat from pandas.compat import u_safe as u, PY3, range, lrange, string_types, filter from pandas.core.config import get_option from pandas.core.computation.pytables import Expr, maybe_expression from pandas._libs import tslib, algos, lib from distutils.version import LooseVersion # versioning attribute _version = '0.15.2' # encoding # PY3 encoding if we don't specify _default_encoding = 'UTF-8' def _ensure_decoded(s): """ if we have bytes, decode them to unicode """ if isinstance(s, np.bytes_): s = s.decode('UTF-8') return s def _ensure_encoding(encoding): # set the encoding if we need if encoding is None: if PY3: encoding = _default_encoding return encoding def _ensure_str(name): """Ensure that an index / column name is a str (python 3) or unicode (python 2); otherwise they may be np.string dtype. Non-string dtypes are passed through unchanged. https://github.com/pandas-dev/pandas/issues/13492 """ if isinstance(name, compat.string_types): name = compat.text_type(name) return name Term = Expr def _ensure_term(where, scope_level): """ ensure that the where is a Term or a list of Term this makes sure that we are capturing the scope of variables that are passed create the terms here with a frame_level=2 (we are 2 levels down) """ # only consider list/tuple here as an ndarray is automaticaly a coordinate # list level = scope_level + 1 if isinstance(where, (list, tuple)): wlist = [] for w in filter(lambda x: x is not None, where): if not maybe_expression(w): wlist.append(w) else: wlist.append(Term(w, scope_level=level)) where = wlist elif maybe_expression(where): where = Term(where, scope_level=level) return where class PossibleDataLossError(Exception): pass class ClosedFileError(Exception): pass class IncompatibilityWarning(Warning): pass incompatibility_doc = """ where criteria is being ignored as this version [%s] is too old (or not-defined), read the file in and write it out to a new file to upgrade (with the copy_to method) """ class AttributeConflictWarning(Warning): pass attribute_conflict_doc = """ the [%s] attribute of the existing index is [%s] which conflicts with the new [%s], resetting the attribute to None """ class DuplicateWarning(Warning): pass duplicate_doc = """ duplicate entries in table, taking most recently appended """ performance_doc = """ your performance may suffer as PyTables will pickle object types that it cannot map directly to c-types [inferred_type->%s,key->%s] [items->%s] """ # formats _FORMAT_MAP = { u('f'): 'fixed', u('fixed'): 'fixed', u('t'): 'table', u('table'): 'table', } format_deprecate_doc = """ the table keyword has been deprecated use the format='fixed(f)|table(t)' keyword instead fixed(f) : specifies the Fixed format and is the default for put operations table(t) : specifies the Table format and is the default for append operations """ # map object types _TYPE_MAP = { Series: u('series'), SparseSeries: u('sparse_series'), DataFrame: u('frame'), SparseDataFrame: u('sparse_frame'), Panel: u('wide'), Panel4D: u('ndim'), } # storer class map _STORER_MAP = { u('Series'): 'LegacySeriesFixed', u('DataFrame'): 'LegacyFrameFixed', u('DataMatrix'): 'LegacyFrameFixed', u('series'): 'SeriesFixed', u('sparse_series'): 'SparseSeriesFixed', u('frame'): 'FrameFixed', u('sparse_frame'): 'SparseFrameFixed', u('wide'): 'PanelFixed', } # table class map _TABLE_MAP = { u('generic_table'): 'GenericTable', u('appendable_series'): 'AppendableSeriesTable', u('appendable_multiseries'): 'AppendableMultiSeriesTable', u('appendable_frame'): 'AppendableFrameTable', u('appendable_multiframe'): 'AppendableMultiFrameTable', u('appendable_panel'): 'AppendablePanelTable', u('appendable_ndim'): 'AppendableNDimTable', u('worm'): 'WORMTable', u('legacy_frame'): 'LegacyFrameTable', u('legacy_panel'): 'LegacyPanelTable', } # axes map _AXES_MAP = { DataFrame: [0], Panel: [1, 2], Panel4D: [1, 2, 3], } # register our configuration options dropna_doc = """ : boolean drop ALL nan rows when appending to a table """ format_doc = """ : format default format writing format, if None, then put will default to 'fixed' and append will default to 'table' """ with config.config_prefix('io.hdf'): config.register_option('dropna_table', False, dropna_doc, validator=config.is_bool) config.register_option( 'default_format', None, format_doc, validator=config.is_one_of_factory(['fixed', 'table', None]) ) # oh the troubles to reduce import time _table_mod = None _table_file_open_policy_is_strict = False def _tables(): global _table_mod global _table_file_open_policy_is_strict if _table_mod is None: import tables _table_mod = tables # version requirements if LooseVersion(tables.__version__) < '3.0.0': raise ImportError("PyTables version >= 3.0.0 is required") # set the file open policy # return the file open policy; this changes as of pytables 3.1 # depending on the HDF5 version try: _table_file_open_policy_is_strict = ( tables.file._FILE_OPEN_POLICY == 'strict') except: pass return _table_mod # interface to/from ### def to_hdf(path_or_buf, key, value, mode=None, complevel=None, complib=None, append=None, **kwargs): """ store this object, close it if we opened it """ if append: f = lambda store: store.append(key, value, **kwargs) else: f = lambda store: store.put(key, value, **kwargs) path_or_buf = _stringify_path(path_or_buf) if isinstance(path_or_buf, string_types): with HDFStore(path_or_buf, mode=mode, complevel=complevel, complib=complib) as store: f(store) else: f(path_or_buf) def read_hdf(path_or_buf, key=None, **kwargs): """ read from the store, close it if we opened it Retrieve pandas object stored in file, optionally based on where criteria Parameters ---------- path_or_buf : path (string), buffer, or path object (pathlib.Path or py._path.local.LocalPath) to read from .. versionadded:: 0.19.0 support for pathlib, py.path. key : group identifier in the store. Can be omitted if the HDF file contains a single pandas object. where : list of Term (or convertable) objects, optional start : optional, integer (defaults to None), row number to start selection stop : optional, integer (defaults to None), row number to stop selection columns : optional, a list of columns that if not None, will limit the return columns iterator : optional, boolean, return an iterator, default False chunksize : optional, nrows to include in iteration, return an iterator Returns ------- The selected object """ if kwargs.get('mode', 'a') not in ['r', 'r+', 'a']: raise ValueError('mode {0} is not allowed while performing a read. ' 'Allowed modes are r, r+ and a.' .format(kwargs.get('mode'))) # grab the scope if 'where' in kwargs: kwargs['where'] = _ensure_term(kwargs['where'], scope_level=1) if isinstance(path_or_buf, HDFStore): if not path_or_buf.is_open: raise IOError('The HDFStore must be open for reading.') store = path_or_buf auto_close = False else: path_or_buf = _stringify_path(path_or_buf) if not isinstance(path_or_buf, string_types): raise NotImplementedError('Support for generic buffers has not ' 'been implemented.') try: exists = os.path.exists(path_or_buf) # if filepath is too long except (TypeError, ValueError): exists = False if not exists: raise compat.FileNotFoundError( 'File %s does not exist' % path_or_buf) store = HDFStore(path_or_buf, **kwargs) # can't auto open/close if we are using an iterator # so delegate to the iterator auto_close = True try: if key is None: groups = store.groups() if len(groups) == 0: raise ValueError('No dataset in HDF5 file.') candidate_only_group = groups[0] # For the HDF file to have only one dataset, all other groups # should then be metadata groups for that candidate group. (This # assumes that the groups() method enumerates parent groups # before their children.) for group_to_check in groups[1:]: if not _is_metadata_of(group_to_check, candidate_only_group): raise ValueError('key must be provided when HDF5 file ' 'contains multiple datasets.') key = candidate_only_group._v_pathname return store.select(key, auto_close=auto_close, **kwargs) except: # if there is an error, close the store try: store.close() except: pass raise def _is_metadata_of(group, parent_group): """Check if a given group is a metadata group for a given parent_group.""" if group._v_depth <= parent_group._v_depth: return False current = group while current._v_depth > 1: parent = current._v_parent if parent == parent_group and current._v_name == 'meta': return True current = current._v_parent return False class HDFStore(StringMixin): """ dict-like IO interface for storing pandas objects in PyTables either Fixed or Table format. Parameters ---------- path : string File path to HDF5 file mode : {'a', 'w', 'r', 'r+'}, default 'a' ``'r'`` Read-only; no data can be modified. ``'w'`` Write; a new file is created (an existing file with the same name would be deleted). ``'a'`` Append; an existing file is opened for reading and writing, and if the file does not exist it is created. ``'r+'`` It is similar to ``'a'``, but the file must already exist. complevel : int, 0-9, default 0 Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc', None}, default None Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. fletcher32 : bool, default False If applying compression use the fletcher32 checksum Examples -------- >>> from pandas import DataFrame >>> from numpy.random import randn >>> bar = DataFrame(randn(10, 4)) >>> store = HDFStore('test.h5') >>> store['foo'] = bar # write to HDF5 >>> bar = store['foo'] # retrieve >>> store.close() """ def __init__(self, path, mode=None, complevel=None, complib=None, fletcher32=False, **kwargs): try: import tables # noqa except ImportError as ex: # pragma: no cover raise ImportError('HDFStore requires PyTables, "{ex}" problem ' 'importing'.format(ex=str(ex))) if complib is not None and complib not in tables.filters.all_complibs: raise ValueError( "complib only supports {libs} compression.".format( libs=tables.filters.all_complibs)) self._path = _stringify_path(path) if mode is None: mode = 'a' self._mode = mode self._handle = None self._complevel = complevel self._complib = complib self._fletcher32 = fletcher32 self._filters = None self.open(mode=mode, **kwargs) def __fspath__(self): return self._path @property def root(self): """ return the root node """ self._check_if_open() return self._handle.root @property def filename(self): return self._path def __getitem__(self, key): return self.get(key) def __setitem__(self, key, value): self.put(key, value) def __delitem__(self, key): return self.remove(key) def __getattr__(self, name): """ allow attribute access to get stores """ try: return self.get(name) except: pass raise AttributeError("'%s' object has no attribute '%s'" % (type(self).__name__, name)) def __contains__(self, key): """ check for existance of this key can match the exact pathname or the pathnm w/o the leading '/' """ node = self.get_node(key) if node is not None: name = node._v_pathname if name == key or name[1:] == key: return True return False def __len__(self): return len(self.groups()) def __unicode__(self): output = '%s\nFile path: %s\n' % (type(self), pprint_thing(self._path)) if self.is_open: lkeys = sorted(list(self.keys())) if len(lkeys): keys = [] values = [] for k in lkeys: try: s = self.get_storer(k) if s is not None: keys.append(pprint_thing(s.pathname or k)) values.append( pprint_thing(s or 'invalid_HDFStore node')) except Exception as detail: keys.append(k) values.append("[invalid_HDFStore node: %s]" % pprint_thing(detail)) output += adjoin(12, keys, values) else: output += 'Empty' else: output += "File is CLOSED" return output def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def keys(self): """ Return a (potentially unordered) list of the keys corresponding to the objects stored in the HDFStore. These are ABSOLUTE path-names (e.g. have the leading '/' """ return [n._v_pathname for n in self.groups()] def __iter__(self): return iter(self.keys()) def items(self): """ iterate on key->group """ for g in self.groups(): yield g._v_pathname, g iteritems = items def open(self, mode='a', **kwargs): """ Open the file in the specified mode Parameters ---------- mode : {'a', 'w', 'r', 'r+'}, default 'a' See HDFStore docstring or tables.open_file for info about modes """ tables = _tables() if self._mode != mode: # if we are changing a write mode to read, ok if self._mode in ['a', 'w'] and mode in ['r', 'r+']: pass elif mode in ['w']: # this would truncate, raise here if self.is_open: raise PossibleDataLossError( "Re-opening the file [{0}] with mode [{1}] " "will delete the current file!" .format(self._path, self._mode) ) self._mode = mode # close and reopen the handle if self.is_open: self.close() if self._complib is not None: if self._complevel is None: self._complevel = 9 self._filters = _tables().Filters(self._complevel, self._complib, fletcher32=self._fletcher32) try: self._handle = tables.open_file(self._path, self._mode, **kwargs) except (IOError) as e: # pragma: no cover if 'can not be written' in str(e): print('Opening %s in read-only mode' % self._path) self._handle = tables.open_file(self._path, 'r', **kwargs) else: raise except (ValueError) as e: # trap PyTables >= 3.1 FILE_OPEN_POLICY exception # to provide an updated message if 'FILE_OPEN_POLICY' in str(e): e = ValueError( "PyTables [{version}] no longer supports opening multiple " "files\n" "even in read-only mode on this HDF5 version " "[{hdf_version}]. You can accept this\n" "and not open the same file multiple times at once,\n" "upgrade the HDF5 version, or downgrade to PyTables 3.0.0 " "which allows\n" "files to be opened multiple times at once\n" .format(version=tables.__version__, hdf_version=tables.get_hdf5_version())) raise e except (Exception) as e: # trying to read from a non-existant file causes an error which # is not part of IOError, make it one if self._mode == 'r' and 'Unable to open/create file' in str(e): raise IOError(str(e)) raise def close(self): """ Close the PyTables file handle """ if self._handle is not None: self._handle.close() self._handle = None @property def is_open(self): """ return a boolean indicating whether the file is open """ if self._handle is None: return False return bool(self._handle.isopen) def flush(self, fsync=False): """ Force all buffered modifications to be written to disk. Parameters ---------- fsync : bool (default False) call ``os.fsync()`` on the file handle to force writing to disk. Notes ----- Without ``fsync=True``, flushing may not guarantee that the OS writes to disk. With fsync, the operation will block until the OS claims the file has been written; however, other caching layers may still interfere. """ if self._handle is not None: self._handle.flush() if fsync: try: os.fsync(self._handle.fileno()) except: pass def get(self, key): """ Retrieve pandas object stored in file Parameters ---------- key : object Returns ------- obj : type of object stored in file """ group = self.get_node(key) if group is None: raise KeyError('No object named %s in the file' % key) return self._read_group(group) def select(self, key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs): """ Retrieve pandas object stored in file, optionally based on where criteria Parameters ---------- key : object where : list of Term (or convertable) objects, optional start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection columns : a list of columns that if not None, will limit the return columns iterator : boolean, return an iterator, default False chunksize : nrows to include in iteration, return an iterator auto_close : boolean, should automatically close the store when finished, default is False Returns ------- The selected object """ group = self.get_node(key) if group is None: raise KeyError('No object named %s in the file' % key) # create the storer and axes where = _ensure_term(where, scope_level=1) s = self._create_storer(group) s.infer_axes() # function to call on iteration def func(_start, _stop, _where): return s.read(start=_start, stop=_stop, where=_where, columns=columns, **kwargs) # create the iterator it = TableIterator(self, s, func, where=where, nrows=s.nrows, start=start, stop=stop, iterator=iterator, chunksize=chunksize, auto_close=auto_close) return it.get_result() def select_as_coordinates( self, key, where=None, start=None, stop=None, **kwargs): """ return the selection as an Index Parameters ---------- key : object where : list of Term (or convertable) objects, optional start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection """ where = _ensure_term(where, scope_level=1) return self.get_storer(key).read_coordinates(where=where, start=start, stop=stop, **kwargs) def select_column(self, key, column, **kwargs): """ return a single column from the table. This is generally only useful to select an indexable Parameters ---------- key : object column: the column of interest Exceptions ---------- raises KeyError if the column is not found (or key is not a valid store) raises ValueError if the column can not be extracted individually (it is part of a data block) """ return self.get_storer(key).read_column(column=column, **kwargs) def select_as_multiple(self, keys, where=None, selector=None, columns=None, start=None, stop=None, iterator=False, chunksize=None, auto_close=False, **kwargs): """ Retrieve pandas objects from multiple tables Parameters ---------- keys : a list of the tables selector : the table to apply the where criteria (defaults to keys[0] if not supplied) columns : the columns I want back start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection iterator : boolean, return an iterator, default False chunksize : nrows to include in iteration, return an iterator Exceptions ---------- raises KeyError if keys or selector is not found or keys is empty raises TypeError if keys is not a list or tuple raises ValueError if the tables are not ALL THE SAME DIMENSIONS """ # default to single select where = _ensure_term(where, scope_level=1) if isinstance(keys, (list, tuple)) and len(keys) == 1: keys = keys[0] if isinstance(keys, string_types): return self.select(key=keys, where=where, columns=columns, start=start, stop=stop, iterator=iterator, chunksize=chunksize, **kwargs) if not isinstance(keys, (list, tuple)): raise TypeError("keys must be a list/tuple") if not len(keys): raise ValueError("keys must have a non-zero length") if selector is None: selector = keys[0] # collect the tables tbls = [self.get_storer(k) for k in keys] s = self.get_storer(selector) # validate rows nrows = None for t, k in itertools.chain([(s, selector)], zip(tbls, keys)): if t is None: raise KeyError("Invalid table [%s]" % k) if not t.is_table: raise TypeError( "object [%s] is not a table, and cannot be used in all " "select as multiple" % t.pathname ) if nrows is None: nrows = t.nrows elif t.nrows != nrows: raise ValueError( "all tables must have exactly the same nrows!") # axis is the concentation axes axis = list(set([t.non_index_axes[0][0] for t in tbls]))[0] def func(_start, _stop, _where): # retrieve the objs, _where is always passed as a set of # coordinates here objs = [t.read(where=_where, columns=columns, start=_start, stop=_stop, **kwargs) for t in tbls] # concat and return return concat(objs, axis=axis, verify_integrity=False)._consolidate() # create the iterator it = TableIterator(self, s, func, where=where, nrows=nrows, start=start, stop=stop, iterator=iterator, chunksize=chunksize, auto_close=auto_close) return it.get_result(coordinates=True) def put(self, key, value, format=None, append=False, **kwargs): """ Store object in HDFStore Parameters ---------- key : object value : {Series, DataFrame, Panel} format : 'fixed(f)|table(t)', default is 'fixed' fixed(f) : Fixed format Fast writing/reading. Not-appendable, nor searchable table(t) : Table format Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default False This will force Table format, append the input data to the existing. data_columns : list of columns to create as data columns, or True to use all columns. See `here <http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns>`__ # noqa encoding : default None, provide an encoding for strings dropna : boolean, default False, do not write an ALL nan row to the store settable by the option 'io.hdf.dropna_table' """ if format is None: format = get_option("io.hdf.default_format") or 'fixed' kwargs = self._validate_format(format, kwargs) self._write_to_group(key, value, append=append, **kwargs) def remove(self, key, where=None, start=None, stop=None): """ Remove pandas object partially by specifying the where condition Parameters ---------- key : string Node to remove or delete rows from where : list of Term (or convertable) objects, optional start : integer (defaults to None), row number to start selection stop : integer (defaults to None), row number to stop selection Returns ------- number of rows removed (or None if not a Table) Exceptions ---------- raises KeyError if key is not a valid store """ where = _ensure_term(where, scope_level=1) try: s = self.get_storer(key) except: if where is not None: raise ValueError( "trying to remove a node with a non-None where clause!") # we are actually trying to remove a node (with children) s = self.get_node(key) if s is not None: s._f_remove(recursive=True) return None if s is None: raise KeyError('No object named %s in the file' % key) # remove the node if where is None and start is None and stop is None: s.group._f_remove(recursive=True) # delete from the table else: if not s.is_table: raise ValueError( 'can only remove with where on objects written as tables') return s.delete(where=where, start=start, stop=stop) def append(self, key, value, format=None, append=True, columns=None, dropna=None, **kwargs): """ Append to Table in file. Node must already exist and be Table format. Parameters ---------- key : object value : {Series, DataFrame, Panel, Panel4D} format: 'table' is the default table(t) : table format Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data append : boolean, default True, append the input data to the existing data_columns : list of columns, or True, default None List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See `here <http://pandas.pydata.org/pandas-docs/stable/io.html#query-via-data-columns>`__. min_itemsize : dict of columns that specify minimum string sizes nan_rep : string to use as string nan represenation chunksize : size to chunk the writing expectedrows : expected TOTAL row size of this table encoding : default None, provide an encoding for strings dropna : boolean, default False, do not write an ALL nan row to the store settable by the option 'io.hdf.dropna_table' Notes ----- Does *not* check if data being appended overlaps with existing data in the table, so be careful """ if columns is not None: raise TypeError("columns is not a supported keyword in append, " "try data_columns") if dropna is None: dropna = get_option("io.hdf.dropna_table") if format is None: format = get_option("io.hdf.default_format") or 'table' kwargs = self._validate_format(format, kwargs) self._write_to_group(key, value, append=append, dropna=dropna, **kwargs) def append_to_multiple(self, d, value, selector, data_columns=None, axes=None, dropna=False, **kwargs): """ Append to multiple tables Parameters ---------- d : a dict of table_name to table_columns, None is acceptable as the values of one node (this will get all the remaining columns) value : a pandas object selector : a string that designates the indexable table; all of its columns will be designed as data_columns, unless data_columns is passed, in which case these are used data_columns : list of columns to create as data columns, or True to use all columns dropna : if evaluates to True, drop rows from all tables if any single row in each table has all NaN. Default False. Notes ----- axes parameter is currently not accepted """ if axes is not None: raise TypeError("axes is currently not accepted as a parameter to" " append_to_multiple; you can create the " "tables independently instead") if not isinstance(d, dict): raise ValueError( "append_to_multiple must have a dictionary specified as the " "way to split the value" ) if selector not in d: raise ValueError( "append_to_multiple requires a selector that is in passed dict" ) # figure out the splitting axis (the non_index_axis) axis = list(set(range(value.ndim)) - set(_AXES_MAP[type(value)]))[0] # figure out how to split the value remain_key = None remain_values = [] for k, v in d.items(): if v is None: if remain_key is not None: raise ValueError( "append_to_multiple can only have one value in d that " "is None" ) remain_key = k else: remain_values.extend(v) if remain_key is not None: ordered = value.axes[axis] ordd = ordered.difference(Index(remain_values)) ordd = sorted(ordered.get_indexer(ordd)) d[remain_key] = ordered.take(ordd) # data_columns if data_columns is None: data_columns = d[selector] # ensure rows are synchronized across the tables if dropna: idxs = (value[cols].dropna(how='all').index for cols in d.values()) valid_index = next(idxs) for index in idxs: valid_index = valid_index.intersection(index) value = value.loc[valid_index] # append for k, v in d.items(): dc = data_columns if k == selector else None # compute the val val = value.reindex_axis(v, axis=axis) self.append(k, val, data_columns=dc, **kwargs) def create_table_index(self, key, **kwargs): """ Create a pytables index on the table Parameters ---------- key : object (the node to index) Exceptions ---------- raises if the node is not a table """ # version requirements _tables() s = self.get_storer(key) if s is None: return if not s.is_table: raise TypeError( "cannot create table index on a Fixed format store") s.create_index(**kwargs) def groups(self): """return a list of all the top-level nodes (that are not themselves a pandas storage object) """ _tables() self._check_if_open() return [ g for g in self._handle.walk_nodes() if (getattr(g._v_attrs, 'pandas_type', None) or getattr(g, 'table', None) or (isinstance(g, _table_mod.table.Table) and g._v_name != u('table'))) ] def get_node(self, key): """ return the node with the key or None if it does not exist """ self._check_if_open() try: if not key.startswith('/'): key = '/' + key return self._handle.get_node(self.root, key) except: return None def get_storer(self, key): """ return the storer object for a key, raise if not in the file """ group = self.get_node(key) if group is None: return None s = self._create_storer(group) s.infer_axes() return s def copy(self, file, mode='w', propindexes=True, keys=None, complib=None, complevel=None, fletcher32=False, overwrite=True): """ copy the existing store to a new file, upgrading in place Parameters ---------- propindexes: restore indexes in copied file (defaults to True) keys : list of keys to include in the copy (defaults to all) overwrite : overwrite (remove and replace) existing nodes in the new store (default is True) mode, complib, complevel, fletcher32 same as in HDFStore.__init__ Returns ------- open file handle of the new store """ new_store = HDFStore( file, mode=mode, complib=complib, complevel=complevel, fletcher32=fletcher32) if keys is None: keys = list(self.keys()) if not isinstance(keys, (tuple, list)): keys = [keys] for k in keys: s = self.get_storer(k) if s is not None: if k in new_store: if overwrite: new_store.remove(k) data = self.select(k) if s.is_table: index = False if propindexes: index = [a.name for a in s.axes if a.is_indexed] new_store.append( k, data, index=index, data_columns=getattr(s, 'data_columns', None), encoding=s.encoding ) else: new_store.put(k, data, encoding=s.encoding) return new_store # private methods ###### def _check_if_open(self): if not self.is_open: raise ClosedFileError("{0} file is not open!".format(self._path)) def _validate_format(self, format, kwargs): """ validate / deprecate formats; return the new kwargs """ kwargs = kwargs.copy() # validate try: kwargs['format'] = _FORMAT_MAP[format.lower()] except: raise TypeError("invalid HDFStore format specified [{0}]" .format(format)) return kwargs def _create_storer(self, group, format=None, value=None, append=False, **kwargs): """ return a suitable class to operate """ def error(t): raise TypeError( "cannot properly create the storer for: [%s] [group->%s," "value->%s,format->%s,append->%s,kwargs->%s]" % (t, group, type(value), format, append, kwargs) ) pt = _ensure_decoded(getattr(group._v_attrs, 'pandas_type', None)) tt = _ensure_decoded(getattr(group._v_attrs, 'table_type', None)) # infer the pt from the passed value if pt is None: if value is None: _tables() if (getattr(group, 'table', None) or isinstance(group, _table_mod.table.Table)): pt = u('frame_table') tt = u('generic_table') else: raise TypeError( "cannot create a storer if the object is not existing " "nor a value are passed") else: try: pt = _TYPE_MAP[type(value)] except: error('_TYPE_MAP') # we are actually a table if format == 'table': pt += u('_table') # a storer node if u('table') not in pt: try: return globals()[_STORER_MAP[pt]](self, group, **kwargs) except: error('_STORER_MAP') # existing node (and must be a table) if tt is None: # if we are a writer, determin the tt if value is not None: if pt == u('series_table'): index = getattr(value, 'index', None) if index is not None: if index.nlevels == 1: tt = u('appendable_series') elif index.nlevels > 1: tt = u('appendable_multiseries') elif pt == u('frame_table'): index = getattr(value, 'index', None) if index is not None: if index.nlevels == 1: tt = u('appendable_frame') elif index.nlevels > 1: tt = u('appendable_multiframe') elif pt == u('wide_table'): tt = u('appendable_panel') elif pt == u('ndim_table'): tt = u('appendable_ndim') else: # distiguish between a frame/table tt = u('legacy_panel') try: fields = group.table._v_attrs.fields if len(fields) == 1 and fields[0] == u('value'): tt = u('legacy_frame') except: pass try: return globals()[_TABLE_MAP[tt]](self, group, **kwargs) except: error('_TABLE_MAP') def _write_to_group(self, key, value, format, index=True, append=False, complib=None, encoding=None, **kwargs): group = self.get_node(key) # remove the node if we are not appending if group is not None and not append: self._handle.remove_node(group, recursive=True) group = None # we don't want to store a table node at all if are object is 0-len # as there are not dtypes if getattr(value, 'empty', None) and (format == 'table' or append): return if group is None: paths = key.split('/') # recursively create the groups path = '/' for p in paths: if not len(p): continue new_path = path if not path.endswith('/'): new_path += '/' new_path += p group = self.get_node(new_path) if group is None: group = self._handle.create_group(path, p) path = new_path s = self._create_storer(group, format, value, append=append, encoding=encoding, **kwargs) if append: # raise if we are trying to append to a Fixed format, # or a table that exists (and we are putting) if (not s.is_table or (s.is_table and format == 'fixed' and s.is_exists)): raise ValueError('Can only append to Tables') if not s.is_exists: s.set_object_info() else: s.set_object_info() if not s.is_table and complib: raise ValueError( 'Compression not supported on Fixed format stores' ) # write the object s.write(obj=value, append=append, complib=complib, **kwargs) if s.is_table and index: s.create_index(columns=index) def _read_group(self, group, **kwargs): s = self._create_storer(group) s.infer_axes() return s.read(**kwargs) def get_store(path, **kwargs): """ Backwards compatible alias for ``HDFStore`` """ warnings.warn( "get_store is deprecated and be " "removed in a future version\n" "HDFStore(path, **kwargs) is the replacement", FutureWarning, stacklevel=6) return HDFStore(path, **kwargs) class TableIterator(object): """ define the iteration interface on a table Parameters ---------- store : the reference store s : the refered storer func : the function to execute the query where : the where of the query nrows : the rows to iterate on start : the passed start value (default is None) stop : the passed stop value (default is None) iterator : boolean, whether to use the default iterator chunksize : the passed chunking value (default is 50000) auto_close : boolean, automatically close the store at the end of iteration, default is False kwargs : the passed kwargs """ def __init__(self, store, s, func, where, nrows, start=None, stop=None, iterator=False, chunksize=None, auto_close=False): self.store = store self.s = s self.func = func self.where = where # set start/stop if they are not set if we are a table if self.s.is_table: if nrows is None: nrows = 0 if start is None: start = 0 if stop is None: stop = nrows stop = min(nrows, stop) self.nrows = nrows self.start = start self.stop = stop self.coordinates = None if iterator or chunksize is not None: if chunksize is None: chunksize = 100000 self.chunksize = int(chunksize) else: self.chunksize = None self.auto_close = auto_close def __iter__(self): # iterate current = self.start while current < self.stop: stop = min(current + self.chunksize, self.stop) value = self.func(None, None, self.coordinates[current:stop]) current = stop if value is None or not len(value): continue yield value self.close() def close(self): if self.auto_close: self.store.close() def get_result(self, coordinates=False): # return the actual iterator if self.chunksize is not None: if not self.s.is_table: raise TypeError( "can only use an iterator or chunksize on a table") self.coordinates = self.s.read_coordinates(where=self.where) return self # if specified read via coordinates (necessary for multiple selections if coordinates: where = self.s.read_coordinates(where=self.where, start=self.start, stop=self.stop) else: where = self.where # directly return the result results = self.func(self.start, self.stop, where) self.close() return results class IndexCol(StringMixin): """ an index column description class Parameters ---------- axis : axis which I reference values : the ndarray like converted values kind : a string description of this type typ : the pytables type pos : the position in the pytables """ is_an_indexable = True is_data_indexable = True _info_fields = ['freq', 'tz', 'index_name'] def __init__(self, values=None, kind=None, typ=None, cname=None, itemsize=None, name=None, axis=None, kind_attr=None, pos=None, freq=None, tz=None, index_name=None, **kwargs): self.values = values self.kind = kind self.typ = typ self.itemsize = itemsize self.name = name self.cname = cname self.kind_attr = kind_attr self.axis = axis self.pos = pos self.freq = freq self.tz = tz self.index_name = index_name self.table = None self.meta = None self.metadata = None if name is not None: self.set_name(name, kind_attr) if pos is not None: self.set_pos(pos) def set_name(self, name, kind_attr=None): """ set the name of this indexer """ self.name = name self.kind_attr = kind_attr or "%s_kind" % name if self.cname is None: self.cname = name return self def set_axis(self, axis): """ set the axis over which I index """ self.axis = axis return self def set_pos(self, pos): """ set the position of this column in the Table """ self.pos = pos if pos is not None and self.typ is not None: self.typ._v_pos = pos return self def set_table(self, table): self.table = table return self def __unicode__(self): temp = tuple( map(pprint_thing, (self.name, self.cname, self.axis, self.pos, self.kind))) return "name->%s,cname->%s,axis->%s,pos->%s,kind->%s" % temp def __eq__(self, other): """ compare 2 col items """ return all([getattr(self, a, None) == getattr(other, a, None) for a in ['name', 'cname', 'axis', 'pos']]) def __ne__(self, other): return not self.__eq__(other) @property def is_indexed(self): """ return whether I am an indexed column """ try: return getattr(self.table.cols, self.cname).is_indexed except: False def copy(self): new_self = copy.copy(self) return new_self def infer(self, handler): """infer this column from the table: create and return a new object""" table = handler.table new_self = self.copy() new_self.set_table(table) new_self.get_attr() new_self.read_metadata(handler) return new_self def convert(self, values, nan_rep, encoding): """ set the values from this selection: take = take ownership """ # values is a recarray if values.dtype.fields is not None: values = values[self.cname] values = _maybe_convert(values, self.kind, encoding) kwargs = dict() if self.freq is not None: kwargs['freq'] = _ensure_decoded(self.freq) if self.index_name is not None: kwargs['name'] = _ensure_decoded(self.index_name) try: self.values = Index(values, **kwargs) except: # if the output freq is different that what we recorded, # it should be None (see also 'doc example part 2') if 'freq' in kwargs: kwargs['freq'] = None self.values = Index(values, **kwargs) self.values = _set_tz(self.values, self.tz) return self def take_data(self): """ return the values & release the memory """ self.values, values = None, self.values return values @property def attrs(self): return self.table._v_attrs @property def description(self): return self.table.description @property def col(self): """ return my current col description """ return getattr(self.description, self.cname, None) @property def cvalues(self): """ return my cython values """ return self.values def __iter__(self): return iter(self.values) def maybe_set_size(self, min_itemsize=None, **kwargs): """ maybe set a string col itemsize: min_itemsize can be an interger or a dict with this columns name with an integer size """ if _ensure_decoded(self.kind) == u('string'): if isinstance(min_itemsize, dict): min_itemsize = min_itemsize.get(self.name) if min_itemsize is not None and self.typ.itemsize < min_itemsize: self.typ = _tables( ).StringCol(itemsize=min_itemsize, pos=self.pos) def validate(self, handler, append, **kwargs): self.validate_names() def validate_names(self): pass def validate_and_set(self, handler, append, **kwargs): self.set_table(handler.table) self.validate_col() self.validate_attr(append) self.validate_metadata(handler) self.write_metadata(handler) self.set_attr() def validate_col(self, itemsize=None): """ validate this column: return the compared against itemsize """ # validate this column for string truncation (or reset to the max size) if _ensure_decoded(self.kind) == u('string'): c = self.col if c is not None: if itemsize is None: itemsize = self.itemsize if c.itemsize < itemsize: raise ValueError( "Trying to store a string with len [%s] in [%s] " "column but\nthis column has a limit of [%s]!\n" "Consider using min_itemsize to preset the sizes on " "these columns" % (itemsize, self.cname, c.itemsize)) return c.itemsize return None def validate_attr(self, append): # check for backwards incompatibility if append: existing_kind = getattr(self.attrs, self.kind_attr, None) if existing_kind is not None and existing_kind != self.kind: raise TypeError("incompatible kind in col [%s - %s]" % (existing_kind, self.kind)) def update_info(self, info): """ set/update the info for this indexable with the key/value if there is a conflict raise/warn as needed """ for key in self._info_fields: value = getattr(self, key, None) idx = _get_info(info, self.name) existing_value = idx.get(key) if key in idx and value is not None and existing_value != value: # frequency/name just warn if key in ['freq', 'index_name']: ws = attribute_conflict_doc % (key, existing_value, value) warnings.warn(ws, AttributeConflictWarning, stacklevel=6) # reset idx[key] = None setattr(self, key, None) else: raise ValueError( "invalid info for [%s] for [%s], existing_value [%s] " "conflicts with new value [%s]" % (self.name, key, existing_value, value)) else: if value is not None or existing_value is not None: idx[key] = value return self def set_info(self, info): """ set my state from the passed info """ idx = info.get(self.name) if idx is not None: self.__dict__.update(idx) def get_attr(self): """ set the kind for this colummn """ self.kind = getattr(self.attrs, self.kind_attr, None) def set_attr(self): """ set the kind for this colummn """ setattr(self.attrs, self.kind_attr, self.kind) def read_metadata(self, handler): """ retrieve the metadata for this columns """ self.metadata = handler.read_metadata(self.cname) def validate_metadata(self, handler): """ validate that kind=category does not change the categories """ if self.meta == 'category': new_metadata = self.metadata cur_metadata = handler.read_metadata(self.cname) if new_metadata is not None and cur_metadata is not None \ and not array_equivalent(new_metadata, cur_metadata): raise ValueError("cannot append a categorical with " "different categories to the existing") def write_metadata(self, handler): """ set the meta data """ if self.metadata is not None: handler.write_metadata(self.cname, self.metadata) class GenericIndexCol(IndexCol): """ an index which is not represented in the data of the table """ @property def is_indexed(self): return False def convert(self, values, nan_rep, encoding): """ set the values from this selection: take = take ownership """ self.values = Int64Index(np.arange(self.table.nrows)) return self def get_attr(self): pass def set_attr(self): pass class DataCol(IndexCol): """ a data holding column, by definition this is not indexable Parameters ---------- data : the actual data cname : the column name in the table to hold the data (typically values) meta : a string description of the metadata metadata : the actual metadata """ is_an_indexable = False is_data_indexable = False _info_fields = ['tz', 'ordered'] @classmethod def create_for_block( cls, i=None, name=None, cname=None, version=None, **kwargs): """ return a new datacol with the block i """ if cname is None: cname = name or 'values_block_%d' % i if name is None: name = cname # prior to 0.10.1, we named values blocks like: values_block_0 an the # name values_0 try: if version[0] == 0 and version[1] <= 10 and version[2] == 0: m = re.search("values_block_(\d+)", name) if m: name = "values_%s" % m.groups()[0] except: pass return cls(name=name, cname=cname, **kwargs) def __init__(self, values=None, kind=None, typ=None, cname=None, data=None, meta=None, metadata=None, block=None, **kwargs): super(DataCol, self).__init__(values=values, kind=kind, typ=typ, cname=cname, **kwargs) self.dtype = None self.dtype_attr = u("%s_dtype" % self.name) self.meta = meta self.meta_attr = u("%s_meta" % self.name) self.set_data(data) self.set_metadata(metadata) def __unicode__(self): temp = tuple( map(pprint_thing, (self.name, self.cname, self.dtype, self.kind, self.shape))) return "name->%s,cname->%s,dtype->%s,kind->%s,shape->%s" % temp def __eq__(self, other): """ compare 2 col items """ return all([getattr(self, a, None) == getattr(other, a, None) for a in ['name', 'cname', 'dtype', 'pos']]) def set_data(self, data, dtype=None): self.data = data if data is not None: if dtype is not None: self.dtype = dtype self.set_kind() elif self.dtype is None: self.dtype = data.dtype.name self.set_kind() def take_data(self): """ return the data & release the memory """ self.data, data = None, self.data return data def set_metadata(self, metadata): """ record the metadata """ if metadata is not None: metadata = np.array(metadata, copy=False).ravel() self.metadata = metadata def set_kind(self): # set my kind if we can if self.dtype is not None: dtype = _ensure_decoded(self.dtype) if dtype.startswith(u('string')) or dtype.startswith(u('bytes')): self.kind = 'string' elif dtype.startswith(u('float')): self.kind = 'float' elif dtype.startswith(u('complex')): self.kind = 'complex' elif dtype.startswith(u('int')) or dtype.startswith(u('uint')): self.kind = 'integer' elif dtype.startswith(u('date')): self.kind = 'datetime' elif dtype.startswith(u('timedelta')): self.kind = 'timedelta' elif dtype.startswith(u('bool')): self.kind = 'bool' else: raise AssertionError( "cannot interpret dtype of [%s] in [%s]" % (dtype, self)) # set my typ if we need if self.typ is None: self.typ = getattr(self.description, self.cname, None) def set_atom(self, block, block_items, existing_col, min_itemsize, nan_rep, info, encoding=None, **kwargs): """ create and setup my atom from the block b """ self.values = list(block_items) # short-cut certain block types if block.is_categorical: return self.set_atom_categorical(block, items=block_items, info=info) elif block.is_datetimetz: return self.set_atom_datetime64tz(block, info=info) elif block.is_datetime: return self.set_atom_datetime64(block) elif block.is_timedelta: return self.set_atom_timedelta64(block) elif block.is_complex: return self.set_atom_complex(block) dtype = block.dtype.name inferred_type = lib.infer_dtype(block.values) if inferred_type == 'date': raise TypeError( "[date] is not implemented as a table column") elif inferred_type == 'datetime': # after 8260 # this only would be hit for a mutli-timezone dtype # which is an error raise TypeError( "too many timezones in this block, create separate " "data columns" ) elif inferred_type == 'unicode': raise TypeError( "[unicode] is not implemented as a table column") # this is basically a catchall; if say a datetime64 has nans then will # end up here ### elif inferred_type == 'string' or dtype == 'object': self.set_atom_string( block, block_items, existing_col, min_itemsize, nan_rep, encoding) # set as a data block else: self.set_atom_data(block) def get_atom_string(self, block, itemsize): return _tables().StringCol(itemsize=itemsize, shape=block.shape[0]) def set_atom_string(self, block, block_items, existing_col, min_itemsize, nan_rep, encoding): # fill nan items with myself, don't disturb the blocks by # trying to downcast block = block.fillna(nan_rep, downcast=False) if isinstance(block, list): block = block[0] data = block.values # see if we have a valid string type inferred_type = lib.infer_dtype(data.ravel()) if inferred_type != 'string': # we cannot serialize this data, so report an exception on a column # by column basis for i, item in enumerate(block_items): col = block.iget(i) inferred_type = lib.infer_dtype(col.ravel()) if inferred_type != 'string': raise TypeError( "Cannot serialize the column [%s] because\n" "its data contents are [%s] object dtype" % (item, inferred_type) ) # itemsize is the maximum length of a string (along any dimension) data_converted = _convert_string_array(data, encoding) itemsize = data_converted.itemsize # specified min_itemsize? if isinstance(min_itemsize, dict): min_itemsize = int(min_itemsize.get( self.name) or min_itemsize.get('values') or 0) itemsize = max(min_itemsize or 0, itemsize) # check for column in the values conflicts if existing_col is not None: eci = existing_col.validate_col(itemsize) if eci > itemsize: itemsize = eci self.itemsize = itemsize self.kind = 'string' self.typ = self.get_atom_string(block, itemsize) self.set_data(data_converted.astype('|S%d' % itemsize, copy=False)) def get_atom_coltype(self, kind=None): """ return the PyTables column class for this column """ if kind is None: kind = self.kind if self.kind.startswith('uint'): col_name = "UInt%sCol" % kind[4:] else: col_name = "%sCol" % kind.capitalize() return getattr(_tables(), col_name) def get_atom_data(self, block, kind=None): return self.get_atom_coltype(kind=kind)(shape=block.shape[0]) def set_atom_complex(self, block): self.kind = block.dtype.name itemsize = int(self.kind.split('complex')[-1]) // 8 self.typ = _tables().ComplexCol( itemsize=itemsize, shape=block.shape[0]) self.set_data(block.values.astype(self.typ.type, copy=False)) def set_atom_data(self, block): self.kind = block.dtype.name self.typ = self.get_atom_data(block) self.set_data(block.values.astype(self.typ.type, copy=False)) def set_atom_categorical(self, block, items, info=None, values=None): # currently only supports a 1-D categorical # in a 1-D block values = block.values codes = values.codes self.kind = 'integer' self.dtype = codes.dtype.name if values.ndim > 1: raise NotImplementedError("only support 1-d categoricals") if len(items) > 1: raise NotImplementedError("only support single block categoricals") # write the codes; must be in a block shape self.ordered = values.ordered self.typ = self.get_atom_data(block, kind=codes.dtype.name) self.set_data(_block_shape(codes)) # write the categories self.meta = 'category' self.set_metadata(block.values.categories) # update the info self.update_info(info) def get_atom_datetime64(self, block): return _tables().Int64Col(shape=block.shape[0]) def set_atom_datetime64(self, block, values=None): self.kind = 'datetime64' self.typ = self.get_atom_datetime64(block) if values is None: values = block.values.view('i8') self.set_data(values, 'datetime64') def set_atom_datetime64tz(self, block, info, values=None): if values is None: values = block.values # convert this column to i8 in UTC, and save the tz values = values.asi8.reshape(block.shape) # store a converted timezone self.tz = _get_tz(block.values.tz) self.update_info(info) self.kind = 'datetime64' self.typ = self.get_atom_datetime64(block) self.set_data(values, 'datetime64') def get_atom_timedelta64(self, block): return _tables().Int64Col(shape=block.shape[0]) def set_atom_timedelta64(self, block, values=None): self.kind = 'timedelta64' self.typ = self.get_atom_timedelta64(block) if values is None: values = block.values.view('i8') self.set_data(values, 'timedelta64') @property def shape(self): return getattr(self.data, 'shape', None) @property def cvalues(self): """ return my cython values """ return self.data def validate_attr(self, append): """validate that we have the same order as the existing & same dtype""" if append: existing_fields = getattr(self.attrs, self.kind_attr, None) if (existing_fields is not None and existing_fields != list(self.values)): raise ValueError("appended items do not match existing items" " in table!") existing_dtype = getattr(self.attrs, self.dtype_attr, None) if (existing_dtype is not None and existing_dtype != self.dtype): raise ValueError("appended items dtype do not match existing " "items dtype in table!") def convert(self, values, nan_rep, encoding): """set the data from this selection (and convert to the correct dtype if we can) """ # values is a recarray if values.dtype.fields is not None: values = values[self.cname] self.set_data(values) # use the meta if needed meta = _ensure_decoded(self.meta) # convert to the correct dtype if self.dtype is not None: dtype = _ensure_decoded(self.dtype) # reverse converts if dtype == u('datetime64'): # recreate with tz if indicated self.data = _set_tz(self.data, self.tz, coerce=True) elif dtype == u('timedelta64'): self.data = np.asarray(self.data, dtype='m8[ns]') elif dtype == u('date'): try: self.data = np.asarray( [date.fromordinal(v) for v in self.data], dtype=object) except ValueError: self.data = np.asarray( [date.fromtimestamp(v) for v in self.data], dtype=object) elif dtype == u('datetime'): self.data = np.asarray( [datetime.fromtimestamp(v) for v in self.data], dtype=object) elif meta == u('category'): # we have a categorical categories = self.metadata codes = self.data.ravel() # if we have stored a NaN in the categories # then strip it; in theory we could have BOTH # -1s in the codes and nulls :< mask = isnull(categories) if mask.any(): categories = categories[~mask] codes[codes != -1] -= mask.astype(int).cumsum().values self.data = Categorical.from_codes(codes, categories=categories, ordered=self.ordered) else: try: self.data = self.data.astype(dtype, copy=False) except: self.data = self.data.astype('O', copy=False) # convert nans / decode if _ensure_decoded(self.kind) == u('string'): self.data = _unconvert_string_array( self.data, nan_rep=nan_rep, encoding=encoding) return self def get_attr(self): """ get the data for this colummn """ self.values = getattr(self.attrs, self.kind_attr, None) self.dtype = getattr(self.attrs, self.dtype_attr, None) self.meta = getattr(self.attrs, self.meta_attr, None) self.set_kind() def set_attr(self): """ set the data for this colummn """ setattr(self.attrs, self.kind_attr, self.values) setattr(self.attrs, self.meta_attr, self.meta) if self.dtype is not None: setattr(self.attrs, self.dtype_attr, self.dtype) class DataIndexableCol(DataCol): """ represent a data column that can be indexed """ is_data_indexable = True def validate_names(self): if not Index(self.values).is_object(): raise ValueError("cannot have non-object label DataIndexableCol") def get_atom_string(self, block, itemsize): return _tables().StringCol(itemsize=itemsize) def get_atom_data(self, block, kind=None): return self.get_atom_coltype(kind=kind)() def get_atom_datetime64(self, block): return _tables().Int64Col() def get_atom_timedelta64(self, block): return _tables().Int64Col() class GenericDataIndexableCol(DataIndexableCol): """ represent a generic pytables data column """ def get_attr(self): pass class Fixed(StringMixin): """ represent an object in my store facilitate read/write of various types of objects this is an abstract base class Parameters ---------- parent : my parent HDFStore group : the group node where the table resides """ pandas_kind = None obj_type = None ndim = None is_table = False def __init__(self, parent, group, encoding=None, **kwargs): self.parent = parent self.group = group self.encoding = _ensure_encoding(encoding) self.set_version() @property def is_old_version(self): return (self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1) def set_version(self): """ compute and set our version """ version = _ensure_decoded( getattr(self.group._v_attrs, 'pandas_version', None)) try: self.version = tuple([int(x) for x in version.split('.')]) if len(self.version) == 2: self.version = self.version + (0,) except: self.version = (0, 0, 0) @property def pandas_type(self): return _ensure_decoded(getattr(self.group._v_attrs, 'pandas_type', None)) @property def format_type(self): return 'fixed' def __unicode__(self): """ return a pretty representation of myself """ self.infer_axes() s = self.shape if s is not None: if isinstance(s, (list, tuple)): s = "[%s]" % ','.join([pprint_thing(x) for x in s]) return "%-12.12s (shape->%s)" % (self.pandas_type, s) return self.pandas_type def set_object_info(self): """ set my pandas type & version """ self.attrs.pandas_type = str(self.pandas_kind) self.attrs.pandas_version = str(_version) self.set_version() def copy(self): new_self = copy.copy(self) return new_self @property def storage_obj_type(self): return self.obj_type @property def shape(self): return self.nrows @property def pathname(self): return self.group._v_pathname @property def _handle(self): return self.parent._handle @property def _filters(self): return self.parent._filters @property def _complevel(self): return self.parent._complevel @property def _fletcher32(self): return self.parent._fletcher32 @property def _complib(self): return self.parent._complib @property def attrs(self): return self.group._v_attrs def set_attrs(self): """ set our object attributes """ pass def get_attrs(self): """ get our object attributes """ pass @property def storable(self): """ return my storable """ return self.group @property def is_exists(self): return False @property def nrows(self): return getattr(self.storable, 'nrows', None) def validate(self, other): """ validate against an existing storable """ if other is None: return return True def validate_version(self, where=None): """ are we trying to operate on an old version? """ return True def infer_axes(self): """ infer the axes of my storer return a boolean indicating if we have a valid storer or not """ s = self.storable if s is None: return False self.get_attrs() return True def read(self, **kwargs): raise NotImplementedError( "cannot read on an abstract storer: subclasses should implement") def write(self, **kwargs): raise NotImplementedError( "cannot write on an abstract storer: sublcasses should implement") def delete(self, where=None, start=None, stop=None, **kwargs): """ support fully deleting the node in its entirety (only) - where specification must be None """ if where is None and start is None and stop is None: self._handle.remove_node(self.group, recursive=True) return None raise TypeError("cannot delete on an abstract storer") class GenericFixed(Fixed): """ a generified fixed version """ _index_type_map = {DatetimeIndex: 'datetime', PeriodIndex: 'period'} _reverse_index_map = dict([(v, k) for k, v in compat.iteritems(_index_type_map)]) attributes = [] # indexer helpders def _class_to_alias(self, cls): return self._index_type_map.get(cls, '') def _alias_to_class(self, alias): if isinstance(alias, type): # pragma: no cover # compat: for a short period of time master stored types return alias return self._reverse_index_map.get(alias, Index) def _get_index_factory(self, klass): if klass == DatetimeIndex: def f(values, freq=None, tz=None): return DatetimeIndex._simple_new(values, None, freq=freq, tz=tz) return f elif klass == PeriodIndex: def f(values, freq=None, tz=None): return PeriodIndex._simple_new(values, None, freq=freq) return f return klass def validate_read(self, kwargs): """ remove table keywords from kwargs and return raise if any keywords are passed which are not-None """ kwargs = copy.copy(kwargs) columns = kwargs.pop('columns', None) if columns is not None: raise TypeError("cannot pass a column specification when reading " "a Fixed format store. this store must be " "selected in its entirety") where = kwargs.pop('where', None) if where is not None: raise TypeError("cannot pass a where specification when reading " "from a Fixed format store. this store must be " "selected in its entirety") return kwargs @property def is_exists(self): return True def set_attrs(self): """ set our object attributes """ self.attrs.encoding = self.encoding def get_attrs(self): """ retrieve our attributes """ self.encoding = _ensure_encoding(getattr(self.attrs, 'encoding', None)) for n in self.attributes: setattr(self, n, _ensure_decoded(getattr(self.attrs, n, None))) def write(self, obj, **kwargs): self.set_attrs() def read_array(self, key, start=None, stop=None): """ read an array for the specified node (off of group """ import tables node = getattr(self.group, key) data = node[start:stop] attrs = node._v_attrs transposed = getattr(attrs, 'transposed', False) if isinstance(node, tables.VLArray): ret = data[0] else: dtype = getattr(attrs, 'value_type', None) shape = getattr(attrs, 'shape', None) if shape is not None: # length 0 axis ret = np.empty(shape, dtype=dtype) else: ret = data if dtype == u('datetime64'): # reconstruct a timezone if indicated ret = _set_tz(ret, getattr(attrs, 'tz', None), coerce=True) elif dtype == u('timedelta64'): ret = np.asarray(ret, dtype='m8[ns]') if transposed: return ret.T else: return ret def read_index(self, key, **kwargs): variety = _ensure_decoded(getattr(self.attrs, '%s_variety' % key)) if variety == u('multi'): return self.read_multi_index(key, **kwargs) elif variety == u('block'): return self.read_block_index(key, **kwargs) elif variety == u('sparseint'): return self.read_sparse_intindex(key, **kwargs) elif variety == u('regular'): _, index = self.read_index_node(getattr(self.group, key), **kwargs) return index else: # pragma: no cover raise TypeError('unrecognized index variety: %s' % variety) def write_index(self, key, index): if isinstance(index, MultiIndex): setattr(self.attrs, '%s_variety' % key, 'multi') self.write_multi_index(key, index) elif isinstance(index, BlockIndex): setattr(self.attrs, '%s_variety' % key, 'block') self.write_block_index(key, index) elif isinstance(index, IntIndex): setattr(self.attrs, '%s_variety' % key, 'sparseint') self.write_sparse_intindex(key, index) else: setattr(self.attrs, '%s_variety' % key, 'regular') converted = _convert_index(index, self.encoding, self.format_type).set_name('index') self.write_array(key, converted.values) node = getattr(self.group, key) node._v_attrs.kind = converted.kind node._v_attrs.name = index.name if isinstance(index, (DatetimeIndex, PeriodIndex)): node._v_attrs.index_class = self._class_to_alias(type(index)) if hasattr(index, 'freq'): node._v_attrs.freq = index.freq if hasattr(index, 'tz') and index.tz is not None: node._v_attrs.tz = _get_tz(index.tz) def write_block_index(self, key, index): self.write_array('%s_blocs' % key, index.blocs) self.write_array('%s_blengths' % key, index.blengths) setattr(self.attrs, '%s_length' % key, index.length) def read_block_index(self, key, **kwargs): length = getattr(self.attrs, '%s_length' % key) blocs = self.read_array('%s_blocs' % key, **kwargs) blengths = self.read_array('%s_blengths' % key, **kwargs) return BlockIndex(length, blocs, blengths) def write_sparse_intindex(self, key, index): self.write_array('%s_indices' % key, index.indices) setattr(self.attrs, '%s_length' % key, index.length) def read_sparse_intindex(self, key, **kwargs): length = getattr(self.attrs, '%s_length' % key) indices = self.read_array('%s_indices' % key, **kwargs) return IntIndex(length, indices) def write_multi_index(self, key, index): setattr(self.attrs, '%s_nlevels' % key, index.nlevels) for i, (lev, lab, name) in enumerate(zip(index.levels, index.labels, index.names)): # write the level level_key = '%s_level%d' % (key, i) conv_level = _convert_index(lev, self.encoding, self.format_type).set_name(level_key) self.write_array(level_key, conv_level.values) node = getattr(self.group, level_key) node._v_attrs.kind = conv_level.kind node._v_attrs.name = name # write the name setattr(node._v_attrs, '%s_name%d' % (key, i), name) # write the labels label_key = '%s_label%d' % (key, i) self.write_array(label_key, lab) def read_multi_index(self, key, **kwargs): nlevels = getattr(self.attrs, '%s_nlevels' % key) levels = [] labels = [] names = [] for i in range(nlevels): level_key = '%s_level%d' % (key, i) name, lev = self.read_index_node(getattr(self.group, level_key), **kwargs) levels.append(lev) names.append(name) label_key = '%s_label%d' % (key, i) lab = self.read_array(label_key, **kwargs) labels.append(lab) return MultiIndex(levels=levels, labels=labels, names=names, verify_integrity=True) def read_index_node(self, node, start=None, stop=None): data = node[start:stop] # If the index was an empty array write_array_empty() will # have written a sentinel. Here we relace it with the original. if ('shape' in node._v_attrs and self._is_empty_array(getattr(node._v_attrs, 'shape'))): data = np.empty(getattr(node._v_attrs, 'shape'), dtype=getattr(node._v_attrs, 'value_type')) kind = _ensure_decoded(node._v_attrs.kind) name = None if 'name' in node._v_attrs: name = _ensure_str(node._v_attrs.name) index_class = self._alias_to_class(getattr(node._v_attrs, 'index_class', '')) factory = self._get_index_factory(index_class) kwargs = {} if u('freq') in node._v_attrs: kwargs['freq'] = node._v_attrs['freq'] if u('tz') in node._v_attrs: kwargs['tz'] = node._v_attrs['tz'] if kind in (u('date'), u('datetime')): index = factory(_unconvert_index(data, kind, encoding=self.encoding), dtype=object, **kwargs) else: index = factory(_unconvert_index(data, kind, encoding=self.encoding), **kwargs) index.name = name return name, index def write_array_empty(self, key, value): """ write a 0-len array """ # ugly hack for length 0 axes arr = np.empty((1,) * value.ndim) self._handle.create_array(self.group, key, arr) getattr(self.group, key)._v_attrs.value_type = str(value.dtype) getattr(self.group, key)._v_attrs.shape = value.shape def _is_empty_array(self, shape): """Returns true if any axis is zero length.""" return any(x == 0 for x in shape) def write_array(self, key, value, items=None): if key in self.group: self._handle.remove_node(self.group, key) # Transform needed to interface with pytables row/col notation empty_array = self._is_empty_array(value.shape) transposed = False if is_categorical_dtype(value): raise NotImplementedError('Cannot store a category dtype in ' 'a HDF5 dataset that uses format=' '"fixed". Use format="table".') if not empty_array: value = value.T transposed = True if self._filters is not None: atom = None try: # get the atom for this datatype atom = _tables().Atom.from_dtype(value.dtype) except ValueError: pass if atom is not None: # create an empty chunked array and fill it from value if not empty_array: ca = self._handle.create_carray(self.group, key, atom, value.shape, filters=self._filters) ca[:] = value getattr(self.group, key)._v_attrs.transposed = transposed else: self.write_array_empty(key, value) return if value.dtype.type == np.object_: # infer the type, warn if we have a non-string type here (for # performance) inferred_type = lib.infer_dtype(value.ravel()) if empty_array: pass elif inferred_type == 'string': pass else: try: items = list(items) except: pass ws = performance_doc % (inferred_type, key, items) warnings.warn(ws, PerformanceWarning, stacklevel=7) vlarr = self._handle.create_vlarray(self.group, key, _tables().ObjectAtom()) vlarr.append(value) else: if empty_array: self.write_array_empty(key, value) else: if is_datetime64_dtype(value.dtype): self._handle.create_array( self.group, key, value.view('i8')) getattr( self.group, key)._v_attrs.value_type = 'datetime64' elif is_datetime64tz_dtype(value.dtype): # store as UTC # with a zone self._handle.create_array(self.group, key, value.asi8) node = getattr(self.group, key) node._v_attrs.tz = _get_tz(value.tz) node._v_attrs.value_type = 'datetime64' elif is_timedelta64_dtype(value.dtype): self._handle.create_array( self.group, key, value.view('i8')) getattr( self.group, key)._v_attrs.value_type = 'timedelta64' else: self._handle.create_array(self.group, key, value) getattr(self.group, key)._v_attrs.transposed = transposed class LegacyFixed(GenericFixed): def read_index_legacy(self, key, start=None, stop=None): node = getattr(self.group, key) data = node[start:stop] kind = node._v_attrs.kind return _unconvert_index_legacy(data, kind, encoding=self.encoding) class LegacySeriesFixed(LegacyFixed): def read(self, **kwargs): kwargs = self.validate_read(kwargs) index = self.read_index_legacy('index') values = self.read_array('values') return Series(values, index=index) class LegacyFrameFixed(LegacyFixed): def read(self, **kwargs): kwargs = self.validate_read(kwargs) index = self.read_index_legacy('index') columns = self.read_index_legacy('columns') values = self.read_array('values') return DataFrame(values, index=index, columns=columns) class SeriesFixed(GenericFixed): pandas_kind = u('series') attributes = ['name'] @property def shape(self): try: return len(getattr(self.group, 'values')), except: return None def read(self, **kwargs): kwargs = self.validate_read(kwargs) index = self.read_index('index', **kwargs) values = self.read_array('values', **kwargs) return Series(values, index=index, name=self.name) def write(self, obj, **kwargs): super(SeriesFixed, self).write(obj, **kwargs) self.write_index('index', obj.index) self.write_array('values', obj.values) self.attrs.name = obj.name class SparseFixed(GenericFixed): def validate_read(self, kwargs): """ we don't support start, stop kwds in Sparse """ kwargs = super(SparseFixed, self).validate_read(kwargs) if 'start' in kwargs or 'stop' in kwargs: raise NotImplementedError("start and/or stop are not supported " "in fixed Sparse reading") return kwargs class SparseSeriesFixed(SparseFixed): pandas_kind = u('sparse_series') attributes = ['name', 'fill_value', 'kind'] def read(self, **kwargs): kwargs = self.validate_read(kwargs) index = self.read_index('index') sp_values = self.read_array('sp_values') sp_index = self.read_index('sp_index') return SparseSeries(sp_values, index=index, sparse_index=sp_index, kind=self.kind or u('block'), fill_value=self.fill_value, name=self.name) def write(self, obj, **kwargs): super(SparseSeriesFixed, self).write(obj, **kwargs) self.write_index('index', obj.index) self.write_index('sp_index', obj.sp_index) self.write_array('sp_values', obj.sp_values) self.attrs.name = obj.name self.attrs.fill_value = obj.fill_value self.attrs.kind = obj.kind class SparseFrameFixed(SparseFixed): pandas_kind = u('sparse_frame') attributes = ['default_kind', 'default_fill_value'] def read(self, **kwargs): kwargs = self.validate_read(kwargs) columns = self.read_index('columns') sdict = {} for c in columns: key = 'sparse_series_%s' % c s = SparseSeriesFixed(self.parent, getattr(self.group, key)) s.infer_axes() sdict[c] = s.read() return SparseDataFrame(sdict, columns=columns, default_kind=self.default_kind, default_fill_value=self.default_fill_value) def write(self, obj, **kwargs): """ write it as a collection of individual sparse series """ super(SparseFrameFixed, self).write(obj, **kwargs) for name, ss in compat.iteritems(obj): key = 'sparse_series_%s' % name if key not in self.group._v_children: node = self._handle.create_group(self.group, key) else: node = getattr(self.group, key) s = SparseSeriesFixed(self.parent, node) s.write(ss) self.attrs.default_fill_value = obj.default_fill_value self.attrs.default_kind = obj.default_kind self.write_index('columns', obj.columns) class BlockManagerFixed(GenericFixed): attributes = ['ndim', 'nblocks'] is_shape_reversed = False @property def shape(self): try: ndim = self.ndim # items items = 0 for i in range(self.nblocks): node = getattr(self.group, 'block%d_items' % i) shape = getattr(node, 'shape', None) if shape is not None: items += shape[0] # data shape node = getattr(self.group, 'block0_values') shape = getattr(node, 'shape', None) if shape is not None: shape = list(shape[0:(ndim - 1)]) else: shape = [] shape.append(items) # hacky - this works for frames, but is reversed for panels if self.is_shape_reversed: shape = shape[::-1] return shape except: return None def read(self, start=None, stop=None, **kwargs): # start, stop applied to rows, so 0th axis only kwargs = self.validate_read(kwargs) select_axis = self.obj_type()._get_block_manager_axis(0) axes = [] for i in range(self.ndim): _start, _stop = (start, stop) if i == select_axis else (None, None) ax = self.read_index('axis%d' % i, start=_start, stop=_stop) axes.append(ax) items = axes[0] blocks = [] for i in range(self.nblocks): blk_items = self.read_index('block%d_items' % i) values = self.read_array('block%d_values' % i, start=_start, stop=_stop) blk = make_block(values, placement=items.get_indexer(blk_items)) blocks.append(blk) return self.obj_type(BlockManager(blocks, axes)) def write(self, obj, **kwargs): super(BlockManagerFixed, self).write(obj, **kwargs) data = obj._data if not data.is_consolidated(): data = data.consolidate() self.attrs.ndim = data.ndim for i, ax in enumerate(data.axes): if i == 0: if not ax.is_unique: raise ValueError( "Columns index has to be unique for fixed format") self.write_index('axis%d' % i, ax) # Supporting mixed-type DataFrame objects...nontrivial self.attrs.nblocks = len(data.blocks) for i, blk in enumerate(data.blocks): # I have no idea why, but writing values before items fixed #2299 blk_items = data.items.take(blk.mgr_locs) self.write_array('block%d_values' % i, blk.values, items=blk_items) self.write_index('block%d_items' % i, blk_items) class FrameFixed(BlockManagerFixed): pandas_kind = u('frame') obj_type = DataFrame class PanelFixed(BlockManagerFixed): pandas_kind = u('wide') obj_type = Panel is_shape_reversed = True def write(self, obj, **kwargs): obj._consolidate_inplace() return super(PanelFixed, self).write(obj, **kwargs) class Table(Fixed): """ represent a table: facilitate read/write of various types of tables Attrs in Table Node ------------------- These are attributes that are store in the main table node, they are necessary to recreate these tables when read back in. index_axes : a list of tuples of the (original indexing axis and index column) non_index_axes: a list of tuples of the (original index axis and columns on a non-indexing axis) values_axes : a list of the columns which comprise the data of this table data_columns : a list of the columns that we are allowing indexing (these become single columns in values_axes), or True to force all columns nan_rep : the string to use for nan representations for string objects levels : the names of levels metadata : the names of the metadata columns """ pandas_kind = u('wide_table') table_type = None levels = 1 is_table = True is_shape_reversed = False def __init__(self, *args, **kwargs): super(Table, self).__init__(*args, **kwargs) self.index_axes = [] self.non_index_axes = [] self.values_axes = [] self.data_columns = [] self.metadata = [] self.info = dict() self.nan_rep = None self.selection = None @property def table_type_short(self): return self.table_type.split('_')[0] @property def format_type(self): return 'table' def __unicode__(self): """ return a pretty representatgion of myself """ self.infer_axes() dc = ",dc->[%s]" % ','.join( self.data_columns) if len(self.data_columns) else '' ver = '' if self.is_old_version: ver = "[%s]" % '.'.join([str(x) for x in self.version]) return "%-12.12s%s (typ->%s,nrows->%s,ncols->%s,indexers->[%s]%s)" % ( self.pandas_type, ver, self.table_type_short, self.nrows, self.ncols, ','.join([a.name for a in self.index_axes]), dc ) def __getitem__(self, c): """ return the axis for c """ for a in self.axes: if c == a.name: return a return None def validate(self, other): """ validate against an existing table """ if other is None: return if other.table_type != self.table_type: raise TypeError("incompatible table_type with existing [%s - %s]" % (other.table_type, self.table_type)) for c in ['index_axes', 'non_index_axes', 'values_axes']: sv = getattr(self, c, None) ov = getattr(other, c, None) if sv != ov: # show the error for the specific axes for i, sax in enumerate(sv): oax = ov[i] if sax != oax: raise ValueError( "invalid combinate of [%s] on appending data [%s] " "vs current table [%s]" % (c, sax, oax)) # should never get here raise Exception( "invalid combinate of [%s] on appending data [%s] vs " "current table [%s]" % (c, sv, ov)) @property def is_multi_index(self): """the levels attribute is 1 or a list in the case of a multi-index""" return isinstance(self.levels, list) def validate_metadata(self, existing): """ create / validate metadata """ self.metadata = [ c.name for c in self.values_axes if c.metadata is not None] def validate_multiindex(self, obj): """validate that we can store the multi-index; reset and return the new object """ levels = [l if l is not None else "level_{0}".format(i) for i, l in enumerate(obj.index.names)] try: return obj.reset_index(), levels except ValueError: raise ValueError("duplicate names/columns in the multi-index when " "storing as a table") @property def nrows_expected(self): """ based on our axes, compute the expected nrows """ return np.prod([i.cvalues.shape[0] for i in self.index_axes]) @property def is_exists(self): """ has this table been created """ return u('table') in self.group @property def storable(self): return getattr(self.group, 'table', None) @property def table(self): """ return the table group (this is my storable) """ return self.storable @property def dtype(self): return self.table.dtype @property def description(self): return self.table.description @property def axes(self): return itertools.chain(self.index_axes, self.values_axes) @property def ncols(self): """ the number of total columns in the values axes """ return sum([len(a.values) for a in self.values_axes]) @property def is_transposed(self): return False @property def data_orientation(self): """return a tuple of my permutated axes, non_indexable at the front""" return tuple(itertools.chain([int(a[0]) for a in self.non_index_axes], [int(a.axis) for a in self.index_axes])) def queryables(self): """ return a dict of the kinds allowable columns for this object """ # compute the values_axes queryables return dict( [(a.cname, a) for a in self.index_axes] + [(self.storage_obj_type._AXIS_NAMES[axis], None) for axis, values in self.non_index_axes] + [(v.cname, v) for v in self.values_axes if v.name in set(self.data_columns)] ) def index_cols(self): """ return a list of my index cols """ return [(i.axis, i.cname) for i in self.index_axes] def values_cols(self): """ return a list of my values cols """ return [i.cname for i in self.values_axes] def _get_metadata_path(self, key): """ return the metadata pathname for this key """ return "{group}/meta/{key}/meta".format(group=self.group._v_pathname, key=key) def write_metadata(self, key, values): """ write out a meta data array to the key as a fixed-format Series Parameters ---------- key : string values : ndarray """ values = Series(values) self.parent.put(self._get_metadata_path(key), values, format='table', encoding=self.encoding, nan_rep=self.nan_rep) def read_metadata(self, key): """ return the meta data array for this key """ if getattr(getattr(self.group, 'meta', None), key, None) is not None: return self.parent.select(self._get_metadata_path(key)) return None def set_info(self): """ update our table index info """ self.attrs.info = self.info def set_attrs(self): """ set our table type & indexables """ self.attrs.table_type = str(self.table_type) self.attrs.index_cols = self.index_cols() self.attrs.values_cols = self.values_cols() self.attrs.non_index_axes = self.non_index_axes self.attrs.data_columns = self.data_columns self.attrs.nan_rep = self.nan_rep self.attrs.encoding = self.encoding self.attrs.levels = self.levels self.attrs.metadata = self.metadata self.set_info() def get_attrs(self): """ retrieve our attributes """ self.non_index_axes = getattr( self.attrs, 'non_index_axes', None) or [] self.data_columns = getattr( self.attrs, 'data_columns', None) or [] self.info = getattr( self.attrs, 'info', None) or dict() self.nan_rep = getattr(self.attrs, 'nan_rep', None) self.encoding = _ensure_encoding( getattr(self.attrs, 'encoding', None)) self.levels = getattr( self.attrs, 'levels', None) or [] self.index_axes = [ a.infer(self) for a in self.indexables if a.is_an_indexable ] self.values_axes = [ a.infer(self) for a in self.indexables if not a.is_an_indexable ] self.metadata = getattr( self.attrs, 'metadata', None) or [] def validate_version(self, where=None): """ are we trying to operate on an old version? """ if where is not None: if (self.version[0] <= 0 and self.version[1] <= 10 and self.version[2] < 1): ws = incompatibility_doc % '.'.join( [str(x) for x in self.version]) warnings.warn(ws, IncompatibilityWarning) def validate_min_itemsize(self, min_itemsize): """validate the min_itemisze doesn't contain items that are not in the axes this needs data_columns to be defined """ if min_itemsize is None: return if not isinstance(min_itemsize, dict): return q = self.queryables() for k, v in min_itemsize.items(): # ok, apply generally if k == 'values': continue if k not in q: raise ValueError( "min_itemsize has the key [%s] which is not an axis or " "data_column" % k) @property def indexables(self): """ create/cache the indexables if they don't exist """ if self._indexables is None: self._indexables = [] # index columns self._indexables.extend([ IndexCol(name=name, axis=axis, pos=i) for i, (axis, name) in enumerate(self.attrs.index_cols) ]) # values columns dc = set(self.data_columns) base_pos = len(self._indexables) def f(i, c): klass = DataCol if c in dc: klass = DataIndexableCol return klass.create_for_block(i=i, name=c, pos=base_pos + i, version=self.version) self._indexables.extend( [f(i, c) for i, c in enumerate(self.attrs.values_cols)]) return self._indexables def create_index(self, columns=None, optlevel=None, kind=None): """ Create a pytables index on the specified columns note: cannot index Time64Col() or ComplexCol currently; PyTables must be >= 3.0 Parameters ---------- columns : False (don't create an index), True (create all columns index), None or list_like (the indexers to index) optlevel: optimization level (defaults to 6) kind : kind of index (defaults to 'medium') Exceptions ---------- raises if the node is not a table """ if not self.infer_axes(): return if columns is False: return # index all indexables and data_columns if columns is None or columns is True: columns = [a.cname for a in self.axes if a.is_data_indexable] if not isinstance(columns, (tuple, list)): columns = [columns] kw = dict() if optlevel is not None: kw['optlevel'] = optlevel if kind is not None: kw['kind'] = kind table = self.table for c in columns: v = getattr(table.cols, c, None) if v is not None: # remove the index if the kind/optlevel have changed if v.is_indexed: index = v.index cur_optlevel = index.optlevel cur_kind = index.kind if kind is not None and cur_kind != kind: v.remove_index() else: kw['kind'] = cur_kind if optlevel is not None and cur_optlevel != optlevel: v.remove_index() else: kw['optlevel'] = cur_optlevel # create the index if not v.is_indexed: if v.type.startswith('complex'): raise TypeError( 'Columns containing complex values can be stored ' 'but cannot' ' be indexed when using table format. Either use ' 'fixed format, set index=False, or do not include ' 'the columns containing complex values to ' 'data_columns when initializing the table.') v.create_index(**kw) def read_axes(self, where, **kwargs): """create and return the axes sniffed from the table: return boolean for success """ # validate the version self.validate_version(where) # infer the data kind if not self.infer_axes(): return False # create the selection self.selection = Selection(self, where=where, **kwargs) values = self.selection.select() # convert the data for a in self.axes: a.set_info(self.info) a.convert(values, nan_rep=self.nan_rep, encoding=self.encoding) return True def get_object(self, obj): """ return the data for this obj """ return obj def validate_data_columns(self, data_columns, min_itemsize): """take the input data_columns and min_itemize and create a data columns spec """ if not len(self.non_index_axes): return [] axis, axis_labels = self.non_index_axes[0] info = self.info.get(axis, dict()) if info.get('type') == 'MultiIndex' and data_columns: raise ValueError("cannot use a multi-index on axis [{0}] with " "data_columns {1}".format(axis, data_columns)) # evaluate the passed data_columns, True == use all columns # take only valide axis labels if data_columns is True: data_columns = list(axis_labels) elif data_columns is None: data_columns = [] # if min_itemsize is a dict, add the keys (exclude 'values') if isinstance(min_itemsize, dict): existing_data_columns = set(data_columns) data_columns.extend([ k for k in min_itemsize.keys() if k != 'values' and k not in existing_data_columns ]) # return valid columns in the order of our axis return [c for c in data_columns if c in axis_labels] def create_axes(self, axes, obj, validate=True, nan_rep=None, data_columns=None, min_itemsize=None, **kwargs): """ create and return the axes leagcy tables create an indexable column, indexable index, non-indexable fields Parameters: ----------- axes: a list of the axes in order to create (names or numbers of the axes) obj : the object to create axes on validate: validate the obj against an existing object already written min_itemsize: a dict of the min size for a column in bytes nan_rep : a values to use for string column nan_rep encoding : the encoding for string values data_columns : a list of columns that we want to create separate to allow indexing (or True will force all columns) """ # set the default axes if needed if axes is None: try: axes = _AXES_MAP[type(obj)] except: raise TypeError("cannot properly create the storer for: " "[group->%s,value->%s]" % (self.group._v_name, type(obj))) # map axes to numbers axes = [obj._get_axis_number(a) for a in axes] # do we have an existing table (if so, use its axes & data_columns) if self.infer_axes(): existing_table = self.copy() existing_table.infer_axes() axes = [a.axis for a in existing_table.index_axes] data_columns = existing_table.data_columns nan_rep = existing_table.nan_rep self.encoding = existing_table.encoding self.info = copy.copy(existing_table.info) else: existing_table = None # currently support on ndim-1 axes if len(axes) != self.ndim - 1: raise ValueError( "currently only support ndim-1 indexers in an AppendableTable") # create according to the new data self.non_index_axes = [] self.data_columns = [] # nan_representation if nan_rep is None: nan_rep = 'nan' self.nan_rep = nan_rep # create axes to index and non_index index_axes_map = dict() for i, a in enumerate(obj.axes): if i in axes: name = obj._AXIS_NAMES[i] index_axes_map[i] = _convert_index( a, self.encoding, self.format_type ).set_name(name).set_axis(i) else: # we might be able to change the axes on the appending data if # necessary append_axis = list(a) if existing_table is not None: indexer = len(self.non_index_axes) exist_axis = existing_table.non_index_axes[indexer][1] if not array_equivalent(np.array(append_axis), np.array(exist_axis)): # ahah! -> reindex if array_equivalent(np.array(sorted(append_axis)), np.array(sorted(exist_axis))): append_axis = exist_axis # the non_index_axes info info = _get_info(self.info, i) info['names'] = list(a.names) info['type'] = a.__class__.__name__ self.non_index_axes.append((i, append_axis)) # set axis positions (based on the axes) self.index_axes = [ index_axes_map[a].set_pos(j).update_info(self.info) for j, a in enumerate(axes) ] j = len(self.index_axes) # check for column conflicts for a in self.axes: a.maybe_set_size(min_itemsize=min_itemsize) # reindex by our non_index_axes & compute data_columns for a in self.non_index_axes: obj = _reindex_axis(obj, a[0], a[1]) def get_blk_items(mgr, blocks): return [mgr.items.take(blk.mgr_locs) for blk in blocks] # figure out data_columns and get out blocks block_obj = self.get_object(obj)._consolidate() blocks = block_obj._data.blocks blk_items = get_blk_items(block_obj._data, blocks) if len(self.non_index_axes): axis, axis_labels = self.non_index_axes[0] data_columns = self.validate_data_columns( data_columns, min_itemsize) if len(data_columns): mgr = block_obj.reindex_axis( Index(axis_labels).difference(Index(data_columns)), axis=axis )._data blocks = list(mgr.blocks) blk_items = get_blk_items(mgr, blocks) for c in data_columns: mgr = block_obj.reindex_axis([c], axis=axis)._data blocks.extend(mgr.blocks) blk_items.extend(get_blk_items(mgr, mgr.blocks)) # reorder the blocks in the same order as the existing_table if we can if existing_table is not None: by_items = dict([(tuple(b_items.tolist()), (b, b_items)) for b, b_items in zip(blocks, blk_items)]) new_blocks = [] new_blk_items = [] for ea in existing_table.values_axes: items = tuple(ea.values) try: b, b_items = by_items.pop(items) new_blocks.append(b) new_blk_items.append(b_items) except: raise ValueError( "cannot match existing table structure for [%s] on " "appending data" % ','.join(pprint_thing(item) for item in items)) blocks = new_blocks blk_items = new_blk_items # add my values self.values_axes = [] for i, (b, b_items) in enumerate(zip(blocks, blk_items)): # shape of the data column are the indexable axes klass = DataCol name = None # we have a data_column if (data_columns and len(b_items) == 1 and b_items[0] in data_columns): klass = DataIndexableCol name = b_items[0] self.data_columns.append(name) # make sure that we match up the existing columns # if we have an existing table if existing_table is not None and validate: try: existing_col = existing_table.values_axes[i] except: raise ValueError("Incompatible appended table [%s] with " "existing table [%s]" % (blocks, existing_table.values_axes)) else: existing_col = None try: col = klass.create_for_block( i=i, name=name, version=self.version) col.set_atom(block=b, block_items=b_items, existing_col=existing_col, min_itemsize=min_itemsize, nan_rep=nan_rep, encoding=self.encoding, info=self.info, **kwargs) col.set_pos(j) self.values_axes.append(col) except (NotImplementedError, ValueError, TypeError) as e: raise e except Exception as detail: raise Exception( "cannot find the correct atom type -> " "[dtype->%s,items->%s] %s" % (b.dtype.name, b_items, str(detail)) ) j += 1 # validate our min_itemsize self.validate_min_itemsize(min_itemsize) # validate our metadata self.validate_metadata(existing_table) # validate the axes if we have an existing table if validate: self.validate(existing_table) def process_axes(self, obj, columns=None): """ process axes filters """ # make a copy to avoid side effects if columns is not None: columns = list(columns) # make sure to include levels if we have them if columns is not None and self.is_multi_index: for n in self.levels: if n not in columns: columns.insert(0, n) # reorder by any non_index_axes & limit to the select columns for axis, labels in self.non_index_axes: obj = _reindex_axis(obj, axis, labels, columns) # apply the selection filters (but keep in the same order) if self.selection.filter is not None: for field, op, filt in self.selection.filter.format(): def process_filter(field, filt): for axis_name in obj._AXIS_NAMES.values(): axis_number = obj._get_axis_number(axis_name) axis_values = obj._get_axis(axis_name) # see if the field is the name of an axis if field == axis_name: # if we have a multi-index, then need to include # the levels if self.is_multi_index: filt = filt.union(Index(self.levels)) takers = op(axis_values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) # this might be the name of a file IN an axis elif field in axis_values: # we need to filter on this dimension values = _ensure_index(getattr(obj, field).values) filt = _ensure_index(filt) # hack until we support reversed dim flags if isinstance(obj, DataFrame): axis_number = 1 - axis_number takers = op(values, filt) return obj.loc._getitem_axis(takers, axis=axis_number) raise ValueError( "cannot find the field [%s] for filtering!" % field) obj = process_filter(field, filt) return obj def create_description(self, complib=None, complevel=None, fletcher32=False, expectedrows=None): """ create the description of the table from the axes & values """ # provided expected rows if its passed if expectedrows is None: expectedrows = max(self.nrows_expected, 10000) d = dict(name='table', expectedrows=expectedrows) # description from the axes & values d['description'] = dict([(a.cname, a.typ) for a in self.axes]) if complib: if complevel is None: complevel = self._complevel or 9 filters = _tables().Filters( complevel=complevel, complib=complib, fletcher32=fletcher32 or self._fletcher32) d['filters'] = filters elif self._filters is not None: d['filters'] = self._filters return d def read_coordinates(self, where=None, start=None, stop=None, **kwargs): """select coordinates (row numbers) from a table; return the coordinates object """ # validate the version self.validate_version(where) # infer the data kind if not self.infer_axes(): return False # create the selection self.selection = Selection( self, where=where, start=start, stop=stop, **kwargs) coords = self.selection.select_coords() if self.selection.filter is not None: for field, op, filt in self.selection.filter.format(): data = self.read_column( field, start=coords.min(), stop=coords.max() + 1) coords = coords[ op(data.iloc[coords - coords.min()], filt).values] return Index(coords) def read_column(self, column, where=None, start=None, stop=None, **kwargs): """return a single column from the table, generally only indexables are interesting """ # validate the version self.validate_version() # infer the data kind if not self.infer_axes(): return False if where is not None: raise TypeError("read_column does not currently accept a where " "clause") # find the axes for a in self.axes: if column == a.name: if not a.is_data_indexable: raise ValueError( "column [%s] can not be extracted individually; it is " "not data indexable" % column) # column must be an indexable or a data column c = getattr(self.table.cols, column) a.set_info(self.info) return Series(_set_tz(a.convert(c[start:stop], nan_rep=self.nan_rep, encoding=self.encoding ).take_data(), a.tz, True), name=column) raise KeyError("column [%s] not found in the table" % column) class WORMTable(Table): """ a write-once read-many table: this format DOES NOT ALLOW appending to a table. writing is a one-time operation the data are stored in a format that allows for searching the data on disk """ table_type = u('worm') def read(self, **kwargs): """ read the indicies and the indexing array, calculate offset rows and return """ raise NotImplementedError("WORMTable needs to implement read") def write(self, **kwargs): """ write in a format that we can search later on (but cannot append to): write out the indicies and the values using _write_array (e.g. a CArray) create an indexing table so that we can search """ raise NotImplementedError("WORKTable needs to implement write") class LegacyTable(Table): """ an appendable table: allow append/query/delete operations to a (possibily) already existing appendable table this table ALLOWS append (but doesn't require them), and stores the data in a format that can be easily searched """ _indexables = [ IndexCol(name='index', axis=1, pos=0), IndexCol(name='column', axis=2, pos=1, index_kind='columns_kind'), DataCol(name='fields', cname='values', kind_attr='fields', pos=2) ] table_type = u('legacy') ndim = 3 def write(self, **kwargs): raise TypeError("write operations are not allowed on legacy tables!") def read(self, where=None, columns=None, **kwargs): """we have n indexable columns, with an arbitrary number of data axes """ if not self.read_axes(where=where, **kwargs): return None lst_vals = [a.values for a in self.index_axes] labels, levels = _factorize_from_iterables(lst_vals) # labels and levels are tuples but lists are expected labels = list(labels) levels = list(levels) N = [len(lvl) for lvl in levels] # compute the key key = _factor_indexer(N[1:], labels) objs = [] if len(unique(key)) == len(key): sorter, _ = algos.groupsort_indexer( _ensure_int64(key), np.prod(N)) sorter = _ensure_platform_int(sorter) # create the objs for c in self.values_axes: # the data need to be sorted sorted_values = c.take_data().take(sorter, axis=0) if sorted_values.ndim == 1: sorted_values = sorted_values.reshape( (sorted_values.shape[0], 1)) take_labels = [l.take(sorter) for l in labels] items = Index(c.values) block = _block2d_to_blocknd( values=sorted_values, placement=np.arange(len(items)), shape=tuple(N), labels=take_labels, ref_items=items) # create the object mgr = BlockManager([block], [items] + levels) obj = self.obj_type(mgr) # permute if needed if self.is_transposed: obj = obj.transpose( *tuple(Series(self.data_orientation).argsort())) objs.append(obj) else: warnings.warn(duplicate_doc, DuplicateWarning, stacklevel=5) # reconstruct long_index = MultiIndex.from_arrays( [i.values for i in self.index_axes]) for c in self.values_axes: lp = DataFrame(c.data, index=long_index, columns=c.values) # need a better algorithm tuple_index = long_index.values unique_tuples = lib.fast_unique(tuple_index) unique_tuples = _asarray_tuplesafe(unique_tuples) indexer = match(unique_tuples, tuple_index) indexer = _ensure_platform_int(indexer) new_index = long_index.take(indexer) new_values = lp.values.take(indexer, axis=0) lp = DataFrame(new_values, index=new_index, columns=lp.columns) objs.append(lp.to_panel()) # create the composite object if len(objs) == 1: wp = objs[0] else: wp = concat(objs, axis=0, verify_integrity=False)._consolidate() # apply the selection filters & axis orderings wp = self.process_axes(wp, columns=columns) return wp class LegacyFrameTable(LegacyTable): """ support the legacy frame table """ pandas_kind = u('frame_table') table_type = u('legacy_frame') obj_type = Panel def read(self, *args, **kwargs): return super(LegacyFrameTable, self).read(*args, **kwargs)['value'] class LegacyPanelTable(LegacyTable): """ support the legacy panel table """ table_type = u('legacy_panel') obj_type = Panel class AppendableTable(LegacyTable): """ suppor the new appendable table formats """ _indexables = None table_type = u('appendable') def write(self, obj, axes=None, append=False, complib=None, complevel=None, fletcher32=None, min_itemsize=None, chunksize=None, expectedrows=None, dropna=False, **kwargs): if not append and self.is_exists: self._handle.remove_node(self.group, 'table') # create the axes self.create_axes(axes=axes, obj=obj, validate=append, min_itemsize=min_itemsize, **kwargs) for a in self.axes: a.validate(self, append) if not self.is_exists: # create the table options = self.create_description(complib=complib, complevel=complevel, fletcher32=fletcher32, expectedrows=expectedrows) # set the table attributes self.set_attrs() # create the table self._handle.create_table(self.group, **options) else: pass # table = self.table # update my info self.set_info() # validate the axes and set the kinds for a in self.axes: a.validate_and_set(self, append) # add the rows self.write_data(chunksize, dropna=dropna) def write_data(self, chunksize, dropna=False): """ we form the data into a 2-d including indexes,values,mask write chunk-by-chunk """ names = self.dtype.names nrows = self.nrows_expected # if dropna==True, then drop ALL nan rows masks = [] if dropna: for a in self.values_axes: # figure the mask: only do if we can successfully process this # column, otherwise ignore the mask mask = isnull(a.data).all(axis=0) if isinstance(mask, np.ndarray): masks.append(mask.astype('u1', copy=False)) # consolidate masks if len(masks): mask = masks[0] for m in masks[1:]: mask = mask & m mask = mask.ravel() else: mask = None # broadcast the indexes if needed indexes = [a.cvalues for a in self.index_axes] nindexes = len(indexes) bindexes = [] for i, idx in enumerate(indexes): # broadcast to all other indexes except myself if i > 0 and i < nindexes: repeater = np.prod( [indexes[bi].shape[0] for bi in range(0, i)]) idx = np.tile(idx, repeater) if i < nindexes - 1: repeater = np.prod([indexes[bi].shape[0] for bi in range(i + 1, nindexes)]) idx = np.repeat(idx, repeater) bindexes.append(idx) # transpose the values so first dimension is last # reshape the values if needed values = [a.take_data() for a in self.values_axes] values = [v.transpose(np.roll(np.arange(v.ndim), v.ndim - 1)) for v in values] bvalues = [] for i, v in enumerate(values): new_shape = (nrows,) + self.dtype[names[nindexes + i]].shape bvalues.append(values[i].reshape(new_shape)) # write the chunks if chunksize is None: chunksize = 100000 rows = np.empty(min(chunksize, nrows), dtype=self.dtype) chunks = int(nrows / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, nrows) if start_i >= end_i: break self.write_data_chunk( rows, indexes=[a[start_i:end_i] for a in bindexes], mask=mask[start_i:end_i] if mask is not None else None, values=[v[start_i:end_i] for v in bvalues]) def write_data_chunk(self, rows, indexes, mask, values): """ Parameters ---------- rows : an empty memory space where we are putting the chunk indexes : an array of the indexes mask : an array of the masks values : an array of the values """ # 0 len for v in values: if not np.prod(v.shape): return try: nrows = indexes[0].shape[0] if nrows != len(rows): rows = np.empty(nrows, dtype=self.dtype) names = self.dtype.names nindexes = len(indexes) # indexes for i, idx in enumerate(indexes): rows[names[i]] = idx # values for i, v in enumerate(values): rows[names[i + nindexes]] = v # mask if mask is not None: m = ~mask.ravel().astype(bool, copy=False) if not m.all(): rows = rows[m] except Exception as detail: raise Exception("cannot create row-data -> %s" % detail) try: if len(rows): self.table.append(rows) self.table.flush() except Exception as detail: raise TypeError("tables cannot write this data -> %s" % detail) def delete(self, where=None, start=None, stop=None, **kwargs): # delete all rows (and return the nrows) if where is None or not len(where): if start is None and stop is None: nrows = self.nrows self._handle.remove_node(self.group, recursive=True) else: # pytables<3.0 would remove a single row with stop=None if stop is None: stop = self.nrows nrows = self.table.remove_rows(start=start, stop=stop) self.table.flush() return nrows # infer the data kind if not self.infer_axes(): return None # create the selection table = self.table self.selection = Selection( self, where, start=start, stop=stop, **kwargs) values = self.selection.select_coords() # delete the rows in reverse order l = Series(values).sort_values() ln = len(l) if ln: # construct groups of consecutive rows diff = l.diff() groups = list(diff[diff > 1].index) # 1 group if not len(groups): groups = [0] # final element if groups[-1] != ln: groups.append(ln) # initial element if groups[0] != 0: groups.insert(0, 0) # we must remove in reverse order! pg = groups.pop() for g in reversed(groups): rows = l.take(lrange(g, pg)) table.remove_rows(start=rows[rows.index[0] ], stop=rows[rows.index[-1]] + 1) pg = g self.table.flush() # return the number of rows removed return ln class AppendableFrameTable(AppendableTable): """ suppor the new appendable table formats """ pandas_kind = u('frame_table') table_type = u('appendable_frame') ndim = 2 obj_type = DataFrame @property def is_transposed(self): return self.index_axes[0].axis == 1 def get_object(self, obj): """ these are written transposed """ if self.is_transposed: obj = obj.T return obj def read(self, where=None, columns=None, **kwargs): if not self.read_axes(where=where, **kwargs): return None info = (self.info.get(self.non_index_axes[0][0], dict()) if len(self.non_index_axes) else dict()) index = self.index_axes[0].values frames = [] for a in self.values_axes: # we could have a multi-index constructor here # _ensure_index doesn't recognized our list-of-tuples here if info.get('type') == 'MultiIndex': cols = MultiIndex.from_tuples(a.values) else: cols = Index(a.values) names = info.get('names') if names is not None: cols.set_names(names, inplace=True) if self.is_transposed: values = a.cvalues index_ = cols cols_ = Index(index, name=getattr(index, 'name', None)) else: values = a.cvalues.T index_ = Index(index, name=getattr(index, 'name', None)) cols_ = cols # if we have a DataIndexableCol, its shape will only be 1 dim if values.ndim == 1 and isinstance(values, np.ndarray): values = values.reshape((1, values.shape[0])) block = make_block(values, placement=np.arange(len(cols_))) mgr = BlockManager([block], [cols_, index_]) frames.append(DataFrame(mgr)) if len(frames) == 1: df = frames[0] else: df = concat(frames, axis=1) # apply the selection filters & axis orderings df = self.process_axes(df, columns=columns) return df class AppendableSeriesTable(AppendableFrameTable): """ support the new appendable table formats """ pandas_kind = u('series_table') table_type = u('appendable_series') ndim = 2 obj_type = Series storage_obj_type = DataFrame @property def is_transposed(self): return False def get_object(self, obj): return obj def write(self, obj, data_columns=None, **kwargs): """ we are going to write this as a frame table """ if not isinstance(obj, DataFrame): name = obj.name or 'values' obj = DataFrame({name: obj}, index=obj.index) obj.columns = [name] return super(AppendableSeriesTable, self).write( obj=obj, data_columns=obj.columns.tolist(), **kwargs) def read(self, columns=None, **kwargs): is_multi_index = self.is_multi_index if columns is not None and is_multi_index: for n in self.levels: if n not in columns: columns.insert(0, n) s = super(AppendableSeriesTable, self).read(columns=columns, **kwargs) if is_multi_index: s.set_index(self.levels, inplace=True) s = s.iloc[:, 0] # remove the default name if s.name == 'values': s.name = None return s class AppendableMultiSeriesTable(AppendableSeriesTable): """ support the new appendable table formats """ pandas_kind = u('series_table') table_type = u('appendable_multiseries') def write(self, obj, **kwargs): """ we are going to write this as a frame table """ name = obj.name or 'values' obj, self.levels = self.validate_multiindex(obj) cols = list(self.levels) cols.append(name) obj.columns = cols return super(AppendableMultiSeriesTable, self).write(obj=obj, **kwargs) class GenericTable(AppendableFrameTable): """ a table that read/writes the generic pytables table format """ pandas_kind = u('frame_table') table_type = u('generic_table') ndim = 2 obj_type = DataFrame @property def pandas_type(self): return self.pandas_kind @property def storable(self): return getattr(self.group, 'table', None) or self.group def get_attrs(self): """ retrieve our attributes """ self.non_index_axes = [] self.nan_rep = None self.levels = [] self.index_axes = [a.infer(self) for a in self.indexables if a.is_an_indexable] self.values_axes = [a.infer(self) for a in self.indexables if not a.is_an_indexable] self.data_columns = [a.name for a in self.values_axes] @property def indexables(self): """ create the indexables from the table description """ if self._indexables is None: d = self.description # the index columns is just a simple index self._indexables = [GenericIndexCol(name='index', axis=0)] for i, n in enumerate(d._v_names): dc = GenericDataIndexableCol( name=n, pos=i, values=[n], version=self.version) self._indexables.append(dc) return self._indexables def write(self, **kwargs): raise NotImplementedError("cannot write on an generic table") class AppendableMultiFrameTable(AppendableFrameTable): """ a frame with a multi-index """ table_type = u('appendable_multiframe') obj_type = DataFrame ndim = 2 _re_levels = re.compile("^level_\d+$") @property def table_type_short(self): return u('appendable_multi') def write(self, obj, data_columns=None, **kwargs): if data_columns is None: data_columns = [] elif data_columns is True: data_columns = obj.columns.tolist() obj, self.levels = self.validate_multiindex(obj) for n in self.levels: if n not in data_columns: data_columns.insert(0, n) return super(AppendableMultiFrameTable, self).write( obj=obj, data_columns=data_columns, **kwargs) def read(self, **kwargs): df = super(AppendableMultiFrameTable, self).read(**kwargs) df = df.set_index(self.levels) # remove names for 'level_%d' df.index = df.index.set_names([ None if self._re_levels.search(l) else l for l in df.index.names ]) return df class AppendablePanelTable(AppendableTable): """ suppor the new appendable table formats """ table_type = u('appendable_panel') ndim = 3 obj_type = Panel def get_object(self, obj): """ these are written transposed """ if self.is_transposed: obj = obj.transpose(*self.data_orientation) return obj @property def is_transposed(self): return self.data_orientation != tuple(range(self.ndim)) class AppendableNDimTable(AppendablePanelTable): """ suppor the new appendable table formats """ table_type = u('appendable_ndim') ndim = 4 obj_type = Panel4D def _reindex_axis(obj, axis, labels, other=None): ax = obj._get_axis(axis) labels = _ensure_index(labels) # try not to reindex even if other is provided # if it equals our current index if other is not None: other = _ensure_index(other) if (other is None or labels.equals(other)) and labels.equals(ax): return obj labels = _ensure_index(labels.unique()) if other is not None: labels = _ensure_index(other.unique()) & labels if not labels.equals(ax): slicer = [slice(None, None)] * obj.ndim slicer[axis] = labels obj = obj.loc[tuple(slicer)] return obj def _get_info(info, name): """ get/create the info for this name """ try: idx = info[name] except: idx = info[name] = dict() return idx # tz to/from coercion def _get_tz(tz): """ for a tz-aware type, return an encoded zone """ zone = tslib.get_timezone(tz) if zone is None: zone = tslib.tot_seconds(tz.utcoffset()) return zone def _set_tz(values, tz, preserve_UTC=False, coerce=False): """ coerce the values to a DatetimeIndex if tz is set preserve the input shape if possible Parameters ---------- values : ndarray tz : string/pickled tz object preserve_UTC : boolean, preserve the UTC of the result coerce : if we do not have a passed timezone, coerce to M8[ns] ndarray """ if tz is not None: name = getattr(values, 'name', None) values = values.ravel() tz = tslib.get_timezone(_ensure_decoded(tz)) values = DatetimeIndex(values, name=name) if values.tz is None: values = values.tz_localize('UTC').tz_convert(tz) if preserve_UTC: if tz == 'UTC': values = list(values) elif coerce: values = np.asarray(values, dtype='M8[ns]') return values def _convert_index(index, encoding=None, format_type=None): index_name = getattr(index, 'name', None) if isinstance(index, DatetimeIndex): converted = index.asi8 return IndexCol(converted, 'datetime64', _tables().Int64Col(), freq=getattr(index, 'freq', None), tz=getattr(index, 'tz', None), index_name=index_name) elif isinstance(index, TimedeltaIndex): converted = index.asi8 return IndexCol(converted, 'timedelta64', _tables().Int64Col(), freq=getattr(index, 'freq', None), index_name=index_name) elif isinstance(index, (Int64Index, PeriodIndex)): atom = _tables().Int64Col() # avoid to store ndarray of Period objects return IndexCol(index._values, 'integer', atom, freq=getattr(index, 'freq', None), index_name=index_name) if isinstance(index, MultiIndex): raise TypeError('MultiIndex not supported here!') inferred_type = lib.infer_dtype(index) values = np.asarray(index) if inferred_type == 'datetime64': converted = values.view('i8') return IndexCol(converted, 'datetime64', _tables().Int64Col(), freq=getattr(index, 'freq', None), tz=getattr(index, 'tz', None), index_name=index_name) elif inferred_type == 'timedelta64': converted = values.view('i8') return IndexCol(converted, 'timedelta64', _tables().Int64Col(), freq=getattr(index, 'freq', None), index_name=index_name) elif inferred_type == 'datetime': converted = np.asarray([(time.mktime(v.timetuple()) + v.microsecond / 1E6) for v in values], dtype=np.float64) return IndexCol(converted, 'datetime', _tables().Time64Col(), index_name=index_name) elif inferred_type == 'date': converted = np.asarray([v.toordinal() for v in values], dtype=np.int32) return IndexCol(converted, 'date', _tables().Time32Col(), index_name=index_name) elif inferred_type == 'string': # atom = _tables().ObjectAtom() # return np.asarray(values, dtype='O'), 'object', atom converted = _convert_string_array(values, encoding) itemsize = converted.dtype.itemsize return IndexCol( converted, 'string', _tables().StringCol(itemsize), itemsize=itemsize, index_name=index_name ) elif inferred_type == 'unicode': if format_type == 'fixed': atom = _tables().ObjectAtom() return IndexCol(np.asarray(values, dtype='O'), 'object', atom, index_name=index_name) raise TypeError( "[unicode] is not supported as a in index type for [{0}] formats" .format(format_type) ) elif inferred_type == 'integer': # take a guess for now, hope the values fit atom = _tables().Int64Col() return IndexCol(np.asarray(values, dtype=np.int64), 'integer', atom, index_name=index_name) elif inferred_type == 'floating': atom = _tables().Float64Col() return IndexCol(np.asarray(values, dtype=np.float64), 'float', atom, index_name=index_name) else: # pragma: no cover atom = _tables().ObjectAtom() return IndexCol(np.asarray(values, dtype='O'), 'object', atom, index_name=index_name) def _unconvert_index(data, kind, encoding=None): kind = _ensure_decoded(kind) if kind == u('datetime64'): index = DatetimeIndex(data) elif kind == u('timedelta64'): index = TimedeltaIndex(data) elif kind == u('datetime'): index = np.asarray([datetime.fromtimestamp(v) for v in data], dtype=object) elif kind == u('date'): try: index = np.asarray( [date.fromordinal(v) for v in data], dtype=object) except (ValueError): index = np.asarray( [date.fromtimestamp(v) for v in data], dtype=object) elif kind in (u('integer'), u('float')): index = np.asarray(data) elif kind in (u('string')): index = _unconvert_string_array(data, nan_rep=None, encoding=encoding) elif kind == u('object'): index = np.asarray(data[0]) else: # pragma: no cover raise ValueError('unrecognized index type %s' % kind) return index def _unconvert_index_legacy(data, kind, legacy=False, encoding=None): kind = _ensure_decoded(kind) if kind == u('datetime'): index = lib.time64_to_datetime(data) elif kind in (u('integer')): index = np.asarray(data, dtype=object) elif kind in (u('string')): index = _unconvert_string_array(data, nan_rep=None, encoding=encoding) else: # pragma: no cover raise ValueError('unrecognized index type %s' % kind) return index def _convert_string_array(data, encoding, itemsize=None): """ we take a string-like that is object dtype and coerce to a fixed size string type Parameters ---------- data : a numpy array of object dtype encoding : None or string-encoding itemsize : integer, optional, defaults to the max length of the strings Returns ------- data in a fixed-length string dtype, encoded to bytes if needed """ # encode if needed if encoding is not None and len(data): data = Series(data.ravel()).str.encode( encoding).values.reshape(data.shape) # create the sized dtype if itemsize is None: itemsize = lib.max_len_string_array(_ensure_object(data.ravel())) data = np.asarray(data, dtype="S%d" % itemsize) return data def _unconvert_string_array(data, nan_rep=None, encoding=None): """ inverse of _convert_string_array Parameters ---------- data : fixed length string dtyped array nan_rep : the storage repr of NaN, optional encoding : the encoding of the data, optional Returns ------- an object array of the decoded data """ shape = data.shape data = np.asarray(data.ravel(), dtype=object) # guard against a None encoding in PY3 (because of a legacy # where the passed encoding is actually None) encoding = _ensure_encoding(encoding) if encoding is not None and len(data): itemsize = lib.max_len_string_array(_ensure_object(data)) if compat.PY3: dtype = "U{0}".format(itemsize) else: dtype = "S{0}".format(itemsize) if isinstance(data[0], compat.binary_type): data = Series(data).str.decode(encoding).values else: data = data.astype(dtype, copy=False).astype(object, copy=False) if nan_rep is None: nan_rep = 'nan' data = lib.string_array_replace_from_nan_rep(data, nan_rep) return data.reshape(shape) def _maybe_convert(values, val_kind, encoding): if _need_convert(val_kind): conv = _get_converter(val_kind, encoding) # conv = np.frompyfunc(conv, 1, 1) values = conv(values) return values def _get_converter(kind, encoding): kind = _ensure_decoded(kind) if kind == 'datetime64': return lambda x: np.asarray(x, dtype='M8[ns]') elif kind == 'datetime': return lib.convert_timestamps elif kind == 'string': return lambda x: _unconvert_string_array(x, encoding=encoding) else: # pragma: no cover raise ValueError('invalid kind %s' % kind) def _need_convert(kind): kind = _ensure_decoded(kind) if kind in (u('datetime'), u('datetime64'), u('string')): return True return False class Selection(object): """ Carries out a selection operation on a tables.Table object. Parameters ---------- table : a Table object where : list of Terms (or convertable to) start, stop: indicies to start and/or stop selection """ def __init__(self, table, where=None, start=None, stop=None, **kwargs): self.table = table self.where = where self.start = start self.stop = stop self.condition = None self.filter = None self.terms = None self.coordinates = None if is_list_like(where): # see if we have a passed coordinate like try: inferred = lib.infer_dtype(where) if inferred == 'integer' or inferred == 'boolean': where = np.asarray(where) if where.dtype == np.bool_: start, stop = self.start, self.stop if start is None: start = 0 if stop is None: stop = self.table.nrows self.coordinates = np.arange(start, stop)[where] elif issubclass(where.dtype.type, np.integer): if ((self.start is not None and (where < self.start).any()) or (self.stop is not None and (where >= self.stop).any())): raise ValueError( "where must have index locations >= start and " "< stop" ) self.coordinates = where except: pass if self.coordinates is None: self.terms = self.generate(where) # create the numexpr & the filter if self.terms is not None: self.condition, self.filter = self.terms.evaluate() def generate(self, where): """ where can be a : dict,list,tuple,string """ if where is None: return None q = self.table.queryables() try: return Expr(where, queryables=q, encoding=self.table.encoding) except NameError: # raise a nice message, suggesting that the user should use # data_columns raise ValueError( "The passed where expression: {0}\n" " contains an invalid variable reference\n" " all of the variable refrences must be a " "reference to\n" " an axis (e.g. 'index' or 'columns'), or a " "data_column\n" " The currently defined references are: {1}\n" .format(where, ','.join(q.keys())) ) def select(self): """ generate the selection """ if self.condition is not None: return self.table.table.read_where(self.condition.format(), start=self.start, stop=self.stop) elif self.coordinates is not None: return self.table.table.read_coordinates(self.coordinates) return self.table.table.read(start=self.start, stop=self.stop) def select_coords(self): """ generate the selection """ start, stop = self.start, self.stop nrows = self.table.nrows if start is None: start = 0 elif start < 0: start += nrows if self.stop is None: stop = nrows elif stop < 0: stop += nrows if self.condition is not None: return self.table.table.get_where_list(self.condition.format(), start=start, stop=stop, sort=True) elif self.coordinates is not None: return self.coordinates return np.arange(start, stop) # utilities ### def timeit(key, df, fn=None, remove=True, **kwargs): if fn is None: fn = 'timeit.h5' store = HDFStore(fn, mode='w') store.append(key, df, **kwargs) store.close() if remove: os.remove(fn)
33.903951
104
0.555088
4a1b128fa7c0383970b67145023352fde31f964f
246
py
Python
test/tiles/npvector_test.py
liz-is/clodius
7e4a0d5f646a9af625c97e07859d914e72c83f0e
[ "MIT" ]
null
null
null
test/tiles/npvector_test.py
liz-is/clodius
7e4a0d5f646a9af625c97e07859d914e72c83f0e
[ "MIT" ]
1
2019-03-28T20:08:01.000Z
2019-03-28T20:08:01.000Z
test/tiles/npvector_test.py
4dn-dcic/clodius
aa31b3d90a5a9fec883c20cab31ad4d347cd52cd
[ "MIT" ]
null
null
null
import numpy as np import clodius.tiles.npvector as hgnv def test_npvector(): array = np.array(range(100)) # print('ts:', hgnv.tileset_info(array)) assert('max_width' in hgnv.tileset_info(array)) tile = hgnv.tiles(array, 0, 0)
22.363636
51
0.686992
4a1b130dcb42bcbdeabcd4be51db950239cc2e9a
187
py
Python
deepspeed/module_inject/__init__.py
samyam/DeepSpeed
22aca3694ad4f01d13813b9630caac8683bb22e9
[ "MIT" ]
null
null
null
deepspeed/module_inject/__init__.py
samyam/DeepSpeed
22aca3694ad4f01d13813b9630caac8683bb22e9
[ "MIT" ]
null
null
null
deepspeed/module_inject/__init__.py
samyam/DeepSpeed
22aca3694ad4f01d13813b9630caac8683bb22e9
[ "MIT" ]
null
null
null
from .replace_module import replace_transformer_layer from .module_quantize import quantize_transformer_layer from .replace_policy import DSPolicy, HFBertLayerPolicy, MegatronLayerPolicy
46.75
76
0.898396
4a1b132a3c59cc1a84aeea9103440ad4c817f490
2,411
py
Python
mmdet/cv_core/utils/coco_creator.py
Karybdis/mmdetection-mini
cf255db8037cfeecb7927268d018432f5771ab2e
[ "MIT" ]
834
2020-09-08T08:00:04.000Z
2022-03-29T01:25:55.000Z
mmdet/cv_core/utils/coco_creator.py
mgnfcnt-ec/mmdet
46647fba610dfb396569d7910058c707d67d4ec4
[ "Apache-2.0" ]
44
2020-09-16T14:21:58.000Z
2022-03-07T04:28:39.000Z
mmdet/cv_core/utils/coco_creator.py
mgnfcnt-ec/mmdet
46647fba610dfb396569d7910058c707d67d4ec4
[ "Apache-2.0" ]
161
2020-09-10T03:26:35.000Z
2022-03-22T11:25:04.000Z
import datetime import json import os from .pycococreatortools import create_image_info, create_annotation_info class CocoCreator(object): def __init__(self, categories, year=2020, out_dir='./', save_name='temp.json'): INFO = { "description": "Dataset", "url": "https://github.com/hhaAndroid/mmdetection-mini", "version": "1.0.0", "year": year, "contributor": "hha", "date_created": datetime.datetime.utcnow().isoformat(' ') } LICENSES = [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ] self.check_categories(categories) self.coco_output = { "info": INFO, "licenses": LICENSES, "categories": categories, "images": [], "annotations": [] } self.out_dir = out_dir self.save_name = save_name def check_categories(self, categories): """ example: [ { 'id': 1, # 类别1 'name': 'power', 'supercategory': 'object', } { 'id': 2, # 类别2 'name': 'circle', 'supercategory': 'shape', } ] """ assert isinstance(categories, list) assert isinstance(categories[0], dict) def create_image_info(self, image_id, file_name, image_size): image_info = create_image_info(image_id, file_name, image_size) self.coco_output["images"].append(image_info) def create_annotation_info(self, segmentation_id, image_id, category_info, binary_mask=None, bounding_box=None, image_size=None, tolerance=2): annotation_info = create_annotation_info(segmentation_id, image_id, category_info, binary_mask, image_size, tolerance, bounding_box) if annotation_info is not None: self.coco_output["annotations"].append(annotation_info) def dump(self): out_file = os.path.join(self.out_dir, 'annotations', self.save_name) with open(out_file, 'w') as output_json_file: json.dump(self.coco_output, output_json_file)
33.486111
115
0.546246
4a1b135ed6a6f15fe07a5f53af2739f8e8ddb5b4
181
py
Python
automate.py
ismaelsadeeq/automate-
b0ad3cf055bab70340cb7973a3a4b0e25d8e3389
[ "MIT" ]
null
null
null
automate.py
ismaelsadeeq/automate-
b0ad3cf055bab70340cb7973a3a4b0e25d8e3389
[ "MIT" ]
null
null
null
automate.py
ismaelsadeeq/automate-
b0ad3cf055bab70340cb7973a3a4b0e25d8e3389
[ "MIT" ]
null
null
null
import pyautogui import time text = input("Enter the text you want to send") i=0 while True: time.sleep(2) pyautogui.typewrite(text) time.sleep(1) pyautogui.press('enter')
16.454545
47
0.723757
4a1b13d1f570b83f38c360f22dbbe09c7ab748e3
6,527
py
Python
minetest/mods/discordmt/server.py
ShadyFox2004/minetest-server
1310fd2a8c0bee9e9e718257ed136040e34d213e
[ "MIT" ]
1
2021-06-30T20:50:19.000Z
2021-06-30T20:50:19.000Z
minetest/mods/discordmt/server.py
ShadyFox2004/minetest-server
1310fd2a8c0bee9e9e718257ed136040e34d213e
[ "MIT" ]
null
null
null
minetest/mods/discordmt/server.py
ShadyFox2004/minetest-server
1310fd2a8c0bee9e9e718257ed136040e34d213e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys from aiohttp import web import aiohttp import discord from discord.ext import commands import asyncio import json import time import configparser import re config = configparser.ConfigParser() config.read('relay.conf') class Queue(): def __init__(self): self.queue = [] def add(self, item): self.queue.append(item) def get(self): if len(self.queue) >=1: item = self.queue[0] del self.queue[0] return item else: return None def get_all(self): items = self.queue self.queue = [] return items def isEmpty(self): return len(self.queue) == 0 def clean_invites(string): return ' '.join([word for word in string.split() if not ('discord.gg' in word) and not ('discordapp.com/invite' in word)]) outgoing_msgs = Queue() command_queue = Queue() login_queue = Queue() prefix = config['BOT']['command_prefix'] bot = commands.Bot(command_prefix=prefix) channel_id = int(config['RELAY']['channel_id']) connected = False port = int(config['RELAY']['port']) token = config['BOT']['token'] logins_allowed = True if config['RELAY']['allow_logins'] == 'true' else False do_clean_invites = True if config['RELAY']['clean_invites'] == 'true' else False do_use_nicknames = True if config['RELAY']['use_nicknames'] == 'true' else False last_request = 0 channel = None authenticated_users = {} def check_timeout(): return time.time() - last_request <= 1 async def get_or_fetch_user(user_id): user = bot.get_user(user_id) if user is None: user = await bot.fetch_user(user_id) if user is None: print(f'Failed to fetch user {user_id!r}.') return user async def handle(request): global last_request last_request = time.time() text = await request.text() try: data = json.loads(text) if data['type'] == 'DISCORD-RELAY-MESSAGE': msg = discord.utils.escape_mentions(data['content'])[0:2000] r = re.compile(r'\x1b(T|F|E|\(T@[^\)]*\))') msg = r.sub('', msg) if 'context' in data.keys(): id = int(data['context']) user = await get_or_fetch_user(id) if user is not None: await user.send(msg) else: await channel.send(msg) return web.Response(text = 'Acknowledged') # discord.send should NOT block extensively on the Lua side if data['type'] == 'DISCORD_LOGIN_RESULT': user_id = int(data['user_id']) user = await get_or_fetch_user(user_id) if user is not None: if data['success'] is True: authenticated_users[user_id] = data['username'] await user.send('Login successful.') else: await user.send('Login failed.') except: pass response = json.dumps({ 'messages' : outgoing_msgs.get_all(), 'commands' : command_queue.get_all(), 'logins' : login_queue.get_all() }) return web.Response(text = response) app = web.Application() app.add_routes([web.get('/', handle), web.post('/', handle)]) @bot.event async def on_ready(): global connected if not connected: connected = True global channel channel = await bot.fetch_channel(channel_id) @bot.event async def on_message(message): global outgoing_msgs if check_timeout(): if (message.channel.id == channel_id) and (message.author.id != bot.user.id): msg = { 'author': message.author.name if not do_use_nicknames else message.author.display_name, 'content': message.content.replace('\n', '/') } if do_clean_invites: msg['content'] = clean_invites(msg['content']) if msg['content'] != '': outgoing_msgs.add(msg) await bot.process_commands(message) @bot.command(help='Runs an ingame command from Discord.') async def cmd(ctx, command, *, args=''): if not check_timeout(): await ctx.send("The server currently appears to be down.") return if ((ctx.channel.id != channel_id) and ctx.guild is not None) or not logins_allowed: return if ctx.author.id not in authenticated_users.keys(): await ctx.send('Not logged in.') return command = { 'name': authenticated_users[ctx.author.id], 'command': command, 'params': args.replace('\n', '') } if ctx.guild is None: command['context'] = str(ctx.author.id) command_queue.add(command) @bot.command(help='Logs into your ingame account from Discord so you can run commands. You should only run this command in DMs with the bot.') async def login(ctx, username, password=''): if not logins_allowed: return if ctx.guild is not None: await ctx.send(ctx.author.mention+' You\'ve quite possibly just leaked your password; it is advised that you change it at once.\n*This message will be automatically deleted*', delete_after = 10) return login_queue.add({ 'username' : username, 'password' : password, 'user_id' : str(ctx.author.id) }) if not check_timeout(): await ctx.send("The server currently appears to be down, but your login attempt has been added to the queue and will be executed as soon as the server returns.") @bot.command(help='Lists connected players and server information.') async def status(ctx, *, args=None): if not check_timeout(): await ctx.send("The server currently appears to be down.") return if ((ctx.channel.id != channel_id) and ctx.guild is not None): return data = { 'name': 'discord_relay', 'command': 'status', 'params': '', } if ctx.guild is None: data['context'] = str(ctx.author.id) command_queue.add(data) async def runServer(): runner = web.AppRunner(app) await runner.setup() site = web.TCPSite(runner, 'localhost', port) await site.start() async def runBot(): await bot.login(token) await bot.connect() try: print('='*37+'\nStarting relay. Press Ctrl-C to exit.\n'+'='*37) loop = asyncio.get_event_loop() futures = asyncio.gather(runBot(), runServer()) loop.run_until_complete(futures) except (KeyboardInterrupt, SystemExit): sys.exit()
31.531401
202
0.613452
4a1b1402b2afd8a02a9a80b11c173cb2aba193e7
7,567
py
Python
run.py
Manasseh-Kinyua/passLocker
09589628bbcda14cb59b1dc56a76eaf768a53760
[ "MIT" ]
null
null
null
run.py
Manasseh-Kinyua/passLocker
09589628bbcda14cb59b1dc56a76eaf768a53760
[ "MIT" ]
null
null
null
run.py
Manasseh-Kinyua/passLocker
09589628bbcda14cb59b1dc56a76eaf768a53760
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.9 from user import User from user import Credentials def logo(): print(" ____ _ _ ") print(" | _ \ | | | | /\ ") print(" | |_) ) ____ ___ ___ | | _____ _ _ | | / / ____ _ _ ") print(" | __/ / _ |/ __ / __ | | / _ \| '_|| |/ / / __ \ | _| ") print(" | | / (_| |\__ \ \__ \ | |___ ( (_) ) |_ | | \ \ | ___/ | | ") print(" |_| \_____| ___/ ___/ |_____) \_____/|____| | \_\ \____ |_| ") logo() def create_new_user(username, password): ''' Function to create a new user ''' new_user = User(username, password) return new_user def save_users(user): ''' Function to save new users. ''' user.save_user() def display_user(): ''' Function to display users in the user list. ''' return user.display_users() def login_user(username, password): ''' Function that checks if a user exists, and logs them in. ''' check_user = Credentials.verify_user(username, password) return check_user def create_new_credential(account, userName, password): ''' Functon to create new credentials for a user. ''' new_credential = Credentials(account, userName, password) return new_credential def save_credentials(credentials): ''' Function that saves user credentials to the credentials list. ''' credentials.save_credential() def display_credential(): ''' Function to display the saved user credentials. ''' return Credentials.display_credentials() def del_credential(credentials): ''' Functon to delete a credentials object. ''' credentials.delete_credential() def find_credential(account): ''' Function that checks if a credential object is in the credentials class. ''' return Credentials.find_by_account(account) def generate_password(): ''' Functionthat generates an aotomatic password for the user if they choose that option. ''' generated_pass = Credentials.generatePassword() return generated_pass def copy_password(account): ''' Function that copies a user's password to the clipboard. ''' return Credentials.copy_password(account) def main(): print("Hello, Welocome to Pass Locker. We are a store for your Accounts Passwords.....\n Please ENTER one of the following short codes to proceed.\n 'cr' -> Create a New Account. \n 'h1' -> Already have an Account. \n") short_code = input().lower().strip() if short_code == 'cr': print("Please Sign Up") print('*' * 50) username = input("Enter your username: ") while True: print("Please USE one of the followig to enter your own password or to have one selected for you.\n 'em' -> To enter own password.\n 'ap' -> To have an automatic password generated for you.\n") choice = input().lower().strip() if choice == 'em': password = input("Please enter your password; ") break elif choice == 'ap': password = generate_password() else: print("Invalid passwordchoice......Please try again with a correct choice.") save_users(create_new_user(username, password)) print("8" * 85) print(f"Hello {username}, You have created an account successfully.\n Your password id : {password}") print("8" * 85) elif short_code == 'h1': print("*" * 50) print("Please ENTER username and password to login...") print("*" * 50) username = input("Enter username:") password = input("Enter password:") login = login_user(username,password) if login_user == login: print(f"Hello {username}, Welcome to Pass Locker") print('\n') while True: print("Please use the following short codes.\n crc -> To creatte new credentials.\n dc -> To display credentials.\n fc -> To find credentials.\n gp -> To generate new credentials.\n d -> To delete credentials. \n ex -> To exit the application.\n") short_code = input().lower().strip() if short_code == 'crc': print("Create new credentials") print("." * 20) print("Enter Account Name....") account = input().lower() print("Enter the account username") userName = input() while True: print("Choose: em -> to enter your own password.\n ap -> To have a password generated for you.\n") choice = input().lower().strip() if choice == 'em': password = input("Please enter your password: \n") break elif choice == 'ap': password = generate_password() break else: print("Invalid choice....PLease try again with the correct choice.") save_credentials(create_new_credential(account, userName, password)) print('\n') print(f"Credentials for {account} have been created") print('\n') elif short_code == 'dc': if display_credential(): print("Here is a list of your credentials:") print("*" * 30) print("_" * 30) for credential in display_credential(): print(f"Account: {credential.account}\n UserName: {credential.userName}\n password: {credential.password}") print("_" * 30) print("*" * 30) else: print("You do not have aby credentials saved yet.....") elif short_code == 'fc': print("Please enter the account you want to find") search_acc = input().lower() if find_credential(search_acc): search_credential = find_credential(search_acc) print(f"Account: {search_credential.account}") print("-" * 50) print(f"userName: {search_credential.userName}\n Password: {search_credential.password}") print("-" * 50) else: print("The name you entered is not an account name in available credentials") print('\n') elif short_code == 'd': print("Enter the Account for the credential you want to delete") search_acc = input().lower() if find_credential(search_acc): search_credential = find_credential(search_acc) search_credential.del_credential() print('\n') print(f"{search_credential.account} has been successfully deleted!") print('\n') else: print("The name you entered does not match any in our list") elif short_code == 'gp': password = generate_password() print(f"{password} Generated successfully. Proceed to use it.") elif short_code == 'ex': print("Thank you for using Pass Locker....See you another time...BYE.....") break else: print("Wrong entry....PLease use the short codes provided") else: print("Please always enter a valid input in order to use the application.") if __name__ == '__main__': main()
38.217172
255
0.556231
4a1b14534d4793e52e8e56632f5eb8427f4f2865
4,374
py
Python
contrib/seeds/generate-seeds.py
3mhuggu5hss/privat
5f715576bf02497ac207f682dce7c3fb94682feb
[ "MIT" ]
null
null
null
contrib/seeds/generate-seeds.py
3mhuggu5hss/privat
5f715576bf02497ac207f682dce7c3fb94682feb
[ "MIT" ]
null
null
null
contrib/seeds/generate-seeds.py
3mhuggu5hss/privat
5f715576bf02497ac207f682dce7c3fb94682feb
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) elif s.count(':') > 1: # ipv6, no port host = s port = '' else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef PRIVAT_CHAINPARAMSSEEDS_H\n') g.write('#define PRIVAT_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the privat network\n') g.write(' * AUTOGENERATED by contrib/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 9999) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 19999) g.write('#endif // PRIVAT_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
31.467626
98
0.582076
4a1b1550b262083f76b6182c347ceb7a949e58d0
737
py
Python
predictPixelMovement.py
danieldrysn/opticalflow_backgroundestimation
fd73feb8473072e78a2b4fcf9da856c3e5e4f940
[ "BSD-3-Clause" ]
null
null
null
predictPixelMovement.py
danieldrysn/opticalflow_backgroundestimation
fd73feb8473072e78a2b4fcf9da856c3e5e4f940
[ "BSD-3-Clause" ]
null
null
null
predictPixelMovement.py
danieldrysn/opticalflow_backgroundestimation
fd73feb8473072e78a2b4fcf9da856c3e5e4f940
[ "BSD-3-Clause" ]
null
null
null
# Predict Pixel Movement # Daniel D. Doyle # 2021-11-10 ''' Predict Pixel Movement umath.sing image rows and columns, focal length, pan, and tilt angles ''' import math # Returns predicted point based on size of the image, previous point, focal length, psi, and theta def predictPixelMovement( rows, cols, previousPoint, foc, psi, theta ): xo = previousPoint[0] - cols/2 yo = previousPoint[1] - rows/2 xn = foc*((xo - foc*math.tan(psi))/(xo*math.tan(psi)*math.cos(theta)-yo*(math.sin(theta)/math.cos(psi))+foc*math.cos(theta))) yn = foc*((xo*math.sin(psi)*math.tan(theta)+yo+foc*math.cos(psi)*math.tan(theta))/(xo*math.sin(psi)-yo*math.tan(theta)+foc*math.cos(psi))) return (int(xn + cols/2),int(yn + rows/2))
38.789474
140
0.682497
4a1b15f9a70d87a992c2c88e96244f41b5ee7a9a
1,340
py
Python
cpl/math/prime_factorization_query.py
yaumu3/cpl-python3
903d73195ecf606af41fb22fb74282aaca63d33a
[ "MIT" ]
1
2021-03-05T15:48:23.000Z
2021-03-05T15:48:23.000Z
cpl/math/prime_factorization_query.py
yaumu3/cpl-python3
903d73195ecf606af41fb22fb74282aaca63d33a
[ "MIT" ]
null
null
null
cpl/math/prime_factorization_query.py
yaumu3/cpl-python3
903d73195ecf606af41fb22fb74282aaca63d33a
[ "MIT" ]
null
null
null
from typing import List class SmallestPrimeFactors: """High speed prime factorizaton using smallest prime factors Precompute the smallest prime factor for each integer less than or equal to `n` by Eratosthenes sieve; tiem complexity O(n*log(log(n))). Then, factorize integer `x` with time complexity O(log(x)) Based on `https://atcoder.jp/contests/abc177/editorial/82`. Args: n: Max number to factorize or judge primality. Attributes: spf: List of the smallest prime factor whose index is the corresponding integer. """ def __init__(self, n: int) -> None: self.spf = list(range(n + 1)) self.spf[0] = -1 self.spf[1] = -1 for i in range(2, int(n ** 0.5) + 1): if self.spf[i] == i: for j in range(i * i, n + 1, i): if self.spf[j] == j: self.spf[j] = i def is_prime(self, x: int) -> bool: assert x < len(self.spf) return self.spf[x] == x def factor(self, x: int) -> List[int]: assert x < len(self.spf) if x < 2: return [] res = [] while True: if self.is_prime(x): res.append(x) break res.append(self.spf[x]) x //= self.spf[x] return res
30.454545
88
0.535075
4a1b16f231b4739be1ffe9fc298e3644ca0ce81c
391
py
Python
Sritter/asgi.py
lllapukk/Sritter
12eda47b56a0533dc6405dd5d37f903968ed624d
[ "MIT" ]
null
null
null
Sritter/asgi.py
lllapukk/Sritter
12eda47b56a0533dc6405dd5d37f903968ed624d
[ "MIT" ]
null
null
null
Sritter/asgi.py
lllapukk/Sritter
12eda47b56a0533dc6405dd5d37f903968ed624d
[ "MIT" ]
null
null
null
""" ASGI config for Sritter project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Sritter.settings') application = get_asgi_application()
23
78
0.785166
4a1b16fdb0555e75119407ace00db7b9739e4490
6,615
py
Python
mindspore/nn/metrics/mean_surface_distance.py
Vincent34/mindspore
a39a60878a46e7e9cb02db788c0bca478f2fa6e5
[ "Apache-2.0" ]
1
2021-07-03T06:52:20.000Z
2021-07-03T06:52:20.000Z
mindspore/nn/metrics/mean_surface_distance.py
Vincent34/mindspore
a39a60878a46e7e9cb02db788c0bca478f2fa6e5
[ "Apache-2.0" ]
null
null
null
mindspore/nn/metrics/mean_surface_distance.py
Vincent34/mindspore
a39a60878a46e7e9cb02db788c0bca478f2fa6e5
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """MeanSurfaceDistance.""" from scipy.ndimage import morphology import numpy as np from mindspore._checkparam import Validator as validator from .metric import Metric, rearrange_inputs class MeanSurfaceDistance(Metric): """ This function is used to compute the Average Surface Distance from `y_pred` to `y` under the default setting. Mean Surface Distance(MSD), the mean of the vector is taken. This tell us how much, on average, the surface varies between the segmentation and the GT. Args: distance_metric (string): The parameter of calculating Hausdorff distance supports three measurement methods, "euclidean", "chessboard" or "taxicab". Default: "euclidean". symmetric (bool): if calculate the symmetric average surface distance between `y_pred` and `y`. In addition, if sets ``symmetric = True``, the average symmetric surface distance between these two inputs will be returned. Defaults: False. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import numpy as np >>> from mindspore import nn, Tensor >>> >>> x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]])) >>> y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]])) >>> metric = nn.MeanSurfaceDistance(symmetric=False, distance_metric="euclidean") >>> metric.clear() >>> metric.update(x, y, 0) >>> mean_average_distance = metric.eval() >>> print(mean_average_distance) 0.8047378541243649 """ def __init__(self, symmetric=False, distance_metric="euclidean"): super(MeanSurfaceDistance, self).__init__() self.distance_metric_list = ["euclidean", "chessboard", "taxicab"] distance_metric = validator.check_value_type("distance_metric", distance_metric, [str]) self.distance_metric = validator.check_string(distance_metric, self.distance_metric_list, "distance_metric") self.symmetric = validator.check_value_type("symmetric", symmetric, [bool]) self.clear() def clear(self): """Clears the internal evaluation result.""" self._y_pred_edges = 0 self._y_edges = 0 self._is_update = False def _get_surface_distance(self, y_pred_edges, y_edges): """ Calculate the surface distances from `y_pred_edges` to `y_edges`. Args: y_pred_edges (np.ndarray): the edge of the predictions. y_edges (np.ndarray): the edge of the ground truth. """ if not np.any(y_pred_edges): return np.array([]) if not np.any(y_edges): dis = np.full(y_edges.shape, np.inf) else: if self.distance_metric == "euclidean": dis = morphology.distance_transform_edt(~y_edges) elif self.distance_metric in self.distance_metric_list[-2:]: dis = morphology.distance_transform_cdt(~y_edges, metric=self.distance_metric) surface_distance = dis[y_pred_edges] return surface_distance @rearrange_inputs def update(self, *inputs): """ Updates the internal evaluation result 'y_pred', 'y' and 'label_idx'. Args: inputs: Input 'y_pred', 'y' and 'label_idx'. 'y_pred' and 'y' are Tensor or numpy.ndarray. 'y_pred' is the predicted binary image. 'y' is the actual binary image. 'label_idx', the data type of `label_idx` is int. Raises: ValueError: If the number of the inputs is not 3. TypeError: If the data type of label_idx not be int or float. ValueError: If the value of label_idx is not in y_pred or y. ValueError: If y_pred and y should have different shape. """ if len(inputs) != 3: raise ValueError('MeanSurfaceDistance need 3 inputs (y_pred, y, label), but got {}.'.format(len(inputs))) y_pred = self._convert_data(inputs[0]) y = self._convert_data(inputs[1]) label_idx = inputs[2] if not isinstance(label_idx, (int, float)): raise TypeError("The data type of label_idx must be int or float, but got {}.".format(type(label_idx))) if label_idx not in y_pred and label_idx not in y: raise ValueError("The label_idx should be in y_pred or y, but {} is not.".format(label_idx)) if y_pred.size == 0 or y_pred.shape != y.shape: raise ValueError("y_pred and y should have same shape, but got {}, {}.".format(y_pred.shape, y.shape)) if y_pred.dtype != bool: y_pred = y_pred == label_idx if y.dtype != bool: y = y == label_idx self._y_pred_edges = morphology.binary_erosion(y_pred) ^ y_pred self._y_edges = morphology.binary_erosion(y) ^ y self._is_update = True def eval(self): """ Calculate mean surface distance. Returns: A float with mean surface distance. Raises: RuntimeError: If the update method is not called first, an error will be reported. """ if self._is_update is False: raise RuntimeError('Call the update method before calling eval.') mean_surface_distance = self._get_surface_distance(self._y_pred_edges, self._y_edges) if mean_surface_distance.shape == (0,): return np.inf avg_surface_distance = mean_surface_distance.mean() if not self.symmetric: return avg_surface_distance contrary_mean_surface_distance = self._get_surface_distance(self._y_edges, self._y_pred_edges) if contrary_mean_surface_distance.shape == (0,): return np.inf contrary_avg_surface_distance = contrary_mean_surface_distance.mean() return np.mean((avg_surface_distance, contrary_avg_surface_distance))
41.603774
119
0.636432
4a1b18af56e4410fa786f3e4e71e38fe55b3f495
5,789
py
Python
old/main_original.py
i207M/pytorch-cifar
df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
[ "MIT" ]
null
null
null
old/main_original.py
i207M/pytorch-cifar
df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
[ "MIT" ]
null
null
null
old/main_original.py
i207M/pytorch-cifar
df4417b6d0a25515ac82b5aa6151ae2135b2cd5c
[ "MIT" ]
null
null
null
'''Train CIFAR10 with PyTorch.''' import argparse import os import time from pathlib import Path os.environ["CUDA_VISIBLE_DEVICES"] = "1" import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter from models.resnet56 import ResNet56 parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10( root='./data2', train=True, download=True, transform=transform_train ) trainloader = torch.utils.data.DataLoader( trainset, batch_size=128, shuffle=True, num_workers=4, pin_memory=True ) testset = torchvision.datasets.CIFAR10( root='./data2', train=False, download=True, transform=transform_test ) testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=4, pin_memory=True ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model print('==> Building model..') # net = VGG('VGG19') # net = ResNet18() # net = PreActResNet18() # net = GoogLeNet() # net = DenseNet121() # net = ResNeXt29_2x64d() # net = MobileNet() # net = MobileNetV2() # net = DPN92() # net = ShuffleNetG2() # net = SENet18() # net = ShuffleNetV2(1) # net = EfficientNetB0() # net = RegNetX_200MF() # net = SimpleDLA() net = ResNet56() net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/last.pth') net.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] criterion = nn.CrossEntropyLoss() # Original weight decay = 1e-4 optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4) # Original scheduler scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[100, 150], last_epoch=start_epoch - 1 ) # Log date_str = time.strftime('%Y_%m_%d-%H_%M_%S', time.localtime()) log_dir = Path('./runs') / date_str wdir = log_dir / 'weights' writer = SummaryWriter(log_dir) # Training def train(epoch): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # progress_bar( # batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % # (train_loss / (batch_idx + 1), 100. * correct / total, correct, total) # ) print('#%d, Loss: %.3f | Acc: %.3f' % (epoch, train_loss / len(trainloader), 100. * correct / total)) writer.add_scalar('train/loss', train_loss / len(trainloader), epoch) writer.add_scalar('train/acc', 100. * correct / total, epoch) def test(epoch): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() # progress_bar( # batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % # (test_loss / (batch_idx + 1), 100. * correct / total, correct, total) # ) print('#%d, Loss: %.3f | Acc: %.3f' % (epoch, test_loss / len(testloader), 100. * correct / total)) writer.add_scalar('test/loss', test_loss / len(testloader), epoch) writer.add_scalar('test/acc', 100. * correct / total, epoch) # Save checkpoint. acc = 100. * correct / total if acc > best_acc: best_acc = acc save_checkpoint(wdir / 'best.pth', epoch) def save_checkpoint(path, epoch: int): global best_acc print(f'Saving.. Epoch: {epoch}, Acc: {best_acc}') state = { 'net': net.state_dict(), 'acc': best_acc, 'epoch': epoch, } torch.save(state, path) if __name__ == '__main__': os.makedirs(wdir, exist_ok=True) for epoch in range(start_epoch, start_epoch + 200): try: train(epoch) test(epoch) scheduler.step() except KeyboardInterrupt: break save_checkpoint(wdir / 'last.pth', epoch)
30.62963
105
0.643807
4a1b1a58925e03bd6db6d45cb4654b3c4f2ed010
631
py
Python
src/data/727.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
src/data/727.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
src/data/727.py
NULLCT/LOMC
79a16474a8f21310e0fb47e536d527dd5dc6d655
[ "MIT" ]
null
null
null
n, q = list(map(int, input().split())) g = [[] for _ in range(n)] for i in range(n - 1): a, b = list(map(lambda x: int(x) - 1, input().split())) g[a].append(b) g[b].append(a) from collections import deque def bfs(v): q = deque() q.append(v) d = [-1] * n d[v] = 0 while q: v = q.popleft() for u in g[v]: if d[u] != -1: continue d[u] = d[v] + 1 q.append(u) return d a = bfs(0) for i in range(q): c, d = list(map(lambda x: int(x) - 1, input().split())) if (a[c] - a[d]) % 2: print('Road') else: print('Town')
17.527778
59
0.448494
4a1b1abe425bc18341d285c25017526ccf41c439
714
py
Python
recursion/tower_of_hanoi.py
Yasir323/Data-Structures-and-Algorithms-in-Python
b721d0ca0218b9665d4f6ca0bbfd4417244bcdf0
[ "MIT" ]
null
null
null
recursion/tower_of_hanoi.py
Yasir323/Data-Structures-and-Algorithms-in-Python
b721d0ca0218b9665d4f6ca0bbfd4417244bcdf0
[ "MIT" ]
null
null
null
recursion/tower_of_hanoi.py
Yasir323/Data-Structures-and-Algorithms-in-Python
b721d0ca0218b9665d4f6ca0bbfd4417244bcdf0
[ "MIT" ]
null
null
null
""" Here is a high-level outline of how to move a tower from the starting pole, to the goal pole, using an intermediate pole: 1. Move a tower of height-1 to an intermediate pole, using the final pole. 2. Move the remaining disk to the final pole. 3. Move the tower of height-1 from the intermediate pole to the final pole using the original pole. """ def move_tower(height, from_tower, to_tower, with_tower): if height >= 1: move_tower(height - 1, from_tower, with_tower, to_tower) move_disk(from_tower, to_tower) move_tower(height - 1, with_tower, to_tower, from_tower) def move_disk(ft, tt): print("Moving disk from", ft, "to", tt) move_tower(3, "A", "B", "C")
24.62069
64
0.691877
4a1b1b684342a34256d9dead36e0fda2baf41185
50
py
Python
maths/__init__.py
claywahlstrom/pack
86b70198a4b185611c2ce3d29df99dd01233a6ac
[ "BSD-2-Clause" ]
2
2019-05-04T09:32:15.000Z
2021-02-08T08:38:23.000Z
maths/__init__.py
claywahlstrom/pack
86b70198a4b185611c2ce3d29df99dd01233a6ac
[ "BSD-2-Clause" ]
null
null
null
maths/__init__.py
claywahlstrom/pack
86b70198a4b185611c2ce3d29df99dd01233a6ac
[ "BSD-2-Clause" ]
null
null
null
__all__ = ['core', 'matlab', 'stats', 'vectors']
16.666667
48
0.58
4a1b1b6cf30d59ed8421ffd58130b9d143d2c3b2
755
py
Python
Listing_13-3.py
PrinceChou/Play-Python-with-Alisa
808ab2744a99c548de4633b5707af27112bcdccf
[ "Apache-2.0" ]
null
null
null
Listing_13-3.py
PrinceChou/Play-Python-with-Alisa
808ab2744a99c548de4633b5707af27112bcdccf
[ "Apache-2.0" ]
null
null
null
Listing_13-3.py
PrinceChou/Play-Python-with-Alisa
808ab2744a99c548de4633b5707af27112bcdccf
[ "Apache-2.0" ]
null
null
null
# Listing_13-3 # Copyright Warren & Carter Sande, 2013 # Released under MIT license http://www.opensource.org/licenses/mit-license.php # Version $version ---------------------------- # Function with two arguments def printMyAddress(someName, houseNum): print someName print houseNum, # Comma makes houseNum and street print on the same line print "Main Street" print "Ottawa, Ontario, Canada" print "K2M 2E9" print printMyAddress("Carter Sande", "45") # pass 2 arguments to the function printMyAddress("Jack Black", "64") printMyAddress("Tom Green", "22") printMyAddress("Todd White", "36")
37.75
90
0.569536
4a1b1c55564f1e2f33aba74778d6246888c5f918
79
py
Python
Database/flask-sqlalchemy/models/__init__.py
amamov/cs001
5753f28e74e2330837d22142cff4713801c77a2d
[ "MIT" ]
5
2021-02-21T17:10:03.000Z
2022-03-04T21:17:50.000Z
flask-sqlalchemy/models/__init__.py
amamov/pythonic
95f8f7dca9d01f11ecdf4b26b46afe41dc20b0d0
[ "MIT" ]
null
null
null
flask-sqlalchemy/models/__init__.py
amamov/pythonic
95f8f7dca9d01f11ecdf4b26b46afe41dc20b0d0
[ "MIT" ]
3
2021-02-25T17:53:57.000Z
2021-06-25T17:25:44.000Z
from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() from . import users
15.8
39
0.797468
4a1b1e2716cdf57a8f63417cf8d3c97d71062eb5
2,577
py
Python
tests/test_migrate.py
zalando-nakadi/bubuku
5738cc9309ed46e86fcad41b6fb580ddd69af8fd
[ "MIT" ]
32
2017-10-17T09:59:46.000Z
2022-01-23T11:39:31.000Z
tests/test_migrate.py
zalando-nakadi/bubuku
5738cc9309ed46e86fcad41b6fb580ddd69af8fd
[ "MIT" ]
91
2017-07-13T15:43:15.000Z
2022-02-21T13:06:35.000Z
tests/test_migrate.py
zalando-nakadi/bubuku
5738cc9309ed46e86fcad41b6fb580ddd69af8fd
[ "MIT" ]
3
2018-04-19T13:13:00.000Z
2018-09-11T05:59:38.000Z
import unittest from unittest.mock import MagicMock from bubuku.features.migrate import MigrationChange class TestMigrate(unittest.TestCase): def test_migration_all_steps(self): partitions = { ('test', 0): [1, 2, 3], ('test', 1): [2, 3, 1], ('test1', 0): [3, 2, 1], } zk = MagicMock() zk.is_rebalancing = lambda: False zk.load_partition_assignment = lambda: [(k[0], k[1], v) for k, v in partitions.items()] result = {} def _reallocate_partition(t, p, r): result.update({(t, p): r}) return True def _reallocate_partitions(items): for item in items: _reallocate_partition(*item) return True zk.reallocate_partition = _reallocate_partition zk.reallocate_partitions = _reallocate_partitions zk.get_broker_ids = lambda: [1, 2, 3, 4, 5, 6] change = MigrationChange(zk, [1, 2, 3], [4, 5, 6], False) while change.run([]): pass expected = { ('test', 0): [1, 2, 3, 4, 5, 6], ('test', 1): [2, 3, 1, 5, 6, 4], ('test1', 0): [3, 2, 1, 6, 5, 4], } assert expected == result zk.load_partition_assignment = lambda: [(k[0], k[1], v) for k, v in expected.items()] result.clear() change = MigrationChange(zk, [1, 2, 3], [4, 5, 6], True) while change.run([]): pass expected = { ('test', 0): [4, 5, 6], ('test', 1): [5, 6, 4], ('test1', 0): [6, 5, 4], } assert expected == result def test_replica_generation_no_shrink(self): change = MigrationChange(MagicMock(), [1, 2, 3], [4, 5, 6], False) assert [4, 5, 6] == change._replace_replicas([4, 5, 6]) assert [1, 2, 3, 4, 5, 6] == change._replace_replicas([1, 2, 3]) assert [1, 2, 6, 4, 5] == change._replace_replicas([1, 2, 6]) assert [1, 6, 2, 4, 5] == change._replace_replicas([1, 6, 2]) assert [1, 6, 3, 4] == change._replace_replicas([1, 6, 3]) def test_replica_generation_shrink(self): change = MigrationChange(MagicMock(), [1, 2, 3], [4, 5, 6], True) assert [4, 5, 6] == change._replace_replicas([1, 2, 3]) assert [4, 5, 6] == change._replace_replicas([4, 2, 6]) assert [8, 5, 10] == change._replace_replicas([8, 2, 10]) assert [4, 8, 5] == change._replace_replicas([1, 8, 2]) assert [4, 5, 6] == change._replace_replicas([1, 2, 3, 4, 5, 6])
34.824324
95
0.523089
4a1b1e6a5c4183b5bcf79e1e184a2ac7bf214c26
903
py
Python
settings/__init__.py
anchalghale/auto_disenchanter
4edab1b72538b15bf8d665629f951db1612fa825
[ "Apache-2.0" ]
7
2021-04-07T17:44:42.000Z
2022-02-13T05:47:11.000Z
settings/__init__.py
anchalghale/auto_disenchanter
4edab1b72538b15bf8d665629f951db1612fa825
[ "Apache-2.0" ]
1
2021-08-20T09:11:38.000Z
2022-02-11T12:54:38.000Z
settings/__init__.py
anchalghale/auto_disenchanter
4edab1b72538b15bf8d665629f951db1612fa825
[ "Apache-2.0" ]
3
2019-11-22T06:21:17.000Z
2020-06-16T07:25:23.000Z
''' Configuration file for the program ''' import time import json from types import SimpleNamespace from urllib.parse import urljoin import requests from server import SERVER_URL, SERVER_AUTH from utils import get_base_dir BASE_DIR = get_base_dir() def get_settings(logger, debug=False): ''' Parses the settings locally or from the server according to the debug value ''' if debug: with open('settings.json') as file: settings_ = json.load(file) else: while True: try: logger.log('Parsing settings from the server') settings_ = requests.get(urljoin(SERVER_URL, 'api/v1/settings/'), auth=SERVER_AUTH, timeout=30).json() break except requests.exceptions.RequestException: time.sleep(10) return SimpleNamespace(**settings_)
27.363636
87
0.632337
4a1b1eb34a118805355cfac526b9c9e62a90ebb8
1,228
py
Python
controk_webservice/employees/migrations/0001_initial.py
controk-sys/http-server
0be146140daab804fe2300678f5e69d1c9e292d8
[ "MIT" ]
null
null
null
controk_webservice/employees/migrations/0001_initial.py
controk-sys/http-server
0be146140daab804fe2300678f5e69d1c9e292d8
[ "MIT" ]
2
2016-10-25T23:31:58.000Z
2016-10-27T02:10:41.000Z
controk_webservice/employees/migrations/0001_initial.py
jourdanrodrigues/controk-webservice
0be146140daab804fe2300678f5e69d1c9e292d8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-16 16:01 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('addresses', '0001_initial'), ] operations = [ migrations.CreateModel( name='Employee', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(max_length=254)), ('mobile', models.CharField(max_length=20, null=True)), ('phone', models.CharField(max_length=20, null=True)), ('cpf', models.CharField(max_length=14)), ('name', models.CharField(max_length=60)), ('observation', models.TextField(null=True)), ('role', models.CharField(max_length=40)), ('address', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='employees', to='addresses.Address')), ], options={ 'db_table': 'Employee', }, ), ]
34.111111
142
0.577362
4a1b209c89fc0dcd60563f637e02f0ea1e284eb0
1,361
py
Python
radiomicsfeatureextractionpipeline/backend/src/logic/dicom_file_reader/dicom_file_reader.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
null
null
null
radiomicsfeatureextractionpipeline/backend/src/logic/dicom_file_reader/dicom_file_reader.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
6
2021-06-09T19:39:27.000Z
2021-09-30T16:41:40.000Z
radiomicsfeatureextractionpipeline/backend/src/logic/dicom_file_reader/dicom_file_reader.py
Maastro-CDS-Imaging-Group/SQLite4Radiomics
e3a7afc181eec0fe04c18da00edc3772064e6758
[ "Apache-2.0" ]
null
null
null
from abc import ABC, abstractmethod from typing import List, Optional from logic.entities.image import Image class DicomFileReader(ABC): """ Abstract base class for implementation of the strategy pattern. Used for reading DICOM files. """ def __init__(self, dicom_data_directory: str) -> None: """ Constructor DicomFileReader class :param dicom_data_directory: The path to the directory where all DICOM files are stored """ self.dicom_data_directory: str = dicom_data_directory def set_dicom_data_directory(self, dicom_data_directory: str) -> None: """ Sets the location of the DICOM files to a new directory :param dicom_data_directory: The new path to the directory where all DICOM files are stored """ self.dicom_data_directory: str = dicom_data_directory @abstractmethod def read_dicom_file(self, image: Image) -> Optional[Image]: """ Reads the content of one single dicom file. :param image: The image that needs to be loaded. """ pass @abstractmethod def read_multiple_dicom_files(self, images: List[Image]) -> Optional[List[Image]]: """ Reads the content of multiple dicom files :param images: List of images that all needs to be loaded. """ pass
32.404762
99
0.667157
4a1b209f0e107f59a7948e9169b0698d5ec0368e
6,707
py
Python
kubernetes/client/models/v1_env_var_source.py
dix000p/kubernetes-client-python
22e473e02883aca1058606092c86311f02f42be2
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_env_var_source.py
dix000p/kubernetes-client-python
22e473e02883aca1058606092c86311f02f42be2
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_env_var_source.py
dix000p/kubernetes-client-python
22e473e02883aca1058606092c86311f02f42be2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.8.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1EnvVarSource(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'config_map_key_ref': 'V1ConfigMapKeySelector', 'field_ref': 'V1ObjectFieldSelector', 'resource_field_ref': 'V1ResourceFieldSelector', 'secret_key_ref': 'V1SecretKeySelector' } attribute_map = { 'config_map_key_ref': 'configMapKeyRef', 'field_ref': 'fieldRef', 'resource_field_ref': 'resourceFieldRef', 'secret_key_ref': 'secretKeyRef' } def __init__(self, config_map_key_ref=None, field_ref=None, resource_field_ref=None, secret_key_ref=None): """ V1EnvVarSource - a model defined in Swagger """ self._config_map_key_ref = None self._field_ref = None self._resource_field_ref = None self._secret_key_ref = None self.discriminator = None if config_map_key_ref is not None: self.config_map_key_ref = config_map_key_ref if field_ref is not None: self.field_ref = field_ref if resource_field_ref is not None: self.resource_field_ref = resource_field_ref if secret_key_ref is not None: self.secret_key_ref = secret_key_ref @property def config_map_key_ref(self): """ Gets the config_map_key_ref of this V1EnvVarSource. Selects a key of a ConfigMap. :return: The config_map_key_ref of this V1EnvVarSource. :rtype: V1ConfigMapKeySelector """ return self._config_map_key_ref @config_map_key_ref.setter def config_map_key_ref(self, config_map_key_ref): """ Sets the config_map_key_ref of this V1EnvVarSource. Selects a key of a ConfigMap. :param config_map_key_ref: The config_map_key_ref of this V1EnvVarSource. :type: V1ConfigMapKeySelector """ self._config_map_key_ref = config_map_key_ref @property def field_ref(self): """ Gets the field_ref of this V1EnvVarSource. Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP. :return: The field_ref of this V1EnvVarSource. :rtype: V1ObjectFieldSelector """ return self._field_ref @field_ref.setter def field_ref(self, field_ref): """ Sets the field_ref of this V1EnvVarSource. Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP. :param field_ref: The field_ref of this V1EnvVarSource. :type: V1ObjectFieldSelector """ self._field_ref = field_ref @property def resource_field_ref(self): """ Gets the resource_field_ref of this V1EnvVarSource. Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported. :return: The resource_field_ref of this V1EnvVarSource. :rtype: V1ResourceFieldSelector """ return self._resource_field_ref @resource_field_ref.setter def resource_field_ref(self, resource_field_ref): """ Sets the resource_field_ref of this V1EnvVarSource. Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported. :param resource_field_ref: The resource_field_ref of this V1EnvVarSource. :type: V1ResourceFieldSelector """ self._resource_field_ref = resource_field_ref @property def secret_key_ref(self): """ Gets the secret_key_ref of this V1EnvVarSource. Selects a key of a secret in the pod's namespace :return: The secret_key_ref of this V1EnvVarSource. :rtype: V1SecretKeySelector """ return self._secret_key_ref @secret_key_ref.setter def secret_key_ref(self, secret_key_ref): """ Sets the secret_key_ref of this V1EnvVarSource. Selects a key of a secret in the pod's namespace :param secret_key_ref: The secret_key_ref of this V1EnvVarSource. :type: V1SecretKeySelector """ self._secret_key_ref = secret_key_ref def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1EnvVarSource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
31.78673
220
0.632175
4a1b2237594d65cbebbfa67e268dc53d2ca0644b
13,965
py
Python
neutron/tests/base.py
sajuptpm/notification_neutron
45933f63c9eff0d2931a7209b040ff2dc69835c5
[ "Apache-2.0" ]
null
null
null
neutron/tests/base.py
sajuptpm/notification_neutron
45933f63c9eff0d2931a7209b040ff2dc69835c5
[ "Apache-2.0" ]
null
null
null
neutron/tests/base.py
sajuptpm/notification_neutron
45933f63c9eff0d2931a7209b040ff2dc69835c5
[ "Apache-2.0" ]
null
null
null
# Copyright 2010-2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base test cases for all neutron tests. """ import contextlib import gc import logging as std_logging import os import os.path import random import traceback import weakref import eventlet.timeout import fixtures import mock from oslo_concurrency.fixture import lockutils from oslo_config import cfg from oslo_messaging import conffixture as messaging_conffixture from oslo_utils import strutils import testtools from neutron.agent.linux import external_process from neutron.callbacks import manager as registry_manager from neutron.callbacks import registry from neutron.common import config from neutron.common import rpc as n_rpc from neutron.db import agentschedulers_db from neutron import manager from neutron import policy from neutron.tests import fake_notifier from neutron.tests import post_mortem_debug CONF = cfg.CONF CONF.import_opt('state_path', 'neutron.common.config') LOG_FORMAT = "%(asctime)s %(levelname)8s [%(name)s] %(message)s" ROOTDIR = os.path.dirname(__file__) ETCDIR = os.path.join(ROOTDIR, 'etc') def etcdir(*p): return os.path.join(ETCDIR, *p) def fake_use_fatal_exceptions(*args): return True def fake_consume_in_threads(self): return [] def get_rand_name(max_length=None, prefix='test'): name = prefix + str(random.randint(1, 0x7fffffff)) return name[:max_length] if max_length is not None else name def bool_from_env(key, strict=False, default=False): value = os.environ.get(key) return strutils.bool_from_string(value, strict=strict, default=default) def get_test_timeout(default=0): return int(os.environ.get('OS_TEST_TIMEOUT', 0)) class AttributeDict(dict): """ Provide attribute access (dict.key) to dictionary values. """ def __getattr__(self, name): """Allow attribute access for all keys in the dict.""" if name in self: return self[name] raise AttributeError(_("Unknown attribute '%s'.") % name) class DietTestCase(testtools.TestCase): """Same great taste, less filling. BaseTestCase is responsible for doing lots of plugin-centric setup that not all tests require (or can tolerate). This class provides only functionality that is common across all tests. """ def setUp(self): super(DietTestCase, self).setUp() # Configure this first to ensure pm debugging support for setUp() debugger = os.environ.get('OS_POST_MORTEM_DEBUGGER') if debugger: self.addOnException(post_mortem_debug.get_exception_handler( debugger)) if bool_from_env('OS_DEBUG'): _level = std_logging.DEBUG else: _level = std_logging.INFO capture_logs = bool_from_env('OS_LOG_CAPTURE') if not capture_logs: std_logging.basicConfig(format=LOG_FORMAT, level=_level) self.log_fixture = self.useFixture( fixtures.FakeLogger( format=LOG_FORMAT, level=_level, nuke_handlers=capture_logs, )) test_timeout = get_test_timeout() if test_timeout == -1: test_timeout = 0 if test_timeout > 0: self.useFixture(fixtures.Timeout(test_timeout, gentle=True)) # If someone does use tempfile directly, ensure that it's cleaned up self.useFixture(fixtures.NestedTempfile()) self.useFixture(fixtures.TempHomeDir()) self.addCleanup(mock.patch.stopall) if bool_from_env('OS_STDOUT_CAPTURE'): stdout = self.useFixture(fixtures.StringStream('stdout')).stream self.useFixture(fixtures.MonkeyPatch('sys.stdout', stdout)) if bool_from_env('OS_STDERR_CAPTURE'): stderr = self.useFixture(fixtures.StringStream('stderr')).stream self.useFixture(fixtures.MonkeyPatch('sys.stderr', stderr)) self.addOnException(self.check_for_systemexit) def check_for_systemexit(self, exc_info): if isinstance(exc_info[1], SystemExit): self.fail("A SystemExit was raised during the test. %s" % traceback.format_exception(*exc_info)) @contextlib.contextmanager def assert_max_execution_time(self, max_execution_time=5): with eventlet.timeout.Timeout(max_execution_time, False): yield return self.fail('Execution of this test timed out') def assertOrderedEqual(self, expected, actual): expect_val = self.sort_dict_lists(expected) actual_val = self.sort_dict_lists(actual) self.assertEqual(expect_val, actual_val) def sort_dict_lists(self, dic): for key, value in dic.iteritems(): if isinstance(value, list): dic[key] = sorted(value) elif isinstance(value, dict): dic[key] = self.sort_dict_lists(value) return dic def assertDictSupersetOf(self, expected_subset, actual_superset): """Checks that actual dict contains the expected dict. After checking that the arguments are of the right type, this checks that each item in expected_subset is in, and matches, what is in actual_superset. Separate tests are done, so that detailed info can be reported upon failure. """ if not isinstance(expected_subset, dict): self.fail("expected_subset (%s) is not an instance of dict" % type(expected_subset)) if not isinstance(actual_superset, dict): self.fail("actual_superset (%s) is not an instance of dict" % type(actual_superset)) for k, v in expected_subset.items(): self.assertIn(k, actual_superset) self.assertEqual(v, actual_superset[k], "Key %(key)s expected: %(exp)r, actual %(act)r" % {'key': k, 'exp': v, 'act': actual_superset[k]}) class ProcessMonitorFixture(fixtures.Fixture): """Test fixture to capture and cleanup any spawn process monitor.""" def setUp(self): super(ProcessMonitorFixture, self).setUp() self.old_callable = ( external_process.ProcessMonitor._spawn_checking_thread) p = mock.patch("neutron.agent.linux.external_process.ProcessMonitor." "_spawn_checking_thread", new=lambda x: self.record_calls(x)) p.start() self.instances = [] self.addCleanup(self.stop) def stop(self): for instance in self.instances: instance.stop() def record_calls(self, instance): self.old_callable(instance) self.instances.append(instance) class BaseTestCase(DietTestCase): @staticmethod def config_parse(conf=None, args=None): """Create the default configurations.""" # neutron.conf.test includes rpc_backend which needs to be cleaned up if args is None: args = [] args += ['--config-file', etcdir('neutron.conf.test')] if conf is None: config.init(args=args) else: conf(args) def setUp(self): super(BaseTestCase, self).setUp() # suppress all but errors here capture_logs = bool_from_env('OS_LOG_CAPTURE') self.useFixture( fixtures.FakeLogger( name='neutron.api.extensions', format=LOG_FORMAT, level=std_logging.ERROR, nuke_handlers=capture_logs, )) self.useFixture(lockutils.ExternalLockFixture()) cfg.CONF.set_override('state_path', self.get_default_temp_dir().path) self.addCleanup(CONF.reset) self.useFixture(ProcessMonitorFixture()) self.useFixture(fixtures.MonkeyPatch( 'neutron.common.exceptions.NeutronException.use_fatal_exceptions', fake_use_fatal_exceptions)) self.useFixture(fixtures.MonkeyPatch( 'oslo_config.cfg.find_config_files', lambda project=None, prog=None, extension=None: [])) self.setup_rpc_mocks() self.setup_config() self.setup_test_registry_instance() policy.init() self.addCleanup(policy.reset) def get_new_temp_dir(self): """Create a new temporary directory. :returns fixtures.TempDir """ return self.useFixture(fixtures.TempDir()) def get_default_temp_dir(self): """Create a default temporary directory. Returns the same directory during the whole test case. :returns fixtures.TempDir """ if not hasattr(self, '_temp_dir'): self._temp_dir = self.get_new_temp_dir() return self._temp_dir def get_temp_file_path(self, filename, root=None): """Returns an absolute path for a temporary file. If root is None, the file is created in default temporary directory. It also creates the directory if it's not initialized yet. If root is not None, the file is created inside the directory passed as root= argument. :param filename: filename :type filename: string :param root: temporary directory to create a new file in :type root: fixtures.TempDir :returns absolute file path string """ root = root or self.get_default_temp_dir() return root.join(filename) def setup_rpc_mocks(self): # don't actually start RPC listeners when testing self.useFixture(fixtures.MonkeyPatch( 'neutron.common.rpc.Connection.consume_in_threads', fake_consume_in_threads)) self.useFixture(fixtures.MonkeyPatch( 'oslo_messaging.Notifier', fake_notifier.FakeNotifier)) self.messaging_conf = messaging_conffixture.ConfFixture(CONF) self.messaging_conf.transport_driver = 'fake' # NOTE(russellb) We want all calls to return immediately. self.messaging_conf.response_timeout = 0 self.useFixture(self.messaging_conf) self.addCleanup(n_rpc.clear_extra_exmods) n_rpc.add_extra_exmods('neutron.test') self.addCleanup(n_rpc.cleanup) n_rpc.init(CONF) def setup_test_registry_instance(self): """Give a private copy of the registry to each test.""" self._callback_manager = registry_manager.CallbacksManager() mock.patch.object(registry, '_get_callback_manager', return_value=self._callback_manager).start() def setup_config(self, args=None): """Tests that need a non-default config can override this method.""" self.config_parse(args=args) def config(self, **kw): """Override some configuration values. The keyword arguments are the names of configuration options to override and their values. If a group argument is supplied, the overrides are applied to the specified configuration option group. All overrides are automatically cleared at the end of the current test by the fixtures cleanup process. """ group = kw.pop('group', None) for k, v in kw.iteritems(): CONF.set_override(k, v, group) def setup_coreplugin(self, core_plugin=None): self.useFixture(PluginFixture(core_plugin)) def setup_notification_driver(self, notification_driver=None): self.addCleanup(fake_notifier.reset) if notification_driver is None: notification_driver = [fake_notifier.__name__] cfg.CONF.set_override("notification_driver", notification_driver) class PluginFixture(fixtures.Fixture): def __init__(self, core_plugin=None): self.core_plugin = core_plugin def setUp(self): super(PluginFixture, self).setUp() self.dhcp_periodic_p = mock.patch( 'neutron.db.agentschedulers_db.DhcpAgentSchedulerDbMixin.' 'start_periodic_dhcp_agent_status_check') self.patched_dhcp_periodic = self.dhcp_periodic_p.start() # Plugin cleanup should be triggered last so that # test-specific cleanup has a chance to release references. self.addCleanup(self.cleanup_core_plugin) if self.core_plugin is not None: cfg.CONF.set_override('core_plugin', self.core_plugin) def cleanup_core_plugin(self): """Ensure that the core plugin is deallocated.""" nm = manager.NeutronManager if not nm.has_instance(): return # TODO(marun) Fix plugins that do not properly initialize notifiers agentschedulers_db.AgentSchedulerDbMixin.agent_notifiers = {} # Perform a check for deallocation only if explicitly # configured to do so since calling gc.collect() after every # test increases test suite execution time by ~50%. check_plugin_deallocation = ( bool_from_env('OS_CHECK_PLUGIN_DEALLOCATION')) if check_plugin_deallocation: plugin = weakref.ref(nm._instance.plugin) nm.clear_instance() if check_plugin_deallocation: gc.collect() # TODO(marun) Ensure that mocks are deallocated? if plugin() and not isinstance(plugin(), mock.Base): raise AssertionError( 'The plugin for this test was not deallocated.')
34.825436
79
0.664805
4a1b22d8846974ad89a45d16482ba3fdfaee0673
2,645
py
Python
foxlink/non_dimensionalizer.py
lamsoa729/FoXlink
3c061b02968cdab1def752d5c145a6df4615504b
[ "BSD-3-Clause" ]
null
null
null
foxlink/non_dimensionalizer.py
lamsoa729/FoXlink
3c061b02968cdab1def752d5c145a6df4615504b
[ "BSD-3-Clause" ]
null
null
null
foxlink/non_dimensionalizer.py
lamsoa729/FoXlink
3c061b02968cdab1def752d5c145a6df4615504b
[ "BSD-3-Clause" ]
2
2019-06-18T16:48:03.000Z
2019-06-20T23:50:02.000Z
#!/usr/bin/env python """@package docstring File: non_dimensionalizer.py Author: Adam Lamson Email: adam.lamson@colorado.edu Description: """ import numpy as np from copy import deepcopy as dcp class NonDimensionalizer(): """!Class to non-dimensionalize parameters.""" def __init__(self, **kwargs): """!Take in the necessary values to non-dimensionalize any quantitiy. @param kwargs """ self.__dict__.update(kwargs) def non_dim_val(self, value, dim_list, exp_list=None): """!Non-dimensionalize value based on dimensions and dimension powers. @param value: Value you wish to convert do a dimensionless quantity. Maybe a numpy array. @param dim_list: Dimensions. Must be in __dict__ of class @param exp_list: Exponent of dimensions given. @return: non-dimensionalized value """ if exp_list is None: exp_list = [1] val = dcp(value) for dim, exp in zip(dim_list, exp_list): if dim not in self.__dict__: raise RuntimeError( "Dimension ({}) not in NonDimensionalizer.".format(dim)) val /= np.power(self.__dict__[dim], exp) print(val) return val def dim_val(self, value, dim_list, exp_list=None): """!Non-dimensionalize value based on units and dim @param value: Value you wish to convert from dimensionless quantity to a dimensionful quanity. Maybe a numpy array. @param dim_list: Dimensions. Must be in __dict__ of class @param exp_list: Exponent of dimensions given. @return: TODO """ if exp_list is None: exp_list = [1] val = dcp(value) for dim, exp in zip(dim_list, exp_list): if dim not in self.__dict__: raise RuntimeError( "Dimension ({}) not in NonDimensionalizer.".format(dim)) val *= np.power(self.__dict__[dim], exp) return val def calc_new_dim(self, dim_name, dim_list, exp_list): """!Calculate new dimension based off current dimensions that already exist and store it as a property. @param dim_name: TODO @param dim_list: TODO @param exp_list: TODO @return: void """ val = 1. for dim, exp in zip(dim_list, exp_list): if dim not in self.__dict__: raise RuntimeError( "Dimension ({}) not in NonDimensionalizer.".format(dim)) val *= np.power(self.__dict__[dim], exp) self.__dict__[dim_name] = val
31.86747
97
0.603403
4a1b231201c8658990c96bb22066f0532c85447b
18,732
py
Python
xor/symcollab/xor/xorhelper.py
symcollab/CryptoSolve
fc5c709cfeb9de7728b7baddc5d5da60d13ede0a
[ "BSD-3-Clause" ]
1
2021-02-09T20:06:29.000Z
2021-02-09T20:06:29.000Z
xor/symcollab/xor/xorhelper.py
symcollab/CryptoSolve
fc5c709cfeb9de7728b7baddc5d5da60d13ede0a
[ "BSD-3-Clause" ]
null
null
null
xor/symcollab/xor/xorhelper.py
symcollab/CryptoSolve
fc5c709cfeb9de7728b7baddc5d5da60d13ede0a
[ "BSD-3-Clause" ]
null
null
null
from copy import deepcopy from symcollab.algebra import Constant, Variable, FuncTerm, Equation, SubstituteTerm from symcollab.Unification.unif import unif from .structure import Zero, XORTerm, Equations, Disequations, Disequation from .xor import xor def is_xor_term(t): #return (isinstance(t, FuncTerm)) and (isinstance(t.function, Xor)) if(isinstance(t, Zero)): return False else: return (isinstance(t, FuncTerm) and t.function.symbol == "xor") def is_XOR_Term(t): return isinstance(t, XORTerm) def xor_to_list(t): #convert a xor-term to a list of terms if(not is_xor_term(t)): return [t] else: lst1 = xor_to_list(t.arguments[0]) lst2 = xor_to_list(t.arguments[1]) return lst1 + lst2 def simplify(lst): result = [] for item in lst: if(isinstance(item, Zero)): continue if(item in result): result.remove(item) else: result.append(item) return result def simplify_XOR_Term(t): simplified_arguments = simplify(t.arguments) if(len(simplified_arguments) == 0): return Zero() elif(len(simplified_arguments) == 1): return simplified_arguments[0] else: return XORTerm(simplified_arguments) def list_to_xor(lst): #convert a list of terms to a xor-term if(len(lst) == 0): return Zero() elif(len(lst) == 1): return lst[0] else: head, *tail = lst return xor(head, list_to_xor(tail)) def collect_all_variables_in_term(t): #Returns a list of variables in a term. #f(x, g(y)) ==> [x,y] if (isinstance(t, Zero)): return [] elif (isinstance(t, Constant)): return [] elif (isinstance(t, Variable)): return [t] elif (isinstance(t, FuncTerm)): result = [] for arg in t.arguments: result = result + collect_all_variables_in_term(arg) return list(set(result)) ''' elif (isinstance(t, XORTerm)): result = [] for arg in t.arguments: result = result + collect_all_variables_in_term(arg) return list(set(result)) ''' def collect_all_variables_in_equation(eq): lhs = eq.left_side rhs = eq.right_side all_variables = collect_all_variables_in_term(lhs) + collect_all_variables_in_term(rhs) return list(set(all_variables)) def collect_all_unconstrained_variables_in_equation(eq): variables = collect_all_variables_in_equation(eq) results = () for var in variables: if (not is_constrained_in_equation(var, eq)): results.add(var) return results def look_up_a_name(t, eqs): #t is a xor-term, eqs is a set of equations. #This function looks t up in eqs, and checks if t already has a name in eqs. #If so, it returns the existing name. Otherwise, it returns None. first_term = t.arguments[0] second_term = t.arguments[1] for eq in eqs: rhs = eq.right_side if(is_xor_term(rhs)): fst_t = rhs.arguments[0] snd_t = rhs.arguments[1] possibility1 = first_term == fst_t and second_term == snd_t possibility2 = first_term == snd_t and second_term == fst_t if(possibility1 or possibility2): return eq.left_side return None def name_xor_terms(t, eqs): # Purify arguments # Name top-level xor-subterms # Return (renamed_term, a set of equations) if (isinstance(t, Zero)): return (t, eqs) elif (isinstance(t, Constant)): return (t, eqs) elif (isinstance(t, Variable)): return (t, eqs) elif(is_xor_term(t)): (term1, eqs) = purify_a_term(t.arguments[0], eqs) #eqs = eqs + equation1 (term2, eqs) = purify_a_term(t.arguments[1], eqs) #eqs = eqs + equation2 #equations = equation1 + equation2 name = look_up_a_name(xor(term1, term2), eqs) if(name != None): return (name, eqs) else: global variable_counter variable_counter += 1 new_variable = Variable("N" + str(variable_counter)) eqs.append(Equation(new_variable, xor(term1, term2))) return (new_variable, eqs) elif (isinstance(t, FuncTerm)): terms = [] for arg in t.arguments: (term, eqs) = name_xor_terms(arg, eqs) #eqs = eqs + equations terms.append(term) return (FuncTerm(t.function, terms), eqs) else: print("error") return None def purify_a_term(t, eqs): if (isinstance(t, Zero)): return (t, eqs) elif (isinstance(t, Constant)): return (t, eqs) elif (isinstance(t, Variable)): return (t, eqs) elif (is_xor_term(t)): (left, eqs) = purify_a_term(t.arguments[0], eqs) #eqs = eqs + equation1 (right, eqs) = purify_a_term(t.arguments[1], eqs) #eqs = eqs + equation2 return (xor(left, right), eqs) elif(isinstance(t, FuncTerm)): terms = [] for arg in t.arguments: (term, eqs) = name_xor_terms(arg, eqs) #eqs = eqs + equations terms.append(term) return (FuncTerm(t.function, terms), eqs) else: print("error") return None def purify_an_equation(eq, eqs): (purified_lhs, eqs) = purify_a_term(eq.left_side, eqs) #eqs = eqs + eqs1 (purified_rhs, eqs) = purify_a_term(eq.right_side, eqs) #eqs = eqs + eqs2 new_equation = Equation(purified_lhs, purified_rhs) return (new_equation, eqs) def purify_equations(eqs): equations = [] for eq in eqs.contents: (left, equations) = purify_an_equation(eq, equations) equations.append(left) #equations = equations + right return Equations(equations) def is_constrained_in_term(v, t): # Check if the current variable is constrained in t # That is, check if it appears underneath a function symbol. #Precondition: t should be purified. if (isinstance(t, Zero)): return False elif (isinstance(t, Constant)): return False elif (isinstance(t, Variable)): return False elif(is_xor_term(t)): left = is_constrained_in_term(v, t.arguments[0]) right = is_constrained_in_term(v, t.arguments[1]) return left or right elif (isinstance(t, FuncTerm)): return (v in t) def is_constrained_in_equation(v, eq): lhs = eq.left_side rhs = eq.right_side return is_constrained_in_term(v, lhs) or is_constrained_in_term(v, rhs) def is_constrained_in_equations(v, eqs): result = False equations = eqs.contents for eq in equations: result = result or is_constrained_in_equation(v, eq) return result def normalize_an_equation(eq): if(isinstance(eq.right_side,Zero)): lhs = eq.left_side else: lhs = xor(eq.left_side, eq.right_side) lst = xor_to_list(lhs) lst = simplify(lst) new_lhs = list_to_xor(lst) new_rhs = Zero() new_eq = Equation(new_lhs, new_rhs) return new_eq def normalize_equations(eqs): equations = eqs.contents new_eqs = [] for eq in equations: new_eqs.append(normalize_an_equation(eq)) return Equations(new_eqs) def apply_sub_to_equation(eq, sub): lhs = eq.left_side rhs = eq.right_side return Equation(lhs * sub, rhs * sub) def apply_sub_to_disequation(diseq, sub): lhs = diseq.left_side rhs = diseq.right_side return Disequation(lhs * sub, rhs * sub) def apply_sub_to_equations(eqs, sub): equations = eqs.contents result = [] for eq in equations: result.append(apply_sub_to_equation(eq, sub)) return Equations(result) def apply_sub_to_disequations(diseqs, sub): disequations = diseqs.contents result = [] for diseq in disequations: result.append(apply_sub_to_disequation(diseq, sub)) return Equations(result) class XOR_proof_state: def __init__(self, equations, disequations, substitution): self.equations = equations self.disequations = disequations self.substitution = substitution def normalize(self): eqs = self.equations diseqs = self.disequations substs = self.substitution eqs = normalize_equations(eqs) return XOR_proof_state(eqs, diseqs, substs) def __repr__(self): return str(self.equations) + " | " + str(self.disequations) + " | " + str(self.substitution) class XOR_Rule: def __init__(self): pass def is_applicable(self, state): pass def apply(self, state): pass class Rule_Trivial(XOR_Rule): def __init__(self): pass def is_applicable(self, state): eqs = state.equations.contents for eq in eqs: if (isinstance(eq.left_side, Zero) and isinstance(eq.right_side, Zero)): return True return False def apply(self, state): eqs = state.equations.contents diseqs = state.disequations substs = state.substitution for index in range(len(eqs)): eq = eqs[index] if (isinstance(eq.left_side, Zero) and isinstance(eq.right_side, Zero)): del eqs[index] return XOR_proof_state(Equations(eqs), diseqs, substs) class Rule_Subst(XOR_Rule): def is_applicable(self, state): #Check if the "Variable Substitution" rule is applicable. eqs = state.equations.contents for eq in eqs: all_variables = collect_all_variables_in_equation(eq) for var in all_variables: if(not is_constrained_in_equations(var, state.equations)): return True return False def build_a_substitution_from(self, v, eq): #Build a substitution from equation eq. The domain is variable v. #For example, if v: x, eq: f(y) + a = x + b, #then, the result would be: x |-> f(y) + a + b #Assume that there are no duplicate terms in eq. args = xor_to_list(eq.left_side) for arg in args: if(v == arg): args.remove(arg) range = list_to_xor(args) sigma = SubstituteTerm() sigma.add(v, range) return sigma def get_a_substitution(self, state): #Precondition: Variable Substitution rule is applicable. #Postcondition: It returns a substitution of the form x |-> t, where x is not constrained. #It also remove that equation from state.equations. eqs = state.equations.contents for eq in eqs: all_variables = collect_all_variables_in_equation(eq) for var in all_variables: if (not is_constrained_in_equations(var, state.equations)): subst = self.build_a_substitution_from(var, eq) state.equations.contents.remove(eq) return subst return None def apply(self, state): #need to be reduced subst = self.get_a_substitution(state) new_eqs = apply_sub_to_equations(state.equations, subst) new_eqs = normalize_equations(new_eqs) #new_diseqs = apply_sub_to_disequations(state.disequations, subst) state.substitution = state.substitution * subst return XOR_proof_state(new_eqs, state.disequations, state.substitution) class Rule_N_Decompose(XOR_Rule): def __init__(self): pass def consistent_with_one_disequation(self, t1, t2, diseq): #Assume that the terms have been reduced. #In other words, there are no duplicates xor-subterms. if(t1 == diseq.left_side and t2 == diseq.right_side): return False if (t2 == diseq.left_side and t1 == diseq.right_side): return False return True def consistent_with_disequations(self, t1, t2, diseqs): # Assume that the terms have been reduced. # In other words, there are no duplicates xor-subterms. result = True for diseq in diseqs: result = result and self.consistent_with_one_disequation(t1, t2, diseq) return result def is_applicable(self, state): result = self.get_equation_and_two_terms(state) return result != None def get_equation_and_two_terms(self, state): eqs = state.equations.contents #substs = state.substitution diseqs = state.disequations.contents def same_function(t1, t2): v1 = isinstance(t1, FuncTerm) v2 = isinstance(t2, FuncTerm) return v1 and v2 and (t1.function.symbol == t2.function.symbol) for index in range(len(eqs)): seen_terms = [] all_xor_terms = xor_to_list(eqs[index].left_side) for new_term in all_xor_terms: for seen_term in seen_terms: if (same_function(new_term, seen_term) and self.consistent_with_disequations(new_term, seen_term, diseqs)): return (index, new_term, seen_term) seen_terms.append(new_term) return None def apply(self, state): #Apply a rule to some equation #Assume that the N-Decomposition rule is applicable. #Returns two states equations = state.equations.contents disequations = state.disequations.contents substs = state.substitution (eq_index, first_term, second_term) = self.get_equation_and_two_terms(state) equations1 = equations equations2 = deepcopy(equations) equation_to_be_processed = equations1[eq_index] del equations1[eq_index] #Remove first_term and second_term from new_equation. new_term = xor(equation_to_be_processed.left_side, equation_to_be_processed.right_side) term_list = xor_to_list(new_term) new_lhs = [] for t in term_list: if(t == first_term or t == second_term): continue else: new_lhs.append(t) if(len(new_lhs) != 0): new_equation = Equation(list_to_xor(new_lhs), Zero()) else: new_equation = Equation(Zero(), Zero()) equations1.append(new_equation) unifier = unif(first_term, second_term) #equations1.append(Equation(xor(first_term.arg, second_term.arg), Zero())) #if((first_term == second_term) or (unifier.domain() != [])): # unifiable = True #else: # unifiable = False if(unifier == False): unifiable = False else: unifiable = True disequations1 = disequations disequations2 = deepcopy(disequations) new_disequation = Disequation(first_term, second_term) disequations2.append(new_disequation) state2 = XOR_proof_state(Equations(equations2), Disequations(disequations2), substs) if(unifiable): state1 = XOR_proof_state(apply_sub_to_equations(Equations(equations1), unifier),apply_sub_to_disequations(Disequations(disequations1), unifier), substs * unifier) return (unifiable, state1, state2) else: return (unifiable, state, state2) class Rule_Decompose(XOR_Rule): def __init__(self): pass def has_two_arguments(self, t): if(is_xor_term(t)): left_is_not_xor = not is_xor_term(t.arguments[0]) right_is_not_xor = not is_xor_term(t.arguments[1]) return left_is_not_xor and right_is_not_xor def is_of_form_f_f(self, eq): lhs = eq.left_side if(self.has_two_arguments(lhs)): first = lhs.arguments[0] second = lhs.arguments[1] lhs_is_func_term = isinstance(first, FuncTerm) and (not isinstance(first, Constant)) rhs_is_func_term = isinstance(second, FuncTerm) and (not isinstance(second, Constant)) return lhs_is_func_term and rhs_is_func_term and (first.function.symbol == second.function.symbol) else: return False def is_applicable(self, state): eqs = state.equations.contents for eq in eqs: if(self.is_of_form_f_f(eq)): return eq return False def apply(self, state): eq = self.is_applicable(state) first = eq.left_side.arguments[0] second = eq.left_side.arguments[1] sigma = unif(first, second) if(sigma == False): return (False, None) else: new_eqs = apply_sub_to_equations(state.equations, sigma) new_eqs = normalize_equations(new_eqs) state.substitution = state.substitution * sigma return (True, XOR_proof_state(new_eqs, state.disequations, state.substitution)) def xor_unification_helper(state): #Returns a list of substitutions state = state.normalize() #print("Here is a state: ") #print(state) eqs = state.equations substs = state.substitution diseqs = state.disequations if (len(eqs.contents) == 0): #unifiable return [substs] trivial_rule = Rule_Trivial() subst_rule = Rule_Subst() n_decompose_rule = Rule_N_Decompose() decompose_rule = Rule_Decompose() #if no rule is applicable, return [] #otherwise take an inference step #trivial_applicable = trivial_rule.is_applicable(state) #subst_applicable = subst_rule.is_applicable(state) #decompose_applicable = decompose_rule.is_applicable(state) # #if(not (trivial_applicable or subst_applicable or decompose_applicable)): # return [] #not unifiable if(trivial_rule.is_applicable(state)): new_state = trivial_rule.apply(state) return xor_unification_helper(new_state) elif(decompose_rule.is_applicable(state)): (unifiable, new_state) = decompose_rule.apply(state) if(unifiable): return xor_unification_helper(new_state) else: return [] elif(subst_rule.is_applicable(state)): new_state = subst_rule.apply(state) return xor_unification_helper(new_state) elif(n_decompose_rule.is_applicable(state)): (unifiable, state1, state2) = n_decompose_rule.apply(state) if(unifiable): return xor_unification_helper(state1) + xor_unification_helper(state2) else: return xor_unification_helper(state2) else: return [] def xor_unification(eqs): equations = purify_equations(eqs) diseqs = Disequations([]) subst = SubstituteTerm() state = XOR_proof_state(equations, diseqs, subst) solutions = xor_unification_helper(state) return solutions variable_counter = 0
33.873418
174
0.632928
4a1b242902e4f942b1ff3e2cab447ec387c49fb4
1,469
py
Python
pbctf/2020/blacklist/genfiles.py
mystickev/ctf-archives
89e99a5cd5fb6b2923cad3fe1948d3ff78649b4e
[ "MIT" ]
65
2019-10-07T01:29:16.000Z
2022-03-18T14:20:40.000Z
pbctf/2020/blacklist/genfiles.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
null
null
null
pbctf/2020/blacklist/genfiles.py
ruhan-islam/ctf-archives
8c2bf6a608c821314d1a1cfaa05a6cccef8e3103
[ "MIT" ]
12
2020-05-04T01:16:53.000Z
2022-01-02T14:33:41.000Z
import string, random, os, sys pool = string.ascii_letters + string.digits random.seed(open('/dev/random', 'rb').read(16)) flag_parts = ['F', 'f', 'L', 'l', 'A', 'a', 'G', 'g', '70', '102', '76', '108', '65', '97', '71', '103', '0x46', '0x66', '0x4c', '0x6c', '0x41', '0x61', '0x47', '0x67', 'fl', 'la', 'ag', 'fla', 'lag', 'flag', 'FLAG', 'FLA', 'LAG', 'FL', 'LA', 'AG'] def randint(x): return random.randint(0, x - 1) def randstr(): msg = '' for i in range(25): msg += pool[randint(len(pool))] return msg def main(): if len(sys.argv) != 2: print('Usage: {} FLAG_VALUE'.format(sys.argv[0])) exit(1) flag = open(sys.argv[1], 'r').read().strip() def flatten(aval, bval, cval): return aval * 50 + bval * 5 + cval base = 'flag_dir' os.mkdir(base) flagpos = randint(len(flag_parts) * 50) for a in range(len(flag_parts)): aa = base + '/' + flag_parts[a] os.mkdir(aa) for b in range(10): bb = aa + '/' + randstr() os.mkdir(bb) for c in range(5): cc = bb + '/' + randstr() with open(cc, 'w') as f: if flatten(a, b, c) == flagpos: print('Flag is located at: ./' + cc) f.write(flag + '\n') else: f.write(randstr() + '\n') if __name__ == '__main__': main()
28.803922
80
0.456773
4a1b258e84b18cdb2108998a5759b3ae9338eeec
1,380
py
Python
boards/metro_m4_express/3.x/lib/adafruit_hid/__init__.py
jepler/circuitpython-default-files
04a9134e41a8766fc7c5ce3666d433ddedfa6ed6
[ "MIT" ]
9
2019-03-15T02:47:49.000Z
2022-01-20T05:54:08.000Z
infra/libs-400rc2-20190512/lib/adafruit_hid/__init__.py
jadudm/feather-isa
b7419e6698c3f64be4d8122656eb8124631ca859
[ "MIT" ]
3
2019-11-07T03:37:40.000Z
2021-02-09T20:09:39.000Z
lib/adafruit_hid/__init__.py
stoicsimian/gameclock
3d22c5032dc0139d1ca2f3c29d4a425ed8521a3d
[ "MIT" ]
14
2019-04-07T20:30:27.000Z
2022-01-20T05:54:10.000Z
# The MIT License (MIT) # # Copyright (c) 2017 Scott Shawcroft for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_hid` ==================================================== This driver simulates USB HID devices. Currently keyboard and mouse are implemented. * Author(s): Scott Shawcroft, Dan Halbert """
44.516129
85
0.728261
4a1b274e1ae2fba791921111ffefa8e3eb237de0
826
py
Python
Own/Python/Tutorials/Lists.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
Own/Python/Tutorials/Lists.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
Own/Python/Tutorials/Lists.py
cychitivav/programming_exercises
e8e7ddb4ec4eea52ee0d3826a144c7dc97195e78
[ "MIT" ]
null
null
null
#Cristian Chitiva #cychitivav@unal.edu.co #12/Sept/2018 myList = ['Hi', 5, 6 , 3.4, "i"] #Create the list myList.append([4, 5]) #Add sublist [4, 5] to myList myList.insert(2,"f") #Add "f" in the position 2 print(myList) myList = [1, 3, 4, 5, 23, 4, 3, 222, 454, 6445, 6, 4654, 455] myList.sort() #Sort the list from lowest to highest print(myList) myList.sort(reverse = True) #Sort the list from highest to lowest print(myList) myList.extend([5, 77]) #Add 5 and 77 to myList print(myList) #List comprehension myList = [] for value in range(0, 50): myList.append(value) print(myList) myList = ["f" for value in range(0,20)] print(myList) myList = [value for value in range(0,20)] print(myList) myList = [value for value in range(0,60,3) if value % 2 == 0] print(myList)
25.030303
68
0.641646
4a1b28f49024fb7770d30f0774f5dc01174781f6
14,545
py
Python
droplet/server/executor/call.py
xcharleslin/droplet
3124f60b3621df83a22e6dd14dce853330455340
[ "Apache-2.0" ]
null
null
null
droplet/server/executor/call.py
xcharleslin/droplet
3124f60b3621df83a22e6dd14dce853330455340
[ "Apache-2.0" ]
null
null
null
droplet/server/executor/call.py
xcharleslin/droplet
3124f60b3621df83a22e6dd14dce853330455340
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 U.C. Berkeley RISE Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import time from anna.lattices import ( Lattice, MapLattice, MultiKeyCausalLattice, SetLattice, SingleKeyCausalLattice, VectorClock ) from droplet.server.executor import utils import droplet.server.utils as sutils from droplet.shared.proto.droplet_pb2 import ( DagTrigger, FunctionCall, NORMAL, MULTI, # Droplet's consistency modes, EXECUTION_ERROR, FUNC_NOT_FOUND # Droplet's error types ) from droplet.shared.reference import DropletReference from droplet.shared.serializer import Serializer serializer = Serializer() def exec_function(exec_socket, kvs, user_library, cache): call = FunctionCall() call.ParseFromString(exec_socket.recv()) fargs = [serializer.load(arg) for arg in call.arguments.values] f = utils.retrieve_function(call.name, kvs, call.consistency) if not f: logging.info('Function %s not found! Returning an error.' % (call.name)) sutils.error.error = FUNC_NOT_FOUND result = ('ERROR', sutils.error.SerializeToString()) else: try: if call.consistency == NORMAL: result = _exec_func_normal(kvs, f, fargs, user_library, cache) else: dependencies = {} result = _exec_func_causal(kvs, f, fargs, user_library, dependencies=dependencies) except Exception as e: logging.exception('Unexpected error %s while executing function.' % (str(e))) sutils.error.error = EXECUTION_ERROR result = ('ERROR: ' + str(e), sutils.error.SerializeToString()) if call.consistency == NORMAL: result = serializer.dump_lattice(result) succeed = kvs.put(call.response_key, result) else: result = serializer.dump_lattice(result, MultiKeyCausalLattice, causal_dependencies=dependencies) succeed = kvs.causal_put(call.response_key, result) if not succeed: logging.info(f'Unsuccessful attempt to put key {call.response_key} ' + 'into the KVS.') def _exec_func_normal(kvs, func, args, user_lib, cache): refs = list(filter(lambda a: isinstance(a, DropletReference), args)) if refs: refs = _resolve_ref_normal(refs, kvs, cache) return _run_function(func, refs, args, user_lib) def _exec_func_causal(kvs, func, args, user_lib, schedule=None, key_version_locations={}, dependencies={}): refs = list(filter(lambda a: isinstance(a, DropletReference), args)) if refs: refs = _resolve_ref_causal(refs, kvs, schedule, key_version_locations, dependencies) return _run_function(func, refs, args, user_lib) def _run_function(func, refs, args, user_lib): # Set the first argument to the user library. func_args = (user_lib,) # If any of the arguments are references, we insert the resolved reference # instead of the raw value. for arg in args: if isinstance(arg, DropletReference): func_args += (refs[arg.key],) else: func_args += (arg,) res = func(*func_args) return res def _resolve_ref_normal(refs, kvs, cache): deserialize_map = {} kv_pairs = {} keys = set() for ref in refs: deserialize_map[ref.key] = ref.deserialize if ref.key in cache: kv_pairs[ref.key] = cache[ref.key] else: keys.add(ref.key) keys = list(keys) if len(keys) != 0: returned_kv_pairs = kvs.get(keys) # When chaining function executions, we must wait, so we check to see # if certain values have not been resolved yet. while None in returned_kv_pairs.values(): returned_kv_pairs = kvs.get(keys) for key in keys: # Because references might be repeated, we check to make sure that # we haven't already deserialized this ref. if deserialize_map[key] and isinstance(returned_kv_pairs[key], Lattice): kv_pairs[key] = serializer.load_lattice(returned_kv_pairs[key]) else: kv_pairs[key] = returned_kv_pairs[key] # Cache the deserialized payload for future use cache[key] = kv_pairs[key] return kv_pairs def _resolve_ref_causal(refs, kvs, schedule, key_version_locations, dependencies): if schedule: future_read_set = _compute_children_read_set(schedule) client_id = schedule.client_id consistency = schedule.consistency else: future_read_set = set() client_id = 0 consistency = MULTI keys = [ref.key for ref in refs] (address, versions), kv_pairs = kvs.causal_get(keys, future_read_set, key_version_locations, consistency, client_id) while None in kv_pairs.values(): (address, versions), kv_pairs = kvs.causal_get(keys, future_read_set, key_version_locations, consistency, client_id) if address is not None: if address not in key_version_locations: key_version_locations[address] = versions else: key_version_locations[address].extend(versions) for key in kv_pairs: if key in dependencies: dependencies[key].merge(kv_pairs[key].vector_clock) else: dependencies[key] = kv_pairs[key].vector_clock for ref in refs: key = ref.key if ref.deserialize: # In causal mode, you can only use these two lattice types. if (isinstance(kv_pairs[key], SingleKeyCausalLattice) or isinstance(kv_pairs[key], MultiKeyCausalLattice)): # If there are multiple values, we choose the first one listed # at random. kv_pairs[key] = serializer.load_lattice(kv_pairs[key])[0] else: raise ValueError(('Invalid lattice type %s encountered when' + ' executing in causal mode.') % str(type(kv_pairs[key]))) return kv_pairs def exec_dag_function(pusher_cache, kvs, triggers, function, schedule, user_library, dag_runtimes, cache): if schedule.consistency == NORMAL: finished = _exec_dag_function_normal(pusher_cache, kvs, triggers, function, schedule, user_library, cache) else: finished = _exec_dag_function_causal(pusher_cache, kvs, triggers, function, schedule, user_library) # If finished is true, that means that this executor finished the DAG # request. We will report the end-to-end latency for this DAG if so. if finished: dname = schedule.dag.name if dname not in dag_runtimes: dag_runtimes[dname] = [] runtime = time.time() - schedule.start_time dag_runtimes[schedule.dag.name].append(runtime) def _construct_trigger(sid, fname, result): trigger = DagTrigger() trigger.id = sid trigger.source = fname if type(result) != tuple: result = (result,) trigger.arguments.values.extend(list( map(lambda v: serializer.dump(v, None, False), result))) return trigger def _exec_dag_function_normal(pusher_cache, kvs, triggers, function, schedule, user_lib, cache): fname = schedule.target_function fargs = list(schedule.arguments[fname].values) for trname in schedule.triggers: trigger = triggers[trname] fargs += list(trigger.arguments.values) fargs = [serializer.load(arg) for arg in fargs] result = _exec_func_normal(kvs, function, fargs, user_lib, cache) is_sink = True new_trigger = _construct_trigger(schedule.id, fname, result) for conn in schedule.dag.connections: if conn.source == fname: is_sink = False new_trigger.target_function = conn.sink dest_ip = schedule.locations[conn.sink] sckt = pusher_cache.get(sutils.get_dag_trigger_address(dest_ip)) sckt.send(new_trigger.SerializeToString()) if is_sink: if schedule.response_address: sckt = pusher_cache.get(schedule.response_address) logging.info('DAG %s (ID %s) result returned to requester.' % (schedule.dag.name, trigger.id)) sckt.send(serializer.dump(result)) else: lattice = serializer.dump_lattice(result) output_key = schedule.output_key if schedule.output_key \ else schedule.id logging.info('DAG %s (ID %s) result in KVS at %s.' % (schedule.dag.name, trigger.id, output_key)) kvs.put(output_key, lattice) return is_sink def _exec_dag_function_causal(pusher_cache, kvs, triggers, function, schedule, user_lib): fname = schedule.target_function fargs = list(schedule.arguments[fname].values) key_version_locations = {} dependencies = {} for trname in schedule.triggers: trigger = triggers[trname] fargs += list(trigger.arguments.values) # Combine the locations of upstream cached key versions from all # triggers. for addr in trigger.version_locations: if addr in key_version_locations: key_version_locations[addr].extend( trigger.version_locations[addr].key_versions) else: key_version_locations[addr] = list( trigger.version_locations[addr]) # Combine the dependency sets from all triggers. for dependency in trigger.dependencies: vc = VectorClock(dict(dependency.vector_clock), True) key = dependency.key if key in dependencies: dependencies[key].merge(vc) else: dependencies[key] = vc fargs = [serializer.load(arg) for arg in fargs] result = _exec_func_causal(kvs, function, fargs, user_lib, schedule, key_version_locations, dependencies) # Create a new trigger with the schedule ID and results of this execution. new_trigger = _construct_trigger(schedule.id, fname, result) # Serialize the key version location information into this new trigger. for addr in key_version_locations: new_trigger.version_locations[addr].keys.extend( key_version_locations[addr]) # Serialize the set of dependency versions for causal metadata. for key in dependencies: dep = new_trigger.dependencies.add() dep.key = key dependencies[key].serialize(dep.vector_clock) is_sink = True for conn in schedule.dag.connections: if conn.source == fname: is_sink = False new_trigger.target_function = conn.sink dest_ip = schedule.locations[conn.sink] sckt = pusher_cache.get(sutils.get_dag_trigger_address(dest_ip)) sckt.send(new_trigger.SerializeToString()) if is_sink: logging.info('DAG %s (ID %s) completed in causal mode; result at %s.' % (schedule.dag.name, schedule.id, schedule.output_key)) vector_clock = {} okey = schedule.output_key if okey in dependencies: prev_count = 0 if schedule.client_id in dependencies[okey]: prev_count = dependencies[okey][schedule.client_id] dependencies[okey].update(schedule.client_id, prev_count + 1) dependencies[okey].serialize(vector_clock) del dependencies[okey] else: vector_clock = {schedule.client_id: 1} # Serialize result into a MultiKeyCausalLattice. vector_clock = VectorClock(vector_clock, True) result = serializer.dump(result) dependencies = MapLattice(dependencies) lattice = MultiKeyCausalLattice(vector_clock, dependencies, SetLattice({result})) succeed = kvs.causal_put(schedule.output_key, lattice, schedule.client_id) while not succeed: succeed = kvs.causal_put(schedule.output_key, lattice, schedule.client_id) # Issues requests to all upstream caches for this particular request # and asks them to garbage collect pinned versions stored for the # context of this request. for cache_addr in key_version_locations: gc_address = utils.get_cache_gc_address(cache_addr) sckt = pusher_cache.get(gc_address) sckt.send_string(schedule.client_id) return is_sink def _compute_children_read_set(schedule): future_read_set = set() fname = schedule.target_function children = set() delta = {fname} while len(delta) > 0: new_delta = set() for conn in schedule.dag.connections: if conn.source in delta: children.add(conn.sink) new_delta.add(conn.sink) delta = new_delta for child in children: refs = list(filter(lambda arg: type(arg) == DropletReference, [serializer.load(arg) for arg in schedule.arguments[child].values])) for ref in refs: future_read_set.add(ref.key) return future_read_set
36.27182
79
0.612994
4a1b291243be086e9c59052240b10109a46b89af
5,147
py
Python
configs/representation/uvc2_fpn/uvc2_r18-fpn_center_it_l1_video_2x8x1_sgd_cosine_10e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/uvc2_fpn/uvc2_r18-fpn_center_it_l1_video_2x8x1_sgd_cosine_10e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
configs/representation/uvc2_fpn/uvc2_r18-fpn_center_it_l1_video_2x8x1_sgd_cosine_10e_k400_rgb.py
happywu/mmaction2-CycleContrast
019734e471dffd1161b7a9c617ba862d2349a96c
[ "Apache-2.0" ]
null
null
null
# model settings temperature = 0.01 with_norm = True model = dict( type='UVCTrackerV2', backbone=dict( type='ResNet', pretrained=None, depth=18, out_indices=(1, 2, 3), # strides=(1, 2, 1, 1), norm_eval=False, zero_init_residual=True), neck=dict( type='FPN', in_channels=[128, 256, 512], out_channels=256, num_outs=4, out_index=0), cls_head=dict( type='UVCHead', loss_feat=None, loss_aff=dict( type='ConcentrateLoss', win_len=8, stride=8, temperature=temperature, with_norm=with_norm, loss_weight=1.), loss_bbox=dict(type='L1Loss', loss_weight=10.), in_channels=256, channels=128, temperature=temperature, with_norm=with_norm, init_std=0.01, track_type='center')) # model training and testing settings train_cfg = dict( patch_size=96, img_as_ref=True, img_as_tar=False, diff_crop=True, skip_cycle=True, center_ratio=0.) test_cfg = dict( precede_frames=7, topk=5, temperature=temperature, # strides=(1, 2, 1, 1), out_indices=(0, ), neighbor_range=40, with_norm=with_norm, output_dir='eval_results') # dataset settings dataset_type = 'VideoDataset' dataset_type_val = 'DavisDataset' data_prefix = 'data/kinetics400/videos_train' ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt' data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p' anno_prefix_val = 'data/davis/DAVIS/Annotations/480p' data_root_val = 'data/davis/DAVIS' ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames', clip_len=2, frame_interval=8, num_clips=1), dict(type='DecordDecode'), dict(type='Resize', scale=(-1, 256)), dict(type='RandomResizedCrop', area_range=(0.2, 1.)), dict(type='Resize', scale=(256, 256), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict( type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8), dict(type='RandomGrayScale', p=0.2), dict(type='RandomGaussianBlur', p=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='SequentialSampleFrames', frame_interval=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 480), keep_ratio=True), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict( type='Collect', keys=['imgs', 'ref_seg_map'], meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')), dict(type='ToTensor', keys=['imgs', 'ref_seg_map']) ] data = dict( videos_per_gpu=48, workers_per_gpu=4, val_workers_per_gpu=1, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_prefix, pipeline=train_pipeline), val=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True)) # optimizer # optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='SGD', lr=1e-1) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) # lr_config = dict(policy='Fixed') # lr_config = dict( # policy='step', # warmup='linear', # warmup_iters=100, # warmup_ratio=0.001, # step=[1, 2]) total_epochs = 10 checkpoint_config = dict(interval=1) evaluation = dict( interval=1, metrics='davis', key_indicator='J&F-Mean', rule='greater') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='mmaction2', name='{{fileBasenameNoExtension}}', resume=True, tags=['uvc2-fpn'], dir='wandb/{{fileBasenameNoExtension}}', config=dict( model=model, train_cfg=train_cfg, test_cfg=test_cfg, data=data))), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
30.636905
78
0.620167
4a1b2aa0c4ecd20fa968d891f736ed65bfa701b3
3,132
py
Python
src/plugins/21_point/card_lib.py
NekoMashiro/water_spinach_bot
52b805169bbf49ff167ee7eaf6fa477f8b8d1c99
[ "MIT" ]
1
2022-03-22T17:43:52.000Z
2022-03-22T17:43:52.000Z
src/plugins/21_point/card_lib.py
NekoMashiro/water_spinach_bot
52b805169bbf49ff167ee7eaf6fa477f8b8d1c99
[ "MIT" ]
null
null
null
src/plugins/21_point/card_lib.py
NekoMashiro/water_spinach_bot
52b805169bbf49ff167ee7eaf6fa477f8b8d1c99
[ "MIT" ]
null
null
null
total_card = [] player = 0 finished_player = 0 every_player_card = {} every_player_point = {} def card_game_start(): global total_card global player global finished_player player = 0 finished_player = 0 total_card = random_card_list() every_player_card.clear() every_player_card['banker'] = [] every_player_card['banker'].append(total_card.pop()) every_player_card['banker'].append(total_card.pop()) first_card = card_to_string(every_player_card['banker'][0]) str = '菜菜的第一张牌是' + first_card + '哦 ' if(every_player_card['banker'][0][1] == 1): str += '好像很危险耶Σ(゚∀゚ノ)ノ ' str += '至于第二张牌……可不能告诉你呢!' return str def add_player(player_id): global player player = player + 1 every_player_card[player_id] = [] every_player_card[player_id].append(total_card.pop()) every_player_card[player_id].append(total_card.pop()) str = '你的初始手牌是:' for card in every_player_card[player_id]: str += card_to_string(card) + ' ' str += calc_handcards_point(player_id) return str def stop_card(player_id): global player global finished_player finished_player = finished_player + 1 if player == finished_player: return True return False def ask_card(player_id): every_player_card[player_id].append(total_card.pop()) handcards = every_player_card[player_id].copy() str = '你的手牌是:' for card in handcards: str += card_to_string(card) + ' ' str += calc_handcards_point(player_id) return str def calc_handcards_point(player_id): handcards = every_player_card[player_id] point = 0 num_a = 0 for card in handcards: if card[1] > 10: point += 10 else: point += card[1] if card[1] == 1: num_a = num_a + 1 while point <= 11 and num_a > 0: point += 10 num_a -= 1 if point > 21: every_player_point[player_id] = -1 return '总点数是……' + point.__str__() + '…………爆掉了(°ー°〃)' if len(handcards) == 2 and point == 21: every_player_point[player_id] = 22 return '是Black Jack诶Σ(゚∀゚ノ)ノ' every_player_point[player_id] = point str = '总点数是' + point.__str__() + '点哦' if point > 14 and point < 21: from random import randint if randint(1, 10) + point <= 21: str += ' 这不贪一手嘛_(•̀ω•́ 」∠)_' return str def card_to_string(card: tuple): str = '' if card[0] == 1: str += '♠' elif card[0] == 2: str += '♥' elif card[0] == 3: str += '♣' elif card[0] == 4: str += '♦' if card[1] == 1: str += 'A' elif card[1] == 11: str += 'J' elif card[1] == 12: str += 'Q' elif card[1] == 13: str += 'K' else: str += card[1].__str__() return str def random_card_list(): l = [] total = 0 for i in range(1, 5): for j in range(1, 14): from random import randint pos = randint(0, total) total = total + 1 l.insert(pos, (i, j)) return l def final_calc(): pass
23.373134
63
0.574074
4a1b2b1013a8d5179765cd8d0f0ce23fc70cb883
8,281
py
Python
sdk/python/pulumi_azure/compute/availability_set.py
adnang/pulumi-azure
32360d2f1e41e27d7fdd6522cb26d65e531f279f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/compute/availability_set.py
adnang/pulumi-azure
32360d2f1e41e27d7fdd6522cb26d65e531f279f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/compute/availability_set.py
adnang/pulumi-azure
32360d2f1e41e27d7fdd6522cb26d65e531f279f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class AvailabilitySet(pulumi.CustomResource): location: pulumi.Output[str] """ Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. """ managed: pulumi.Output[bool] """ Specifies whether the availability set is managed or not. Possible values are `true` (to specify aligned) or `false` (to specify classic). Default is `true`. """ name: pulumi.Output[str] """ Specifies the name of the availability set. Changing this forces a new resource to be created. """ platform_fault_domain_count: pulumi.Output[float] """ Specifies the number of fault domains that are used. Defaults to `3`. """ platform_update_domain_count: pulumi.Output[float] """ Specifies the number of update domains that are used. Defaults to `5`. """ proximity_placement_group_id: pulumi.Output[str] """ The ID of the Proximity Placement Group to which this Virtual Machine should be assigned. Changing this forces a new resource to be created """ resource_group_name: pulumi.Output[str] """ The name of the resource group in which to create the availability set. Changing this forces a new resource to be created. """ tags: pulumi.Output[dict] """ A mapping of tags to assign to the resource. """ def __init__(__self__, resource_name, opts=None, location=None, managed=None, name=None, platform_fault_domain_count=None, platform_update_domain_count=None, proximity_placement_group_id=None, resource_group_name=None, tags=None, __props__=None, __name__=None, __opts__=None): """ Manages an Availability Set for Virtual Machines. ## Example Usage ```python import pulumi import pulumi_azure as azure example_resource_group = azure.core.ResourceGroup("exampleResourceGroup", location="West Europe") example_availability_set = azure.compute.AvailabilitySet("exampleAvailabilitySet", location=example_resource_group.location, resource_group_name=example_resource_group.name, tags={ "environment": "Production", }) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[bool] managed: Specifies whether the availability set is managed or not. Possible values are `true` (to specify aligned) or `false` (to specify classic). Default is `true`. :param pulumi.Input[str] name: Specifies the name of the availability set. Changing this forces a new resource to be created. :param pulumi.Input[float] platform_fault_domain_count: Specifies the number of fault domains that are used. Defaults to `3`. :param pulumi.Input[float] platform_update_domain_count: Specifies the number of update domains that are used. Defaults to `5`. :param pulumi.Input[str] proximity_placement_group_id: The ID of the Proximity Placement Group to which this Virtual Machine should be assigned. Changing this forces a new resource to be created :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the availability set. Changing this forces a new resource to be created. :param pulumi.Input[dict] tags: A mapping of tags to assign to the resource. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['location'] = location __props__['managed'] = managed __props__['name'] = name __props__['platform_fault_domain_count'] = platform_fault_domain_count __props__['platform_update_domain_count'] = platform_update_domain_count __props__['proximity_placement_group_id'] = proximity_placement_group_id if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags super(AvailabilitySet, __self__).__init__( 'azure:compute/availabilitySet:AvailabilitySet', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, location=None, managed=None, name=None, platform_fault_domain_count=None, platform_update_domain_count=None, proximity_placement_group_id=None, resource_group_name=None, tags=None): """ Get an existing AvailabilitySet resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] location: Specifies the supported Azure location where the resource exists. Changing this forces a new resource to be created. :param pulumi.Input[bool] managed: Specifies whether the availability set is managed or not. Possible values are `true` (to specify aligned) or `false` (to specify classic). Default is `true`. :param pulumi.Input[str] name: Specifies the name of the availability set. Changing this forces a new resource to be created. :param pulumi.Input[float] platform_fault_domain_count: Specifies the number of fault domains that are used. Defaults to `3`. :param pulumi.Input[float] platform_update_domain_count: Specifies the number of update domains that are used. Defaults to `5`. :param pulumi.Input[str] proximity_placement_group_id: The ID of the Proximity Placement Group to which this Virtual Machine should be assigned. Changing this forces a new resource to be created :param pulumi.Input[str] resource_group_name: The name of the resource group in which to create the availability set. Changing this forces a new resource to be created. :param pulumi.Input[dict] tags: A mapping of tags to assign to the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["location"] = location __props__["managed"] = managed __props__["name"] = name __props__["platform_fault_domain_count"] = platform_fault_domain_count __props__["platform_update_domain_count"] = platform_update_domain_count __props__["proximity_placement_group_id"] = proximity_placement_group_id __props__["resource_group_name"] = resource_group_name __props__["tags"] = tags return AvailabilitySet(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
55.952703
280
0.709455
4a1b2baa9af6e1327dab212033d717281816cf22
3,853
py
Python
tests/e2e/test_navigation_page_non_student.py
jaredsexton/Submitty
bcc778514299bfabf574131f5eacce3732c695e1
[ "BSD-3-Clause" ]
null
null
null
tests/e2e/test_navigation_page_non_student.py
jaredsexton/Submitty
bcc778514299bfabf574131f5eacce3732c695e1
[ "BSD-3-Clause" ]
null
null
null
tests/e2e/test_navigation_page_non_student.py
jaredsexton/Submitty
bcc778514299bfabf574131f5eacce3732c695e1
[ "BSD-3-Clause" ]
null
null
null
from e2e.base_testcase import BaseTestCase class TestNavigationPageNonStudent(BaseTestCase): def __init__(self, testname): super().__init__(testname, log_in=False) def test_instructor(self): self.log_in(user_id="instructor", user_name="Quinn") self.click_class('sample', 'SAMPLE') elements = self.driver.find_elements_by_class_name('nav-title-row') self.assertEqual(6, len(elements)) self.assertEqual("future", elements[0].get_attribute('id')) self.assertEqual(3, len(self.driver .find_element_by_id('future_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("beta", elements[1].get_attribute('id')) self.assertEqual(3, len(self.driver .find_element_by_id('beta_tbody') .find_elements_by_class_name('gradeable_row'))) self.assertEqual("open", elements[2].get_attribute('id')) self.assertEqual(2, len(self.driver .find_element_by_id('open_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("closed", elements[3].get_attribute('id')) self.assertEqual(1, len(self.driver .find_element_by_id('closed_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("items_being_graded", elements[4].get_attribute('id')) self.assertEqual(3, len(self.driver .find_element_by_id('items_being_graded_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("graded", elements[5].get_attribute('id')) self.assertEqual(8, len(self.driver .find_element_by_id('graded_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual(6, len(self.driver.find_element_by_class_name( 'gradeable_row').find_elements_by_tag_name('td'))) def test_ta(self): self.log_in(user_id="ta", user_name="Jill") self.click_class('sample', 'SAMPLE') elements = self.driver.find_elements_by_class_name('nav-title-row') self.assertEqual(5, len(elements)) self.assertEqual("beta", elements[0].get_attribute('id')) self.assertEqual(3, len(self.driver .find_element_by_id('beta_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("open", elements[1].get_attribute('id')) self.assertEqual(2, len(self.driver .find_element_by_id('open_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("closed", elements[2].get_attribute('id')) self.assertEqual(1, len(self.driver .find_element_by_id('closed_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("items_being_graded", elements[3].get_attribute('id')) self.assertEqual(3, len(self.driver .find_element_by_id('items_being_graded_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual("graded", elements[4].get_attribute('id')) self.assertEqual(8, len(self.driver .find_element_by_id('graded_tbody') .find_elements_by_class_name("gradeable_row"))) self.assertEqual(6, len(self.driver.find_element_by_class_name( 'gradeable_row').find_elements_by_tag_name('td'))) if __name__ == "__main__": import unittest unittest.main()
52.780822
80
0.60135
4a1b2c2c57b9b53e7008f60e376ed021d3bc236b
4,478
py
Python
src/syntren.py
compmedlab/gGAN
e157bd76438ef6632ed59ea95677cd41136f84d1
[ "MIT" ]
null
null
null
src/syntren.py
compmedlab/gGAN
e157bd76438ef6632ed59ea95677cd41136f84d1
[ "MIT" ]
null
null
null
src/syntren.py
compmedlab/gGAN
e157bd76438ef6632ed59ea95677cd41136f84d1
[ "MIT" ]
1
2020-12-15T16:37:07.000Z
2020-12-15T16:37:07.000Z
from data_pipeline import reg_network, get_gene_symbols import numpy as np import pandas as pd DEFAULT_ROOT_GENE = 'CRP' DEFAULT_EVIDENCE = 'Weak' DEFAULT_DEPTH = np.inf SYNTREN_DATA_DIR = '../data/syntren/' # '../../syntren1.2release/data/' NETWORK_FILE = SYNTREN_DATA_DIR + 'source_networks/EColi_n{}_r{}_e{}_d{}.sif' RESULTS_FILE = SYNTREN_DATA_DIR + 'results/nn{}_nbgr{}_hop{}_bionoise{}_expnoise{}_corrnoise{' \ '}_neighAdd_{}_dataset.txt' DEFAULT_BACKGROUND_NODES = 0 DEFAULT_HOP = 0.3 # Probability for complex 2-regulator interactions DEFAULT_BIONOISE = 0.1 DEFAULT_EXPNOISE = 0.1 DEFAULT_CORRNOISE = 0.1 def dump_network(root_gene=DEFAULT_ROOT_GENE, minimum_evidence=DEFAULT_EVIDENCE, depth=DEFAULT_DEPTH, break_loops=True): """ Writes network for root_gene in SyNTReN format (directory: SYNTREN_DATA_DIR) :param root_gene: Gene on top of the hierarchy :param minimum_evidence: Interactions with a strength below this level will be discarded. Possible values: 'confirmed', 'strong', 'weak' :param depth: Ignores genes that are not in the first max_depth levels of the hierarchy :param break_loops: Whether to break the loops from lower (or equal) to upper levels in the hierarchy. If True, the resulting network is a Directed Acyclic Graph (DAG). """ gs = get_gene_symbols() nodes, edges = reg_network(gs, root_gene, minimum_evidence, depth, break_loops) nb_nodes = len(nodes) file_name = NETWORK_FILE.format(nb_nodes, root_gene, minimum_evidence, depth) with open(file_name, 'w') as f: for tf, tg_dict in edges.items(): for tg, reg_type in tg_dict.items(): s_reg_type = 'ac' if reg_type == '-': s_reg_type = 're' elif reg_type == '+-': s_reg_type = 'du' elif reg_type == '?': s_reg_type = 'du' print('Warning: Unknown regulation type found for interaction {}->{}'.format(tf, tg)) elif reg_type != '+': raise ValueError('Invalid regulation type') line = '{}\t{}\t{}\n'.format(tf, s_reg_type, tg) f.write(line) print('Finished preparing SynTReN network\nFile:{}'.format(file_name)) def syntren_results(root_gene=DEFAULT_ROOT_GENE, minimum_evidence=DEFAULT_EVIDENCE, depth=DEFAULT_DEPTH, break_loops=True, nb_background=DEFAULT_BACKGROUND_NODES, hop=DEFAULT_HOP, bionoise=DEFAULT_BIONOISE, expnoise=DEFAULT_EXPNOISE, corrnoise=DEFAULT_CORRNOISE, normalized=True): """ Reads SynTReN results :param root_gene: Gene on top of the hierarchy :param minimum_evidence: Interactions with a strength below this level will be discarded. Possible values: 'confirmed', 'strong', 'weak' :param depth: Ignores genes that are not in the first max_depth levels of the hierarchy :param break_loops: Whether to break the loops from lower (or equal) to upper levels in the hierarchy. If True, the resulting network is a Directed Acyclic Graph (DAG). :param nb_background: Number of background nodes :param hop: Probability for complex 2-regulator interactions :param bionoise: Biological noise [0, 1] :param expnoise: Experimental noise [0, 1] :param corrnoise: Noise on correlated inputs [0, 1] :param normalized: Whether to get SynTReN normalized or unnormalized data :return: expression matrix with Shape=(nb_samples, nb_genes), and list of gene symbols """ # Read results gs = get_gene_symbols() nodes, edges = reg_network(gs, root_gene, minimum_evidence, depth, break_loops) nb_nodes = len(nodes) norm = 'maxExpr1' if not normalized: norm = 'unnormalized' file_name = RESULTS_FILE.format(nb_nodes, nb_background, hop, bionoise, expnoise, corrnoise, norm) df = pd.read_csv(file_name, delimiter='\t') # Get data and discard background genes symbols = df['GENE'].values gene_symbols, backgr_symbols = symbols[:nb_nodes], symbols[nb_nodes:] expr = df.loc[:, df.columns != 'GENE'].values.T expr, expr_background = expr[:, :nb_nodes], expr[:, nb_nodes:] return expr, list(gene_symbols) if __name__ == '__main__': dump_network(minimum_evidence='Weak') expr, gene_symbols = syntren_results(minimum_evidence='Weak', nb_background=0)
48.150538
120
0.678205
4a1b2c8f1ecdcd2ed1bf83d185069db29b5692fb
649
py
Python
remoteweb/cli/keygen.py
hinihat/remoteweb
ae564a016e0bfa6c371385c53138652256c57bca
[ "MIT" ]
null
null
null
remoteweb/cli/keygen.py
hinihat/remoteweb
ae564a016e0bfa6c371385c53138652256c57bca
[ "MIT" ]
null
null
null
remoteweb/cli/keygen.py
hinihat/remoteweb
ae564a016e0bfa6c371385c53138652256c57bca
[ "MIT" ]
null
null
null
# Copyright (c) 2022 Shuhei Nitta. All rights reserved. import click from remoteweb import crypto from remoteweb.cli import root @root.main.command( name="keygen", help="Generate a pair of key" ) @click.option( "--bits", "-b", type=int, default=2048, help="Bits of the key", show_default=True ) @click.option( "--out", "-o", type=click.types.Path(), default="./remoteweb_key", help="Output path of the key", show_default=True ) def generate_key( out: str, bits: int ) -> None: crypto.create_key( bits=bits, privatekey_path=out, publickey_path=out + ".pub" )
18.542857
55
0.619414
4a1b2cf382dea4aaec1c8644bfeffd058b478e8a
114
py
Python
keras_retinanet/layers/__init__.py
iver56/keras-retinanet
83feca1aa49a8a75ed5d4a2ab43d8c18c6cce3f7
[ "Apache-2.0" ]
3
2020-08-28T11:25:41.000Z
2022-01-16T08:09:15.000Z
keras_retinanet/layers/__init__.py
iver56/keras-retinanet
83feca1aa49a8a75ed5d4a2ab43d8c18c6cce3f7
[ "Apache-2.0" ]
11
2020-01-28T22:29:48.000Z
2022-03-11T23:29:39.000Z
keras_retinanet/layers/__init__.py
iver56/keras-retinanet
83feca1aa49a8a75ed5d4a2ab43d8c18c6cce3f7
[ "Apache-2.0" ]
2
2021-12-03T17:23:21.000Z
2021-12-04T11:50:12.000Z
from ._misc import RegressBoxes, UpsampleLike, Anchors, ClipBoxes from .filter_detections import FilterDetections
38
65
0.859649
4a1b2d0c5b5ab32223ba87617f6b3acbd9f6d500
8,365
py
Python
BSMDEMeasuresEstimation/MeasuresCode/CycleFailure/readlinks.py
OSADP/CVD-DME
84e40c7c0105d90d9cf6392140101e6d5b88911e
[ "Apache-2.0" ]
null
null
null
BSMDEMeasuresEstimation/MeasuresCode/CycleFailure/readlinks.py
OSADP/CVD-DME
84e40c7c0105d90d9cf6392140101e6d5b88911e
[ "Apache-2.0" ]
null
null
null
BSMDEMeasuresEstimation/MeasuresCode/CycleFailure/readlinks.py
OSADP/CVD-DME
84e40c7c0105d90d9cf6392140101e6d5b88911e
[ "Apache-2.0" ]
null
null
null
def all_links(bnlinks): all_key_links = [] for bottleneck in bnlinks.keys(): for i, stem in enumerate(bnlinks[bottleneck].keys()): for lnk in bnlinks[bottleneck][stem]: all_key_links.append(lnk[0]) return all_key_links def read_link_file(filename): bnlinks = {} for line in open (filename): row = line.strip().split(',') if row[0] not in bnlinks.keys(): bnlinks[row[0]] = {} if row[1] not in bnlinks[row[0]].keys(): bnlinks[row[0]][row[1]] = [] for col in range(2,len(row),3): if row[col] == '': break bnlinks[row[0]][row[1]].append( (int(row[col]), int(row[col+1]), float(row[col+2])) ) keylinks = all_links(bnlinks) return bnlinks, keylinks def read_intersection_file(filename): inlinks = {} for line in open (filename): row = line.split(',') if str(row[1]).strip() not in inlinks.keys(): inlinks[str(row[1]).strip()] = str(row[0]) return inlinks def read_intersection_cycle_file(filename): cycles = {} for line in open(filename): row = line.split(',') cycles[row[0]] = [] for time in row[1:]: cycles[row[0]].append(float(time)) return cycles def read_greentimes_file(lsa_file): green_times = {} red_times = {} #green_times[controller_num][signal_group] = [list of greentimes] #FROM VISSIM # for lsa_line in open(lsa_file): # lsa_row = lsa_line.split(';') # if lsa_row[4].strip() == 'green': # if lsa_row[2].strip() not in green_times.keys(): # green_times[lsa_row[2].strip()] = {} # if lsa_row[3].strip() not in green_times[lsa_row[2].strip()].keys(): # green_times[lsa_row[2].strip()][lsa_row[3].strip()] = [] # green_times[lsa_row[2].strip()][lsa_row[3].strip()].append(float(lsa_row[0].strip())) # elif lsa_row[4].strip() == 'red': # if lsa_row[2].strip() not in green_times.keys(): # continue # if lsa_row[3].strip() not in green_times[lsa_row[2].strip()].keys(): # continue # if lsa_row[2].strip() not in red_times.keys(): # red_times[lsa_row[2].strip()] = {} # if lsa_row[3].strip() not in red_times[lsa_row[2].strip()].keys(): # red_times[lsa_row[2].strip()][lsa_row[3].strip()] = [] # red_times[lsa_row[2].strip()][lsa_row[3].strip()].append(float(lsa_row[0].strip())) for lsa_line in open(lsa_file): lsa_row = lsa_line.split(',') if lsa_row[2].strip() == 'green': if lsa_row[0].strip() not in green_times.keys(): green_times[lsa_row[0].strip()] = {} if lsa_row[1].strip() not in green_times[lsa_row[0].strip()].keys(): green_times[lsa_row[0].strip()][lsa_row[1].strip()] = [] green_times[lsa_row[0].strip()][lsa_row[1].strip()].append(float(lsa_row[3].strip())) elif lsa_row[2].strip() == 'red': if lsa_row[0].strip() not in green_times.keys(): continue if lsa_row[1].strip() not in green_times[lsa_row[0].strip()].keys(): continue if lsa_row[0].strip() not in red_times.keys(): red_times[lsa_row[0].strip()] = {} if lsa_row[1].strip() not in red_times[lsa_row[0].strip()].keys(): red_times[lsa_row[0].strip()][lsa_row[1].strip()] = [] red_times[lsa_row[0].strip()][lsa_row[1].strip()].append(float(lsa_row[3].strip())) return green_times, red_times # Read in a csv with the following data in order: intersection name, stem, controller number, signal group number def read_signal_controllers_file(filename): intersections = {} #intersections[name][stem]={controllernum,signalgroup,prev ids, current greentime, current ids} for line in open(filename): row = line.split(',') if row[0] not in intersections.keys(): intersections[row[0]] = {} if row[1] not in intersections[row[0]].keys(): intersections[row[0]][row[1]] = {'controller_num': row[2], 'signal_group': row[3], 'prev_greentime_ids':[], 'current_greentime':'1.0', 'current_greentime_ids':[], } return intersections def read_routes(filename): routes = {} for line in open(filename): row = line.strip().split(',') route_group = row[0] route = row[1] route_origin = float(row[2]) route_destination = float(row[3]) x = float(row[4]) * (100 / 2.54 / 12) y = float(row[5]) * (100 / 2.54 / 12) if route_group not in routes.keys(): routes[route_group] = {} if route not in routes[route_group].keys(): routes[route_group][route] = {'route_origin': route_origin, 'route_destination': route_destination, 'x': x, 'y': y, } return routes def read_traveltimes_file(filename): travel_times = {} for line in open(filename): row = line.strip().split(',') route_group = row[0] route_num = row[1] minute = row[2] avg_ttime = row[3] if route_group not in travel_times: travel_times[route_group] = {} if route_num not in travel_times[route_group]: travel_times[route_group][route_num] = {} if minute not in travel_times[route_group][route_num]: travel_times[route_group][route_num][minute] = float(avg_ttime) else: print 'Error' print route_group print route_num print minute return travel_times def read_speed_limit(filename): speed_limits = {} for line in open(filename): row = line.strip().split(',') link = float(row[0]) speed = float(row[1]) speed_limits[link] = speed return speed_limits def read_link_length(filename): link_lengths = {} for line in open(filename): row = line.strip().split(',') link = float(row[0]) length = float(row[1]) link_lengths[link] = length return link_lengths def read_full_routes(filename): routes = {} for line in open(filename): row = line.strip().split(',') route_group = row[0] route = row[1] if route_group not in routes.keys(): routes[route_group] = {} if route not in routes[route_group].keys(): routes[route_group][route] = [] for col in range(2,len(row)): if row[col] == '': break routes[route_group][route].append(float(row[col])) return routes def read_endpoints(filename): endpoints = {} for line in open(filename): row = line.strip().split(',') link = float(row[0]) if link not in endpoints.keys(): endpoints[link] = {} endpoints[link]["x"] = float(row[1]) * (100 / 2.54 / 12) endpoints[link]["y"] = float(row[2]) * (100 / 2.54 / 12) return endpoints ########################################### # file = r'D:\Data\Tasks\FHWA\Current\DCM_Contract\BSM Emulator\GT_Coding\superlinks_list_VanNess.csv' # # read_link_file(file) # # super_links, all_key_links = read_link_file(file) # # print all_key_links # print super_links # file = r'C:\Users\M29565\Documents\Projects\tca\GT_code\CycleFailure\superlinks_list_VanNess_intersections.csv' # int_links = read_intersection_file(file) # print int_links # intersection_map = {} # for int_name in int_links.values(): # if int_name not in intersection_map.keys(): # intersection_map[int_name] = {'prev_cycle_ids':[1,2], # 'current_cycle':0.0, # 'cycle_ids':[] # } # for int_name in int_links.values(): # intersection_map[int_name]['prev_cycle_ids'].extend([2,3]) # print intersection_map # file = r'C:\Users\M29565\Documents\Projects\tca\GT_code\CycleFailure\intersection_cycle_times.csv' # cycles = read_intersection_cycle_file(file) # print cycles # file = r'C:\Users\M29565\Documents\Projects\tca\GT_code\CycleFailure\medDemand_test.lsa' # green_times = read_greentimes_file(file) # print green_times # file = r'C:\Users\M29565\Documents\Projects\tca\GT_code\CycleFailure\vanness_greentimes.csv' # cycles = read_cycle_file(file) # print cycles
30.867159
113
0.593425