hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a1b741be39e1f7212ec19b42652116e1072e5e2
6,694
py
Python
dmb/modeling/stereo/losses/stereo_focal_loss.py
jiaw-z/DenseMatchingBenchmark
177c56ca1952f54d28e6073afa2c16981113a2af
[ "MIT" ]
160
2019-11-16T13:59:21.000Z
2022-03-28T07:52:59.000Z
dmb/modeling/stereo/losses/stereo_focal_loss.py
jiaw-z/DenseMatchingBenchmark
177c56ca1952f54d28e6073afa2c16981113a2af
[ "MIT" ]
22
2019-11-22T02:14:18.000Z
2022-01-24T10:16:14.000Z
dmb/modeling/stereo/losses/stereo_focal_loss.py
jiaw-z/DenseMatchingBenchmark
177c56ca1952f54d28e6073afa2c16981113a2af
[ "MIT" ]
38
2019-12-27T14:01:01.000Z
2022-03-12T11:40:11.000Z
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from dmb.modeling.stereo.losses.utils import LaplaceDisp2Prob, GaussianDisp2Prob, OneHotDisp2Prob class StereoFocalLoss(object): """ Under the same start disparity and maximum disparity, calculating all estimated cost volumes' loss. Args: max_disp (int): the max of Disparity. default: 192 start_disp (int): the start searching disparity index, usually be 0 dilation (optional, int): the step between near disparity index, it mainly used in gt probability volume generation weights (list of float or None): loss weight for each scale of estCost. focal_coefficient (float): stereo focal loss focal coefficient, details please refer to paper. default: 0.0 sparse (bool): whether the ground-truth disparity is sparse, for example, KITTI is sparse, but SceneFlow is not. default: False Inputs: estCost (Tensor or list of Tensor): the estimated cost volume, in [BatchSize, disp_sample_number, Height, Width] layout, the disp_sample_number can be: (max_disp + dilation - 1) / dilation or disp_index.shape[1] gtDisp (Tensor): the ground truth disparity map, in [BatchSize, 1, Height, Width] layout. variance (int, Tensor or list of Tensor): the variance of distribution, details please refer to paper, in [BatchSize, 1, Height, Width] layout. disp_sample (optional, (Tensor or list of Tensor)): if not None, direct provide the disparity samples for each pixel in [BatchSize, disp_sample_number, Height, Width] layout Outputs: weighted_loss_all_level (Tensor), the weighted loss of all levels Note: Before calculate loss, the estCost shouldn't be normalized, because we will use softmax for normalization """ def __init__( self, max_disp, start_disp=0, dilation=1, weights=None, focal_coefficient=0.0, sparse=False ): self.max_disp = max_disp self.start_disp = start_disp self.end_disp = self.max_disp + self.start_disp - 1 self.dilation = dilation self.weights = weights self.focal_coefficient = focal_coefficient self.sparse = sparse if sparse: # sparse disparity ==> max_pooling self.scale_func = F.adaptive_max_pool2d else: # dense disparity ==> avg_pooling self.scale_func = F.adaptive_avg_pool2d def loss_per_level(self, estCost, gtDisp, variance, dilation, disp_sample): B, C, H, W = estCost.shape scaled_gtDisp = gtDisp.clone() scale = 1.0 if gtDisp.shape[-2] != H or gtDisp.shape[-1] != W: # compute scale factor for per level and scale gtDisp scale = gtDisp.shape[-1] / (W * 1.0) scaled_gtDisp = gtDisp.clone() / scale scaled_gtDisp = self.scale_func(scaled_gtDisp, (H, W)) # mask for valid disparity # (start_disp, max disparity / scale) # Attention: the invalid disparity of KITTI is set as 0, be sure to mask it out lower_bound = self.start_disp upper_bound = lower_bound + int(self.max_disp / scale) mask = (scaled_gtDisp > lower_bound) & (scaled_gtDisp < upper_bound) mask = mask.detach_().type_as(scaled_gtDisp) if mask.sum() < 1.0: print('Stereo focal loss: there is no point\'s ' 'disparity is within [{},{})!'.format(lower_bound, upper_bound)) scaled_gtProb = torch.zeros_like(estCost) # let this sample have loss with 0 else: # transfer disparity map to probability map mask_scaled_gtDisp = scaled_gtDisp * mask scaled_gtProb = LaplaceDisp2Prob( mask_scaled_gtDisp, max_disp=int(self.max_disp / scale), variance=variance, start_disp=self.start_disp, dilation=dilation, disp_sample=disp_sample ).getProb() # stereo focal loss valid_pixel_number = mask.float().sum() if valid_pixel_number < 1.0: valid_pixel_number = 1.0 estLogProb = F.log_softmax(estCost, dim=1) weight = (1.0 - scaled_gtProb).pow(-self.focal_coefficient).type_as(scaled_gtProb) loss = -((scaled_gtProb * estLogProb) * weight * mask.float()).sum() / valid_pixel_number return loss def __call__(self, estCost, gtDisp, variance, disp_sample=None): if not isinstance(estCost, (list, tuple)): estCost = [estCost] if self.weights is None: self.weights = 1.0 if not isinstance(self.weights, (list, tuple)): self.weights = [self.weights] * len(estCost) if not isinstance(self.dilation, (list, tuple)): self.dilation = [self.dilation] * len(estCost) if not isinstance(variance, (list, tuple)): variance = [variance] * len(estCost) if disp_sample is None: disp_sample = [disp_sample] * len(estCost) else: if not isinstance(disp_sample, (list, tuple)): # Use same disparity samples for each estimated cost volume disp_sample = [disp_sample] * len(estCost) # compute loss for per level loss_all_level = [] for est_cost_per_lvl, var, dt, ds in zip(estCost, variance, self.dilation, disp_sample): loss_all_level.append( self.loss_per_level(est_cost_per_lvl, gtDisp, var, dt, ds)) # re-weight loss per level weighted_loss_all_level = dict() for i, loss_per_level in enumerate(loss_all_level): name = "stereo_focal_loss_lvl{}".format(i) weighted_loss_all_level[name] = self.weights[i] * loss_per_level return weighted_loss_all_level def __repr__(self): repr_str = '{}\n'.format(self.__class__.__name__) repr_str += ' ' * 4 + 'Max Disparity: {}\n'.format(self.max_disp) repr_str += ' ' * 4 + 'Start disparity: {}\n'.format(self.start_disp) repr_str += ' ' * 4 + 'Dilation rate: {}\n'.format(self.dilation) repr_str += ' ' * 4 + 'Loss weight: {}\n'.format(self.weights) repr_str += ' ' * 4 + 'Focal coefficient: {}\n'.format(self.focal_coefficient) repr_str += ' ' * 4 + 'Disparity is sparse: {}\n'.format(self.sparse) return repr_str @property def name(self): return 'StereoFocalLoss'
43.467532
106
0.617867
4a1b749194ddbad9d7ee4d0e131d2b82149d3d7c
208
py
Python
does_my_number_look_big_in_this.py
Kunalpod/codewars
8dc1af2f3c70e209471045118fd88b3ea1e627e5
[ "MIT" ]
null
null
null
does_my_number_look_big_in_this.py
Kunalpod/codewars
8dc1af2f3c70e209471045118fd88b3ea1e627e5
[ "MIT" ]
null
null
null
does_my_number_look_big_in_this.py
Kunalpod/codewars
8dc1af2f3c70e209471045118fd88b3ea1e627e5
[ "MIT" ]
null
null
null
#Kunal Gautam #Codewars : @Kunalpod #Problem name: Does my number look big in this? #Problem level: 6 kyu def narcissistic( value ): return value==int(sum([int(x)**len(str(value)) for x in str(value)]))
26
73
0.697115
4a1b754e95f3d98a2944416cf559a599fcf4565a
2,523
py
Python
examples/networking/tc_perf_event.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
4
2018-01-29T13:38:50.000Z
2021-06-30T07:28:47.000Z
examples/networking/tc_perf_event.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
13
2018-02-09T22:24:29.000Z
2018-06-18T22:33:29.000Z
examples/networking/tc_perf_event.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
5
2018-01-31T05:04:19.000Z
2018-06-12T00:45:21.000Z
#!/usr/bin/python # # tc_perf_event.py Output skb and meta data through perf event # # Copyright (c) 2016-present, Facebook, Inc. # Licensed under the Apache License, Version 2.0 (the "License") from bcc import BPF import ctypes as ct import pyroute2 import socket bpf_txt = """ #include <uapi/linux/if_ether.h> #include <uapi/linux/in6.h> #include <uapi/linux/ipv6.h> #include <uapi/linux/pkt_cls.h> #include <uapi/linux/bpf.h> BPF_PERF_OUTPUT(skb_events); struct eth_hdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; unsigned short h_proto; }; int handle_egress(struct __sk_buff *skb) { void *data = (void *)(long)skb->data; void *data_end = (void *)(long)skb->data_end; struct eth_hdr *eth = data; struct ipv6hdr *ip6h = data + sizeof(*eth); u32 magic = 0xfaceb00c; /* single length check */ if (data + sizeof(*eth) + sizeof(*ip6h) > data_end) return TC_ACT_OK; if (eth->h_proto == htons(ETH_P_IPV6) && ip6h->nexthdr == IPPROTO_ICMPV6) skb_events.perf_submit_skb(skb, skb->len, &magic, sizeof(magic)); return TC_ACT_OK; }""" def print_skb_event(cpu, data, size): class SkbEvent(ct.Structure): _fields_ = [ ("magic", ct.c_uint32), ("raw", ct.c_ubyte * (size - ct.sizeof(ct.c_uint32))) ] skb_event = ct.cast(data, ct.POINTER(SkbEvent)).contents icmp_type = int(skb_event.raw[54]) # Only print for echo request if icmp_type == 128: src_ip = bytes(bytearray(skb_event.raw[22:38])) dst_ip = bytes(bytearray(skb_event.raw[38:54])) print("%-3s %-32s %-12s 0x%08x" % (cpu, socket.inet_ntop(socket.AF_INET6, src_ip), socket.inet_ntop(socket.AF_INET6, dst_ip), skb_event.magic)) try: b = BPF(text=bpf_txt) fn = b.load_func("handle_egress", BPF.SCHED_CLS) ipr = pyroute2.IPRoute() ipr.link("add", ifname="me", kind="veth", peer="you") me = ipr.link_lookup(ifname="me")[0] you = ipr.link_lookup(ifname="you")[0] for idx in (me, you): ipr.link('set', index=idx, state='up') ipr.tc("add", "clsact", me) ipr.tc("add-filter", "bpf", me, ":1", fd=fn.fd, name=fn.name, parent="ffff:fff3", classid=1, direct_action=True) b["skb_events"].open_perf_buffer(print_skb_event) print('Try: "ping6 ff02::1%me"\n') print("%-3s %-32s %-12s %-10s" % ("CPU", "SRC IP", "DST IP", "Magic")) while True: b.perf_buffer_poll() finally: if "me" in locals(): ipr.link("del", index=me)
29.337209
77
0.637337
4a1b761debd1f6d2085801af94d1ae58ec0a77d0
1,011
py
Python
test_project/many_to_one/alchemy.py
pctSW1/django-url-filter
42fc1c3aa71f51081cafdb5fcf39f082538eea1a
[ "MIT" ]
null
null
null
test_project/many_to_one/alchemy.py
pctSW1/django-url-filter
42fc1c3aa71f51081cafdb5fcf39f082538eea1a
[ "MIT" ]
null
null
null
test_project/many_to_one/alchemy.py
pctSW1/django-url-filter
42fc1c3aa71f51081cafdb5fcf39f082538eea1a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals from sqlalchemy import Column, Date, Integer, String from sqlalchemy.orm import backref, relationship from ..alchemy import Base class Reporter(Base): __tablename__ = 'many_to_one_reporter' id = Column(Integer, primary_key=True) first_name = Column(String(30)) last_name = Column(String(30)) email = Column(String(254)) @property def pk(self): return self.id class Article(Base): __tablename__ = 'many_to_one_article' id = Column(Integer, primary_key=True) reporter_id = Column(Integer) headline = Column(String(100)) pub_date = Column(Date) reporter = relationship( Reporter, backref=backref('articles', uselist=True), uselist=False, primaryjoin='test_project.many_to_one.alchemy.Article.reporter_id == Reporter.id', foreign_keys=reporter_id, ) @property def pk(self): return self.id
25.275
90
0.686449
4a1b775180c681879ce94636b12e1198b252f79a
4,698
py
Python
tests/sn3218.py
cscashby/pi-showcontrol
2cc9b2b34ec8eeebede7609535b3c1e937b700cb
[ "MIT" ]
3
2017-05-07T18:13:09.000Z
2017-08-25T09:35:26.000Z
tests/sn3218.py
cscashby/pi-showcontrol
2cc9b2b34ec8eeebede7609535b3c1e937b700cb
[ "MIT" ]
6
2017-05-07T11:36:45.000Z
2017-07-31T15:30:20.000Z
tests/sn3218.py
cscashby/pi-showcontrol
2cc9b2b34ec8eeebede7609535b3c1e937b700cb
[ "MIT" ]
null
null
null
import sys try: from smbus import SMBus except ImportError: if sys.version_info[0] < 3: sys.exit("This library requires python-smbus\nInstall with: sudo apt-get install python-smbus") elif sys.version_info[0] == 3: sys.exit("This library requires python3-smbus\nInstall with: sudo apt-get install python3-smbus") __version__ = '1.2.7' I2C_ADDRESS = 0x54 CMD_ENABLE_OUTPUT = 0x00 CMD_SET_PWM_VALUES = 0x01 CMD_ENABLE_LEDS = 0x13 CMD_UPDATE = 0x16 CMD_RESET = 0x17 def i2c_bus_id(): revision = ([l[12:-1] for l in open('/proc/cpuinfo', 'r').readlines() if l[:8] == "Revision"]+['0000'])[0] return 1 if int(revision, 16) >= 4 else 0 def enable(): """ Enables output. """ i2c.write_i2c_block_data(I2C_ADDRESS, CMD_ENABLE_OUTPUT, [0x01]) def disable(): """ Disables output. """ i2c.write_i2c_block_data(I2C_ADDRESS, CMD_ENABLE_OUTPUT, [0x00]) def reset(): """ Resets all internal registers. """ i2c.write_i2c_block_data(I2C_ADDRESS, CMD_RESET, [0xFF]) def enable_leds(enable_mask): """ Enables or disables each LED channel. The first 18 bit values are used to determine the state of each channel (1=on, 0=off) if fewer than 18 bits are provided the remaining channels are turned off. Args: enable_mask (int): up to 18 bits of data Raises: TypeError: if enable_mask is not an integer. """ if type(enable_mask) is not int: raise TypeError("enable_mask must be an integer") i2c.write_i2c_block_data(I2C_ADDRESS, CMD_ENABLE_LEDS, [enable_mask & 0x3F, (enable_mask >> 6) & 0x3F, (enable_mask >> 12) & 0X3F]) i2c.write_i2c_block_data(I2C_ADDRESS, CMD_UPDATE, [0xFF]) def channel_gamma(channel, gamma_table): """ Overrides the gamma table for a single channel. Args: channel (int): channel number gamma_table (list): list of 256 gamma correction values Raises: TypeError: if channel is not an integer. ValueError: if channel is not in the range 0..17. TypeError: if gamma_table is not a list. """ global channel_gamma_table if type(channel) is not int: raise TypeError("channel must be an integer") if channel not in range(18): raise ValueError("channel be an integer in the range 0..17") if type(gamma_table) is not list or len(gamma_table) != 256: raise TypeError("gamma_table must be a list of 256 integers") channel_gamma_table[channel] = gamma_table def output(values): """ Outputs a new set of values to the driver Args: values (list): channel number Raises: TypeError: if values is not a list. """ if type(values) is not list or len(values) != 18: raise TypeError("values must be a list of 18 integers") i2c.write_i2c_block_data(I2C_ADDRESS, CMD_SET_PWM_VALUES, [channel_gamma_table[i][values[i]] for i in range(18)]) i2c.write_i2c_block_data(I2C_ADDRESS, CMD_UPDATE, [0xFF]) i2c = SMBus(i2c_bus_id()) # generate a good default gamma table default_gamma_table = [int(pow(255, float(i - 1) / 255)) for i in range(256)] channel_gamma_table = [default_gamma_table] * 18 enable_leds(0b111111111111111111) if __name__ == "__main__": print("sn3218 test cycles") import time import math # enable output enable() enable_leds(0b111111111111111111) print(">> test enable mask (on/off)") enable_mask = 0b000000000000000000 output([0x10] * 18) for i in range(10): enable_mask = ~enable_mask enable_leds(enable_mask) time.sleep(0.15) print(">> test enable mask (odd/even)") enable_mask = 0b101010101010101010 output([0x10] * 18) for i in range(10): enable_mask = ~enable_mask enable_leds(enable_mask) time.sleep(0.15) print(">> test enable mask (rotate)") enable_mask = 0b100000100000100000 output([0x10] * 18) for i in range(10): enable_mask = ((enable_mask & 0x01) << 18) | enable_mask >> 1 enable_leds(enable_mask) time.sleep(0.15) print(">> test gamma gradient") enable_mask = 0b111111111111111111 enable_leds(enable_mask) for i in range(256): output([((j * (256//18)) + (i * (256//18))) % 256 for j in range(18)]) time.sleep(0.01) print(">> test gamma fade") enable_mask = 0b111111111111111111 enable_leds(enable_mask) for i in range(512): output([int((math.sin(float(i)/64.0) + 1.0) * 128.0)]*18) time.sleep(0.01) # turn everything off and disable output output([0 for i in range(18)]) disable()
28.131737
117
0.650915
4a1b7994d6d8eed53ab543ddfcf74b1e16aa3032
12,015
py
Python
networks/generator.py
Puneet-G/Impersonator-NNProject
980cfc260feebbc873b4150326791340f6526c42
[ "MIT" ]
1
2020-05-11T19:10:27.000Z
2020-05-11T19:10:27.000Z
networks/generator.py
Puneet-G/Impersonator-NNProject
980cfc260feebbc873b4150326791340f6526c42
[ "MIT" ]
4
2020-05-11T19:12:18.000Z
2021-10-12T22:52:12.000Z
networks/generator.py
Puneet-G/Impersonator-NNProject
980cfc260feebbc873b4150326791340f6526c42
[ "MIT" ]
1
2020-05-27T01:59:41.000Z
2020-05-27T01:59:41.000Z
import torch.nn as nn import torch.nn.functional as F from .networks import NetworkBase from utils.util import Swish import torch import ipdb class ResidualBlock(nn.Module): """Residual Block.""" def __init__(self, dim_in, dim_out): super(ResidualBlock, self).__init__() self.main = nn.Sequential( nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(dim_out, affine=True), nn.ReLU(inplace=True), #Swish(), #nn.ReLU(inplace=True), nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(dim_out, affine=True)) def forward(self, x): return x + self.main(x) class ResNetGenerator(NetworkBase): """Generator. Encoder-Decoder Architecture.""" def __init__(self, conv_dim=64, c_dim=5, repeat_num=9, k_size=4, n_down=2): super(ResNetGenerator, self).__init__() self._name = 'resnet_generator' print('init: ', self._name) layers = [] layers.append(nn.Conv2d(c_dim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.InstanceNorm2d(conv_dim, affine=True)) layers.append(nn.ReLU(inplace=True)) # Down-Sampling curr_dim = conv_dim for i in range(n_down): layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=k_size, stride=2, padding=1, bias=False)) layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True)) layers.append(nn.ReLU(inplace=True)) #Swish()) #nn.ReLU(inplace=True)) curr_dim = curr_dim * 2 # Bottleneck for i in range(repeat_num): layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim)) # Up-Sampling for i in range(n_down): layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=k_size, stride=2, padding=1, output_padding=1, bias=False)) layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True)) layers.append(nn.ReLU(inplace=True)) #Swish()) #nn.ReLU(inplace=True)) curr_dim = curr_dim // 2 layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.Tanh()) self.model = nn.Sequential(*layers) def forward(self, x, c=None): if c is not None: # replicate spatially and concatenate domain information c = c.unsqueeze(2).unsqueeze(3) c = c.expand(c.size(0), c.size(1), x.size(2), x.size(3)) x = torch.cat([x, c], dim=1) return self.model(x) class ResUnetGenerator(NetworkBase): """Generator. Encoder-Decoder Architecture.""" def __init__(self, conv_dim=64, c_dim=5, repeat_num=6, k_size=4, n_down=2): super(ResUnetGenerator, self).__init__() self._name = 'resunet_generator' self.repeat_num = repeat_num self.n_down = n_down encoders = [] encoders.append(nn.Sequential( nn.Conv2d(c_dim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False), nn.InstanceNorm2d(conv_dim, affine=True), nn.ReLU(inplace=True) )) # Down-Sampling curr_dim = conv_dim for i in range(n_down): encoders.append(nn.Sequential( nn.Conv2d(curr_dim, curr_dim*2, kernel_size=k_size, stride=2, padding=1, bias=False), nn.InstanceNorm2d(curr_dim*2, affine=True), nn.ReLU(inplace=True) )) curr_dim = curr_dim * 2 self.encoders = nn.Sequential(*encoders) # Bottleneck resnets = [] for i in range(repeat_num): resnets.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim)) self.resnets = nn.Sequential(*resnets) # Up-Sampling decoders = [] skippers = [] for i in range(n_down): decoders.append(nn.Sequential( nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=k_size, stride=2, padding=1, output_padding=1, bias=False), nn.InstanceNorm2d(curr_dim//2, affine=True), nn.ReLU(inplace=True) )) skippers.append(nn.Sequential( nn.Conv2d(curr_dim, curr_dim//2, kernel_size=k_size, stride=1, padding=1, bias=False), nn.InstanceNorm2d(curr_dim//2, affine=True), nn.ReLU(inplace=True) )) curr_dim = curr_dim // 2 self.decoders = nn.Sequential(*decoders) self.skippers = nn.Sequential(*skippers) layers = [] layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.Tanh()) self.img_reg = nn.Sequential(*layers) layers = [] layers.append(nn.Conv2d(curr_dim, 1, kernel_size=7, stride=1, padding=3, bias=False)) layers.append(nn.Sigmoid()) self.attetion_reg = nn.Sequential(*layers) def inference(self, x): # encoder, 0, 1, 2, 3 -> [256, 128, 64, 32] encoder_outs = self.encode(x) # resnet, 32 resnet_outs = [] src_x = encoder_outs[-1] for i in range(self.repeat_num): src_x = self.resnets[i](src_x) resnet_outs.append(src_x) return encoder_outs, resnet_outs def forward(self, x): # encoder, 0, 1, 2, 3 -> [256, 128, 64, 32] encoder_outs = self.encode(x) # resnet, 32 resnet_outs = self.resnets(encoder_outs[-1]) # decoder, 0, 1, 2 -> [64, 128, 256] d_out = self.decode(resnet_outs, encoder_outs) img_outs, mask_outs = self.regress(d_out) return img_outs, mask_outs def encode(self, x): e_out = self.encoders[0](x) encoder_outs = [e_out] for i in range(1, self.n_down + 1): e_out = self.encoders[i](e_out) encoder_outs.append(e_out) #print(i, e_out.shape) return encoder_outs def decode(self, x, encoder_outs): d_out = x for i in range(self.n_down): d_out = self.decoders[i](d_out) # x * 2 skip = encoder_outs[self.n_down - 1 - i] d_out = torch.cat([skip, d_out], dim=1) d_out = self.skippers[i](d_out) # print(i, d_out.shape) return d_out def regress(self, x): return self.img_reg(x), self.attetion_reg(x) class ImpersonatorGenerator(NetworkBase): """Generator. Encoder-Decoder Architecture.""" def __init__(self, bg_dim, src_dim, tsf_dim, conv_dim=64, repeat_num=6): super(ImpersonatorGenerator, self).__init__() self._name = 'impersonator_generator' self.n_down = 3 self.repeat_num = repeat_num # background generator print('background generator') self.bg_model = ResNetGenerator(conv_dim=conv_dim, c_dim=bg_dim, repeat_num=repeat_num, k_size=3, n_down=self.n_down) # source generator self.src_model = ResUnetGenerator(conv_dim=conv_dim, c_dim=src_dim, repeat_num=repeat_num, k_size=3, n_down=self.n_down) # transfer generator self.tsf_model = ResUnetGenerator(conv_dim=conv_dim, c_dim=tsf_dim, repeat_num=repeat_num, k_size=3, n_down=self.n_down) def forward(self, bg_inputs, src_inputs, tsf_inputs, T): img_bg = self.bg_model(bg_inputs) src_img, src_mask, tsf_img, tsf_mask = self.infer_front(src_inputs, tsf_inputs, T) # print(front_rgb.shape, front_mask.shape) return img_bg, src_img, src_mask, tsf_img, tsf_mask def encode_src(self, src_inputs): return self.src_model.inference(src_inputs) def infer_front(self, src_inputs, tsf_inputs, T): # encoder src_x = self.src_model.encoders[0](src_inputs) tsf_x = self.tsf_model.encoders[0](tsf_inputs) src_encoder_outs = [src_x] tsf_encoder_outs = [tsf_x] for i in range(1, self.n_down + 1): src_x = self.src_model.encoders[i](src_x) warp = self.transform(src_x, T) tsf_x = self.tsf_model.encoders[i](tsf_x) + warp src_encoder_outs.append(src_x) tsf_encoder_outs.append(tsf_x) # resnets T_scale = self.resize_trans(src_x, T) for i in range(self.repeat_num): src_x = self.src_model.resnets[i](src_x) warp = self.stn(src_x, T_scale) tsf_x = self.tsf_model.resnets[i](tsf_x) + warp # decoders src_img, src_mask = self.src_model.regress(self.src_model.decode(src_x, src_encoder_outs)) tsf_img, tsf_mask = self.tsf_model.regress(self.tsf_model.decode(tsf_x, tsf_encoder_outs)) # print(front_rgb.shape, front_mask.shape) return src_img, src_mask, tsf_img, tsf_mask def swap(self, tsf_inputs, src_encoder_outs12, src_encoder_outs21, src_resnet_outs12, src_resnet_outs21, T12, T21): # encoder src_x12 = src_encoder_outs12[0] src_x21 = src_encoder_outs21[0] tsf_x = self.tsf_model.encoders[0](tsf_inputs) tsf_encoder_outs = [tsf_x] for i in range(1, self.n_down + 1): src_x12 = src_encoder_outs12[i] src_x21 = src_encoder_outs21[i] warp12 = self.transform(src_x12, T12) warp21 = self.transform(src_x21, T21) tsf_x = self.tsf_model.encoders[i](tsf_x) + warp12 + warp21 tsf_encoder_outs.append(tsf_x) # resnets T_scale12 = self.resize_trans(src_x12, T12) T_scale21 = self.resize_trans(src_x21, T21) for i in range(self.repeat_num): src_x12 = src_resnet_outs12[i] src_x21 = src_resnet_outs21[i] warp12 = self.stn(src_x12, T_scale12) warp21 = self.stn(src_x21, T_scale21) tsf_x = self.tsf_model.resnets[i](tsf_x) + warp12 + warp21 # decoders tsf_img, tsf_mask = self.tsf_model.regress(self.tsf_model.decode(tsf_x, tsf_encoder_outs)) # print(front_rgb.shape, front_mask.shape) return tsf_img, tsf_mask def inference(self, src_encoder_outs, src_resnet_outs, tsf_inputs, T): # encoder src_x = src_encoder_outs[0] tsf_x = self.tsf_model.encoders[0](tsf_inputs) tsf_encoder_outs = [tsf_x] for i in range(1, self.n_down + 1): src_x = src_encoder_outs[i] warp = self.transform(src_x, T) tsf_x = self.tsf_model.encoders[i](tsf_x) + warp tsf_encoder_outs.append(tsf_x) # resnets T_scale = self.resize_trans(src_x, T) for i in range(self.repeat_num): src_x = src_resnet_outs[i] warp = self.stn(src_x, T_scale) tsf_x = self.tsf_model.resnets[i](tsf_x) + warp # decoders tsf_img, tsf_mask = self.tsf_model.regress(self.tsf_model.decode(tsf_x, tsf_encoder_outs)) # print(front_rgb.shape, front_mask.shape) return tsf_img, tsf_mask def resize_trans(self, x, T): _, _, h, w = x.shape T_scale = T.permute(0, 3, 1, 2) # (bs, 2, h, w) T_scale = F.interpolate(T_scale, size=(h, w), mode='bilinear', align_corners=True) T_scale = T_scale.permute(0, 2, 3, 1) # (bs, h, w, 2) return T_scale def stn(self, x, T): x_trans = F.grid_sample(x, T) return x_trans def transform(self, x, T): T_scale = self.resize_trans(x, T) x_trans = self.stn(x, T_scale) return x_trans if __name__ == '__main__': imitator = ImpersonatorGenerator(bg_dim=4, src_dim=6, tsf_dim=6, conv_dim=64, repeat_num=6) bg_x = torch.rand(2, 4, 256, 256) src_x = torch.rand(2, 6, 256, 256) tsf_x = torch.rand(2, 6, 256, 256) T = torch.rand(2, 256, 256, 2) img_bg, src_img, src_mask, tsf_img, tsf_mask = imitator(bg_x, src_x, tsf_x, T) ipdb.set_trace()
35.758929
129
0.612318
4a1b79ba6bbbe35d7b76127bdea690a6c98b8443
32,210
py
Python
effmass/inputs.py
musicmrman99/effmass
77e75e0cb5688bdcd2e3cb170d47300ef04cec06
[ "MIT" ]
34
2018-10-05T14:52:42.000Z
2022-03-29T14:23:11.000Z
effmass/inputs.py
musicmrman99/effmass
77e75e0cb5688bdcd2e3cb170d47300ef04cec06
[ "MIT" ]
43
2018-07-06T16:31:27.000Z
2022-03-29T11:00:31.000Z
effmass/inputs.py
musicmrman99/effmass
77e75e0cb5688bdcd2e3cb170d47300ef04cec06
[ "MIT" ]
31
2018-06-26T12:10:00.000Z
2022-03-29T14:23:12.000Z
#! /usr/bin/env python3 """ A module for storing electronic structure data and user settings. Currently supported codes are VASP and FHI-Aims (with limited functionality). The module contains a :class:`Data` class which parses OUTCAR and PROCAR files using the `vasppy <https://github.com/bjmorgan/vasppy>`_ package. A function for parsing DOSCAR files is also provided. The module contains a :class:`DataAims` class which parses and stores the `geometry.in`/`calculation.out` files generated for/from a FHI-AIMS calculation. The module contains a :class:`DataOctopus` class which parses and stores the `bandstructure`, `eigenvalues`, `info`, and `results.out` files generated by the Octopus DFT software. A :class:`Settings` class stores analysis parameters set by the user. """ from octopuspy import bandstructure, info, results from vasppy import procar, outcar from effmass import extrema from ase.calculators.castep import Castep from ase import io import ase.io import math import warnings import numpy as np from pymatgen.io.vasp.outputs import BSVasprun from pymatgen.electronic_structure.bandstructure import get_reconstructed_band_structure import os class Settings: """Class for setting analysis parameters. Attributes: energy_range (float): energy in kT over which the segment extends. extrema_search_depth (float): energy in kT from bandedge over which to search for extrema. degree_bandfit (int): the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass. """ def __init__(self, energy_range=0.25, extrema_search_depth=0.025, bandfit=6): """Initialises an instance of the Settings class and checks input using :meth:`check_settings()`. Args: energy_range (float): energy in eV over which the segment extends. Defaults to 0.25 eV. extrema_search_depth (float): energy in eV from bandedge over which to search for extrema. Defaults to 0.025 eV. degree_bandfit (int): the degree of the polynomial which is used to fit to dispersion data when calculating the transport mass. Returns: None. """ self.energy_range = energy_range self.extrema_search_depth = extrema_search_depth self.degree_bandfit = bandfit self.check_settings() def check_settings(self): """Check that Settings class attributes are sane. Args: None. Returns: None. """ assert (self.energy_range > 0), "The energy range must be a positive number" assert (self.extrema_search_depth > 0), "The energy depth must be a positive number" assert ( type(self.degree_bandfit) == int and self.degree_bandfit > 1 ), "The bandfit degree must be a positive integer greater than 1" class Data(): r"""Parent class for parsing and storing data from bandstructure calculations. Contains a :meth:`check_data` method for basic checks on bandstructure data. Attributes: spin_channels (int): 1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling). number_of_kpoints (int): the number of k-points per band. number_of_bands (int): the number of bands. kpoints (array(float)): 2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. energies (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band. occupancy (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised). reciprocal_lattice (list(float)): the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom :math:`^{-1}`. CBM (float): the conduction band minimum energy in eV. VBM (float): the valence band maximum in eV. fermi_energy (float): the fermi energy in eV.""" def __init__(self): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class. All attributes are None until set by the derived class. Args: None. Returns: None. """ self.spin_channels = None self.number_of_bands = None self.number_of_kpoints = None self.energies = None self.occupancy = None self.kpoints = None self.fermi_energy = None self.reciprocal_lattice = None self.CBM = None self.VBM = None def check_data(self, spin_channels, number_of_kpoints, number_of_bands, CBM, VBM, fermi_energy, occupancy): """Check that Data class attributes make basic sense. Args: None. Returns: None. Notes: There is a similar method that runs automatically when reading data in using the `vasppy.procar <http://vasppy.readthedocs.io/en/latest/vasppy.html#module-vasppy.procar>`_ module. """ assert ( ((spin_channels == 1) | (spin_channels == 2) | (spin_channels == 4)) is True ), "Spin channels must have value 1 (non spin-polarised) or 2 (spin-polarised)" assert (type(number_of_kpoints) == int and number_of_kpoints > 0 ), "The number of kpoints is not a positive integer" assert (type(number_of_bands) == int and number_of_bands > 0 ), "The number of bands is not a positive integer" assert (CBM > VBM), "The CBM energy is lower than than the VBM energy" if fermi_energy < VBM: warnings.warn("The fermi energy is lower than the VBM") if fermi_energy > CBM: warnings.warn("The fermi energy is higher than the CBM") if occupancy is not None: if ((occupancy == 0) | (occupancy == 1) | (occupancy == 2)).all() is False: warnings.warn("You have partial occupancy of bands") def find_cbm_vbm(self): self.CBM, self.VBM = extrema.calc_CBM_VBM_from_Fermi(self,CBMVBM_search_depth=4.0) class DataASE(Data): r""" Class for interfacing with the ASE bandstructure object. Inherits attributes and methods from the :class:`~effmass.inputs.Data` class, and extends with a method for inferring the CBM/VBM from Fermi level. Note: DataASE.fermi_energy is taken from the seedname.out file. Note: The DataASE class does not parse eigenstate occupancy data. The Fermi energy will \ be used to infer which bands are occupied (below the fermi energy) and which are unoccupied (above \ the fermi energy). You should independently confirm that the fermi energy is in the band gap of \ your material. Note that you can manually set the `fermi_energy` attribute and find the CBM and VBM using the method `find_cbm_vbm`. ") """ def __init__(self, bs, atoms): r""" Initialises an instance of the :class:`~effmass.inputs.DataASE` class and infers which bands are occupied and unoccupied from the fermi level. Args: bs (ase.spectrum.band_structure.BandStructure): An instance of the ase.spectrum.band_structure.BandStructure object. Returns: None. """ warnings.warn("The DataASE class does not parse eigenstate occupancy data. The Fermi energy will \ be used to infer which bands are occupied (below the fermi energy) and which are unoccupied (above \ the fermi energy). You should independently confirm that the fermi energy is in the band gap of \ your material. Note that you can manually set the DataASE.fermi_energy attribute and then re-find the CBM and VBM using the method `DataASE.find_cbm_vbm`. ") super().__init__() self.spin_channels = bs.energies.shape[0] self.number_of_kpoints = bs.energies.shape[1] self.number_of_bands = bs.energies.shape[2]*bs.energies.shape[0] self.energies = bs.energies.transpose(1,0,2).reshape(self.number_of_kpoints,-1).transpose() self.kpoints = bs.path.kpts self.reciprocal_lattice = atoms.cell.reciprocal()*2*math.pi self.fermi_energy = bs.reference self.find_cbm_vbm() self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy) class DataCastep(DataASE): r"""Class for parsing and storing data from a Castep bandstructure calculation. Inherits attributes and methods from the :class:`~effmass.inputs.DataASE` class.""" def __init__(self,directory_path,seedname): r""" Initialises an instance of the :class:`~effmass.inputs.DataCastep` class. Args: directory_path (str): The path to a directory containing seedname.cell, seedname.out and seedname.bands seedname (str): The name (without suffix) of the input and output files Returns: None. """ Castep_calculator = Castep(directory_path) Castep_calculator.atoms = io.read(directory_path+"./"+seedname+".cell", format='castep-cell') ASE_bandstructure = Castep_calculator.band_structure(directory_path+"./"+seedname+".bands") ASE_atoms = Castep_calculator.atoms super().__init__(ASE_bandstructure, ASE_atoms) # class DataQE(DataASE): # r"""Class for parsing and storing data from a Quantum Espresso bandstructure calculation. Inherits attributes and methods from the :class:`~effmass.inputs.DataASE` class.""" # def __init__(self,directory_path,seedname): # r""" # Initialises an instance of the :class:`~effmass.inputs.DataQE` class. # Args: # Returns: # None. # """ # QE_calculator = ase.calculators.espresso.Espresso() # QE_calculator.atoms = ase.io.espresso.read_espresso_out() # ASE_bandstructure = QE_calculator.band_structure() # super().__init__(self, ASE_bandstructure) class DataVasprun(Data): r""" Class for parsing and storing data from a VASP calculation using vasprun.xml. Works for parsing calculations with split k-point paths Note: occupancies are set to 0 below fermi level and 1 above it """ def __init__(self, path): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class and checks data using :meth:`check_data`. Args: path (str): Path to vasprun.xml. If the calculation was split along the k-path, the path should be to the folder which contains the splits. i.e. for mapi/split-01/vasprun.xml, mapi/split-02/vasprun.xml you would specify path=mapi Returns: None. """ super().__init__() # read in vasprun if path.endswith('vasprun.xml'): if os.path.exists(path): vr = BSVasprun(path) bs = vr.get_band_structure(line_mode=True) # read in vaspruns from multiple splits, parse_potcar is false because # it generates useless warnings, parse_projected is false because we # don't need projected eigenstates else: filenames = [] for fol in sorted(os.listdir(path)): vr_file = os.path.join(path, fol, "vasprun.xml") if os.path.exists(vr_file): filenames.append(vr_file) bandstructures = [] for vr_file in filenames: vr = BSVasprun(vr_file, parse_projected_eigen=False, parse_potcar_file=False) bs = vr.get_band_structure(line_mode=True) bandstructures.append(bs) bs = get_reconstructed_band_structure(bandstructures) bs_dict = bs.as_dict() # set occupancies below fermi as 0, above fermi as 1 occupancy = np.array(bs_dict['bands']['1']) occupancy[occupancy < bs_dict['efermi']] = 1 occupancy[occupancy > bs_dict['efermi']] = 0 # set spin channels spin = 2 if bs_dict['is_spin_polarized'] else 1 self.spin_channels = spin self.number_of_bands = len(bs_dict['bands']['1']) self.number_of_kpoints = len(bs_dict['kpoints']) self.energies = np.array(bs_dict['bands']['1']) self.occupancy = occupancy self.kpoints = np.array(bs_dict['kpoints']) self.fermi_energy = bs_dict['efermi'] self.reciprocal_lattice = bs_dict['lattice_rec']['matrix'] self.CBM = bs_dict['cbm']['energy'] self.VBM = bs_dict['vbm']['energy'] class DataVasp(Data): r""" Class for parsing and storing data from a vasp calculation. Extends the :class:`~effmass.inputs.Data` class to include support for analysing DOSCAR data" Additional attributes: dos (array): 2-dimensional array. Each row contains density of states data (units "number of states / unit cell") at a given energy: [energy(float),dos(float)]. integrated_dos: 2-dimensional array. Each row contains integrated density of states data at a given energy: [energy(float),integrated_dos(float)]. Note: DataVasp.fermi_energy is automatically set to the mean of DataVasp.CBM and DataVasp.VBM. """ def __init__(self, outcar_path, procar_path, ignore=0, **kwargs): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class and checks data using :meth:`check_data`. Args: outcar_path (str): The path to the OUTCAR file procar_path (:obj:`str` or :obj:`list`): The path(s) to one or more PROCAR files. ignore (int): The number of kpoints to ignore at the beginning of the bandstructure slice through kspace (useful for hybrid calculations where zero weightings are appended to a previous self-consistent calculation). **kwargs: Additional keyword arguments for reading the PROCAR file(s). Returns: None. """ super().__init__() assert (type(outcar_path) == str), "The OUTCAR path must be a string" assert (type(ignore) == int and ignore >= 0 ), "The number of kpoints to ignore must be a positive integer" reciprocal_lattice = outcar.reciprocal_lattice_from_outcar(outcar_path) if isinstance(procar_path, list): vasp_data = procar.Procar.from_files(procar_path, **kwargs) elif isinstance(procar_path, str): vasp_data = procar.Procar.from_file(procar_path, **kwargs) else: raise TypeError('procar_path must be a string or list of strings') self.spin_channels = vasp_data.spin_channels self.number_of_bands = vasp_data.number_of_bands number_of_kpoints = vasp_data.number_of_k_points vasp_data_energies = np.array( [ band.energy for band in np.ravel( vasp_data.bands ) ] ) vasp_data_occupancies = np.array( [ band.occupancy for band in np.ravel( vasp_data.bands ) ] ) if vasp_data.calculation['spin_polarised']: # to account for the change in PROCAR format for calculations with 2 spin channels (1 k-point block ---> 2 k-point blocks) energies = np.zeros([self.number_of_bands*2,number_of_kpoints]) # This is a very ugly way to slice 'n' dice. Should avoid creating new array and use array methods instead. But it does the job so will keep for now. for i in range(self.number_of_bands): energies[i] = vasp_data_energies.reshape( number_of_kpoints*2, # factor of 2 for each kpoint block self.number_of_bands).T[i][:number_of_kpoints] energies[self.number_of_bands+i] = vasp_data_energies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][number_of_kpoints:] occupancy = np.zeros([self.number_of_bands*2,number_of_kpoints]) for i in range(self.number_of_bands): occupancy[i] = vasp_data_occupancies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][:number_of_kpoints] occupancy[self.number_of_bands+i] = vasp_data_occupancies.reshape( number_of_kpoints*2, self.number_of_bands).T[i][number_of_kpoints:] else: energies = vasp_data_energies.reshape( number_of_kpoints, self.number_of_bands).T occupancy = vasp_data_occupancies.reshape( number_of_kpoints, self.number_of_bands).T # remove values which are from the self-consistent calculation prior to the bandstructure calculation (workflow for hybrid functionals) self.energies = np.delete(energies,list(range(ignore)),1) self.occupancy = np.delete(occupancy,list(range(ignore)),1) self.number_of_kpoints = number_of_kpoints - ignore # handle negative occupancy values if np.any(self.occupancy < 0): warnings.warn("One or more occupancies in your PROCAR file are negative. All negative occupancies will be set to zero.") self.occupancy[ self.occupancy < 0 ] = 0.0 self.kpoints = np.array( [ kp.frac_coords for kp in vasp_data.k_points[ignore:vasp_data.number_of_k_points] ] ) self.reciprocal_lattice = reciprocal_lattice * 2 * math.pi self.CBM = extrema._calc_CBM(self.occupancy, self.energies) self.VBM = extrema._calc_VBM(self.occupancy, self.energies) self.fermi_energy = (self.CBM + self.VBM) / 2 self.dos = [] self.integrated_dos = [] self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy) def parse_DOSCAR(self, filename='./DOSCAR'): """Parses the DOS and integrated DOS from a vasp DOSCAR file. Args: filename (str, optional): The location and filename of the DOSCAR to read in. Defaults to `'./DOSCAR'`. Returns: None. Notes: If the DOS has been sampled at more than 10000 points then this function will break at the expression for `num_data_points`. In this case, edit your DOSCAR file so that in the header there is a space preceding the number of points. """ with open(filename, 'r') as f: lines = f.readlines() num_data_points = int(lines[5].split()[2]) if len(lines[6].split()) == 5: self.dos = np.array([[ float(x.split()[0]), float(x.split()[1]) + float(x.split()[2]) ] for x in lines[6:num_data_points + 6]]) self.integrated_dos = np.array([[ float(x.split()[0]), float(x.split()[3]) + float(x.split()[4]) ] for x in lines[6:num_data_points + 6]]) elif len(lines[6].split()) == 3: self.dos = np.array([[float(x.split()[0]), float(x.split()[1])] for x in lines[6:num_data_points + 6]]) self.integrated_dos = np.array( [[float(x.split()[0]), float(x.split()[2])] for x in lines[6:num_data_points + 6]]) else: print("problem parsing DOSCAR") return class DataAims(Data): r""" Class for parsing and storing data from a FHI-AIMS calculation. Attributes: spin_channels (int): 1 (non-spin-polarised), 2 (spin-polarised), 4 (spin-orbit coupling). number_of_kpoints (int): the number of k-points per band. number_of_bands (int): the number of bands. kpoints (array(float)): 2-dimensional array with shape (number_of_kpoints, 3). Each row contains the fractional coordinates of a kpoint [kx,ky,kz]. energies (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains energies of eigenstates in eV for a particular band. occupancy (array(float)): 2-dimensional array with shape (number_of_bands,number_of_kpoints). Each row contains occupation number of the eigenstates for a particular band. Values range from 0-1 (spin-polarised) or 0-2 (non-spin-polarised). reciprocal_lattice (list(float)): the reciprocal lattice vectors in format [[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]], units Angstrom :math:`^{-1}`. CBM (float): the conduction band minimum energy in eV. VBM (float): the valence band maximum in eV. fermi_energy (float): the fermi energy in eV. Automatically set to the mean of Data.CBM and Data.VBM. """ def __init__(self, directory_path, output_name='calculation.out'): r""" Initialises an instance of the :class:`~effmass.inputs.DataAims` class and checks data using :meth:`check_data`. Args: directory_path (str): The path to the directory containing output, geometry.in, control.in and bandstructure files output_name (str): Name of the output file - contrary to the rest of the files, this is chosen by the user during an Aims run. Defaults to 'aims.out'. Returns: None. """ super().__init__() assert (type(directory_path) == str), "The file path must be a string" "Finding reciprocal lattice vectors" latvec = [] for line in open("{}/geometry.in".format(directory_path)): line = line.split("\t")[0] words = line.split() if len(words) == 0: continue if words[0] == "lattice_vector": if len(words) != 4: raise Exception("geometry.in: Syntax error in line '"+line+"'") latvec.append(np.array(words[1:4])) if len(latvec) != 3: raise Exception("geometry.in: Must contain exactly 3 lattice vectors") latvec = np.asarray(latvec) latvec = latvec.astype(np.float) #Calculate reciprocal lattice vectors rlatvec = [] volume = (np.dot(latvec[0,:],np.cross(latvec[1,:],latvec[2,:]))) rlatvec.append(np.array(2*math.pi*np.cross(latvec[1,:],latvec[2,:])/volume)) rlatvec.append(np.array(2*math.pi*np.cross(latvec[2,:],latvec[0,:])/volume)) rlatvec.append(np.array(2*math.pi*np.cross(latvec[0,:],latvec[1,:])/volume)) reciprocal_lattice = np.asarray(rlatvec) self.reciprocal_lattice = reciprocal_lattice "Finding spin channels" spin_channels = 0 for line in open("{}/{}".format(directory_path, output_name)): line = line.split("\t")[0] if "include_spin_orbit" in line: spin_channels = 4 break elif "Number of spin channels" in line: words = line.split() spin_channels = int(words[-1]) break self.spin_channels = spin_channels "Finding number of bands" number_of_bands = 0 for line in open("{}/{}".format(directory_path, output_name)): line = line.split("\t")[0] if "Number of Kohn-Sham" in line: words = line.split() number_of_bands = int(words[-1]) break if spin_channels == 2 or spin_channels == 4: #Doubling for spin-polarised calculation number_of_bands = 2*number_of_bands self.number_of_bands = number_of_bands "Finding number of kpoints and determining number of BZ paths" number_of_kpoints = 0 number_of_BZ_paths = 0 path_list = [] for line in open("{}/{}".format(directory_path, output_name)): line = line.split("\n")[0] if not line.startswith("#") and "output" in line: if "band" in line: words = line.split() if words[0]=="output" and words[1]=="band": path_list.append(int(words[8])) number_of_BZ_paths += 1 number_of_kpoints = sum(path_list) "Reading out bandstructure files to determine kpoint, energy and occupation matrices" kpoints = np.zeros([number_of_kpoints,3]) energies = np.zeros([number_of_bands,number_of_kpoints]) occupancy = np.zeros([number_of_bands,number_of_kpoints]) path_counter = 0 if spin_channels == 1 or spin_channels == 4: kpoint_counter = 0 while path_counter<number_of_BZ_paths: kpoint_counter = sum(path_list[:path_counter]) for line in open("{}/band1{:03d}.out".format(directory_path, path_counter+1)): line = line.split("\t")[0] words = line.split() kpoints[int(kpoint_counter),0] = float(words[1]) kpoints[int(kpoint_counter),1] = float(words[2]) kpoints[int(kpoint_counter),2] = float(words[3]) for i in range(number_of_bands): energies[i,int(kpoint_counter)] = float(words[5+2*i]) occupancy[i,int(kpoint_counter)] = float(words[4+2*i]) kpoint_counter += 1 path_counter +=1 if spin_channels == 2: while path_counter<number_of_BZ_paths: kpoint_counter = int(sum(path_list[:path_counter])) for line in open("{}/band1{:03d}.out".format(directory_path, path_counter+1)): line = line.split("\t")[0] words = line.split() kpoints[int(kpoint_counter),0] = float(words[1]) kpoints[int(kpoint_counter),1] = float(words[2]) kpoints[int(kpoint_counter),2] = float(words[3]) for i in range(number_of_bands//2): energies[i,int(kpoint_counter)] = float(words[5+2*i]) occupancy[i,int(kpoint_counter)] = float(words[4+2*i]) kpoint_counter += 1 kpoint_counter = int(sum(path_list[:path_counter])) for line in open("{}/band2{:03d}.out".format(directory_path, path_counter+1)): line = line.split("\t")[0] words = line.split() for i in range(number_of_bands//2): energies[number_of_bands//2+i,kpoint_counter] = float(words[5+2*i]) occupancy[number_of_bands//2+i,kpoint_counter] = float(words[4+2*i]) kpoint_counter += 1 path_counter += 1 "Delete double kpoints at path edges" index_count = len(kpoints) index = 0 while index < index_count-1: if np.array_equal(kpoints[index],kpoints[index+1]): kpoints = np.delete(kpoints,index+1,axis=0) energies = np.delete(energies,index+1,axis=1) occupancy = np.delete(occupancy,index+1,axis=1) index_count = len(kpoints) index += 1 self.number_of_kpoints = len(kpoints) self.CBM = extrema._calc_CBM(occupancy, energies) self.VBM = extrema._calc_VBM(occupancy, energies) self.fermi_energy = (self.CBM + self.VBM) / 2 "Cutting energy values in a range of 30 eV above and below the Fermi level. FHI AIMS is all electron, but not all states are needed for a meaningful effmass calculation" index_count = len(occupancy) index = 0 while index < index_count-1: if all(item < self.fermi_energy - 30 for item in energies[index]): energies = np.delete(energies, index, axis = 0) occupancy = np.delete(occupancy, index, axis = 0) index_count = len(occupancy) elif all(item > self.fermi_energy + 30 for item in energies[index]): energies = np.delete(energies, index, axis = 0) occupancy = np.delete(occupancy, index, axis = 0) index_count = len(occupancy) else: index += 1 self.energies = energies self.occupancy = occupancy self.kpoints = kpoints self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy) class DataOctopus(Data): r""" Class for parsing and storing data from a octopus calculation. Extends the :class:`~effmass.inputs.Data` class" Note: DataOctopus.fermi_energy is automatically set to the mean of DataOctopus.CBM and DataOctopus.VBM. """ def __init__(self, bandstructure_path, info_path, results_path): r""" Initialises an instance of the :class:`~effmass.inputs.Data` class and checks data using :meth:`check_data`. Args: bandStructure_path (str): The path to the bandstructure file. info_path (str): The path to the info file. results_path (str): The path to the results.out file. Returns: None. """ super().__init__() assert (type(bandstructure_path) == str), "The bandStructure path must be a string" assert (type(info_path) == str), "The info path must be a string" assert (type(results_path) == str), "The results path must be a string" # load the Octopus data band_struct = bandstructure.Bandstructure(bandstructure_path) self.number_of_kpoints = band_struct.num_kpoints info_data = info.Info(info_path) results_data = results.Results(results_path, self.number_of_kpoints) # unpack the reciprocal lattice vector lattice_vectors = info_data.get_lattice_vectors() lattice_vector, reciprocal_lattice = zip(*lattice_vectors) reciprocal_lattice_split = [lattice.split() for lattice in reciprocal_lattice] self.reciprocal_lattice = [[float(v) for v in vector] for vector in reciprocal_lattice_split] self.spin_channels = 1 self.number_of_bands = band_struct.num_bands # load energies and occupancies from bandstructure file octo_data_energies, octo_data_occupancies = band_struct.get_eigenvalues() # change to shape (num kpoints, num bands) self.energies = octo_data_energies.T self.occupancy = octo_data_occupancies.T # handle negative occupancy values if np.any(self.occupancy < 0): warnings.warn("One or more occupancies in your data are negative. All negative occupancies will be set to zero.") self.occupancy[ self.occupancy < 0 ] = 0.0 # load kpoints from bandstructure file and into an numpy array kpoints = band_struct.kpoints kx, ky, kz = zip(*kpoints) kpoints = np.array([kx, ky, kz]) # change to shape (number_of_kpoints, 3) self.kpoints = kpoints.T self.CBM = extrema._calc_CBM(self.occupancy, self.energies) self.VBM = extrema._calc_VBM(self.occupancy, self.energies) self.fermi_energy = (self.CBM + self.VBM) / 2 self.check_data(self.spin_channels, self.number_of_kpoints, self.number_of_bands, self.CBM, self.VBM, self.fermi_energy, self.occupancy)
45.238764
251
0.620863
4a1b79d601680ac93f9dbf8a0d0049c576ea0c96
520
py
Python
saleor/lib/python3.7/site-packages/measurement/measures/__init__.py
cxsper/saleor
5566ddcdaf8f72ba872eca869798e66eb9cdae44
[ "BSD-3-Clause" ]
1
2019-07-18T13:16:09.000Z
2019-07-18T13:16:09.000Z
saleor/lib/python3.7/site-packages/measurement/measures/__init__.py
cxsper/saleor
5566ddcdaf8f72ba872eca869798e66eb9cdae44
[ "BSD-3-Clause" ]
13
2020-03-24T17:53:51.000Z
2022-02-10T20:01:14.000Z
saleor/lib/python3.7/site-packages/measurement/measures/__init__.py
cxsper/saleor
5566ddcdaf8f72ba872eca869798e66eb9cdae44
[ "BSD-3-Clause" ]
1
2019-01-21T10:30:30.000Z
2019-01-21T10:30:30.000Z
from measurement.measures.distance import * from measurement.measures.energy import * from measurement.measures.temperature import * from measurement.measures.volume import * from measurement.measures.mass import * from measurement.measures.speed import * from measurement.measures.time import * from measurement.measures.voltage import * from measurement.measures.resistance import * from measurement.measures.capacitance import * from measurement.measures.frequency import * from measurement.measures.current import *
40
46
0.838462
4a1b7a5043849bab051e9613aeb0af2df05218cb
335
py
Python
chat/views.py
tilcara/ChatProject
61ad0fcf38601c063ff7cb714f8f11ec671dae21
[ "MIT", "Unlicense" ]
null
null
null
chat/views.py
tilcara/ChatProject
61ad0fcf38601c063ff7cb714f8f11ec671dae21
[ "MIT", "Unlicense" ]
6
2021-03-19T01:12:03.000Z
2021-09-22T18:48:05.000Z
chat/views.py
tilcara/ChatProject
61ad0fcf38601c063ff7cb714f8f11ec671dae21
[ "MIT", "Unlicense" ]
null
null
null
from django.shortcuts import render from django.contrib.auth.decorators import login_required from .models import Message @login_required() def room(request): messages = list(Message.objects.values().order_by('-timestamp')[:10]) context = { 'messages': messages } return render(request, 'chat/room.html', context)
30.454545
73
0.731343
4a1b7a597efc83d0b419e7fa388c5b28f77cfac4
989
py
Python
solutions/03.py
brocki/adventofcode2021
d54acdd1a25fd78211f4a45cdb7f96009c7faa4f
[ "MIT" ]
null
null
null
solutions/03.py
brocki/adventofcode2021
d54acdd1a25fd78211f4a45cdb7f96009c7faa4f
[ "MIT" ]
null
null
null
solutions/03.py
brocki/adventofcode2021
d54acdd1a25fd78211f4a45cdb7f96009c7faa4f
[ "MIT" ]
null
null
null
def evaluate(inputs: list) -> int: tmp = find_most_common(inputs) output = "" for char in tmp: if char > 0: output += "1" else: output += "0" bitmask = int("".ljust(len(tmp), "1"), 2) gamma = int(output, 2) epsilon = int(format(~gamma & bitmask, "0"+str(len(tmp))+"b"), 2) power = gamma * epsilon return {'gamma': gamma, 'gamma_bin': output, 'epsilon': epsilon, 'epsilon_bin': format(~gamma & 0b11111, "0"+str(len(tmp))+"b"), 'power': power} def find_most_common(lines: list) -> list: tmp = [] for char in lines[0]: tmp.append(0) for line in lines: for idx, char in enumerate(line): if char == "1": tmp[idx] += 1 else: tmp[idx] += -1 return tmp def main(): inputs = [] while True: try: input_ = input("") if input_ == "": break inputs.append(input_) except EOFError: break print(evaluate(inputs)) if __name__ == '__main__': main()
21.042553
146
0.548028
4a1b7a657eed48003bbc8a2a9529f61006932e72
1,519
py
Python
setup.py
caserec2018/CaseRecommender
1b63fe79aa26786c99f35e6b8f0a0dd9e591811b
[ "MIT" ]
16
2018-09-19T07:29:24.000Z
2022-03-30T07:32:36.000Z
setup.py
caserec2018/CaseRecommender
1b63fe79aa26786c99f35e6b8f0a0dd9e591811b
[ "MIT" ]
1
2018-09-10T17:43:56.000Z
2018-09-10T17:43:56.000Z
setup.py
caserec2018/CaseRecommender
1b63fe79aa26786c99f35e6b8f0a0dd9e591811b
[ "MIT" ]
2
2019-07-11T10:13:24.000Z
2020-03-12T10:09:39.000Z
"""" Setup for Case Recommender """ # © 2018. Case Recommender (MIT License) from distutils.core import setup from setuptools import find_packages from os import path here = path.abspath(path.dirname(__file__)) __author__ = 'removed for double blind review' # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='CaseRecommender', packages=find_packages(), version='1.0.13', license='MIT License', description='A recommender systems framework for Python', long_description=long_description, author='removed for double blind review', author_email='fortes.arthur@gmail.com', url='https://github.com/caserec/CaseRecommender', download_url='https://github.com/caserec/CaseRecommender/archive/master.zip', keywords=['recommender systems', 'framework', 'collaborative filtering', 'content-based filtering', 'recommendation'], classifiers=[ # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', ], )
29.211538
103
0.669519
4a1b7bf4cdb2745aa22cff35f2a58bdf417a83de
3,340
py
Python
test/annotation_ontology_api_server_test.py
kbaseapps/annotation_ontology_api
4b3b268524c31446926aa276ff2b09cc9cf99625
[ "MIT" ]
null
null
null
test/annotation_ontology_api_server_test.py
kbaseapps/annotation_ontology_api
4b3b268524c31446926aa276ff2b09cc9cf99625
[ "MIT" ]
1
2022-03-14T22:28:16.000Z
2022-03-15T02:34:19.000Z
test/annotation_ontology_api_server_test.py
kbaseapps/annotation_ontology_api
4b3b268524c31446926aa276ff2b09cc9cf99625
[ "MIT" ]
2
2021-02-18T02:08:53.000Z
2022-03-09T17:37:18.000Z
# -*- coding: utf-8 -*- import unittest import os # noqa: F401 import json # noqa: F401 import time import requests from os import environ try: from ConfigParser import ConfigParser # py2 except: from configparser import ConfigParser # py3 from pprint import pprint # noqa: F401 from biokbase.workspace.client import Workspace as workspaceService from annotation_ontology_api.annotation_ontology_apiImpl import annotation_ontology_api from annotation_ontology_api.annotation_ontology_apiServer import MethodContext from annotation_ontology_api.authclient import KBaseAuth as _KBaseAuth class annotation_ontology_apiTest(unittest.TestCase): @classmethod def setUpClass(cls): token = environ.get('KB_AUTH_TOKEN', None) config_file = environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('annotation_ontology_api'): cls.cfg[nameval[0]] = nameval[1] # Getting username from Auth profile for token authServiceUrl = cls.cfg['auth-service-url'] auth_client = _KBaseAuth(authServiceUrl) user_id = auth_client.get_user(token) # WARNING: don't call any logging methods on the context object, # it'll result in a NoneType error cls.ctx = MethodContext(None) cls.ctx.update({'token': token, 'user_id': user_id, 'provenance': [ {'service': 'annotation_ontology_api', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.wsClient = workspaceService(cls.wsURL) cls.serviceImpl = annotation_ontology_api(cls.cfg) cls.scratch = cls.cfg['scratch'] cls.callback_url = os.environ['SDK_CALLBACK_URL'] @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') def getWsClient(self): return self.__class__.wsClient def getWsName(self): if hasattr(self.__class__, 'wsName'): return self.__class__.wsName suffix = int(time.time() * 1000) wsName = "test_annotation_ontology_api_" + str(suffix) ret = self.getWsClient().create_workspace({'workspace': wsName}) # noqa self.__class__.wsName = wsName return wsName def getImpl(self): return self.__class__.serviceImpl def getContext(self): return self.__class__.ctx # NOTE: According to Python unittest naming rules test method names should start from 'test'. # noqa def test_your_method(self): # Prepare test objects in workspace if needed using # self.getWsClient().save_objects({'workspace': self.getWsName(), # 'objects': []}) # # Run your method by # ret = self.getImpl().your_method(self.getContext(), parameters...) # # Check returned data with # self.assertEqual(ret[...], ...) or other unittest methods pass
37.111111
104
0.631138
4a1b7c78cc48bd29a567cdc35ed1232fdd8396a5
17,624
py
Python
lite/pylite/megenginelite/tensor.py
kagome1007/MegEngine
6814cf1cd7bfae05f1ca22a5b79a09244028c7fd
[ "Apache-2.0" ]
null
null
null
lite/pylite/megenginelite/tensor.py
kagome1007/MegEngine
6814cf1cd7bfae05f1ca22a5b79a09244028c7fd
[ "Apache-2.0" ]
null
null
null
lite/pylite/megenginelite/tensor.py
kagome1007/MegEngine
6814cf1cd7bfae05f1ca22a5b79a09244028c7fd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from ctypes import * import numpy as np from .base import _Ctensor, _lib, _LiteCObjBase from .struct import LiteDataType, LiteDeviceType, LiteIOType, Structure MAX_DIM = 7 _lite_type_to_nptypes = { LiteDataType.LITE_INT: np.int32, LiteDataType.LITE_FLOAT: np.float32, LiteDataType.LITE_UINT8: np.uint8, LiteDataType.LITE_INT8: np.int8, LiteDataType.LITE_INT16: np.int16, LiteDataType.LITE_UINT16: np.uint16, LiteDataType.LITE_HALF: np.float16, } _nptype_to_lite_type = {val: key for key, val in _lite_type_to_nptypes.items()} _str_nptypes_to_lite_nptypes = { np.dtype("int32"): LiteDataType.LITE_INT, np.dtype("float32"): LiteDataType.LITE_FLOAT, np.dtype("uint8"): LiteDataType.LITE_UINT8, np.dtype("int8"): LiteDataType.LITE_INT8, np.dtype("int16"): LiteDataType.LITE_INT16, np.dtype("uint16"): LiteDataType.LITE_UINT16, np.dtype("float16"): LiteDataType.LITE_HALF, } ctype_to_lite_dtypes = { c_int: LiteDataType.LITE_INT, c_uint: LiteDataType.LITE_INT, c_float: LiteDataType.LITE_FLOAT, c_ubyte: LiteDataType.LITE_UINT8, c_byte: LiteDataType.LITE_INT8, c_short: LiteDataType.LITE_INT16, c_ushort: LiteDataType.LITE_UINT16, } _lite_dtypes_to_ctype = { LiteDataType.LITE_INT: c_int, LiteDataType.LITE_FLOAT: c_float, LiteDataType.LITE_UINT8: c_ubyte, LiteDataType.LITE_INT8: c_byte, LiteDataType.LITE_INT16: c_short, LiteDataType.LITE_UINT16: c_ushort, } class LiteLayout(Structure): """ the simple layout description """ _fields_ = [ ("_shapes", c_size_t * MAX_DIM), ("ndim", c_size_t), ("data_type", c_int), ] def __init__(self, shape=None, dtype=None): if shape: shape = list(shape) assert len(shape) <= MAX_DIM, "Layout max dim is 7." self._shapes = (c_size_t * MAX_DIM)(*shape) self.ndim = len(shape) else: self._shapes = (c_size_t * MAX_DIM)() self.ndim = 0 if not dtype: self.data_type = LiteDataType.LITE_FLOAT elif isinstance(dtype, LiteDataType): self.data_type = dtype elif type(dtype) == str: self.data_type = _str_nptypes_to_lite_nptypes[np.dtype(dtype)] elif isinstance(dtype, np.dtype): ctype = np.ctypeslib.as_ctypes_type(dtype) self.data_type = ctype_to_lite_dtypes[ctype] elif isinstance(dtype, type): self.data_type = _nptype_to_lite_type[dtype] else: raise RuntimeError("unkonw data type") @property def dtype(self): return _lite_type_to_nptypes[LiteDataType(self.data_type)] @property def shapes(self): return list(self._shapes)[0 : self.ndim] @shapes.setter def shapes(self, shape): shape = list(shape) assert len(shape) <= MAX_DIM, "Layout max dim is 7." self._shapes = (c_size_t * MAX_DIM)(*shape) self.ndim = len(shape) def __repr__(self): data = { "shapes": self.shapes, "ndim": self.ndim, "data_type": _lite_type_to_nptypes[LiteDataType(self.data_type)], } return data.__repr__() class _LiteTensorDesc(Structure): """ warpper of the MegEngine Tensor :is_pinned_host: when set, the storage memory of the tensor is pinned memory, this is used to Optimize the H2D or D2H memory copy, if the device or layout is not set, when copy form other device(CUDA) tensor, this tensor will be automatically set to pinned tensor """ _fields_ = [ ("is_pinned_host", c_int), ("layout", LiteLayout), ("device_type", c_int), ("device_id", c_int), ] def __init__(self): self.layout = LiteLayout() self.device_type = LiteDeviceType.LITE_CPU self.is_pinned_host = False self.device_id = 0 def __repr__(self): data = { "is_pinned_host": self.is_pinned_host, "layout": LiteLayout(self.layout), "device_type": LiteDeviceType(self.device_type.value), "device_id": self.device_id, } return data.__repr__() class _TensorAPI(_LiteCObjBase): """ get the api from the lib """ _api_ = [ ("LITE_make_tensor", [_LiteTensorDesc, POINTER(_Ctensor)]), ("LITE_set_tensor_layout", [_Ctensor, LiteLayout]), ("LITE_reset_tensor_memory", [_Ctensor, c_void_p, c_size_t]), ("LITE_reset_tensor", [_Ctensor, LiteLayout, c_void_p]), ("LITE_tensor_reshape", [_Ctensor, POINTER(c_int), c_int]), ( "LITE_tensor_slice", [ _Ctensor, POINTER(c_size_t), POINTER(c_size_t), POINTER(c_size_t), c_size_t, POINTER(_Ctensor), ], ), ( "LITE_tensor_concat", [POINTER(_Ctensor), c_int, c_int, c_int, c_int, POINTER(_Ctensor),], ), ("LITE_tensor_fill_zero", [_Ctensor]), ("LITE_tensor_copy", [_Ctensor, _Ctensor]), ("LITE_tensor_share_memory_with", [_Ctensor, _Ctensor]), ("LITE_get_tensor_memory", [_Ctensor, POINTER(c_void_p)]), ("LITE_get_tensor_total_size_in_byte", [_Ctensor, POINTER(c_size_t)]), ("LITE_get_tensor_layout", [_Ctensor, POINTER(LiteLayout)]), ("LITE_get_tensor_device_type", [_Ctensor, POINTER(c_int)]), ("LITE_get_tensor_device_id", [_Ctensor, POINTER(c_int)]), ("LITE_destroy_tensor", [_Ctensor]), ("LITE_is_pinned_host", [_Ctensor, POINTER(c_int)]), ] class LiteTensor(object): """ the tensor to hold a block of data """ _api = _TensorAPI()._lib def __init__( self, layout=None, device_type=LiteDeviceType.LITE_CPU, device_id=0, is_pinned_host=False, shapes=None, dtype=None, ): """ create a Tensor with layout, device, is_pinned_host or shapes, dtype, device_type, device_id, is_pinned_host param """ self._tensor = _Ctensor() self._layout = LiteLayout() if layout is not None: self._layout = layout elif shapes is not None: shapes = list(shapes) self._layout = LiteLayout(shapes, dtype) self._device_type = device_type self._device_id = device_id self._is_pinned_host = is_pinned_host tensor_desc = _LiteTensorDesc() tensor_desc.layout = self._layout tensor_desc.device_type = device_type tensor_desc.device_id = device_id tensor_desc.is_pinned_host = is_pinned_host self._api.LITE_make_tensor(tensor_desc, byref(self._tensor)) self.update() def __del__(self): self._api.LITE_destroy_tensor(self._tensor) def fill_zero(self): """ fill the buffer memory with zero """ self._api.LITE_tensor_fill_zero(self._tensor) self.update() def share_memory_with(self, src_tensor): """ share the same memory with the src_tensor, the self memory will be freed """ assert isinstance(src_tensor, LiteTensor) self._api.LITE_tensor_share_memory_with(self._tensor, src_tensor._tensor) self.update() @property def layout(self): self._api.LITE_get_tensor_layout(self._tensor, byref(self._layout)) return self._layout @layout.setter def layout(self, layout): if isinstance(layout, LiteLayout): self._layout = layout elif isinstance(layout, list): self._layout.shapes = layout self._api.LITE_set_tensor_layout(self._tensor, self._layout) @property def is_pinned_host(self): """ whether the tensor is pinned tensor """ pinned = c_int() self._api.LITE_is_pinned_host(self._tensor, byref(pinned)) self._is_pinned_host = pinned return bool(self._is_pinned_host) @property def device_type(self): """ get device of the tensor """ device_type = c_int() self._api.LITE_get_tensor_device_type(self._tensor, byref(device_type)) self._device_type = device_type return LiteDeviceType(device_type.value) @property def device_id(self): """ get device id of the tensor """ device_id = c_int() self._api.LITE_get_tensor_device_id(self._tensor, byref(device_id)) self._device_id = device_id.value return device_id.value @property def is_continue(self): """ whether the tensor memory is continue """ is_continue = c_int() self._api.LITE_is_memory_continue(self._tensor, byref(is_continue)) return bool(is_continue.value) @property def nbytes(self): """ get the length of the meomry in byte """ length = c_size_t() self._api.LITE_get_tensor_total_size_in_byte(self._tensor, byref(length)) return length.value def update(self): """ update the member from C, this will auto used after slice, share """ pinned = c_int() self._api.LITE_is_pinned_host(self._tensor, byref(pinned)) self._is_pinned_host = pinned device_type = c_int() self._api.LITE_get_tensor_device_type(self._tensor, byref(device_type)) self._device_type = device_type self._api.LITE_get_tensor_layout(self._tensor, byref(self._layout)) c_types = _lite_dtypes_to_ctype[self._layout.data_type] self.np_array_type = np.ctypeslib._ctype_ndarray( c_types, list(self._layout.shapes)[0 : self._layout.ndim] ) def copy_from(self, src_tensor): """ copy memory form the src_tensor """ assert isinstance(src_tensor, LiteTensor) self._api.LITE_tensor_copy(self._tensor, src_tensor._tensor) self.update() def reshape(self, shape): """ reshape the tensor with data not change, only change the shape :param shape: int arrary of dst_shape """ shape = list(shape) length = len(shape) c_shape = (c_int * length)(*shape) self._api.LITE_tensor_reshape(self._tensor, c_shape, length) self.update() def slice(self, start, end, step=None): """ slice the tensor with gaven start, end, step :param start: silce begin index of each dim :param end: silce end index of each dim :param step: silce step of each dim """ start = list(start) end = list(end) length = len(start) assert length == len(end), "slice with different length of start and end." if step: assert length == len(step), "slice with different length of start and step." step = list(step) else: step = [1 for i in range(length)] c_start = (c_size_t * length)(*start) c_end = (c_size_t * length)(*end) c_step = (c_size_t * length)(*step) slice_tensor = LiteTensor() self._api.LITE_tensor_slice( self._tensor, c_start, c_end, c_step, length, byref(slice_tensor._tensor) ) slice_tensor.update() return slice_tensor def get_ctypes_memory(self): """ get the memory of the tensor, return c_void_p of the tensor memory """ mem = c_void_p() self._api.LITE_get_tensor_memory(self._tensor, byref(mem)) return mem def set_data_by_share(self, data, length=0, layout=None): """ share the data to the tensor param data: the data will shared to the tensor, it should be a numpy.ndarray or ctypes data """ if isinstance(data, np.ndarray): assert ( self.is_continue ), "set_data_by_share can only apply in continue tensor." assert ( self.is_pinned_host or self.device_type == LiteDeviceType.LITE_CPU ), "set_data_by_share can only apply in cpu tensor or pinned tensor." c_type = _lite_dtypes_to_ctype[LiteDataType(self._layout.data_type)] if self.nbytes != data.nbytes: self.layout = LiteLayout(data.shape, ctype_to_lite_dtypes[c_type]) self._shared_data = data data = data.ctypes.data_as(POINTER(c_type)) if layout is not None: self.layout = layout else: assert length == 0 or length == self.nbytes, "the data length is not match." self._api.LITE_reset_tensor_memory(self._tensor, data, self.nbytes) def set_data_by_copy(self, data, data_length=0, layout=None): """ copy the data to the tensor, the memory of the tensor must be continue param data: the data to copy to tensor, it should be list, numpy.ndarraya or ctypes with length """ if layout is not None: self.layout = layout assert self.is_continue, "set_data_by_copy can only apply in continue tensor." c_type = _lite_dtypes_to_ctype[LiteDataType(self._layout.data_type)] cpu_tensor = LiteTensor(self._layout) tensor_length = self.nbytes if type(data) == list: length = len(data) assert ( length * sizeof(c_type) <= tensor_length ), "the length of input data to set to the tensor is too large." cdata = (c_type * length)(*data) self._api.LITE_reset_tensor_memory(cpu_tensor._tensor, cdata, tensor_length) self.copy_from(cpu_tensor) elif type(data) == np.ndarray: self.layout = LiteLayout(data.shape, data.dtype) cpu_tensor.layout = LiteLayout(data.shape, data.dtype) cdata = data.ctypes.data_as(POINTER(c_type)) self._api.LITE_reset_tensor_memory(cpu_tensor._tensor, cdata, self.nbytes) self.copy_from(cpu_tensor) else: assert ( data_length == self.nbytes or layout is not None ), "when input data is ctypes, the length of input data or layout must set" self._api.LITE_reset_tensor_memory(cpu_tensor._tensor, data, tensor_length) self.copy_from(cpu_tensor) def get_data_by_share(self): """ get the data in the tensor, add share the data with a new numpy, and return the numpy arrray, be careful, the data in numpy is valid before the tensor memory is write again, such as LiteNetwok forward next time. """ self.update() buffer = c_void_p() self._api.LITE_get_tensor_memory(self._tensor, byref(buffer)) buffer = self.np_array_type.from_address(buffer.value) return np.ctypeslib.as_array(buffer) def to_numpy(self): """ get the buffer of the tensor """ self.update() if self.nbytes <= 0: np_type = _lite_type_to_nptypes[LiteDataType(self._layout.data_type)] return np.array([], dtype=np_type) if self.is_continue and ( self.is_pinned_host or self.device_type == LiteDeviceType.LITE_CPU ): ptr = c_void_p() self._api.LITE_get_tensor_memory(self._tensor, byref(ptr)) np_type = _lite_type_to_nptypes[LiteDataType(self._layout.data_type)] shape = [self._layout.shapes[i] for i in range(self._layout.ndim)] np_arr = np.zeros(shape, np_type) if np_arr.nbytes: memmove(np_arr.ctypes.data_as(c_void_p), ptr, np_arr.nbytes) return np_arr else: tmp_tensor = LiteTensor(self.layout) tmp_tensor.copy_from(self) return tmp_tensor.to_numpy() def __repr__(self): self.update() data = { "layout": self._layout, "device_type": LiteDeviceType(self._device_type.value), "device_id": int(self.device_id), "is_pinned_host": bool(self._is_pinned_host), } return data.__repr__() def LiteTensorConcat( tensors, dim, device_type=LiteDeviceType.LITE_DEVICE_DEFAULT, device_id=-1 ): """ concat tensor in input dim to one tensor dim : the dim to act concat device_type: the result tensor device type device_id: the result tensor device id """ api = _TensorAPI()._lib length = len(tensors) c_tensors = [t._tensor for t in tensors] c_tensors = (_Ctensor * length)(*c_tensors) result_tensor = LiteTensor() api.LITE_tensor_concat( cast(byref(c_tensors), POINTER(c_void_p)), length, dim, device_type, device_id, byref(result_tensor._tensor), ) result_tensor.update() return result_tensor def lite_dtype_2_numpy(dtype): """ convert lite dtype to corresponding numpy dtype """ assert isinstance( dtype, LiteDataType ), "input must be LiteDataType when using lite_dtype_2_numpy." return _lite_type_to_nptypes[dtype]
33.25283
88
0.622617
4a1b7ca9ab3b4befe5bdbb8377688bc9d72d1002
4,490
py
Python
ephypype/interfaces/mne/LF_computation.py
EtienneCmb/ephypype
fdc13efb79545f072585d1e180d03702efd9e326
[ "BSD-3-Clause" ]
null
null
null
ephypype/interfaces/mne/LF_computation.py
EtienneCmb/ephypype
fdc13efb79545f072585d1e180d03702efd9e326
[ "BSD-3-Clause" ]
1
2018-09-03T20:08:46.000Z
2018-09-03T21:00:55.000Z
ephypype/interfaces/mne/LF_computation.py
EtienneCmb/ephypype
fdc13efb79545f072585d1e180d03702efd9e326
[ "BSD-3-Clause" ]
null
null
null
"""LF computation. Created on Mon May 2 17:24:00 2016 @author: pasca """ import os.path as op from nipype.utils.filemanip import split_filename as split_f from nipype.interfaces.base import BaseInterface, BaseInterfaceInputSpec from nipype.interfaces.base import traits, File, TraitedSpec from ephypype.compute_fwd_problem import create_mixed_source_space from ephypype.compute_fwd_problem import create_bem_sol, create_src_space from ephypype.compute_fwd_problem import is_trans, compute_fwd_sol class LFComputationConnInputSpec(BaseInterfaceInputSpec): """LF computation conn input spec.""" sbj_id = traits.String(desc='subject id', mandatory=True) sbj_dir = traits.String(exists=True, desc='Freesurfer main directory', mandatory=True) raw_info = traits.Any(desc='raw info', mandatory=True) raw_fname = traits.String(desc='raw file name', mandatory=True) spacing = traits.String(desc='spacing to use to setup a source space', mandatory=False) aseg = traits.Bool(desc='if true sub structures will be considered', mandatory=False) aseg_labels = traits.List(desc='list of substructures in the src space', mandatory=False) save_mixed_src_space = traits.Bool(False, desc='if true save src space', usedefault=True, mandatory=False) class LFComputationConnOutputSpec(TraitedSpec): """LF computation conn output spec.""" fwd_filename = File(exists=False, desc='LF matrix') class LFComputation(BaseInterface): """Compute the Lead Field matrix using MNE Python functions. Parameters ---------- sbj_id : str subject name sbj_dir : str Freesurfer directory raw_info : dict information dictionary of the raw data raw_filename : str filename of the raw data spacing : str (default 'ico-5') spacing to use to setup a source space aseg: bool (defualt False) if True a mixed source space will be created and the sub cortical regions defined in aseg_labels will be added to the source space aseg_labels: list (default []) list of substructures we want to include in the mixed source space save_mixed_src_space: bool (default False) if True save the mixed src space """ input_spec = LFComputationConnInputSpec output_spec = LFComputationConnOutputSpec def _get_fwd_filename(self, raw_info, aseg, spacing): data_path, raw_fname, ext = split_f(raw_info) fwd_filename = '%s-%s' % (raw_fname, spacing) if aseg: fwd_filename += '-aseg' fwd_filename = op.join(data_path, fwd_filename + '-fwd.fif') print(('\n *** fwd_filename %s ***\n' % fwd_filename)) return fwd_filename def _run_interface(self, runtime): sbj_id = self.inputs.sbj_id sbj_dir = self.inputs.sbj_dir raw_info = self.inputs.raw_info raw_fname = self.inputs.raw_fname aseg = self.inputs.aseg spacing = self.inputs.spacing aseg_labels = self.inputs.aseg_labels save_mixed_src_space = self.inputs.save_mixed_src_space self.fwd_filename = self._get_fwd_filename(raw_fname, aseg, spacing) # check if we have just created the fwd matrix if not op.isfile(self.fwd_filename): bem = create_bem_sol(sbj_dir, sbj_id) # bem solution src = create_src_space(sbj_dir, sbj_id, spacing) # src space if aseg: src = create_mixed_source_space(sbj_dir, sbj_id, spacing, aseg_labels, src, save_mixed_src_space) n = sum(src[i]['nuse'] for i in range(len(src))) print(('il src space contiene %d spaces e %d vertici' % (len(src), n))) trans_fname = is_trans(raw_fname) # TODO: ha senso una funzione con un solo cmd? compute_fwd_sol(raw_info, trans_fname, src, bem, self.fwd_filename) else: print(('\n*** FWD file %s exists!!!\n' % self.fwd_filename)) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['fwd_filename'] = self.fwd_filename return outputs
33.507463
79
0.630067
4a1b7cea9bb43bdeda90f0fca320aa7b47abece3
1,805
py
Python
tf_quant_finance/math/__init__.py
cottrell/tf-quant-finance
e05664ed13933812446e95f8a05fccab86b8909c
[ "Apache-2.0" ]
1
2019-11-19T00:10:07.000Z
2019-11-19T00:10:07.000Z
tf_quant_finance/math/__init__.py
SeptumCapital/tf-quant-finance
5aba5ddab3a4dd1efa87d5a12fec403315d2ac98
[ "Apache-2.0" ]
null
null
null
tf_quant_finance/math/__init__.py
SeptumCapital/tf-quant-finance
5aba5ddab3a4dd1efa87d5a12fec403315d2ac98
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow Quantitative Finance general math functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tf_quant_finance.math import integration from tf_quant_finance.math import interpolation from tf_quant_finance.math import optimizer from tf_quant_finance.math import pde from tf_quant_finance.math import piecewise from tf_quant_finance.math import random_ops as random from tf_quant_finance.math import root_search from tf_quant_finance.math import segment_ops from tf_quant_finance.math.diff_ops import diff from tf_quant_finance.math.gradient import fwd_gradient from tf_quant_finance.math.gradient import gradients from tf_quant_finance.math.gradient import make_val_and_grad_fn from tf_quant_finance.math.gradient import value_and_gradient from tensorflow.python.util.all_util import remove_undocumented # pylint: disable=g-direct-tensorflow-import _allowed_symbols = [ 'fwd_gradient', 'integration', 'interpolation', 'optimizer', 'pde', 'piecewise', 'random', 'root_search', 'diff', 'segment_ops', 'value_and_gradient', 'make_val_and_grad_fn', ] remove_undocumented(__name__, _allowed_symbols)
34.711538
109
0.798892
4a1b7dad03ea5755d0807172989f83010f07a8df
9,423
py
Python
utility/Upload.py
wuye999/Y2B
6441ff0d9a9e67ae58a2845d4da0c783d91904e1
[ "MIT" ]
29
2020-02-24T00:00:09.000Z
2021-12-13T07:56:56.000Z
utility/Upload.py
ghc7046/Y2B
6441ff0d9a9e67ae58a2845d4da0c783d91904e1
[ "MIT" ]
6
2021-06-13T05:53:08.000Z
2022-01-13T03:12:48.000Z
utility/Upload.py
ghc7046/Y2B
6441ff0d9a9e67ae58a2845d4da0c783d91904e1
[ "MIT" ]
10
2020-05-17T05:37:04.000Z
2022-01-24T10:45:11.000Z
import json import os import math import base64 import time from utility import tool import threading import re def uploadFile(cookie: dict, videoPath: str, enableParallel=False) -> str: logger = tool.getLogger() logger.info(f"start {videoPath}") file_size = os.path.getsize(videoPath) s = tool.Session() s.cookies.update(cookie) s.headers.update({ "Origin": "https://member.bilibili.com", "Referer": "https://member.bilibili.com/video/upload.html", }) limit: threading.Semaphore = None limitCnt = 0 upos: str = None upcdn: str = None cost: float = 99999999 rs = s.get("https://member.bilibili.com/preupload?r=probe", wantStatusCode=200).json() testContent = b'\0' * 1048576 for i in rs["lines"]: testURL = f"https:{i['probe_url']}" start = time.time() tRs = s.put(testURL, data=testContent) LCost = time.time() - start logger.debug( f"url:{i['probe_url']};code:{tRs.status_code};cost:{LCost}") if tRs.status_code == 200 and "NGINX_OK" in tRs.text and LCost < cost: cost = LCost upos = i["os"] upcdn = i["query"] del testContent if upcdn is None or upcdn is None: return False, "" upcdn = re.findall("upcdn=([^&]+)", upcdn)[0] logger.debug(f"upos[{upos}],cdn[{upcdn}]") ext = videoPath.split(".")[-1] param = { "name": "{}.{}".format(int(time.time()), ext), "size": file_size, "r": upos, "profile": "ugcupos/bup", "ssl": "0", "version": "2.7.1", "build": "2070100", "upcdn": upcdn, "probe_version": "20200427", } url = "https://member.bilibili.com/preupload" _data = s.get(url=url, params=param).text logger.debug(_data) _data = json.loads(_data) upload_size = _data["chunk_size"] upos_uri = _data["upos_uri"].replace("upos:/", "").replace("/ugc/", "") biz_id = _data["biz_id"] endpoint = _data["endpoint"] auth = _data["auth"] if enableParallel: limit = threading.Semaphore(_data["threads"]) limitCnt = _data["threads"] logger.info("use parallel upload, count:{}".format(_data["threads"])) logger.info("preupload done") # get upload id data_url = f"https:{endpoint}/ugc/{upos_uri}?uploads&output=json" s.headers.update({"X-Upos-Auth": auth}) # while True: # try: # _data = s.post(url=data_url).json() # upload_id = _data["upload_id"] # break # except (IndexError, KeyError): # time.sleep(2) # continue _data = s.post(url=data_url).json() upload_id = _data["upload_id"] logger.debug(json.dumps(_data)) logger.info("get upload id done") # start upload # upload_size = 8 * 1024 * 1024 upload_url = f"https:{endpoint}/ugc/{upos_uri}" total_chunk = math.ceil(file_size / upload_size) index = 1 now_size = 0 restore = {"parts": []} file = open(videoPath, "rb") # 分块下载&上传 while now_size < file_size: new_end = min(now_size + upload_size, file_size - 1) part = file.read(upload_size) size = len(part) param = { "total": file_size, "partNumber": index, "uploadId": upload_id, "chunk": index - 1, "chunks": total_chunk, "size": size, "start": now_size, "end": new_end } now_size = new_end + 1 index += 1 def threadUpload(url, param, part, s): logger = tool.getLogger() res = s.put(url=upload_url, params=param, data=part, wantStatusCode=200) logger.info(f"{param['partNumber']}/{param['chunks']}:{res.text}") limit.release() if enableParallel: limit.acquire() tool.Thread(target=threadUpload, args=( upload_url, param.copy(), part, s)).start() else: res = s.put(url=upload_url, params=param, data=part, wantStatusCode=200) logger.info(f"{index - 1}/{total_chunk}:{res.text}") restore["parts"].append({"partNumber": index, "eTag": "etag"}) file.close() for _ in range(limitCnt): if not limit.acquire(timeout=60 * 20): return False, "" del limit # 上传完成 param = { 'output': 'json', 'name': time.ctime() + "." + ext, 'profile': 'ugcupos/bup', 'uploadId': upload_id, 'biz_id': biz_id, } _data = s.post(upload_url, params=param, json=restore).text logger.info(f"upload file done: {upos_uri}") logger.debug(_data) return True, upos_uri def uploadWithOldBvid(cookie: dict, uploadInfo: dict, videoPath: str): logger = tool.getLogger() enableParallel = uploadInfo.get("enableParallel", True) success, upos_uri = uploadFile( cookie, videoPath, enableParallel=enableParallel) if not success: return False, "", "" s = tool.Session() s.cookies.update(cookie) url = f"https://member.bilibili.com/x/vu/web/edit?csrf={cookie['bili_jct']}" # s.headers.pop("X-Upos-Auth") _rs = s.get( f"https://member.bilibili.com/x/web/archive/view?bvid={uploadInfo['bvid']}" ).json()["data"] # logger.debug(json.dumps(_rs["videos"])) videos = [] for i in _rs["videos"]: if len(i['reject_reason']) > 0: # 判断视频是否有错误,比如撞车、解码错误、违法违规等 logger.debug( "{}-{}:{}".format(i["aid"], i["cid"], i["reject_reason"])) continue videos.append({"filename": i["filename"], "title": i["title"]}) videos.append({"filename": upos_uri.split(".")[0], "title": uploadInfo["title"][0:min(79, len(uploadInfo["title"]))], "desc": uploadInfo["id"] }) send_data = {"copyright": 2, "videos": videos, "source": _rs["archive"]["source"], "tid": _rs["archive"]["tid"], "cover": _rs["archive"]["cover"].split(":")[-1], "title": _rs["archive"]["title"], "tag": _rs["archive"]["tag"], "desc_format_id": 0, "desc": _rs["archive"]["desc"], "dynamic": _rs["archive"]["dynamic"], "subtitle": { "open": 0, "lan": "" }, "bvid": uploadInfo["bvid"], "handle_staff": False, } logger.debug(json.dumps(send_data)) # s.headers.update({"Content-Type": "application/json;charset=UTF-8"}) res = s.post(url=url, json=send_data).text logger.debug(res) return True, res, upos_uri def uploadWithNewBvid(cookie: dict, uploadInfo: dict, videoPath: str): logger = tool.getLogger() enableParallel = uploadInfo.get("enableParallel", True) success, upos_uri = uploadFile( cookie, videoPath, enableParallel=enableParallel) if not success: return False, "", "" s = tool.Session() s.cookies.update(cookie) csrf = cookie["bili_jct"] def cover(csrf, uploadInfo): vid = uploadInfo["id"] __url = "https://member.bilibili.com/x/vu/web/cover/up" __imgURL = f"https://i1.ytimg.com/vi/{vid}/maxresdefault.jpg" __imgURL2 = f"https://i1.ytimg.com/vi/{vid}/hqdefault.jpg" __rs = s.get(__imgURL, useProxy=True, wantStatusCode=200) if __rs is None: __rs = s.get(__imgURL2, useProxy=True, wantStatusCode=200) __send = {"cover": "data:image/jpeg;base64," + base64.b64encode(__rs.content).decode(), "csrf": csrf } __res = s.post(url=__url, data=__send).json() return __res["data"]["url"].replace("http:", "").replace("https:", "") url = "https://member.bilibili.com/x/vu/web/add?csrf=" + csrf # s.headers.pop("X-Upos-Auth") _data = s.get("https://member.bilibili.com/x/geetest/pre/add").text logger.debug(_data) send_data = {"copyright": 2, "videos": [{"filename": upos_uri.split(".")[0], "title": uploadInfo["title"], "desc": ""}], "source": "https://www.youtube.com/watch?v=" + uploadInfo["id"], "tid": int(uploadInfo["tid"]), "cover": cover(csrf, uploadInfo), "title": uploadInfo["ptitle"], "tag": ','.join(uploadInfo["tags"]), "desc_format_id": 0, "desc": uploadInfo["desc"], "dynamic": "#" + "##".join(uploadInfo["tags"]) + "#", "subtitle": { "open": 0, "lan": ""} } logger.debug(json.dumps(send_data)) # s.headers.update({"Content-Type": "application/json;charset=UTF-8"}) while True: res = s.post(url=url, json=send_data).text logger.debug(res) code = json.loads(res)["code"] if code == 0: break if code == 21070: time.sleep(20) else: logger.error(f"未知状态码{code}") s.close() return True, res, upos_uri # if __name__ == "__main__": # get_youtube_url2("iCfr8N0Q8IA")
35.693182
85
0.537621
4a1b7db7c79b0df13ab1f5965c32e3e2ca8f100b
15,416
py
Python
rep/metaml/folding.py
vkuznet/rep
71939da79b45c28aa130680a11c13ede08f48a0e
[ "Apache-2.0" ]
null
null
null
rep/metaml/folding.py
vkuznet/rep
71939da79b45c28aa130680a11c13ede08f48a0e
[ "Apache-2.0" ]
null
null
null
rep/metaml/folding.py
vkuznet/rep
71939da79b45c28aa130680a11c13ede08f48a0e
[ "Apache-2.0" ]
null
null
null
""" This is specific meta-algorithm based on the idea of cross-validation. """ from __future__ import division, print_function, absolute_import import numpy from sklearn import clone from six.moves import zip from . import utils from sklearn.cross_validation import KFold from sklearn.utils.validation import check_random_state from .factory import train_estimator from ..estimators.interface import Classifier, Regressor from ..estimators.utils import check_inputs import pandas __author__ = 'Tatiana Likhomanenko, Alex Rogozhnikov' __all__ = ['FoldingClassifier', 'FoldingRegressor'] from .utils import get_classifier_probabilities, get_classifier_staged_proba, get_regressor_prediction, \ get_regressor_staged_predict class FoldingBase(object): """ Base class for FoldingClassifier and FoldingRegressor """ def __init__(self, base_estimator, n_folds=2, random_state=None, features=None, parallel_profile=None): self.estimators = [] self.parallel_profile = parallel_profile self.n_folds = n_folds self.base_estimator = base_estimator self._folds_indices = None self.random_state = random_state self._random_number = None # setting features directly self.features = features def _get_folds_column(self, length): """ Return special column with indices of folds for all events. """ if self._random_number is None: self._random_number = check_random_state(self.random_state).randint(0, 100000) folds_column = numpy.zeros(length) for fold_number, (_, folds_indices) in enumerate( KFold(length, self.n_folds, shuffle=True, random_state=self._random_number)): folds_column[folds_indices] = fold_number return folds_column def _prepare_data(self, X, y, sample_weight): raise NotImplementedError('To be implemented in descendant') def fit(self, X, y, sample_weight=None): """ Train the classifier, will train several base classifiers on overlapping subsets of training dataset. :param X: pandas.DataFrame of shape [n_samples, n_features] :param y: labels of events - array-like of shape [n_samples] :param sample_weight: weight of events, array-like of shape [n_samples] or None if all weights are equal """ if hasattr(self.base_estimator, 'features'): assert self.base_estimator.features is None, \ 'Base estimator must have None features! Use features parameter in Folding instead' self.train_length = len(X) X, y, sample_weight = self._prepare_data(X, y, sample_weight) folds_column = self._get_folds_column(len(X)) for _ in range(self.n_folds): self.estimators.append(clone(self.base_estimator)) if sample_weight is None: weights_iterator = [None] * self.n_folds else: weights_iterator = (sample_weight[folds_column != index] for index in range(self.n_folds)) result = utils.map_on_cluster(self.parallel_profile, train_estimator, range(len(self.estimators)), self.estimators, (X.iloc[folds_column != index, :].copy() for index in range(self.n_folds)), (y[folds_column != index] for index in range(self.n_folds)), weights_iterator) for status, data in result: if status == 'success': name, classifier, spent_time = data self.estimators[name] = classifier else: print('Problem while training on the node, report:\n', data) return self def _folding_prediction(self, X, prediction_function, vote_function=None): """ Supplementary function to predict (labels, probabilities, values) :param X: dataset to predict :param prediction_function: function(classifier, X) -> prediction :param vote_function: if using averaging over predictions of folds, this function shall be passed. For instance: lambda x: numpy.mean(x, axis=0), which means averaging result over all folds. Another useful option is lambda x: numpy.median(x, axis=0) """ X = self._get_features(X) if vote_function is not None: print('KFold prediction with voting function') results = [] for estimator in self.estimators: results.append(prediction_function(estimator, X)) # results: [n_classifiers, n_samples, n_dimensions], reduction over 0th axis results = numpy.array(results) return vote_function(results) else: if len(X) != self.train_length: print('KFold prediction using random classifier (length of data passed not equal to length of train)') else: print('KFold prediction using folds column') folds_column = self._get_folds_column(len(X)) parts = [] for fold in range(self.n_folds): parts.append(prediction_function(self.estimators[fold], X.iloc[folds_column == fold, :])) result_shape = [len(X)] + list(numpy.shape(parts[0])[1:]) results = numpy.zeros(shape=result_shape) folds_indices = [numpy.where(folds_column == fold)[0] for fold in range(self.n_folds)] for fold, part in enumerate(parts): results[folds_indices[fold]] = part return results def _staged_folding_prediction(self, X, prediction_function, vote_function=None): X = self._get_features(X) if vote_function is not None: print('Using voting KFold prediction') iterators = [prediction_function(estimator, X) for estimator in self.estimators] for fold_prob in zip(*iterators): result = numpy.array(fold_prob) yield vote_function(result) else: if len(X) != self.train_length: print('KFold prediction using random classifier (length of data passed not equal to length of train)') else: print('KFold prediction using folds column') folds_column = self._get_folds_column(len(X)) iterators = [prediction_function(self.estimators[fold], X.iloc[folds_column == fold, :]) for fold in range(self.n_folds)] folds_indices = [numpy.where(folds_column == fold)[0] for fold in range(self.n_folds)] for stage_results in zip(*iterators): result_shape = [len(X)] + list(numpy.shape(stage_results[0])[1:]) result = numpy.zeros(result_shape) for fold in range(self.n_folds): result[folds_indices[fold]] = stage_results[fold] yield result def _get_feature_importances(self): """ Get features importance :return: pandas.DataFrame with column effect and `index=features` """ importances = numpy.sum([est.feature_importances_ for est in self.estimators], axis=0) # to get train_features, not features one_importances = self.estimators[0].get_feature_importances() return pandas.DataFrame({'effect': importances / numpy.max(importances)}, index=one_importances.index) class FoldingRegressor(FoldingBase, Regressor): """ This meta-regressor implements folding algorithm: * training data is splitted into n equal parts; * we train n regressors, each one is trained using n-1 folds To build unbiased predictions for data, pass the **same** dataset (with same order of events) as in training to `predict` or `staged_predict`, in which case classifier will use to predict each event that base classifier which didn't use that event during training. To use information from not one, but several estimators during predictions, provide appropriate voting function. Examples of voting function: >>> voting = lambda x: numpy.mean(x, axis=0) >>> voting = lambda x: numpy.median(x, axis=0) Parameters: ----------- :param sklearn.BaseEstimator base_estimator: base classifier, which will be used for training :param int n_folds: count of folds :param features: features used in training :type features: None or list[str] :param parallel_profile: profile for IPython cluster, None to compute locally. :type parallel_profile: None or str :param random_state: random state for reproducibility :type random_state: None or int or RandomState """ def _prepare_data(self, X, y, sample_weight): X = self._get_features(X) y_shape = numpy.shape(y) self.n_outputs_ = 1 if len(y_shape) < 2 else y_shape[1] return check_inputs(X, y, sample_weight=sample_weight, allow_multiple_targets=True) def predict(self, X, vote_function=None): """ Get predictions. To get unbiased predictions on training dataset, pass training data (with same order of events) and vote_function=None. :param X: pandas.DataFrame of shape [n_samples, n_features] :param vote_function: function to combine prediction of folds' estimators. If None then folding scheme is used. Parameters: numpy.ndarray [n_classifiers, n_samples] :type vote_function: None or function :rtype: numpy.array of shape [n_samples, n_outputs] """ return self._folding_prediction(X, prediction_function=get_regressor_prediction, vote_function=vote_function) def staged_predict(self, X, vote_function=None): """ Get predictions after each iteration of base estimator. To get unbiased predictions on training dataset, pass training data (with same order of events) and vote_function=None. :param X: pandas.DataFrame of shape [n_samples, n_features] :param vote_function: function to combine prediction of folds' estimators. If None then folding scheme is used. Parameters: numpy.ndarray [n_classifiers, n_samples] :type vote_function: None or function :rtype: sequence of numpy.array of shape [n_samples, n_outputs] """ return self._folding_prediction(X, prediction_function=get_regressor_staged_predict, vote_function=vote_function) def get_feature_importances(self): """ Get features importance :rtype: pandas.DataFrame with column effect and `index=features` """ return self._get_feature_importances() @property def feature_importances_(self): """Sklearn-way of returning feature importance. This returned as numpy.array, assuming that initially passed train_features=None """ return self.get_feature_importances().ix[self.features, 'effect'].values class FoldingClassifier(FoldingBase, Classifier): """ This meta-classifier implements folding algorithm: * training data is splitted into n equal parts; * we train n classifiers, each one is trained using n-1 folds To build unbiased predictions for data, pass the **same** dataset (with same order of events) as in training to `predict`, `predict_proba` or `staged_predict_proba`, in which case classifier will use to predict each event that base classifier which didn't use that event during training. To use information from not one, but several estimators during predictions, provide appropriate voting function. Examples of voting function: >>> voting = lambda x: numpy.mean(x, axis=0) >>> voting = lambda x: numpy.median(x, axis=0) Parameters: ----------- :param sklearn.BaseEstimator base_estimator: base classifier, which will be used for training :param int n_folds: count of folds :param features: features used in training :type features: None or list[str] :param parallel_profile: profile for IPython cluster, None to compute locally. :type parallel_profile: None or str :param random_state: random state for reproducibility :type random_state: None or int or RandomState """ def _prepare_data(self, X, y, sample_weight): X = self._get_features(X) self._set_classes(y) return check_inputs(X, y, sample_weight=sample_weight, allow_multiple_targets=True) def predict(self, X, vote_function=None): """ Predict labels. To get unbiased predictions on training dataset, pass training data (with same order of events) and vote_function=None. :param X: pandas.DataFrame of shape [n_samples, n_features] :param vote_function: function to combine prediction of folds' estimators. If None then folding scheme is used. :type vote_function: None or function :rtype: numpy.array of shape [n_samples] """ return numpy.argmax(self.predict_proba(X, vote_function=vote_function), axis=1) def predict_proba(self, X, vote_function=None): """ Predict probabilities. To get unbiased predictions on training dataset, pass training data (with same order of events) and vote_function=None. :param X: pandas.DataFrame of shape [n_samples, n_features] :param vote_function: function to combine prediction of folds' estimators. If None then folding scheme is used. :type vote_function: None or function :rtype: numpy.array of shape [n_samples, n_classes] """ result = self._folding_prediction(X, prediction_function=get_classifier_probabilities, vote_function=vote_function) return result / numpy.sum(result, axis=1, keepdims=True) def staged_predict_proba(self, X, vote_function=None): """ Predict probabilities after each stage of base_estimator. To get unbiased predictions on training dataset, pass training data (with same order of events) and vote_function=None. :param X: pandas.DataFrame of shape [n_samples, n_features] :param vote_function: function to combine prediction of folds' estimators. If None then folding scheme is used. :type vote_function: None or function :rtype: sequence of numpy.arrays of shape [n_samples, n_classes] """ for proba in self._staged_folding_prediction(X, prediction_function=get_classifier_staged_proba, vote_function=vote_function): yield proba / numpy.sum(proba, axis=1, keepdims=True) def get_feature_importances(self): """ Get features importance :rtype: pandas.DataFrame with column effect and `index=features` """ return self._get_feature_importances() @property def feature_importances_(self): """Sklearn-way of returning feature importance. This returned as numpy.array, assuming that initially passed train_features=None """ return self.get_feature_importances().ix[self.features, 'effect'].values
44.813953
118
0.659639
4a1b8142d6513fa2b1dbe4aba1485dae793082e6
6,643
py
Python
accelbyte_py_sdk/api/social/models/bulk_user_stat_item_update.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/social/models/bulk_user_stat_item_update.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
accelbyte_py_sdk/api/social/models/bulk_user_stat_item_update.py
encyphered/accelbyte-python-sdk
09c1e989d7251de308150fdcd3119d662ca2d205
[ "MIT" ]
null
null
null
# Auto-generated at 2021-09-27T17:12:34.256874+08:00 # from: Justice Social Service (1.17.1) # Copyright (c) 2018 - 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from ....core import Model class BulkUserStatItemUpdate(Model): """Bulk user stat item update Properties: user_id: (userId) REQUIRED str additional_key: (additionalKey) OPTIONAL str stat_code: (statCode) REQUIRED str update_strategy: (updateStrategy) REQUIRED str value: (value) REQUIRED float additional_data: (additionalData) OPTIONAL Dict[str, Any] """ # region fields user_id: str # REQUIRED additional_key: str # OPTIONAL stat_code: str # REQUIRED update_strategy: str # REQUIRED value: float # REQUIRED additional_data: Dict[str, Any] # OPTIONAL # endregion fields # region with_x methods def with_user_id(self, value: str) -> BulkUserStatItemUpdate: self.user_id = value return self def with_additional_key(self, value: str) -> BulkUserStatItemUpdate: self.additional_key = value return self def with_stat_code(self, value: str) -> BulkUserStatItemUpdate: self.stat_code = value return self def with_update_strategy(self, value: str) -> BulkUserStatItemUpdate: self.update_strategy = value return self def with_value(self, value: float) -> BulkUserStatItemUpdate: self.value = value return self def with_additional_data(self, value: Dict[str, Any]) -> BulkUserStatItemUpdate: self.additional_data = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result = {} if hasattr(self, "user_id") and self.user_id: result["userId"] = str(self.user_id) elif include_empty: result["userId"] = str() if hasattr(self, "additional_key") and self.additional_key: result["additionalKey"] = str(self.additional_key) elif include_empty: result["additionalKey"] = str() if hasattr(self, "stat_code") and self.stat_code: result["statCode"] = str(self.stat_code) elif include_empty: result["statCode"] = str() if hasattr(self, "update_strategy") and self.update_strategy: result["updateStrategy"] = str(self.update_strategy) elif include_empty: result["updateStrategy"] = str() if hasattr(self, "value") and self.value: result["value"] = float(self.value) elif include_empty: result["value"] = float() if hasattr(self, "additional_data") and self.additional_data: result["additionalData"] = {str(k0): v0 for k0, v0 in self.additional_data.items()} elif include_empty: result["additionalData"] = {} return result # endregion to methods # region static methods @classmethod def create( cls, user_id: str, stat_code: str, update_strategy: str, value: float, additional_key: Optional[str] = None, additional_data: Optional[Dict[str, Any]] = None, ) -> BulkUserStatItemUpdate: instance = cls() instance.user_id = user_id instance.stat_code = stat_code instance.update_strategy = update_strategy instance.value = value if additional_key is not None: instance.additional_key = additional_key if additional_data is not None: instance.additional_data = additional_data return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> BulkUserStatItemUpdate: instance = cls() if not dict_: return instance if "userId" in dict_ and dict_["userId"] is not None: instance.user_id = str(dict_["userId"]) elif include_empty: instance.user_id = str() if "additionalKey" in dict_ and dict_["additionalKey"] is not None: instance.additional_key = str(dict_["additionalKey"]) elif include_empty: instance.additional_key = str() if "statCode" in dict_ and dict_["statCode"] is not None: instance.stat_code = str(dict_["statCode"]) elif include_empty: instance.stat_code = str() if "updateStrategy" in dict_ and dict_["updateStrategy"] is not None: instance.update_strategy = str(dict_["updateStrategy"]) elif include_empty: instance.update_strategy = str() if "value" in dict_ and dict_["value"] is not None: instance.value = float(dict_["value"]) elif include_empty: instance.value = float() if "additionalData" in dict_ and dict_["additionalData"] is not None: instance.additional_data = {str(k0): v0 for k0, v0 in dict_["additionalData"].items()} elif include_empty: instance.additional_data = {} return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "userId": "user_id", "additionalKey": "additional_key", "statCode": "stat_code", "updateStrategy": "update_strategy", "value": "value", "additionalData": "additional_data", } # endregion static methods
36.5
109
0.59732
4a1b8173d80b00b2a0a2a9f60b007879c7ad459f
2,139
py
Python
sis/terms.py
ryanlovett/sis-cli
5efe5b9344b547c3f1365ef63a0ad33ec013fcca
[ "Apache-2.0" ]
null
null
null
sis/terms.py
ryanlovett/sis-cli
5efe5b9344b547c3f1365ef63a0ad33ec013fcca
[ "Apache-2.0" ]
null
null
null
sis/terms.py
ryanlovett/sis-cli
5efe5b9344b547c3f1365ef63a0ad33ec013fcca
[ "Apache-2.0" ]
null
null
null
# vim:set et sw=4 ts=4: import logging import sys from . import sis # logging logging.basicConfig(stream=sys.stdout, level=logging.WARNING) logger = logging.getLogger(__name__) # SIS endpoint terms_uri = "https://apis.berkeley.edu/sis/v1/terms" async def get_term_name(app_id, app_key, term_id): '''Given a term id, return the term's friendly name.''' uri = f'{terms_uri}/{term_id}' headers = { "Accept": "application/json", "app_id": app_id, "app_key": app_key } terms = await sis.get_items(uri, params, headers, 'terms') if len(terms) == 0: # if we are between terms return None return terms[0]['name'] async def get_term_id(app_id, app_key, position='Current'): '''Given a temporal position of Current, Previous, or Next, return the corresponding term's ID.''' uri = terms_uri headers = { "Accept": "application/json", "app_id": app_id, "app_key": app_key } params = { "temporal-position": position } terms = await sis.get_items(uri, params, headers, 'terms') logger.debug(f"terms: {terms}") if len(terms) == 0: # if we are between terms return None return terms[0]['id'] async def get_term_id_from_year_sem(app_id, app_key, year, semester): '''Given a year and Berkeley semester, return the corresponding term's ID.''' headers = { "Accept": "application/json", "app_id": app_id, "app_key": app_key } if semester == 'spring': mm_dd = '02-01' elif semester == 'summer': mm_dd = '07-01' elif semester == 'fall': mm_dd = '10-01' else: raise Exception(f"No such semester: {semester}") params = { "as-of-date": f"{year}-{mm_dd}" } uri = terms_uri terms = await sis.get_items(uri, params, headers, 'terms') return terms[0]['id'] async def normalize_term_id(app_id, app_key, term_id): '''Convert temporal position (current, next, previous) to a numeric term id, or passthrough a numeric term id.''' if term_id.isalpha(): term_id = await get_term_id(app_id, app_key, term_id) return term_id
31.455882
80
0.635344
4a1b81854597a10ae125307527d20961311fee42
960
py
Python
isi_sdk_8_2_0/test/test_groupnet_subnet_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_2_0/test/test_groupnet_subnet_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_2_0/test/test_groupnet_subnet_extended.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 7 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_2_0 from isi_sdk_8_2_0.models.groupnet_subnet_extended import GroupnetSubnetExtended # noqa: E501 from isi_sdk_8_2_0.rest import ApiException class TestGroupnetSubnetExtended(unittest.TestCase): """GroupnetSubnetExtended unit test stubs""" def setUp(self): pass def tearDown(self): pass def testGroupnetSubnetExtended(self): """Test GroupnetSubnetExtended""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_2_0.models.groupnet_subnet_extended.GroupnetSubnetExtended() # noqa: E501 pass if __name__ == '__main__': unittest.main()
23.414634
102
0.722917
4a1b81f0e2e61e39548eb91722cdc593e4c9e1f4
1,395
py
Python
folio/urls.py
KieranSweeden/fol.io
a6f231e3f9fb96841387b04d72131470c5fc3239
[ "OLDAP-2.5", "OLDAP-2.4", "OLDAP-2.3" ]
null
null
null
folio/urls.py
KieranSweeden/fol.io
a6f231e3f9fb96841387b04d72131470c5fc3239
[ "OLDAP-2.5", "OLDAP-2.4", "OLDAP-2.3" ]
null
null
null
folio/urls.py
KieranSweeden/fol.io
a6f231e3f9fb96841387b04d72131470c5fc3239
[ "OLDAP-2.5", "OLDAP-2.4", "OLDAP-2.3" ]
null
null
null
"""folio URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), path('', include('home.urls')), path('library/', include('library.urls')), path('suite/', include('suite.urls')), path('license/', include('license.urls')), path('account/', include('account.urls')), path('showcase/', include('showcase.urls')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) handler400 = 'folio.views.bad_request_400' handler403 = 'folio.views.user_forbidden_403' handler404 = 'folio.views.page_not_found_404' handler500 = 'folio.views.server_error_500'
36.710526
77
0.711828
4a1b822d02b7891aabc174ef83fe38a5ec6ba4ec
3,322
py
Python
KNN/mnistparser.py
ab3llini/MachineLearning
2ca8529782ed800a6463e35509e646d094dc42a1
[ "MIT" ]
null
null
null
KNN/mnistparser.py
ab3llini/MachineLearning
2ca8529782ed800a6463e35509e646d094dc42a1
[ "MIT" ]
null
null
null
KNN/mnistparser.py
ab3llini/MachineLearning
2ca8529782ed800a6463e35509e646d094dc42a1
[ "MIT" ]
null
null
null
from scipy.io import loadmat import random import sys import math import numpy as np # This class parses the mnist dataset and returns x and y vectors for training class MnistParser: def __init__(self, target=0): # Load the matlab file self.df = loadmat('mnist.mat')['mnist'][0][0] # Convert data from uint8 to int32 to avoid overflows and unexpected behaviour during computation self.tr_images = np.array(self.df[target]).astype(np.int32) self.tr_labels = np.array(self.df[target + 2]).astype(np.int32) # Returns an image at index idx def fetch_img(self, idx): return self.tr_images[:, :, idx], self.tr_labels[idx] # Select size samples from the dataset, shuffle is turned on by default def select(self, seed=None, shuffle=True, size=1000): if seed is not None: random.seed(seed) x, y = [], [] # Size of the dataset ltr = len(self.tr_labels) # Used as a helper to shuffle the images preserving proper label container = [] # Fetch all the images for idx in range(ltr): img, label = self.fetch_img(idx) container.append([img, label]) # If wanted, shuffle if shuffle: random.shuffle(container) # Select randomly a subset of container and use it as training set start_idx = random.randint(0, ltr - 1) # Method used to select a portion of a data frame, given start and end index x, y = self._subsplit(container, start_idx, size) return x, y # This method creates and returns k folds for the x and y vectors def k_fold(self, x, y, k): size = len(y) fold_size = math.floor(size / k) # Depending on size and k, we might need to account even for non equal folds rest = size % k x_folds = [] y_folds = [] # Creates and append elements to each fold for i in range(k): idx = i * fold_size if i == k - 1: x_folds.append(x[idx:idx + fold_size + rest]) y_folds.append(y[idx:idx + fold_size + rest]) else: x_folds.append(x[idx:idx + fold_size]) y_folds.append(y[idx:idx + fold_size]) return x_folds, y_folds @staticmethod def _subsplit(data, start, size): # Containers for x and y (either train, validation or test) x, y = [], [] # Starting index idx = start data_size = len(data) # Counter to keep track of how many samples have been added to the list added = 0 while added < size: if idx == data_size: idx = 0 # This is the current sample we are analyzing sample = data[idx] x.append(sample[0]) y.append(sample[1][0]) # Increment both counter and index added += 1 idx += 1 return x, y # Aux method used for debug to print an image on console def print_img_repr(self, img): for r in img: for c in r: if c > 0: sys.stdout.write("*") else: sys.stdout.write("-") sys.stdout.write("\n")
28.152542
105
0.562914
4a1b830a324209f7abbb9bebca002c79d2c0da4e
5,803
py
Python
homeassistant/components/opencv/image_processing.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
23
2017-11-15T21:03:53.000Z
2021-03-29T21:33:48.000Z
homeassistant/components/opencv/image_processing.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
9
2022-01-27T06:32:10.000Z
2022-03-31T07:07:51.000Z
homeassistant/components/opencv/image_processing.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
10
2018-01-01T00:12:51.000Z
2021-12-21T23:08:05.000Z
"""Support for OpenCV classification on images.""" from datetime import timedelta import logging import numpy import requests import voluptuous as vol from homeassistant.components.image_processing import ( CONF_ENTITY_ID, CONF_NAME, CONF_SOURCE, PLATFORM_SCHEMA, ImageProcessingEntity, ) from homeassistant.core import split_entity_id import homeassistant.helpers.config_validation as cv try: # Verify that the OpenCV python package is pre-installed import cv2 CV2_IMPORTED = True except ImportError: CV2_IMPORTED = False _LOGGER = logging.getLogger(__name__) ATTR_MATCHES = "matches" ATTR_TOTAL_MATCHES = "total_matches" CASCADE_URL = ( "https://raw.githubusercontent.com/opencv/opencv/master/data/" + "lbpcascades/lbpcascade_frontalface.xml" ) CONF_CLASSIFIER = "classifier" CONF_FILE = "file" CONF_MIN_SIZE = "min_size" CONF_NEIGHBORS = "neighbors" CONF_SCALE = "scale" DEFAULT_CLASSIFIER_PATH = "lbp_frontalface.xml" DEFAULT_MIN_SIZE = (30, 30) DEFAULT_NEIGHBORS = 4 DEFAULT_SCALE = 1.1 DEFAULT_TIMEOUT = 10 SCAN_INTERVAL = timedelta(seconds=2) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_CLASSIFIER): { cv.string: vol.Any( cv.isfile, vol.Schema( { vol.Required(CONF_FILE): cv.isfile, vol.Optional(CONF_SCALE, DEFAULT_SCALE): float, vol.Optional( CONF_NEIGHBORS, DEFAULT_NEIGHBORS ): cv.positive_int, vol.Optional(CONF_MIN_SIZE, DEFAULT_MIN_SIZE): vol.Schema( (int, int) ), } ), ) } } ) def _create_processor_from_config(hass, camera_entity, config): """Create an OpenCV processor from configuration.""" classifier_config = config.get(CONF_CLASSIFIER) name = "{} {}".format( config[CONF_NAME], split_entity_id(camera_entity)[1].replace("_", " ") ) processor = OpenCVImageProcessor(hass, camera_entity, name, classifier_config) return processor def _get_default_classifier(dest_path): """Download the default OpenCV classifier.""" _LOGGER.info("Downloading default classifier") req = requests.get(CASCADE_URL, stream=True) with open(dest_path, "wb") as fil: for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks fil.write(chunk) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the OpenCV image processing platform.""" if not CV2_IMPORTED: _LOGGER.error( "No OpenCV library found! Install or compile for your system " "following instructions here: http://opencv.org/releases.html" ) return entities = [] if CONF_CLASSIFIER not in config: dest_path = hass.config.path(DEFAULT_CLASSIFIER_PATH) _get_default_classifier(dest_path) config[CONF_CLASSIFIER] = {"Face": dest_path} for camera in config[CONF_SOURCE]: entities.append( OpenCVImageProcessor( hass, camera[CONF_ENTITY_ID], camera.get(CONF_NAME), config[CONF_CLASSIFIER], ) ) add_entities(entities) class OpenCVImageProcessor(ImageProcessingEntity): """Representation of an OpenCV image processor.""" def __init__(self, hass, camera_entity, name, classifiers): """Initialize the OpenCV entity.""" self.hass = hass self._camera_entity = camera_entity if name: self._name = name else: self._name = "OpenCV {0}".format(split_entity_id(camera_entity)[1]) self._classifiers = classifiers self._matches = {} self._total_matches = 0 self._last_image = None @property def camera_entity(self): """Return camera entity id from process pictures.""" return self._camera_entity @property def name(self): """Return the name of the image processor.""" return self._name @property def state(self): """Return the state of the entity.""" return self._total_matches @property def state_attributes(self): """Return device specific state attributes.""" return {ATTR_MATCHES: self._matches, ATTR_TOTAL_MATCHES: self._total_matches} def process_image(self, image): """Process the image.""" cv_image = cv2.imdecode(numpy.asarray(bytearray(image)), cv2.IMREAD_UNCHANGED) for name, classifier in self._classifiers.items(): scale = DEFAULT_SCALE neighbors = DEFAULT_NEIGHBORS min_size = DEFAULT_MIN_SIZE if isinstance(classifier, dict): path = classifier[CONF_FILE] scale = classifier.get(CONF_SCALE, scale) neighbors = classifier.get(CONF_NEIGHBORS, neighbors) min_size = classifier.get(CONF_MIN_SIZE, min_size) else: path = classifier cascade = cv2.CascadeClassifier(path) detections = cascade.detectMultiScale( cv_image, scaleFactor=scale, minNeighbors=neighbors, minSize=min_size ) matches = {} total_matches = 0 regions = [] # pylint: disable=invalid-name for (x, y, w, h) in detections: regions.append((int(x), int(y), int(w), int(h))) total_matches += 1 matches[name] = regions self._matches = matches self._total_matches = total_matches
29.912371
86
0.619335
4a1b830fc255c9c999aec0f224cbc85e4e04ebe7
397
py
Python
venv/Scripts/pip-script.py
libingluan/UI-test
3deba2931203aa8bfc564f6a162e82b6649e6606
[ "MIT" ]
null
null
null
venv/Scripts/pip-script.py
libingluan/UI-test
3deba2931203aa8bfc564f6a162e82b6649e6606
[ "MIT" ]
null
null
null
venv/Scripts/pip-script.py
libingluan/UI-test
3deba2931203aa8bfc564f6a162e82b6649e6606
[ "MIT" ]
null
null
null
#!F:\Python\engage-ui-test\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
30.538462
69
0.657431
4a1b83baef9aae8296c8a804e89e74606272081c
562
py
Python
manage.py
bartongroup/slivka-bio
049aee943503963ce5c9b14267fe001edd8e0125
[ "Apache-2.0" ]
null
null
null
manage.py
bartongroup/slivka-bio
049aee943503963ce5c9b14267fe001edd8e0125
[ "Apache-2.0" ]
3
2021-09-01T16:47:02.000Z
2022-02-09T09:01:31.000Z
manage.py
bartongroup/slivka-bio
049aee943503963ce5c9b14267fe001edd8e0125
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import os import sys home = os.path.dirname(os.path.abspath(__file__)) if __name__ == "__main__": home = os.environ.get('SLIVKA_HOME', home) os.environ.setdefault('SLIVKA_HOME', home) sys.path.append(home) try: import slivka.cli except ImportError: raise ImportError( "Couldn't import slivka. Make sure it's installed corectly " "and available on you PYTHONPATH environment variable. " "Check if you activated virtual environment." ) slivka.cli.main()
26.761905
72
0.649466
4a1b847094437e89e761dd4222f6ccc6a83dca94
1,795
py
Python
fortnite.py
laynebergstrom5505/TechnoAyanBOT
684901d2754ecf187cd7b419f7409c469f84ea66
[ "MIT" ]
3
2020-06-05T21:21:55.000Z
2020-06-06T19:45:17.000Z
fortnite.py
laynebergstrom5505/TechnoAyanBOT
684901d2754ecf187cd7b419f7409c469f84ea66
[ "MIT" ]
null
null
null
fortnite.py
laynebergstrom5505/TechnoAyanBOT
684901d2754ecf187cd7b419f7409c469f84ea66
[ "MIT" ]
1
2021-01-09T11:32:05.000Z
2021-01-09T11:32:05.000Z
"""Emoji Available Commands: .isro built by @r4v4n4 , isse bhi loot lo betichod""" from telethon import events import asyncio from uniborg.util import admin_cmd @borg.on(admin_cmd(pattern=r"fortnite")) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 5) #input_str = event.pattern_match.group(1) # if input_str == "isro": await event.edit("Connecting..") animation_chars = [ "⠀⠀⠀⣶⣿⣶ ⠀⠀⠀⣿⣿⣿⣀ ⠀⣀⣿⣿⣿⣿⣿⣿ ⣶⣿⠛⣭⣿⣿⣿⣿ ⠛⠛⠛⣿⣿⣿⣿⠿ ⠀⠀⠀⠀⣿⣿⣿ ⠀⠀⣀⣭⣿⣿⣿⣿⣀ ⠀⠤⣿⣿⣿⣿⣿⣿⠉ ⠀⣿⣿⣿⣿⣿⣿⠉ ⣿⣿⣿⣿⣿⣿ ⣿⣿⣶⣿⣿ ⠉⠛⣿⣿⣶⣤ ⠀⠀⠉⠿⣿⣿⣤ ⠀⠀⣀⣤⣿⣿⣿ ⠀⠒⠿⠛⠉⠿⣿ ⠀⠀⠀⠀⠀⣀⣿⣿ ⠀⠀⠀⠀⣶⠿⠿⠛", "⠀⠀⠀⠀⠀⠀⠀⠀⠀⣤⣤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿ ⠀⠀⣶⠀⠀⣀⣤⣶⣤⣉⣿⣿⣤⣀ ⠤⣤⣿⣤⣿⠿⠿⣿⣿⣿⣿⣿⣿⣿⣿⣀ ⠀⠛⠿⠀⠀⠀⠀⠉⣿⣿⣿⣿⣿⠉⠛⠿⣿⣤ ⠀⠀⠀⠀⠀⠀⠀⠀⠿⣿⣿⣿⠛⠀⠀⠀⣶⠿ ⠀⠀⠀⠀⠀⠀⠀⠀⣀⣿⣿⣿⣿⣤⠀⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⣶⣿⣿⣿⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠿⣿⣿⣿⣿⣿⠿⠉⠉ ⠀⠀⠀⠀⠀⠀⠀⠉⣿⣿⣿⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⣛⣿⣭⣶⣀ ⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠉⠛⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣉⠀⣶⠿ ⠀⠀⠀⠀⠀⠀⠀⠀⣶⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⠛⠿⠛", "⠀⠀⠀⠀⠀⠀⠀⠀⠀⣤⣶ ⠀⠀⠀⠀⠀⣀⣀⠀⣶⣿⣿⠶ ⣶⣿⠿⣿⣿⣿⣿⣿⣿⣿⣿⣤⣤ ⠀⠉⠶⣶⣀⣿⣿⣿⣿⣿⣿⣿⠿⣿⣤⣀ ⠀⠀⠀⣿⣿⠿⠉⣿⣿⣿⣿⣭⠀⠶⠿⠿ ⠀⠀⠛⠛⠿⠀⠀⣿⣿⣿⣉⠿⣿⠶ ⠀⠀⠀⠀⠀⣤⣶⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⣿⠒ ⠀⠀⠀⠀⣀⣿⣿⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⣿⣿⣿⠛⣭⣭⠉ ⠀⠀⠀⠀⠀⣿⣿⣭⣤⣿⠛ ⠀⠀⠀⠀⠀⠛⠿⣿⣿⣿⣭ ⠀⠀⠀⠀⠀⠀⠀⣿⣿⠉⠛⠿⣶⣤ ⠀⠀⠀⠀⠀⠀⣀⣿⠀⠀⣶⣶⠿⠿⠿ ⠀⠀⠀⠀⠀⠀⣿⠛ ⠀⠀⠀⠀⠀⠀⣭⣶", "⠀⠀⠀⠀⠀⠀⣶⣿⣶ ⠀⠀⠀⣤⣤⣤⣿⣿⣿ ⠀⠀⣶⣿⣿⣿⣿⣿⣿⣿⣶ ⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⠀⠀⣿⣉⣿⣿⣿⣿⣉⠉⣿⣶ ⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⠿⣿ ⠀⣤⣿⣿⣿⣿⣿⣿⣿⠿⠀⣿⣶ ⣤⣿⠿⣿⣿⣿⣿⣿⠿⠀⠀⣿⣿⣤ ⠉⠉⠀⣿⣿⣿⣿⣿⠀⠀⠒⠛⠿⠿⠿ ⠀⠀⠀⠉⣿⣿⣿⠀⠀⠀⠀⠀⠀⠉ ⠀⠀⠀⣿⣿⣿⣿⣿⣶ ⠀⠀⠀⠀⣿⠉⠿⣿⣿ ⠀⠀⠀⠀⣿⣤⠀⠛⣿⣿ ⠀⠀⠀⠀⣶⣿⠀⠀⠀⣿⣶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣭⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⣤⣿⣿⠉", "⠀⠀⠀⠀⣀ ⠀⠀⣶⣿⠿⠀⠀⠀⣀⠀⣤⣤ ⠀⣶⣿⠀⠀⠀⠀⣿⣿⣿⠛⠛⠿⣤⣀ ⣶⣿⣤⣤⣤⣤⣤⣿⣿⣿⣀⣤⣶⣭⣿⣶⣀ ⠉⠉⠉⠛⠛⠿⣿⣿⣿⣿⣿⣿⣿⠛⠛⠿⠿ ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⠿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⣭⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⣤⣿⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⠿ ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠉⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠉⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⣿⠛⠿⣿⣤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣿⠀⠀⠀⣿⣿⣤ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⣶⣿⠛⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⣤⣿⣿⠀⠀⠉ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉", ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 5])
13.496241
48
0.22507
4a1b85e0ae71dd959553748c119218db7fc5350a
6,622
py
Python
src/gerenciador_de_trajetos.py
denielfer/Malha-aeria---pbl-conectvidade-problema3
55fe417e797b2ecadb6dcf971191d328aaf9582a
[ "MIT" ]
null
null
null
src/gerenciador_de_trajetos.py
denielfer/Malha-aeria---pbl-conectvidade-problema3
55fe417e797b2ecadb6dcf971191d328aaf9582a
[ "MIT" ]
null
null
null
src/gerenciador_de_trajetos.py
denielfer/Malha-aeria---pbl-conectvidade-problema3
55fe417e797b2ecadb6dcf971191d328aaf9582a
[ "MIT" ]
null
null
null
from trecho import Trecho class Gerenciador_de_trajetos(): def __init__(self, trechos:list[Trecho]): self.trechos = trechos self.trajetos = {trecho.saida:{} for trecho in trechos} for i, trecho in enumerate(trechos): if(trecho.destino not in self.trajetos[trecho.saida]): self.trajetos[trecho.saida][trecho.destino] = [] self.trajetos[trecho.saida][trecho.destino].append({ 'companhia': trecho.empresa, 'index': i, 'opção': len(self.trajetos[trecho.saida][trecho.destino]) + 1, 'custo': trecho.custo, 'tempo': trecho.tempo, 'vagas_totais': trecho.quantidade_maxima_de_vagas}) def find_from(self, saida:str) -> dict: ''' Função para achar cidades conectadas as cidade informada ( {saida} ) @param saida: string inidicando de qual cidade queremos saber @return dict contendo informações das cidades conectadas e informações do voo que as conecta ( neste dicionario temos como chave o nome da cidade conectada e o seu dado correspondente é uma lista de dados de voos que conectam estas cidades ) ''' if (saida in self.trajetos): return self.trajetos[saida] return None def find_from_to(self, saida:str, destino:str) -> list[dict]: ''' Função para achar os voos que conectam cidade {saida} a {destino} @param saida: string inidicando de qual cidade queremos saber @param destino: string indicando para qual cidade queremos @return list de dict contendo informações dos voos que conectam estas cidades ''' if (saida in self.trajetos): if(destino in self.trajetos[saida]): return self.trajetos[saida][destino] return None def make_all_trajetos(self, saida:str, destino:str): ''' Função que faz a busca de todos os trajetos que ligam {saida} a {destino} @param saida: string indiciando a cidade de saida @parma destino: string indicando a cidade de destino @return: tupla contendo (success,resultado_da_busca) no qual success é um bool que guarda True se a existe caminhos em resultado_da_busca Resultado_da_busca é uma list de trajetos, um trajeto é uma lista de nome de cidades na ordem que leva de {saida} para {destino} ''' resultado = [] success = False search = {f'_{saida}':[saida]} while search != {}: # emquanto a busca nao acaba next_iteraration = {} for id in search: cidade = id.split('_')[1] if(cidade in self.trajetos): vizinhos = search[id] for cidade_conectada in self.trajetos[cidade]: if(cidade_conectada not in vizinhos): if cidade_conectada == destino: resultado.append(vizinhos + [cidade_conectada]) success = True else: next_iteraration[f'{cidade}_{cidade_conectada}'] = vizinhos + [cidade_conectada] #é usado {cidade}_{cidade_conectada} pois como usamos um dicionario pra guardar as buscas em processo ainda caso hajam em um mesmo nivel 2 cidades que tenham conecção com uma terceira cidade uma das 2 cidades teria sua busca apagada search = next_iteraration return success, resultado def get_vagas(self, index:int): ''' informa a quantidade de vagas disponiveis do trecho especificado @param index: int indicando o index do voo solicitado na lista de voos @return int indicando a quantidade de vagas resmanecentes do voo solicitado ''' trecho = self.trechos[index] return trecho.quantidade_maxima_de_vagas - trecho.quantidade_de_vagas_ocupadas def add_voo(self, voo:Trecho): ''' Função para adiciona um voo no gerenciador @param voo: Trecho que sera adicionado ''' self.trechos.append(voo) if(voo.saida not in self.trajetos): self.trajetos[voo.saida] = {} if(voo.destino not in self.trajetos[voo.saida]): self.trajetos[voo.saida][voo.destino] = [] self.trajetos[voo.saida][voo.destino].append({ 'companhia': voo.empresa, 'index': len(self.trechos) - 1, 'opção': len(self.trajetos[voo.saida][voo.destino]) + 1, 'custo': voo.custo, 'tempo': voo.tempo, 'vagas_totais': voo.quantidade_maxima_de_vagas}) if(__name__=='__main__'): saidas = 'asdfasaeqfef' destinos ='sdqefasdsqwd' trechos = [] for i in range(len(saidas)): trechos.append(Trecho(saida = saidas[i], destino = destinos[i], custo = 1, tempo = 1, empresa = 'A', quantidade_maxima_de_vagas = 10)) gerenciador = Gerenciador_de_trajetos(trechos) # print(f"Esperado :(True, [['a', 's', 'd'], ['a', 'f', 'd'], ['a', 'f', 'e', 'd'], ['a', 'f', 'q', 's', 'd']]) ->") print(f"Resultado busca de 'a' para 'd':{gerenciador.make_all_trajetos('a','d')}") assert (True, [['a', 's', 'd'], ['a', 'f', 'd'], ['a', 'f', 'e', 'd'], ['a', 'f', 'q', 's', 'd']]) == gerenciador.make_all_trajetos('a','d') # print('passed test: 1') # print(f"Esperado :(True, [['f', 'q', 's', 'a'], ['f', 'e', 'd', 'q', 's', 'a'], ['f', 'e', 'd', 'q', 's', 'a']]) -> ") print(f"Resultado busca de 's' para 'a':{gerenciador.make_all_trajetos('f','a')}") assert (True, [['f', 'q', 's', 'a'], ['f', 'd', 'q', 's', 'a'], ['f', 'e', 'd', 'q', 's', 'a']]) == gerenciador.make_all_trajetos('f','a') # print('passed test: 2') # del(trechos[8]) # print(f"Esperado :(True, [['a', 's', 'd'], ['a', 'f', 'd'], ['a', 'f', 'e', 'd'], ['a', 'f', 'q', 's', 'd']]) -> ") print(f"Resultado busca de 'a' para 'q':{gerenciador.make_all_trajetos('a','q')}") assert (True, [['a', 'f', 'q'], ['a', 's', 'd', 'q'], ['a', 'f', 'd', 'q'], ['a', 'f', 'e', 'd', 'q']]) == gerenciador.make_all_trajetos('a','q') # print('passed test: 3') # print(f"Esperado :(False, []) -> ") print(f"Resultado busca de 'w' para 'a':{gerenciador.make_all_trajetos('w','a')}") assert (False, []) == gerenciador.make_all_trajetos('w','a') # print('passed test: 4')
50.938462
345
0.561915
4a1b86a97e14ddaa5b69880886592f618d3b3342
8,707
py
Python
seleniumwire/proxy/client.py
nck/selenium-wire
be2cca0dc556ebf84daac84a3a0315378f871f48
[ "MIT" ]
5
2020-03-11T06:08:08.000Z
2021-09-22T02:46:51.000Z
seleniumwire/proxy/client.py
nck/selenium-wire
be2cca0dc556ebf84daac84a3a0315378f871f48
[ "MIT" ]
3
2020-08-18T09:35:55.000Z
2021-11-15T17:49:55.000Z
seleniumwire/proxy/client.py
nck/selenium-wire
be2cca0dc556ebf84daac84a3a0315378f871f48
[ "MIT" ]
1
2021-03-04T08:39:21.000Z
2021-03-04T08:39:21.000Z
import http.client import json import logging import threading from urllib.parse import quote_plus from .handler import ADMIN_PATH, CaptureRequestHandler, create_custom_capture_request_handler from .server import ProxyHTTPServer log = logging.getLogger(__name__) class AdminClient: """Provides an API for sending commands to a remote proxy server.""" def __init__(self, proxy_mgr_addr=None, proxy_mgr_port=None): # The address of the proxy manager if set self._proxy_mgr_addr = proxy_mgr_addr self._proxy_mgr_port = proxy_mgr_port # Reference to a created proxy instance and its address/port self._proxy = None self._proxy_addr = None self._proxy_port = None self._capture_request_handler = None def create_proxy(self, addr='127.0.0.1', port=0, proxy_config=None, options=None): """Creates a new proxy server and returns the address and port number that the server was started on. Args: addr: The address the proxy server will listen on. Default 127.0.0.1. port: The port the proxy server will listen on. Default 0 - which means use the first available port. proxy_config: The configuration for any upstream proxy server. Default is None. options: Additional options to configure the proxy. Returns: A tuple of the address and port number of the created proxy server. """ if self._proxy_mgr_addr is not None and self._proxy_mgr_port is not None: # TODO: ask the proxy manager to create a proxy and return that pass if options is None: options = {} custom_response_handler = options.get('custom_response_handler') if custom_response_handler is not None: self._capture_request_handler = create_custom_capture_request_handler(custom_response_handler) else: self._capture_request_handler = CaptureRequestHandler self._capture_request_handler.protocol_version = 'HTTP/1.1' self._capture_request_handler.timeout = options.get('connection_timeout', 5) self._proxy = ProxyHTTPServer((addr, port), self._capture_request_handler, proxy_config=proxy_config, options=options) t = threading.Thread(name='Selenium Wire Proxy Server', target=self._proxy.serve_forever) t.daemon = not options.get('standalone') t.start() socketname = self._proxy.socket.getsockname() self._proxy_addr = socketname[0] self._proxy_port = socketname[1] log.info('Created proxy listening on {}:{}'.format(self._proxy_addr, self._proxy_port)) return self._proxy_addr, self._proxy_port def destroy_proxy(self): """Stops the proxy server and performs any clean up actions.""" log.info('Destroying proxy') # If proxy manager set, we would ask it to do this self._proxy.shutdown() self._proxy.server_close() # Closes the server socket def get_requests(self): """Returns the requests currently captured by the proxy server. The data is returned as a list of dictionaries in the format: [{ 'id': 'request id', 'method': 'GET', 'path': 'http://www.example.com/some/path', 'headers': { 'Accept': '*/*', 'Host': 'www.example.com' }, 'response': { 'status_code': 200, 'reason': 'OK', 'headers': { 'Content-Type': 'text/plain', 'Content-Length': '15012' } } }, ...] Note that the value of the 'response' key may be None where no response is associated with a given request. Returns: A list of request dictionaries. """ return self._make_request('GET', '/requests') def get_last_request(self): """Returns the last request captured by the proxy server. This is more efficient than running get_requests()[-1] Returns: The last request as a dictionary or None if no requests have been made. """ return self._make_request('GET', '/last_request') def clear_requests(self): """Clears any previously captured requests from the proxy server.""" self._make_request('DELETE', '/requests') def find(self, path): """Find the first request that contains the specified path. Requests are searched in chronological order. Args: path: The request path which can be any part of the request URL. """ return self._make_request('GET', '/find?path={}'.format(quote_plus(str(path)))) def get_request_body(self, request_id): """Returns the body of the request with the specified request_id. Args: request_id: The request identifier. Returns: The binary request body, or None if the request has no body. """ return self._make_request('GET', '/request_body?request_id={}'.format(request_id)) or None def get_response_body(self, request_id): """Returns the body of the response associated with the request with the specified request_id. Args: request_id: The request identifier. Returns: The binary response body, or None if the response has no body. """ return self._make_request('GET', '/response_body?request_id={}'.format(request_id)) or None def set_header_overrides(self, headers): """Sets the header overrides. Args: headers: A dictionary of headers to be used as overrides. Where the value of a header is set to None, this header will be filtered out. """ self._make_request('POST', '/header_overrides', data=headers) def clear_header_overrides(self): """Clears any previously set header overrides.""" self._make_request('DELETE', '/header_overrides') def get_header_overrides(self): """Gets any previously set header overrides""" return self._make_request('GET', '/header_overrides') def set_rewrite_rules(self, rewrite_rules): """Sets the rewrite rules. Args: rewrite_rules: A list of rewrite rules. Each rule is a sublist (or 2-tuple) containing the pattern and replacement. """ self._make_request('POST', '/rewrite_rules', data=rewrite_rules) def clear_rewrite_rules(self): """Clears any previously set rewrite rules.""" self._make_request('DELETE', '/rewrite_rules') def get_rewrite_rules(self): """Gets any previously set rewrite rules""" return self._make_request('GET', '/rewrite_rules') def set_scopes(self, scopes): """Sets the scopes for the seleniumwire to log/modify request and response. Args: scopes: a regex string or list of regex string. """ self._make_request('POST', '/scopes', data=scopes) def reset_scopes(self): """Reset scopes to let proxy capture all requests.""" self._make_request('DELETE', '/scopes') def get_scopes(self): """Gets any previously set scopes""" return self._make_request('GET', '/scopes') def _make_request(self, command, path, data=None): url = '{}{}'.format(ADMIN_PATH, path) conn = http.client.HTTPConnection(self._proxy_addr, self._proxy_port) args = {} if data is not None: args['body'] = json.dumps(data).encode('utf-8') conn.request(command, url, **args) try: response = conn.getresponse() if response.status != 200: raise ProxyException('Proxy returned status code {} for {}'.format(response.status, url)) data = response.read() try: if response.getheader('Content-Type') == 'application/json': data = json.loads(data.decode(encoding='utf-8')) except (UnicodeDecodeError, ValueError): pass return data except ProxyException: raise except Exception as e: raise ProxyException('Unable to retrieve data from proxy: {}'.format(e)) finally: try: conn.close() except ConnectionError: pass class ProxyException(Exception): """Raised when there is a problem communicating with the proxy server."""
36.279167
106
0.618008
4a1b88ce65de32150bf2e8ceef8c499e16db5c81
14,246
py
Python
mutations/__init__.py
jkobject/JKBio
b25c0e3fb28a5088aacfa487b7500b786762dd7d
[ "Apache-2.0" ]
1
2021-04-06T18:04:51.000Z
2021-04-06T18:04:51.000Z
mutations/__init__.py
jkobject/JKBio
b25c0e3fb28a5088aacfa487b7500b786762dd7d
[ "Apache-2.0" ]
3
2021-01-08T15:09:32.000Z
2021-02-02T13:23:37.000Z
mutations/__init__.py
jkobject/JKBio
b25c0e3fb28a5088aacfa487b7500b786762dd7d
[ "Apache-2.0" ]
2
2021-01-08T15:01:45.000Z
2021-11-12T18:30:22.000Z
# Jeremie Kalfon # for BroadInsitute # in 2019 from __future__ import print_function import pandas as pd import numpy as np from JKBio.utils import helper as h import gzip import seaborn as sns from taigapy import TaigaClient tc = TaigaClient() def vcf_to_df(path, hasfilter=False, samples=['sample'], additional_cols=[]): """ transforms a vcf file into a dataframe file as best as it can Args: ----- path: str filepath to the vcf file hasfilter: bool whether or not the vcf has a filter column samples: list[str] colnames of the sample names. additional_cols: list[str] of additional colnames in the vcf already looks for 'DB', 'SOMATIC', 'GERMLINE', "OVERLAP", "IN_PON", "STR", "ReverseComplementedAlleles" Returns: -------- a dataframe fo the vcf a dict associating each column with its description (gathered from the vcf header) """ uniqueargs = ['DB', 'SOMATIC', 'GERMLINE', "OVERLAP", "IN_PON", "STR", "ReverseComplementedAlleles"] + additional_cols def read_comments(f): fields = {} description = {} for l in f: l = l.decode("utf-8") if type(l) is not str else l if l.startswith('##'): if 'FORMAT' in l[:20]: res = l.split('ID=')[1].split(',')[0] desc = l.split('Description=')[1][:-2] description.update({res: desc}) if 'INFO' in l[:20]: res = l.split('ID=')[1].split(',')[0] desc = l.split('Description=')[1][:-2] description.update({res: desc}) fields.update({res: []}) else: break return fields, description if path.endswith('.gz'): with gzip.open(path, 'r') as f: fields, description = read_comments(f) else: with open(path, 'r') as f: fields, description = read_comments(f) names = ['chr', 'pos', 'id', 'ref', 'alt', 'qual'] names += ['filter'] if hasfilter else ['strand'] names += ['data', 'format'] + samples a = pd.read_csv(path, sep='\t', comment="#", header=None, names=names, index_col=False) print(description) try: for j, val in enumerate(a.data.str.split(';').values.tolist()): res = dict([(v, True) if v in uniqueargs else tuple( v.split('=')) for v in val]) for k in fields.keys(): fields[k].append(res.get(k, None)) except ValueError: print(val) raise ValueError('unknown field') a = pd.concat([a.drop(columns='data'), pd.DataFrame( data=fields, index=a.index)], axis=1) for sample in samples: sorting = a.format[0].split(':') res = a[sample].str.split(':').values.tolist() maxcols = max([len(v) for v in res]) if maxcols - len(sorting) > 0: for i in range(maxcols - len(sorting)): sorting.append(sorting[-1] + '_' + str(i + 1)) if len(samples) > 1: sorting = [sample + '_' + v for v in sorting] a = pd.concat([a.drop(columns=sample), pd.DataFrame( data=res, columns=sorting, index=a.index)], axis=1) return a.drop(columns='format'), description def mafToMat(maf, boolify=False, freqcol='tumor_f', samplesCol="DepMap_ID", mutNameCol="Hugo_Symbol"): """ turns a maf file into a matrix of mutations x samples (works with multiple sample file) Args: ----- maf: dataframe of the maf file sample_col: str colname for samples boolify: bool whether or not to convert the matrix into a boolean (mut/no mut) freqcol: str colname where ref/alt frequencies are stored mutNameCol: str colname where mutation names are stored Returns: -------- the dataframe matrix """ maf = maf.sort_values(by=mutNameCol) samples = set(maf[samplesCol]) mut = pd.DataFrame(data=np.zeros((len(set(maf[mutNameCol])), 1)), columns=[ 'fake'], index=set(maf[mutNameCol])).astype(float) for i, val in enumerate(samples): h.showcount(i, len(samples)) mut = mut.join(maf[maf[samplesCol] == val].drop_duplicates( mutNameCol).set_index(mutNameCol)[freqcol].rename(val)) return mut.fillna(0).astype(bool if boolify else float).drop(columns=['fake']) def mergeAnnotations(firstmaf, additionalmaf, Genome_Change="Genome_Change", Start_position="Start_position", Chromosome="Chromosome", samplename="DepMap_ID", useSecondForConflict=True, dry_run=False): """ merges two maf files, taking carre of duplicate samples and duplicate (works with multiple sample file) Args: ----- firstmaf: dataframe the first maf file additionalmaf: dataframe the second maf file (need to contain same colnames) Genome_Change: str colnames of the Genome_Change column Start_position: str colnames of the Start_position column Chromosome: str colnames of the Chromosome column samplename: str colnames of the samplename column (for multiple samples, even if one, needs to have this column) useSecondForConflict: bool if false use the first df as reference else use the second one dry_run: if true, will just output conflict regions and not merge the dataframes Returns: ------- dataframe of the maf file if not dryrun, else an np array of the merge issues """ mutations = firstmaf.copy() mutations['ind'] = mutations[samplename]+"_"+mutations[Genome_Change] mutations['loci'] = mutations[samplename] + "_" + \ mutations[Chromosome] + "_" + mutations[Start_position].astype(str) additionalmaf['ind'] = additionalmaf[samplename] + \ "_"+additionalmaf[Genome_Change] additionalmaf['loci'] = additionalmaf[samplename] + "_" + \ additionalmaf[Chromosome] + "_" + \ additionalmaf[Start_position].astype(str) inboth = set(additionalmaf['loci']) & set(mutations['loci']) notineach = set(additionalmaf['ind']) ^ set(mutations['ind']) submut = mutations[mutations.loci.isin( inboth) & mutations.ind.isin(notineach)] subother = additionalmaf[additionalmaf.loci.isin( inboth) & additionalmaf.ind.isin(notineach)] issues = None if len(submut) > 0: print("found " + str(len(submut)) + " nonmatching mutations") issues = np.vstack([submut.sort_values(by='loci')[ Genome_Change].values, subother.sort_values(by='loci')[Genome_Change].values]).T if dry_run: print(issues) if not dry_run: if issues is not None: if useSecondForConflict: mutations = mutations[~mutations.ind.isin(set(submut.ind))] else: additionalmaf = additionalmaf[~additionalmaf.ind.isin( set(subother.ind))] mutations = mutations.append(additionalmaf[additionalmaf['ind'].isin( set(additionalmaf['ind']) - set(mutations['ind']))]) return mutations.drop(columns=['loci', 'ind']).sort_values(by=[samplename, Chromosome, Start_position]) else: return issues def filterAllelicFraction(maf, loc=['CGA_WES_AC'], sep=':', frac=0.1): """ filters a MAF file based on allelic fraction (works with multiple sample file) Args: ----- maf: dataframe of the maf file loc: list[str] colnames with the ref:alt sep: str separato between ref:alt frac: float min fraction Returns: ------- dataframe of the maf file """ muts = np.zeros((len(maf), 2)) for val in loc: muts += np.array([[v[0], 0] if 'NA' in v else v for v in maf[val].fillna( '0'+sep+'0').astype(str).str.split(sep).tolist()]).astype(int) muts = muts[:, 0]/(muts[:, 0]+muts[:, 1]) return maf[muts >= frac] def filterCoverage(maf, loc=['CGA_WES_AC'], sep=':', cov=4, altloc=0): """ filters a MAF file based on read coverage (works with multiple sample file) Args: ----- maf: dataframe of the maf file loc: list[str] colnames with the ref:alt sep: str separato between ref:alt cov: min coverage altloc: 0 to filter on alt and 1 to filter on ref Returns: ------- dataframe of the maf file """ muts = np.zeros((len(maf), 2)) for val in loc: muts += np.array([[v[0], 0] if 'NA' in v else v for v in maf[val].fillna( '0'+sep+'0').astype(str).str.split(sep).tolist()]).astype(int) return maf[muts[:, altloc] >= cov] def manageGapsInSegments(segtocp, Chromosome='Chromosome', End="End", Start="Start", cyto=None): """ extends the ends of segments in a segment file from GATK so as to remove all gaps ove the genome (works with multiple sample file) Args: ---- segtocp: dataframe of segments from GATK CN pipeline Chromosome: str the value for the Chromosome columns End: str the value for the End columns Start: str the value for the Start columns cyto: dataframe with chrom;end; columns giving the size of each chromosome (else puts last segment to 1000000000) """ prevchr = '' prevend = 0 count = 0 l = [] segments = segtocp.copy() le = len(segments) for k, val in segments.iterrows(): h.showcount(count, le) count += 1 if val[Chromosome] != prevchr: # we changed chromosome # we extend the previous segment (last of the prev chrom) to.. way enough if len(l) > 0: l[-1][2] = 1000000000 if cyto is None else cyto[cyto['chrom'] == prevchr]['end'].values[-1] # we extend the first segment to 0 l.append([val[Chromosome], 0, val[End]]) else: if val[Start] > prevend + 1: # we have a gap in the same chrom sizeofgap = val[Start] - prevend # we add to the previous one half of the gap l[-1][2] += int(sizeofgap / 2) if sizeofgap % 2 == 0 else int(sizeofgap / 2) + 1 # the rest to the other l.append([val[Chromosome], val[Start] - int(sizeofgap / 2), val[End]]) elif val[Start] < prevend: # this should never happen raise ValueError("start comes after end") else: l.append([val[Chromosome], val[Start], val[End]]) prevchr = val[Chromosome] prevend = val[End] # we extend the last one l[-1][2] = 1000000000 if cyto is None else cyto[cyto['chrom'] == prevchr]['end'].values[-1] segments[[Chromosome, Start, End]] = l return segments def toGeneMatrix(segments, gene_mapping, style='weighted', missingchrom=['Y']): """ makes a geneXsample matrix from segment level copy number (works with multiple sample file) Args: ---- style: str one of "weighted","mean","closest" segments: dataframe of segments containing: [Chromosome, Segment_Mean, Chromosome, start, end] columns gene_mapping: dataframe with symbol, ensembl_id columns for each gene missingchrom: list[str] chromosomes not to look into Returns: ------- pd.dataframe: the matrix """ samples = list(set(segments.DepMap_ID)) data = np.zeros((len(samples), len(gene_mapping))) for i, sample in enumerate(samples): segs = segments[segments.DepMap_ID == sample][[ 'Chromosome', 'Start', 'End', "Segment_Mean"]].values hasmissing = set(missingchrom) - set(segs[:, 0]) j = 0 h.showcount(i, len(samples)) for k, gene in enumerate(gene_mapping[['Chromosome', 'start', 'end']].values): if gene[0] in hasmissing: data[i, k] = np.nan continue while gene[0] != segs[j][0] or gene[1] >= segs[j][2]: #print("went beyong",gene, segs[j]) j += 1 # some genes are within other genes, we need to go back in the list of segment in that case while gene[1] < segs[j][1]: j -= 1 #print("decrease gene",gene) # we are entirely within the segment c = 1 if gene[2] <= segs[j][2]: data[i, k] = segs[j][3] else: # how much of the gene is covered by the segment coef = (segs[j][2] - gene[1]) / (gene[2] - gene[1]) # print('coef',coef) val = segs[j][3] * coef if style == "weighted" else segs[j][3] end = segs[j][2] # until the end of a segments goes beyon the end of the gene (say if we have X segments within the gene) while end < gene[2]: # pdb.set_trace() j += 1 c += 1 nextend = segs[j][2] if segs[j][2] < gene[2] else gene[2] # here, end (of prevsegment) is the next segment's start ncoef = (nextend - end) / (gene[2] - gene[1]) # print('multi',gene, ncoef) if style == "closest": if ncoef > coef: val = segs[j][3] else: # we switch it back (see line 894) ncoef = coef else: val += segs[j][3] * ncoef if style == "weighted" else segs[j][3] end = segs[j][2] coef = ncoef data[i, k] = val if style == "weighted" else val / c return pd.DataFrame(data=data, index=samples, columns=[i['symbol'] + ' (' + str(i['ensembl_id']) + ')' for _, i in gene_mapping.iterrows()]) def checkAmountOfSegments(segmentcn, thresh=850, samplecol="DepMap_ID"): """ if there is too many segments, something might be wrong (works with multiple sample file) will compute the number of segments for each samples from a df of segments from RSEM Args: ---- segmentcn: segment dataframe thresh: max ok amount """ failed = [] celllines = set(segmentcn[samplecol].tolist()) amounts = [] for cellline in celllines: val = segmentcn[segmentcn[samplecol] == cellline].shape[0] amounts.append(val) if val > thresh: failed.append(cellline) print(cellline, val) sns.kdeplot(amounts) return failed def checkGeneChangeAccrossAll(genecn, thresh=0.2): """ used to find poor quality genes in CN data (works with multiple sample file) compute given a df of gene x sample CN counts, how much change there is accross samples for a same gene and returns ones that are below the threshold Args: ----- genecn: gene cn data frame thresh: threshold in logfold change accross all of them """ return genecn.columns[genecn.var()<thresh].tolist()
37.989333
170
0.616945
4a1b89915f976f58166ac5862ff5ebe43c44a19d
3,365
py
Python
word_clustering.py
brannondorsey/GloVe-experiments
8dafbeaa20784282f8b339ce80b8fd4c81d3431c
[ "MIT" ]
59
2017-10-29T23:12:07.000Z
2022-03-11T04:21:28.000Z
word_clustering.py
brannondorsey/GloVe-experiments
8dafbeaa20784282f8b339ce80b8fd4c81d3431c
[ "MIT" ]
2
2018-07-06T12:47:59.000Z
2020-05-27T13:38:27.000Z
word_clustering.py
brannondorsey/GloVe-experiments
8dafbeaa20784282f8b339ce80b8fd4c81d3431c
[ "MIT" ]
20
2017-10-30T22:16:57.000Z
2022-02-19T03:18:20.000Z
# Notes for extension of script: # - User readline() to interactively search for word groups # - On a word miss, use L2 or cosine distance to select the nearest word vector # - This would require all 6B tokens to loaded in ram (but not clustered) # - Or use levenshtein distance assuming the word is spelled the same. # - Provide an interface to perform basic arithmetic on words (king - man + woman = queen) # Look at this result from 2014 English Wikipedia: # 'islamic', 'militant', 'islam', 'radical', 'extremists', 'islamist', 'extremist', 'outlawed' # 'war' - 'violence' + 'peace' = 'treaty' | 300d from sklearn.cluster import KMeans from numbers import Number from pandas import DataFrame import numpy as np import os, sys, codecs, argparse, pprint, time from utils import * from word_arithmetic import * def find_word_clusters(labels_array, cluster_labels): cluster_to_words = autovivify_list() for c, i in enumerate(cluster_labels): cluster_to_words[i].append(labels_array[c]) return cluster_to_words def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--vector_dim', '-d', type=int, choices=[50, 100, 200, 300], default=100, help='What vector GloVe vector dimension to use ' '(default: 100).') parser.add_argument('--num_words', '-n', type=int, default=10000, help='The number of lines to read from the GloVe ' 'vector file (default: 10000).') parser.add_argument('--num_clusters', '-k', default=1000, type=int, help='Number of resulting word clusters. ' 'The number of K in K-Means (default: 1000).') parser.add_argument('--n_jobs', '-j', type=int, default=-1, help='Number of cores to use when fitting K-Means. ' '-1 = all cores. ' 'More cores = less time, more memory (default: -1).') parser.add_argument('--glove_path', '-i', default='data/glove', help='GloVe vector file path (default: data/glove)') return parser.parse_args() if __name__ == '__main__': args = parse_args() filename = path = 'data/cache/{}'.format(get_cache_filename_from_args(args)) cluster_to_words = None start_time = time.time() vector_file = args.glove_path + '/' + 'glove.6B.' + str(args.vector_dim) + 'd.txt' df, labels_array = build_word_vector_matrix(vector_file, args.num_words) # if these are clustering parameters we've never seen before if not os.path.isfile(filename): print('No cached cluster found. Clustering using K-Means... ') kmeans_model = KMeans(init='k-means++', n_clusters=args.num_clusters, n_jobs=args.n_jobs, n_init=10) kmeans_model.fit(df) cluster_labels = kmeans_model.labels_ # cluster_inertia = kmeans_model.inertia_ cluster_to_words = list(find_word_clusters(labels_array, cluster_labels).values()) # cache these clustering results save_json(path, cluster_to_words) print('Saved {} clusters to {}. Cached for later use.'.format(len(cluster_to_words), path)) # if this kmeans fitting has already been cached else: print('Cached K-Means cluster found, loading from disk.') cluster_to_words = load_json(filename) for i, words in enumerate(cluster_to_words): print('CLUSTER {}: {}'.format(i + 1, ', '.join(words))) if start_time != None: print("--- {:.2f} seconds ---".format((time.time() - start_time)))
37.388889
102
0.692422
4a1b89fcd318a738f02a055985aa241526fe3abb
2,115
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/SNMPv2_TC.py
CiscoDevNet/ydk-py
073731fea50694d0bc6cd8ebf10fec308dcc0aa9
[ "ECL-2.0", "Apache-2.0" ]
177
2016-03-15T17:03:51.000Z
2022-03-18T16:48:44.000Z
cisco-ios-xr/ydk/models/cisco_ios_xr/SNMPv2_TC.py
CiscoDevNet/ydk-py
073731fea50694d0bc6cd8ebf10fec308dcc0aa9
[ "ECL-2.0", "Apache-2.0" ]
18
2016-03-30T10:45:22.000Z
2020-07-14T16:28:13.000Z
cisco-ios-xr/ydk/models/cisco_ios_xr/SNMPv2_TC.py
CiscoDevNet/ydk-py
073731fea50694d0bc6cd8ebf10fec308dcc0aa9
[ "ECL-2.0", "Apache-2.0" ]
85
2016-03-16T20:38:57.000Z
2022-02-22T04:26:02.000Z
""" SNMPv2_TC """ import sys from collections import OrderedDict from ydk.types import Entity as _Entity_ from ydk.types import EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class RowStatus(Enum): """ RowStatus (Enum Class) .. data:: active = 1 .. data:: notInService = 2 .. data:: notReady = 3 .. data:: createAndGo = 4 .. data:: createAndWait = 5 .. data:: destroy = 6 """ active = Enum.YLeaf(1, "active") notInService = Enum.YLeaf(2, "notInService") notReady = Enum.YLeaf(3, "notReady") createAndGo = Enum.YLeaf(4, "createAndGo") createAndWait = Enum.YLeaf(5, "createAndWait") destroy = Enum.YLeaf(6, "destroy") @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _SNMPv2_TC as meta return meta._meta_table['RowStatus'] class StorageType(Enum): """ StorageType (Enum Class) .. data:: other = 1 .. data:: volatile = 2 .. data:: nonVolatile = 3 .. data:: permanent = 4 .. data:: readOnly = 5 """ other = Enum.YLeaf(1, "other") volatile = Enum.YLeaf(2, "volatile") nonVolatile = Enum.YLeaf(3, "nonVolatile") permanent = Enum.YLeaf(4, "permanent") readOnly = Enum.YLeaf(5, "readOnly") @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _SNMPv2_TC as meta return meta._meta_table['StorageType'] class TruthValue(Enum): """ TruthValue (Enum Class) .. data:: true = 1 .. data:: false = 2 """ true = Enum.YLeaf(1, "true") false = Enum.YLeaf(2, "false") @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _SNMPv2_TC as meta return meta._meta_table['TruthValue']
19.40367
126
0.644917
4a1b8aa00e01755ab622116bb0978e9ffeeef1f2
9,548
py
Python
gitops_server/workers/deployer/deploy.py
uptick/gitops
f65057ef337a6fe34f3510c889c2284c1fdb7218
[ "BSD-2-Clause" ]
6
2020-05-12T14:58:20.000Z
2022-02-01T09:40:55.000Z
gitops_server/workers/deployer/deploy.py
uptick/gitops
f65057ef337a6fe34f3510c889c2284c1fdb7218
[ "BSD-2-Clause" ]
22
2019-09-04T13:33:12.000Z
2022-03-17T06:05:16.000Z
gitops_server/workers/deployer/deploy.py
uptick/gitops
f65057ef337a6fe34f3510c889c2284c1fdb7218
[ "BSD-2-Clause" ]
null
null
null
import asyncio import json import logging import os import tempfile import uuid from typing import List, Optional from gitops.common.app import App from gitops_server import settings from gitops_server.types import AppDefinitions, UpdateAppResult from gitops_server.utils import get_repo_name_from_url, github, run, slack from gitops_server.utils.git import temp_repo BASE_REPO_DIR = "/var/gitops/repos" ROLE_ARN = f"arn:aws:iam::{settings.ACCOUNT_ID}:role/GitopsAccess" logger = logging.getLogger("gitops") GITOPS_MAX_PARALLEL_DEPLOYS = os.environ.get("GITOPS_MAX_PARALLEL_DEPLOYS", "5") async def post_init_summary( source, username, added_apps, updated_apps, removed_apps, commit_message ): deltas = "" for typ, d in [("Adding", added_apps), ("Updating", updated_apps), ("Removing", removed_apps)]: if d: deltas += f"\n\t• {typ}: {', '.join(f'`{app}`' for app in sorted(d))}" await slack.post( f"A deployment from `{source}` has been initiated by *{username}* for cluster" f" `{settings.CLUSTER_NAME}`, the following apps will be updated:{deltas}\nCommit Message:" f" {commit_message}" ) async def post_result(app: App, source: str, result: UpdateAppResult): github_deployment_url = str(app.values.get("github/deployment_url", "")) if result["exit_code"] != 0: await github.update_deployment( github_deployment_url, status=github.STATUSES.failure, description=f"Failed to deploy app. {result['output']}", ) await slack.post( f"Failed to deploy app `{result['app_name']}` from `{source}` for cluster" f" `{settings.CLUSTER_NAME}`:\n>>>{result['output']}" ) else: await github.update_deployment( github_deployment_url, status=github.STATUSES.in_progress, description="Helm installed app into cluster. Waiting for pods to deploy.", ) async def post_result_summary(source: str, results: List[UpdateAppResult]): n_success = sum([r["exit_code"] == 0 for r in results]) n_failed = sum([r["exit_code"] != 0 for r in results]) await slack.post( f"Deployment from `{source}` for `{settings.CLUSTER_NAME}` results summary:\n" f"\t• {n_success} succeeded\n" f"\t• {n_failed} failed" ) async def load_app_definitions(url: str, sha: str) -> AppDefinitions: logger.info(f'Loading app definitions at "{sha}".') async with temp_repo(url, sha=sha) as repo: app_definitions = AppDefinitions(name=get_repo_name_from_url(url)) app_definitions.from_path(repo) return app_definitions class Deployer: def __init__( self, pusher: str, commit_message: str, current_app_definitions: AppDefinitions, previous_app_definitions: AppDefinitions, skip_migrations: bool = False, ): self.pusher = pusher self.commit_message = commit_message self.current_app_definitions = current_app_definitions self.previous_app_definitions = previous_app_definitions self.deploy_id = str(uuid.uuid4()) self.skip_migrations = skip_migrations # Max parallel helm installs at a time # Kube api may rate limit otherwise self.semaphore = asyncio.Semaphore(int(GITOPS_MAX_PARALLEL_DEPLOYS)) @classmethod async def from_push_event(cls, push_event): url = push_event["repository"]["clone_url"] pusher = push_event["pusher"]["name"] commit_message = push_event.get("head_commit", {}).get("message") skip_migrations = "--skip-migrations" in commit_message logger.info(f'Initialising deployer for "{url}".') before = push_event["before"] after = push_event["after"] current_app_definitions = await load_app_definitions(url, sha=after) # TODO: Handle case where there is no previous commit. previous_app_definitions = await load_app_definitions(url, sha=before) return cls( pusher, commit_message, current_app_definitions, previous_app_definitions, skip_migrations, ) async def deploy(self): added_apps, updated_apps, removed_apps = self.calculate_app_deltas() if not (added_apps | updated_apps | removed_apps): logger.info("No deltas; aborting.") return logger.info( f"Running deployment for these deltas: A{list(added_apps)}, U{list(updated_apps)}," f" R{list(removed_apps)}" ) await post_init_summary( self.current_app_definitions.name, self.pusher, added_apps=added_apps, updated_apps=updated_apps, removed_apps=removed_apps, commit_message=self.commit_message, ) update_results = await asyncio.gather( *[ self.update_app_deployment(self.current_app_definitions.apps[app_name]) for app_name in (added_apps | updated_apps) ] ) uninstall_results = await asyncio.gather( *[ self.uninstall_app(self.previous_app_definitions.apps[app_name]) for app_name in removed_apps ] ) await post_result_summary( self.current_app_definitions.name, update_results + uninstall_results ) async def uninstall_app(self, app: App) -> UpdateAppResult: async with self.semaphore: logger.info(f"Uninstalling app {app.name!r}.") result = await run( f"helm uninstall {app.name} -n {app.values['namespace']}", suppress_errors=True ) update_result = UpdateAppResult(app_name=app.name, **result) await post_result(app, self.current_app_definitions.name, update_result) return update_result async def update_app_deployment(self, app: App) -> Optional[UpdateAppResult]: app.set_value("deployment.labels.gitops/deploy_id", self.deploy_id) app.set_value("deployment.labels.gitops/status", github.STATUSES.in_progress) if github_deployment_url := app.values.get("github/deployment_url"): app.set_value("deployment.annotations.github/deployment_url", github_deployment_url) async with self.semaphore: logger.info(f"Deploying app {app.name!r}.") if app.chart.type == "git": async with temp_repo( app.chart.git_repo_url, sha=app.chart.git_sha ) as chart_folder_path: await run(f"cd {chart_folder_path}; helm dependency build") with tempfile.NamedTemporaryFile(suffix=".yml") as cfg: cfg.write(json.dumps(app.values).encode()) cfg.flush() os.fsync(cfg.fileno()) result = await run( "helm upgrade" " --install" " --timeout=600s" f"{' --set skip_migrations=true' if self.skip_migrations else ''}" f" -f {cfg.name}" f" --namespace={app.values['namespace']}" f" {app.name}" f" {chart_folder_path}", suppress_errors=True, ) elif app.chart.type == "helm": with tempfile.NamedTemporaryFile(suffix=".yml") as cfg: cfg.write(json.dumps(app.values).encode()) cfg.flush() os.fsync(cfg.fileno()) chart_version_arguments = ( f" --version={app.chart.version}" if app.chart.version else "" ) await run(f"helm repo add {app.chart.helm_repo} {app.chart.helm_repo_url}") result = await run( "helm upgrade" " --install" " --timeout=600s" f"{' --set skip_migrations=true' if self.skip_migrations else ''}" f" -f {cfg.name}" f" --namespace={app.values['namespace']}" f" {app.name}" f" {app.chart.helm_chart} {chart_version_arguments}", suppress_errors=True, ) else: logger.warning("Local is not implemented yet") return None update_result = UpdateAppResult(app_name=app.name, **result) await post_result(app, self.current_app_definitions.name, update_result) return update_result def calculate_app_deltas(self): cur = self.current_app_definitions.apps.keys() prev = self.previous_app_definitions.apps.keys() added = cur - prev common = cur & prev removed = prev - cur updated = set() for app_name in common: cur_app = self.current_app_definitions.apps[app_name] prev_app = self.previous_app_definitions.apps[app_name] if cur_app != prev_app: if cur_app.is_inactive(): logger.info(f"Skipping changes in app {app_name!r}: marked inactive.") continue updated.add(app_name) return added, updated, removed
41.513043
99
0.593632
4a1b8ced5d17906823e74441ca4fa96f1e9b02f0
4,344
py
Python
2020-02/three_way/train.py
kimwooglae/keraspp
0c052c0e1cd693c852122bdeee743c841c369f85
[ "MIT" ]
null
null
null
2020-02/three_way/train.py
kimwooglae/keraspp
0c052c0e1cd693c852122bdeee743c841c369f85
[ "MIT" ]
null
null
null
2020-02/three_way/train.py
kimwooglae/keraspp
0c052c0e1cd693c852122bdeee743c841c369f85
[ "MIT" ]
null
null
null
# USAGE # python train.py --model sequential --plot output/sequential.png # python train.py --model functional --plot output/functional.png # python train.py --model class --plot output/class.png # set the matplotlib backend so figures can be saved in the background import matplotlib matplotlib.use("Agg") # there seems to be an issue with TensorFlow 2.0 throwing non-critical # warnings regarding gradients when using the model sub-classing # feature -- I found that by setting the logging level I can suppress # the warnings from showing up (likely won't be required in future # releases of TensorFlow) import logging logging.getLogger("tensorflow").setLevel(logging.CRITICAL) # import the necessary packages from model import MiniVGGNetModel from model import minigooglenet_functional from model import shallownet_sequential from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import classification_report from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import SGD from tensorflow.keras.datasets import cifar10 import matplotlib.pyplot as plt import numpy as np import argparse # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-m", "--model", type=str, default="sequential", choices=["sequential", "functional", "class"], help="type of model architecture") ap.add_argument("-p", "--plot", type=str, required=True, help="path to output plot file") args = vars(ap.parse_args()) # initialize the initial learning rate, batch size, and number of # epochs to train for INIT_LR = 1e-2 BATCH_SIZE = 128 NUM_EPOCHS = 60 # initialize the label names for the CIFAR-10 dataset labelNames = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] # load the CIFAR-10 dataset print("[INFO] loading CIFAR-10 dataset...") ((trainX, trainY), (testX, testY)) = cifar10.load_data() # scale the data to the range [0, 1] trainX = trainX.astype("float32") / 255.0 testX = testX.astype("float32") / 255.0 # convert the labels from integers to vectors lb = LabelBinarizer() trainY = lb.fit_transform(trainY) testY = lb.transform(testY) # construct the image generator for data augmentation aug = ImageDataGenerator(rotation_range=18, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest") # check to see if we are using a Keras Sequential model if args["model"] == "sequential": # instantiate a Keras Sequential model print("[INFO] using sequential model...") model = shallownet_sequential(32, 32, 3, len(labelNames)) # check to see if we are using a Keras Functional model elif args["model"] == "functional": # instantiate a Keras Functional model print("[INFO] using functional model...") model = minigooglenet_functional(32, 32, 3, len(labelNames)) # check to see if we are using a Keras Model class elif args["model"] == "class": # instantiate a Keras Model sub-class model print("[INFO] using model sub-classing...") model = MiniVGGNetModel(len(labelNames)) # initialize the optimizer compile the model and opt = SGD(lr=INIT_LR, momentum=0.9, decay=INIT_LR / NUM_EPOCHS) print("[INFO] training network...") model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) # train the network H = model.fit_generator( aug.flow(trainX, trainY, batch_size=BATCH_SIZE), validation_data=(testX, testY), steps_per_epoch=trainX.shape[0] // BATCH_SIZE, epochs=NUM_EPOCHS, verbose=1) # evaluate the network print("[INFO] evaluating network...") predictions = model.predict(testX, batch_size=BATCH_SIZE) print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), target_names=labelNames)) # determine the number of epochs and then construct the plot title N = np.arange(0, NUM_EPOCHS) title = "Training Loss and Accuracy on CIFAR-10 ({})".format( args["model"]) # plot the training loss and accuracy plt.style.use("ggplot") plt.figure() plt.plot(N, H.history["loss"], label="train_loss") plt.plot(N, H.history["val_loss"], label="val_loss") plt.plot(N, H.history["accuracy"], label="train_acc") plt.plot(N, H.history["val_accuracy"], label="val_acc") plt.title(title) plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend() plt.savefig(args["plot"])
35.317073
70
0.755525
4a1b8d3c9b87305626c844701a94d02473bf4082
1,653
py
Python
scripts/interf.py
mkarim2017/insarzd
e7d05f836e7ca044166e38bad549629ed00d71f1
[ "ECL-2.0", "Apache-2.0" ]
28
2019-10-04T01:18:29.000Z
2022-02-15T11:18:18.000Z
scripts/interf.py
mkarim2017/insarzd
e7d05f836e7ca044166e38bad549629ed00d71f1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
scripts/interf.py
mkarim2017/insarzd
e7d05f836e7ca044166e38bad549629ed00d71f1
[ "ECL-2.0", "Apache-2.0" ]
11
2019-10-04T08:36:54.000Z
2021-06-21T08:47:28.000Z
#!/usr/bin/env python3 import os import sys import shutil import argparse import isce import isceobj from crlpac import getWidth from crlpac import getLength from crlpac import runCmd from crlpac import create_xml def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser( description='interferometry') parser.add_argument('-m', '--master', dest='master', type=str, required=True, help = 'master SLC') parser.add_argument('-s', '--slave', dest='slave', type=str, required=True, help = 'resampled slave SLC') parser.add_argument('-i', '--intf', dest='intf', type=str, required=True, help = '(output) interferogram') parser.add_argument('-a', '--amp', dest='amp', type=str, required=True, help = '(output) amplitudes of master and slave SLCs') if len(sys.argv) <= 1: print('') parser.print_help() sys.exit(1) else: return parser.parse_args() if __name__ == '__main__': inps = cmdLineParse() #get information masterWidth = getWidth(inps.master + '.xml') masterLength = getLength(inps.master + '.xml') #run interf cmd = "$INSAR_ZERODOP_BIN/interf {} {} {} {} {}".format(inps.master, inps.slave, inps.intf, inps.amp, masterWidth) #print("{}".format(cmd)) runCmd(cmd) #get xml file for interferogram create_xml(inps.intf, masterWidth, masterLength, 'int') #get xml file for amplitude image create_xml(inps.amp, masterWidth, masterLength, 'amp') #./interf.py -m 20130927.slc -s 20141211.slc -i 20130927-20141211.int -a 20130927-20141211.amp
25.828125
118
0.646098
4a1b8e3ee29b5aa7eee417fe30560a6ac7150289
13,324
py
Python
manager/test/test_workers.py
mrandrey228/Naumachia
93cacfd44eea0f004c630fb37de2f4529f9699ad
[ "MIT" ]
79
2017-07-10T16:19:53.000Z
2022-03-19T17:57:40.000Z
manager/test/test_workers.py
mrandrey228/Naumachia
93cacfd44eea0f004c630fb37de2f4529f9699ad
[ "MIT" ]
33
2018-01-11T06:18:02.000Z
2022-02-26T05:22:48.000Z
manager/test/test_workers.py
mrandrey228/Naumachia
93cacfd44eea0f004c630fb37de2f4529f9699ad
[ "MIT" ]
11
2018-02-10T12:20:55.000Z
2021-12-04T23:46:41.000Z
from .common import ensure_redis_is_online from app.db import DB, Address from functools import wraps from os import path from redis import Redis import app.manager as sut import unittest import weakref test_dir = path.dirname(path.realpath(__file__)) sut.CHALLENGE_FODLER = test_dir class Shim: """A simple shim class to allow test isolation Attributes: real: An object or model this Shim will proxy access to overrides (dict[str, object]): A dictionary of attributes overridden by the Shim and the origonal values active (bool): If true this Shim will be forwarding it's sets and gets Args: real: Sets the ``real`` attribute """ def __init__(self, real): super(Shim, self).__setattr__('real', real) super(Shim, self).__setattr__('overrides', dict()) super(Shim, self).__setattr__('active', False) def __getattr__(self, attr): try: return super(Shim, self).__getattribute__(attr) except AttributeError: if not self.active: raise return getattr(self.real, attr) def __setattr__(self, attr, val): if self.active: self.overrides[attr] = getattr(self.real, attr) setattr(self.real, attr, val) else: super(Shim, self).__setattr__(attr, val) def __enter__(self): super(Shim, self).__setattr__('active', True) return self def __exit__(self, *args, **kwargs): super(Shim, self).__setattr__('active', False) for attr, val in self.overrides.items(): setattr(self.real, attr, val) def assertCalled(test, times=None): def decorator(fn): fn._called = 0 def finalize(fn): if times is not None: test.assertEqual(fn._called, times, "Function '{}' was not called the correct number of times".format(fn.__name__)) else: test.assertTrue(fn._called, "Function '{}' was never called".format(fn.__name__)) weakref.finalize(fn, finalize, fn) @wraps(fn) def wrapper(*args, **kwargs): fn._called += 1 fn(*args, **kwargs) return wrapper return decorator def assertNotCalled(test, name=None): def do_not_call(*args, **kwargs): if name: test.assertTrue(False, "Function {} should not be called".format(name)) else: test.assertTrue(False, "Function should not be called") return do_not_call class OnlineWorkerTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.container_token = ensure_redis_is_online() cls.redis = Redis(host='localhost', port=6379, db=0) DB.redis = cls.redis def setUp(self): self.redis.flushall() self.vpn = DB.Vpn('abc') self.vpn.update( veth = "fakeveth", veth_state = "down", chal = DB.Challenge('chalfoo') ) self.vpn.chal.files.extend(["test-compose.yml"]) self.user = DB.User('auserid') self.user.update( vlan = 4000, cn = 'ausername', status = "active" ) self.addr = Address('127.0.0.1', 42) self.connection = DB.Connection(self.addr) self.connection.update( addr = self.addr, alive = True, user = self.user, vpn = self.vpn ) self.cluster = None self.user.connections.add(self.connection) self.vpn.links[4000] = 'bridged' def test_veth_worker_run(self): with Shim(sut) as manager: @assertCalled(self, 1) def ensure_vlan_up(vpn, verbose): self.assertEqual(self.vpn.id, vpn.id) manager.ensure_veth_up = ensure_vlan_up uut = manager.VethWorker(DB.Vpn.veth.key(self.vpn), 'set') uut.run() uut = manager.VethWorker(DB.Vpn.veth.key(self.vpn), 'del') uut.run() def test_vlan_worker_run(self): with Shim(sut) as manager: with Shim(manager.VlanWorker) as Worker: @assertCalled(self, 3) def ensure_veth_up(vpn, verbose=False): self.assertEqual(self.vpn.id, vpn.id) manager.ensure_veth_up = ensure_veth_up @assertCalled(self, 1) def bring_up_link(worker, vpn, user): self.assertEqual(self.vpn.id, vpn.id) self.assertEqual(self.user.id, user.id) Worker.bring_up_link = bring_up_link @assertCalled(self, 2) def bridge_cluster(worker, vpn, user): self.assertEqual(self.vpn.id, vpn.id) self.assertEqual(self.user.id, user.id) Worker.bridge_cluster = bridge_cluster self.vpn.links[self.user.vlan] = 'down' uut = manager.VlanWorker(DB.Connection.alive.key(self.connection), 'set') uut.run() Worker.bring_up_link = assertNotCalled(self, 'bring_up_link') self.vpn.links[self.user.vlan] = 'up' uut.run() Worker.bridge_cluster = assertNotCalled(self, 'bridge_cluster') self.vpn.links[self.user.vlan] = 'bridged' uut.run() manager.ensure_veth_up = assertNotCalled(self, 'ensure_veth_up') uut = manager.VlanWorker(DB.Connection.alive.key(self.connection), 'del') uut.run() def test_cluster_worker_run(self): with Shim(sut.ClusterWorker) as Worker: @assertCalled(self, 1) def ensure_cluster_up(worker, user, vpn, cluster, connection): self.assertEqual(self.vpn.id, vpn.id) self.assertEqual(self.user.id, user.id) self.assertEqual(DB.Cluster(user, vpn).id, cluster.id) self.assertEqual(self.connection.id, connection.id) Worker.ensure_cluster_up = ensure_cluster_up Worker.ensure_cluster_stopped = assertNotCalled(self, 'ensure_cluster_stopped') uut = sut.ClusterWorker(DB.Connection.alive.key(self.connection), 'set') uut.run() Worker.ensure_cluster_up = assertNotCalled(self, 'ensure_cluster_up') self.connection.alive = False uut = sut.ClusterWorker(DB.Connection.alive.key(self.connection), 'set') uut.run() self.assertFalse(self.connection.exists()) self.connection.update( addr = self.addr, alive = False, user = self.user, vpn = self.vpn ) uut = sut.ClusterWorker(DB.Connection.alive.key(self.connection), 'del') uut.run() @assertCalled(self, 1) def ensure_cluster_stopped(worker, user, vpn, cluster): self.assertEqual(self.vpn.id, vpn.id) self.assertEqual(self.user.id, user.id) self.assertEqual(DB.Cluster(user, vpn).id, cluster.id) Worker.ensure_cluster_stopped = ensure_cluster_stopped self.user.status = 'disconnected' uut = sut.ClusterWorker(DB.Connection.alive.key(self.connection), 'set') uut.run() self.assertFalse(self.connection.exists()) def test_ensure_veth_up(self): with Shim(sut) as manager: class FakeCmd: @assertCalled(self, 1) def __init__(this, veth): self.assertEqual(veth, self.vpn.veth) @assertCalled(self, 1) def run(self): pass manager.LinkUpCmd = FakeCmd manager.ensure_veth_up(self.vpn) manager.LinkUpCmd = assertNotCalled(self, "LinkUpCmd") self.assertEqual(self.vpn.veth_state, 'up') manager.ensure_veth_up(self.vpn) def test_vlan_worker_bring_up_link(self): with Shim(sut) as manager: class FakeCmd: ADD = object() @assertCalled(self, 1) def __init__(this, action, veth, vlan): self.assertEqual(veth, self.vpn.veth) self.assertEqual(vlan, self.user.vlan) @assertCalled(self, 1) def run(self): pass manager.VlanCmd = FakeCmd worker = manager.VlanWorker('foo', 'bar') worker.bring_up_link(self.vpn, self.user) self.assertEquals(self.vpn.links[self.user.vlan], 'up') def test_vlan_worker_bridge_cluster(self): with Shim(sut) as manager: class FakeCmd: ADDIF = object() @assertCalled(self, 1) def __init__(this, action, bridge_id, vlan_if): pass @assertCalled(self, 1) def run(self): pass manager.BrctlCmd = FakeCmd manager.get_bridge_id = lambda cluster_id: "bogus" # The real function requires docker cluster = DB.Cluster(self.user, self.vpn) self.vpn.links[self.user.vlan] = 'up' worker = manager.VlanWorker('foo', 'bar') worker.bridge_cluster(self.vpn, self.user) self.assertNotEqual(self.vpn.links[self.user.vlan], 'bridged') cluster.status = "up" worker.bridge_cluster(self.vpn, self.user) self.assertEqual(self.vpn.links[self.user.vlan], 'bridged') def test_cluster_worker_ensure_cluster_up(self): with Shim(sut) as manager: with Shim(sut.ClusterWorker) as Worker: class FakeCmd: UP = object() @assertCalled(self, 1) def __init__(this, action, project, files): pass @assertCalled(self, 1) def run(self): pass @assertCalled(self, 1) def bridge_link_if_ready(this, user, vpn, cluster): self.assertEqual(self.vpn.id, vpn.id) self.assertEqual(self.user.id, user.id) self.assertEqual(DB.Cluster(user, vpn).id, cluster.id) Worker.bridge_link_if_ready = bridge_link_if_ready manager.ComposeCmd = FakeCmd cluster = DB.Cluster(self.user, self.vpn) cluster.delete() worker = manager.ClusterWorker('foo', 'bar') worker.ensure_cluster_up(self.user, self.vpn, cluster, self.connection) worker.ensure_cluster_up(self.user, self.vpn, cluster, self.connection) self.assertEqual(cluster.status, 'up') def test_cluster_worker_ensure_cluster_stopped(self): with Shim(sut) as manager: class FakeCmd: STOP = object() @assertCalled(self, 1) def __init__(this, action, project, files): pass @assertCalled(self, 1) def run(self): pass manager.ComposeCmd = FakeCmd cluster = DB.Cluster(self.user, self.vpn) cluster.delete() worker = manager.ClusterWorker('foo', 'bar') worker.ensure_cluster_stopped(self.user, self.vpn, cluster) cluster.status = 'up' worker.ensure_cluster_stopped(self.user, self.vpn, cluster) self.assertEqual(cluster.status, 'stopped') worker.ensure_cluster_stopped(self.user, self.vpn, cluster) self.assertEqual(cluster.status, 'stopped') def test_cluster_worker_bridge_link_if_ready(self): with Shim(sut) as manager: class FakeBrctlCmd: ADDIF = object() @assertCalled(self, 1) def __init__(this, action, bridge_id, vlan_if): pass @assertCalled(self, 1) def run(self): pass manager.BrctlCmd = FakeBrctlCmd class FakeIpFlushCmd: @assertCalled(self) def __init__(this, bridge_id): pass @assertCalled(self) def run(self): pass manager.IpFlushCmd = FakeIpFlushCmd manager.get_bridge_id = lambda cluster_id: "bogus" # The real function requires docker cluster = DB.Cluster(self.user, self.vpn) cluster.delete() self.vpn.links[self.user.vlan] = 'down' worker = manager.ClusterWorker('foo', 'bar') worker.bridge_link_if_ready(self.user, self.vpn, cluster) self.assertEqual(self.vpn.links[self.user.vlan], 'down') self.vpn.links[self.user.vlan] = 'up' worker.bridge_link_if_ready(self.user, self.vpn, cluster) self.assertEqual(self.vpn.links[self.user.vlan], 'bridged') worker.bridge_link_if_ready(self.user, self.vpn, cluster) self.assertEqual(self.vpn.links[self.user.vlan], 'bridged')
33.062035
131
0.561693
4a1b8e7ed603d50aa125e307dacad440773900f8
2,226
py
Python
clitool/_unicodecsv.py
skitazaki/python-clitool
4971f8d093d51c6fd0e6cc536bbb597f78b570ab
[ "Apache-2.0" ]
1
2016-10-24T14:19:40.000Z
2016-10-24T14:19:40.000Z
clitool/_unicodecsv.py
skitazaki/python-clitool
4971f8d093d51c6fd0e6cc536bbb597f78b570ab
[ "Apache-2.0" ]
null
null
null
clitool/_unicodecsv.py
skitazaki/python-clitool
4971f8d093d51c6fd0e6cc536bbb597f78b570ab
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ This file is for Python 2.7. And all classes are from `Python Official Document`_. .. _`Python Official Document`: http://docs.python.org/library/csv.html More sophisticated implementation is available on "csvkit_" module. .. _csvkit: http://pypi.python.org/pypi/csvkit """ import codecs import csv from six import PY3 if PY3: import io as cStringIO else: import cStringIO class UTF8Recoder: """ Iterator that reads an encoded stream and reencodes the input to UTF-8 """ def __init__(self, f, encoding): self.reader = codecs.getreader(encoding)(f) def __iter__(self): return self def next(self): return self.reader.next().encode("utf-8") class UnicodeReader: """ A CSV reader which will iterate over lines in the CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): f = UTF8Recoder(f, encoding) self.reader = csv.reader(f, dialect=dialect, **kwds) def next(self): row = self.reader.next() return [unicode(s, "utf-8") for s in row] def __iter__(self): return self class UnicodeWriter: """ A CSV writer which will write rows to CSV file "f", which is encoded in the given encoding. """ def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): # Redirect output to a queue self.queue = cStringIO.StringIO() self.writer = csv.writer(self.queue, dialect=dialect, **kwds) self.stream = f self.encoder = codecs.getincrementalencoder(encoding)() def writerow(self, row): self.writer.writerow([s.encode("utf-8") for s in row]) # Fetch UTF-8 output from the queue ... data = self.queue.getvalue() data = data.decode("utf-8") # ... and reencode it into the target encoding data = self.encoder.encode(data) # write to the target stream self.stream.write(data) # empty queue self.queue.truncate(0) def writerows(self, rows): for row in rows: self.writerow(row) # vim: set et ts=4 sw=4 cindent fileencoding=utf-8 :
25.883721
74
0.62938
4a1b8edb8e85ba2d17d692f0bbeae2cde32aae2c
12
py
Python
python/testData/console/ipython/psi/shell2.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/console/ipython/psi/shell2.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/console/ipython/psi/shell2.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
!cd /var/etc
12
12
0.666667
4a1b908f38eb338741885ed85eb1dc51241590d5
22,293
py
Python
jdma_control/backends/ElasticTapeBackend.py
cedadev/django-jdma_control
9223aa2f8773e78c6f78197ae89289452d1285c9
[ "BSD-3-Clause" ]
null
null
null
jdma_control/backends/ElasticTapeBackend.py
cedadev/django-jdma_control
9223aa2f8773e78c6f78197ae89289452d1285c9
[ "BSD-3-Clause" ]
23
2018-03-21T14:36:24.000Z
2020-04-17T07:58:33.000Z
jdma_control/backends/ElasticTapeBackend.py
cedadev/django-jdma_control
9223aa2f8773e78c6f78197ae89289452d1285c9
[ "BSD-3-Clause" ]
null
null
null
"""Class for a JASMIN Data Migration App backend which targets Elastic Tape. Note that this is the simplified version, which (simply) uses functions from the Elastic Tape client to GET and PUT the data. Transport is handled by the script ET_transfer_mp, which is a version of the et_transfer_mp script which runs on et1.ceda.ac.uk.""" import os from django.db.models import Q import requests from bs4 import BeautifulSoup from time import sleep import subprocess import logging from jdma_control.backends.Backend import Backend from jdma_control.backends.ConnectionPool import ConnectionPool from jdma_control.scripts.common import get_ip_address from jdma_control.scripts.config import read_backend_config # Import elastic_tape client library import elastic_tape.client as ET_client import jdma_site.settings as settings # create the connection pool - these are needed for the get transfers, as each # transfer thread requires a connection that is kept up et_connection_pool = ConnectionPool() class ETException(Exception): pass def get_completed_puts(backend_object): """Get all the completed puts for the Elastic Tape""" # avoiding a circular dependency from jdma_control.models import MigrationRequest, Migration, StorageQuota # get the storage id storage_id = StorageQuota.get_storage_index("elastictape") # list of completed PUTs to return completed_PUTs = [] ET_Settings = backend_object.ET_Settings # now loop over the PUT requests put_reqs = MigrationRequest.objects.filter( (Q(request_type=MigrationRequest.PUT) | Q(request_type=MigrationRequest.MIGRATE)) & Q(stage=MigrationRequest.PUTTING) & Q(migration__stage=Migration.PUTTING) & Q(migration__storage__storage=storage_id) ) for pr in put_reqs: # form the url and get the response, parse the document using bs4 holdings_url = "{}?batch={}".format( ET_Settings["ET_INPUT_BATCH_SUMMARY_URL"], pr.migration.external_id ) sleep(0.1) # 100 ms delay to avoid overloading the server r = requests.get(holdings_url) if r.status_code == 200: bs = BeautifulSoup(r.content, "xml") else: # log error rather than raising exception logging.error("Error in ET monitor:{} is unreachable".format(str(holdings_url))) continue # get the 2nd table - 1st is just a heading table table = bs.find_all("table")[1] if len(table) == 0: continue # get the first row rows = table.find_all("tr") if len(rows) < 2: continue row_1 = table.find_all("tr")[1] # the status is the first column cols = row_1.find_all("td") if len(cols) < 3: continue transfer_id = cols[0].get_text() status = cols[0].get_text() # check for completion if status in ["SYNCED", "TAPED"]: completed_PUTs.append(pr.migration.external_id) return completed_PUTs def get_completed_gets(backend_object): # avoiding a circular dependency from jdma_control.models import MigrationRequest, StorageQuota, MigrationArchive # get the storage id storage_id = StorageQuota.get_storage_index("elastictape") ET_Settings = backend_object.ET_Settings # list of completed GETs to return completed_GETs = [] # now loop over the GET requests get_reqs = MigrationRequest.objects.filter( (Q(stage=MigrationRequest.GETTING) | Q(stage=MigrationRequest.VERIFY_GETTING)) & Q(migration__storage__storage=storage_id) ) # backend = ElasticTapeBackend() for gr in get_reqs: # get a list of synced files for this workspace and user and batch retrieval_url = "{}?rr_id={};workspace={}".format( ET_Settings["ET_RETRIEVAL_URL"], gr.transfer_id, gr.migration.workspace.workspace, ) # use requests to fetch the URL sleep(0.1) # 100 ms delay to avoid overloading the server r = requests.get(retrieval_url) if r.status_code == 200: bs = BeautifulSoup(r.content, "xml") else: logging.error("Error in ET monitor:{} is unreachable".format(str(holdings_url))) continue # get the 2nd table from beautiful soup table = bs.find_all("table")[1] # check that a table has been found - there might be a slight # synchronisation difference between jdma_transfer and jdma_monitor # i.e. the entry might be in the database but not updated on the # RETRIEVAL_URL if len(table) == 0: continue # get the first row rows = table.find_all("tr") if len(rows) < 2: continue row_1 = table.find_all("tr")[1] # the transfer id is the first column, the status is the third cols = row_1.find_all("td") if len(cols) < 3: continue transfer_id = cols[0].get_text() status = cols[2].get_text() # this is a paranoid check - this really shouldn't happen! if (transfer_id != gr.transfer_id): raise ETException("Transfer id mismatch") # check for completion if status == "COMPLETED": completed_GETs.append(gr.transfer_id) return completed_GETs def get_completed_deletes(backend_object): """Get all the completed deletes for the Elastic Tape""" # avoiding a circular dependency from jdma_control.models import MigrationRequest, Migration, StorageQuota # get the storage id storage_id = StorageQuota.get_storage_index("elastictape") ET_Settings = backend_object.ET_Settings # list of completed DELETEs to return completed_DELETEs = [] # now loop over the PUT requests del_reqs = MigrationRequest.objects.filter( (Q(request_type=MigrationRequest.DELETE)) & Q(stage=MigrationRequest.DELETING) & Q(migration__storage__storage=storage_id) ) for dr in del_reqs: # assume deleted deleted = True # get a list of synced batches for this workspace and user holdings_url = "{}?workspace={};caller={};level=batch".format( ET_Settings["ET_HOLDINGS_URL"], dr.migration.workspace.workspace, dr.migration.user.name ) # use requests to fetch the URL sleep(0.1) # 100 ms delay to avoid overloading the server r = requests.get(holdings_url) if r.status_code == 200: bs = BeautifulSoup(r.content, "xml") else: logging.error("Error in ET monitor:{} is unreachable".format(str(holdings_url))) continue # if the dr.migration.external_id is not in the list of batches # then the delete has completed batches = bs.select("batch") for b in batches: batch_id = b.find("batch_id").text.strip() if batch_id == dr.migration.external_id: deleted = False if deleted: # it's been deleted so add to the returned list of completed DELETEs completed_DELETEs.append(dr.migration.external_id) return completed_DELETEs def user_in_workspace(jdma_user, jdma_workspace, ET_Settings): """Determine whether a user is in a workspace by using requests to fetch a URL and beautifulsoup to parse the table returned. We'll ask Kevin O'Neill to provide a JSON version of this.""" # get from requests sleep(0.1) # 100 ms delay to avoid overloading the server r = requests.get(ET_Settings["ET_ROLE_URL"]) if r.status_code == 200: bs = BeautifulSoup(r.content, "html5lib") else: raise ETException(ET_Settings["ET_ROLE_URL"] + " is unreachable.") # parse into dictionary from table gws_roles = {} current_gws = "" for row in bs.select("tr"): if row is not None: cells = row.findAll("td") if len(cells) >= 4: # get the group workspace gws = cells[0].text.strip() user = cells[2].text.strip() if len(gws) > 0: current_gws = gws gws_roles[current_gws] = [user] else: gws_roles[current_gws].append(user) # no roles were returned if gws_roles == {}: raise ETException( ET_Settings["ET_ROLE_URL"] + " did not return a valid list of roles" ) # check if workspace exists if jdma_workspace not in gws_roles: return False else: return jdma_user in gws_roles[jdma_workspace] def workspace_quota_remaining(jdma_user, jdma_workspace, ET_Settings): """Get the workspace quota by using requests to fetch a URL. Unfortunately, the JSON version of this URL returns ill-formatted JSON with a XML header! So we can't just parse that, and we use the regular HTML table view and parse using beautifulsoup again.""" # form the URL url = "{}{}{}{}{}".format(ET_Settings["ET_QUOTA_URL"], "?workspace=", jdma_workspace, ";caller=", jdma_user) # fetch using requests sleep(0.1) # 100 ms delay to avoid overloading the server r = requests.get(url) if r.status_code == 200: # success, so parse the json bs = BeautifulSoup(r.content, "html5lib") else: raise ETException(url + " is unreachable.") quota_allocated = -1 quota_used = -1 for row in bs.select("tr"): if row is not None: cells = row.findAll("td") # quota_allocated is position 4, quota_used is position 5 (both in bytes) if len(cells) == 7: quota_allocated = int(cells[4].text.strip()) quota_used = int(cells[5].text.strip()) # check that valid quotas were returned if quota_allocated == -1 or quota_used == -1: raise ETException(url + " did not return a quota.") return quota_allocated - quota_used class ElasticTapeBackend(Backend): """Class for a JASMIN Data Migration App backend which targets Elastic Tape. Inherits from Backend class and overloads inherited functions.""" def __init__(self): """Need to set the verification directory and archive staging directory""" self.ET_Settings = read_backend_config(self.get_id()) self.VERIFY_DIR = self.ET_Settings["VERIFY_DIR"] self.ARCHIVE_STAGING_DIR = self.ET_Settings["ARCHIVE_STAGING_DIR"] def exit(self): """Shutdown the backend. Do nothing for ET.""" return def available(self, credentials): """Return whether the elastic tape is available or not""" try: return "available" except Exception: return "not available" def monitor(self, thread_number=None): """Determine which batches have completed.""" completed_PUTs = [] completed_GETs = [] completed_DELETEs = [] try: completed_PUTs = get_completed_puts(self) except SystemExit: completed_PUTs = [] except ETException as e: logging.error("Error in ET monitor: {}".format(str(e))) try: completed_GETs = get_completed_gets(self) except SystemExit: completed_GETs = [] except ETException as e: logging.error("Error in ET monitor: {}".format(str(e))) try: completed_DELETEs = get_completed_deletes(self) except SystemExit: completed_DELETEs = [] except ETException as e: logging.error("Error in ET monitor: {}".format(str(e))) return completed_PUTs, completed_GETs, completed_DELETEs def pack_data(self): """Should the data be packed into a tarfile for this backend?""" return False def piecewise(self): """For elastic tape the data shouldn't be uploaded archive by archive but uploaded all at once.""" return False def create_connection(self, user, workspace, credentials, mode="upload"): """Create connection to Elastic Tape, using the supplied credentials. (There are no required credentials!) """ if mode == "upload" or mode == "delete": conn = ET_client.client.client( self.ET_Settings["PUT_HOST"], self.ET_Settings["PORT"] ) elif mode == "download": conn = ET_client.client.client( self.ET_Settings["GET_HOST"], self.ET_Settings["PORT"] ) conn.connect() # save the user and workspace conn.jdma_user = user conn.jdma_workspace = workspace return conn def close_connection(self, conn): """Close the connection to the backend. """ conn.close() return def download_files(self, conn, get_req, file_list, target_dir): """Create a download batch for the elastic tape. This will also instigate the transfer, as ET requires the conn to stay up during the transfer. """ # the ET client interface is contained in ET_conn try: # don't do anything if filelist length is 0 if len(file_list) == 0: return # get the external id external_id = get_req.migration.external_id # Get the ip address of the sender ip = get_ip_address() # create a new batch batch = conn.newBatch(conn.jdma_workspace, None) # override the requester in the Batch batch.requestor = conn.jdma_user # override the ip address batch.PI = ip # overwrite any files batch.override = 1 # get the common_path cp = get_req.migration.common_path # add the files to the batch for f in file_list: fname = os.path.join(cp,f) batch.addFile(fname) """The code below here is replicated from elastic_tape.client.client We need to replicate it as we need to get the transfer id for monitoring purposes.""" # get the files from the ET client retrieve_batch = batch.retrieve() # get the request id and store it in the migration request reqID = conn.msgIface.retrieveBatch(retrieve_batch) get_req.transfer_id = reqID get_req.save() conn.msgIface.sendStartRetrieve(reqID) downloadThreads = [] handler = ET_client.client.DownloadThread for i in range(self.ET_Settings["THREADS"]): t = handler() t.daemon = True downloadThreads.append(t) t.setup(reqID, target_dir, conn.host, conn.port) t.start() while not conn.msgIface.checkRRComplete(reqID): sleep(5) bad_files = conn.msgIface.FinishRR(reqID) for t in downloadThreads: t.stop() t.join() # raise the list of badfiles as an exception - mark migraiton as # FAILED if len(bad_files) > 0: raise Exception( "Could not download files: {}".format(bad_files) ) # elastic tape copies these files to a directory that looks like: # /target_dir/group_workspaces/jasmin4/gws_name/user_name/original_directory # whereas what we want them to look like : # /target_dir/original_directory # This can be acheived by using the original path of the migration # and moving the files from the /target_dir/common_path... to just # the target dir # we have to trim the first character from the common path (which is # a / to get os.path.join to join the paths correctly) source_dir_cp = os.path.join(target_dir, cp[1:]) # get a list of all the files in the source directory for f in os.listdir(source_dir_cp): full_source_path = "{}/{}".format(source_dir_cp, f) subprocess.call(["/bin/mv", full_source_path, target_dir]) # we now want to delete the empty directories that are left after the move # this is everything beneath /target_dir/first_directory_of_common_path dir_to_remove = os.path.join(target_dir, cp.split("/")[1]) subprocess.call(["/bin/rm", "-r", dir_to_remove]) except Exception as e: raise Exception(str(e)) return str(external_id) def upload_files(self, conn, put_req, prefix, file_list): """Create a batch on the elastic tape and upload the filenames. The batch id will be created and saved to the Migration. """ try: # don't do anything if filelist length is 0 if len(file_list) == 0: return # Get the ip address of the sender ip = get_ip_address() batch_name = put_req.migration.label # create a new batch batch = conn.newBatch(conn.jdma_workspace, batch_name) # override the requester in the Batch batch.requestor = conn.jdma_user # override the ip address batch.PI = ip # override the override batch.override = 0 # add the files to the batch for f in file_list: batch.addFile(f) # close the batch and get the batch id - convert to string on return # from function batch_id = batch.register() # register the batch_id as the external id put_req.migration.external_id = batch_id put_req.migration.save() except Exception as e: batch_id = None raise ETException(str(e)) return str(batch_id) def delete_batch(self, conn, del_req, batch_id): """Delete a archive of files from the elastic tape""" conn.deleteBatchByID(conn.jdma_workspace, conn.jdma_user, int(batch_id)) def user_has_put_permission(self, conn): """Check whether the user has permission to access the elastic tape, and whether they have permission from the groupworkspace """ # groupworkspace permission gws_permission = Backend._user_has_put_permission( self, conn.jdma_user, conn.jdma_workspace.workspace ) # elastic tape permission - fetch from URL and use beautifulsoup to # parse the returned table into something meaningful et_permission = user_in_workspace( conn.jdma_user, conn.jdma_workspace.workspace, self.ET_Settings ) return gws_permission & et_permission def user_has_get_permission(self, batch_id, conn): """Check whether the user has permission to access the elastic tape, and whether they have permission from the groupworkspace """ gws_permission = Backend._user_has_get_permission( self, conn.jdma_user, conn.jdma_workspace.workspace ) # elastic tape permission et_permission = user_in_workspace( conn.jdma_user, conn.jdma_workspace.workspace, self.ET_Settings ) return gws_permission & et_permission def user_has_delete_permission(self, batch_id, conn): """Check whether the user has permission to delete the object from the elastic tape, and whether they have permission from the groupworkspace LDAP. """ # check from the groupworkspace gws_permission = Backend._user_has_delete_permission( self, conn.jdma_user, conn.jdma_workspace.workspace, batch_id ) # elastic tape permission et_permission = user_in_workspace( conn.jdma_user, conn.jdma_workspace.workspace, self.ET_Settings ) return gws_permission & et_permission def user_has_put_quota(self, conn): """Check the remaining quota for the user in the workspace. We just check the database here, i.e. check that we are not over quota. When jdma_lock calculates the file sizes we can check the quota again and flag the transfer as FAILED if it goes over the quota. """ from jdma_control.models import StorageQuota # get the storage id storage_id = StorageQuota.get_storage_index("elastictape") storage_quota = StorageQuota.objects.filter( storage=storage_id, workspace__workspace=conn.jdma_workspace )[0] jdma_quota_remaining = storage_quota.quota_size - storage_quota.quota_used # get the quota from the elastic tape feed et_quota_remaining = workspace_quota_remaining( conn.jdma_user, conn.jdma_workspace.workspace, self.ET_Settings, ) return (jdma_quota_remaining > 0) & (et_quota_remaining > 0) def get_name(self): return "Elastic Tape" def get_id(self): return "elastictape" def required_credentials(self): """Get the keys of the required credentials to use this backend. These keys, along with their values, will be stored in a hidden file in the user's home directory. They will be encrypted and stored in the MigrationRequest so that the daemon processes can carry out the Migrations on behalf of the user. """ return [] def minimum_object_size(self): """Minimum recommend size for elastic tape = 2GB? (check with Kevin O'Neil) """ return int(self.ET_Settings["OBJECT_SIZE"]) def maximum_object_count(self): """Maximum number of objects in an archive""" return (int(self.ET_Settings["OBJECT_COUNT"]))
36.666118
101
0.619656
4a1b90919674baf22f530bd53a63514f1f8244f6
9,009
py
Python
code/model.py
Salingo/CTF-Net
39c87b271ea0d263c31e43439997cc4f5f8602b3
[ "MIT" ]
9
2021-05-21T13:38:09.000Z
2022-03-11T09:56:11.000Z
code/model.py
Salingo/CTF-Net
39c87b271ea0d263c31e43439997cc4f5f8602b3
[ "MIT" ]
null
null
null
code/model.py
Salingo/CTF-Net
39c87b271ea0d263c31e43439997cc4f5f8602b3
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import trans from pointnet_util import PointNetEncoder class Convlayer(nn.Module): def __init__(self, point_scales, nchannel=3): super(Convlayer, self).__init__() self.point_scales = point_scales self.conv1 = torch.nn.Conv2d(1, 64, (1, nchannel)) self.conv2 = torch.nn.Conv2d(64, 64, 1) self.conv3 = torch.nn.Conv2d(64, 128, 1) self.conv4 = torch.nn.Conv2d(128, 256, 1) self.conv5 = torch.nn.Conv2d(256, 512, 1) self.conv6 = torch.nn.Conv2d(512, 1024, 1) self.maxpool = torch.nn.MaxPool2d((self.point_scales, 1), 1) self.bn1 = nn.BatchNorm2d(64) self.bn2 = nn.BatchNorm2d(64) self.bn3 = nn.BatchNorm2d(128) self.bn4 = nn.BatchNorm2d(256) self.bn5 = nn.BatchNorm2d(512) self.bn6 = nn.BatchNorm2d(1024) def forward(self, x): x = torch.unsqueeze(x, 1) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x_128 = F.relu(self.bn3(self.conv3(x))) x_256 = F.relu(self.bn4(self.conv4(x_128))) x_512 = F.relu(self.bn5(self.conv5(x_256))) x_1024 = F.relu(self.bn6(self.conv6(x_512))) x_128 = torch.squeeze(self.maxpool(x_128), 2) x_256 = torch.squeeze(self.maxpool(x_256), 2) x_512 = torch.squeeze(self.maxpool(x_512), 2) x_1024 = torch.squeeze(self.maxpool(x_1024), 2) L = [x_1024, x_512, x_256, x_128] x = torch.cat(L, 1) return x class STN3d(nn.Module): def __init__(self, nchannel=3): super(STN3d, self).__init__() self.conv1 = torch.nn.Conv1d(nchannel, 64, 1) self.conv2 = torch.nn.Conv1d(64, 128, 1) self.conv3 = torch.nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 9) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) def forward(self, x): x = x.transpose(2, 1) batchsize = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = torch.max(x, 2, keepdim=True)[0] x = x.view(-1, 1024) x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = Variable(torch.from_numpy(np.array([1,0,0,0,1,0,0,0,1]).astype(np.float32))).view(1, 9).repeat(batchsize, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, 3, 3) return x class Latentfeature(nn.Module): def __init__(self, num_resolution, input_scale_list, nchannel=3, use_stn=False): super(Latentfeature, self).__init__() self.num_resolution = num_resolution self.input_scale_list = input_scale_list self.num_channels = nchannel self.use_stn = use_stn if use_stn: self.stn = STN3d(nchannel) self.Convlayers = nn.ModuleList([Convlayer(point_scales=self.input_scale_list[i], nchannel=nchannel)for i in range(self.num_resolution)]) self.conv1 = torch.nn.Conv1d(num_resolution, 1, 1) self.bn1 = nn.BatchNorm1d(1) def forward(self, x): outs = [] for i in range(self.num_resolution): if self.use_stn: trans = self.stn(x[i]) if self.num_channels > 3: x[i], feature = x[i].split(3, dim=2) x[i] = torch.bmm(x[i], trans) if self.num_channels > 3: x[i] = torch.cat([x[i], feature], dim=2) outs.append(self.Convlayers[i](x[i])) latentfeature = torch.cat(outs, 2) latentfeature = latentfeature.transpose(1, 2) latentfeature = F.relu(self.bn1(self.conv1(latentfeature))) latentfeature = torch.squeeze(latentfeature, 1) return latentfeature class comp_model(nn.Module): def __init__(self, input_scale_list, output_scale_list, nchannel=3): super(comp_model, self).__init__() num_resolution = 3 self.output_scale_list = output_scale_list self.latentfeature = Latentfeature(num_resolution, input_scale_list, nchannel) self.fc_fine_1 = nn.Linear(1920, 1024) self.fc_mid_1 = nn.Linear(1024, 512) self.fc_low_1 = nn.Linear(512, 256) self.fc_fine_2 = nn.Linear(1024, self.output_scale_list[2] * 16) self.fc_mid_2 = nn.Linear(512, self.output_scale_list[1] * 16) self.fc_low_2 = nn.Linear(256, self.output_scale_list[0] * 3) self.conv_mid_1 = torch.nn.Conv1d(int(self.output_scale_list[1] / self.output_scale_list[0] * 16), int(self.output_scale_list[1] / self.output_scale_list[0] * 3), 1) self.conv_fine_1 = torch.nn.Conv1d(int(self.output_scale_list[2] / self.output_scale_list[1] * 16), int(self.output_scale_list[2] / self.output_scale_list[1] * 16), 1) self.conv_fine_2 = torch.nn.Conv1d(int(self.output_scale_list[2] / self.output_scale_list[1] * 16), int(self.output_scale_list[2] / self.output_scale_list[1] * 8), 1) self.conv_fine_3 = torch.nn.Conv1d(int(self.output_scale_list[2] / self.output_scale_list[1] * 8), int(self.output_scale_list[2] / self.output_scale_list[1] * 3), 1) def forward(self, x1, x2, x3): x = self.latentfeature([x1,x2,x3]) x_fine = F.relu(self.fc_fine_1(x)) #1024 x_mid = F.relu(self.fc_mid_1(x_fine)) #512 x_low = F.relu(self.fc_low_1(x_mid)) #256 pc_low_feat = self.fc_low_2(x_low) pc_low_xyz = pc_low_feat.reshape(-1, self.output_scale_list[0], 3) # scale_0 x 3 (output_0) pc_mid_feat = F.relu(self.fc_mid_2(x_mid)) pc_mid_feat = pc_mid_feat.reshape(-1, int(self.output_scale_list[1] / self.output_scale_list[0] * 16), self.output_scale_list[0]) pc_mid_xyz = self.conv_mid_1(pc_mid_feat) # ((scale_1 / scale_0) * 3) x scale_0 pc_fine_feat = F.relu(self.fc_fine_2(x_fine)) pc_fine_feat = pc_fine_feat.reshape(-1, int(self.output_scale_list[2] / self.output_scale_list[1] * 16), self.output_scale_list[1]) pc_fine_feat = F.relu(self.conv_fine_1(pc_fine_feat)) pc_fine_feat = F.relu(self.conv_fine_2(pc_fine_feat)) pc_fine_xyz = self.conv_fine_3(pc_fine_feat) # ((scale_2 / scale_1) * 3) x scale_1 pc_low_xyz_expand = torch.unsqueeze(pc_low_xyz, 2) pc_mid_xyz = pc_mid_xyz.transpose(1, 2) pc_mid_xyz = pc_mid_xyz.reshape(-1, self.output_scale_list[0], int(self.output_scale_list[1] / self.output_scale_list[0]), 3) pc_mid_xyz = pc_low_xyz_expand + pc_mid_xyz pc_mid_xyz = pc_mid_xyz.reshape(-1, self.output_scale_list[1], 3) # scale_1 x 3 (output_1) pc_mid_xyz_expand = torch.unsqueeze(pc_mid_xyz, 2) pc_fine_xyz = pc_fine_xyz.transpose(1, 2) pc_fine_xyz = pc_fine_xyz.reshape(-1, self.output_scale_list[1], int(self.output_scale_list[2] / self.output_scale_list[1]), 3) pc_fine_xyz = pc_mid_xyz_expand + pc_fine_xyz pc_fine_xyz = pc_fine_xyz.reshape(-1, self.output_scale_list[2], 3) # scale_2 x 3 (output_2) return pc_low_xyz, pc_mid_xyz, pc_fine_xyz class orient_model(nn.Module): def __init__(self): super(orient_model, self).__init__() self.encoder = PointNetEncoder(global_feat=True, feature_transform=False, channel=3) self.fc0 = nn.Linear(1024, 1024) self.bn0 = nn.BatchNorm1d(1024) self.fc1 = nn.Linear(1024, 512) self.bn1 = nn.BatchNorm1d(512) self.drop1 = nn.Dropout(0.4) self.fc2 = nn.Linear(512, 128) self.bn2 = nn.BatchNorm1d(128) self.drop2 = nn.Dropout(0.5) self.fc3 = nn.Linear(128, 4) # para_rotation def forward(self, xyz): xr = self.encoder(xyz.transpose(2, 1)) xr = F.relu(self.bn0(self.fc0(xr))) xr = self.drop1(F.relu(self.bn1(self.fc1(xr)))) xr = self.drop2(F.relu(self.bn2(self.fc2(xr)))) para_r = F.tanh(self.fc3(xr)) R = trans.quaternion2matrix_torch(para_r) return para_r class regi_model(nn.Module): def __init__(self): super(regi_model, self).__init__() self.encoder = PointNetEncoder(global_feat=True, feature_transform=True, channel=3) self.fc0 = nn.Linear(1024, 512) self.bn0 = nn.BatchNorm1d(512) self.fc1 = nn.Linear(1024, 512) self.bn1 = nn.BatchNorm1d(512) self.drop1 = nn.Dropout(0.4) self.fc2 = nn.Linear(512, 128) self.bn2 = nn.BatchNorm1d(128) self.drop2 = nn.Dropout(0.5) self.fc3 = nn.Linear(128, 4) # para_rotation self.fc4 = nn.Linear(1024, 512) self.bn4 = nn.BatchNorm1d(512) self.drop4 = nn.Dropout(0.4) self.fc5 = nn.Linear(512, 128) self.bn5 = nn.BatchNorm1d(128) self.drop5 = nn.Dropout(0.5) self.fc6 = nn.Linear(128, 3) #para_translation def forward(self, xyz1, xyz2): fea1 = self.encoder(xyz1.transpose(2, 1)) fea1 = F.relu(self.bn0(self.fc0(fea1))) fea2 = self.encoder(xyz2.transpose(2, 1)) fea2 = F.relu(self.bn0(self.fc0(fea2))) xr = torch.cat((fea1, fea2), 1) xr = self.drop1(F.relu(self.bn1(self.fc1(xr)))) xr = self.drop2(F.relu(self.bn2(self.fc2(xr)))) para_r21 = F.tanh(self.fc3(xr)) R = trans.quaternion2matrix_torch(para_r21) transformed_xyz2 = trans.transform_pts_torch(xyz2, R) fea3 = self.encoder(transformed_xyz2.transpose(2, 1)) fea3 = F.relu(self.bn0(self.fc0(fea3))) xt = torch.cat((fea1, fea3), 1) xt = self.drop4(F.relu(self.bn4(self.fc4(xt)))) xt = self.drop5(F.relu(self.bn5(self.fc5(xt)))) para_t21 = F.tanh(self.fc6(xt)) T = trans.translation2matrix_torch(para_t21) transformed_xyz2 = trans.transform_pts_torch(transformed_xyz2, T) return para_r21, para_t21, transformed_xyz2
43.3125
169
0.70807
4a1b90968192a4c4a3fd3cf3dbe8f335c3118f39
2,506
py
Python
tempest/services/compute/json/quotas_client.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
null
null
null
tempest/services/compute/json/quotas_client.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
null
null
null
tempest/services/compute/json/quotas_client.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
1
2020-07-21T02:18:23.000Z
2020-07-21T02:18:23.000Z
# Copyright 2012 NTT Data # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_serialization import jsonutils as json from tempest.api_schema.response.compute.v2_1 import quotas as schema from tempest.common import service_client class QuotasClient(service_client.ServiceClient): def show_quota_set(self, tenant_id, user_id=None): """List the quota set for a tenant.""" url = 'os-quota-sets/%s' % tenant_id if user_id: url += '?user_id=%s' % user_id resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.get_quota_set, resp, body) return service_client.ResponseBody(resp, body) def show_default_quota_set(self, tenant_id): """List the default quota set for a tenant.""" url = 'os-quota-sets/%s/defaults' % tenant_id resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.get_quota_set, resp, body) return service_client.ResponseBody(resp, body) def update_quota_set(self, tenant_id, user_id=None, **kwargs): """ Updates the tenant's quota limits for one or more resources """ post_body = json.dumps({'quota_set': kwargs}) if user_id: resp, body = self.put('os-quota-sets/%s?user_id=%s' % (tenant_id, user_id), post_body) else: resp, body = self.put('os-quota-sets/%s' % tenant_id, post_body) body = json.loads(body) self.validate_response(schema.update_quota_set, resp, body) return service_client.ResponseBody(resp, body) def delete_quota_set(self, tenant_id): """Delete the tenant's quota set.""" resp, body = self.delete('os-quota-sets/%s' % tenant_id) self.validate_response(schema.delete_quota, resp, body) return service_client.ResponseBody(resp, body)
37.969697
78
0.654828
4a1b91c599f0023ee5ae0c23c87fe71617b0ec03
9,210
py
Python
tasks/utils.py
hostcc/datadog-agent
34cbcd79040936169b445fb579898e292c0c8198
[ "Apache-2.0" ]
null
null
null
tasks/utils.py
hostcc/datadog-agent
34cbcd79040936169b445fb579898e292c0c8198
[ "Apache-2.0" ]
null
null
null
tasks/utils.py
hostcc/datadog-agent
34cbcd79040936169b445fb579898e292c0c8198
[ "Apache-2.0" ]
null
null
null
""" Miscellaneous functions, no tasks here """ from __future__ import print_function import os import platform import re import sys import json from subprocess import check_output import invoke # constants ORG_PATH = "github.com/DataDog" REPO_PATH = "{}/datadog-agent".format(ORG_PATH) def bin_name(name, android=False): """ Generate platform dependent names for binaries """ if android: return "{}.aar".format(name) if sys.platform == 'win32': return "{}.exe".format(name) return name def get_gopath(ctx): gopath = os.environ.get("GOPATH") if not gopath: gopath = ctx.run("go env GOPATH", hide=True).stdout.strip() return gopath def get_multi_python_location(embedded_path=None, rtloader_root=None): if rtloader_root is None: rtloader_lib = "{}/lib".format(rtloader_root or embedded_path) rtloader_headers = "{}/include".format(rtloader_root or embedded_path) rtloader_common_headers = "{}/common".format(rtloader_root or embedded_path) # if rtloader_root is specified we're working in dev mode from the rtloader folder else: rtloader_lib = "{}/rtloader".format(rtloader_root) rtloader_headers = "{}/include".format(rtloader_root) rtloader_common_headers = "{}/common".format(rtloader_root) return rtloader_lib, rtloader_headers, rtloader_common_headers def get_build_flags(ctx, static=False, prefix=None, embedded_path=None, rtloader_root=None, python_home_2=None, python_home_3=None, arch="x64"): """ Build the common value for both ldflags and gcflags, and return an env accordingly. We need to invoke external processes here so this function need the Context object. """ gcflags = "" ldflags = get_version_ldflags(ctx, prefix) env = {} if sys.platform == 'win32': env["CGO_LDFLAGS_ALLOW"] = "-Wl,--allow-multiple-definition" if embedded_path is None: # fall back to local dev path embedded_path = "{}/src/github.com/DataDog/datadog-agent/dev".format(get_gopath(ctx)) rtloader_lib, rtloader_headers, rtloader_common_headers = \ get_multi_python_location(embedded_path, rtloader_root) # setting python homes in the code if python_home_2: ldflags += "-X {}/pkg/collector/python.pythonHome2={} ".format(REPO_PATH, python_home_2) if python_home_3: ldflags += "-X {}/pkg/collector/python.pythonHome3={} ".format(REPO_PATH, python_home_3) # adding rtloader libs and headers to the env env['DYLD_LIBRARY_PATH'] = os.environ.get('DYLD_LIBRARY_PATH', '') + ":{}".format(rtloader_lib) # OSX env['LD_LIBRARY_PATH'] = os.environ.get('LD_LIBRARY_PATH', '') + ":{}".format(rtloader_lib) # linux env['CGO_LDFLAGS'] = os.environ.get('CGO_LDFLAGS', '') + " -L{}".format(rtloader_lib) env['CGO_CFLAGS'] = os.environ.get('CGO_CFLAGS', '') + " -w -I{} -I{}".format(rtloader_headers, rtloader_common_headers) # if `static` was passed ignore setting rpath, even if `embedded_path` was passed as well if static: ldflags += "-s -w -linkmode=external '-extldflags=-static' " else: ldflags += "-r {}/lib ".format(embedded_path) if os.environ.get("DELVE"): gcflags = "-N -l" if sys.platform == 'win32': # On windows, need to build with the extra argument -ldflags="-linkmode internal" # if you want to be able to use the delve debugger. ldflags += "-linkmode internal " elif os.environ.get("NO_GO_OPT"): gcflags = "-N -l" return ldflags, gcflags, env def get_payload_version(): """ Return the Agent payload version found in the Gopkg.toml file. """ current = {} # parse the TOML file line by line with open("Gopkg.lock") as toml: for line in toml.readlines(): # skip empty lines and comments if not line or line[0] == "#": continue # change the parser "state" when we find a [[projects]] section if "[[projects]]" in line: # see if the current section is what we're searching for if current.get("name") == "github.com/DataDog/agent-payload": return current.get("version") # if not, reset the "state" and proceed with the next line current = {} continue # search for an assignment, ignore subsequent `=` chars toks = line.split('=', 2) if len(toks) == 2: # strip whitespaces key = toks[0].strip() # strip whitespaces and quotes value = toks[-1].replace('"', '').strip() current[key] = value return "" def get_version_ldflags(ctx, prefix=None): """ Compute the version from the git tags, and set the appropriate compiler flags """ payload_v = get_payload_version() commit = get_git_commit() ldflags = "-X {}/pkg/version.Commit={} ".format(REPO_PATH, commit) ldflags += "-X {}/pkg/version.AgentVersion={} ".format(REPO_PATH, get_version(ctx, include_git=True, prefix=prefix)) ldflags += "-X {}/pkg/serializer.AgentPayloadVersion={} ".format(REPO_PATH, payload_v) return ldflags def get_git_commit(): """ Get the current commit """ return check_output(['git', 'rev-parse', '--short', 'HEAD']).decode('utf-8').strip() def get_go_version(): """ Get the version of Go used """ return check_output(['go', 'version']).decode('utf-8').strip() def get_root(): """ Get the root of the Go project """ return check_output(['git', 'rev-parse', '--show-toplevel']).decode('utf-8').strip() def get_git_branch_name(): """ Return the name of the current git branch """ return check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]).decode('utf-8').strip() def query_version(ctx, git_sha_length=7, prefix=None): # The string that's passed in will look something like this: 6.0.0-beta.0-1-g4f19118 # if the tag is 6.0.0-beta.0, it has been one commit since the tag and that commit hash is g4f19118 cmd = "git describe --tags --candidates=50" if prefix and type(prefix) == str: cmd += " --match \"{}-*\"".format(prefix) else: cmd += " --match \"[0-9]*\"" if git_sha_length and type(git_sha_length) == int: cmd += " --abbrev={}".format(git_sha_length) described_version = ctx.run(cmd, hide=True).stdout.strip() # for the example above, 6.0.0-beta.0-1-g4f19118, this will be 1 commit_number_match = re.match(r"^.*-(?P<commit_number>\d+)-g[0-9a-f]+$", described_version) commit_number = 0 if commit_number_match: commit_number = int(commit_number_match.group('commit_number')) version_re = r"v?(?P<version>\d+\.\d+\.\d+)(?:(?:-|\.)(?P<pre>[0-9A-Za-z.-]+))?" if prefix and type(prefix) == str: version_re = r"^(?:{}-)?".format(prefix) + version_re else: version_re = r"^" + version_re if commit_number == 0: version_re += r"(?P<git_sha>)$" else: version_re += r"-\d+-g(?P<git_sha>[0-9a-f]+)$" version_match = re.match( version_re, described_version) if not version_match: raise Exception("Could not query valid version from tags of local git repository") # version: for the tag 6.0.0-beta.0, this will match 6.0.0 # pre: for the output, 6.0.0-beta.0-1-g4f19118, this will match beta.0 # if there have been no commits since, it will be just 6.0.0-beta.0, # and it will match beta.0 # git_sha: for the output, 6.0.0-beta.0-1-g4f19118, this will match g4f19118 version, pre, git_sha = version_match.group('version', 'pre', 'git_sha') return version, pre, commit_number, git_sha def get_version(ctx, include_git=False, url_safe=False, git_sha_length=7, prefix=None): # we only need the git info for the non omnibus builds, omnibus includes all this information by default version = "" version, pre, commits_since_version, git_sha = query_version(ctx, git_sha_length, prefix) if pre: version = "{0}-{1}".format(version, pre) if commits_since_version and include_git: if url_safe: version = "{0}.git.{1}.{2}".format(version, commits_since_version,git_sha) else: version = "{0}+git.{1}.{2}".format(version, commits_since_version,git_sha) # version could be unicode as it comes from `query_version` return str(version) def get_version_numeric_only(ctx): version, _, _, _ = query_version(ctx) return version def load_release_versions(ctx, target_version): with open("release.json", "r") as f: versions = json.load(f) if target_version in versions: # windows runners don't accepts anything else than strings in the # environment when running a subprocess. return {str(k):str(v) for k, v in versions[target_version].items()} raise Exception("Could not find '{}' version in release.json".format(target_version))
37.137097
120
0.631813
4a1b925ca99b2beb2fe047d327fc0dbda79bacf3
5,938
py
Python
pymongo/server_api.py
ldennis/mongo-python-driver
cc029a1e6208863eaab453777363d3935b927f32
[ "Apache-2.0" ]
2,593
2015-01-02T10:53:55.000Z
2022-03-28T15:42:47.000Z
pymongo/server_api.py
ldennis/mongo-python-driver
cc029a1e6208863eaab453777363d3935b927f32
[ "Apache-2.0" ]
356
2015-02-05T15:57:18.000Z
2022-03-31T19:12:30.000Z
pymongo/server_api.py
ldennis/mongo-python-driver
cc029a1e6208863eaab453777363d3935b927f32
[ "Apache-2.0" ]
774
2015-01-05T09:30:07.000Z
2022-03-30T03:36:25.000Z
# Copyright 2020-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you # may not use this file except in compliance with the License. You # may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. """Support for MongoDB Versioned API. .. _versioned-api-ref: MongoDB Versioned API ===================== Starting in MongoDB 5.0, applications can specify the server API version to use when creating a :class:`~pymongo.mongo_client.MongoClient`. Doing so ensures that the driver behaves in a manner compatible with that server API version, regardless of the server's actual release version. Declaring an API Version ```````````````````````` .. attention:: Versioned API requires MongoDB >=5.0. To configure MongoDB Versioned API, pass the ``server_api`` keyword option to :class:`~pymongo.mongo_client.MongoClient`:: >>> from pymongo.mongo_client import MongoClient >>> from pymongo.server_api import ServerApi >>> >>> # Declare API version "1" for MongoClient "client" >>> server_api = ServerApi('1') >>> client = MongoClient(server_api=server_api) The declared API version is applied to all commands run through ``client``, including those sent through the generic :meth:`~pymongo.database.Database.command` helper. .. note:: Declaring an API version on the :class:`~pymongo.mongo_client.MongoClient` **and** specifying versioned API options in :meth:`~pymongo.database.Database.command` command document is not supported and will lead to undefined behaviour. To run any command without declaring a server API version or using a different API version, create a separate :class:`~pymongo.mongo_client.MongoClient` instance. Strict Mode ``````````` Configuring ``strict`` mode will cause the MongoDB server to reject all commands that are not part of the declared :attr:`ServerApi.version`. This includes command options and aggregation pipeline stages. For example:: >>> server_api = ServerApi('1', strict=True) >>> client = MongoClient(server_api=server_api) >>> client.test.command('count', 'test') Traceback (most recent call last): ... pymongo.errors.OperationFailure: Provided apiStrict:true, but the command count is not in API Version 1, full error: {'ok': 0.0, 'errmsg': 'Provided apiStrict:true, but the command count is not in API Version 1', 'code': 323, 'codeName': 'APIStrictError' Detecting API Deprecations `````````````````````````` The ``deprecationErrors`` option can be used to enable command failures when using functionality that is deprecated from the configured :attr:`ServerApi.version`. For example:: >>> server_api = ServerApi('1', deprecation_errors=True) >>> client = MongoClient(server_api=server_api) Note that at the time of this writing, no deprecated APIs exist. Classes ======= """ class ServerApiVersion: """An enum that defines values for :attr:`ServerApi.version`. .. versionadded:: 3.12 """ V1 = "1" """Server API version "1".""" class ServerApi(object): """MongoDB Versioned API.""" def __init__(self, version, strict=None, deprecation_errors=None): """Options to configure MongoDB Versioned API. :Parameters: - `version`: The API version string. Must be one of the values in :class:`ServerApiVersion`. - `strict` (optional): Set to ``True`` to enable API strict mode. Defaults to ``None`` which means "use the server's default". - `deprecation_errors` (optional): Set to ``True`` to enable deprecation errors. Defaults to ``None`` which means "use the server's default". .. versionadded:: 3.12 """ if version != ServerApiVersion.V1: raise ValueError("Unknown ServerApi version: %s" % (version,)) if strict is not None and not isinstance(strict, bool): raise TypeError( "Wrong type for ServerApi strict, value must be an instance " "of bool, not %s" % (type(strict),)) if (deprecation_errors is not None and not isinstance(deprecation_errors, bool)): raise TypeError( "Wrong type for ServerApi deprecation_errors, value must be " "an instance of bool, not %s" % (type(deprecation_errors),)) self._version = version self._strict = strict self._deprecation_errors = deprecation_errors @property def version(self): """The API version setting. This value is sent to the server in the "apiVersion" field. """ return self._version @property def strict(self): """The API strict mode setting. When set, this value is sent to the server in the "apiStrict" field. """ return self._strict @property def deprecation_errors(self): """The API deprecation errors setting. When set, this value is sent to the server in the "apiDeprecationErrors" field. """ return self._deprecation_errors def _add_to_command(cmd, server_api): """Internal helper which adds API versioning options to a command. :Parameters: - `cmd`: The command. - `server_api` (optional): A :class:`ServerApi` or ``None``. """ if not server_api: return cmd['apiVersion'] = server_api.version if server_api.strict is not None: cmd['apiStrict'] = server_api.strict if server_api.deprecation_errors is not None: cmd['apiDeprecationErrors'] = server_api.deprecation_errors
35.136095
258
0.675648
4a1b95b5a8bcf3c8fa27bc2724ccfed28ab72513
880
py
Python
calculadora.py
MarceloPorfirio/Calculadora_Pintura
abd3d72f9742db31592ecb460daf056d3b10d0a8
[ "MIT" ]
null
null
null
calculadora.py
MarceloPorfirio/Calculadora_Pintura
abd3d72f9742db31592ecb460daf056d3b10d0a8
[ "MIT" ]
null
null
null
calculadora.py
MarceloPorfirio/Calculadora_Pintura
abd3d72f9742db31592ecb460daf056d3b10d0a8
[ "MIT" ]
null
null
null
class Calculadora: __area_paredes: float ## __UNDERSCORE X2 deixa seu acesso limitado , só pode ser acessado por atributos e métodos dentro da sua propria classe. __area_teto: float ## são declarados como privados def calcular_area_paredes(self, comodo): self.__area_paredes = 2*(comodo.largura + comodo.profundidade)* comodo.altura return self.__area_paredes def calcular_area_teto(self, comodo): self.__area_teto = comodo.largura * comodo.profundidade return self.__area_teto def litragem_necessaria(self): if self.__area_paredes <= 0 or self.__area_teto <= 0: ## verifica se a parede ou o teto for menor ou igual a zero print('Não é possível calcular a litragem com os valores digitados.') exit() ## sai e finaliza a aplicação return (self.__area_paredes * self.__area_teto)/10
51.764706
147
0.706818
4a1b95c63a53367ada44e69b6e851e31b78b835c
3,037
py
Python
contrib/linearize/linearize-hashes.py
MNOSIO/mnos-wallet
07bf0b6d1477daa895319be4b6a69a42aa2110ac
[ "MIT" ]
null
null
null
contrib/linearize/linearize-hashes.py
MNOSIO/mnos-wallet
07bf0b6d1477daa895319be4b6a69a42aa2110ac
[ "MIT" ]
null
null
null
contrib/linearize/linearize-hashes.py
MNOSIO/mnos-wallet
07bf0b6d1477daa895319be4b6a69a42aa2110ac
[ "MIT" ]
4
2018-07-17T13:48:13.000Z
2018-08-20T04:32:42.000Z
#!/usr/bin/python # # linearize-hashes.py: List blocks in a linear, no-fork version of the chain. # # Copyright (c) 2013-2014 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from __future__ import print_function import json import struct import re import base64 import httplib import sys settings = {} class BitcoinRPC: def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def execute(self, obj): self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print("JSON-RPC: no response", file=sys.stderr) return None body = resp.read() resp_obj = json.loads(body) return resp_obj @staticmethod def build_request(idx, method, params): obj = { 'version' : '1.1', 'method' : method, 'id' : idx } if params is None: obj['params'] = [] else: obj['params'] = params return obj @staticmethod def response_is_error(resp_obj): return 'error' in resp_obj and resp_obj['error'] is not None def get_block_hashes(settings, max_blocks_per_call=10000): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpassword']) height = settings['min_height'] while height < settings['max_height']+1: num_blocks = min(settings['max_height']+1-height, max_blocks_per_call) batch = [] for x in range(num_blocks): batch.append(rpc.build_request(x, 'getblockhash', [height + x])) reply = rpc.execute(batch) for x,resp_obj in enumerate(reply): if rpc.response_is_error(resp_obj): print('JSON-RPC: error at height', height+x, ': ', resp_obj['error'], file=sys.stderr) exit(1) assert(resp_obj['id'] == x) # assume replies are in-sequence print(resp_obj['result']) height += num_blocks if __name__ == '__main__': if len(sys.argv) != 2: print("Usage: linearize-hashes.py CONFIG-FILE") sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 6556 if 'min_height' not in settings: settings['min_height'] = 0 if 'max_height' not in settings: settings['max_height'] = 313000 if 'rpcuser' not in settings or 'rpcpassword' not in settings: print("Missing username and/or password in cfg file", file=stderr) sys.exit(1) settings['port'] = int(settings['port']) settings['min_height'] = int(settings['min_height']) settings['max_height'] = int(settings['max_height']) get_block_hashes(settings)
26.640351
90
0.682581
4a1b9677bd6d2e51564c0529961043a0396a6bff
979
py
Python
conj1.py
kishlaya/random_graph
076e002b9a44ad554bd161c72d781fd66e3a89e2
[ "MIT" ]
null
null
null
conj1.py
kishlaya/random_graph
076e002b9a44ad554bd161c72d781fd66e3a89e2
[ "MIT" ]
null
null
null
conj1.py
kishlaya/random_graph
076e002b9a44ad554bd161c72d781fd66e3a89e2
[ "MIT" ]
null
null
null
import main as graph def check(adjacency_matrix): global fail_count mu, phi = graph.eigen(adjacency_matrix) n = len(mu) max_index = 0 for i in range(0,n): if mu[i] > mu[max_index]: max_index = i mu_1 = mu[max_index] phi_1 = phi[:, max_index] test = [] for i in range(0,n): x = abs(phi_1[i]) y = graph.find_degree(adjacency_matrix, i) test.append((i,x,y)) test.sort(key=lambda x: x[1]) for i in range(0,n-1): d_u = test[i][2] d_v = test[i+1][2] if d_u > d_v: fail_count = fail_count + 1 break # print(adjacency_matrix) # print() # print(test) # print() # graph.show_graph(adjacency_matrix) # exit() fail_count = 0 n = 50 trials = 10000 for j in range(0,trials): g = graph.random_graph(n) if graph.is_connected(g): check(g) print(fail_count/trials)
21.282609
50
0.531154
4a1b969ebe2890f32a98df6c81d72242d236a93a
4,683
py
Python
einsum_function.py
ronekko/capsnet
28dc11945ecf2d65f45834f7bc52cb9c5f079af4
[ "MIT" ]
null
null
null
einsum_function.py
ronekko/capsnet
28dc11945ecf2d65f45834f7bc52cb9c5f079af4
[ "MIT" ]
null
null
null
einsum_function.py
ronekko/capsnet
28dc11945ecf2d65f45834f7bc52cb9c5f079af4
[ "MIT" ]
null
null
null
from collections import OrderedDict import chainer.functions as F def _parse_subscripts(subscripts): if '->' in subscripts: has_arrow = True else: subscripts = subscripts + '->' has_arrow = False in_subs, out_sub = subscripts.split('->') in_subs = in_subs.split(',') out_sub = out_sub.strip() in_subs = [in_sub.strip() for in_sub in in_subs] if not has_arrow: out_sub = '' shared_chars = set.intersection(*[set(sub) for sub in in_subs]) for subs in in_subs: for char in subs: if char not in shared_chars: out_sub += char return in_subs, out_sub def einsum(subscripts, *operands): """Computs the einsum for Chainer's Variable. Note that this is a very early implementation and supports only a few functionalities of original numpy.einsum function. """ if not len(operands) == 2: raise ValueError( 'Currently, `*operands` only supports the case of 2 arguments.') a, b = operands in_subs, out_subs = _parse_subscripts(subscripts) a_subs, b_subs = in_subs a_shape = OrderedDict() for sub, length in zip(a_subs, a.shape): a_shape[sub] = length b_shape = OrderedDict() for sub, length in zip(b_subs, b.shape): b_shape[sub] = length # Classify subscripts in a_subs and b_subs into 4 classes. # There are 4 sets of subscripts that are: # set_1: included in a_subs and b_subs and out_subs # set_2: included in a_subs and b_subs but not in out_subs # set_3a, set_3d: included in only a_subs or b_subs, and in out_subs # set_4a, set_4d: included in only a_subs or b_subs, and not in out_subs set_a = set(a_subs) set_b = set(b_subs) set_out = set(out_subs) set_1 = set_a & set_b set_3a = set_a - set_1 set_3b = set_b - set_1 set_2 = set_1 - set_out set_1 = set_1 - set_2 set_4a = set_3a - set_out set_3a = set_3a - set_4a set_4b = set_3b - set_out set_3b = set_3b - set_4b ##################################################### # Arrange a and b to prepare to input to F.batch_matmul # For the array a a_new_subs_class = ['', '', ''] a_new_shape = [1, 1, 1] for sub, length in a_shape.items(): if sub in set_1: a_new_subs_class[0] += sub a_new_shape[0] *= length elif sub in set_2: a_new_subs_class[2] += sub a_new_shape[2] *= length else: a_new_subs_class[1] += sub a_new_shape[1] *= length transpose_axes = [] for sub in ''.join(a_new_subs_class): transpose_axes.append(a_subs.index(sub)) a_ = F.transpose(a, transpose_axes) a_ = a_.reshape(a_new_shape) # For the array b b_new_subs_class = ['', '', ''] b_new_shape = [1, 1, 1] for sub, length in b_shape.items(): if sub in set_1: b_new_subs_class[0] += sub b_new_shape[0] *= length elif sub in set_2: b_new_subs_class[1] += sub b_new_shape[1] *= length else: b_new_subs_class[2] += sub b_new_shape[2] *= length transpose_axes = [] for sub in ''.join(b_new_subs_class): transpose_axes.append(b_subs.index(sub)) b_ = F.transpose(b, transpose_axes) b_ = b_.reshape(b_new_shape) ################# # Target axes are reduced by F.batch_matmul and F.sum c_ = F.matmul(a_, b_) c_subs_class = [ a_new_subs_class[0], a_new_subs_class[1], b_new_subs_class[2]] if set_4a: size_sum = 1 for sub in set_4a: size_sum *= a_shape[sub] c_subs_class[1] = c_subs_class[1].replace(sub, '') size_kept = a_new_shape[1] // size_sum c_shape = c_.shape c_ = c_.reshape(c_shape[0], size_kept, size_sum, c_shape[2]) c_ = F.sum(c_, axis=2) if set_4b: size_sum = 1 for sub in set_4b: size_sum *= b_shape[sub] c_subs_class[2] = c_subs_class[2].replace(sub, '') size_kept = b_new_shape[2] // size_sum c_shape = c_.shape c_ = c_.reshape(c_shape[0], c_shape[1], size_kept, size_sum) c_ = F.sum(c_, axis=3) ############################ # The output array is rearranged to output shape c_subs = ''.join(c_subs_class) sub_to_size = {**a_shape, **b_shape} # merging two dicts c_shape = [sub_to_size[sub] for sub in c_subs] c = c_.reshape(c_shape) transpose_axes = [] for sub in out_subs: transpose_axes.append(c_subs.index(sub)) c = c.transpose(transpose_axes) return c
31.013245
76
0.592569
4a1b9707b924c8fea9e04a043d626d7f2f5014f8
189
py
Python
Core/Null_Factory.py
BernardoB95/Extrator_SPEDFiscal
10b4697833c561d24654251da5f22d044f03fc16
[ "MIT" ]
1
2021-04-25T13:53:20.000Z
2021-04-25T13:53:20.000Z
Core/Null_Factory.py
BernardoB95/Extrator_SPEDFiscal
10b4697833c561d24654251da5f22d044f03fc16
[ "MIT" ]
null
null
null
Core/Null_Factory.py
BernardoB95/Extrator_SPEDFiscal
10b4697833c561d24654251da5f22d044f03fc16
[ "MIT" ]
null
null
null
from .IFactory import IFactory from Regs import NullReg class Null_Factory(IFactory): def create_block_object(self, line): self.null = _null = NullReg() return _null
18.9
40
0.703704
4a1b97b62fc3394d7f87f867bbd8e5b86a1d0a9e
11,550
py
Python
py/p4/v1/p4runtime_pb2_grpc.py
kishanps/p4runtime
235fbd62cc9e806f4d3e1b8ef448bab4ad91f031
[ "Apache-2.0" ]
null
null
null
py/p4/v1/p4runtime_pb2_grpc.py
kishanps/p4runtime
235fbd62cc9e806f4d3e1b8ef448bab4ad91f031
[ "Apache-2.0" ]
null
null
null
py/p4/v1/p4runtime_pb2_grpc.py
kishanps/p4runtime
235fbd62cc9e806f4d3e1b8ef448bab4ad91f031
[ "Apache-2.0" ]
null
null
null
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from p4.v1 import p4runtime_pb2 as p4_dot_v1_dot_p4runtime__pb2 class P4RuntimeStub(object): """Missing associated documentation comment in .proto file.""" def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Write = channel.unary_unary( '/p4.v1.P4Runtime/Write', request_serializer=p4_dot_v1_dot_p4runtime__pb2.WriteRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.WriteResponse.FromString, ) self.Read = channel.unary_stream( '/p4.v1.P4Runtime/Read', request_serializer=p4_dot_v1_dot_p4runtime__pb2.ReadRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.ReadResponse.FromString, ) self.SetForwardingPipelineConfig = channel.unary_unary( '/p4.v1.P4Runtime/SetForwardingPipelineConfig', request_serializer=p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigResponse.FromString, ) self.GetForwardingPipelineConfig = channel.unary_unary( '/p4.v1.P4Runtime/GetForwardingPipelineConfig', request_serializer=p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigResponse.FromString, ) self.StreamChannel = channel.stream_stream( '/p4.v1.P4Runtime/StreamChannel', request_serializer=p4_dot_v1_dot_p4runtime__pb2.StreamMessageRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.StreamMessageResponse.FromString, ) self.Capabilities = channel.unary_unary( '/p4.v1.P4Runtime/Capabilities', request_serializer=p4_dot_v1_dot_p4runtime__pb2.CapabilitiesRequest.SerializeToString, response_deserializer=p4_dot_v1_dot_p4runtime__pb2.CapabilitiesResponse.FromString, ) class P4RuntimeServicer(object): """Missing associated documentation comment in .proto file.""" def Write(self, request, context): """Update one or more P4 entities on the target. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Read(self, request, context): """Read one or more P4 entities from the target. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SetForwardingPipelineConfig(self, request, context): """Sets the P4 forwarding-pipeline config. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetForwardingPipelineConfig(self, request, context): """Gets the current P4 forwarding-pipeline config. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def StreamChannel(self, request_iterator, context): """Represents the bidirectional stream between the controller and the switch (initiated by the controller), and is managed for the following purposes: - connection initiation through client arbitration - indicating switch session liveness: the session is live when switch sends a positive client arbitration update to the controller, and is considered dead when either the stream breaks or the switch sends a negative update for client arbitration - the controller sending/receiving packets to/from the switch - streaming of notifications from the switch """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Capabilities(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_P4RuntimeServicer_to_server(servicer, server): rpc_method_handlers = { 'Write': grpc.unary_unary_rpc_method_handler( servicer.Write, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.WriteRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.WriteResponse.SerializeToString, ), 'Read': grpc.unary_stream_rpc_method_handler( servicer.Read, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.ReadRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.ReadResponse.SerializeToString, ), 'SetForwardingPipelineConfig': grpc.unary_unary_rpc_method_handler( servicer.SetForwardingPipelineConfig, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigResponse.SerializeToString, ), 'GetForwardingPipelineConfig': grpc.unary_unary_rpc_method_handler( servicer.GetForwardingPipelineConfig, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigResponse.SerializeToString, ), 'StreamChannel': grpc.stream_stream_rpc_method_handler( servicer.StreamChannel, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.StreamMessageRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.StreamMessageResponse.SerializeToString, ), 'Capabilities': grpc.unary_unary_rpc_method_handler( servicer.Capabilities, request_deserializer=p4_dot_v1_dot_p4runtime__pb2.CapabilitiesRequest.FromString, response_serializer=p4_dot_v1_dot_p4runtime__pb2.CapabilitiesResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'p4.v1.P4Runtime', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class P4Runtime(object): """Missing associated documentation comment in .proto file.""" @staticmethod def Write(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/p4.v1.P4Runtime/Write', p4_dot_v1_dot_p4runtime__pb2.WriteRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.WriteResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Read(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_stream(request, target, '/p4.v1.P4Runtime/Read', p4_dot_v1_dot_p4runtime__pb2.ReadRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.ReadResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def SetForwardingPipelineConfig(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/p4.v1.P4Runtime/SetForwardingPipelineConfig', p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.SetForwardingPipelineConfigResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetForwardingPipelineConfig(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/p4.v1.P4Runtime/GetForwardingPipelineConfig', p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.GetForwardingPipelineConfigResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def StreamChannel(request_iterator, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.stream_stream(request_iterator, target, '/p4.v1.P4Runtime/StreamChannel', p4_dot_v1_dot_p4runtime__pb2.StreamMessageRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.StreamMessageResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Capabilities(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/p4.v1.P4Runtime/Capabilities', p4_dot_v1_dot_p4runtime__pb2.CapabilitiesRequest.SerializeToString, p4_dot_v1_dot_p4runtime__pb2.CapabilitiesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
46.95122
123
0.68
4a1b97f9467bf7a99a0b32a14bd0850c7c0ec253
3,069
py
Python
mmaction/datasets/audio_visual_dataset.py
Naoki-Wake/mmaction2
a2032605db82509744a18d993c94a06feb1efd15
[ "Apache-2.0" ]
47
2021-09-02T10:42:29.000Z
2022-03-31T01:37:49.000Z
mmaction/datasets/audio_visual_dataset.py
xumingze0308/mmaction2
777546f27f8f5a3c83e10d966e2149be2fc9fa31
[ "Apache-2.0" ]
2
2021-12-05T02:28:42.000Z
2022-01-05T06:46:10.000Z
mmaction/datasets/audio_visual_dataset.py
xumingze0308/mmaction2
777546f27f8f5a3c83e10d966e2149be2fc9fa31
[ "Apache-2.0" ]
6
2021-09-19T16:31:32.000Z
2022-03-03T06:57:34.000Z
import os.path as osp from .rawframe_dataset import RawframeDataset from .registry import DATASETS @DATASETS.register_module() class AudioVisualDataset(RawframeDataset): """Dataset that reads both audio and visual data, supporting both rawframes and videos. The annotation file is same as that of the rawframe dataset, such as: .. code-block:: txt some/directory-1 163 1 some/directory-2 122 1 some/directory-3 258 2 some/directory-4 234 2 some/directory-5 295 3 some/directory-6 121 3 Args: ann_file (str): Path to the annotation file. pipeline (list[dict | callable]): A sequence of data transforms. audio_prefix (str): Directory of the audio files. kwargs (dict): Other keyword args for `RawframeDataset`. `video_prefix` is also allowed if pipeline is designed for videos. """ def __init__(self, ann_file, pipeline, audio_prefix, **kwargs): self.audio_prefix = audio_prefix self.video_prefix = kwargs.pop('video_prefix', None) self.data_prefix = kwargs.get('data_prefix', None) super().__init__(ann_file, pipeline, **kwargs) def load_annotations(self): video_infos = [] with open(self.ann_file, 'r') as fin: for line in fin: line_split = line.strip().split() video_info = {} idx = 0 # idx for frame_dir frame_dir = line_split[idx] if self.audio_prefix is not None: audio_path = osp.join(self.audio_prefix, frame_dir + '.npy') video_info['audio_path'] = audio_path if self.video_prefix: video_path = osp.join(self.video_prefix, frame_dir + '.mp4') video_info['filename'] = video_path if self.data_prefix is not None: frame_dir = osp.join(self.data_prefix, frame_dir) video_info['frame_dir'] = frame_dir idx += 1 if self.with_offset: # idx for offset and total_frames video_info['offset'] = int(line_split[idx]) video_info['total_frames'] = int(line_split[idx + 1]) idx += 2 else: # idx for total_frames video_info['total_frames'] = int(line_split[idx]) idx += 1 # idx for label[s] label = [int(x) for x in line_split[idx:]] assert len(label), f'missing label in line: {line}' if self.multi_class: assert self.num_classes is not None video_info['label'] = label else: assert len(label) == 1 video_info['label'] = label[0] video_infos.append(video_info) return video_infos
39.857143
79
0.539264
4a1b980d338f6f43158e458ec3cf43a49a62e188
89
py
Python
exercicios/ex024.py
Matheus1199/python
c87859d4bf63ba0edea43d864fcbce4915da7e6a
[ "MIT" ]
null
null
null
exercicios/ex024.py
Matheus1199/python
c87859d4bf63ba0edea43d864fcbce4915da7e6a
[ "MIT" ]
null
null
null
exercicios/ex024.py
Matheus1199/python
c87859d4bf63ba0edea43d864fcbce4915da7e6a
[ "MIT" ]
null
null
null
cidade = input('Em qual cidade você nasceu? ').strip() print(cidade[:5].upper == 'SANTO')
44.5
54
0.674157
4a1b99127012512bde3b1a15ffa974c55820beb4
10,409
py
Python
src/genie/libs/parser/ios/tests/test_show_spanning_tree.py
Drey/genieparser
f16649efabf1f3c892bcaad340ae24ce5403ba6b
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/ios/tests/test_show_spanning_tree.py
Drey/genieparser
f16649efabf1f3c892bcaad340ae24ce5403ba6b
[ "Apache-2.0" ]
1
2019-04-02T16:51:56.000Z
2019-04-02T16:51:56.000Z
src/genie/libs/parser/ios/tests/test_show_spanning_tree.py
Drey/genieparser
f16649efabf1f3c892bcaad340ae24ce5403ba6b
[ "Apache-2.0" ]
1
2021-01-29T17:31:33.000Z
2021-01-29T17:31:33.000Z
#!/bin/env python import unittest from unittest.mock import Mock from ats.topology import Device from genie.metaparser.util.exceptions import SchemaEmptyParserError,\ SchemaMissingKeyError from genie.libs.parser.ios.show_spanning_tree import ShowSpanningTreeDetail, \ ShowSpanningTreeMstDetail, \ ShowSpanningTreeSummary, \ ShowErrdisableRecovery, \ ShowSpanningTree, \ ShowSpanningTreeMstConfiguration from genie.libs.parser.iosxe.tests.test_show_spanning_tree import \ test_show_spanning_tree_summary as test_show_spanning_tree_summary_iosxe,\ test_show_spanning_tree_mst_configuration as test_show_spanning_tree_mst_configuration_iosxe,\ test_show_spanning_tree_detail as test_show_spanning_tree_detail_iosxe,\ test_show_spanning_tree_mst_detail as test_show_spanning_tree_mst_detail_iosxe,\ test_show_errdisable_recovery as test_show_errdisable_recovery_iosxe,\ test_show_spanning_tree as test_show_spanning_tree_iosxe class test_show_spanning_tree_summary(test_show_spanning_tree_summary_iosxe): golden_parsed_output_ios = { "total_statistics": { "forwardings": 0, "listenings": 0, "stp_actives": 0, "learnings": 0, "blockings": 0 }, "root_bridge_for": "none", "bpdu_guard": False, "uplink_fast": False, "backbone_fast": False, } golden_output_ios = {'execute.return_value': '''\ Root bridge for: none. PortFast BPDU Guard is disabled UplinkFast is disabled BackboneFast is disabled Name Blocking Listening Learning Forwarding STP Active -------------------- -------- --------- -------- ---------- ---------- Total 0 0 0 0 0 ''' } def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowSpanningTreeSummary(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden_mst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_mstp) obj = ShowSpanningTreeSummary(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_mstp) def test_golden_ios(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_ios) obj = ShowSpanningTreeSummary(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_ios) def test_golden_single_mst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_mstp_single_mst) obj = ShowSpanningTreeSummary(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_mstp_single_mst) def test_golden_pvst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_pvst) obj = ShowSpanningTreeSummary(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_pvst) def test_golden_rpvst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_rpvst) obj = ShowSpanningTreeSummary(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_rpvst) class test_show_spanning_tree_detail(test_show_spanning_tree_detail_iosxe): def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowSpanningTreeDetail(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden_mstp(self): self.dev_c3850 = Mock(**self.golden_output_mstp) obj = ShowSpanningTreeDetail(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_mstp) def test_golden_pvst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_pvst) obj = ShowSpanningTreeDetail(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_pvst) def test_golden_rapid_pvst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_rapid_pvst) obj = ShowSpanningTreeDetail(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_rapid_pvst) class test_show_spanning_tree_mst_detail(test_show_spanning_tree_mst_detail_iosxe): def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowSpanningTreeMstDetail(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output) obj = ShowSpanningTreeMstDetail(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output) class test_show_errdisable_recovery(test_show_errdisable_recovery_iosxe): def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowErrdisableRecovery(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output) obj = ShowErrdisableRecovery(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output) class test_show_spanning_tree(test_show_spanning_tree_iosxe): golden_parsed_output_vlan = { "mstp": { "mst_instances": { 3: { "root": { "max_age": 20, "interface": "GigabitEthernet3/8", "forward_delay": 15, "priority": 32771, "cost": 20000, "port": 136, "address": "0050.14bb.6000", "hello_time": 2 }, "bridge": { "max_age": 20, "priority": 32771, "forward_delay": 15, "configured_bridge_priority": 32768, "sys_id_ext": 3, "address": "00d0.003f.8800", "hello_time": 2 }, "interfaces": { "GigabitEthernet3/8": { "port_num": 136, "role": "root", "port_state": "forwarding", "type": "P2p", "port_priority": 128, "cost": 20000 }, "Port-channel1": { "port_num": 833, "role": "designated", "port_state": "forwarding", "type": "P2p", "port_priority": 128, "cost": 20000 } } } } } } golden_output_vlan = {'execute.return_value': ''' cat# show spanning-tree vlan 333 MST03 Spanning tree enabled protocol mstp Root ID Priority 32771 Address 0050.14bb.6000 Cost 20000 Port 136 (GigabitEthernet3/8) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32771 (priority 32768 sys-id-ext 3) Address 00d0.003f.8800 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Status ---------------- ---- --- --------- -------- ------------------------ Gi3/8 Root FWD 20000 128.136 P2p Po1 Desg FWD 20000 128.833 P2p '''} def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowSpanningTree(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden_mst(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_mstp) obj = ShowSpanningTree(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_mstp) def test_golden_rstp(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_rstp) obj = ShowSpanningTree(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_rstp) def test_golden_vlan(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output_vlan) obj = ShowSpanningTree(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output_vlan) class test_show_spanning_tree_mst_configuration(test_show_spanning_tree_mst_configuration_iosxe): def test_empty(self): self.dev1 = Mock(**self.empty_output) obj = ShowSpanningTreeMstConfiguration(device=self.dev1) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.dev_c3850 = Mock(**self.golden_output) obj = ShowSpanningTreeMstConfiguration(device=self.dev_c3850) parsed_output = obj.parse() self.assertEqual(parsed_output,self.golden_parsed_output) if __name__ == '__main__': unittest.main()
39.42803
98
0.591603
4a1b9961f1aa3acb809d7813feee8332b87add36
17,390
py
Python
ryu/base/app_manager.py
hiArvin/ryu
b568088f8fe1d2334d9773f6ddaac8674f2a0f61
[ "Apache-2.0" ]
269
2015-03-08T11:32:45.000Z
2022-03-30T11:18:16.000Z
ryu/base/app_manager.py
hiArvin/ryu
b568088f8fe1d2334d9773f6ddaac8674f2a0f61
[ "Apache-2.0" ]
null
null
null
ryu/base/app_manager.py
hiArvin/ryu
b568088f8fe1d2334d9773f6ddaac8674f2a0f61
[ "Apache-2.0" ]
205
2015-01-13T04:52:25.000Z
2022-03-30T13:37:33.000Z
# Copyright (C) 2011-2014 Nippon Telegraph and Telephone Corporation. # Copyright (C) 2011 Isaku Yamahata <yamahata at valinux co jp> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ The central management of Ryu applications. - Load Ryu applications - Provide `contexts` to Ryu applications - Route messages among Ryu applications """ import inspect import itertools import logging import sys import os from ryu import cfg from ryu import utils from ryu.app import wsgi from ryu.controller.handler import register_instance, get_dependent_services from ryu.controller.controller import Datapath from ryu.controller import event from ryu.controller.event import EventRequestBase, EventReplyBase from ryu.lib import hub from ryu.ofproto import ofproto_protocol LOG = logging.getLogger('ryu.base.app_manager') SERVICE_BRICKS = {} def lookup_service_brick(name): # LOG.info('lookup_service_brick %s', name) return SERVICE_BRICKS.get(name) def _lookup_service_brick_by_ev_cls(ev_cls): return _lookup_service_brick_by_mod_name(ev_cls.__module__) def _lookup_service_brick_by_mod_name(mod_name): return lookup_service_brick(mod_name.split('.')[-1]) def register_app(app): assert isinstance(app, RyuApp) # print "SERVICE_BRICKS:", SERVICE_BRICKS assert app.name not in SERVICE_BRICKS SERVICE_BRICKS[app.name] = app register_instance(app) def unregister_app(app): SERVICE_BRICKS.pop(app.name) def require_app(app_name, api_style=False): """ Request the application to be automatically loaded. If this is used for "api" style modules, which is imported by a client application, set api_style=True. If this is used for client application module, set api_style=False. """ if api_style: frm = inspect.stack()[2] # skip a frame for "api" module else: frm = inspect.stack()[1] m = inspect.getmodule(frm[0]) # client module m._REQUIRED_APP = getattr(m, '_REQUIRED_APP', []) m._REQUIRED_APP.append(app_name) LOG.debug('require_app: %s is required by %s', app_name, m.__name__) class RyuApp(object): """ The base class for Ryu applications. RyuApp subclasses are instantiated after ryu-manager loaded all requested Ryu application modules. __init__ should call RyuApp.__init__ with the same arguments. It's illegal to send any events in __init__. The instance attribute 'name' is the name of the class used for message routing among Ryu applications. (Cf. send_event) It's set to __class__.__name__ by RyuApp.__init__. It's discouraged for subclasses to override this. """ _CONTEXTS = {} """ A dictionary to specify contexts which this Ryu application wants to use. Its key is a name of context and its value is an ordinary class which implements the context. The class is instantiated by app_manager and the instance is shared among RyuApp subclasses which has _CONTEXTS member with the same key. A RyuApp subclass can obtain a reference to the instance via its __init__'s kwargs as the following. Example:: _CONTEXTS = { 'network': network.Network } def __init__(self, *args, *kwargs): self.network = kwargs['network'] """ _EVENTS = [] """ A list of event classes which this RyuApp subclass would generate. This should be specified if and only if event classes are defined in a different python module from the RyuApp subclass is. """ OFP_VERSIONS = None """ A list of supported OpenFlow versions for this RyuApp. The default is all versions supported by the framework. Examples:: OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION, ofproto_v1_2.OFP_VERSION] If multiple Ryu applications are loaded in the system, the intersection of their OFP_VERSIONS is used. """ @classmethod def context_iteritems(cls): """ Return iterator over the (key, contxt class) of application context """ return cls._CONTEXTS.iteritems() def __init__(self, *_args, **_kwargs): super(RyuApp, self).__init__() self.name = self.__class__.__name__ self.event_handlers = {} # ev_cls -> handlers:list self.observers = {} # ev_cls -> observer-name -> states:set self.threads = [] self.events = hub.Queue(128) if hasattr(self.__class__, 'LOGGER_NAME'): self.logger = logging.getLogger(self.__class__.LOGGER_NAME) else: self.logger = logging.getLogger(self.name) self.CONF = cfg.CONF # prevent accidental creation of instances of this class outside RyuApp class _EventThreadStop(event.EventBase): pass self._event_stop = _EventThreadStop() self.is_active = True def start(self): """ Hook that is called after startup initialization is done. """ self.threads.append(hub.spawn(self._event_loop)) def stop(self): self.is_active = False self._send_event(self._event_stop, None) hub.joinall(self.threads) def register_handler(self, ev_cls, handler): assert callable(handler) self.event_handlers.setdefault(ev_cls, []) self.event_handlers[ev_cls].append(handler) def unregister_handler(self, ev_cls, handler): assert callable(handler) self.event_handlers[ev_cls].remove(handler) if not self.event_handlers[ev_cls]: del self.event_handlers[ev_cls] def register_observer(self, ev_cls, name, states=None): states = states or set() ev_cls_observers = self.observers.setdefault(ev_cls, {}) ev_cls_observers.setdefault(name, set()).update(states) def unregister_observer(self, ev_cls, name): observers = self.observers.get(ev_cls, {}) observers.pop(name) def unregister_observer_all_event(self, name): for observers in self.observers.values(): observers.pop(name, None) def observe_event(self, ev_cls, states=None): brick = _lookup_service_brick_by_ev_cls(ev_cls) if brick is not None: brick.register_observer(ev_cls, self.name, states) def unobserve_event(self, ev_cls): brick = _lookup_service_brick_by_ev_cls(ev_cls) if brick is not None: brick.unregister_observer(ev_cls, self.name) def get_handlers(self, ev, state=None): """Returns a list of handlers for the specific event. :param ev: The event to handle. :param state: The current state. ("dispatcher") If None is given, returns all handlers for the event. Otherwise, returns only handlers that are interested in the specified state. The default is None. """ ev_cls = ev.__class__ handlers = self.event_handlers.get(ev_cls, []) if state is None: return handlers def test(h): if not hasattr(h, 'callers') or ev_cls not in h.callers: # dynamically registered handlers does not have # h.callers element for the event. return True states = h.callers[ev_cls].dispatchers if not states: # empty states means all states return True return state in states return filter(test, handlers) def get_observers(self, ev, state): observers = [] for k, v in self.observers.get(ev.__class__, {}).iteritems(): if not state or not v or state in v: observers.append(k) return observers def send_request(self, req): """ Make a synchronous request. Set req.sync to True, send it to a Ryu application specified by req.dst, and block until receiving a reply. Returns the received reply. The argument should be an instance of EventRequestBase. """ assert isinstance(req, EventRequestBase) req.sync = True req.reply_q = hub.Queue() self.send_event(req.dst, req) # going to sleep for the reply return req.reply_q.get() def _event_loop(self): while self.is_active or not self.events.empty(): ev, state = self.events.get() if ev == self._event_stop: continue handlers = self.get_handlers(ev, state) for handler in handlers: handler(ev) def _send_event(self, ev, state): self.events.put((ev, state)) def send_event(self, name, ev, state=None): """ Send the specified event to the RyuApp instance specified by name. """ if name in SERVICE_BRICKS: if isinstance(ev, EventRequestBase): ev.src = self.name LOG.debug("EVENT %s->%s %s" % (self.name, name, ev.__class__.__name__)) SERVICE_BRICKS[name]._send_event(ev, state) else: LOG.debug("EVENT LOST %s->%s %s" % (self.name, name, ev.__class__.__name__)) def send_event_to_observers(self, ev, state=None): """ Send the specified event to all observers of this RyuApp. """ for observer in self.get_observers(ev, state): self.send_event(observer, ev, state) def reply_to_request(self, req, rep): """ Send a reply for a synchronous request sent by send_request. The first argument should be an instance of EventRequestBase. The second argument should be an instance of EventReplyBase. """ assert isinstance(req, EventRequestBase) assert isinstance(rep, EventReplyBase) rep.dst = req.src if req.sync: req.reply_q.put(rep) else: self.send_event(rep.dst, rep) def close(self): """ teardown method. The method name, close, is chosen for python context manager """ pass class AppManager(object): # singletone _instance = None @staticmethod def run_apps(app_lists): """Run a set of Ryu applications A convenient method to load and instantiate apps. This blocks until all relevant apps stop. """ app_mgr = AppManager.get_instance() app_mgr.load_apps(app_lists) contexts = app_mgr.create_contexts() services = app_mgr.instantiate_apps(**contexts) webapp = wsgi.start_service(app_mgr) if webapp: services.append(hub.spawn(webapp)) try: hub.joinall(services) finally: app_mgr.close() @staticmethod def get_instance(): if not AppManager._instance: AppManager._instance = AppManager() return AppManager._instance def __init__(self): self.applications_cls = {} self.applications = {} self.contexts_cls = {} self.contexts = {} def load_app(self, name): mod = utils.import_module(name) clses = inspect.getmembers(mod, lambda cls: (inspect.isclass(cls) and issubclass(cls, RyuApp) and mod.__name__ == cls.__module__)) if clses: return clses[0][1] return None def load_apps(self, app_lists): app_lists = [app for app in itertools.chain.from_iterable(app.split(',') for app in app_lists)] while len(app_lists) > 0: app_cls_name = app_lists.pop(0) context_modules = map(lambda x: x.__module__, self.contexts_cls.values()) if app_cls_name in context_modules: continue LOG.info('loading app %s', app_cls_name) cls = self.load_app(app_cls_name) if cls is None: continue self.applications_cls[app_cls_name] = cls services = [] for key, context_cls in cls.context_iteritems(): v = self.contexts_cls.setdefault(key, context_cls) assert v == context_cls context_modules.append(context_cls.__module__) if issubclass(context_cls, RyuApp): services.extend(get_dependent_services(context_cls)) # we can't load an app that will be initiataed for # contexts. for i in get_dependent_services(cls): if i not in context_modules: services.append(i) if services: app_lists.extend([s for s in set(services) if s not in app_lists]) def create_contexts(self): for key, cls in self.contexts_cls.items(): if issubclass(cls, RyuApp): # hack for dpset context = self._instantiate(None, cls) else: context = cls() LOG.info('creating context %s', key) assert key not in self.contexts self.contexts[key] = context return self.contexts def _update_bricks(self): for i in SERVICE_BRICKS.values(): for _k, m in inspect.getmembers(i, inspect.ismethod): if not hasattr(m, 'callers'): continue for ev_cls, c in m.callers.iteritems(): if not c.ev_source: continue brick = _lookup_service_brick_by_mod_name(c.ev_source) if brick: brick.register_observer(ev_cls, i.name, c.dispatchers) # allow RyuApp and Event class are in different module for brick in SERVICE_BRICKS.itervalues(): if ev_cls in brick._EVENTS: brick.register_observer(ev_cls, i.name, c.dispatchers) @staticmethod def _report_brick(name, app): LOG.debug("BRICK %s" % name) for ev_cls, list_ in app.observers.items(): LOG.debug(" PROVIDES %s TO %s" % (ev_cls.__name__, list_)) for ev_cls in app.event_handlers.keys(): LOG.debug(" CONSUMES %s" % (ev_cls.__name__,)) @staticmethod def report_bricks(): for brick, i in SERVICE_BRICKS.items(): AppManager._report_brick(brick, i) def _instantiate(self, app_name, cls, *args, **kwargs): # for now, only single instance of a given module # Do we need to support multiple instances? # Yes, maybe for slicing. #LOG.info('instantiating app %s of %s', app_name, cls.__name__) if hasattr(cls, 'OFP_VERSIONS') and cls.OFP_VERSIONS is not None: ofproto_protocol.set_app_supported_versions(cls.OFP_VERSIONS) if app_name is not None: assert app_name not in self.applications app = cls(*args, **kwargs) register_app(app) assert app.name not in self.applications self.applications[app.name] = app return app def instantiate(self, cls, *args, **kwargs): app = self._instantiate(None, cls, *args, **kwargs) self._update_bricks() self._report_brick(app.name, app) return app def instantiate_apps(self, *args, **kwargs): for app_name, cls in self.applications_cls.items(): self._instantiate(app_name, cls, *args, **kwargs) self._update_bricks() self.report_bricks() threads = [] for app in self.applications.values(): t = app.start() if t is not None: threads.append(t) return threads @staticmethod def _close(app): close_method = getattr(app, 'close', None) if callable(close_method): close_method() def uninstantiate(self, name): app = self.applications.pop(name) unregister_app(app) for app_ in SERVICE_BRICKS.values(): app_.unregister_observer_all_event(name) app.stop() self._close(app) events = app.events if not events.empty(): app.logger.debug('%s events remians %d', app.name, events.qsize()) def close(self): def close_all(close_dict): for app in close_dict.values(): self._close(app) close_dict.clear() close_all(self.applications) close_all(self.contexts)
33.442308
79
0.608166
4a1b9987fbab6e4449e88811a6e14ba2c29acc01
3,043
py
Python
tpdatasrc/co8infra/scr/Spell432 - Shout.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
69
2015-05-05T14:09:25.000Z
2022-02-15T06:13:04.000Z
tpdatasrc/co8infra/scr/Spell432 - Shout.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
457
2015-05-01T22:07:45.000Z
2022-03-31T02:19:10.000Z
tpdatasrc/co8infra/scr/Spell432 - Shout.py
edoipi/TemplePlus
f0e552289822fea908f16daa379fa568b1bd286d
[ "MIT" ]
25
2016-02-04T21:19:53.000Z
2021-11-15T23:14:51.000Z
from toee import * def OnBeginSpellCast( spell ): print "Shout OnBeginSpellCast" print "spell.target_list=", spell.target_list print "spell.caster=", spell.caster, " caster.level= ", spell.caster_level game.particles( "sp-evocation-conjure", spell.caster ) def OnSpellEffect( spell ): print "Shout OnSpellEffect" remove_list = [] damage_dice = dice_new( '5d6' ) duration_dice = dice_new( '2d6' ) spell.duration = duration_dice.roll() earth_dam = dice_new ( '1d6' ) earth_dam.number = min( 15, spell.caster_level ) game.particles( 'sp-Shout', spell.caster ) # get all targets in a 25ft + 2ft/level cone (60') npc = spell.caster ## added so NPC's can target Shout #### Caster is NOT in game party if npc.type != obj_t_pc and npc.leader_get() == OBJ_HANDLE_NULL: # range = 25 + 2 * int(spell.caster_level/2) range = 30 target_list = list(game.obj_list_cone( spell.caster, OLC_CRITTERS, range, -30, 90 )) target_list.remove(spell.caster) for obj in target_list: if not obj.saving_throw_spell( spell.dc, D20_Save_Fortitude, D20STD_F_NONE, spell.caster, spell.id ): # saving throw unsuccessful obj.spell_damage( spell.caster, D20DT_SONIC, damage_dice, D20DAP_UNSPECIFIED, D20A_CAST_SPELL, spell.id ) obj.condition_add_with_args( 'sp-Shout', spell.id, spell.duration, 0 ) # obj.partsys_id = game.particles( 'sp-Shout-Hit', obj ) game.particles( 'sp-Shout-Hit', obj ) else: # saving throw successful, apply half damage obj.float_mesfile_line( 'mes\\spell.mes', 30001 ) obj.spell_damage_with_reduction( spell.caster, D20DT_SONIC, damage_dice, D20DAP_UNSPECIFIED, DAMAGE_REDUCTION_HALF, D20A_CAST_SPELL, spell.id ) # obj.partsys_id = game.particles( 'sp-Shout-Hit', obj ) game.particles( 'sp-Shout-Hit', obj ) game.particles( 'Fizzle', obj ) #### Caster is in game party if npc.type == obj_t_pc or npc.leader_get() != OBJ_HANDLE_NULL: for target_item in spell.target_list: if not target_item.obj.saving_throw_spell( spell.dc, D20_Save_Fortitude, D20STD_F_NONE, spell.caster, spell.id ): # saving throw unsuccessful target_item.obj.spell_damage( spell.caster, D20DT_SONIC, damage_dice, D20DAP_UNSPECIFIED, D20A_CAST_SPELL, spell.id ) target_item.obj.condition_add_with_args( 'sp-Shout', spell.id, spell.duration, 0 ) target_item.partsys_id = game.particles( 'sp-Shout-Hit', target_item.obj ) else: # saving throw successful, apply half damage target_item.obj.float_mesfile_line( 'mes\\spell.mes', 30001 ) target_item.obj.spell_damage_with_reduction( spell.caster, D20DT_SONIC, damage_dice, D20DAP_UNSPECIFIED, DAMAGE_REDUCTION_HALF, D20A_CAST_SPELL, spell.id ) target_item.partsys_id = game.particles( 'sp-Shout-Hit', target_item.obj ) game.particles( 'Fizzle', target_item.obj ) remove_list.append( target_item.obj ) spell.target_list.remove_list( remove_list ) spell.spell_end( spell.id ) def OnBeginRound( spell ): print "Shout OnBeginRound" def OnEndSpellCast( spell ): print "Shout OnEndSpellCast"
40.039474
159
0.734473
4a1b99e7edeaaddd9feabf3859830c9bcaab5ca1
1,032
py
Python
jp.atcoder/abc111/arc103_b/9362830.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc111/arc103_b/9362830.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc111/arc103_b/9362830.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys n = int(sys.stdin.readline().rstrip()) xy = list(zip(*[map(int, sys.stdin.read().split())] * 2)) mask = (1 << 31) - 1 def solve(x, y, mode): u = x + y v = x - y if mode == 0: u -= 1 v -= 1 s = (u + mask) >> 1 t = (v + mask) >> 1 l = (~(s | t)) & mask r = s & t & mask d = (~s) & t & mask u = s & (~t) & mask res = '' for i in range(30, -1, -1): if l >> i & 1: res += 'L' elif r >> i & 1: res += 'R' elif d >> i & 1: res += 'D' elif u >> i & 1: res += 'U' if mode == 0: res += 'R' return [res] def main(): oe = (xy[0][0] + xy[0][1]) % 2 for x, y in xy: if (x + y) % 2 != oe: return [-1] yield [31] yield [2 ** i for i in range(31)] for x, y in xy: yield solve(x, y, oe) if __name__ == '__main__': ans = main() for i in ans: print(*i, sep=' ')
19.846154
58
0.351744
4a1b99f4b9bc9adbb608c4a914229d206f5f1be5
1,877
py
Python
homeassistant/components/binary_sensor/verisure.py
veresspeter/home-assistant
a3c22c6eec2c77a28a8fa859e899984269708666
[ "Apache-2.0" ]
37
2018-05-22T07:17:26.000Z
2022-03-03T13:14:46.000Z
homeassistant/components/binary_sensor/verisure.py
veresspeter/home-assistant
a3c22c6eec2c77a28a8fa859e899984269708666
[ "Apache-2.0" ]
125
2018-12-11T07:31:20.000Z
2021-07-27T08:20:03.000Z
homeassistant/components/binary_sensor/verisure.py
y1ngyang/home-assistant
7e39a5c4d50cf5754f5f32a84870ca57a5778b02
[ "Apache-2.0" ]
8
2018-05-30T20:05:26.000Z
2021-02-19T14:17:05.000Z
""" Interfaces with Verisure sensors. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/binary_sensor.verisure/ """ import logging from homeassistant.components.binary_sensor import BinarySensorDevice from homeassistant.components.verisure import CONF_DOOR_WINDOW from homeassistant.components.verisure import HUB as hub _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Verisure binary sensors.""" sensors = [] hub.update_overview() if int(hub.config.get(CONF_DOOR_WINDOW, 1)): sensors.extend([ VerisureDoorWindowSensor(device_label) for device_label in hub.get( "$.doorWindow.doorWindowDevice[*].deviceLabel")]) add_devices(sensors) class VerisureDoorWindowSensor(BinarySensorDevice): """Representation of a Verisure door window sensor.""" def __init__(self, device_label): """Initialize the Verisure door window sensor.""" self._device_label = device_label @property def name(self): """Return the name of the binary sensor.""" return hub.get_first( "$.doorWindow.doorWindowDevice[?(@.deviceLabel=='%s')].area", self._device_label) @property def is_on(self): """Return the state of the sensor.""" return hub.get_first( "$.doorWindow.doorWindowDevice[?(@.deviceLabel=='%s')].state", self._device_label) == "OPEN" @property def available(self): """Return True if entity is available.""" return hub.get_first( "$.doorWindow.doorWindowDevice[?(@.deviceLabel=='%s')]", self._device_label) is not None def update(self): """Update the state of the sensor.""" hub.update_overview()
31.283333
74
0.667022
4a1b9a7ed076a140db7cc0775024fc8634e48c2c
28
py
Python
tlbpy/rl_algos/__init__.py
Guitheg/tlbpy
67f87012bbca67142a9810bbeb0e5ba413993d41
[ "MIT" ]
null
null
null
tlbpy/rl_algos/__init__.py
Guitheg/tlbpy
67f87012bbca67142a9810bbeb0e5ba413993d41
[ "MIT" ]
null
null
null
tlbpy/rl_algos/__init__.py
Guitheg/tlbpy
67f87012bbca67142a9810bbeb0e5ba413993d41
[ "MIT" ]
null
null
null
from .rl_algo import Rl_algo
28
28
0.857143
4a1b9c399dd2f094c9c86f1571a16dd8f9da4fe5
1,715
py
Python
Tools/ProjectGenerator/CreateProject.py
uberpixel/Rayne
94f601561aedfc3200e67ff9522f64fbc5ca4d8c
[ "MIT" ]
13
2020-08-08T11:57:05.000Z
2022-03-10T17:29:19.000Z
Tools/ProjectGenerator/CreateProject.py
uberpixel/Rayne
94f601561aedfc3200e67ff9522f64fbc5ca4d8c
[ "MIT" ]
1
2022-03-10T17:35:28.000Z
2022-03-10T18:21:57.000Z
Tools/ProjectGenerator/CreateProject.py
uberpixel/Rayne
94f601561aedfc3200e67ff9522f64fbc5ca4d8c
[ "MIT" ]
3
2020-08-08T14:22:34.000Z
2021-05-15T21:12:17.000Z
import os import sys import datetime def main(): templateName = input("Template name? ") projectNameString = input("Project name? ") projectName = projectNameString.encode() projectTarget = projectNameString.replace(" ", "").encode() prefixString = input("Project prefix? ") prefix = prefixString.encode() companyName = input("Company name? ").encode() bundleID = input("Bundle ID? ").encode() year = str(datetime.datetime.now().year).encode() fromdir = os.path.join(os.path.dirname(sys.argv[0]), "Templates") fromdir = os.path.join(fromdir, templateName) for root, subdirs, files in os.walk(fromdir): relativeRoot = os.path.relpath(root, fromdir) for subdir in subdirs: os.makedirs(os.path.join(relativeRoot, subdir)) for filename in files: if filename == ".DS_Store": continue readFilePath = os.path.join(root, filename) if filename == "gitattributes": filename = ".gitattributes" filename = filename.replace("__TMP__", prefixString) writeFilePath = os.path.join(relativeRoot, filename) with open(readFilePath, 'rb') as readFile: fileContent = readFile.read() fileContent = fileContent.replace("__TMP__".encode(), prefix) fileContent = fileContent.replace("__TMP_BUNDLE_ID__".encode(), bundleID) fileContent = fileContent.replace("__TMP_APPLICATION_NAME__".encode(), projectName) fileContent = fileContent.replace("__TMP_APPLICATION_TARGET__".encode(), projectTarget) fileContent = fileContent.replace("__TMP_COMPANY__".encode(), companyName) fileContent = fileContent.replace("__TMP_YEAR__".encode(), year) with open(writeFilePath, 'wb') as writeFile: writeFile.write(fileContent) if __name__ == '__main__': main()
35
91
0.724781
4a1b9f76326f96b5e172977b7e2c29700d0ab015
2,654
py
Python
tests/test_unasync.py
nsidnev/unasyncer
e48f9104b123707f621adce87721f1028912094d
[ "MIT" ]
null
null
null
tests/test_unasync.py
nsidnev/unasyncer
e48f9104b123707f621adce87721f1028912094d
[ "MIT" ]
null
null
null
tests/test_unasync.py
nsidnev/unasyncer
e48f9104b123707f621adce87721f1028912094d
[ "MIT" ]
null
null
null
import os import pathlib import pytest from unasyncer.unasync import unasync_path @pytest.fixture def expected_unasynced_code(sources: pathlib.Path) -> str: with open(sources / "right_sync.py") as right_sync_file: return right_sync_file.read() def test_create_right_sync_structure_for_dir(sources: pathlib.Path) -> None: async_folder = sources / "_async" sync_folder = sources / "_sync" [_ for _ in unasync_path(async_folder, sync_folder)] # consume iterator required_paths = [ sync_folder / "__init__.py", sync_folder / "inner_package", sync_folder / "inner_package" / "__init__.py", sync_folder / "inner_package" / "logic.py", ] for path in required_paths: assert path.exists() def test_create_unasynced_single_file(sources: pathlib.Path) -> None: async_file_path = sources / "_async" / "inner_package" / "logic.py" sync_file_path = sources / "_async" / "inner_package" / "sync.py" next(unasync_path(async_file_path, sync_file_path)) assert sync_file_path.exists() def test_unasynced_file_content( sources: pathlib.Path, expected_unasynced_code: str ) -> None: async_file_path = sources / "_async" / "inner_package" / "logic.py" sync_file_path = sources / "_async" / "inner_package" / "sync.py" next(unasync_path(async_file_path, sync_file_path)) with open(sync_file_path) as sync_file: content = sync_file.read() assert content == expected_unasynced_code def test_skiping_not_files_or_dirs(sources: pathlib.Path) -> None: async_folder = sources / "_async" sync_folder = sources / "_sync" fifo_path = async_folder / "fifo" os.mkfifo(fifo_path) [_ for _ in unasync_path(async_folder, sync_folder)] # consume iterator assert not (sync_folder / "fifo").exists() def test_raising_error_for_not_files_or_dirs_in_unasync_path( sources: pathlib.Path, ) -> None: async_folder = sources / "_async" sync_folder = sources / "_sync" fifo_path = async_folder / "fifo" os.mkfifo(fifo_path) with pytest.raises(ValueError): next(unasync_path(fifo_path, sync_folder / "fifo")) def test_raising_error_if_dir_does_not_exist_and_creation_disabled( sources: pathlib.Path, ) -> None: async_folder = sources / "_async" sync_folder = sources / "_sync" with pytest.raises(RuntimeError): next(unasync_path(async_folder, sync_folder, create_missed_paths=False)) def test_raising_error_if_path_does_not_exist() -> None: with pytest.raises(FileNotFoundError): next(unasync_path(pathlib.Path("error_path"), pathlib.Path("_sync")))
28.234043
80
0.712509
4a1b9fce96b9c9acdff3098e6234608f93bcd4a1
27,024
py
Python
src/pretix/base/signals.py
NicsTr/pretix
e6d2380d9ed1836cc64a688b2be20d00a8500eab
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/pretix/base/signals.py
NicsTr/pretix
e6d2380d9ed1836cc64a688b2be20d00a8500eab
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/pretix/base/signals.py
NicsTr/pretix
e6d2380d9ed1836cc64a688b2be20d00a8500eab
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import warnings from typing import Any, Callable, List, Tuple import django.dispatch from django.apps import apps from django.conf import settings from django.dispatch.dispatcher import NO_RECEIVERS from .models import Event app_cache = {} def _populate_app_cache(): global app_cache apps.check_apps_ready() for ac in apps.app_configs.values(): app_cache[ac.name] = ac class EventPluginSignal(django.dispatch.Signal): """ This is an extension to Django's built-in signals which differs in a way that it sends out it's events only to receivers which belong to plugins that are enabled for the given Event. """ def _is_active(self, sender, receiver): if sender is None: # Send to all events! return True # Find the Django application this belongs to searchpath = receiver.__module__ core_module = any([searchpath.startswith(cm) for cm in settings.CORE_MODULES]) app = None if not core_module: while True: app = app_cache.get(searchpath) if "." not in searchpath or app: break searchpath, _ = searchpath.rsplit(".", 1) # Only fire receivers from active plugins and core modules excluded = settings.PRETIX_PLUGINS_EXCLUDE if core_module or (sender and app and app.name in sender.get_plugins() and app.name not in excluded): if not hasattr(app, 'compatibility_errors') or not app.compatibility_errors: return True return False def send(self, sender: Event, **named) -> List[Tuple[Callable, Any]]: """ Send signal from sender to all connected receivers that belong to plugins enabled for the given Event. sender is required to be an instance of ``pretix.base.models.Event``. """ if sender and not isinstance(sender, Event): raise ValueError("Sender needs to be an event.") responses = [] if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS: return responses if not app_cache: _populate_app_cache() for receiver in self._sorted_receivers(sender): if self._is_active(sender, receiver): response = receiver(signal=self, sender=sender, **named) responses.append((receiver, response)) return responses def send_chained(self, sender: Event, chain_kwarg_name, **named) -> List[Tuple[Callable, Any]]: """ Send signal from sender to all connected receivers. The return value of the first receiver will be used as the keyword argument specified by ``chain_kwarg_name`` in the input to the second receiver and so on. The return value of the last receiver is returned by this method. sender is required to be an instance of ``pretix.base.models.Event``. """ if sender and not isinstance(sender, Event): raise ValueError("Sender needs to be an event.") response = named.get(chain_kwarg_name) if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS: return response if not app_cache: _populate_app_cache() for receiver in self._sorted_receivers(sender): if self._is_active(sender, receiver): named[chain_kwarg_name] = response response = receiver(signal=self, sender=sender, **named) return response def send_robust(self, sender: Event, **named) -> List[Tuple[Callable, Any]]: """ Send signal from sender to all connected receivers. If a receiver raises an exception instead of returning a value, the exception is included as the result instead of stopping the response chain at the offending receiver. sender is required to be an instance of ``pretix.base.models.Event``. """ if sender and not isinstance(sender, Event): raise ValueError("Sender needs to be an event.") responses = [] if ( not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS ): return [] if not app_cache: _populate_app_cache() for receiver in self._sorted_receivers(sender): if self._is_active(sender, receiver): try: response = receiver(signal=self, sender=sender, **named) except Exception as err: responses.append((receiver, err)) else: responses.append((receiver, response)) return responses def _sorted_receivers(self, sender): orig_list = self._live_receivers(sender) sorted_list = sorted( orig_list, key=lambda receiver: ( 0 if any(receiver.__module__.startswith(m) for m in settings.CORE_MODULES) else 1, receiver.__module__, receiver.__name__, ) ) return sorted_list class GlobalSignal(django.dispatch.Signal): def send_chained(self, sender: Event, chain_kwarg_name, **named) -> List[Tuple[Callable, Any]]: """ Send signal from sender to all connected receivers. The return value of the first receiver will be used as the keyword argument specified by ``chain_kwarg_name`` in the input to the second receiver and so on. The return value of the last receiver is returned by this method. """ response = named.get(chain_kwarg_name) if not self.receivers or self.sender_receivers_cache.get(sender) is NO_RECEIVERS: return response for receiver in self._live_receivers(sender): named[chain_kwarg_name] = response response = receiver(signal=self, sender=sender, **named) return response class DeprecatedSignal(django.dispatch.Signal): def connect(self, receiver, sender=None, weak=True, dispatch_uid=None): warnings.warn('This signal is deprecated and will soon be removed', stacklevel=3) super().connect(receiver, sender=None, weak=True, dispatch_uid=None) event_live_issues = EventPluginSignal( providing_args=[] ) """ This signal is sent out to determine whether an event can be taken live. If you want to prevent the event from going live, return a string that will be displayed to the user as the error message. If you don't, your receiver should return ``None``. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_payment_providers = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known payment providers. Receivers should return a subclass of pretix.base.payment.BasePaymentProvider or a list of these As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_mail_placeholders = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known email text placeholders. Receivers should return an instance of a subclass of pretix.base.email.BaseMailTextPlaceholder or a list of these. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_html_mail_renderers = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known HTML email renderers. Receivers should return a subclass of pretix.base.email.BaseHTMLMailRenderer or a list of these As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_invoice_renderers = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known invoice renderers. Receivers should return a subclass of pretix.base.invoice.BaseInvoiceRenderer or a list of these As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_ticket_secret_generators = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known ticket secret generators. Receivers should return a subclass of ``pretix.base.secrets.BaseTicketSecretGenerator`` or a list of these As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_data_shredders = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known data shredders. Receivers should return a subclass of pretix.base.shredder.BaseDataShredder or a list of these As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_ticket_outputs = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known ticket outputs. Receivers should return a subclass of pretix.base.ticketoutput.BaseTicketOutput As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_notification_types = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known notification types. Receivers should return an instance of a subclass of pretix.base.notifications.NotificationType or a list of such instances. As with all event-plugin signals, the ``sender`` keyword argument will contain the event, however for this signal, the ``sender`` **may also be None** to allow creating the general notification settings! """ register_sales_channels = django.dispatch.Signal( providing_args=[] ) """ This signal is sent out to get all known sales channels types. Receivers should return an instance of a subclass of ``pretix.base.channels.SalesChannel`` or a list of such instances. """ register_data_exporters = EventPluginSignal( providing_args=[] ) """ This signal is sent out to get all known data exporters. Receivers should return a subclass of pretix.base.exporter.BaseExporter As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ register_multievent_data_exporters = django.dispatch.Signal( providing_args=["event"] ) """ This signal is sent out to get all known data exporters, which support exporting data for multiple events. Receivers should return a subclass of pretix.base.exporter.BaseExporter The ``sender`` keyword argument will contain an organizer. """ validate_order = EventPluginSignal( providing_args=["payment_provider", "positions", "email", "locale", "invoice_address", "meta_info"] ) """ This signal is sent out when the user tries to confirm the order, before we actually create the order. It allows you to inspect the cart positions. Your return value will be ignored, but you can raise an OrderError with an appropriate exception message if you like to block the order. We strongly discourage making changes to the order here. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ validate_cart = EventPluginSignal( providing_args=["positions"] ) """ This signal is sent out before the user starts checkout. It includes an iterable with the current CartPosition objects. The response of receivers will be ignored, but you can raise a CartError with an appropriate exception message. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ validate_cart_addons = EventPluginSignal( providing_args=["addons", "base_position", "iao"] ) """ This signal is sent when a user tries to select a combination of addons. In contrast to ``validate_cart``, this is executed before the cart is actually modified. You are passed an argument ``addons`` containing a dict of ``(item, variation or None) → count`` tuples as well as the ``ItemAddOn`` object as the argument ``iao`` and the base cart position as ``base_position``. The response of receivers will be ignored, but you can raise a CartError with an appropriate exception message. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_placed = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is placed. The order object is given as the first argument. This signal is *not* sent out if an order is created through splitting an existing order, so you can not expect to see all orders by listening to this signal. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_paid = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is paid. The order object is given as the first argument. This signal is *not* sent out if an order is marked as paid because an already-paid order has been split. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_canceled = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is canceled. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_reactivated = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time a canceled order is reactivated. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_expired = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is marked as expired. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_modified = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order's information is modified. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_changed = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order's content is changed. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_approved = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is being approved. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_denied = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time an order is being denied. The order object is given as the first argument. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ order_gracefully_delete = EventPluginSignal( providing_args=["order"] ) """ This signal is sent out every time a test-mode order is being deleted. The order object is given as the first argument. Any plugin receiving this signals is supposed to perform any cleanup necessary at this point, so that the underlying order has no more external constraints that would inhibit the deletion of the order. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ checkin_created = EventPluginSignal( providing_args=["checkin"], ) """ This signal is sent out every time a check-in is created (i.e. an order position is marked as checked in). It is not send if the position was already checked in and is force-checked-in a second time. The check-in object is given as the first argument As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ logentry_display = EventPluginSignal( providing_args=["logentry"] ) """ To display an instance of the ``LogEntry`` model to a human user, ``pretix.base.signals.logentry_display`` will be sent out with a ``logentry`` argument. The first received response that is not ``None`` will be used to display the log entry to the user. The receivers are expected to return plain text. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ logentry_object_link = EventPluginSignal( providing_args=["logentry"] ) """ To display the relationship of an instance of the ``LogEntry`` model to another model to a human user, ``pretix.base.signals.logentry_object_link`` will be sent out with a ``logentry`` argument. The first received response that is not ``None`` will be used to display the related object to the user. The receivers are expected to return a HTML link. The internal implementation builds the links like this:: a_text = _('Tax rule {val}') a_map = { 'href': reverse('control:event.settings.tax.edit', kwargs={ 'event': sender.slug, 'organizer': sender.organizer.slug, 'rule': logentry.content_object.id }), 'val': escape(logentry.content_object.name), } a_map['val'] = '<a href="{href}">{val}</a>'.format_map(a_map) return a_text.format_map(a_map) Make sure that any user content in the HTML code you return is properly escaped! As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ requiredaction_display = EventPluginSignal( providing_args=["action", "request"] ) """ To display an instance of the ``RequiredAction`` model to a human user, ``pretix.base.signals.requiredaction_display`` will be sent out with a ``action`` argument. You will also get the current ``request`` in a different argument. The first received response that is not ``None`` will be used to display the log entry to the user. The receivers are expected to return HTML code. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ event_copy_data = EventPluginSignal( providing_args=["other", "tax_map", "category_map", "item_map", "question_map", "variation_map", "checkin_list_map"] ) """ This signal is sent out when a new event is created as a clone of an existing event, i.e. the settings from the older event are copied to the newer one. You can listen to this signal to copy data or configuration stored within your plugin's models as well. You don't need to copy data inside the general settings storage which is cloned automatically, but you might need to modify that data. The ``sender`` keyword argument will contain the event of the **new** event. The ``other`` keyword argument will contain the event to **copy from**. The keyword arguments ``tax_map``, ``category_map``, ``item_map``, ``question_map``, ``variation_map`` and ``checkin_list_map`` contain mappings from object IDs in the original event to objects in the new event of the respective types. """ item_copy_data = EventPluginSignal( providing_args=["source", "target"] ) """ This signal is sent out when a new product is created as a clone of an existing product, i.e. the settings from the older product are copied to the newer one. You can listen to this signal to copy data or configuration stored within your plugin's models as well. The ``sender`` keyword argument will contain the event. The ``target`` will contain the item to copy to, the ``source`` keyword argument will contain the product to **copy from**. """ periodic_task = django.dispatch.Signal() """ This is a regular django signal (no pretix event signal) that we send out every time the periodic task cronjob runs. This interval is not sharply defined, it can be everything between a minute and a day. The actions you perform should be idempotent, i.e. it should not make a difference if this is sent out more often than expected. """ register_global_settings = django.dispatch.Signal() """ All plugins that are installed may send fields for the global settings form, as an OrderedDict of (setting name, form field). """ order_fee_calculation = EventPluginSignal( providing_args=['positions', 'invoice_address', 'meta_info', 'total', 'gift_cards'] ) """ This signals allows you to add fees to an order while it is being created. You are expected to return a list of ``OrderFee`` objects that are not yet saved to the database (because there is no order yet). As with all plugin signals, the ``sender`` keyword argument will contain the event. A ``positions`` argument will contain the cart positions and ``invoice_address`` the invoice address (useful for tax calculation). The argument ``meta_info`` contains the order's meta dictionary. The ``total`` keyword argument will contain the total cart sum without any fees. You should not rely on this ``total`` value for fee calculations as other fees might interfere. The ``gift_cards`` argument lists the gift cards in use. """ order_fee_type_name = EventPluginSignal( providing_args=['request', 'fee'] ) """ This signals allows you to return a human-readable description for a fee type based on the ``fee_type`` and ``internal_type`` attributes of the ``OrderFee`` model that you get as keyword arguments. You are expected to return a string or None, if you don't know about this fee. As with all plugin signals, the ``sender`` keyword argument will contain the event. """ allow_ticket_download = EventPluginSignal( providing_args=['order'] ) """ This signal is sent out to check if tickets for an order can be downloaded. If any receiver returns false, a download will not be offered. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ email_filter = EventPluginSignal( providing_args=['message', 'order', 'user'] ) """ This signal allows you to implement a middleware-style filter on all outgoing emails. You are expected to return a (possibly modified) copy of the message object passed to you. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. The ``message`` argument will contain an ``EmailMultiAlternatives`` object. If the email is associated with a specific order, the ``order`` argument will be passed as well, otherwise it will be ``None``. If the email is associated with a specific user, e.g. a notification email, the ``user`` argument will be passed as well, otherwise it will be ``None``. """ global_email_filter = GlobalSignal( providing_args=['message', 'order', 'user'] ) """ This signal allows you to implement a middleware-style filter on all outgoing emails. You are expected to return a (possibly modified) copy of the message object passed to you. This signal is called on all events and even if there is no known event. ``sender`` is an event or None. The ``message`` argument will contain an ``EmailMultiAlternatives`` object. If the email is associated with a specific order, the ``order`` argument will be passed as well, otherwise it will be ``None``. If the email is associated with a specific user, e.g. a notification email, the ``user`` argument will be passed as well, otherwise it will be ``None``. """ layout_text_variables = EventPluginSignal() """ This signal is sent out to collect variables that can be used to display text in ticket-related PDF layouts. Receivers are expected to return a dictionary with globally unique identifiers as keys and more dictionaries as values that contain keys like in the following example:: return { "product": { "label": _("Product name"), "editor_sample": _("Sample product"), "evaluate": lambda orderposition, order, event: str(orderposition.item) } } The evaluate member will be called with the order position, order and event as arguments. The event might also be a subevent, if applicable. """ timeline_events = EventPluginSignal() """ This signal is sent out to collect events for the time line shown on event dashboards. You are passed a ``subevent`` argument which might be none and you are expected to return a list of instances of ``pretix.base.timeline.TimelineEvent``, which is a ``namedtuple`` with the fields ``event``, ``subevent``, ``datetime``, ``description`` and ``edit_url``. """ quota_availability = EventPluginSignal( providing_args=['quota', 'result', 'count_waitinglist'] ) """ This signal allows you to modify the availability of a quota. You are passed the ``quota`` and an ``availability`` result calculated by pretix code or other plugins. ``availability`` is a tuple with the first entry being one of the ``Quota.AVAILABILITY_*`` constants and the second entry being the number of available tickets (or ``None`` for unlimited). You are expected to return a value of the same type. The parameter ``count_waitinglists`` specifies whether waiting lists should be taken into account. **Warning: Use this signal with great caution, it allows you to screw up the performance of the system really bad.** Also, keep in mind that your response is subject to caching and out-of-date quotas might be used for display (not for actual order processing). """ order_split = EventPluginSignal( providing_args=["original", "split_order"] ) """ This signal is sent out when an order is split into two orders and allows you to copy related models to the new order. You will be passed the old order as ``original`` and the new order as ``split_order``. """ invoice_line_text = EventPluginSignal( providing_args=["position"] ) """ This signal is sent out when an invoice is built for an order. You can return additional text that should be shown on the invoice for the given ``position``. """ order_import_columns = EventPluginSignal( providing_args=[] ) """ This signal is sent out if the user performs an import of orders from an external source. You can use this to define additional columns that can be read during import. You are expected to return a list of instances of ``ImportColumn`` subclasses. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ validate_event_settings = EventPluginSignal( providing_args=["settings_dict"] ) """ This signal is sent out if the user performs an update of event settings through the API or web interface. You are passed a ``settings_dict`` dictionary with the new state of the event settings object and are expected to raise a ``django.core.exceptions.ValidationError`` if the new state is not valid. You can not modify the dictionary. This is only recommended to use if you have multiple settings that can only be validated together. To validate individual settings, pass a validator to the serializer field instead. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """ api_event_settings_fields = EventPluginSignal( providing_args=[] ) """ This signal is sent out to collect serializable settings fields for the API. You are expected to return a dictionary mapping names of attributes in the settings store to DRF serializer field instances. As with all event-plugin signals, the ``sender`` keyword argument will contain the event. """
38.061972
120
0.729315
4a1b9ff8969405142293748d3e19d2f62807d220
7,168
py
Python
packages/python/plotly/plotly/graph_objs/scattergl/_line.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/scattergl/_line.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/scattergl/_line.py
eranws/plotly.py
5b0e8d3ccab55fe1a6e4ba123cfc9d718a9ffc5a
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Line(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "scattergl" _path_str = "scattergl.line" _valid_props = {"color", "dash", "shape", "width"} # color # ----- @property def color(self): """ Sets the line color. The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # dash # ---- @property def dash(self): """ Sets the style of the lines. The 'dash' property is an enumeration that may be specified as: - One of the following enumeration values: ['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot'] Returns ------- Any """ return self["dash"] @dash.setter def dash(self, val): self["dash"] = val # shape # ----- @property def shape(self): """ Determines the line shape. The values correspond to step-wise line shapes. The 'shape' property is an enumeration that may be specified as: - One of the following enumeration values: ['linear', 'hv', 'vh', 'hvh', 'vhv'] Returns ------- Any """ return self["shape"] @shape.setter def shape(self, val): self["shape"] = val # width # ----- @property def width(self): """ Sets the line width (in px). The 'width' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["width"] @width.setter def width(self, val): self["width"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color Sets the line color. dash Sets the style of the lines. shape Determines the line shape. The values correspond to step-wise line shapes. width Sets the line width (in px). """ def __init__( self, arg=None, color=None, dash=None, shape=None, width=None, **kwargs ): """ Construct a new Line object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattergl.Line` color Sets the line color. dash Sets the style of the lines. shape Determines the line shape. The values correspond to step-wise line shapes. width Sets the line width (in px). Returns ------- Line """ super(Line, self).__init__("line") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattergl.Line constructor must be a dict or an instance of :class:`plotly.graph_objs.scattergl.Line`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("dash", None) _v = dash if dash is not None else _v if _v is not None: self["dash"] = _v _v = arg.pop("shape", None) _v = shape if shape is not None else _v if _v is not None: self["shape"] = _v _v = arg.pop("width", None) _v = width if width is not None else _v if _v is not None: self["width"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
31.165217
82
0.527623
4a1ba0697069f81bec8ee3fd2f3e7ae3c9e8051e
4,943
py
Python
cirq-core/cirq/interop/quirk/cells/control_cells_test.py
dabacon/Cirq
54286063f679d67501ff1b905cd16b879feaae27
[ "Apache-2.0" ]
1
2021-04-29T15:30:32.000Z
2021-04-29T15:30:32.000Z
cirq-core/cirq/interop/quirk/cells/control_cells_test.py
bradyb/Cirq
610b0d4ea3a7862169610797266734c844ddcc1f
[ "Apache-2.0" ]
1
2020-04-03T20:23:20.000Z
2020-04-03T20:23:20.000Z
cirq-core/cirq/interop/quirk/cells/control_cells_test.py
bradyb/Cirq
610b0d4ea3a7862169610797266734c844ddcc1f
[ "Apache-2.0" ]
2
2021-09-22T11:16:46.000Z
2021-09-23T12:55:22.000Z
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cirq from cirq.interop.quirk.cells.testing import assert_url_to_circuit_returns def test_controls(): a, b = cirq.LineQubit.range(2) assert_url_to_circuit_returns( '{"cols":[["•","X"]]}', cirq.Circuit( cirq.X(b).controlled_by(a), ), ) assert_url_to_circuit_returns( '{"cols":[["◦","X"]]}', cirq.Circuit( cirq.X(a), cirq.X(b).controlled_by(a), cirq.X(a), ), ) assert_url_to_circuit_returns( '{"cols":[["⊕","X"]]}', cirq.Circuit( cirq.Y(a) ** 0.5, cirq.X(b).controlled_by(a), cirq.Y(a) ** -0.5, ), output_amplitudes_from_quirk=[ {"r": 0.5, "i": 0}, {"r": -0.5, "i": 0}, {"r": 0.5, "i": 0}, {"r": 0.5, "i": 0}, ], ) assert_url_to_circuit_returns( '{"cols":[["⊖","X"]]}', cirq.Circuit( cirq.Y(a) ** -0.5, cirq.X(b).controlled_by(a), cirq.Y(a) ** +0.5, ), output_amplitudes_from_quirk=[ {"r": 0.5, "i": 0}, {"r": 0.5, "i": 0}, {"r": 0.5, "i": 0}, {"r": -0.5, "i": 0}, ], ) assert_url_to_circuit_returns( '{"cols":[["⊗","X"]]}', cirq.Circuit( cirq.X(a) ** -0.5, cirq.X(b).controlled_by(a), cirq.X(a) ** +0.5, ), output_amplitudes_from_quirk=[ {"r": 0.5, "i": 0}, {"r": 0, "i": -0.5}, {"r": 0.5, "i": 0}, {"r": 0, "i": 0.5}, ], ) assert_url_to_circuit_returns( '{"cols":[["(/)","X"]]}', cirq.Circuit( cirq.X(a) ** +0.5, cirq.X(b).controlled_by(a), cirq.X(a) ** -0.5, ), output_amplitudes_from_quirk=[ {"r": 0.5, "i": 0}, {"r": 0, "i": 0.5}, {"r": 0.5, "i": 0}, {"r": 0, "i": -0.5}, ], ) qs = cirq.LineQubit.range(8) assert_url_to_circuit_returns( '{"cols":[["X","•","◦","⊕","⊖","⊗","(/)","Z"]]}', cirq.Circuit( cirq.X(qs[2]), cirq.Y(qs[3]) ** 0.5, cirq.Y(qs[4]) ** -0.5, cirq.X(qs[5]) ** -0.5, cirq.X(qs[6]) ** 0.5, cirq.X(qs[0]).controlled_by(*qs[1:7]), cirq.Z(qs[7]).controlled_by(*qs[1:7]), cirq.X(qs[6]) ** -0.5, cirq.X(qs[5]) ** 0.5, cirq.Y(qs[4]) ** 0.5, cirq.Y(qs[3]) ** -0.5, cirq.X(qs[2]), ), ) def test_parity_controls(): a, b, c, d, e = cirq.LineQubit.range(5) assert_url_to_circuit_returns( '{"cols":[["Y","xpar","ypar","zpar","Z"]]}', cirq.Circuit( cirq.Y(b) ** 0.5, cirq.X(c) ** -0.5, cirq.CNOT(c, b), cirq.CNOT(d, b), cirq.Y(a).controlled_by(b), cirq.Z(e).controlled_by(b), cirq.CNOT(d, b), cirq.CNOT(c, b), cirq.X(c) ** 0.5, cirq.Y(b) ** -0.5, ), ) def test_control_with_line_qubits_mapped_to(): a, b = cirq.LineQubit.range(2) a2, b2 = cirq.NamedQubit.range(2, prefix='q') cell = cirq.interop.quirk.cells.control_cells.ControlCell(a, [cirq.Y(b) ** 0.5]) mapped_cell = cirq.interop.quirk.cells.control_cells.ControlCell(a2, [cirq.Y(b2) ** 0.5]) assert cell != mapped_cell assert cell.with_line_qubits_mapped_to([a2, b2]) == mapped_cell def test_parity_control_with_line_qubits_mapped_to(): a, b, c = cirq.LineQubit.range(3) a2, b2, c2 = cirq.NamedQubit.range(3, prefix='q') cell = cirq.interop.quirk.cells.control_cells.ParityControlCell([a, b], [cirq.Y(c) ** 0.5]) mapped_cell = cirq.interop.quirk.cells.control_cells.ParityControlCell( [a2, b2], [cirq.Y(c2) ** 0.5] ) assert cell != mapped_cell assert cell.with_line_qubits_mapped_to([a2, b2, c2]) == mapped_cell def test_repr(): a, b, c = cirq.LineQubit.range(3) cirq.testing.assert_equivalent_repr( cirq.interop.quirk.cells.control_cells.ControlCell(a, [cirq.Y(b) ** 0.5]) ) cirq.testing.assert_equivalent_repr( cirq.interop.quirk.cells.control_cells.ParityControlCell([a, b], [cirq.Y(c) ** 0.5]) )
30.325153
95
0.500303
4a1ba0b5463d6f10801673a6153e02189f5026f9
4,573
py
Python
src/analyzeScenario.py
shinshio/AC2C
3d7d5ce33a6d2e77a8ae2cd697bd6db4518b0bf8
[ "OLDAP-2.2.1" ]
null
null
null
src/analyzeScenario.py
shinshio/AC2C
3d7d5ce33a6d2e77a8ae2cd697bd6db4518b0bf8
[ "OLDAP-2.2.1" ]
null
null
null
src/analyzeScenario.py
shinshio/AC2C
3d7d5ce33a6d2e77a8ae2cd697bd6db4518b0bf8
[ "OLDAP-2.2.1" ]
null
null
null
# coding: utf-8 ''' Analyze scenario and, extract each items. items:cover, scenario, CAN, Relay information ... TODO: No Item. ''' # import from std import sys # import from pypi import pandas as pd def takeInCover(filename: str) -> list: """ Take in cover information from scenario file Parameters ---------- filename: str full path of scenario file Returns ---------- lst_cover: list 0: title, 1: author, 2:ECU type 3: ECU code, 4: summary(1), 5: summary(2), 6: summary(3), 7: summary(4) """ snHeader = 3 snIndexCol = 0 snSname = 'cover' df_cover = pd.read_excel(filename,header=snHeader,index_col=snIndexCol,sheet_name=snSname) lst_cover = sum(df_cover.fillna('').values.tolist(), []) return lst_cover def takeInScenario(filename: str) -> list: """ Take in scenario information from scenario file Parameters ---------- filename: str full path of scenario file Returns ---------- lst_scenario: list demension 1: scenarios demension 2: 0: numbers, 1: scenario's items (orders and recipes) 2: judges """ snHeader = 0 snIndexCol = None snSname = 'scenario' df_scenario = pd.read_excel(filename,header=snHeader,index_col=snIndexCol,sheet_name=snSname) lst_scenario = df_scenario.fillna('').values.tolist() return lst_scenario def takeInCanInfo(filename: str) -> list: """ Take in CAN information from scenario file Parameters ---------- filename: str full path of scenario file Returns ---------- lst_can: list demension 1: keywords 0: id for send, 1: id for response 2: message of dtc read 3: message of dtc clear, 4: message of additional request 5,6,7: reservation demension 2: value 0: keywords, 1: value """ snHeader = 0 snIndexCol = None snSname = 'can' df_can = pd.read_excel(filename,header=snHeader,index_col=snIndexCol,sheet_name=snSname) lst_can = df_can.fillna('').values.tolist() return lst_can def takeInRyDefInfo(filename: str) -> list: """ Take in Relay default information from scenario file Parameters ---------- filename: str full path of scenario file Returns ---------- lst_can: list demension 1: number of relay demension 2: value 0:number, 1: value (on, off, na) """ snHeader = 0 snIndexCol = None snSname = 'relay' df_ry = pd.read_excel(filename,header=snHeader,index_col=snIndexCol,sheet_name=snSname) lst_ry = df_ry.fillna('').values.tolist() return lst_ry def sn2numZ3(scenario: list) -> str: """ Convert scenario number to str (zero padding of 3) Parameters ---------- scenario: list use only index 0 0: number, 1: items (order and recipe), 2:judge Returns ---------- str str of scenario number (zero padding of 3) """ # return result return str(scenario[0]).zfill(3) def sn2order(scenario: list) -> str: """ Extract scenario item to order Parameters ---------- scenario: list use only index 1 0: number, 1: items (order and recipe), 2:judge Returns ---------- str order of scenario """ return str(scenario[1].split('<')[0]) def sn2recipe(scenario: list) -> list: """ Extract scenario item to recipe Parameters ---------- scenario: list use only index 1 0: number, 1: items (order and recipe), 2:judge Returns ---------- subOrder: list 0: mainOrder, 1-end:subOrders """ # slice main task allOrder = str(scenario[1].split('<')[1]) mainOrder = allOrder.split('_')[0] subOrders = str(allOrder.split('_',1)[1]).replace('>','').split('_') subOrders.insert(0, mainOrder) # return result return subOrders def sn2judge(scenario: list) -> str: """ Extract scenario judge to recipe Parameters ---------- scenario: list use only index 2 0: number, 1: items (order and recipe), 2:judge Returns ---------- str judge of scenario """ # return result return str(scenario[2]) ''' ---------- main ---------- ''' if __name__ == '__main__': pass
23.572165
97
0.563306
4a1ba38fbd883569b92f720b0c94418d8328c3cf
4,615
bzl
Python
tensorflow/core/platform/build_config.bzl
jraman/tensorflow
41c6bf7c6215bea9bfb9bf0a9b63f2084e6f3058
[ "Apache-2.0" ]
1
2020-02-15T14:00:01.000Z
2020-02-15T14:00:01.000Z
tensorflow/core/platform/build_config.bzl
rakeshacharya-d/tensorflow
9028828d3b8a2a622f7203a317002cc749531695
[ "Apache-2.0" ]
1
2022-02-10T01:08:48.000Z
2022-02-10T01:08:48.000Z
tensorflow/core/platform/build_config.bzl
rakeshacharya-d/tensorflow
9028828d3b8a2a622f7203a317002cc749531695
[ "Apache-2.0" ]
null
null
null
"""Provides a redirection point for platform specific implementations of starlark utilities.""" load( "//tensorflow/core/platform/default:build_config.bzl", _if_llvm_aarch64_available = "if_llvm_aarch64_available", _pyx_library = "pyx_library", _tf_additional_all_protos = "tf_additional_all_protos", _tf_additional_binary_deps = "tf_additional_binary_deps", _tf_additional_core_deps = "tf_additional_core_deps", _tf_additional_cupti_utils_cuda_deps = "tf_additional_cupti_utils_cuda_deps", _tf_additional_device_tracer_srcs = "tf_additional_device_tracer_srcs", _tf_additional_env_hdrs = "tf_additional_env_hdrs", _tf_additional_lib_deps = "tf_additional_lib_deps", _tf_additional_lib_hdrs = "tf_additional_lib_hdrs", _tf_additional_monitoring_hdrs = "tf_additional_monitoring_hdrs", _tf_additional_rpc_deps = "tf_additional_rpc_deps", _tf_additional_tensor_coding_deps = "tf_additional_tensor_coding_deps", _tf_additional_test_deps = "tf_additional_test_deps", _tf_additional_test_srcs = "tf_additional_test_srcs", _tf_fingerprint_deps = "tf_fingerprint_deps", _tf_google_mobile_srcs_no_runtime = "tf_google_mobile_srcs_no_runtime", _tf_google_mobile_srcs_only_runtime = "tf_google_mobile_srcs_only_runtime", _tf_jspb_proto_library = "tf_jspb_proto_library", _tf_kernel_tests_linkstatic = "tf_kernel_tests_linkstatic", _tf_lib_proto_parsing_deps = "tf_lib_proto_parsing_deps", _tf_logging_deps = "tf_logging_deps", _tf_monitoring_deps = "tf_monitoring_deps", _tf_platform_alias = "tf_platform_alias", _tf_platform_deps = "tf_platform_deps", _tf_portable_deps_no_runtime = "tf_portable_deps_no_runtime", _tf_proto_library = "tf_proto_library", _tf_proto_library_cc = "tf_proto_library_cc", _tf_proto_library_py = "tf_proto_library_py", _tf_protobuf_compiler_deps = "tf_protobuf_compiler_deps", _tf_protobuf_deps = "tf_protobuf_deps", _tf_protobuf_full_deps = "tf_protobuf_full_deps", _tf_protobuf_lite_deps = "tf_protobuf_lite_deps", _tf_protos_all = "tf_protos_all", _tf_protos_all_impl = "tf_protos_all_impl", _tf_protos_grappler = "tf_protos_grappler", _tf_protos_grappler_impl = "tf_protos_grappler_impl", _tf_protos_profiler_impl = "tf_protos_profiler_impl", _tf_py_clif_cc = "tf_py_clif_cc", _tf_pyclif_proto_library = "tf_pyclif_proto_library", _tf_resource_deps = "tf_resource_deps", _tf_windows_aware_platform_deps = "tf_windows_aware_platform_deps", ) if_llvm_aarch64_available = _if_llvm_aarch64_available pyx_library = _pyx_library tf_additional_all_protos = _tf_additional_all_protos tf_additional_binary_deps = _tf_additional_binary_deps tf_additional_core_deps = _tf_additional_core_deps tf_additional_cupti_utils_cuda_deps = _tf_additional_cupti_utils_cuda_deps tf_additional_device_tracer_srcs = _tf_additional_device_tracer_srcs tf_additional_env_hdrs = _tf_additional_env_hdrs tf_additional_lib_deps = _tf_additional_lib_deps tf_additional_lib_hdrs = _tf_additional_lib_hdrs tf_additional_monitoring_hdrs = _tf_additional_monitoring_hdrs tf_additional_rpc_deps = _tf_additional_rpc_deps tf_additional_tensor_coding_deps = _tf_additional_tensor_coding_deps tf_additional_test_deps = _tf_additional_test_deps tf_additional_test_srcs = _tf_additional_test_srcs tf_fingerprint_deps = _tf_fingerprint_deps tf_google_mobile_srcs_no_runtime = _tf_google_mobile_srcs_no_runtime tf_google_mobile_srcs_only_runtime = _tf_google_mobile_srcs_only_runtime tf_jspb_proto_library = _tf_jspb_proto_library tf_kernel_tests_linkstatic = _tf_kernel_tests_linkstatic tf_lib_proto_parsing_deps = _tf_lib_proto_parsing_deps tf_logging_deps = _tf_logging_deps tf_monitoring_deps = _tf_monitoring_deps tf_platform_alias = _tf_platform_alias tf_platform_deps = _tf_platform_deps tf_portable_deps_no_runtime = _tf_portable_deps_no_runtime tf_proto_library = _tf_proto_library tf_proto_library_cc = _tf_proto_library_cc tf_proto_library_py = _tf_proto_library_py tf_protobuf_compiler_deps = _tf_protobuf_compiler_deps tf_protobuf_deps = _tf_protobuf_deps tf_protobuf_full_deps = _tf_protobuf_full_deps tf_protobuf_lite_deps = _tf_protobuf_lite_deps tf_protos_all = _tf_protos_all tf_protos_all_impl = _tf_protos_all_impl tf_protos_grappler = _tf_protos_grappler tf_protos_grappler_impl = _tf_protos_grappler_impl tf_protos_profiler_impl = _tf_protos_profiler_impl tf_py_clif_cc = _tf_py_clif_cc tf_pyclif_proto_library = _tf_pyclif_proto_library tf_resource_deps = _tf_resource_deps tf_windows_aware_platform_deps = _tf_windows_aware_platform_deps
50.714286
95
0.855038
4a1ba5d3141bc005f7093dc1de3b73f0218e0f47
274
py
Python
ex_08_05/ex_08_05.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
ex_08_05/ex_08_05.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
ex_08_05/ex_08_05.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
fname = 'mbox-short.txt' fh = open(fname) count = 0 for line in fh: if not line.startswith('From:'): continue lsl = line.split() eml = lsl[1] print(eml) count = count + 1 print('There were %d lines in the file with From as the first word'%count)
22.833333
74
0.620438
4a1ba72bc45ec4c707293b985e89da042358b4f0
23,478
py
Python
Fill.py
ThreePendants/OoT-Randomizer
001d7823281bc8e9684058203df339aac1263062
[ "MIT" ]
null
null
null
Fill.py
ThreePendants/OoT-Randomizer
001d7823281bc8e9684058203df339aac1263062
[ "MIT" ]
null
null
null
Fill.py
ThreePendants/OoT-Randomizer
001d7823281bc8e9684058203df339aac1263062
[ "MIT" ]
null
null
null
import random import logging from State import State from Rules import set_shop_rules from Location import DisableType from LocationList import location_groups from ItemPool import songlist, get_junk_item, item_groups, remove_junk_items from ItemList import item_table from Item import ItemFactory from Search import Search from functools import reduce logger = logging.getLogger('') class ShuffleError(RuntimeError): pass class FillError(ShuffleError): pass # Places all items into the world def distribute_items_restrictive(window, worlds, fill_locations=None): song_locations = [world.get_location(location) for world in worlds for location in ['Song from Composers Grave', 'Song from Impa', 'Song from Malon', 'Song from Saria', 'Song from Ocarina of Time', 'Song from Windmill', 'Sheik in Forest', 'Sheik at Temple', 'Sheik in Crater', 'Sheik in Ice Cavern', 'Sheik in Kakariko', 'Sheik at Colossus']] shop_locations = [location for world in worlds for location in world.get_unfilled_locations() if location.type == 'Shop' and location.price == None] # If not passed in, then get a shuffled list of locations to fill in if not fill_locations: fill_locations = [location for world in worlds for location in world.get_unfilled_locations() \ if location not in song_locations and \ location not in shop_locations and \ location.type != 'GossipStone'] world_states = [world.state for world in worlds] window.locationcount = len(fill_locations) + len(song_locations) + len(shop_locations) window.fillcount = 0 # Generate the itempools shopitempool = [item for world in worlds for item in world.itempool if item.type == 'Shop'] songitempool = [item for world in worlds for item in world.itempool if item.type == 'Song'] itempool = [item for world in worlds for item in world.itempool if item.type != 'Shop' and item.type != 'Song'] if worlds[0].shuffle_song_items: itempool.extend(songitempool) fill_locations.extend(song_locations) songitempool = [] song_locations = [] # add unrestricted dungeon items to main item pool itempool.extend([item for world in worlds for item in world.get_unrestricted_dungeon_items()]) dungeon_items = [item for world in worlds for item in world.get_restricted_dungeon_items()] random.shuffle(itempool) # randomize item placement order. this ordering can greatly affect the location accessibility bias progitempool = [item for item in itempool if item.advancement] prioitempool = [item for item in itempool if not item.advancement and item.priority] restitempool = [item for item in itempool if not item.advancement and not item.priority] cloakable_locations = shop_locations + song_locations + fill_locations all_models = shopitempool + dungeon_items + songitempool + itempool worlds[0].settings.distribution.fill(window, worlds, [shop_locations, song_locations, fill_locations], [shopitempool, dungeon_items, songitempool, progitempool, prioitempool, restitempool]) itempool = progitempool + prioitempool + restitempool # set ice traps to have the appearance of other random items in the item pool ice_traps = [item for item in itempool if item.name == 'Ice Trap'] # Extend with ice traps manually placed in plandomizer ice_traps.extend( location.item for location in cloakable_locations if (location.has_preview() and location.item is not None and location.item.name == 'Ice Trap' and location.item.looks_like_item is None)) junk_items = remove_junk_items.copy() junk_items.remove('Ice Trap') major_items = [item for (item, data) in item_table.items() if data[0] == 'Item' and data[1] and data[2] is not None] fake_items = [] if worlds[0].settings.ice_trap_appearance == 'major_only': model_items = [item for item in itempool if item.majoritem] if len(model_items) == 0: # All major items were somehow removed from the pool (can happen in plando) model_items = ItemFactory(major_items) elif worlds[0].settings.ice_trap_appearance == 'junk_only': model_items = [item for item in itempool if item.name in junk_items] if len(model_items) == 0: # All junk was removed model_items = ItemFactory(junk_items) else: # world[0].settings.ice_trap_appearance == 'anything': model_items = [item for item in itempool if item.name != 'Ice Trap'] if len(model_items) == 0: # All major items and junk were somehow removed from the pool (can happen in plando) model_items = ItemFactory(major_items) + ItemFactory(junk_items) while len(ice_traps) > len(fake_items): # if there are more ice traps than model items, then double up on model items fake_items.extend(model_items) for random_item in random.sample(fake_items, len(ice_traps)): ice_trap = ice_traps.pop(0) ice_trap.looks_like_item = random_item # Start a search cache here. search = Search([world.state for world in worlds]) # We place all the shop items first. Like songs, they have a more limited # set of locations that they can be placed in, so placing them first will # reduce the odds of creating unbeatable seeds. This also avoids needing # to create item rules for every location for whether they are a shop item # or not. This shouldn't have much affect on item bias. if shop_locations: logger.info('Placing shop items.') fill_ownworld_restrictive(window, worlds, search, shop_locations, shopitempool, itempool + songitempool + dungeon_items, "shop") # Update the shop item access rules for world in worlds: set_shop_rules(world) search.collect_locations() # If there are dungeon items that are restricted to their original dungeon, # we must place them first to make sure that there is always a location to # place them. This could probably be replaced for more intelligent item # placement, but will leave as is for now if dungeon_items: logger.info('Placing dungeon items.') fill_dungeons_restrictive(window, worlds, search, fill_locations, dungeon_items, itempool + songitempool) search.collect_locations() # places the songs into the world # Currently places songs only at song locations. if there's an option # to allow at other locations then they should be in the main pool. # Placing songs on their own since they have a relatively high chance # of failing compared to other item type. So this way we only have retry # the song locations only. if not worlds[0].shuffle_song_items: logger.info('Placing song items.') fill_ownworld_restrictive(window, worlds, search, song_locations, songitempool, progitempool, "song") search.collect_locations() fill_locations += [location for location in song_locations if location.item is None] # Put one item in every dungeon, needs to be done before other items are # placed to ensure there is a spot available for them if worlds[0].one_item_per_dungeon: logger.info('Placing one major item per dungeon.') fill_dungeon_unique_item(window, worlds, search, fill_locations, progitempool) search.collect_locations() # Place all progression items. This will include keys in keysanity. # Items in this group will check for reachability and will be placed # such that the game is guaranteed beatable. logger.info('Placing progression items.') fill_restrictive(window, worlds, search, fill_locations, progitempool) search.collect_locations() # Place all priority items. # These items are items that only check if the item is allowed to be # placed in the location, not checking reachability. This is important # for things like Ice Traps that can't be found at some locations logger.info('Placing priority items.') fill_restrictive_fast(window, worlds, fill_locations, prioitempool) # Place the rest of the items. # No restrictions at all. Places them completely randomly. Since they # cannot affect the beatability, we don't need to check them logger.info('Placing the rest of the items.') fast_fill(window, fill_locations, restitempool) # Log unplaced item/location warnings for item in progitempool + prioitempool + restitempool: logger.error('Unplaced Items: %s [World %d]' % (item.name, item.world.id)) for location in fill_locations: logger.error('Unfilled Locations: %s [World %d]' % (location.name, location.world.id)) if progitempool + prioitempool + restitempool: raise FillError('Not all items are placed.') if fill_locations: raise FillError('Not all locations have an item.') if not search.can_beat_game(): raise FillError('Cannot beat game!') worlds[0].settings.distribution.cloak(worlds, [cloakable_locations], [all_models]) for world in worlds: for location in world.get_filled_locations(): # Get the maximum amount of wallets required to purchase an advancement item. if world.maximum_wallets < 3 and location.price and location.item.advancement: if location.price > 500: world.maximum_wallets = 3 elif world.maximum_wallets < 2 and location.price > 200: world.maximum_wallets = 2 elif world.maximum_wallets < 1 and location.price > 99: world.maximum_wallets = 1 # Get Light Arrow location for later usage. if location.item and location.item.name == 'Light Arrows': location.item.world.light_arrow_location = location # Places restricted dungeon items into the worlds. To ensure there is room for them. # they are placed first so it will assume all other items are reachable def fill_dungeons_restrictive(window, worlds, search, shuffled_locations, dungeon_items, itempool): # List of states with all non-key items base_search = search.copy() base_search.collect_all(itempool) base_search.collect_locations() # shuffle this list to avoid placement bias random.shuffle(dungeon_items) # sort in the order Other, Small Key, Boss Key before placing dungeon items # python sort is stable, so the ordering is still random within groups # fill_restrictive processes the resulting list backwards so the Boss Keys will actually be placed first sort_order = {"BossKey": 3, "SmallKey": 2} dungeon_items.sort(key=lambda item: sort_order.get(item.type, 1)) # place dungeon items fill_restrictive(window, worlds, base_search, shuffled_locations, dungeon_items) # Places items into dungeon locations. This is used when there should be exactly # one progression item per dungeon. This should be ran before all the progression # items are places to ensure there is space to place them. def fill_dungeon_unique_item(window, worlds, search, fill_locations, itempool): # We should make sure that we don't count event items, shop items, # token items, or dungeon items as a major item. itempool at this # point should only be able to have tokens of those restrictions # since the rest are already placed. major_items = [item for item in itempool if item.majoritem] minor_items = [item for item in itempool if not item.majoritem] dungeons = [dungeon for world in worlds for dungeon in world.dungeons] double_dungeons = [] for dungeon in dungeons: # we will count spirit temple twice so that it gets 2 items to match vanilla if dungeon.name == 'Spirit Temple': double_dungeons.append(dungeon) dungeons.extend(double_dungeons) random.shuffle(dungeons) random.shuffle(itempool) base_search = search.copy() base_search.collect_all(minor_items) base_search.collect_locations() all_dungeon_locations = [] # iterate of all the dungeons in a random order, placing the item there for dungeon in dungeons: dungeon_locations = [location for region in dungeon.regions for location in region.locations if location in fill_locations] # cache this list to flag afterwards all_dungeon_locations.extend(dungeon_locations) # place 1 item into the dungeon fill_restrictive(window, worlds, base_search, dungeon_locations, major_items, 1) # update the location and item pool, removing any placed items and filled locations # the fact that you can remove items from a list you're iterating over is python magic for item in itempool: if item.location != None: fill_locations.remove(item.location) itempool.remove(item) # flag locations to not place further major items. it's important we do it on the # locations instead of the dungeon because some locations are not in the dungeon for location in all_dungeon_locations: location.minor_only = True logger.info("Unique dungeon items placed") # Places items restricting placement to the recipient player's own world def fill_ownworld_restrictive(window, worlds, search, locations, ownpool, itempool, description="Unknown", attempts=15): # get the locations for each world # look for preplaced items placed_prizes = [loc.item.name for loc in locations if loc.item is not None] unplaced_prizes = [item for item in ownpool if item.name not in placed_prizes] empty_locations = [loc for loc in locations if loc.item is None] prizepool_dict = {world.id: [item for item in unplaced_prizes if item.world.id == world.id] for world in worlds} prize_locs_dict = {world.id: [loc for loc in empty_locations if loc.world.id == world.id] for world in worlds} # Shop item being sent in to this method are tied to their own world. # Therefore, let's do this one world at a time. We do this to help # increase the chances of successfully placing songs for world in worlds: # List of states with all items unplaced_prizes = [item for item in unplaced_prizes if item not in prizepool_dict[world.id]] base_search = search.copy() base_search.collect_all(itempool + unplaced_prizes) world_attempts = attempts while world_attempts: world_attempts -= 1 try: prizepool = list(prizepool_dict[world.id]) prize_locs = list(prize_locs_dict[world.id]) random.shuffle(prizepool) fill_restrictive(window, worlds, base_search, prize_locs, prizepool) logger.info("Placed %s items for world %s.", description, (world.id+1)) except FillError as e: logger.info("Failed to place %s items for world %s. Will retry %s more times.", description, (world.id+1), world_attempts) for location in prize_locs_dict[world.id]: location.item = None if location.disabled == DisableType.DISABLED: location.disabled = DisableType.PENDING logger.info('\t%s' % str(e)) continue break else: raise FillError('Unable to place %s items in world %d' % (description, (world.id+1))) # Places items in the itempool into locations. # worlds is a list of worlds and is redundant of the worlds in the base_state_list # base_state_list is a list of world states prior to placing items in the item pool # items and locations have pointers to the world that they belong to # # The algorithm places items in the world in reverse. # This means we first assume we have every item in the item pool and # remove an item and try to place it somewhere that is still reachable # This method helps distribution of items locked behind many requirements # # count is the number of items to place. If count is negative, then it will place # every item. Raises an error if specified count of items are not placed. # # This function will modify the location and itempool arguments. placed items and # filled locations will be removed. If this returns and error, then the state of # those two lists cannot be guaranteed. def fill_restrictive(window, worlds, base_search, locations, itempool, count=-1): unplaced_items = [] # don't run over this search, just keep it as an item collection items_search = base_search.copy() items_search.collect_all(itempool) # loop until there are no items or locations while itempool and locations: # if remaining count is 0, return. Negative means unbounded. if count == 0: break # get an item and remove it from the itempool item_to_place = itempool.pop() if item_to_place.majoritem: l2cations = [l for l in locations if not l.minor_only] else: l2cations = locations random.shuffle(l2cations) # generate the max search with every remaining item # this will allow us to place this item in a reachable location items_search.uncollect(item_to_place) max_search = items_search.copy() max_search.collect_locations() # perform_access_check checks location reachability perform_access_check = True if worlds[0].check_beatable_only: # if any world can not longer be beatable with the remaining items # then we must check for reachability no matter what. # This way the reachability test is monotonic. If we were to later # stop checking, then we could place an item needed in one world # in an unreachable place in another world. # scan_for_items would cause an unnecessary copy+collect perform_access_check = not max_search.can_beat_game(scan_for_items=False) # find a location that the item can be placed. It must be a valid location # in the world we are placing it (possibly checking for reachability) spot_to_fill = None for location in l2cations: if location.can_fill(max_search.state_list[location.world.id], item_to_place, perform_access_check): # for multiworld, make it so that the location is also reachable # in the world the item is for. This is to prevent early restrictions # in one world being placed late in another world. If this is not # done then one player may be waiting a long time for other players. if location.world.id != item_to_place.world.id: try: source_location = item_to_place.world.get_location(location.name) if not source_location.can_fill(max_search.state_list[item_to_place.world.id], item_to_place, perform_access_check): # location wasn't reachable in item's world, so skip it continue except KeyError: # This location doesn't exist in the other world, let's look elsewhere. # Check access to whatever parent region exists in the other world. can_reach = True parent_region = location.parent_region while parent_region: try: source_region = item_to_place.world.get_region(parent_region.name) can_reach = max_search.can_reach(source_region) break except KeyError: parent_region = parent_region.entrances[0].parent_region if not can_reach: continue if location.disabled == DisableType.PENDING: if not max_search.can_beat_game(False): continue location.disabled = DisableType.DISABLED # location is reachable (and reachable in item's world), so place item here spot_to_fill = location break # if we failed to find a suitable location if spot_to_fill is None: # if we specify a count, then we only want to place a subset, so a miss might be ok if count > 0: # don't decrement count, we didn't place anything unplaced_items.append(item_to_place) items_search.collect(item_to_place) continue else: # we expect all items to be placed raise FillError('Game unbeatable: No more spots to place %s [World %d] from %d locations (%d total); %d other items left to place, plus %d skipped' % (item_to_place, item_to_place.world.id + 1, len(l2cations), len(locations), len(itempool), len(unplaced_items))) # Place the item in the world and continue spot_to_fill.world.push_item(spot_to_fill, item_to_place) locations.remove(spot_to_fill) window.fillcount += 1 window.update_progress(5 + ((window.fillcount / window.locationcount) * 30)) # decrement count count -= 1 # assert that the specified number of items were placed if count > 0: raise FillError('Could not place the specified number of item. %d remaining to be placed.' % count) if count < 0 and len(itempool) > 0: raise FillError('Could not place all the item. %d remaining to be placed.' % len(itempool)) # re-add unplaced items that were skipped itempool.extend(unplaced_items) # This places items in the itempool into the locations # It does not check for reachability, only that the item is # allowed in the location def fill_restrictive_fast(window, worlds, locations, itempool): while itempool and locations: item_to_place = itempool.pop() random.shuffle(locations) # get location that allows this item spot_to_fill = None for location in locations: if location.can_fill_fast(item_to_place): spot_to_fill = location break # if we failed to find a suitable location, then stop placing items # we don't need to check beatability since world must be beatable # at this point if spot_to_fill is None: if not worlds[0].check_beatable_only: logger.debug('Not all items placed. Game beatable anyway.') break # Place the item in the world and continue spot_to_fill.world.push_item(spot_to_fill, item_to_place) locations.remove(spot_to_fill) window.fillcount += 1 window.update_progress(5 + ((window.fillcount / window.locationcount) * 30)) # this places item in item_pool completely randomly into # fill_locations. There is no checks for validity since # there should be none for these remaining items def fast_fill(window, locations, itempool): random.shuffle(locations) while itempool and locations: spot_to_fill = locations.pop() item_to_place = itempool.pop() spot_to_fill.world.push_item(spot_to_fill, item_to_place) window.fillcount += 1 window.update_progress(5 + ((window.fillcount / window.locationcount) * 30))
48.810811
278
0.683534
4a1ba830c98d6428367b858c1f35638a26e76c1e
84,150
py
Python
Lib/test/test_math.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
2,441
2020-07-31T06:45:53.000Z
2022-03-30T15:56:49.000Z
Lib/test/test_math.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
238
2020-10-21T04:54:00.000Z
2022-03-31T21:49:03.000Z
Lib/test/test_math.py
gerph/cpython
98813cb03c2371789669c3d8debf8fca2a344de9
[ "CNRI-Python-GPL-Compatible" ]
93
2020-08-09T12:00:17.000Z
2022-03-25T07:57:24.000Z
# Python test set -- math module # XXXX Should not do tests around zero only from test.support import run_unittest, verbose, requires_IEEE_754 from test import support import unittest import itertools import decimal import math import os import platform import random import struct import sys eps = 1E-05 NAN = float('nan') INF = float('inf') NINF = float('-inf') FLOAT_MAX = sys.float_info.max FLOAT_MIN = sys.float_info.min # detect evidence of double-rounding: fsum is not always correctly # rounded on machines that suffer from double rounding. x, y = 1e16, 2.9999 # use temporary values to defeat peephole optimizer HAVE_DOUBLE_ROUNDING = (x + y == 1e16 + 4) # locate file with test values if __name__ == '__main__': file = sys.argv[0] else: file = __file__ test_dir = os.path.dirname(file) or os.curdir math_testcases = os.path.join(test_dir, 'math_testcases.txt') test_file = os.path.join(test_dir, 'cmath_testcases.txt') def to_ulps(x): """Convert a non-NaN float x to an integer, in such a way that adjacent floats are converted to adjacent integers. Then abs(ulps(x) - ulps(y)) gives the difference in ulps between two floats. The results from this function will only make sense on platforms where native doubles are represented in IEEE 754 binary64 format. Note: 0.0 and -0.0 are converted to 0 and -1, respectively. """ n = struct.unpack('<q', struct.pack('<d', x))[0] if n < 0: n = ~(n+2**63) return n def ulp(x): """Return the value of the least significant bit of a float x, such that the first float bigger than x is x+ulp(x). Then, given an expected result x and a tolerance of n ulps, the result y should be such that abs(y-x) <= n * ulp(x). The results from this function will only make sense on platforms where native doubles are represented in IEEE 754 binary64 format. """ x = abs(float(x)) if math.isnan(x) or math.isinf(x): return x # Find next float up from x. n = struct.unpack('<q', struct.pack('<d', x))[0] x_next = struct.unpack('<d', struct.pack('<q', n + 1))[0] if math.isinf(x_next): # Corner case: x was the largest finite float. Then it's # not an exact power of two, so we can take the difference # between x and the previous float. x_prev = struct.unpack('<d', struct.pack('<q', n - 1))[0] return x - x_prev else: return x_next - x # Here's a pure Python version of the math.factorial algorithm, for # documentation and comparison purposes. # # Formula: # # factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n)) # # where # # factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j # # The outer product above is an infinite product, but once i >= n.bit_length, # (n >> i) < 1 and the corresponding term of the product is empty. So only the # finitely many terms for 0 <= i < n.bit_length() contribute anything. # # We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner # product in the formula above starts at 1 for i == n.bit_length(); for each i # < n.bit_length() we get the inner product for i from that for i + 1 by # multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms, # this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2). def count_set_bits(n): """Number of '1' bits in binary expansion of a nonnnegative integer.""" return 1 + count_set_bits(n & n - 1) if n else 0 def partial_product(start, stop): """Product of integers in range(start, stop, 2), computed recursively. start and stop should both be odd, with start <= stop. """ numfactors = (stop - start) >> 1 if not numfactors: return 1 elif numfactors == 1: return start else: mid = (start + numfactors) | 1 return partial_product(start, mid) * partial_product(mid, stop) def py_factorial(n): """Factorial of nonnegative integer n, via "Binary Split Factorial Formula" described at http://www.luschny.de/math/factorial/binarysplitfact.html """ inner = outer = 1 for i in reversed(range(n.bit_length())): inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1) outer *= inner return outer << (n - count_set_bits(n)) def ulp_abs_check(expected, got, ulp_tol, abs_tol): """Given finite floats `expected` and `got`, check that they're approximately equal to within the given number of ulps or the given absolute tolerance, whichever is bigger. Returns None on success and an error message on failure. """ ulp_error = abs(to_ulps(expected) - to_ulps(got)) abs_error = abs(expected - got) # Succeed if either abs_error <= abs_tol or ulp_error <= ulp_tol. if abs_error <= abs_tol or ulp_error <= ulp_tol: return None else: fmt = ("error = {:.3g} ({:d} ulps); " "permitted error = {:.3g} or {:d} ulps") return fmt.format(abs_error, ulp_error, abs_tol, ulp_tol) def parse_mtestfile(fname): """Parse a file with test values -- starts a comment blank lines, or lines containing only a comment, are ignored other lines are expected to have the form id fn arg -> expected [flag]* """ with open(fname) as fp: for line in fp: # strip comments, and skip blank lines if '--' in line: line = line[:line.index('--')] if not line.strip(): continue lhs, rhs = line.split('->') id, fn, arg = lhs.split() rhs_pieces = rhs.split() exp = rhs_pieces[0] flags = rhs_pieces[1:] yield (id, fn, float(arg), float(exp), flags) def parse_testfile(fname): """Parse a file with test values Empty lines or lines starting with -- are ignored yields id, fn, arg_real, arg_imag, exp_real, exp_imag """ with open(fname) as fp: for line in fp: # skip comment lines and blank lines if line.startswith('--') or not line.strip(): continue lhs, rhs = line.split('->') id, fn, arg_real, arg_imag = lhs.split() rhs_pieces = rhs.split() exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1] flags = rhs_pieces[2:] yield (id, fn, float(arg_real), float(arg_imag), float(exp_real), float(exp_imag), flags) def result_check(expected, got, ulp_tol=5, abs_tol=0.0): # Common logic of MathTests.(ftest, test_testcases, test_mtestcases) """Compare arguments expected and got, as floats, if either is a float, using a tolerance expressed in multiples of ulp(expected) or absolutely (if given and greater). As a convenience, when neither argument is a float, and for non-finite floats, exact equality is demanded. Also, nan==nan as far as this function is concerned. Returns None on success and an error message on failure. """ # Check exactly equal (applies also to strings representing exceptions) if got == expected: return None failure = "not equal" # Turn mixed float and int comparison (e.g. floor()) to all-float if isinstance(expected, float) and isinstance(got, int): got = float(got) elif isinstance(got, float) and isinstance(expected, int): expected = float(expected) if isinstance(expected, float) and isinstance(got, float): if math.isnan(expected) and math.isnan(got): # Pass, since both nan failure = None elif math.isinf(expected) or math.isinf(got): # We already know they're not equal, drop through to failure pass else: # Both are finite floats (now). Are they close enough? failure = ulp_abs_check(expected, got, ulp_tol, abs_tol) # arguments are not equal, and if numeric, are too far apart if failure is not None: fail_fmt = "expected {!r}, got {!r}" fail_msg = fail_fmt.format(expected, got) fail_msg += ' ({})'.format(failure) return fail_msg else: return None class IntSubclass(int): pass # Class providing an __index__ method. class MyIndexable(object): def __init__(self, value): self.value = value def __index__(self): return self.value class MathTests(unittest.TestCase): def ftest(self, name, got, expected, ulp_tol=5, abs_tol=0.0): """Compare arguments expected and got, as floats, if either is a float, using a tolerance expressed in multiples of ulp(expected) or absolutely, whichever is greater. As a convenience, when neither argument is a float, and for non-finite floats, exact equality is demanded. Also, nan==nan in this function. """ failure = result_check(expected, got, ulp_tol, abs_tol) if failure is not None: self.fail("{}: {}".format(name, failure)) def testConstants(self): # Ref: Abramowitz & Stegun (Dover, 1965) self.ftest('pi', math.pi, 3.141592653589793238462643) self.ftest('e', math.e, 2.718281828459045235360287) self.assertEqual(math.tau, 2*math.pi) def testAcos(self): self.assertRaises(TypeError, math.acos) self.ftest('acos(-1)', math.acos(-1), math.pi) self.ftest('acos(0)', math.acos(0), math.pi/2) self.ftest('acos(1)', math.acos(1), 0) self.assertRaises(ValueError, math.acos, INF) self.assertRaises(ValueError, math.acos, NINF) self.assertRaises(ValueError, math.acos, 1 + eps) self.assertRaises(ValueError, math.acos, -1 - eps) self.assertTrue(math.isnan(math.acos(NAN))) def testAcosh(self): self.assertRaises(TypeError, math.acosh) self.ftest('acosh(1)', math.acosh(1), 0) self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168) self.assertRaises(ValueError, math.acosh, 0) self.assertRaises(ValueError, math.acosh, -1) self.assertEqual(math.acosh(INF), INF) self.assertRaises(ValueError, math.acosh, NINF) self.assertTrue(math.isnan(math.acosh(NAN))) def testAsin(self): self.assertRaises(TypeError, math.asin) self.ftest('asin(-1)', math.asin(-1), -math.pi/2) self.ftest('asin(0)', math.asin(0), 0) self.ftest('asin(1)', math.asin(1), math.pi/2) self.assertRaises(ValueError, math.asin, INF) self.assertRaises(ValueError, math.asin, NINF) self.assertRaises(ValueError, math.asin, 1 + eps) self.assertRaises(ValueError, math.asin, -1 - eps) self.assertTrue(math.isnan(math.asin(NAN))) def testAsinh(self): self.assertRaises(TypeError, math.asinh) self.ftest('asinh(0)', math.asinh(0), 0) self.ftest('asinh(1)', math.asinh(1), 0.88137358701954305) self.ftest('asinh(-1)', math.asinh(-1), -0.88137358701954305) self.assertEqual(math.asinh(INF), INF) self.assertEqual(math.asinh(NINF), NINF) self.assertTrue(math.isnan(math.asinh(NAN))) def testAtan(self): self.assertRaises(TypeError, math.atan) self.ftest('atan(-1)', math.atan(-1), -math.pi/4) self.ftest('atan(0)', math.atan(0), 0) self.ftest('atan(1)', math.atan(1), math.pi/4) self.ftest('atan(inf)', math.atan(INF), math.pi/2) self.ftest('atan(-inf)', math.atan(NINF), -math.pi/2) self.assertTrue(math.isnan(math.atan(NAN))) def testAtanh(self): self.assertRaises(TypeError, math.atan) self.ftest('atanh(0)', math.atanh(0), 0) self.ftest('atanh(0.5)', math.atanh(0.5), 0.54930614433405489) self.ftest('atanh(-0.5)', math.atanh(-0.5), -0.54930614433405489) self.assertRaises(ValueError, math.atanh, 1) self.assertRaises(ValueError, math.atanh, -1) self.assertRaises(ValueError, math.atanh, INF) self.assertRaises(ValueError, math.atanh, NINF) self.assertTrue(math.isnan(math.atanh(NAN))) def testAtan2(self): self.assertRaises(TypeError, math.atan2) self.ftest('atan2(-1, 0)', math.atan2(-1, 0), -math.pi/2) self.ftest('atan2(-1, 1)', math.atan2(-1, 1), -math.pi/4) self.ftest('atan2(0, 1)', math.atan2(0, 1), 0) self.ftest('atan2(1, 1)', math.atan2(1, 1), math.pi/4) self.ftest('atan2(1, 0)', math.atan2(1, 0), math.pi/2) # math.atan2(0, x) self.ftest('atan2(0., -inf)', math.atan2(0., NINF), math.pi) self.ftest('atan2(0., -2.3)', math.atan2(0., -2.3), math.pi) self.ftest('atan2(0., -0.)', math.atan2(0., -0.), math.pi) self.assertEqual(math.atan2(0., 0.), 0.) self.assertEqual(math.atan2(0., 2.3), 0.) self.assertEqual(math.atan2(0., INF), 0.) self.assertTrue(math.isnan(math.atan2(0., NAN))) # math.atan2(-0, x) self.ftest('atan2(-0., -inf)', math.atan2(-0., NINF), -math.pi) self.ftest('atan2(-0., -2.3)', math.atan2(-0., -2.3), -math.pi) self.ftest('atan2(-0., -0.)', math.atan2(-0., -0.), -math.pi) self.assertEqual(math.atan2(-0., 0.), -0.) self.assertEqual(math.atan2(-0., 2.3), -0.) self.assertEqual(math.atan2(-0., INF), -0.) self.assertTrue(math.isnan(math.atan2(-0., NAN))) # math.atan2(INF, x) self.ftest('atan2(inf, -inf)', math.atan2(INF, NINF), math.pi*3/4) self.ftest('atan2(inf, -2.3)', math.atan2(INF, -2.3), math.pi/2) self.ftest('atan2(inf, -0.)', math.atan2(INF, -0.0), math.pi/2) self.ftest('atan2(inf, 0.)', math.atan2(INF, 0.0), math.pi/2) self.ftest('atan2(inf, 2.3)', math.atan2(INF, 2.3), math.pi/2) self.ftest('atan2(inf, inf)', math.atan2(INF, INF), math.pi/4) self.assertTrue(math.isnan(math.atan2(INF, NAN))) # math.atan2(NINF, x) self.ftest('atan2(-inf, -inf)', math.atan2(NINF, NINF), -math.pi*3/4) self.ftest('atan2(-inf, -2.3)', math.atan2(NINF, -2.3), -math.pi/2) self.ftest('atan2(-inf, -0.)', math.atan2(NINF, -0.0), -math.pi/2) self.ftest('atan2(-inf, 0.)', math.atan2(NINF, 0.0), -math.pi/2) self.ftest('atan2(-inf, 2.3)', math.atan2(NINF, 2.3), -math.pi/2) self.ftest('atan2(-inf, inf)', math.atan2(NINF, INF), -math.pi/4) self.assertTrue(math.isnan(math.atan2(NINF, NAN))) # math.atan2(+finite, x) self.ftest('atan2(2.3, -inf)', math.atan2(2.3, NINF), math.pi) self.ftest('atan2(2.3, -0.)', math.atan2(2.3, -0.), math.pi/2) self.ftest('atan2(2.3, 0.)', math.atan2(2.3, 0.), math.pi/2) self.assertEqual(math.atan2(2.3, INF), 0.) self.assertTrue(math.isnan(math.atan2(2.3, NAN))) # math.atan2(-finite, x) self.ftest('atan2(-2.3, -inf)', math.atan2(-2.3, NINF), -math.pi) self.ftest('atan2(-2.3, -0.)', math.atan2(-2.3, -0.), -math.pi/2) self.ftest('atan2(-2.3, 0.)', math.atan2(-2.3, 0.), -math.pi/2) self.assertEqual(math.atan2(-2.3, INF), -0.) self.assertTrue(math.isnan(math.atan2(-2.3, NAN))) # math.atan2(NAN, x) self.assertTrue(math.isnan(math.atan2(NAN, NINF))) self.assertTrue(math.isnan(math.atan2(NAN, -2.3))) self.assertTrue(math.isnan(math.atan2(NAN, -0.))) self.assertTrue(math.isnan(math.atan2(NAN, 0.))) self.assertTrue(math.isnan(math.atan2(NAN, 2.3))) self.assertTrue(math.isnan(math.atan2(NAN, INF))) self.assertTrue(math.isnan(math.atan2(NAN, NAN))) def testCeil(self): self.assertRaises(TypeError, math.ceil) self.assertEqual(int, type(math.ceil(0.5))) self.ftest('ceil(0.5)', math.ceil(0.5), 1) self.ftest('ceil(1.0)', math.ceil(1.0), 1) self.ftest('ceil(1.5)', math.ceil(1.5), 2) self.ftest('ceil(-0.5)', math.ceil(-0.5), 0) self.ftest('ceil(-1.0)', math.ceil(-1.0), -1) self.ftest('ceil(-1.5)', math.ceil(-1.5), -1) #self.assertEqual(math.ceil(INF), INF) #self.assertEqual(math.ceil(NINF), NINF) #self.assertTrue(math.isnan(math.ceil(NAN))) class TestCeil: def __ceil__(self): return 42 class TestNoCeil: pass self.ftest('ceil(TestCeil())', math.ceil(TestCeil()), 42) self.assertRaises(TypeError, math.ceil, TestNoCeil()) t = TestNoCeil() t.__ceil__ = lambda *args: args self.assertRaises(TypeError, math.ceil, t) self.assertRaises(TypeError, math.ceil, t, 0) @requires_IEEE_754 def testCopysign(self): self.assertEqual(math.copysign(1, 42), 1.0) self.assertEqual(math.copysign(0., 42), 0.0) self.assertEqual(math.copysign(1., -42), -1.0) self.assertEqual(math.copysign(3, 0.), 3.0) self.assertEqual(math.copysign(4., -0.), -4.0) self.assertRaises(TypeError, math.copysign) # copysign should let us distinguish signs of zeros self.assertEqual(math.copysign(1., 0.), 1.) self.assertEqual(math.copysign(1., -0.), -1.) self.assertEqual(math.copysign(INF, 0.), INF) self.assertEqual(math.copysign(INF, -0.), NINF) self.assertEqual(math.copysign(NINF, 0.), INF) self.assertEqual(math.copysign(NINF, -0.), NINF) # and of infinities self.assertEqual(math.copysign(1., INF), 1.) self.assertEqual(math.copysign(1., NINF), -1.) self.assertEqual(math.copysign(INF, INF), INF) self.assertEqual(math.copysign(INF, NINF), NINF) self.assertEqual(math.copysign(NINF, INF), INF) self.assertEqual(math.copysign(NINF, NINF), NINF) self.assertTrue(math.isnan(math.copysign(NAN, 1.))) self.assertTrue(math.isnan(math.copysign(NAN, INF))) self.assertTrue(math.isnan(math.copysign(NAN, NINF))) self.assertTrue(math.isnan(math.copysign(NAN, NAN))) # copysign(INF, NAN) may be INF or it may be NINF, since # we don't know whether the sign bit of NAN is set on any # given platform. self.assertTrue(math.isinf(math.copysign(INF, NAN))) # similarly, copysign(2., NAN) could be 2. or -2. self.assertEqual(abs(math.copysign(2., NAN)), 2.) def testCos(self): self.assertRaises(TypeError, math.cos) self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=ulp(1)) self.ftest('cos(0)', math.cos(0), 1) self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=ulp(1)) self.ftest('cos(pi)', math.cos(math.pi), -1) try: self.assertTrue(math.isnan(math.cos(INF))) self.assertTrue(math.isnan(math.cos(NINF))) except ValueError: self.assertRaises(ValueError, math.cos, INF) self.assertRaises(ValueError, math.cos, NINF) self.assertTrue(math.isnan(math.cos(NAN))) def testCosh(self): self.assertRaises(TypeError, math.cosh) self.ftest('cosh(0)', math.cosh(0), 1) self.ftest('cosh(2)-2*cosh(1)**2', math.cosh(2)-2*math.cosh(1)**2, -1) # Thanks to Lambert self.assertEqual(math.cosh(INF), INF) self.assertEqual(math.cosh(NINF), INF) self.assertTrue(math.isnan(math.cosh(NAN))) def testDegrees(self): self.assertRaises(TypeError, math.degrees) self.ftest('degrees(pi)', math.degrees(math.pi), 180.0) self.ftest('degrees(pi/2)', math.degrees(math.pi/2), 90.0) self.ftest('degrees(-pi/4)', math.degrees(-math.pi/4), -45.0) self.ftest('degrees(0)', math.degrees(0), 0) def testExp(self): self.assertRaises(TypeError, math.exp) self.ftest('exp(-1)', math.exp(-1), 1/math.e) self.ftest('exp(0)', math.exp(0), 1) self.ftest('exp(1)', math.exp(1), math.e) self.assertEqual(math.exp(INF), INF) self.assertEqual(math.exp(NINF), 0.) self.assertTrue(math.isnan(math.exp(NAN))) self.assertRaises(OverflowError, math.exp, 1000000) def testFabs(self): self.assertRaises(TypeError, math.fabs) self.ftest('fabs(-1)', math.fabs(-1), 1) self.ftest('fabs(0)', math.fabs(0), 0) self.ftest('fabs(1)', math.fabs(1), 1) def testFactorial(self): self.assertEqual(math.factorial(0), 1) self.assertEqual(math.factorial(0.0), 1) total = 1 for i in range(1, 1000): total *= i self.assertEqual(math.factorial(i), total) self.assertEqual(math.factorial(float(i)), total) self.assertEqual(math.factorial(i), py_factorial(i)) self.assertRaises(ValueError, math.factorial, -1) self.assertRaises(ValueError, math.factorial, -1.0) self.assertRaises(ValueError, math.factorial, -10**100) self.assertRaises(ValueError, math.factorial, -1e100) self.assertRaises(ValueError, math.factorial, math.pi) def testFactorialNonIntegers(self): self.assertRaises(TypeError, math.factorial, decimal.Decimal(5.2)) self.assertRaises(TypeError, math.factorial, "5") # Other implementations may place different upper bounds. @support.cpython_only def testFactorialHugeInputs(self): # Currently raises OverflowError for inputs that are too large # to fit into a C long. self.assertRaises(OverflowError, math.factorial, 10**100) self.assertRaises(OverflowError, math.factorial, 1e100) def testFloor(self): self.assertRaises(TypeError, math.floor) self.assertEqual(int, type(math.floor(0.5))) self.ftest('floor(0.5)', math.floor(0.5), 0) self.ftest('floor(1.0)', math.floor(1.0), 1) self.ftest('floor(1.5)', math.floor(1.5), 1) self.ftest('floor(-0.5)', math.floor(-0.5), -1) self.ftest('floor(-1.0)', math.floor(-1.0), -1) self.ftest('floor(-1.5)', math.floor(-1.5), -2) # pow() relies on floor() to check for integers # This fails on some platforms - so check it here self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167) self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167) #self.assertEqual(math.ceil(INF), INF) #self.assertEqual(math.ceil(NINF), NINF) #self.assertTrue(math.isnan(math.floor(NAN))) class TestFloor: def __floor__(self): return 42 class TestNoFloor: pass self.ftest('floor(TestFloor())', math.floor(TestFloor()), 42) self.assertRaises(TypeError, math.floor, TestNoFloor()) t = TestNoFloor() t.__floor__ = lambda *args: args self.assertRaises(TypeError, math.floor, t) self.assertRaises(TypeError, math.floor, t, 0) def testFmod(self): self.assertRaises(TypeError, math.fmod) self.ftest('fmod(10, 1)', math.fmod(10, 1), 0.0) self.ftest('fmod(10, 0.5)', math.fmod(10, 0.5), 0.0) self.ftest('fmod(10, 1.5)', math.fmod(10, 1.5), 1.0) self.ftest('fmod(-10, 1)', math.fmod(-10, 1), -0.0) self.ftest('fmod(-10, 0.5)', math.fmod(-10, 0.5), -0.0) self.ftest('fmod(-10, 1.5)', math.fmod(-10, 1.5), -1.0) self.assertTrue(math.isnan(math.fmod(NAN, 1.))) self.assertTrue(math.isnan(math.fmod(1., NAN))) self.assertTrue(math.isnan(math.fmod(NAN, NAN))) self.assertRaises(ValueError, math.fmod, 1., 0.) self.assertRaises(ValueError, math.fmod, INF, 1.) self.assertRaises(ValueError, math.fmod, NINF, 1.) self.assertRaises(ValueError, math.fmod, INF, 0.) self.assertEqual(math.fmod(3.0, INF), 3.0) self.assertEqual(math.fmod(-3.0, INF), -3.0) self.assertEqual(math.fmod(3.0, NINF), 3.0) self.assertEqual(math.fmod(-3.0, NINF), -3.0) self.assertEqual(math.fmod(0.0, 3.0), 0.0) self.assertEqual(math.fmod(0.0, NINF), 0.0) def testFrexp(self): self.assertRaises(TypeError, math.frexp) def testfrexp(name, result, expected): (mant, exp), (emant, eexp) = result, expected if abs(mant-emant) > eps or exp != eexp: self.fail('%s returned %r, expected %r'%\ (name, result, expected)) testfrexp('frexp(-1)', math.frexp(-1), (-0.5, 1)) testfrexp('frexp(0)', math.frexp(0), (0, 0)) testfrexp('frexp(1)', math.frexp(1), (0.5, 1)) testfrexp('frexp(2)', math.frexp(2), (0.5, 2)) self.assertEqual(math.frexp(INF)[0], INF) self.assertEqual(math.frexp(NINF)[0], NINF) self.assertTrue(math.isnan(math.frexp(NAN)[0])) @requires_IEEE_754 @unittest.skipIf(HAVE_DOUBLE_ROUNDING, "fsum is not exact on machines with double rounding") def testFsum(self): # math.fsum relies on exact rounding for correct operation. # There's a known problem with IA32 floating-point that causes # inexact rounding in some situations, and will cause the # math.fsum tests below to fail; see issue #2937. On non IEEE # 754 platforms, and on IEEE 754 platforms that exhibit the # problem described in issue #2937, we simply skip the whole # test. # Python version of math.fsum, for comparison. Uses a # different algorithm based on frexp, ldexp and integer # arithmetic. from sys import float_info mant_dig = float_info.mant_dig etiny = float_info.min_exp - mant_dig def msum(iterable): """Full precision summation. Compute sum(iterable) without any intermediate accumulation of error. Based on the 'lsum' function at http://code.activestate.com/recipes/393090/ """ tmant, texp = 0, 0 for x in iterable: mant, exp = math.frexp(x) mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig if texp > exp: tmant <<= texp-exp texp = exp else: mant <<= exp-texp tmant += mant # Round tmant * 2**texp to a float. The original recipe # used float(str(tmant)) * 2.0**texp for this, but that's # a little unsafe because str -> float conversion can't be # relied upon to do correct rounding on all platforms. tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp) if tail > 0: h = 1 << (tail-1) tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1) texp += tail return math.ldexp(tmant, texp) test_values = [ ([], 0.0), ([0.0], 0.0), ([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100), ([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0), ([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0), ([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0), ([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0), ([1./n for n in range(1, 1001)], float.fromhex('0x1.df11f45f4e61ap+2')), ([(-1.)**n/n for n in range(1, 1001)], float.fromhex('-0x1.62a2af1bd3624p-1')), ([1e16, 1., 1e-16], 10000000000000002.0), ([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0), # exercise code for resizing partials array ([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] + [-2.**1022], float.fromhex('0x1.5555555555555p+970')), ] # Telescoping sum, with exact differences (due to Sterbenz) terms = [1.7**i for i in range(1001)] test_values.append(( [terms[i+1] - terms[i] for i in range(1000)] + [-terms[1000]], -terms[0] )) for i, (vals, expected) in enumerate(test_values): try: actual = math.fsum(vals) except OverflowError: self.fail("test %d failed: got OverflowError, expected %r " "for math.fsum(%.100r)" % (i, expected, vals)) except ValueError: self.fail("test %d failed: got ValueError, expected %r " "for math.fsum(%.100r)" % (i, expected, vals)) self.assertEqual(actual, expected) from random import random, gauss, shuffle for j in range(1000): vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10 s = 0 for i in range(200): v = gauss(0, random()) ** 7 - s s += v vals.append(v) shuffle(vals) s = msum(vals) self.assertEqual(msum(vals), math.fsum(vals)) def testGcd(self): gcd = math.gcd self.assertEqual(gcd(0, 0), 0) self.assertEqual(gcd(1, 0), 1) self.assertEqual(gcd(-1, 0), 1) self.assertEqual(gcd(0, 1), 1) self.assertEqual(gcd(0, -1), 1) self.assertEqual(gcd(7, 1), 1) self.assertEqual(gcd(7, -1), 1) self.assertEqual(gcd(-23, 15), 1) self.assertEqual(gcd(120, 84), 12) self.assertEqual(gcd(84, -120), 12) self.assertEqual(gcd(1216342683557601535506311712, 436522681849110124616458784), 32) c = 652560 x = 434610456570399902378880679233098819019853229470286994367836600566 y = 1064502245825115327754847244914921553977 a = x * c b = y * c self.assertEqual(gcd(a, b), c) self.assertEqual(gcd(b, a), c) self.assertEqual(gcd(-a, b), c) self.assertEqual(gcd(b, -a), c) self.assertEqual(gcd(a, -b), c) self.assertEqual(gcd(-b, a), c) self.assertEqual(gcd(-a, -b), c) self.assertEqual(gcd(-b, -a), c) c = 576559230871654959816130551884856912003141446781646602790216406874 a = x * c b = y * c self.assertEqual(gcd(a, b), c) self.assertEqual(gcd(b, a), c) self.assertEqual(gcd(-a, b), c) self.assertEqual(gcd(b, -a), c) self.assertEqual(gcd(a, -b), c) self.assertEqual(gcd(-b, a), c) self.assertEqual(gcd(-a, -b), c) self.assertEqual(gcd(-b, -a), c) self.assertRaises(TypeError, gcd, 120.0, 84) self.assertRaises(TypeError, gcd, 120, 84.0) self.assertEqual(gcd(MyIndexable(120), MyIndexable(84)), 12) def testHypot(self): from decimal import Decimal from fractions import Fraction hypot = math.hypot # Test different numbers of arguments (from zero to five) # against a straightforward pure python implementation args = math.e, math.pi, math.sqrt(2.0), math.gamma(3.5), math.sin(2.1) for i in range(len(args)+1): self.assertAlmostEqual( hypot(*args[:i]), math.sqrt(sum(s**2 for s in args[:i])) ) # Test allowable types (those with __float__) self.assertEqual(hypot(12.0, 5.0), 13.0) self.assertEqual(hypot(12, 5), 13) self.assertEqual(hypot(Decimal(12), Decimal(5)), 13) self.assertEqual(hypot(Fraction(12, 32), Fraction(5, 32)), Fraction(13, 32)) self.assertEqual(hypot(bool(1), bool(0), bool(1), bool(1)), math.sqrt(3)) # Test corner cases self.assertEqual(hypot(0.0, 0.0), 0.0) # Max input is zero self.assertEqual(hypot(-10.5), 10.5) # Negative input self.assertEqual(hypot(), 0.0) # Negative input self.assertEqual(1.0, math.copysign(1.0, hypot(-0.0)) # Convert negative zero to positive zero ) self.assertEqual( # Handling of moving max to the end hypot(1.5, 1.5, 0.5), hypot(1.5, 0.5, 1.5), ) # Test handling of bad arguments with self.assertRaises(TypeError): # Reject keyword args hypot(x=1) with self.assertRaises(TypeError): # Reject values without __float__ hypot(1.1, 'string', 2.2) int_too_big_for_float = 10 ** (sys.float_info.max_10_exp + 5) with self.assertRaises((ValueError, OverflowError)): hypot(1, int_too_big_for_float) # Any infinity gives positive infinity. self.assertEqual(hypot(INF), INF) self.assertEqual(hypot(0, INF), INF) self.assertEqual(hypot(10, INF), INF) self.assertEqual(hypot(-10, INF), INF) self.assertEqual(hypot(NAN, INF), INF) self.assertEqual(hypot(INF, NAN), INF) self.assertEqual(hypot(NINF, NAN), INF) self.assertEqual(hypot(NAN, NINF), INF) self.assertEqual(hypot(-INF, INF), INF) self.assertEqual(hypot(-INF, -INF), INF) self.assertEqual(hypot(10, -INF), INF) # If no infinity, any NaN gives a NaN. self.assertTrue(math.isnan(hypot(NAN))) self.assertTrue(math.isnan(hypot(0, NAN))) self.assertTrue(math.isnan(hypot(NAN, 10))) self.assertTrue(math.isnan(hypot(10, NAN))) self.assertTrue(math.isnan(hypot(NAN, NAN))) self.assertTrue(math.isnan(hypot(NAN))) # Verify scaling for extremely large values fourthmax = FLOAT_MAX / 4.0 for n in range(32): self.assertEqual(hypot(*([fourthmax]*n)), fourthmax * math.sqrt(n)) # Verify scaling for extremely small values for exp in range(32): scale = FLOAT_MIN / 2.0 ** exp self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale) def testDist(self): from decimal import Decimal as D from fractions import Fraction as F dist = math.dist sqrt = math.sqrt # Simple exact cases self.assertEqual(dist((1.0, 2.0, 3.0), (4.0, 2.0, -1.0)), 5.0) self.assertEqual(dist((1, 2, 3), (4, 2, -1)), 5.0) # Test different numbers of arguments (from zero to nine) # against a straightforward pure python implementation for i in range(9): for j in range(5): p = tuple(random.uniform(-5, 5) for k in range(i)) q = tuple(random.uniform(-5, 5) for k in range(i)) self.assertAlmostEqual( dist(p, q), sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) ) # Test non-tuple inputs self.assertEqual(dist([1.0, 2.0, 3.0], [4.0, 2.0, -1.0]), 5.0) self.assertEqual(dist(iter([1.0, 2.0, 3.0]), iter([4.0, 2.0, -1.0])), 5.0) # Test allowable types (those with __float__) self.assertEqual(dist((14.0, 1.0), (2.0, -4.0)), 13.0) self.assertEqual(dist((14, 1), (2, -4)), 13) self.assertEqual(dist((D(14), D(1)), (D(2), D(-4))), D(13)) self.assertEqual(dist((F(14, 32), F(1, 32)), (F(2, 32), F(-4, 32))), F(13, 32)) self.assertEqual(dist((True, True, False, True, False), (True, False, True, True, False)), sqrt(2.0)) # Test corner cases self.assertEqual(dist((13.25, 12.5, -3.25), (13.25, 12.5, -3.25)), 0.0) # Distance with self is zero self.assertEqual(dist((), ()), 0.0) # Zero-dimensional case self.assertEqual(1.0, # Convert negative zero to positive zero math.copysign(1.0, dist((-0.0,), (0.0,))) ) self.assertEqual(1.0, # Convert negative zero to positive zero math.copysign(1.0, dist((0.0,), (-0.0,))) ) self.assertEqual( # Handling of moving max to the end dist((1.5, 1.5, 0.5), (0, 0, 0)), dist((1.5, 0.5, 1.5), (0, 0, 0)) ) # Verify tuple subclasses are allowed class T(tuple): pass self.assertEqual(dist(T((1, 2, 3)), ((4, 2, -1))), 5.0) # Test handling of bad arguments with self.assertRaises(TypeError): # Reject keyword args dist(p=(1, 2, 3), q=(4, 5, 6)) with self.assertRaises(TypeError): # Too few args dist((1, 2, 3)) with self.assertRaises(TypeError): # Too many args dist((1, 2, 3), (4, 5, 6), (7, 8, 9)) with self.assertRaises(TypeError): # Scalars not allowed dist(1, 2) with self.assertRaises(TypeError): # Reject values without __float__ dist((1.1, 'string', 2.2), (1, 2, 3)) with self.assertRaises(ValueError): # Check dimension agree dist((1, 2, 3, 4), (5, 6, 7)) with self.assertRaises(ValueError): # Check dimension agree dist((1, 2, 3), (4, 5, 6, 7)) with self.assertRaises(TypeError): # Rejects invalid types dist("abc", "xyz") int_too_big_for_float = 10 ** (sys.float_info.max_10_exp + 5) with self.assertRaises((ValueError, OverflowError)): dist((1, int_too_big_for_float), (2, 3)) with self.assertRaises((ValueError, OverflowError)): dist((2, 3), (1, int_too_big_for_float)) # Verify that the one dimensional case is equivalent to abs() for i in range(20): p, q = random.random(), random.random() self.assertEqual(dist((p,), (q,)), abs(p - q)) # Test special values values = [NINF, -10.5, -0.0, 0.0, 10.5, INF, NAN] for p in itertools.product(values, repeat=3): for q in itertools.product(values, repeat=3): diffs = [px - qx for px, qx in zip(p, q)] if any(map(math.isinf, diffs)): # Any infinite difference gives positive infinity. self.assertEqual(dist(p, q), INF) elif any(map(math.isnan, diffs)): # If no infinity, any NaN gives a NaN. self.assertTrue(math.isnan(dist(p, q))) # Verify scaling for extremely large values fourthmax = FLOAT_MAX / 4.0 for n in range(32): p = (fourthmax,) * n q = (0.0,) * n self.assertEqual(dist(p, q), fourthmax * math.sqrt(n)) self.assertEqual(dist(q, p), fourthmax * math.sqrt(n)) # Verify scaling for extremely small values for exp in range(32): scale = FLOAT_MIN / 2.0 ** exp p = (4*scale, 3*scale) q = (0.0, 0.0) self.assertEqual(math.dist(p, q), 5*scale) self.assertEqual(math.dist(q, p), 5*scale) def testIsqrt(self): # Test a variety of inputs, large and small. test_values = ( list(range(1000)) + list(range(10**6 - 1000, 10**6 + 1000)) + [2**e + i for e in range(60, 200) for i in range(-40, 40)] + [3**9999, 10**5001] ) for value in test_values: with self.subTest(value=value): s = math.isqrt(value) self.assertIs(type(s), int) self.assertLessEqual(s*s, value) self.assertLess(value, (s+1)*(s+1)) # Negative values with self.assertRaises(ValueError): math.isqrt(-1) # Integer-like things s = math.isqrt(True) self.assertIs(type(s), int) self.assertEqual(s, 1) s = math.isqrt(False) self.assertIs(type(s), int) self.assertEqual(s, 0) class IntegerLike(object): def __init__(self, value): self.value = value def __index__(self): return self.value s = math.isqrt(IntegerLike(1729)) self.assertIs(type(s), int) self.assertEqual(s, 41) with self.assertRaises(ValueError): math.isqrt(IntegerLike(-3)) # Non-integer-like things bad_values = [ 3.5, "a string", decimal.Decimal("3.5"), 3.5j, 100.0, -4.0, ] for value in bad_values: with self.subTest(value=value): with self.assertRaises(TypeError): math.isqrt(value) def testLdexp(self): self.assertRaises(TypeError, math.ldexp) self.ftest('ldexp(0,1)', math.ldexp(0,1), 0) self.ftest('ldexp(1,1)', math.ldexp(1,1), 2) self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5) self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2) self.assertRaises(OverflowError, math.ldexp, 1., 1000000) self.assertRaises(OverflowError, math.ldexp, -1., 1000000) self.assertEqual(math.ldexp(1., -1000000), 0.) self.assertEqual(math.ldexp(-1., -1000000), -0.) self.assertEqual(math.ldexp(INF, 30), INF) self.assertEqual(math.ldexp(NINF, -213), NINF) self.assertTrue(math.isnan(math.ldexp(NAN, 0))) # large second argument for n in [10**5, 10**10, 10**20, 10**40]: self.assertEqual(math.ldexp(INF, -n), INF) self.assertEqual(math.ldexp(NINF, -n), NINF) self.assertEqual(math.ldexp(1., -n), 0.) self.assertEqual(math.ldexp(-1., -n), -0.) self.assertEqual(math.ldexp(0., -n), 0.) self.assertEqual(math.ldexp(-0., -n), -0.) self.assertTrue(math.isnan(math.ldexp(NAN, -n))) self.assertRaises(OverflowError, math.ldexp, 1., n) self.assertRaises(OverflowError, math.ldexp, -1., n) self.assertEqual(math.ldexp(0., n), 0.) self.assertEqual(math.ldexp(-0., n), -0.) self.assertEqual(math.ldexp(INF, n), INF) self.assertEqual(math.ldexp(NINF, n), NINF) self.assertTrue(math.isnan(math.ldexp(NAN, n))) def testLog(self): self.assertRaises(TypeError, math.log) self.ftest('log(1/e)', math.log(1/math.e), -1) self.ftest('log(1)', math.log(1), 0) self.ftest('log(e)', math.log(math.e), 1) self.ftest('log(32,2)', math.log(32,2), 5) self.ftest('log(10**40, 10)', math.log(10**40, 10), 40) self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2) self.ftest('log(10**1000)', math.log(10**1000), 2302.5850929940457) self.assertRaises(ValueError, math.log, -1.5) self.assertRaises(ValueError, math.log, -10**1000) self.assertRaises(ValueError, math.log, NINF) self.assertEqual(math.log(INF), INF) self.assertTrue(math.isnan(math.log(NAN))) def testLog1p(self): self.assertRaises(TypeError, math.log1p) for n in [2, 2**90, 2**300]: self.assertAlmostEqual(math.log1p(n), math.log1p(float(n))) self.assertRaises(ValueError, math.log1p, -1) self.assertEqual(math.log1p(INF), INF) @requires_IEEE_754 def testLog2(self): self.assertRaises(TypeError, math.log2) # Check some integer values self.assertEqual(math.log2(1), 0.0) self.assertEqual(math.log2(2), 1.0) self.assertEqual(math.log2(4), 2.0) # Large integer values self.assertEqual(math.log2(2**1023), 1023.0) self.assertEqual(math.log2(2**1024), 1024.0) self.assertEqual(math.log2(2**2000), 2000.0) self.assertRaises(ValueError, math.log2, -1.5) self.assertRaises(ValueError, math.log2, NINF) self.assertTrue(math.isnan(math.log2(NAN))) @requires_IEEE_754 # log2() is not accurate enough on Mac OS X Tiger (10.4) @support.requires_mac_ver(10, 5) def testLog2Exact(self): # Check that we get exact equality for log2 of powers of 2. actual = [math.log2(math.ldexp(1.0, n)) for n in range(-1074, 1024)] expected = [float(n) for n in range(-1074, 1024)] self.assertEqual(actual, expected) def testLog10(self): self.assertRaises(TypeError, math.log10) self.ftest('log10(0.1)', math.log10(0.1), -1) self.ftest('log10(1)', math.log10(1), 0) self.ftest('log10(10)', math.log10(10), 1) self.ftest('log10(10**1000)', math.log10(10**1000), 1000.0) self.assertRaises(ValueError, math.log10, -1.5) self.assertRaises(ValueError, math.log10, -10**1000) self.assertRaises(ValueError, math.log10, NINF) self.assertEqual(math.log(INF), INF) self.assertTrue(math.isnan(math.log10(NAN))) def testModf(self): self.assertRaises(TypeError, math.modf) def testmodf(name, result, expected): (v1, v2), (e1, e2) = result, expected if abs(v1-e1) > eps or abs(v2-e2): self.fail('%s returned %r, expected %r'%\ (name, result, expected)) testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0)) testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0)) self.assertEqual(math.modf(INF), (0.0, INF)) self.assertEqual(math.modf(NINF), (-0.0, NINF)) modf_nan = math.modf(NAN) self.assertTrue(math.isnan(modf_nan[0])) self.assertTrue(math.isnan(modf_nan[1])) def testPow(self): self.assertRaises(TypeError, math.pow) self.ftest('pow(0,1)', math.pow(0,1), 0) self.ftest('pow(1,0)', math.pow(1,0), 1) self.ftest('pow(2,1)', math.pow(2,1), 2) self.ftest('pow(2,-1)', math.pow(2,-1), 0.5) self.assertEqual(math.pow(INF, 1), INF) self.assertEqual(math.pow(NINF, 1), NINF) self.assertEqual((math.pow(1, INF)), 1.) self.assertEqual((math.pow(1, NINF)), 1.) self.assertTrue(math.isnan(math.pow(NAN, 1))) self.assertTrue(math.isnan(math.pow(2, NAN))) self.assertTrue(math.isnan(math.pow(0, NAN))) self.assertEqual(math.pow(1, NAN), 1) # pow(0., x) self.assertEqual(math.pow(0., INF), 0.) self.assertEqual(math.pow(0., 3.), 0.) self.assertEqual(math.pow(0., 2.3), 0.) self.assertEqual(math.pow(0., 2.), 0.) self.assertEqual(math.pow(0., 0.), 1.) self.assertEqual(math.pow(0., -0.), 1.) self.assertRaises(ValueError, math.pow, 0., -2.) self.assertRaises(ValueError, math.pow, 0., -2.3) self.assertRaises(ValueError, math.pow, 0., -3.) self.assertRaises(ValueError, math.pow, 0., NINF) self.assertTrue(math.isnan(math.pow(0., NAN))) # pow(INF, x) self.assertEqual(math.pow(INF, INF), INF) self.assertEqual(math.pow(INF, 3.), INF) self.assertEqual(math.pow(INF, 2.3), INF) self.assertEqual(math.pow(INF, 2.), INF) self.assertEqual(math.pow(INF, 0.), 1.) self.assertEqual(math.pow(INF, -0.), 1.) self.assertEqual(math.pow(INF, -2.), 0.) self.assertEqual(math.pow(INF, -2.3), 0.) self.assertEqual(math.pow(INF, -3.), 0.) self.assertEqual(math.pow(INF, NINF), 0.) self.assertTrue(math.isnan(math.pow(INF, NAN))) # pow(-0., x) self.assertEqual(math.pow(-0., INF), 0.) self.assertEqual(math.pow(-0., 3.), -0.) self.assertEqual(math.pow(-0., 2.3), 0.) self.assertEqual(math.pow(-0., 2.), 0.) self.assertEqual(math.pow(-0., 0.), 1.) self.assertEqual(math.pow(-0., -0.), 1.) self.assertRaises(ValueError, math.pow, -0., -2.) self.assertRaises(ValueError, math.pow, -0., -2.3) self.assertRaises(ValueError, math.pow, -0., -3.) self.assertRaises(ValueError, math.pow, -0., NINF) self.assertTrue(math.isnan(math.pow(-0., NAN))) # pow(NINF, x) self.assertEqual(math.pow(NINF, INF), INF) self.assertEqual(math.pow(NINF, 3.), NINF) self.assertEqual(math.pow(NINF, 2.3), INF) self.assertEqual(math.pow(NINF, 2.), INF) self.assertEqual(math.pow(NINF, 0.), 1.) self.assertEqual(math.pow(NINF, -0.), 1.) self.assertEqual(math.pow(NINF, -2.), 0.) self.assertEqual(math.pow(NINF, -2.3), 0.) self.assertEqual(math.pow(NINF, -3.), -0.) self.assertEqual(math.pow(NINF, NINF), 0.) self.assertTrue(math.isnan(math.pow(NINF, NAN))) # pow(-1, x) self.assertEqual(math.pow(-1., INF), 1.) self.assertEqual(math.pow(-1., 3.), -1.) self.assertRaises(ValueError, math.pow, -1., 2.3) self.assertEqual(math.pow(-1., 2.), 1.) self.assertEqual(math.pow(-1., 0.), 1.) self.assertEqual(math.pow(-1., -0.), 1.) self.assertEqual(math.pow(-1., -2.), 1.) self.assertRaises(ValueError, math.pow, -1., -2.3) self.assertEqual(math.pow(-1., -3.), -1.) self.assertEqual(math.pow(-1., NINF), 1.) self.assertTrue(math.isnan(math.pow(-1., NAN))) # pow(1, x) self.assertEqual(math.pow(1., INF), 1.) self.assertEqual(math.pow(1., 3.), 1.) self.assertEqual(math.pow(1., 2.3), 1.) self.assertEqual(math.pow(1., 2.), 1.) self.assertEqual(math.pow(1., 0.), 1.) self.assertEqual(math.pow(1., -0.), 1.) self.assertEqual(math.pow(1., -2.), 1.) self.assertEqual(math.pow(1., -2.3), 1.) self.assertEqual(math.pow(1., -3.), 1.) self.assertEqual(math.pow(1., NINF), 1.) self.assertEqual(math.pow(1., NAN), 1.) # pow(x, 0) should be 1 for any x self.assertEqual(math.pow(2.3, 0.), 1.) self.assertEqual(math.pow(-2.3, 0.), 1.) self.assertEqual(math.pow(NAN, 0.), 1.) self.assertEqual(math.pow(2.3, -0.), 1.) self.assertEqual(math.pow(-2.3, -0.), 1.) self.assertEqual(math.pow(NAN, -0.), 1.) # pow(x, y) is invalid if x is negative and y is not integral self.assertRaises(ValueError, math.pow, -1., 2.3) self.assertRaises(ValueError, math.pow, -15., -3.1) # pow(x, NINF) self.assertEqual(math.pow(1.9, NINF), 0.) self.assertEqual(math.pow(1.1, NINF), 0.) self.assertEqual(math.pow(0.9, NINF), INF) self.assertEqual(math.pow(0.1, NINF), INF) self.assertEqual(math.pow(-0.1, NINF), INF) self.assertEqual(math.pow(-0.9, NINF), INF) self.assertEqual(math.pow(-1.1, NINF), 0.) self.assertEqual(math.pow(-1.9, NINF), 0.) # pow(x, INF) self.assertEqual(math.pow(1.9, INF), INF) self.assertEqual(math.pow(1.1, INF), INF) self.assertEqual(math.pow(0.9, INF), 0.) self.assertEqual(math.pow(0.1, INF), 0.) self.assertEqual(math.pow(-0.1, INF), 0.) self.assertEqual(math.pow(-0.9, INF), 0.) self.assertEqual(math.pow(-1.1, INF), INF) self.assertEqual(math.pow(-1.9, INF), INF) # pow(x, y) should work for x negative, y an integer self.ftest('(-2.)**3.', math.pow(-2.0, 3.0), -8.0) self.ftest('(-2.)**2.', math.pow(-2.0, 2.0), 4.0) self.ftest('(-2.)**1.', math.pow(-2.0, 1.0), -2.0) self.ftest('(-2.)**0.', math.pow(-2.0, 0.0), 1.0) self.ftest('(-2.)**-0.', math.pow(-2.0, -0.0), 1.0) self.ftest('(-2.)**-1.', math.pow(-2.0, -1.0), -0.5) self.ftest('(-2.)**-2.', math.pow(-2.0, -2.0), 0.25) self.ftest('(-2.)**-3.', math.pow(-2.0, -3.0), -0.125) self.assertRaises(ValueError, math.pow, -2.0, -0.5) self.assertRaises(ValueError, math.pow, -2.0, 0.5) # the following tests have been commented out since they don't # really belong here: the implementation of ** for floats is # independent of the implementation of math.pow #self.assertEqual(1**NAN, 1) #self.assertEqual(1**INF, 1) #self.assertEqual(1**NINF, 1) #self.assertEqual(1**0, 1) #self.assertEqual(1.**NAN, 1) #self.assertEqual(1.**INF, 1) #self.assertEqual(1.**NINF, 1) #self.assertEqual(1.**0, 1) def testRadians(self): self.assertRaises(TypeError, math.radians) self.ftest('radians(180)', math.radians(180), math.pi) self.ftest('radians(90)', math.radians(90), math.pi/2) self.ftest('radians(-45)', math.radians(-45), -math.pi/4) self.ftest('radians(0)', math.radians(0), 0) @requires_IEEE_754 def testRemainder(self): from fractions import Fraction def validate_spec(x, y, r): """ Check that r matches remainder(x, y) according to the IEEE 754 specification. Assumes that x, y and r are finite and y is nonzero. """ fx, fy, fr = Fraction(x), Fraction(y), Fraction(r) # r should not exceed y/2 in absolute value self.assertLessEqual(abs(fr), abs(fy/2)) # x - r should be an exact integer multiple of y n = (fx - fr) / fy self.assertEqual(n, int(n)) if abs(fr) == abs(fy/2): # If |r| == |y/2|, n should be even. self.assertEqual(n/2, int(n/2)) # triples (x, y, remainder(x, y)) in hexadecimal form. testcases = [ # Remainders modulo 1, showing the ties-to-even behaviour. '-4.0 1 -0.0', '-3.8 1 0.8', '-3.0 1 -0.0', '-2.8 1 -0.8', '-2.0 1 -0.0', '-1.8 1 0.8', '-1.0 1 -0.0', '-0.8 1 -0.8', '-0.0 1 -0.0', ' 0.0 1 0.0', ' 0.8 1 0.8', ' 1.0 1 0.0', ' 1.8 1 -0.8', ' 2.0 1 0.0', ' 2.8 1 0.8', ' 3.0 1 0.0', ' 3.8 1 -0.8', ' 4.0 1 0.0', # Reductions modulo 2*pi '0x0.0p+0 0x1.921fb54442d18p+2 0x0.0p+0', '0x1.921fb54442d18p+0 0x1.921fb54442d18p+2 0x1.921fb54442d18p+0', '0x1.921fb54442d17p+1 0x1.921fb54442d18p+2 0x1.921fb54442d17p+1', '0x1.921fb54442d18p+1 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1', '0x1.921fb54442d19p+1 0x1.921fb54442d18p+2 -0x1.921fb54442d17p+1', '0x1.921fb54442d17p+2 0x1.921fb54442d18p+2 -0x0.0000000000001p+2', '0x1.921fb54442d18p+2 0x1.921fb54442d18p+2 0x0p0', '0x1.921fb54442d19p+2 0x1.921fb54442d18p+2 0x0.0000000000001p+2', '0x1.2d97c7f3321d1p+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1', '0x1.2d97c7f3321d2p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d18p+1', '0x1.2d97c7f3321d3p+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1', '0x1.921fb54442d17p+3 0x1.921fb54442d18p+2 -0x0.0000000000001p+3', '0x1.921fb54442d18p+3 0x1.921fb54442d18p+2 0x0p0', '0x1.921fb54442d19p+3 0x1.921fb54442d18p+2 0x0.0000000000001p+3', '0x1.f6a7a2955385dp+3 0x1.921fb54442d18p+2 0x1.921fb54442d14p+1', '0x1.f6a7a2955385ep+3 0x1.921fb54442d18p+2 0x1.921fb54442d18p+1', '0x1.f6a7a2955385fp+3 0x1.921fb54442d18p+2 -0x1.921fb54442d14p+1', '0x1.1475cc9eedf00p+5 0x1.921fb54442d18p+2 0x1.921fb54442d10p+1', '0x1.1475cc9eedf01p+5 0x1.921fb54442d18p+2 -0x1.921fb54442d10p+1', # Symmetry with respect to signs. ' 1 0.c 0.4', '-1 0.c -0.4', ' 1 -0.c 0.4', '-1 -0.c -0.4', ' 1.4 0.c -0.4', '-1.4 0.c 0.4', ' 1.4 -0.c -0.4', '-1.4 -0.c 0.4', # Huge modulus, to check that the underlying algorithm doesn't # rely on 2.0 * modulus being representable. '0x1.dp+1023 0x1.4p+1023 0x0.9p+1023', '0x1.ep+1023 0x1.4p+1023 -0x0.ap+1023', '0x1.fp+1023 0x1.4p+1023 -0x0.9p+1023', ] for case in testcases: with self.subTest(case=case): x_hex, y_hex, expected_hex = case.split() x = float.fromhex(x_hex) y = float.fromhex(y_hex) expected = float.fromhex(expected_hex) validate_spec(x, y, expected) actual = math.remainder(x, y) # Cheap way of checking that the floats are # as identical as we need them to be. self.assertEqual(actual.hex(), expected.hex()) # Test tiny subnormal modulus: there's potential for # getting the implementation wrong here (for example, # by assuming that modulus/2 is exactly representable). tiny = float.fromhex('1p-1074') # min +ve subnormal for n in range(-25, 25): if n == 0: continue y = n * tiny for m in range(100): x = m * tiny actual = math.remainder(x, y) validate_spec(x, y, actual) actual = math.remainder(-x, y) validate_spec(-x, y, actual) # Special values. # NaNs should propagate as usual. for value in [NAN, 0.0, -0.0, 2.0, -2.3, NINF, INF]: self.assertIsNaN(math.remainder(NAN, value)) self.assertIsNaN(math.remainder(value, NAN)) # remainder(x, inf) is x, for non-nan non-infinite x. for value in [-2.3, -0.0, 0.0, 2.3]: self.assertEqual(math.remainder(value, INF), value) self.assertEqual(math.remainder(value, NINF), value) # remainder(x, 0) and remainder(infinity, x) for non-NaN x are invalid # operations according to IEEE 754-2008 7.2(f), and should raise. for value in [NINF, -2.3, -0.0, 0.0, 2.3, INF]: with self.assertRaises(ValueError): math.remainder(INF, value) with self.assertRaises(ValueError): math.remainder(NINF, value) with self.assertRaises(ValueError): math.remainder(value, 0.0) with self.assertRaises(ValueError): math.remainder(value, -0.0) def testSin(self): self.assertRaises(TypeError, math.sin) self.ftest('sin(0)', math.sin(0), 0) self.ftest('sin(pi/2)', math.sin(math.pi/2), 1) self.ftest('sin(-pi/2)', math.sin(-math.pi/2), -1) try: self.assertTrue(math.isnan(math.sin(INF))) self.assertTrue(math.isnan(math.sin(NINF))) except ValueError: self.assertRaises(ValueError, math.sin, INF) self.assertRaises(ValueError, math.sin, NINF) self.assertTrue(math.isnan(math.sin(NAN))) def testSinh(self): self.assertRaises(TypeError, math.sinh) self.ftest('sinh(0)', math.sinh(0), 0) self.ftest('sinh(1)**2-cosh(1)**2', math.sinh(1)**2-math.cosh(1)**2, -1) self.ftest('sinh(1)+sinh(-1)', math.sinh(1)+math.sinh(-1), 0) self.assertEqual(math.sinh(INF), INF) self.assertEqual(math.sinh(NINF), NINF) self.assertTrue(math.isnan(math.sinh(NAN))) def testSqrt(self): self.assertRaises(TypeError, math.sqrt) self.ftest('sqrt(0)', math.sqrt(0), 0) self.ftest('sqrt(1)', math.sqrt(1), 1) self.ftest('sqrt(4)', math.sqrt(4), 2) self.assertEqual(math.sqrt(INF), INF) self.assertRaises(ValueError, math.sqrt, -1) self.assertRaises(ValueError, math.sqrt, NINF) self.assertTrue(math.isnan(math.sqrt(NAN))) def testTan(self): self.assertRaises(TypeError, math.tan) self.ftest('tan(0)', math.tan(0), 0) self.ftest('tan(pi/4)', math.tan(math.pi/4), 1) self.ftest('tan(-pi/4)', math.tan(-math.pi/4), -1) try: self.assertTrue(math.isnan(math.tan(INF))) self.assertTrue(math.isnan(math.tan(NINF))) except: self.assertRaises(ValueError, math.tan, INF) self.assertRaises(ValueError, math.tan, NINF) self.assertTrue(math.isnan(math.tan(NAN))) def testTanh(self): self.assertRaises(TypeError, math.tanh) self.ftest('tanh(0)', math.tanh(0), 0) self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0, abs_tol=ulp(1)) self.ftest('tanh(inf)', math.tanh(INF), 1) self.ftest('tanh(-inf)', math.tanh(NINF), -1) self.assertTrue(math.isnan(math.tanh(NAN))) @requires_IEEE_754 def testTanhSign(self): # check that tanh(-0.) == -0. on IEEE 754 systems self.assertEqual(math.tanh(-0.), -0.) self.assertEqual(math.copysign(1., math.tanh(-0.)), math.copysign(1., -0.)) def test_trunc(self): self.assertEqual(math.trunc(1), 1) self.assertEqual(math.trunc(-1), -1) self.assertEqual(type(math.trunc(1)), int) self.assertEqual(type(math.trunc(1.5)), int) self.assertEqual(math.trunc(1.5), 1) self.assertEqual(math.trunc(-1.5), -1) self.assertEqual(math.trunc(1.999999), 1) self.assertEqual(math.trunc(-1.999999), -1) self.assertEqual(math.trunc(-0.999999), -0) self.assertEqual(math.trunc(-100.999), -100) class TestTrunc(object): def __trunc__(self): return 23 class TestNoTrunc(object): pass self.assertEqual(math.trunc(TestTrunc()), 23) self.assertRaises(TypeError, math.trunc) self.assertRaises(TypeError, math.trunc, 1, 2) self.assertRaises(TypeError, math.trunc, TestNoTrunc()) def testIsfinite(self): self.assertTrue(math.isfinite(0.0)) self.assertTrue(math.isfinite(-0.0)) self.assertTrue(math.isfinite(1.0)) self.assertTrue(math.isfinite(-1.0)) self.assertFalse(math.isfinite(float("nan"))) self.assertFalse(math.isfinite(float("inf"))) self.assertFalse(math.isfinite(float("-inf"))) def testIsnan(self): self.assertTrue(math.isnan(float("nan"))) self.assertTrue(math.isnan(float("-nan"))) self.assertTrue(math.isnan(float("inf") * 0.)) self.assertFalse(math.isnan(float("inf"))) self.assertFalse(math.isnan(0.)) self.assertFalse(math.isnan(1.)) def testIsinf(self): self.assertTrue(math.isinf(float("inf"))) self.assertTrue(math.isinf(float("-inf"))) self.assertTrue(math.isinf(1E400)) self.assertTrue(math.isinf(-1E400)) self.assertFalse(math.isinf(float("nan"))) self.assertFalse(math.isinf(0.)) self.assertFalse(math.isinf(1.)) @requires_IEEE_754 def test_nan_constant(self): self.assertTrue(math.isnan(math.nan)) @requires_IEEE_754 def test_inf_constant(self): self.assertTrue(math.isinf(math.inf)) self.assertGreater(math.inf, 0.0) self.assertEqual(math.inf, float("inf")) self.assertEqual(-math.inf, float("-inf")) # RED_FLAG 16-Oct-2000 Tim # While 2.0 is more consistent about exceptions than previous releases, it # still fails this part of the test on some platforms. For now, we only # *run* test_exceptions() in verbose mode, so that this isn't normally # tested. @unittest.skipUnless(verbose, 'requires verbose mode') def test_exceptions(self): try: x = math.exp(-1000000000) except: # mathmodule.c is failing to weed out underflows from libm, or # we've got an fp format with huge dynamic range self.fail("underflowing exp() should not have raised " "an exception") if x != 0: self.fail("underflowing exp() should have returned 0") # If this fails, probably using a strict IEEE-754 conforming libm, and x # is +Inf afterwards. But Python wants overflows detected by default. try: x = math.exp(1000000000) except OverflowError: pass else: self.fail("overflowing exp() didn't trigger OverflowError") # If this fails, it could be a puzzle. One odd possibility is that # mathmodule.c's macros are getting confused while comparing # Inf (HUGE_VAL) to a NaN, and artificially setting errno to ERANGE # as a result (and so raising OverflowError instead). try: x = math.sqrt(-1.0) except ValueError: pass else: self.fail("sqrt(-1) didn't raise ValueError") @requires_IEEE_754 def test_testfile(self): # Some tests need to be skipped on ancient OS X versions. # See issue #27953. SKIP_ON_TIGER = {'tan0064'} osx_version = None if sys.platform == 'darwin': version_txt = platform.mac_ver()[0] try: osx_version = tuple(map(int, version_txt.split('.'))) except ValueError: pass fail_fmt = "{}: {}({!r}): {}" failures = [] for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): # Skip if either the input or result is complex if ai != 0.0 or ei != 0.0: continue if fn in ['rect', 'polar']: # no real versions of rect, polar continue # Skip certain tests on OS X 10.4. if osx_version is not None and osx_version < (10, 5): if id in SKIP_ON_TIGER: continue func = getattr(math, fn) if 'invalid' in flags or 'divide-by-zero' in flags: er = 'ValueError' elif 'overflow' in flags: er = 'OverflowError' try: result = func(ar) except ValueError: result = 'ValueError' except OverflowError: result = 'OverflowError' # Default tolerances ulp_tol, abs_tol = 5, 0.0 failure = result_check(er, result, ulp_tol, abs_tol) if failure is None: continue msg = fail_fmt.format(id, fn, ar, failure) failures.append(msg) if failures: self.fail('Failures in test_testfile:\n ' + '\n '.join(failures)) @requires_IEEE_754 def test_mtestfile(self): fail_fmt = "{}: {}({!r}): {}" failures = [] for id, fn, arg, expected, flags in parse_mtestfile(math_testcases): func = getattr(math, fn) if 'invalid' in flags or 'divide-by-zero' in flags: expected = 'ValueError' elif 'overflow' in flags: expected = 'OverflowError' try: got = func(arg) except ValueError: got = 'ValueError' except OverflowError: got = 'OverflowError' # Default tolerances ulp_tol, abs_tol = 5, 0.0 # Exceptions to the defaults if fn == 'gamma': # Experimental results on one platform gave # an accuracy of <= 10 ulps across the entire float # domain. We weaken that to require 20 ulp accuracy. ulp_tol = 20 elif fn == 'lgamma': # we use a weaker accuracy test for lgamma; # lgamma only achieves an absolute error of # a few multiples of the machine accuracy, in # general. abs_tol = 1e-15 elif fn == 'erfc' and arg >= 0.0: # erfc has less-than-ideal accuracy for large # arguments (x ~ 25 or so), mainly due to the # error involved in computing exp(-x*x). # # Observed between CPython and mpmath at 25 dp: # x < 0 : err <= 2 ulp # 0 <= x < 1 : err <= 10 ulp # 1 <= x < 10 : err <= 100 ulp # 10 <= x < 20 : err <= 300 ulp # 20 <= x : < 600 ulp # if arg < 1.0: ulp_tol = 10 elif arg < 10.0: ulp_tol = 100 else: ulp_tol = 1000 failure = result_check(expected, got, ulp_tol, abs_tol) if failure is None: continue msg = fail_fmt.format(id, fn, arg, failure) failures.append(msg) if failures: self.fail('Failures in test_mtestfile:\n ' + '\n '.join(failures)) def test_prod(self): prod = math.prod self.assertEqual(prod([]), 1) self.assertEqual(prod([], start=5), 5) self.assertEqual(prod(list(range(2,8))), 5040) self.assertEqual(prod(iter(list(range(2,8)))), 5040) self.assertEqual(prod(range(1, 10), start=10), 3628800) self.assertEqual(prod([1, 2, 3, 4, 5]), 120) self.assertEqual(prod([1.0, 2.0, 3.0, 4.0, 5.0]), 120.0) self.assertEqual(prod([1, 2, 3, 4.0, 5.0]), 120.0) self.assertEqual(prod([1.0, 2.0, 3.0, 4, 5]), 120.0) # Test overflow in fast-path for integers self.assertEqual(prod([1, 1, 2**32, 1, 1]), 2**32) # Test overflow in fast-path for floats self.assertEqual(prod([1.0, 1.0, 2**32, 1, 1]), float(2**32)) self.assertRaises(TypeError, prod) self.assertRaises(TypeError, prod, 42) self.assertRaises(TypeError, prod, ['a', 'b', 'c']) self.assertRaises(TypeError, prod, ['a', 'b', 'c'], '') self.assertRaises(TypeError, prod, [b'a', b'c'], b'') values = [bytearray(b'a'), bytearray(b'b')] self.assertRaises(TypeError, prod, values, bytearray(b'')) self.assertRaises(TypeError, prod, [[1], [2], [3]]) self.assertRaises(TypeError, prod, [{2:3}]) self.assertRaises(TypeError, prod, [{2:3}]*2, {2:3}) self.assertRaises(TypeError, prod, [[1], [2], [3]], []) with self.assertRaises(TypeError): prod([10, 20], [30, 40]) # start is a keyword-only argument self.assertEqual(prod([0, 1, 2, 3]), 0) self.assertEqual(prod([1, 0, 2, 3]), 0) self.assertEqual(prod([1, 2, 3, 0]), 0) def _naive_prod(iterable, start=1): for elem in iterable: start *= elem return start # Big integers iterable = range(1, 10000) self.assertEqual(prod(iterable), _naive_prod(iterable)) iterable = range(-10000, -1) self.assertEqual(prod(iterable), _naive_prod(iterable)) iterable = range(-1000, 1000) self.assertEqual(prod(iterable), 0) # Big floats iterable = [float(x) for x in range(1, 1000)] self.assertEqual(prod(iterable), _naive_prod(iterable)) iterable = [float(x) for x in range(-1000, -1)] self.assertEqual(prod(iterable), _naive_prod(iterable)) iterable = [float(x) for x in range(-1000, 1000)] self.assertIsNaN(prod(iterable)) # Float tests self.assertIsNaN(prod([1, 2, 3, float("nan"), 2, 3])) self.assertIsNaN(prod([1, 0, float("nan"), 2, 3])) self.assertIsNaN(prod([1, float("nan"), 0, 3])) self.assertIsNaN(prod([1, float("inf"), float("nan"),3])) self.assertIsNaN(prod([1, float("-inf"), float("nan"),3])) self.assertIsNaN(prod([1, float("nan"), float("inf"),3])) self.assertIsNaN(prod([1, float("nan"), float("-inf"),3])) self.assertEqual(prod([1, 2, 3, float('inf'),-3,4]), float('-inf')) self.assertEqual(prod([1, 2, 3, float('-inf'),-3,4]), float('inf')) self.assertIsNaN(prod([1,2,0,float('inf'), -3, 4])) self.assertIsNaN(prod([1,2,0,float('-inf'), -3, 4])) self.assertIsNaN(prod([1, 2, 3, float('inf'), -3, 0, 3])) self.assertIsNaN(prod([1, 2, 3, float('-inf'), -3, 0, 2])) # Type preservation self.assertEqual(type(prod([1, 2, 3, 4, 5, 6])), int) self.assertEqual(type(prod([1, 2.0, 3, 4, 5, 6])), float) self.assertEqual(type(prod(range(1, 10000))), int) self.assertEqual(type(prod(range(1, 10000), start=1.0)), float) self.assertEqual(type(prod([1, decimal.Decimal(2.0), 3, 4, 5, 6])), decimal.Decimal) def testPerm(self): perm = math.perm factorial = math.factorial # Test if factorial definition is satisfied for n in range(100): for k in range(n + 1): self.assertEqual(perm(n, k), factorial(n) // factorial(n - k)) # Test for Pascal's identity for n in range(1, 100): for k in range(1, n): self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k)) # Test corner cases for n in range(1, 100): self.assertEqual(perm(n, 0), 1) self.assertEqual(perm(n, 1), n) self.assertEqual(perm(n, n), factorial(n)) # Test one argument form for n in range(20): self.assertEqual(perm(n), factorial(n)) self.assertEqual(perm(n, None), factorial(n)) # Raises TypeError if any argument is non-integer or argument count is # not 1 or 2 self.assertRaises(TypeError, perm, 10, 1.0) self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0)) self.assertRaises(TypeError, perm, 10, "1") self.assertRaises(TypeError, perm, 10.0, 1) self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1) self.assertRaises(TypeError, perm, "10", 1) self.assertRaises(TypeError, perm) self.assertRaises(TypeError, perm, 10, 1, 3) self.assertRaises(TypeError, perm) # Raises Value error if not k or n are negative numbers self.assertRaises(ValueError, perm, -1, 1) self.assertRaises(ValueError, perm, -2**1000, 1) self.assertRaises(ValueError, perm, 1, -1) self.assertRaises(ValueError, perm, 1, -2**1000) # Returns zero if k is greater than n self.assertEqual(perm(1, 2), 0) self.assertEqual(perm(1, 2**1000), 0) n = 2**1000 self.assertEqual(perm(n, 0), 1) self.assertEqual(perm(n, 1), n) self.assertEqual(perm(n, 2), n * (n-1)) if support.check_impl_detail(cpython=True): self.assertRaises(OverflowError, perm, n, n) for n, k in (True, True), (True, False), (False, False): self.assertEqual(perm(n, k), 1) self.assertIs(type(perm(n, k)), int) self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20) self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20) for k in range(3): self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int) self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int) def testComb(self): comb = math.comb factorial = math.factorial # Test if factorial definition is satisfied for n in range(100): for k in range(n + 1): self.assertEqual(comb(n, k), factorial(n) // (factorial(k) * factorial(n - k))) # Test for Pascal's identity for n in range(1, 100): for k in range(1, n): self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k)) # Test corner cases for n in range(100): self.assertEqual(comb(n, 0), 1) self.assertEqual(comb(n, n), 1) for n in range(1, 100): self.assertEqual(comb(n, 1), n) self.assertEqual(comb(n, n - 1), n) # Test Symmetry for n in range(100): for k in range(n // 2): self.assertEqual(comb(n, k), comb(n, n - k)) # Raises TypeError if any argument is non-integer or argument count is # not 2 self.assertRaises(TypeError, comb, 10, 1.0) self.assertRaises(TypeError, comb, 10, decimal.Decimal(1.0)) self.assertRaises(TypeError, comb, 10, "1") self.assertRaises(TypeError, comb, 10.0, 1) self.assertRaises(TypeError, comb, decimal.Decimal(10.0), 1) self.assertRaises(TypeError, comb, "10", 1) self.assertRaises(TypeError, comb, 10) self.assertRaises(TypeError, comb, 10, 1, 3) self.assertRaises(TypeError, comb) # Raises Value error if not k or n are negative numbers self.assertRaises(ValueError, comb, -1, 1) self.assertRaises(ValueError, comb, -2**1000, 1) self.assertRaises(ValueError, comb, 1, -1) self.assertRaises(ValueError, comb, 1, -2**1000) # Returns zero if k is greater than n self.assertEqual(comb(1, 2), 0) self.assertEqual(comb(1, 2**1000), 0) n = 2**1000 self.assertEqual(comb(n, 0), 1) self.assertEqual(comb(n, 1), n) self.assertEqual(comb(n, 2), n * (n-1) // 2) self.assertEqual(comb(n, n), 1) self.assertEqual(comb(n, n-1), n) self.assertEqual(comb(n, n-2), n * (n-1) // 2) if support.check_impl_detail(cpython=True): self.assertRaises(OverflowError, comb, n, n//2) for n, k in (True, True), (True, False), (False, False): self.assertEqual(comb(n, k), 1) self.assertIs(type(comb(n, k)), int) self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10) self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10) for k in range(3): self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int) self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int) def test_issue39871(self): # A SystemError should not be raised if the first arg to atan2(), # copysign(), or remainder() cannot be converted to a float. class F: def __float__(self): self.converted = True 1/0 for func in math.atan2, math.copysign, math.remainder: y = F() with self.assertRaises(TypeError): func("not a number", y) # There should not have been any attempt to convert the second # argument to a float. self.assertFalse(getattr(y, "converted", False)) # Custom assertions. def assertIsNaN(self, value): if not math.isnan(value): self.fail("Expected a NaN, got {!r}.".format(value)) class IsCloseTests(unittest.TestCase): isclose = math.isclose # subclasses should override this def assertIsClose(self, a, b, *args, **kwargs): self.assertTrue(self.isclose(a, b, *args, **kwargs), msg="%s and %s should be close!" % (a, b)) def assertIsNotClose(self, a, b, *args, **kwargs): self.assertFalse(self.isclose(a, b, *args, **kwargs), msg="%s and %s should not be close!" % (a, b)) def assertAllClose(self, examples, *args, **kwargs): for a, b in examples: self.assertIsClose(a, b, *args, **kwargs) def assertAllNotClose(self, examples, *args, **kwargs): for a, b in examples: self.assertIsNotClose(a, b, *args, **kwargs) def test_negative_tolerances(self): # ValueError should be raised if either tolerance is less than zero with self.assertRaises(ValueError): self.assertIsClose(1, 1, rel_tol=-1e-100) with self.assertRaises(ValueError): self.assertIsClose(1, 1, rel_tol=1e-100, abs_tol=-1e10) def test_identical(self): # identical values must test as close identical_examples = [(2.0, 2.0), (0.1e200, 0.1e200), (1.123e-300, 1.123e-300), (12345, 12345.0), (0.0, -0.0), (345678, 345678)] self.assertAllClose(identical_examples, rel_tol=0.0, abs_tol=0.0) def test_eight_decimal_places(self): # examples that are close to 1e-8, but not 1e-9 eight_decimal_places_examples = [(1e8, 1e8 + 1), (-1e-8, -1.000000009e-8), (1.12345678, 1.12345679)] self.assertAllClose(eight_decimal_places_examples, rel_tol=1e-8) self.assertAllNotClose(eight_decimal_places_examples, rel_tol=1e-9) def test_near_zero(self): # values close to zero near_zero_examples = [(1e-9, 0.0), (-1e-9, 0.0), (-1e-150, 0.0)] # these should not be close to any rel_tol self.assertAllNotClose(near_zero_examples, rel_tol=0.9) # these should be close to abs_tol=1e-8 self.assertAllClose(near_zero_examples, abs_tol=1e-8) def test_identical_infinite(self): # these are close regardless of tolerance -- i.e. they are equal self.assertIsClose(INF, INF) self.assertIsClose(INF, INF, abs_tol=0.0) self.assertIsClose(NINF, NINF) self.assertIsClose(NINF, NINF, abs_tol=0.0) def test_inf_ninf_nan(self): # these should never be close (following IEEE 754 rules for equality) not_close_examples = [(NAN, NAN), (NAN, 1e-100), (1e-100, NAN), (INF, NAN), (NAN, INF), (INF, NINF), (INF, 1.0), (1.0, INF), (INF, 1e308), (1e308, INF)] # use largest reasonable tolerance self.assertAllNotClose(not_close_examples, abs_tol=0.999999999999999) def test_zero_tolerance(self): # test with zero tolerance zero_tolerance_close_examples = [(1.0, 1.0), (-3.4, -3.4), (-1e-300, -1e-300)] self.assertAllClose(zero_tolerance_close_examples, rel_tol=0.0) zero_tolerance_not_close_examples = [(1.0, 1.000000000000001), (0.99999999999999, 1.0), (1.0e200, .999999999999999e200)] self.assertAllNotClose(zero_tolerance_not_close_examples, rel_tol=0.0) def test_asymmetry(self): # test the asymmetry example from PEP 485 self.assertAllClose([(9, 10), (10, 9)], rel_tol=0.1) def test_integers(self): # test with integer values integer_examples = [(100000001, 100000000), (123456789, 123456788)] self.assertAllClose(integer_examples, rel_tol=1e-8) self.assertAllNotClose(integer_examples, rel_tol=1e-9) def test_decimals(self): # test with Decimal values from decimal import Decimal decimal_examples = [(Decimal('1.00000001'), Decimal('1.0')), (Decimal('1.00000001e-20'), Decimal('1.0e-20')), (Decimal('1.00000001e-100'), Decimal('1.0e-100')), (Decimal('1.00000001e20'), Decimal('1.0e20'))] self.assertAllClose(decimal_examples, rel_tol=1e-8) self.assertAllNotClose(decimal_examples, rel_tol=1e-9) def test_fractions(self): # test with Fraction values from fractions import Fraction fraction_examples = [ (Fraction(1, 100000000) + 1, Fraction(1)), (Fraction(100000001), Fraction(100000000)), (Fraction(10**8 + 1, 10**28), Fraction(1, 10**20))] self.assertAllClose(fraction_examples, rel_tol=1e-8) self.assertAllNotClose(fraction_examples, rel_tol=1e-9) def test_main(): from doctest import DocFileSuite suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(MathTests)) suite.addTest(unittest.makeSuite(IsCloseTests)) suite.addTest(DocFileSuite("ieee754.txt")) run_unittest(suite) if __name__ == '__main__': test_main()
41.310751
98
0.56574
4a1ba9e317be7c16062368d40d123f917b95afb4
929
py
Python
object_detection/parser.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
2
2020-11-04T19:14:51.000Z
2021-03-04T13:14:17.000Z
object_detection/parser.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
null
null
null
object_detection/parser.py
tugot17/Pytorch-Lightning-Templates-
36ec7ac8f1699e4e266f0d4f08df67a2873ba0f8
[ "MIT" ]
null
null
null
import json from pathlib import Path from typing import List, Union from icevision.all import parsers, IDMap, ClassMap, BBox class ArtifactParser(parsers.FasterRCNN, parsers.FilepathMixin, parsers.SizeMixin): def __init__(self, df): self.df = df self.imageid_map = IDMap() self.class_map = ClassMap(["Port", "Necklace", "Endo", "ICD"]) def __iter__(self): yield from self.df.itertuples() def __len__(self): return len(self.df) def imageid(self, o) -> int: return self.imageid_map[o.image_id] def filepath(self, o) -> Union[str, Path]: return o.img_path def height(self, o) -> int: return o.height def width(self, o) -> int: return o.width def labels(self, o) -> List[int]: return [self.class_map.get_name(o.label)] def bboxes(self, o) -> List[BBox]: return [BBox.from_xyxy(*json.loads(o.bbox))]
25.805556
83
0.630786
4a1baa6eccd0dd667225fbec048fbb7ac6a19eac
577
py
Python
tests/rst/__init__.py
LudditeLabs/autodoc-tool
b4ae7e3b61907e7e9c3a1b534fce055e5860ffab
[ "Apache-2.0" ]
null
null
null
tests/rst/__init__.py
LudditeLabs/autodoc-tool
b4ae7e3b61907e7e9c3a1b534fce055e5860ffab
[ "Apache-2.0" ]
null
null
null
tests/rst/__init__.py
LudditeLabs/autodoc-tool
b4ae7e3b61907e7e9c3a1b534fce055e5860ffab
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Luddite Labs Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
41.214286
74
0.767764
4a1baaf2b4f6eb30b14993dc570d8d4c542fecc9
1,386
py
Python
templates/drawDifferentialMissingnessPlot.py
sickle-in-africa/h3agwas
b0d7eccc48f4a2c70f9d606ca9f9589a32e27924
[ "MIT" ]
null
null
null
templates/drawDifferentialMissingnessPlot.py
sickle-in-africa/h3agwas
b0d7eccc48f4a2c70f9d606ca9f9589a32e27924
[ "MIT" ]
null
null
null
templates/drawDifferentialMissingnessPlot.py
sickle-in-africa/h3agwas
b0d7eccc48f4a2c70f9d606ca9f9589a32e27924
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.ticker import MaxNLocator import pandas as pd import numpy as np import argparse import sys import math import bisect from scipy.stats import gaussian_kde def parseArguments(): if len(sys.argv)<=1: sys.argv=\ "drawDifferentialMissingnessPlot.py $input $output".split() parser=argparse.ArgumentParser() parser.add_argument('input', type=str, metavar='imiss'), parser.add_argument('output', type=str, metavar='output'), args = parser.parse_args() return args args = parseArguments() frq = pd.read_csv(args.input,delim_whitespace=True) if len(frq) >= 1: frq["logP"] = np.log10(frq["P"]) fig, ax = plt.subplots(figsize=(9,8)) font = {'family' : 'normal','weight' : 'bold','size' : 13} matplotlib.rc('font', **font) matplotlib.rcParams['xtick.labelsize']=15 matplotlib.rcParams['ytick.labelsize']=15 miss=np.sort(frq["logP"])[1:] n = np.arange(1,len(miss)+1) / np.float(len(miss)) ax.step(miss,n) ax.set_xlabel("logP differential missingness",fontsize=14) ax.set_ylabel("Fraction of SNPs",fontsize=14) ax.set_title("Cumulative proportion of SNPs with given differential missingness.") fig.tight_layout() plt.savefig(args.output) else: g=open(args.output,"w") g.close()
29.489362
84
0.715007
4a1babca2ca0a07d11c138954674dd72309b2d9e
24,651
py
Python
Packs/CrowdStrikeFalconSandbox/Integrations/CrowdstrikeFalconSandboxV2/CrowdStrikeFalconSandboxV2.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
2
2021-12-06T21:38:24.000Z
2022-01-13T08:23:36.000Z
Packs/CrowdStrikeFalconSandbox/Integrations/CrowdstrikeFalconSandboxV2/CrowdStrikeFalconSandboxV2.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
87
2022-02-23T12:10:53.000Z
2022-03-31T11:29:05.000Z
Packs/CrowdStrikeFalconSandbox/Integrations/CrowdstrikeFalconSandboxV2/CrowdStrikeFalconSandboxV2.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
2
2022-01-05T15:27:01.000Z
2022-02-01T19:27:43.000Z
from requests import Response import demistomock as demisto from CommonServerPython import * # noqa # pylint: disable=unused-wildcard-import import requests import traceback from typing import Dict, Any, Callable # Disable insecure warnings requests.packages.urllib3.disable_warnings() # pylint: disable=no-member SERVER_URL = 'https://www.hybrid-analysis.com/api/v2' SEARCH_TERM_QUERY_ARGS = ('filename', 'filetype', 'filetype_desc', 'env_id', 'country', 'verdict', 'av_detect', 'vx_family', 'tag', 'date_from', 'date_to', 'port', 'host', 'domain', 'url', 'similar_to', 'context', 'imp_hash', 'ssdeep', 'authentihash') # envid repeated for bw compatibility. Must be in this order so old overrides new default SUBMISSION_PARAMETERS = ('environmentID', 'environmentId', 'no_share_third_party', 'allow_community_access', 'no_hash_lookup', 'action_script', 'hybrid_analysis', 'experimental_anti_evasion', 'script_logging', 'input_sample_tampering', 'network_settings', 'email', 'comment', 'custom_cmd_line', 'custom_run_time', 'submit_name', 'priority', 'document_password', 'environment_variable', ) class Client(BaseClient): def get_environments(self) -> List[Dict]: return self._http_request(method='GET', url_suffix='/system/environments') def get_screenshots(self, key: str) -> List[Dict[str, Any]]: return self._http_request(method='GET', url_suffix=f'/report/{key}/screenshots') def search(self, query_args: Dict[str, Any]): self._headers['Content-Type'] = 'application/x-www-form-urlencoded' return self._http_request(method='POST', url_suffix='/search/terms', data=query_args) def scan(self, files: List[str]) -> List[Dict[str, Any]]: self._headers['Content-Type'] = 'application/x-www-form-urlencoded' return self._http_request(method='POST', url_suffix='/search/hashes', data={'hashes[]': files}) def analysis_overview(self, sha256hash: str) -> Dict[str, Any]: return self._http_request(method='GET', url_suffix=f'/overview/{sha256hash}') def analysis_overview_summary(self, sha256hash: str) -> Dict[str, Any]: return self._http_request(method='GET', url_suffix=f'/overview/{sha256hash}/summary') def analysis_overview_refresh(self, sha256hash: str): self._http_request(method='GET', url_suffix=f'/overview/{sha256hash}/refresh') def get_report(self, key: str, filetype: str) -> Response: return self._http_request(method='GET', url_suffix=f'/report/{key}/report/{filetype}', resp_type='response', ok_codes=(200, 404)) def get_state(self, key: str) -> Dict[str, Any]: return self._http_request(method='GET', url_suffix=f'/report/{key}/state') def submit_url(self, url: str, params: Dict[str, Any]) -> Dict[str, Any]: return self._http_request(method='POST', data={'url': url, **params}, url_suffix='/submit/url') def submit_file(self, file_contents: Dict, params: Dict[str, Any]) -> Dict: return self._http_request(method='POST', data=params, url_suffix='/submit/file', files={'file': (file_contents['name'], open(file_contents['path'], 'rb'))}) def download_sample(self, sha256hash: str) -> Response: return self._http_request(method='GET', url_suffix=f'/overview/{sha256hash}/sample', resp_type='response') # for BW compatibility with v1 we need to return same object keys def map_dict_keys(obj: Dict, map_rules: Dict[str, str], only_given_fields: bool = False) -> Dict[Any, Any]: """ This function will switch the keys of a dictionary according to the provided map_rules. Example: map_dict_keys( {'a' : 'b', 'c' : 'd' }, {'a' : 'y', 'c' : 'z' }) -> {'y' : 'b' , 'z' : 'd'} Args: obj: The original dictionary map_rules: The mapping the keys should be changed by only_given_fields: whether fields besides for those in map_rules should be used Returns : a Dict according to the map_rules """ return {map_rules.get(key, key): obj[key] for key in obj.keys() if not only_given_fields or key in map_rules} def translate_verdict(param: str) -> int: return { 'Whitelisted': 1, 'NoVerdict': 2, 'NoSpecificThreat': 3, 'Suspicious': 4, 'Malicious': 5 }[param] def split_query_to_term_args(query: str) -> Dict[str, Any]: def get_value(term: str) -> str: return term[term.index(':') + 1:].strip() def get_key(term: str) -> str: return term[:term.index(':')].strip() return {get_key(term): get_value(term) for term in query.split(',') if get_value(term)} def validated_term(key: str, val: Any) -> Any: if key == 'verdict': return translate_verdict(val) if key == 'country' and len(val) != 3: raise ValueError('Country ISO code should be 3 characters long') return val def validated_search_terms(query_args: Dict[str, Any]) -> Dict[str, Any]: if len(query_args) == 0: raise ValueError('Must have at least one search term') return {key: validated_term(key, query_args[key]) for key in query_args} def get_search_term_args(args: Dict[str, Any]) -> Dict[str, Any]: if args.get('query'): return split_query_to_term_args(args['query']) else: return {term: args[term] for term in SEARCH_TERM_QUERY_ARGS if args.get(term, None)} def get_api_id(args: Dict[str, Any]) -> str: # must fist check environmentId (deprecated) to override default args of environmentID if args.get('file') and (args.get('environmentId') or args.get('environmentID')): return f"{args['file']}:{args.get('environmentId') or args.get('environmentID')}" elif args.get('JobID'): return args['JobID'] else: raise ValueError('Must supply JobID or environmentID and file') def test_module(client: Client, _) -> str: """Tests API connectivity and authentication' :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ try: client.get_environments() message = 'ok' except DemistoException as e: if 'Forbidden' in str(e) or 'Authorization' in str(e): message = 'Authorization Error: make sure API Key is correctly set' else: raise e return message def get_default_file_name(filetype: str) -> str: return f'CrowdStrike_report_{round(time.time())}.{get_file_suffix(filetype)}' def get_file_suffix(filetype: str = 'bin') -> str: # check this if filetype in ('pcap', 'bin', 'xml', 'html'): return 'gz' if filetype == 'json': return 'json' if filetype in ('misp', 'stix'): return 'xml' return filetype def has_error_state(client: Client, key: str) -> bool: state = client.get_state(key) demisto.debug(f'state to check if should poll response: {state}') if state['state'] == 'ERROR': raise Exception(f'Got Error state from server: {state}') return False class BWCFile(Common.File): def __init__(self, bwc_fields: Dict, key_change_map: Dict, only_given_fields, *args, **kwargs): super(BWCFile, self).__init__(*args, **kwargs) self.bwc_fields = bwc_fields self.key_change_map = key_change_map self.only_given_fields = only_given_fields def to_context(self) -> Any: super_ret = super().to_context() for key in super_ret.keys(): if key.startswith('File'): super_ret[key].update(map_dict_keys(self.bwc_fields, self.key_change_map, self.only_given_fields)) return super_ret def create_scan_results_readable_output(scan_response) -> Any: table_field_dict = { 'submit_name': 'submit name', 'threat_level': 'threat level', 'threat_score': 'threat score', 'verdict': 'verdict', 'total_network_connections': 'total network connections', 'target_url': 'target url', 'classification_tags': 'classification tags', 'total_processes': 'total processes', 'environment_description': 'environment description', 'interesting': 'interesting', 'environment_id': 'environment id', 'url_analysis': 'url analysis', 'analysis_start_time': 'analysis start time', 'total_signatures': 'total signatures', 'type': 'type', 'type_short': 'type short', 'vx_family': 'Malware Family', 'sha256': 'sha256' } return tableToMarkdown('Scan Results:', scan_response, headers=list(table_field_dict.keys()), headerTransform=lambda x: table_field_dict.get(x, x), removeNull=True) def get_dbot_score(filehash, threat_score: int) -> Common.DBotScore: def calc_score() -> int: return {3: 0, 2: 3, 1: 2, 0: 1}.get(threat_score, 0) return Common.DBotScore(indicator=filehash, integration_name='CrowdStrike Falcon Sandbox V2', indicator_type=DBotScoreType.FILE, score=calc_score(), malicious_description=f'Score of {calc_score()}', reliability=DBotScoreReliability.get_dbot_score_reliability_from_str( demisto.params().get('integrationReliability'))) def get_submission_arguments(args: Dict[str, Any]) -> Dict[str, Any]: return {camel_case_to_underscore(arg): args[arg] for arg in SUBMISSION_PARAMETERS if args.get(arg)} def submission_response(client, response, polling) -> List[CommandResults]: context = {'CrowdStrike.Submit(val.submission_id && val.submission_id === obj.submission_id)': response, 'CrowdStrike.JobID': response.get('job_id'), 'CrowdStrike.EnvironmentID': response.get('environment_id')} submission_res = CommandResults(outputs_prefix='', outputs_key_field='', raw_response=response, outputs=context, readable_output=tableToMarkdown('Submission Data:', response, headerTransform=underscore_to_space)) if not polling: return [submission_res] else: return_results(submission_res) # return early return crowdstrike_scan_command(client, {'file': response.get('sha256'), 'JobID': response.get('job_id'), 'polling': True}) def crowdstrike_submit_url_command(client: Client, args: Dict[str, Any]) -> List[CommandResults]: submission_args = get_submission_arguments(args) url = args['url'] response = client.submit_url(url, submission_args) return submission_response(client, response, args.get('polling')) def crowdstrike_submit_sample_command(client: Client, args: Dict[str, Any]) -> List[CommandResults]: file_contents = demisto.getFilePath(args['entryId']) submission_args = get_submission_arguments(args) response = client.submit_file(file_contents, submission_args) return submission_response(client, response, args.get('polling')) def crowdstrike_analysis_overview_command(client: Client, args: Dict[str, Any]) -> CommandResults: result = client.analysis_overview(args['file']) file = Common.File(Common.DBotScore.NONE, sha256=result.get('sha256'), size=result.get('size'), file_type=result.get('type'), name=result.get('last_file_name')) table_cols = ['last_file_name', 'threat_score', 'other_file_name', 'sha256', 'verdict', 'url_analysis', 'size', 'type', 'type_short'] return CommandResults( outputs_prefix='CrowdStrike.AnalysisOverview', outputs_key_field='sha256', outputs=result, raw_response=result, indicator=file, readable_output=tableToMarkdown('Analysis Overview:', result, headers=table_cols, headerTransform=underscore_to_space, removeNull=True) ) def crowdstrike_search_command(client: Client, args: Dict[str, Any]) -> List[CommandResults]: query_args: Dict = get_search_term_args(args) query_args = validated_search_terms(query_args) response = client.search(query_args) key_name_changes = {'job_id': 'JobID', 'sha256': 'SHA256', 'environment_id': 'environmentId', 'threat_score': 'threatscore', 'environment_description': 'environmentDescription', 'submit_name': 'submitname', 'analysis_start_time': 'start_time'} # each indicator needs its own CR since indicators is deprecated. def convert_to_file_res(res) -> CommandResults: return CommandResults( readable_output=tableToMarkdown('Search Results:', res, removeNull=True, headerTransform=underscore_to_space, headers=['submit_name', 'verdict', 'vx_family', 'threat_score', 'sha256', 'size', 'environment_id', 'type', 'type_short', 'analysis_start_time']), indicator=BWCFile(res, key_name_changes, False, size=res.get('size'), sha256=res.get('sha256'), dbot_score=Common.DBotScore.NONE, extension=res.get('type_short'), name=res.get('submit_name'), malware_family=res.get('vx_family'))) try: return [CommandResults( raw_response=response, outputs_prefix='CrowdStrike.Search', outputs_key_field='sha256', outputs=response.get('result'), readable_output=f"Search returned {response.get('count')} results. Limit set to {args['limit']}"), *[convert_to_file_res(res) for res in response.get('result')[:max(int(args['limit']), 1)]]] except ValueError: raise ValueError("The limit argument must be numeric.") @polling_function('cs-falcon-sandbox-scan') def crowdstrike_scan_command(client: Client, args: Dict[str, Any]): hashes = args['file'].split(',') scan_response = client.scan(hashes) def file_with_bwc_fields(res) -> CommandResults: return CommandResults( readable_output=create_scan_results_readable_output(res), indicator=BWCFile(res, only_given_fields=False, size=res.get('size'), file_type=res.get('type'), sha1=res.get('sha1'), sha256=res.get('sha256'), md5=res.get('md5'), sha512=res.get('sha512'), name=res.get('submit_name'), ssdeep=res.get('ssdeep'), malware_family=res.get('vx_family'), dbot_score=get_dbot_score(res.get('sha256'), res.get('threat_level')), key_change_map={ 'sha1': 'SHA1', 'sha256': 'SHA256', 'md5': 'MD5', 'job_id': 'JobID', 'environment_id': 'environmentId', 'threat_score': 'threatscore', 'environment_description': 'environmentDescription', 'submit_name': 'submitname', 'url_analysis': 'isurlanalysis', 'interesting:': 'isinteresting', 'vx_family': 'family'}, ) ) command_result = [CommandResults(outputs_prefix='CrowdStrike.Report', raw_response=scan_response, outputs=scan_response, readable_output=f'Scan returned {len(scan_response)} results'), *[file_with_bwc_fields(res) for res in scan_response]] if len(scan_response) != 0: return PollResult(command_result) try: if len(hashes) == 1: key = get_api_id(args) demisto.debug(f'key found for poll state: {key}') return PollResult(continue_to_poll=lambda: not has_error_state(client, key), response=command_result) except ValueError: demisto.debug(f'Cannot get a key to check state for {hashes}') return PollResult(continue_to_poll=True, response=command_result) def crowdstrike_analysis_overview_summary_command(client: Client, args: Dict[str, Any]) -> CommandResults: result = client.analysis_overview_summary(args['file']) return CommandResults( outputs_prefix='CrowdStrike.AnalysisOverview', outputs_key_field='sha256', outputs=result, raw_response=result, readable_output=tableToMarkdown('Analysis Overview Summary:', result, headerTransform=lambda x: {'analysis_start_time': 'Analysis Start Time', 'last_multi_scan': 'Last Multi Scan', 'multiscan_result': 'Multiscan Result', 'threat_score': 'Threat Score', 'verdict': 'Verdict', 'sha256': 'Sha256' }.get(x, x), removeNull=True) ) def crowdstrike_analysis_overview_refresh_command(client: Client, args: Dict[str, Any]) -> CommandResults: client.analysis_overview_refresh(args['file']) return CommandResults(readable_output='The request to refresh the analysis overview was sent successfully.') @polling_function('cs-falcon-sandbox-result') def crowdstrike_result_command(client: Client, args: Dict[str, Any]): key = get_api_id(args) report_response = client.get_report(key, args['file-type']) demisto.debug(f'get report response code: {report_response.status_code}') successful_response = report_response.status_code == 200 if successful_response: ret_list = [fileResult(get_default_file_name(args['file-type']), report_response.content, file_type=EntryType.ENTRY_INFO_FILE)] if args.get('file'): ret_list.append(crowdstrike_scan_command(client, args)) return PollResult(ret_list) else: error_response = CommandResults(raw_response=report_response, readable_output='Falcon Sandbox returned an error: status code ' + f'{report_response.status_code}, response: ' + f'{report_response.text}', entry_type=entryTypes['error']) return PollResult(continue_to_poll=lambda: not has_error_state(client, key), response=error_response) def underscore_to_space(x: str) -> str: return pascalToSpace(underscoreToCamelCase(x)) def crowdstrike_report_state_command(client: Client, args: Dict[str, Any]) -> CommandResults: key = get_api_id(args) state = client.get_state(key) return CommandResults(outputs_prefix='CrowdStrike.State', raw_response=state, outputs=state, readable_output=tableToMarkdown('State', state, headerTransform=underscore_to_space)) def crowdstrike_get_environments_command(client: Client, _) -> CommandResults: environments = client.get_environments() environments = [map_dict_keys(env, {'environment_id': 'ID', 'total_virtual_machines': 'VMs_total', 'analysis_mode': 'analysisMode', 'group_icon': 'groupicon', 'busy_virtual_machines': 'VMs_busy'}) for env in environments] readable_output_column_conversion = { 'ID': '_ID', 'description': 'Description', 'architecture': 'Architecture', 'VMs_total': 'Total VMS', 'VMs_busy': 'Busy VMS', 'analysisMode': 'Analysis mode', 'groupicon': 'Group icon' } return CommandResults( outputs_prefix='CrowdStrike.Environment', outputs_key_field='id', outputs=environments, readable_output=tableToMarkdown('Execution Environments:', environments, list(readable_output_column_conversion.keys()), removeNull=True, headerTransform=lambda x: readable_output_column_conversion[x]), raw_response=environments ) def crowdstrike_get_screenshots_command(client: Client, args: Dict[str, Any]): def to_image_result(image: Dict): return fileResult(image['name'], base64.b64decode(image['image']), entryTypes['entryInfoFile']) key = get_api_id(args) ret = [to_image_result(image) for image in client.get_screenshots(key)] return ret if len(ret) > 0 else CommandResults(readable_output='No screenshots returned') def crowdstrike_sample_download_command(client: Client, args: Dict[str, Any]): hash_value = args['file'] response = client.download_sample(hash_value) file_name = response.headers.get('Vx-Filename', hash_value + '.gz') return fileResult(file_name, data=response.content, file_type=EntryType.FILE) def main() -> None: """main function, parses params and runs command_func functions :return: :rtype: """ params: Dict[str, Any] = demisto.params() args: Dict[str, Any] = demisto.args() verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) demisto_command = demisto.command() demisto.debug(f'Command being called is {demisto_command}') try: headers: Dict = { 'api-key': demisto.params().get('credentials', {}).get('password'), 'User-Agent': 'Falcon Sandbox' } client = Client( base_url=SERVER_URL, verify=verify_certificate, headers=headers, proxy=proxy) command_func: Callable if demisto_command in ['test-module']: command_func = test_module elif demisto_command in ['cs-falcon-sandbox-search', 'crowdstrike-search']: command_func = crowdstrike_search_command elif demisto_command in ['cs-falcon-sandbox-scan', 'crowdstrike-scan', 'file']: command_func = crowdstrike_scan_command elif demisto_command in ['crowdstrike-get-environments', 'cs-falcon-sandbox-get-environments']: command_func = crowdstrike_get_environments_command elif demisto_command in ['cs-falcon-sandbox-get-screenshots', 'crowdstrike-get-screenshots']: command_func = crowdstrike_get_screenshots_command elif demisto_command in ['cs-falcon-sandbox-result', 'crowdstrike-result']: command_func = crowdstrike_result_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview']: command_func = crowdstrike_analysis_overview_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-summary']: command_func = crowdstrike_analysis_overview_summary_command elif demisto_command in ['cs-falcon-sandbox-analysis-overview-refresh']: command_func = crowdstrike_analysis_overview_refresh_command elif demisto_command in ['crowdstrike-submit-sample', 'cs-falcon-sandbox-submit-sample']: command_func = crowdstrike_submit_sample_command elif demisto_command in ['cs-falcon-sandbox-submit-url', 'crowdstrike-submit-url']: command_func = crowdstrike_submit_url_command elif demisto_command in ['cs-falcon-sandbox-sample-download']: command_func = crowdstrike_sample_download_command elif demisto_command in ['cs-falcon-sandbox-report-state']: command_func = crowdstrike_report_state_command else: raise NotImplementedError(f'Command not implemented: {demisto_command}') return_results(command_func(client, args)) except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto_command} command_func.\nError:\n{str(e)}') ''' ENTRY POINT ''' if __name__ in ('__main__', '__builtin__', 'builtins'): main()
47.043893
118
0.626465
4a1bac05e34ecef21220e3dbcf0d3da83dd5cc40
2,149
py
Python
aiconf/model.py
mmoran0032/aiconf-allennlp-tutorial
f3e68ce6b7de0a2e470a2cc3e5ec8daf557fe3b7
[ "Apache-2.0" ]
null
null
null
aiconf/model.py
mmoran0032/aiconf-allennlp-tutorial
f3e68ce6b7de0a2e470a2cc3e5ec8daf557fe3b7
[ "Apache-2.0" ]
null
null
null
aiconf/model.py
mmoran0032/aiconf-allennlp-tutorial
f3e68ce6b7de0a2e470a2cc3e5ec8daf557fe3b7
[ "Apache-2.0" ]
null
null
null
from typing import Dict, Optional from allennlp.data.vocabulary import Vocabulary from allennlp.models import Model from allennlp.modules.text_field_embedders import TextFieldEmbedder from allennlp.modules.seq2vec_encoders import Seq2VecEncoder from allennlp.nn.util import get_text_field_mask from allennlp.training.metrics import CategoricalAccuracy import torch @Model.register("bbc") class BBCModel(Model): def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, encoder: Seq2VecEncoder, dropout: Optional[float] = 0.0, ) -> None: super().__init__(vocab) self.text_field_embedder = text_field_embedder self.encoder = encoder hidden_dim = encoder.get_output_dim() num_classes = vocab.get_vocab_size("labels") self.linear = torch.nn.Linear(in_features=hidden_dim, out_features=num_classes) self.dropout = torch.nn.Dropout(p=dropout) self.loss = torch.nn.CrossEntropyLoss() self.metrics = { "acc1": CategoricalAccuracy(), "acc3": CategoricalAccuracy(top_k=3), } def forward( self, text: Dict[str, torch.Tensor], category: Optional[torch.Tensor] = None ) -> Dict[str, torch.Tensor]: embedded = self.text_field_embedder(text) mask = get_text_field_mask(text) encoded = self.encoder(embedded, mask) logits = self.linear(self.dropout(encoded)) num_categories = self.vocab.get_vocab_size("labels") category_names = [ [ self.vocab.get_token_from_index(i, namespace="labels") for i in range(num_categories) ] ] output = {"logits": logits, "category_names": category_names} if category is not None: output["loss"] = self.loss(logits, category) for metric in self.metrics.values(): metric(logits, category) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {name: metric.get_metric(reset) for name, metric in self.metrics.items()}
33.578125
88
0.655654
4a1bac824dea14375f9cd2820282646c5dcf3365
8,262
py
Python
apps/psystem_2d/psystem.py
arashb/pyclaw
dbe0bc28ed801b16c501bdff58012c30f7a90b9f
[ "BSD-3-Clause" ]
1
2018-03-26T11:51:17.000Z
2018-03-26T11:51:17.000Z
apps/psystem_2d/psystem.py
arashb/pyclaw
dbe0bc28ed801b16c501bdff58012c30f7a90b9f
[ "BSD-3-Clause" ]
null
null
null
apps/psystem_2d/psystem.py
arashb/pyclaw
dbe0bc28ed801b16c501bdff58012c30f7a90b9f
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 import numpy as np # material parameters E1=1.; p1=1. E2=4.; p2=4. # interface parameters alphax=0.5; deltax=1. alphay=0.5; deltay=1. # Linearity parameters linearity_mat1=2; linearity_mat2=2 # heterogeneity type het_type='checkerboard' #het_type='sinusoidal' #het_type='smooth_checkerboard' sharpness=10 def qinit(state,A,x0,y0,varx,vary): r""" Set initial conditions for q.""" x =state.grid.x.centers; y =state.grid.y.centers # Create meshgrid [yy,xx]=np.meshgrid(y,x) s=A*np.exp(-(xx-x0)**2/(2*varx)-(yy-y0)**2/(2*vary)) #sigma(@t=0) #parameters from aux linearity_mat=state.aux[2,:] E=state.aux[1,:] #initial condition state.q[0,:,:]=np.where(linearity_mat==1,1,0)*s/E+np.where(linearity_mat==2,1,0)*np.log(s+1)/E state.q[1,:,:]=0; state.q[2,:,:]=0 def setaux(x,y): r"""Creates a matrix representing every grid cell in the domain, whose size is len(x),len(y) Each entry of the matrix contains a vector of size 3 with: The material density p The young modulus E A flag indicating which material the grid is made of. The domain pattern is a checkerboard.""" aux = np.empty((4,len(x),len(y)), order='F') if het_type == 'checkerboard': # xfrac and yfrac are x and y relative to deltax and deltay resp. xfrac=x-np.floor(x/deltax)*deltax yfrac=y-np.floor(y/deltay)*deltay # create a meshgrid out of xfrac and yfrac [yyfrac,xxfrac]=np.meshgrid(yfrac,xfrac) # density aux[0,:,:]=p1*(xxfrac<=alphax*deltax)*(yyfrac<=alphay*deltay)\ +p1*(xxfrac >alphax*deltax)*(yyfrac >alphay*deltay)\ +p2*(xxfrac >alphax*deltax)*(yyfrac<=alphay*deltay)\ +p2*(xxfrac<=alphax*deltax)*(yyfrac >alphay*deltay) #Young modulus aux[1,:,:]=E1*(xxfrac<=alphax*deltax)*(yyfrac<=alphay*deltay)\ +E1*(xxfrac >alphax*deltax)*(yyfrac >alphay*deltay)\ +E2*(xxfrac >alphax*deltax)*(yyfrac<=alphay*deltay)\ +E2*(xxfrac<=alphax*deltax)*(yyfrac >alphay*deltay) # linearity of material aux[2,:,:]=linearity_mat1*(xxfrac<=alphax*deltax)*(yyfrac<=alphay*deltay)\ +linearity_mat1*(xxfrac >alphax*deltax)*(yyfrac >alphay*deltay)\ +linearity_mat2*(xxfrac >alphax*deltax)*(yyfrac<=alphay*deltay)\ +linearity_mat2*(xxfrac<=alphax*deltax)*(yyfrac >alphay*deltay) elif het_type == 'sinusoidal' or het_type == 'smooth_checkerboard': [yy,xx]=np.meshgrid(y,x) Amp_p=np.abs(p1-p2)/2; offset_p=(p1+p2)/2 Amp_E=np.abs(E1-E2)/2; offset_E=(E1+E2)/2 if het_type == 'sinusoidal': frec_x=2*np.pi/deltax; frec_y=2*np.pi/deltay fun=np.sin(frec_x*xx)*np.sin(frec_y*yy) else: fun_x=xx*0; fun_y=yy*0 for i in xrange(0,1+int(np.ceil((x[-1]-x[0])/(deltax*0.5)))): fun_x=fun_x+(-1)**i*np.tanh(sharpness*(xx-deltax*i*0.5)) for i in xrange(0,1+int(np.ceil((y[-1]-y[0])/(deltay*0.5)))): fun_y=fun_y+(-1)**i*np.tanh(sharpness*(yy-deltay*i*0.5)) fun=fun_x*fun_y aux[0,:,:]=Amp_p*fun+offset_p aux[1,:,:]=Amp_E*fun+offset_E aux[2,:,:]=linearity_mat1 return aux def b4step(solver,solution): r"""put in aux[3,:,:] the value of q[0,:,:] (eps). This is required in rptpv.f""" state = solution.states[0] state.aux[3,:,:] = state.q[0,:,:] # To set to 0 1st 1/2 of the domain. Used in rect domains with PBC in x if state.problem_data['turnZero_half_2D']==1: if state.t>=state.problem_data['t_turnZero'] and state.t<=state.problem_data['t_turnZero']+1: Y,X = np.meshgrid(state.grid.y,state.grid.x) state.q = state.q * (X<solution.domain.grid.upper[0]/2) def compute_p(state): state.p[0,:,:]=np.exp(state.q[0,:,:]*state.aux[1,:,:])-1 def compute_F(state): rho = state.aux[0,:,:]; E = state.aux[1,:,:] #Compute the entropy u = state.q[1,:,:]/rho v = state.q[2,:,:]/rho nrg=rho * (u**2 + v**2)/2. eps = state.q[0,:,:] sigma = np.exp(E*eps) - 1. sigint = (sigma-np.log(sigma+1.))/E dx=state.grid.delta[0]; dy=state.grid.delta[1] state.F[0,:,:] = (sigint+nrg)*dx*dy state.F[1,:,:] = 10*state.F[0,:,:] state.F[2,:,:] = 100*state.F[0,:,:] def gauge_pfunction(q,aux): p = np.exp(q[0]*aux[1])-1 return [p,10*p] def psystem2D(use_petsc=False,solver_type='classic',iplot=False,htmlplot=False): """ Solve the p-system in 2D with variable coefficients """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #################################### ######### MAIN PARAMETERS ########## #################################### # Domain x_lower=0.25; x_upper=20.25 y_lower=0.25; y_upper=20.25 # cells per layer Ng=10 mx=(x_upper-x_lower)*Ng; my=(y_upper-y_lower)*Ng # Initial condition parameters A=10. x0=0.25 # Center of initial perturbation y0=0.25 # Center of initial perturbation varx=0.5; vary=0.5 # Width of initial perturbation # Boundary conditions bc_x_lower=pyclaw.BC.wall; bc_x_upper=pyclaw.BC.extrap bc_y_lower=pyclaw.BC.wall; bc_y_upper=pyclaw.BC.extrap # Turning off 1st half of the domain. Useful in rect domains turnZero_half_2D=0 #flag t_turnZero=50 num_output_times=10 # restart options restart_from_frame = None if solver_type=='classic': solver = pyclaw.ClawSolver2D() elif solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver2D() from clawpack import riemann solver.rp = riemann.rp2_psystem solver.num_waves = 2 solver.limiters = pyclaw.limiters.tvd.superbee solver.bc_lower[0]=bc_x_lower solver.bc_upper[0]=bc_x_upper solver.bc_lower[1]=bc_y_lower solver.bc_upper[1]=bc_y_upper solver.aux_bc_lower[0]=bc_x_lower solver.aux_bc_upper[0]=bc_x_upper solver.aux_bc_lower[1]=bc_y_lower solver.aux_bc_upper[1]=bc_y_upper solver.fwave = True solver.cfl_max = 0.9 solver.cfl_desired = 0.8 solver.before_step = b4step solver.dimensional_split=False #controller claw = pyclaw.Controller() claw.tfinal = 40.0 claw.solver = solver if restart_from_frame is not None: claw.solution = pyclaw.Solution(restart_from_frame, format='petsc',read_aux=False) claw.solution.state.mp = 1 grid = claw.solution.domain.grid claw.solution.state.aux = setaux(grid.x.centers,grid.y.centers) claw.num_output_times = num_output_times - restart_from_frame claw.start_frame = restart_from_frame else: #################################### #################################### #################################### #Creation of Domain x = pyclaw.Dimension('x',x_lower,x_upper,mx) y = pyclaw.Dimension('y',y_lower,y_upper,my) domain = pyclaw.Domain([x,y]) num_eqn = 3 num_aux = 4 state = pyclaw.State(domain,num_eqn,num_aux) state.mF = 3 #Set global parameters state.problem_data = {} state.problem_data['turnZero_half_2D'] = turnZero_half_2D state.problem_data['t_turnZero'] = t_turnZero state.mp = 1 grid = state.grid state.aux = setaux(grid.x.centers,grid.y.centers) #Initial condition qinit(state,A,x0,y0,varx,vary) claw.solution = pyclaw.Solution(state,domain) claw.num_output_times = num_output_times #claw.p_function = p_function claw.compute_F = compute_F grid.add_gauges([[0.25,0.25],[0.75,0.25],[0.25,0.75],[0.75,0.75]]) solver.compute_gauge_values = gauge_pfunction claw.write_aux_init = False #Solve status = claw.run() #strain=claw.frames[claw.num_output_times].state.gqVec.getArray().reshape([grid.num_cells[0],grid.num_cells[1],num_eqn])[:,:,0] #return strain if iplot: pyclaw.plot.interactive_plot() if htmlplot: pyclaw.plot.html_plot() if __name__=="__main__": from clawpack.pyclaw.util import run_app_from_main output = run_app_from_main(psystem2D)
34.860759
131
0.614984
4a1bac8e5e106e21b89b5e6cc96941427993f0bd
3,879
py
Python
tensorflow/python/distribute/one_device_strategy_test.py
satsumas/tensorflow
6a286bfcfeebcfa2b91b95334d83d9f0edf735b9
[ "Apache-2.0" ]
2
2019-06-26T14:51:16.000Z
2021-08-07T08:40:01.000Z
tensorflow/python/distribute/one_device_strategy_test.py
jensfreudenau/tensorflow
3fe3f2b1984aab6f159b89aa3ab0069988925689
[ "Apache-2.0" ]
null
null
null
tensorflow/python/distribute/one_device_strategy_test.py
jensfreudenau/tensorflow
3fe3f2b1984aab6f159b89aa3ab0069988925689
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for class OneDeviceStrategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from tensorflow.python.distribute import strategy_test_lib from tensorflow.python.eager import context from tensorflow.python.eager import test @combinations.generate( combinations.combine( distribution=[ strategy_combinations.one_device_strategy, strategy_combinations.one_device_strategy_gpu ], mode=["eager", "graph"])) class OneDeviceStrategyTest( strategy_test_lib.DistributionTestBase, strategy_test_lib.OneDeviceDistributionTestBase): def testMinimizeLoss(self, distribution): if context.executing_eagerly(): self._test_minimize_loss_eager(distribution) else: self._test_minimize_loss_graph(distribution) def testReplicaId(self, distribution): self._test_replica_id(distribution) def testCallAndMergeExceptions(self, distribution): self._test_call_and_merge_exceptions(distribution) def testMakeInputFnIteratorWithDataset(self, distribution): dataset_fn = lambda: dataset_ops.Dataset.range(10) expected_values = [[i] for i in range(10)] input_fn = self._input_fn_to_test_input_context( dataset_fn, expected_num_replicas_in_sync=1, expected_num_input_pipelines=1, expected_input_pipeline_id=0) iterator = distribution.make_input_fn_iterator(input_fn) self._test_input_fn_iterator( iterator, distribution.extended.worker_devices, expected_values) def testMakeInputFnIteratorWithCallable(self, distribution): def fn(): dataset = dataset_ops.Dataset.range(10) it = dataset.make_one_shot_iterator() return it.get_next expected_values = [[i] for i in range(10)] input_fn = self._input_fn_to_test_input_context( fn, expected_num_replicas_in_sync=1, expected_num_input_pipelines=1, expected_input_pipeline_id=0) iterator = distribution.make_input_fn_iterator(input_fn) self._test_input_fn_iterator( iterator, distribution.extended.worker_devices, expected_values, test_reinitialize=False) def testNumpyIterator(self, distribution): self._test_numpy_iterator(distribution) def testRun(self, distribution): self._test_run(distribution) def testAllReduceSum(self, distribution): self._test_all_reduce_sum(distribution) def testAllReduceSumGradients(self, distribution): self._test_all_reduce_sum_gradients(distribution) def testAllReduceSumGradientTape(self, distribution): self._test_all_reduce_sum_gradient_tape(distribution) def testAllReduceMean(self, distribution): self._test_all_reduce_mean(distribution) def testAllReduceMeanGradients(self, distribution): self._test_all_reduce_mean_gradients(distribution) def testAllReduceMeanGradientTape(self, distribution): self._test_all_reduce_mean_gradient_tape(distribution) if __name__ == "__main__": test.main()
36.59434
80
0.760505
4a1bacdbce80f66eeb70c948ce0467249a536ad3
14,161
py
Python
ec2api/tests/unit/test_ec2utils.py
JioCloudVPC/compute-ec2-api-vagrant
9e7cf7b566f86aee4a0c73316533e1c410d1a897
[ "Apache-2.0" ]
null
null
null
ec2api/tests/unit/test_ec2utils.py
JioCloudVPC/compute-ec2-api-vagrant
9e7cf7b566f86aee4a0c73316533e1c410d1a897
[ "Apache-2.0" ]
null
null
null
ec2api/tests/unit/test_ec2utils.py
JioCloudVPC/compute-ec2-api-vagrant
9e7cf7b566f86aee4a0c73316533e1c410d1a897
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 # The Cloudscaling Group, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fixtures from glanceclient.common import exceptions as glance_exception import mock from oslo_config import fixture as config_fixture import testtools from ec2api.api import ec2utils from ec2api import exception from ec2api.tests.unit import fakes from ec2api.tests.unit import matchers class EC2UtilsTestCase(testtools.TestCase): @mock.patch('ec2api.db.api.IMPL') def test_get_db_item(self, db_api): item = {'fake_key': 'fake_value'} db_api.get_item_by_id.return_value = item def check_normal_flow(kind, ec2_id): item['id'] = ec2_id res = ec2utils.get_db_item('fake_context', ec2_id) self.assertThat(res, matchers.DictMatches(item)) db_api.get_item_by_id.assert_called_once_with('fake_context', ec2_id) db_api.reset_mock() check_normal_flow('vpc', 'vpc-001234af') check_normal_flow('igw', 'igw-00000022') def check_not_found(kind, ex_class): ec2_id = fakes.random_ec2_id(kind) self.assertRaises(ex_class, ec2utils.get_db_item, 'fake_context', ec2_id) db_api.get_item_by_id.assert_called_once_with('fake_context', ec2_id) db_api.reset_mock() db_api.get_item_by_id.return_value = None check_not_found('vpc', exception.InvalidVpcIDNotFound) check_not_found('igw', exception.InvalidInternetGatewayIDNotFound) check_not_found('subnet', exception.InvalidSubnetIDNotFound) check_not_found('eni', exception.InvalidNetworkInterfaceIDNotFound) check_not_found('dopt', exception.InvalidDhcpOptionsIDNotFound) check_not_found('eipalloc', exception.InvalidAllocationIDNotFound) check_not_found('sg', exception.InvalidGroupNotFound) check_not_found('rtb', exception.InvalidRouteTableIDNotFound) check_not_found('i', exception.InvalidInstanceIDNotFound) check_not_found('vol', exception.InvalidVolumeNotFound) check_not_found('snap', exception.InvalidSnapshotNotFound) check_not_found('ami', exception.InvalidAMIIDNotFound) check_not_found('ari', exception.InvalidAMIIDNotFound) check_not_found('aki', exception.InvalidAMIIDNotFound) @mock.patch('ec2api.db.api.IMPL') def test_get_db_items(self, db_api): items = [{'id': fakes.random_ec2_id('fake'), 'fake_key': 'fake_value'}, {'id': fakes.random_ec2_id('fake'), 'fake_key': 'fake_value'}] db_api.get_items.return_value = items db_api.get_items_by_ids.return_value = items def check_with_no_filter(empty_filter): res = ec2utils.get_db_items('fake_context', 'fake', empty_filter) self.assertThat(res, matchers.ListMatches(items)) db_api.get_items.assert_called_once_with('fake_context', 'fake') db_api.reset_mock() check_with_no_filter(None) check_with_no_filter([]) def check_with_filter(item_ids): res = ec2utils.get_db_items('fake_context', 'fake', item_ids) self.assertThat(res, matchers.ListMatches(items)) db_api.get_items_by_ids.assert_called_once_with( 'fake_context', set(item_ids)) db_api.reset_mock() item_ids = [i['id'] for i in items] check_with_filter(item_ids) check_with_filter(item_ids * 2) def check_not_found(kind, ex_class): items = [{'id': fakes.random_ec2_id(kind), 'fake_key': 'fake_value'} for _ in range(2)] item_ids = [i['id'] for i in items] item_ids.append(fakes.random_ec2_id(kind)) db_api.get_items_by_ids.return_value = items self.assertRaises(ex_class, ec2utils.get_db_items, 'fake_context', kind, item_ids) db_api.reset_mock() check_not_found('vpc', exception.InvalidVpcIDNotFound) check_not_found('igw', exception.InvalidInternetGatewayIDNotFound) check_not_found('subnet', exception.InvalidSubnetIDNotFound) check_not_found('eni', exception.InvalidNetworkInterfaceIDNotFound) check_not_found('dopt', exception.InvalidDhcpOptionsIDNotFound) check_not_found('eipalloc', exception.InvalidAllocationIDNotFound) check_not_found('sg', exception.InvalidGroupNotFound) check_not_found('rtb', exception.InvalidRouteTableIDNotFound) check_not_found('i', exception.InvalidInstanceIDNotFound) check_not_found('vol', exception.InvalidVolumeNotFound) check_not_found('snap', exception.InvalidSnapshotNotFound) check_not_found('ami', exception.InvalidAMIIDNotFound) check_not_found('aki', exception.InvalidAMIIDNotFound) check_not_found('ari', exception.InvalidAMIIDNotFound) """Unit test api xml conversion.""" def test_number_conversion(self): conv = ec2utils._try_convert self.assertIsNone(conv('None')) self.assertEqual(conv('True'), True) self.assertEqual(conv('TRUE'), True) self.assertEqual(conv('true'), True) self.assertEqual(conv('False'), False) self.assertEqual(conv('FALSE'), False) self.assertEqual(conv('false'), False) self.assertEqual(conv('0'), 0) self.assertEqual(conv('42'), 42) self.assertEqual(conv('3.14'), 3.14) self.assertEqual(conv('-57.12'), -57.12) self.assertEqual(conv('0x57'), 0x57) self.assertEqual(conv('-0x57'), -0x57) self.assertEqual(conv('-'), '-') self.assertEqual(conv('-0'), 0) self.assertEqual(conv('0.0'), 0.0) self.assertEqual(conv('1e-8'), 0.0) self.assertEqual(conv('-1e-8'), 0.0) self.assertEqual(conv('0xDD8G'), '0xDD8G') self.assertEqual(conv('0XDD8G'), '0XDD8G') self.assertEqual(conv('-stringy'), '-stringy') self.assertEqual(conv('stringy'), 'stringy') self.assertEqual(conv('add'), 'add') self.assertEqual(conv('remove'), 'remove') self.assertEqual(conv(''), '') @mock.patch('ec2api.db.api.IMPL') def test_os_id_to_ec2_id(self, db_api): fake_context = mock.Mock(service_catalog=[{'type': 'fake'}]) fake_id = fakes.random_ec2_id('fake') fake_os_id = fakes.random_os_id() # no cache, item is found db_api.get_items_ids.return_value = [(fake_id, fake_os_id)] item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id) self.assertEqual(fake_id, item_id) db_api.get_items_ids.assert_called_once_with( fake_context, 'fake', item_ids=None, item_os_ids=(fake_os_id,)) self.assertFalse(db_api.add_item_id.called) # no cache, item isn't found db_api.get_items_ids.return_value = [] db_api.add_item_id.return_value = fake_id item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id) self.assertEqual(fake_id, item_id) db_api.add_item_id.assert_called_once_with( fake_context, 'fake', fake_os_id, project_id=None) # no item in cache, item isn't found db_api.reset_mock() ids_cache = {fakes.random_os_id(): fakes.random_ec2_id('fake')} item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id, ids_by_os_id=ids_cache) self.assertEqual(fake_id, item_id) self.assertIn(fake_os_id, ids_cache) self.assertEqual(fake_id, ids_cache[fake_os_id]) db_api.add_item_id.assert_called_once_with( fake_context, 'fake', fake_os_id, project_id=None) # no item in cache, item is found db_api.reset_mock() db_api.get_items_ids.return_value = [(fake_id, fake_os_id)] ids_cache = {} item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id, ids_by_os_id=ids_cache) self.assertEqual(fake_id, item_id) self.assertEqual({fake_os_id: fake_id}, ids_cache) self.assertFalse(db_api.add_item_id.called) # item in cache db_api.reset_mock() ids_cache = {fake_os_id: fake_id} item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id, ids_by_os_id=ids_cache) self.assertEqual(fake_id, item_id) self.assertEqual({fake_os_id: fake_id}, ids_cache) self.assertFalse(db_api.get_items_ids.called) self.assertFalse(db_api.add_item_id.called) # item in items dict items_dict = {fake_os_id: {'id': fake_id, 'os_id': fake_os_id}} ids_cache = {} item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id, items_by_os_id=items_dict, ids_by_os_id=ids_cache) self.assertEqual(fake_id, item_id) self.assertFalse(db_api.get_items_ids.called) self.assertFalse(db_api.add_item_id.called) self.assertEqual({}, ids_cache) # item not in items dict, item is found items_dict = {fake_os_id: {'id': fake_id, 'os_id': fake_os_id}} db_api.get_items_ids.return_value = [(fake_id, fake_os_id)] item_id = ec2utils.os_id_to_ec2_id(fake_context, 'fake', fake_os_id, items_by_os_id=items_dict) self.assertEqual(fake_id, item_id) self.assertFalse(db_api.add_item_id.called) @mock.patch('glanceclient.client.Client') @mock.patch('ec2api.db.api.IMPL') def test_get_os_image(self, db_api, glance): glance = glance.return_value fake_context = mock.Mock(service_catalog=[{'type': 'fake'}]) os_image = fakes.OSImage(fakes.OS_IMAGE_1) glance.images.get.return_value = os_image # NOTE(ft): check normal flow for an user owned image db_api.get_public_items.return_value = [] db_api.get_item_by_id.return_value = fakes.DB_IMAGE_1 self.assertEqual( os_image, ec2utils.get_os_image(fake_context, fakes.ID_EC2_IMAGE_1)) db_api.get_item_by_id.assert_called_with( mock.ANY, fakes.ID_EC2_IMAGE_1) glance.images.get.assert_called_with(fakes.ID_OS_IMAGE_1) # NOTE(ft): check normal flow for a public image db_api.get_public_items.return_value = [fakes.DB_IMAGE_1] db_api.get_item_by_id.return_value = None self.assertEqual( os_image, ec2utils.get_os_image(fake_context, fakes.ID_EC2_IMAGE_1)) db_api.get_public_items.assert_called_with( mock.ANY, 'ami', (fakes.ID_EC2_IMAGE_1,)) glance.images.get.assert_called_with(fakes.ID_OS_IMAGE_1) # NOTE(ft): check case of absence of an image in OS glance.images.get.side_effect = glance_exception.HTTPNotFound() self.assertRaises( exception.InvalidAMIIDNotFound, ec2utils.get_os_image, fake_context, fakes.ID_EC2_IMAGE_1) # NOTE(ft): check case of an unknown image id db_api.get_public_items.return_value = [] db_api.get_item_by_id.return_value = None self.assertRaises( exception.InvalidAMIIDNotFound, ec2utils.get_os_image, fake_context, fakes.random_ec2_id('ami')) @mock.patch('neutronclient.v2_0.client.Client') def test_get_os_public_network(self, neutron): neutron = neutron.return_value context = mock.Mock(service_catalog=[{'type': 'fake'}]) conf = self.useFixture(config_fixture.Config()) conf.config(external_network='fake_public_network') neutron.list_networks.return_value = {'networks': ['network_object']} net = ec2utils.get_os_public_network(context) self.assertEqual('network_object', net) neutron.list_networks.assert_called_once_with( **{'router:external': True, 'name': 'fake_public_network'}) neutron.list_networks.return_value = {'networks': []} with fixtures.FakeLogger() as log: self.assertRaises(exception.Unsupported, ec2utils.get_os_public_network, context) self.assertNotEqual(0, len(log.output)) self.assertIn('fake_public_network', log.output) neutron.list_networks.return_value = {'networks': ['obj1', 'obj2']} with fixtures.FakeLogger() as log: self.assertRaises(exception.Unsupported, ec2utils.get_os_public_network, context) self.assertNotEqual(0, len(log.output)) self.assertIn('fake_public_network', log.output) conf.config(external_network=None) with fixtures.FakeLogger() as log: self.assertRaises(exception.Unsupported, ec2utils.get_os_public_network, context) self.assertNotEqual(0, len(log.output)) self.assertNotIn('None', log.output) neutron.list_networks.return_value = {'networks': []} with fixtures.FakeLogger() as log: self.assertRaises(exception.Unsupported, ec2utils.get_os_public_network, context) self.assertNotEqual(0, len(log.output)) self.assertNotIn('None', log.output)
45.533762
77
0.648401
4a1bad3442b25b8e45c6a7bbdcec2d1ee4973064
12,968
py
Python
Lib/test/test_pulldom.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
5,926
2015-01-01T07:45:08.000Z
2022-03-31T12:34:38.000Z
Lib/test/test_pulldom.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
1,728
2015-01-01T01:09:12.000Z
2022-03-30T23:25:22.000Z
Lib/test/test_pulldom.py
shawwn/cpython
0ff8a3b374286d2218fc18f47556a5ace202dad3
[ "0BSD" ]
574
2015-01-02T01:36:10.000Z
2022-03-26T10:18:48.000Z
import io import unittest import xml.sax from xml.sax.xmlreader import AttributesImpl from xml.sax.handler import feature_external_ges from xml.dom import pulldom from test.support import findfile tstfile = findfile("test.xml", subdir="xmltestdata") # A handy XML snippet, containing attributes, a namespace prefix, and a # self-closing tag: SMALL_SAMPLE = """<?xml version="1.0"?> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:xdc="http://www.xml.com/books"> <!-- A comment --> <title>Introduction to XSL</title> <hr/> <p><xdc:author xdc:attrib="prefixed attribute" attrib="other attrib">A. Namespace</xdc:author></p> </html>""" class PullDOMTestCase(unittest.TestCase): def test_parse(self): """Minimal test of DOMEventStream.parse()""" # This just tests that parsing from a stream works. Actual parser # semantics are tested using parseString with a more focused XML # fragment. # Test with a filename: handler = pulldom.parse(tstfile) self.addCleanup(handler.stream.close) list(handler) # Test with a file object: with open(tstfile, "rb") as fin: list(pulldom.parse(fin)) def test_parse_semantics(self): """Test DOMEventStream parsing semantics.""" items = pulldom.parseString(SMALL_SAMPLE) evt, node = next(items) # Just check the node is a Document: self.assertTrue(hasattr(node, "createElement")) self.assertEqual(pulldom.START_DOCUMENT, evt) evt, node = next(items) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("html", node.tagName) self.assertEqual(2, len(node.attributes)) self.assertEqual(node.attributes.getNamedItem("xmlns:xdc").value, "http://www.xml.com/books") evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) # Line break evt, node = next(items) # XXX - A comment should be reported here! # self.assertEqual(pulldom.COMMENT, evt) # Line break after swallowed comment: self.assertEqual(pulldom.CHARACTERS, evt) evt, node = next(items) self.assertEqual("title", node.tagName) title_node = node evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) self.assertEqual("Introduction to XSL", node.data) evt, node = next(items) self.assertEqual(pulldom.END_ELEMENT, evt) self.assertEqual("title", node.tagName) self.assertTrue(title_node is node) evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) evt, node = next(items) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("hr", node.tagName) evt, node = next(items) self.assertEqual(pulldom.END_ELEMENT, evt) self.assertEqual("hr", node.tagName) evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) evt, node = next(items) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("p", node.tagName) evt, node = next(items) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("xdc:author", node.tagName) evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) evt, node = next(items) self.assertEqual(pulldom.END_ELEMENT, evt) self.assertEqual("xdc:author", node.tagName) evt, node = next(items) self.assertEqual(pulldom.END_ELEMENT, evt) evt, node = next(items) self.assertEqual(pulldom.CHARACTERS, evt) evt, node = next(items) self.assertEqual(pulldom.END_ELEMENT, evt) # XXX No END_DOCUMENT item is ever obtained: #evt, node = next(items) #self.assertEqual(pulldom.END_DOCUMENT, evt) def test_expandItem(self): """Ensure expandItem works as expected.""" items = pulldom.parseString(SMALL_SAMPLE) # Loop through the nodes until we get to a "title" start tag: for evt, item in items: if evt == pulldom.START_ELEMENT and item.tagName == "title": items.expandNode(item) self.assertEqual(1, len(item.childNodes)) break else: self.fail("No \"title\" element detected in SMALL_SAMPLE!") # Loop until we get to the next start-element: for evt, node in items: if evt == pulldom.START_ELEMENT: break self.assertEqual("hr", node.tagName, "expandNode did not leave DOMEventStream in the correct state.") # Attempt to expand a standalone element: items.expandNode(node) self.assertEqual(next(items)[0], pulldom.CHARACTERS) evt, node = next(items) self.assertEqual(node.tagName, "p") items.expandNode(node) next(items) # Skip character data evt, node = next(items) self.assertEqual(node.tagName, "html") with self.assertRaises(StopIteration): next(items) items.clear() self.assertIsNone(items.parser) self.assertIsNone(items.stream) @unittest.expectedFailure def test_comment(self): """PullDOM does not receive "comment" events.""" items = pulldom.parseString(SMALL_SAMPLE) for evt, _ in items: if evt == pulldom.COMMENT: break else: self.fail("No comment was encountered") @unittest.expectedFailure def test_end_document(self): """PullDOM does not receive "end-document" events.""" items = pulldom.parseString(SMALL_SAMPLE) # Read all of the nodes up to and including </html>: for evt, node in items: if evt == pulldom.END_ELEMENT and node.tagName == "html": break try: # Assert that the next node is END_DOCUMENT: evt, node = next(items) self.assertEqual(pulldom.END_DOCUMENT, evt) except StopIteration: self.fail( "Ran out of events, but should have received END_DOCUMENT") def test_getitem_deprecation(self): parser = pulldom.parseString(SMALL_SAMPLE) with self.assertWarnsRegex(DeprecationWarning, r'Use iterator protocol instead'): # This should have returned 'END_ELEMENT'. self.assertEqual(parser[-1][0], pulldom.START_DOCUMENT) def test_external_ges_default(self): parser = pulldom.parseString(SMALL_SAMPLE) saxparser = parser.parser ges = saxparser.getFeature(feature_external_ges) self.assertEqual(ges, False) class ThoroughTestCase(unittest.TestCase): """Test the hard-to-reach parts of pulldom.""" def test_thorough_parse(self): """Test some of the hard-to-reach parts of PullDOM.""" self._test_thorough(pulldom.parse(None, parser=SAXExerciser())) @unittest.expectedFailure def test_sax2dom_fail(self): """SAX2DOM can"t handle a PI before the root element.""" pd = SAX2DOMTestHelper(None, SAXExerciser(), 12) self._test_thorough(pd) def test_thorough_sax2dom(self): """Test some of the hard-to-reach parts of SAX2DOM.""" pd = SAX2DOMTestHelper(None, SAX2DOMExerciser(), 12) self._test_thorough(pd, False) def _test_thorough(self, pd, before_root=True): """Test some of the hard-to-reach parts of the parser, using a mock parser.""" evt, node = next(pd) self.assertEqual(pulldom.START_DOCUMENT, evt) # Just check the node is a Document: self.assertTrue(hasattr(node, "createElement")) if before_root: evt, node = next(pd) self.assertEqual(pulldom.COMMENT, evt) self.assertEqual("a comment", node.data) evt, node = next(pd) self.assertEqual(pulldom.PROCESSING_INSTRUCTION, evt) self.assertEqual("target", node.target) self.assertEqual("data", node.data) evt, node = next(pd) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("html", node.tagName) evt, node = next(pd) self.assertEqual(pulldom.COMMENT, evt) self.assertEqual("a comment", node.data) evt, node = next(pd) self.assertEqual(pulldom.PROCESSING_INSTRUCTION, evt) self.assertEqual("target", node.target) self.assertEqual("data", node.data) evt, node = next(pd) self.assertEqual(pulldom.START_ELEMENT, evt) self.assertEqual("p", node.tagName) evt, node = next(pd) self.assertEqual(pulldom.CHARACTERS, evt) self.assertEqual("text", node.data) evt, node = next(pd) self.assertEqual(pulldom.END_ELEMENT, evt) self.assertEqual("p", node.tagName) evt, node = next(pd) self.assertEqual(pulldom.END_ELEMENT, evt) self.assertEqual("html", node.tagName) evt, node = next(pd) self.assertEqual(pulldom.END_DOCUMENT, evt) class SAXExerciser(object): """A fake sax parser that calls some of the harder-to-reach sax methods to ensure it emits the correct events""" def setContentHandler(self, handler): self._handler = handler def parse(self, _): h = self._handler h.startDocument() # The next two items ensure that items preceding the first # start_element are properly stored and emitted: h.comment("a comment") h.processingInstruction("target", "data") h.startElement("html", AttributesImpl({})) h.comment("a comment") h.processingInstruction("target", "data") h.startElement("p", AttributesImpl({"class": "paraclass"})) h.characters("text") h.endElement("p") h.endElement("html") h.endDocument() def stub(self, *args, **kwargs): """Stub method. Does nothing.""" pass setProperty = stub setFeature = stub class SAX2DOMExerciser(SAXExerciser): """The same as SAXExerciser, but without the processing instruction and comment before the root element, because S2D can"t handle it""" def parse(self, _): h = self._handler h.startDocument() h.startElement("html", AttributesImpl({})) h.comment("a comment") h.processingInstruction("target", "data") h.startElement("p", AttributesImpl({"class": "paraclass"})) h.characters("text") h.endElement("p") h.endElement("html") h.endDocument() class SAX2DOMTestHelper(pulldom.DOMEventStream): """Allows us to drive SAX2DOM from a DOMEventStream.""" def reset(self): self.pulldom = pulldom.SAX2DOM() # This content handler relies on namespace support self.parser.setFeature(xml.sax.handler.feature_namespaces, 1) self.parser.setContentHandler(self.pulldom) class SAX2DOMTestCase(unittest.TestCase): def confirm(self, test, testname="Test"): self.assertTrue(test, testname) def test_basic(self): """Ensure SAX2DOM can parse from a stream.""" with io.StringIO(SMALL_SAMPLE) as fin: sd = SAX2DOMTestHelper(fin, xml.sax.make_parser(), len(SMALL_SAMPLE)) for evt, node in sd: if evt == pulldom.START_ELEMENT and node.tagName == "html": break # Because the buffer is the same length as the XML, all the # nodes should have been parsed and added: self.assertGreater(len(node.childNodes), 0) def testSAX2DOM(self): """Ensure SAX2DOM expands nodes as expected.""" sax2dom = pulldom.SAX2DOM() sax2dom.startDocument() sax2dom.startElement("doc", {}) sax2dom.characters("text") sax2dom.startElement("subelm", {}) sax2dom.characters("text") sax2dom.endElement("subelm") sax2dom.characters("text") sax2dom.endElement("doc") sax2dom.endDocument() doc = sax2dom.document root = doc.documentElement (text1, elm1, text2) = root.childNodes text3 = elm1.childNodes[0] self.assertIsNone(text1.previousSibling) self.assertIs(text1.nextSibling, elm1) self.assertIs(elm1.previousSibling, text1) self.assertIs(elm1.nextSibling, text2) self.assertIs(text2.previousSibling, elm1) self.assertIsNone(text2.nextSibling) self.assertIsNone(text3.previousSibling) self.assertIsNone(text3.nextSibling) self.assertIs(root.parentNode, doc) self.assertIs(text1.parentNode, root) self.assertIs(elm1.parentNode, root) self.assertIs(text2.parentNode, root) self.assertIs(text3.parentNode, elm1) doc.unlink() if __name__ == "__main__": unittest.main()
36.32493
98
0.628933
4a1badc0b506761ac81209545641a14aedb0ab7f
284
py
Python
src/main.py
aaaaaaaalesha/stack_machine
ca54f59ffb315338d2b196a627feacc45842d50e
[ "MIT" ]
null
null
null
src/main.py
aaaaaaaalesha/stack_machine
ca54f59ffb315338d2b196a627feacc45842d50e
[ "MIT" ]
null
null
null
src/main.py
aaaaaaaalesha/stack_machine
ca54f59ffb315338d2b196a627feacc45842d50e
[ "MIT" ]
null
null
null
# Copyright 2021 aaaaaaaalesha <sks2311211@mail.ru> from src.stack_machine import StackMachine if __name__ == '__main__': """Example from the task.""" with open('../binomial.txt', 'r') as f: source_code = f.read() sm = StackMachine(source_code) sm.launch()
23.666667
51
0.661972
4a1bae765e76caf87fcdf1c2148949164d164b9a
11,324
py
Python
train.py
heavenbean/tacotron2
361abdcb3130601726c770bce929e443c9009d9e
[ "BSD-3-Clause" ]
null
null
null
train.py
heavenbean/tacotron2
361abdcb3130601726c770bce929e443c9009d9e
[ "BSD-3-Clause" ]
null
null
null
train.py
heavenbean/tacotron2
361abdcb3130601726c770bce929e443c9009d9e
[ "BSD-3-Clause" ]
null
null
null
import os import time import argparse import math from numpy import finfo import torch from distributed import apply_gradient_allreduce import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader from model import Tacotron2 from data_utils import TextMelLoader, TextMelCollate from loss_function import Tacotron2Loss from logger import Tacotron2Logger from hparams import create_hparams global_val_loss = 10000 def reduce_tensor(tensor, n_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= n_gpus return rt def init_distributed(hparams, n_gpus, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group( backend=hparams.dist_backend, init_method=hparams.dist_url, world_size=n_gpus, rank=rank, group_name=group_name) print("Done initializing distributed") def prepare_dataloaders(hparams): # Get data, data loaders and collate function ready trainset = TextMelLoader(hparams.training_files, hparams) valset = TextMelLoader(hparams.validation_files, hparams) collate_fn = TextMelCollate(hparams.n_frames_per_step) if hparams.distributed_run: train_sampler = DistributedSampler(trainset) shuffle = False else: train_sampler = None shuffle = True train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle, sampler=train_sampler, batch_size=hparams.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) return train_loader, valset, collate_fn def prepare_directories_and_logger(output_directory, log_directory, rank): if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) else: logger = None return logger def load_model(hparams): model = Tacotron2(hparams).cuda() if hparams.fp16_run: model.decoder.attention_layer.score_mask_value = finfo('float16').min if hparams.distributed_run: model = apply_gradient_allreduce(model) return model def warm_start_model(checkpoint_path, model, ignore_layers): assert os.path.isfile(checkpoint_path) print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model_dict = checkpoint_dict['state_dict'] if len(ignore_layers) > 0: model_dict = {k: v for k, v in model_dict.items() if k not in ignore_layers} dummy_dict = model.state_dict() dummy_dict.update(model_dict) model_dict = dummy_dict model.load_state_dict(model_dict) return model def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) print("Loading checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint_dict['state_dict']) optimizer.load_state_dict(checkpoint_dict['optimizer']) learning_rate = checkpoint_dict['learning_rate'] iteration = checkpoint_dict['iteration'] print("Loaded checkpoint '{}' from iteration {}" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) torch.save({'iteration': iteration, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank): """Handles all the validation scoring and printing""" global global_val_loss model.eval() with torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) val_loss = 0.0 for i, batch in enumerate(val_loader): x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_val_loss = loss.item() val_loss += reduced_val_loss val_loss = val_loss / (i + 1) model.train() if rank == 0: global_val_loss = val_loss print("Validation loss {}: {:9f} ".format(iteration, val_loss)) logger.log_validation(val_loss, model, y, y_pred, iteration) def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name, hparams): """Training and validation logging results to tensorboard and stdout Params ------ output_directory (string): directory to save checkpoints log_directory (string) directory to save tensorboard logs checkpoint_path(string): checkpoint path n_gpus (int): number of gpus rank (int): rank of current gpu hparams (object): comma separated list of "name=value" pairs. """ global global_val_loss if hparams.distributed_run: init_distributed(hparams, n_gpus, rank, group_name) torch.manual_seed(hparams.seed) torch.cuda.manual_seed(hparams.seed) model = load_model(hparams) learning_rate = hparams.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hparams.weight_decay) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level='O2') if hparams.distributed_run: model = apply_gradient_allreduce(model) criterion = Tacotron2Loss() logger = prepare_directories_and_logger( output_directory, log_directory, rank) train_loader, valset, collate_fn = prepare_dataloaders(hparams) # Load checkpoint if one exists iteration = 0 epoch_offset = 0 if checkpoint_path is not None: if warm_start: model = warm_start_model( checkpoint_path, model, hparams.ignore_layers) else: model, optimizer, _learning_rate, iteration = load_checkpoint( checkpoint_path, model, optimizer) if hparams.use_saved_learning_rate: learning_rate = _learning_rate iteration += 1 # next iteration is iteration + 1 epoch_offset = max(0, int(iteration / len(train_loader))) model.train() is_overflow = False # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): start = time.perf_counter() for param_group in optimizer.param_groups: param_group['lr'] = learning_rate model.zero_grad() x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if hparams.distributed_run: reduced_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_loss = loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if hparams.fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), hparams.grad_clip_thresh) is_overflow = math.isnan(grad_norm) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() if not is_overflow and rank == 0: duration = time.perf_counter() - start print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format( iteration, reduced_loss, grad_norm, duration)) logger.log_training( reduced_loss, grad_norm, learning_rate, duration, iteration) if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0): validate(model, criterion, valset, iteration, hparams.batch_size, n_gpus, collate_fn, logger, hparams.distributed_run, rank) if rank == 0: checkpoint_path = os.path.join( output_directory, "checkpoint_%d_%.6f" % (iteration, global_val_loss)) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output_directory', type=str, help='directory to save checkpoints') parser.add_argument('-l', '--log_directory', type=str, help='directory to save tensorboard logs') parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path') parser.add_argument('--warm_start', action='store_true', help='load model weights only, ignore specified layers') parser.add_argument('--n_gpus', type=int, default=1, required=False, help='number of gpus') parser.add_argument('--rank', type=int, default=0, required=False, help='rank of current gpu') parser.add_argument('--group_name', type=str, default='group_name', required=False, help='Distributed group name') parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs') args = parser.parse_args() hparams = create_hparams(args.hparams) torch.backends.cudnn.enabled = hparams.cudnn_enabled torch.backends.cudnn.benchmark = hparams.cudnn_benchmark print("FP16 Run:", hparams.fp16_run) print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling) print("Distributed Run:", hparams.distributed_run) print("cuDNN Enabled:", hparams.cudnn_enabled) print("cuDNN Benchmark:", hparams.cudnn_benchmark) train(args.output_directory, args.log_directory, args.checkpoint_path, args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
38.256757
94
0.648534
4a1bb0c6ee559c920e315a41c8daf3dd88aa4c53
3,351
py
Python
recipes/g2o/master/conanfile.py
SolarFramework/conan-solar
cdb6253556c056baacaf3e5f28b595869adddb88
[ "Apache-2.0" ]
null
null
null
recipes/g2o/master/conanfile.py
SolarFramework/conan-solar
cdb6253556c056baacaf3e5f28b595869adddb88
[ "Apache-2.0" ]
3
2021-02-15T08:48:16.000Z
2021-02-24T16:35:54.000Z
recipes/g2o/master/conanfile.py
SolarFramework/conan-solar
cdb6253556c056baacaf3e5f28b595869adddb88
[ "Apache-2.0" ]
null
null
null
import os from conans import ConanFile, CMake, tools class Libg2oConan(ConanFile): name = "g2o" upstream_version = "master" package_revision = "" version = "{0}{1}".format(upstream_version, package_revision) generators = "cmake" settings = "os", "arch", "compiler", "build_type" options = {"shared": [True, False], "csparse": [True,False], "opengl": [True,False], "apps":[True,False], "examples":[True,False] } default_options = {"shared": True, "csparse": True, "opengl": False, "apps":False, "examples":False} exports = [ ] url = "https://github.com/Solar-Framework/conan-solar/recipes/g2o/20200410" homepage = "https://github.com/RainerKuemmerle/g2o/" license = "BSD license (lGPL3+ with csparse_extension, GPL3+ with viewer, incremental and slam2d_g2o extension)" description = ("g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions.") source_subfolder = "source_subfolder" short_paths = True def requirements(self): self.requires("eigen/3.3.7@conan-solar/stable") self.requires("common/1.0.2@conan-solar/stable") def source(self): tools.get("https://github.com/RainerKuemmerle/g2o/archive/{0}.tar.gz".format(self.upstream_version)) os.rename("g2o-" + self.upstream_version, self.source_subfolder) @property def _android_arch(self): arch = str(self.settings.arch) return tools.to_android_abi(arch) def build(self): g2o_source_dir = os.path.join(self.source_folder, self.source_subfolder) # Import common flags and defines import common # Generate Cmake wrapper common.generate_cmake_wrapper( cmakelists_path='CMakeLists.txt', source_subfolder=self.source_subfolder, build_type=self.settings.build_type ) cmake = CMake(self) cmake.definitions["BUILD_LGPL_SHARED_LIBS"] = False cmake.definitions["BUILD_SHARED_LIBS"] = self.options.shared cmake.definitions["G2O_USE_OPENGL"] = self.options.opengl cmake.definitions["G2O_USE_CSPARSE"] = self.options.csparse cmake.definitions["BUILD_CSPARSE"] = self.options.csparse cmake.definitions["G2O_BUILD_APPS"] = self.options.apps cmake.definitions["G2O_BUILD_EXAMPLES"] = self.options.examples if not tools.os_info.is_windows: cmake.definitions["CMAKE_POSITION_INDEPENDENT_CODE"] = True cmake.configure() cmake.build() cmake.install() def package_info(self): self.cpp_info.libs = tools.collect_libs(self) def package(self): # Retrieve common helpers import common # Fix all hard coded path to conan package in all .cmake files common.fix_conan_path(self, self.package_folder, '*.cmake') if self.settings.os == 'Android': if not self.options.shared: self.cpp_info.includedirs.append( os.path.join('sdk', 'native', 'jni', 'include')) self.cpp_info.libdirs.append( os.path.join('sdk', 'native', 'staticlibs', self._android_arch))
36.423913
116
0.623993
4a1bb1d8ad1b77be1b6b226fd465f8b1453aaffd
15,822
py
Python
alba/AA-Jacob-Heyblocq/reuse/scripts/bijdragersAAJH-WerkenInEuropeana.py
KBNLwikimedia/Alba-Amicorum
e41e10518830ec83a2a43d292b8c73b940f912a9
[ "CC0-1.0" ]
null
null
null
alba/AA-Jacob-Heyblocq/reuse/scripts/bijdragersAAJH-WerkenInEuropeana.py
KBNLwikimedia/Alba-Amicorum
e41e10518830ec83a2a43d292b8c73b940f912a9
[ "CC0-1.0" ]
null
null
null
alba/AA-Jacob-Heyblocq/reuse/scripts/bijdragersAAJH-WerkenInEuropeana.py
KBNLwikimedia/Alba-Amicorum
e41e10518830ec83a2a43d292b8c73b940f912a9
[ "CC0-1.0" ]
null
null
null
# Aim: Find works in Europeana by/from/about/related to the contributors to the Album amicorum Jacob Heyblocq # Output of this script: https://github.com/KBNLwikimedia/Alba-Amicorum/blob/main/alba/AA-Jacob-Heyblocq/reuse/excels/AAJH-contributors-works-Europeana.xlsx # Script is not fully finished and/or 100% reliable # Last update dd 16-06-2021 by Olaf Janssen # https://www.wikidata.org/wiki/Wikidata:WikiProject_Alba_amicorum_National_Library_of_the_Netherlands/Jacob_Heyblocq/Contributors#Europeana # https://kbnlwikimedia.github.io/KBCollectionHighlights/stories/Cool%20new%20things%20you%20can%20now%20do%20with%20the%20KB's%20collection%20highlights/Part%205%2C%20Reuse.html (item 48) ###################################################################### import json import requests from googletrans import Translator import pandas as pd import openpyxl import os translator = Translator() # Use Google Translate for translations from English into Dutch - https://pypi.org/project/googletrans/ eurapi_baseurl="https://www.europeana.eu/api" eurdata_baseurl="http://data.europeana.eu" eurapi_key="?wskey=apidemo" eurapi2_key="?wskey=api2demo" dcTypelist = [] dctermsIssuedlist = [] dcDatelist= [] dcCoveragelist=[] dctermsTemporallist=[] dctermsCreatedlist=[] dctypes_allowed = ['tekening', 'grafiek','prent', 'etsen', 'handschrift','ornamentprent', 'graveren (drukprocedé)', 'prenttekening','pen','kostuumprent','boekillustratie','albumblad', 'doordruk', 'kleurendruk', 'schilderij', 'crayonmanier', 'roulette','droge naald','penseel','mezzotint','toonlithografie', 'lithografie','lithografie (techniek)','historieprent','aquatint','titelpagina', 'met de hand kleuren', 'kopergravure (prent)','Grafiek Drukwerk', 'Portretten','Portret','Aquarel', 'miniatuur', 'Monograph','print', 'etching','Painting','engraving','drawing','pen','Line etching','Miniatures', 'Miniature','text','counterproof', 'brush','drypoint', 'graphics', 'handwriting', 'ornament print', 'engraving (printing process)','print drawing', 'costume print','book illustration', 'album page', 'blow-through', 'color printing', 'crayon way', 'roulette', 'paintbrush', 'mezzotint', 'tone lithography', 'lithography', 'lithography (technique)', 'history print', 'aquatint', 'title page', 'coloring by hand', 'copper engraving (print)', 'Graphic Print', 'Portraits', 'Portrait', 'Watercolor'] # Setup empty Pandas Dataframe contribs_works_df = pd.DataFrame(columns=[ 'Contributor', 'ContributorLabel', 'EuropeanaAgentID', 'EuropeanaAgentJsonURL', 'EuropeanaAgentBioInfoEN', 'EuropeanaAgentBioInfoNL', 'EuropeanaAgentWorksJsonURL', 'WorkJsonURL', 'Title', 'Description', 'Creators', 'ThumbURL', 'ImageURL', 'Institution', 'NativeInterface', 'EuropeanaInterface', 'WorkSuitableForHackaLOD', 'Year', 'dctermsIssued', 'dcDate', 'dcCoverage', 'dctermsTemporal', 'dctermsCreated' ]) ############ Wikidata: Retrieve AAJH contributors that have a Europeana ID P7704 wd_jsonurl = "https://query.wikidata.org/sparql?query=SELECT%20DISTINCT%20%3Fentity%20%3FentityLabel%20%3Fvalue%20%3FvalueLabel%20WHERE%20%7B%20%20%3Fentity%20wdt%3AP31%20wd%3AQ5%3Bwdt%3AP3919%20wd%3AQ72752496%20.%20%20%3Fentity%20wdt%3AP3919%20wd%3AQ72752496%20.%20%20%3Fentity%20p%3AP7704%20%3Fprop%20.%20OPTIONAL%20%7B%20%3Fprop%20ps%3AP7704%20%3Fvalue%20%7D%20%20SERVICE%20wikibase%3Alabel%20%7B%20bd%3AserviceParam%20wikibase%3Alanguage%20%22%5BAUTO_LANGUAGE%5D%2Cen%22.%20%7D%7D&format=json" wdr = requests.get(wd_jsonurl) wddata = json.loads(wdr.content) # utf-8, see https://stackoverflow.com/questions/44203397/python-requests-get-returns-improperly-decoded-text-instead-of-utf-8 wdcontribs = list(wddata['results']['bindings']) #print(wdcontribs) for c in wdcontribs: # [0:1]: #Iterate over AAJH contributors if c.get('entityLabel', 'aa') != 'aa': contributorLabel = c.get('entityLabel').get('value') print(' '*40) print(f"************* {contributorLabel.upper()} ************************") print(f"-- Info about this contributor from Wikidata --") print(f" * ContributorLabel: {contributorLabel}") if c.get('entity', 'aa') != 'aa': contributor = c.get('entity').get('value') print(f" * Contributor: {contributor}") if c.get('value', 'aa') != 'aa': euragent = c.get('value').get('value') print(f" * EuropeanaAgent: {euragent}") ########## Europeana: Retrieve data about this contributor from the Europeana API / json euragent_jsonurl=f"{eurapi_baseurl}/entities/{euragent}.json{eurapi_key}" euragentr = requests.get(euragent_jsonurl) euragentdata = json.loads(euragentr.content) if euragentdata.get('biographicalInformation', 'aa') != 'aa': #bio info is available from Europeana, biolist = euragentdata.get('biographicalInformation') biographicalInformationEN= [bio['@value'] for bio in biolist if bio['@language'] == 'en'][0] #Bio info in English is always present print(f"-- Info about this contributor from Europeana --") print(f" * euragent_jsonurl: {euragent_jsonurl}") print(f" * BiographicalInformationEN: {biographicalInformationEN}") #biographicalInformationNL = translator.translate(biographicalInformationEN, dest='nl') biographicalInformationNL = 'ToEnableInScript' #print(f"biographicalInformationNL (Google Translate): {biographicalInformationNL.text}") ########## Europeana: Retrieve works (books, poems, paintings..) from/by this contributor from the Europeana search API in json. # Maximum = 100 works, but pagination to the next 100 results is possible, see https://pro.europeana.eu/page/search#pagination # API docs: https://pro.europeana.eu/page/search # Europeana portal: https://www.europeana.eu/nl/collections/person/148386 --> 147 results # Europeana search API: https://www.europeana.eu/api/v2/search.json?wskey=api2demo&media=true&start=1&rows=100&profile=minimal&query=%22http://data.europeana.eu/agent/base/148386%22 # --> also 147 results eurworks_jsonurl = f"{eurapi_baseurl}/v2/search.json{eurapi2_key}&media=true&start=1&rows=100&profile=minimal&query=%22{eurdata_baseurl}/{euragent}%22" print(f"-- Info about works by this contributor from Europeana --") print(f" * eurworks_jsonurl (max. 100 rows per page, see https://pro.europeana.eu/page/search#pagination): {eurworks_jsonurl}") eurworksr = requests.get(eurworks_jsonurl) eurworksdata = json.loads(eurworksr.content) items = eurworksdata['items'] for item in items: # For each work (item/object) we want to retrieve the following fields # - Title of the work --> title if item.get('title', 'aa') != 'aa': # if wtitle is a list with 2 or more items, concat list items with "/" inbetween # https://stackoverflow.com/questions/12453580/how-to-concatenate-items-in-a-list-to-a-single-string wtitle = ' // '.join(item.get('title')) print(f" ----WORK: {wtitle} ----") print(f" * Title: {wtitle}") else: wtitle ='' # - Description of the work --> dcDescription if item.get('dcDescription', 'aa') != 'aa': wdescription = ' // '.join(item.get('dcDescription')) print(f" * Description: {wdescription}") else: wdescription ='' # - Creator(s) --> dcCreator if item.get('dcCreator', 'aa') != 'aa': wcreators = item.get('dcCreator') print(f" * Creators: {wcreators}") # TODO - Creators: nog verder uitsplitsen -- Creators: ['Constantijn Huygens', 'http://data.europeana.eu/agent/base/147162'] else: wcreators ='' # - Date of creation --> year if item.get('year', 'aa') != 'aa': wyear = item.get('year')[0] print(f" * Year created: {wyear}") else: wyear ='' # - Thumb/Preview --> edmPreview if item.get('edmPreview', 'aa') != 'aa': wthumb = item.get('edmPreview')[0] print(f" * Preview: {wthumb}") else: wthumb ='' # - Full image ('.jpg') --> edmIsShownBy if item.get('edmIsShownBy', 'aa') != 'aa': wimage = item.get('edmIsShownBy')[0] print(f" * Full image: {wimage}") else: wimage ='' # - Institution/ data provider --> dataProvider if item.get('dataProvider', 'aa') != 'aa': winstitution = item.get('dataProvider')[0] print(f" * Institution: {winstitution}") else: winstitution ='' # - URL of work in native interface of institution --> edmIsShownAt if item.get('edmIsShownAt', 'aa') != 'aa': wnatinterface = item.get('edmIsShownAt')[0] print(f" * Work in interface of {winstitution}: {wnatinterface}") else: wnatinterface ='' # - URL of work in Europeana interface --> guid if item.get('guid', 'aa') != 'aa': weurinterface = item.get('guid') print(f" * Work in Europeana: {weurinterface}") else: weurinterface ='' ########## Europeana: Retrieve additional details from each work separately # 1) type of work (etching, painting, book, poem...) # 2) year of publication/creation/issuance/ # 3) lat-long # - Json representation of the work --> link if item.get('link', 'aa') != 'aa': wjsonurl = item.get('link') print(f" * Json representation URL of this work: {wjsonurl}") wr = requests.get(wjsonurl) workdata = json.loads(wr.content) work = workdata['object'] print(f" * Work dictionary: {work}") if work.get('proxies', 'aa') != 'aa': proxies=work.get('proxies')[0] print(f" * Proxies: {proxies}") # 1) type of work (etching, painting, book, poem...) --> proxies/dctype if proxies.get('dcType', 'aa') != 'aa': wdctype = proxies.get('dcType') print(f" * Type of work: {wdctype}") # dcTypelist.append(wdctype) # For HackaLOD purposes we want to filter the types of works/objects, based on (the value of) the dcType field # For convenience/uncomplications we'll only use NL and EN as filter languages # Allowed values of dcType for HackaLOD: see list 'dctypes_allowed' above for allowtype in dctypes_allowed: if str(allowtype).lower() in str(wdctype).lower(): suitableforHackaLOD = "True" break else: suitableforHackaLOD = "False" print(f" * Object is of suitable type for HackaLOD: {suitableforHackaLOD}") else: print(f" * No dcType specified, object excluded for HackaLOD") suitableforHackaLOD = "False" # 2) year of publication/issuance --> # a) proxies/dctermsIssued or # b) proxies/dcDate or # c) proxies/dcCoverage # d) dctermsTemporal # e) dctermsCreated if proxies.get('dctermsIssued', 'aa') != 'aa': #dctermsIssued = proxies.get('dctermsIssued').get('def')[0] # https://stackoverflow.com/questions/33709331/dictionary-get-value-without-knowing-the-key dctermsIssued=list(proxies.get('dctermsIssued').values())[0][0] if dctermsIssued.startswith('http://semium.org/time/'): dctermsIssued = dctermsIssued.split('/time/')[1] dctermsIssuedlist.append(dctermsIssued) print(f" * dctermsIssued: {dctermsIssued}") else: dctermsIssued = '' if proxies.get('dcDate', 'aa') != 'aa': dcDate = list(proxies.get('dcDate').values())[0][0] # Do some dates cleaning if dcDate.startswith('http://semium.org/time/'): dcDate = dcDate.split('/time/')[1] if dcDate.startswith('geboorte\xa0'): dcDate = dcDate.split('geboorte\xa0')[1] if dcDate.startswith('\xa0'): dcDate = dcDate.split('\xa0')[1] dcDatelist.append(dcDate) print(f" * dcDate: {dcDate}") else: dcDate = '' if proxies.get('dcCoverage', 'aa') != 'aa': dcCoverage = list(proxies.get('dcCoverage').values())[0][0] dcCoveragelist.append(dcCoverage) print(f" * dcCoverage: {dcCoverage}") else: dcCoverage = '' if proxies.get('dctermsTemporal', 'aa') != 'aa': dctermsTemporal = list(proxies.get('dctermsTemporal').values())[0][0] dctermsTemporallist.append(dctermsTemporal) print(f" * dctermsTemporal: {dctermsTemporal}") else: dctermsTemporal = '' if proxies.get('dctermsCreated', 'aa') != 'aa': dctermsCreated = list(proxies.get('dctermsCreated').values())[0][0] dctermsCreatedlist.append(dctermsCreated) print(f" * dctermsCreated: {dctermsCreated}") else: dctermsCreated = '' # 3) TODO Places and lat-long else: wjsonurl ='' # Create 1 row in dataframe df_row = { 'Contributor' : contributor , 'ContributorLabel' : contributorLabel , 'EuropeanaAgentID' : euragent , 'EuropeanaAgentJsonURL' : euragent_jsonurl, 'EuropeanaAgentBioInfoEN' : biographicalInformationEN, 'EuropeanaAgentBioInfoNL' : biographicalInformationNL, 'EuropeanaAgentWorksJsonURL': eurworks_jsonurl, 'WorkJsonURL': wjsonurl, 'Title' : wtitle, 'Description' : wdescription, 'Creators' : wcreators, 'ThumbURL' : wthumb, 'ImageURL' : wimage, 'Institution' : winstitution, 'NativeInterface' : wnatinterface, 'EuropeanaInterface' : weurinterface, 'WorkSuitableForHackaLOD' : suitableforHackaLOD, 'Year' : wyear, 'dctermsIssued' : dctermsIssued, 'dcDate' : dcDate, 'dcCoverage' : dcCoverage, 'dctermsTemporal' : dctermsTemporal, 'dctermsCreated' : dctermsCreated } print(f" * Dataframe row: {str(df_row)}") # add row to df contribs_works_df = contribs_works_df.append(df_row, ignore_index = True) print(contribs_works_df) # Export df tot Excel file_name = '../excels/AAJH-contributors-works-Europeana.xlsx' contribs_works_df.to_excel(file_name, index = True, header=True, sheet_name='AAJHContributors-Works') print(' '*40) print(f"* dcTypelist: {dcTypelist}") print(' ' * 40) print(f"* dctermsIssuedlist: {dctermsIssuedlist}") print(' ' * 40) print(f"* dcDatelist: {dcDatelist}") print(' ' * 40) print(f"* dcCoveragelist: {dcCoveragelist}") print(' ' * 40) print(f"* dctermsTemporallist: {dctermsTemporallist}") print(' ' * 40) print(f"* dctermsCreatedlist: {dctermsCreatedlist}")
51.203883
498
0.601315
4a1bb31a4f0b7f37f1f98f1fa6d5c3a0d3868217
1,284
py
Python
Lib/idlelib/MultiStatusBar.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
1
2018-06-21T18:21:24.000Z
2018-06-21T18:21:24.000Z
Lib/idlelib/MultiStatusBar.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
null
null
null
Lib/idlelib/MultiStatusBar.py
sireliah/polish-python
605df4944c2d3bc25f8bf6964b274c0a0d297cc3
[ "PSF-2.0" ]
null
null
null
z tkinter zaimportuj * klasa MultiStatusBar(Frame): def __init__(self, master=Nic, **kw): jeżeli master jest Nic: master = Tk() Frame.__init__(self, master, **kw) self.labels = {} def set_label(self, name, text='', side=LEFT): jeżeli name nie w self.labels: label = Label(self, bd=1, relief=SUNKEN, anchor=W) label.pack(side=side) self.labels[name] = label inaczej: label = self.labels[name] label.config(text=text) def _multistatus_bar(parent): root = Tk() width, height, x, y = list(map(int, re.split('[x+]', parent.geometry()))) root.geometry("+%d+%d" %(x, y + 150)) root.title("Test multistatus bar") frame = Frame(root) text = Text(frame) text.pack() msb = MultiStatusBar(frame) msb.set_label("one", "hello") msb.set_label("two", "world") msb.pack(side=BOTTOM, fill=X) def change(): msb.set_label("one", "foo") msb.set_label("two", "bar") button = Button(root, text="Update status", command=change) button.pack(side=BOTTOM) frame.pack() frame.mainloop() root.mainloop() jeżeli __name__ == '__main__': z idlelib.idle_test.htest zaimportuj run run(_multistatus_bar)
27.913043
77
0.595016
4a1bb399f2d63bd74cd98642f8e4f22438213b7d
1,516
py
Python
summary.py
bubbliiiing/mobilenet-yolov4-pytorch
ae3dd3bf307b1f3061765722a23b0b3e1037eaa0
[ "MIT" ]
55
2021-12-09T06:57:33.000Z
2022-03-29T05:35:44.000Z
summary.py
bubbliiiing/mobilenet-yolov4-pytorch
ae3dd3bf307b1f3061765722a23b0b3e1037eaa0
[ "MIT" ]
8
2021-12-21T00:57:34.000Z
2022-03-22T15:49:07.000Z
summary.py
bubbliiiing/mobilenet-yolov4-pytorch
ae3dd3bf307b1f3061765722a23b0b3e1037eaa0
[ "MIT" ]
28
2021-12-10T08:38:24.000Z
2022-03-29T06:47:26.000Z
#--------------------------------------------# # 该部分代码用于看网络结构 #--------------------------------------------# import torch from thop import clever_format, profile from torchsummary import summary from nets.yolo import YoloBody if __name__ == "__main__": input_shape = [416, 416] anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] num_classes = 80 backbone = 'mobilenetv1' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") m = YoloBody(anchors_mask, num_classes, backbone=backbone).to(device) summary(m, (3, input_shape[0], input_shape[1])) # mobilenetv1-yolov4 40,952,893 # mobilenetv2-yolov4 39,062,013 # mobilenetv3-yolov4 39,989,933 # 修改了panet的mobilenetv1-yolov4 12,692,029 # 修改了panet的mobilenetv2-yolov4 10,801,149 # 修改了panet的mobilenetv3-yolov4 11,729,069 dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device) flops, params = profile(m.to(device), (dummy_input, ), verbose=False) #--------------------------------------------------------# # flops * 2是因为profile没有将卷积作为两个operations # 有些论文将卷积算乘法、加法两个operations。此时乘2 # 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2 # 本代码选择乘2,参考YOLOX。 #--------------------------------------------------------# flops = flops * 2 flops, params = clever_format([flops, params], "%.3f") print('Total GFLOPS: %s' % (flops)) print('Total params: %s' % (params))
37.9
83
0.537599
4a1bb4ee00c382294ce10b617298df0b11dfdbf5
5,465
py
Python
docs/source/conf.py
leoleoasd/dgl-ke
3a6f7635421a10f6276936b63c56738ba0fcd044
[ "Apache-2.0" ]
1
2022-03-27T07:19:35.000Z
2022-03-27T07:19:35.000Z
docs/source/conf.py
leoleoasd/dgl-ke
3a6f7635421a10f6276936b63c56738ba0fcd044
[ "Apache-2.0" ]
null
null
null
docs/source/conf.py
leoleoasd/dgl-ke
3a6f7635421a10f6276936b63c56738ba0fcd044
[ "Apache-2.0" ]
1
2022-03-27T15:26:36.000Z
2022-03-27T15:26:36.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = u'dglke' copyright = u'2020, dgl-team' author = u'dgl-team' # The short X.Y version version = u'' # The full version, including alpha/beta/rc tags release = u'0.1.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['.static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'dglkedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'dglke.tex', u'dglke Documentation', u'dgl-team', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'dglke', u'dglke Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'dglke', u'dglke Documentation', author, 'dglke', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None}
29.540541
79
0.643916
4a1bb5371f6fbeff1afff233141bfd3fd2514d8d
1,013
py
Python
plaso/formatters/bsm.py
Defense-Cyber-Crime-Center/plaso
4f3a85fbea10637c1cdbf0cde9fc539fdcea9c47
[ "Apache-2.0" ]
2
2016-02-18T12:46:29.000Z
2022-03-13T03:04:59.000Z
plaso/formatters/bsm.py
CNR-ITTIG/plasodfaxp
923797fc00664fa9e3277781b0334d6eed5664fd
[ "Apache-2.0" ]
null
null
null
plaso/formatters/bsm.py
CNR-ITTIG/plasodfaxp
923797fc00664fa9e3277781b0334d6eed5664fd
[ "Apache-2.0" ]
6
2016-12-18T08:05:36.000Z
2021-04-06T14:19:11.000Z
# -*- coding: utf-8 -*- """The Basic Security Module (BSM) binary files event formatter.""" from plaso.formatters import interface from plaso.formatters import manager class BSMFormatter(interface.ConditionalEventFormatter): """Formatter for an BSM log entry.""" DATA_TYPE = u'bsm:event' FORMAT_STRING_PIECES = [ u'Type: {event_type}', u'Information: {extra_tokens}'] FORMAT_STRING_SHORT_PIECES = [ u'Type: {event_type}'] SOURCE_LONG = u'BSM entry' SOURCE_SHORT = u'LOG' class MacBSMFormatter(interface.ConditionalEventFormatter): """Formatter for a Mac OS X BSM log entry.""" DATA_TYPE = u'mac:bsm:event' FORMAT_STRING_PIECES = [ u'Type: {event_type}', u'Return: {return_value}', u'Information: {extra_tokens}'] FORMAT_STRING_SHORT_PIECES = [ u'Type: {event_type}', u'Return: {return_value}'] SOURCE_LONG = u'BSM entry' SOURCE_SHORT = u'LOG' manager.FormattersManager.RegisterFormatters([ BSMFormatter, MacBSMFormatter])
23.022727
67
0.694965
4a1bb6648bf8a2fafa5125e79b74decf4086260e
4,031
py
Python
rubin_changelog/repository.py
womullan/lsst_git_changelog
63d27f6540146ec78071fac555a45494e7ed31f6
[ "BSD-2-Clause" ]
2
2017-02-27T17:34:17.000Z
2020-06-01T06:07:44.000Z
rubin_changelog/repository.py
womullan/lsst_git_changelog
63d27f6540146ec78071fac555a45494e7ed31f6
[ "BSD-2-Clause" ]
3
2020-07-15T03:38:48.000Z
2021-09-22T20:03:44.000Z
rubin_changelog/repository.py
womullan/lsst_git_changelog
63d27f6540146ec78071fac555a45494e7ed31f6
[ "BSD-2-Clause" ]
4
2021-07-22T22:56:14.000Z
2022-01-26T01:10:02.000Z
import logging import os import re import shutil import subprocess from datetime import datetime from typing import List, Set, Optional def call_git(*args: str, cwd: str, git_exec: str = "/usr/bin/git") -> str: to_exec = [git_exec] + list(args) logging.debug(to_exec) logging.debug(cwd) return subprocess.check_output(to_exec, cwd=cwd, stderr=subprocess.STDOUT).decode( "utf-8" ) class Repository(object): def __init__(self, path: str, *, branch_name: str = "master"): self.path = path self.branch_name = branch_name self._tags: Set[str] = set() # populated on demand. # Make sure we're using the appropriate branch self.__call_git("symbolic-ref", "HEAD", f"refs/heads/{branch_name}") def __call_git(self, *args: str) -> str: return call_git(*args, cwd=self.path) def commits( self, reachable_from: Optional[str] = None, merges_only: bool = False ) -> List[str]: args = ["log", "--pretty=format:%H"] if reachable_from: args.append(reachable_from) if merges_only: args.append("--merges") return self.__call_git(*args).split() def merges_between(self, old, new): args = ["log", "--pretty=format:%H", "--merges", f"{old}...{new}"] try: return self.__call_git(*args).split() except: return [] def message(self, commit_hash: str) -> str: return self.__call_git("show", commit_hash, "--pretty=format:%s") def tag_date(self, tag_name: str) -> datetime: return datetime.fromtimestamp( int(self.__call_git("tag", "-l", tag_name, "--format=%(taggerdate:unix)")) ) def sha_for_date(self, date: datetime): return self.__call_git( "rev-list", "-1", f'--before="{date}"', self.branch_name ).strip() @property def tags(self) -> Set[str]: if not self._tags: self._tags = set(tag for tag in self.__call_git("tag").split()) return self._tags def add_tag(self, tag_name: str, target: str) -> None: if tag_name in self.tags: self.__call_git("tag", "-d", tag_name) self.__call_git("tag", tag_name, target) self._tags.add(tag_name) def update(self) -> str: return self.__call_git( "fetch", "origin", f"{self.branch_name}:{self.branch_name}" ) @staticmethod def ticket(message: str) -> Optional[str]: try: result = re.search(r"(DM-\d+)", message, re.IGNORECASE).group(1) # type: ignore[union-attr] except AttributeError: logging.debug(message) result = None return result @classmethod def materialize( cls, url: str, target_dir: str, *, branch_name: str = "master" ) -> "Repository": # Try to re-use an on disk repository. However, if it's corrupted, # blow it away and clone a fresh copy. repo_dir_name = re.sub(r".git$", "", url.split("/")[-1]) clone_path = os.path.join(target_dir, repo_dir_name) os.makedirs(target_dir, exist_ok=True) def clone() -> None: """Clone repo at url into a subdirectory target_dir, clobbering pre-existing content, returning the resulting path. """ call_git( "clone", "--bare", "--branch", branch_name, url, repo_dir_name, cwd=target_dir, ) if not os.path.exists(clone_path): clone() repo = cls(clone_path, branch_name=branch_name) try: repo.update() except subprocess.CalledProcessError as e: logging.warn(f"Unable to update {clone_path}: {e}; {e.output}; resetting") shutil.rmtree(clone_path) clone() repo = cls(clone_path, branch_name=branch_name) repo.update() return repo
32.248
104
0.573059
4a1bb809b47bc6c5e01f998daf103fe39d51d9bf
734
py
Python
CountMillionCharacters-Variations/variation1.py
thiru15/Python-1
f276f34a77579e552ca2adb3b5a3a1b0f3ebddee
[ "MIT" ]
12
2019-12-27T07:32:35.000Z
2022-02-20T20:15:08.000Z
CountMillionCharacters-Variations/variation1.py
DiasNikita/Python
f276f34a77579e552ca2adb3b5a3a1b0f3ebddee
[ "MIT" ]
1
2020-10-01T14:14:31.000Z
2020-10-01T14:14:58.000Z
CountMillionCharacters-Variations/variation1.py
DiasNikita/Python
f276f34a77579e552ca2adb3b5a3a1b0f3ebddee
[ "MIT" ]
22
2019-10-06T20:30:25.000Z
2022-01-11T16:31:14.000Z
try: input = raw_input except NameError: pass def count_chars(filename): count = {} with open(filename) as info: # inputFile Replaced with filename readfile = info.read() for character in readfile.upper(): count[character] = count.get(character, 0) + 1 return count def main(): is_exist=True #Try to open file if exist else raise exception and try again while(is_exist): try: inputFile = input("File Name / (0)exit : ").strip() if inputFile == "0": break print(count_chars(inputFile)) except FileNotFoundError: print("File not found...Try again!") if __name__ == '__main__': main()
22.9375
68
0.584469
4a1bb87547952d4c4b7386524b075668da1c21bb
5,703
py
Python
roblox/bases/baseuniverse.py
Boegie19/ro.py
68b8acb506ab3057670168434fbf90ea0d05943f
[ "MIT" ]
null
null
null
roblox/bases/baseuniverse.py
Boegie19/ro.py
68b8acb506ab3057670168434fbf90ea0d05943f
[ "MIT" ]
null
null
null
roblox/bases/baseuniverse.py
Boegie19/ro.py
68b8acb506ab3057670168434fbf90ea0d05943f
[ "MIT" ]
1
2021-06-28T14:57:39.000Z
2021-06-28T14:57:39.000Z
""" This file contains the BaseUniverse object, which represents a Roblox universe ID. It also contains the UniverseLiveStats object, which represents a universe's live stats. """ from __future__ import annotations from typing import TYPE_CHECKING, Dict, List if TYPE_CHECKING: from ..badges import Badge from .baseitem import BaseItem from ..utilities.shared import ClientSharedObject from ..utilities.iterators import PageIterator, SortOrder from ..gamepasses import GamePass from ..sociallinks import UniverseSocialLink class UniverseLiveStats: """ Represents a universe's live stats. Attributes: total_player_count: The amount of players present in this universe's subplaces. game_count: The amount of active servers for this universe's subplaces. player_counts_by_device_type: A dictionary where the keys are device types and the values are the amount of this universe's subplace's active players which are on that device type. """ def __init__(self, data: dict): self.total_player_count: int = data["totalPlayerCount"] self.game_count: int = data["gameCount"] self.player_counts_by_device_type: Dict[str, int] = data["playerCountsByDeviceType"] def _universe_badges_handler(shared: ClientSharedObject, data: dict) -> Badge: # inline imports are used here, sorry from ..badges import Badge return Badge(shared=shared, data=data) class BaseUniverse(BaseItem): """ Represents a Roblox universe ID. Attributes: _shared: The ClientSharedObject. id: The universe ID. """ def __init__(self, shared: ClientSharedObject, universe_id: int): """ Arguments: shared: The ClientSharedObject. universe_id: The universe ID. """ self._shared: ClientSharedObject = shared self.id: int = universe_id async def get_favorite_count(self) -> int: """ Grabs the universe's favorite count. Returns: The universe's favorite count. """ favorite_count_response = await self._shared.requests.get( url=self._shared.url_generator.get_url("games", f"v1/games/{self.id}/favorites/count") ) favorite_count_data = favorite_count_response.json() return favorite_count_data["favoritesCount"] async def is_favorited(self) -> bool: """ Grabs the authenticated user's favorite status for this game. Returns: Whether the authenticated user has favorited this game. """ is_favorited_response = await self._shared.requests.get( url=self._shared.url_generator.get_url("games", f"v1/games/{self.id}/favorites") ) is_favorited_data = is_favorited_response.json() return is_favorited_data["isFavorited"] def get_badges(self, page_size: int = 10, sort_order: SortOrder = SortOrder.Ascending, max_items: int = None) -> PageIterator: """ Gets the universe's badges. Arguments: page_size: How many members should be returned for each page. sort_order: Order in which data should be grabbed. max_items: The maximum items to return when looping through this object. Returns: A PageIterator containing this universe's badges. """ return PageIterator( shared=self._shared, url=self._shared.url_generator.get_url("badges", f"v1/universes/{self.id}/badges"), page_size=page_size, sort_order=sort_order, max_items=max_items, handler=_universe_badges_handler, ) async def get_live_stats(self) -> UniverseLiveStats: """ Gets the universe's live stats. This data does not update live. These are just the stats that are shown on the website's live stats display. Returns: The universe's live stats. """ stats_response = await self._shared.requests.get( url=self._shared.url_generator.get_url("develop", f"v1/universes/{self.id}/live-stats") ) stats_data = stats_response.json() return UniverseLiveStats(data=stats_data) def get_gamepasses(self, page_size: int = 10, sort_order: SortOrder = SortOrder.Ascending, max_items: int = None) -> PageIterator: """ Gets the universe's gamepasses. Arguments: page_size: How many members should be returned for each page. sort_order: Order in which data should be grabbed. max_items: The maximum items to return when looping through this object. Returns: A PageIterator containing the universe's gamepasses. """ return PageIterator( shared=self._shared, url=self._shared.url_generator.get_url("games", f"v1/games/{self.id}/game-passes"), page_size=page_size, sort_order=sort_order, max_items=max_items, handler=lambda shared, data: GamePass(shared, data), ) async def get_social_links(self) -> List[UniverseSocialLink]: """ Gets the universe's social links. Returns: A list of the universe's social links. """ links_response = await self._shared.requests.get( url=self._shared.url_generator.get_url("games", f"v1/games/{self.id}/social-links/list") ) links_data = links_response.json()["data"] return [UniverseSocialLink(shared=self._shared, data=link_data) for link_data in links_data]
34.98773
116
0.649833
4a1bb92180789809a2104b418ab394c7c5d123c3
110
py
Python
examples/compare.py
tebzzz/archon
5276e06ccc2e08e034473108a4dd8e36b6ba6078
[ "MIT" ]
78
2018-09-20T12:50:42.000Z
2021-12-17T11:44:03.000Z
examples/compare.py
tebzzz/archon
5276e06ccc2e08e034473108a4dd8e36b6ba6078
[ "MIT" ]
49
2018-11-18T16:58:27.000Z
2019-09-29T18:41:51.000Z
examples/compare.py
tebzzz/archon
5276e06ccc2e08e034473108a4dd8e36b6ba6078
[ "MIT" ]
21
2018-09-20T11:31:50.000Z
2021-10-19T17:01:47.000Z
import archon.feeds.cryptocompare as cryptocompare e = "Kucoin" h = cryptocompare.get_hist("LTC","BTC",e)
18.333333
50
0.736364
4a1bb92ba321da397a256c3423be0478285ba832
15,216
py
Python
sympy/physics/vector/point.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
15
2020-06-29T08:33:39.000Z
2022-02-12T00:28:51.000Z
sympy/physics/vector/point.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
13
2020-03-24T17:53:51.000Z
2022-02-10T20:01:14.000Z
sympy/physics/vector/point.py
Corwinpro/sympy
a2efa19333fa0b3b18db872efabbb46248cde63b
[ "BSD-3-Clause" ]
11
2020-06-29T08:40:24.000Z
2022-02-24T17:39:16.000Z
from __future__ import print_function, division from sympy.core.compatibility import range, string_types from .vector import Vector, _check_vector from .frame import _check_frame __all__ = ['Point'] class Point(object): """This object represents a point in a dynamic system. It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent point to this point. """ def __init__(self, name): """Initialization of a Point object. """ self.name = name self._pos_dict = {} self._vel_dict = {} self._acc_dict = {} self._pdlist = [self._pos_dict, self._vel_dict, self._acc_dict] def __str__(self): return self.name __repr__ = __str__ def _check_point(self, other): if not isinstance(other, Point): raise TypeError('A Point must be supplied') def _pdict_list(self, other, num): """Creates a list from self to other using _dcm_dict. """ outlist = [[self]] oldlist = [[]] while outlist != oldlist: oldlist = outlist[:] for i, v in enumerate(outlist): templist = v[-1]._pdlist[num].keys() for i2, v2 in enumerate(templist): if not v.__contains__(v2): littletemplist = v + [v2] if not outlist.__contains__(littletemplist): outlist.append(littletemplist) for i, v in enumerate(oldlist): if v[-1] != other: outlist.remove(v) outlist.sort(key=len) if len(outlist) != 0: return outlist[0] raise ValueError('No Connecting Path found between ' + other.name + ' and ' + self.name) def a1pt_theory(self, otherpoint, outframe, interframe): """Sets the acceleration of this point with the 1-point theory. The 1-point theory for point acceleration looks like this: ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP) + 2 ^N omega^B x ^B v^P where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 1-point theory (O) outframe : ReferenceFrame The frame we want this point's acceleration defined in (N) fixedframe : ReferenceFrame The intermediate frame in this calculation (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import Vector, dynamicsymbols >>> q = dynamicsymbols('q') >>> q2 = dynamicsymbols('q2') >>> qd = dynamicsymbols('q', 1) >>> q2d = dynamicsymbols('q2', 1) >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B.set_ang_vel(N, 5 * B.y) >>> O = Point('O') >>> P = O.locatenew('P', q * B.x) >>> P.set_vel(B, qd * B.x + q2d * B.y) >>> O.set_vel(N, 0) >>> P.a1pt_theory(O, N, B) (-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z """ _check_frame(outframe) _check_frame(interframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v = self.vel(interframe) a1 = otherpoint.acc(outframe) a2 = self.acc(interframe) omega = interframe.ang_vel_in(outframe) alpha = interframe.ang_acc_in(outframe) self.set_acc(outframe, a2 + 2 * (omega ^ v) + a1 + (alpha ^ dist) + (omega ^ (omega ^ dist))) return self.acc(outframe) def a2pt_theory(self, otherpoint, outframe, fixedframe): """Sets the acceleration of this point with the 2-point theory. The 2-point theory for point acceleration looks like this: ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP) where O and P are both points fixed in frame B, which is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's acceleration defined in (N) fixedframe : ReferenceFrame The frame in which both points are fixed (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> N = ReferenceFrame('N') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> O = Point('O') >>> P = O.locatenew('P', 10 * B.x) >>> O.set_vel(N, 5 * N.x) >>> P.a2pt_theory(O, N, B) - 10*q'**2*B.x + 10*q''*B.y """ _check_frame(outframe) _check_frame(fixedframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) a = otherpoint.acc(outframe) omega = fixedframe.ang_vel_in(outframe) alpha = fixedframe.ang_acc_in(outframe) self.set_acc(outframe, a + (alpha ^ dist) + (omega ^ (omega ^ dist))) return self.acc(outframe) def acc(self, frame): """The acceleration Vector of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which the returned acceleration vector will be defined in Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_acc(N, 10 * N.x) >>> p1.acc(N) 10*N.x """ _check_frame(frame) if not (frame in self._acc_dict): if self._vel_dict[frame] != 0: return (self._vel_dict[frame]).dt(frame) else: return Vector(0) return self._acc_dict[frame] def locatenew(self, name, value): """Creates a new point with a position defined from this point. Parameters ========== name : str The name for the new point value : Vector The position of the new point relative to this point Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Point >>> N = ReferenceFrame('N') >>> P1 = Point('P1') >>> P2 = P1.locatenew('P2', 10 * N.x) """ if not isinstance(name, string_types): raise TypeError('Must supply a valid name') if value == 0: value = Vector(0) value = _check_vector(value) p = Point(name) p.set_pos(self, value) self.set_pos(p, -value) return p def pos_from(self, otherpoint): """Returns a Vector distance between this Point and the other Point. Parameters ========== otherpoint : Point The otherpoint we are locating this one relative to Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p2 = Point('p2') >>> p1.set_pos(p2, 10 * N.x) >>> p1.pos_from(p2) 10*N.x """ outvec = Vector(0) plist = self._pdict_list(otherpoint, 0) for i in range(len(plist) - 1): outvec += plist[i]._pos_dict[plist[i + 1]] return outvec def set_acc(self, frame, value): """Used to set the acceleration of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which this point's acceleration is defined value : Vector The vector value of this point's acceleration in the frame Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_acc(N, 10 * N.x) >>> p1.acc(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(frame) self._acc_dict.update({frame: value}) def set_pos(self, otherpoint, value): """Used to set the position of this point w.r.t. another point. Parameters ========== otherpoint : Point The other point which this point's location is defined relative to value : Vector The vector which defines the location of this point Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p2 = Point('p2') >>> p1.set_pos(p2, 10 * N.x) >>> p1.pos_from(p2) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) self._check_point(otherpoint) self._pos_dict.update({otherpoint: value}) otherpoint._pos_dict.update({self: -value}) def set_vel(self, frame, value): """Sets the velocity Vector of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which this point's velocity is defined value : Vector The vector value of this point's velocity in the frame Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_vel(N, 10 * N.x) >>> p1.vel(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(frame) self._vel_dict.update({frame: value}) def v1pt_theory(self, otherpoint, outframe, interframe): """Sets the velocity of this point with the 1-point theory. The 1-point theory for point velocity looks like this: ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's velocity defined in (N) interframe : ReferenceFrame The intermediate frame in this calculation (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import Vector, dynamicsymbols >>> q = dynamicsymbols('q') >>> q2 = dynamicsymbols('q2') >>> qd = dynamicsymbols('q', 1) >>> q2d = dynamicsymbols('q2', 1) >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B.set_ang_vel(N, 5 * B.y) >>> O = Point('O') >>> P = O.locatenew('P', q * B.x) >>> P.set_vel(B, qd * B.x + q2d * B.y) >>> O.set_vel(N, 0) >>> P.v1pt_theory(O, N, B) q'*B.x + q2'*B.y - 5*q*B.z """ _check_frame(outframe) _check_frame(interframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v1 = self.vel(interframe) v2 = otherpoint.vel(outframe) omega = interframe.ang_vel_in(outframe) self.set_vel(outframe, v1 + v2 + (omega ^ dist)) return self.vel(outframe) def v2pt_theory(self, otherpoint, outframe, fixedframe): """Sets the velocity of this point with the 2-point theory. The 2-point theory for point velocity looks like this: ^N v^P = ^N v^O + ^N omega^B x r^OP where O and P are both points fixed in frame B, which is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's velocity defined in (N) fixedframe : ReferenceFrame The frame in which both points are fixed (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> N = ReferenceFrame('N') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> O = Point('O') >>> P = O.locatenew('P', 10 * B.x) >>> O.set_vel(N, 5 * N.x) >>> P.v2pt_theory(O, N, B) 5*N.x + 10*q'*B.y """ _check_frame(outframe) _check_frame(fixedframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v = otherpoint.vel(outframe) omega = fixedframe.ang_vel_in(outframe) self.set_vel(outframe, v + (omega ^ dist)) return self.vel(outframe) def vel(self, frame): """The velocity Vector of this Point in the ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which the returned velocity vector will be defined in Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_vel(N, 10 * N.x) >>> p1.vel(N) 10*N.x """ _check_frame(frame) if not (frame in self._vel_dict): raise ValueError('Velocity of point ' + self.name + ' has not been' ' defined in ReferenceFrame ' + frame.name) return self._vel_dict[frame] def partial_velocity(self, frame, *gen_speeds): """Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds. Parameters ========== frame : ReferenceFrame The frame with which the velocity is defined in. gen_speeds : functions of time The generalized speeds. Returns ======= partial_velocities : tuple of Vector The partial velocity vectors corresponding to the provided generalized speeds. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Point >>> from sympy.physics.vector import dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> p = Point('p') >>> u1, u2 = dynamicsymbols('u1, u2') >>> p.set_vel(N, u1 * N.x + u2 * A.y) >>> p.partial_velocity(N, u1) N.x >>> p.partial_velocity(N, u1, u2) (N.x, A.y) """ partials = [self.vel(frame).diff(speed, frame, var_in_dcm=False) for speed in gen_speeds] if len(partials) == 1: return partials[0] else: return tuple(partials)
30.492986
82
0.541732
4a1bbb894ac6a047c11cb8ce7e34177f1bef1449
615
py
Python
setup.py
TravisJRCain/lambdata-zmurray
61a906c896ec629e2cd486b300b04921159840da
[ "MIT" ]
null
null
null
setup.py
TravisJRCain/lambdata-zmurray
61a906c896ec629e2cd486b300b04921159840da
[ "MIT" ]
null
null
null
setup.py
TravisJRCain/lambdata-zmurray
61a906c896ec629e2cd486b300b04921159840da
[ "MIT" ]
null
null
null
# setup.py file from setuptools import find_packages, setup with open("README.md", "r") as fh: long_description = fh.read() setup( name="lambdata-zmurray", # the name that you will install via pip version="1.2", author="Zack Murray", author_email="zachery.murray@gmail.com", description="A short description", long_description=long_description, long_description_content_type="text/markdown", # required if using a md file for long desc license="MIT", url="https://github.com/zack-murray/lambdata-zmurray", #keywords="", packages=find_packages() # ["my_lambdata"] )
30.75
94
0.700813
4a1bbc0956f7996313736d93816db3f8f5b0f092
1,787
py
Python
tests/bugs/core_2067_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2022-02-05T11:37:13.000Z
2022-02-05T11:37:13.000Z
tests/bugs/core_2067_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-09-03T11:47:00.000Z
2021-09-03T12:42:10.000Z
tests/bugs/core_2067_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-06-30T14:14:16.000Z
2021-06-30T14:14:16.000Z
#coding:utf-8 # # id: bugs.core_2067 # title: GROUP by and RDB$DB_KEY problems # decription: # tracker_id: CORE-2067 # min_versions: [] # versions: 2.5.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 2.5.0 # resources: None substitutions_1 = [] init_script_1 = """create table t1 (n integer); insert into t1 values (1); insert into t1 values (2); insert into t1 values (3); commit; """ db_1 = db_factory(page_size=4096, sql_dialect=3, init=init_script_1) test_script_1 = """-- First problem: it should be invalid to group by n and select rdb$db_key select n, rdb$db_key from t1 group by n; -- Second problem: error: column unknown DB_KEY is wrong raised select n, rdb$db_key from t1 group by 1, 2; -- Third problem: wrong values for rdb$db_key are returned select n, t1.rdb$db_key from t1 group by 1, 2; """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ N DB_KEY ============ ================ 1 8000000001000000 2 8000000002000000 3 8000000003000000 N DB_KEY ============ ================ 1 8000000001000000 2 8000000002000000 3 8000000003000000 """ expected_stderr_1 = """Statement failed, SQLSTATE = 42000 Dynamic SQL Error -SQL error code = -104 -Invalid expression in the select list (not contained in either an aggregate function or the GROUP BY clause) """ @pytest.mark.version('>=2.5.0') def test_1(act_1: Action): act_1.expected_stdout = expected_stdout_1 act_1.expected_stderr = expected_stderr_1 act_1.execute() assert act_1.clean_stderr == act_1.clean_expected_stderr assert act_1.clean_stdout == act_1.clean_expected_stdout
25.898551
109
0.672636
4a1bbc1d002785f3c7bbae4630b128546892f67d
405
py
Python
blog/serializers.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
1
2020-12-19T15:55:47.000Z
2020-12-19T15:55:47.000Z
blog/serializers.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
null
null
null
blog/serializers.py
canokay/coblog-backend
51854ed2d69f8484877bc9dcc95c19e3aa7d4107
[ "MIT" ]
null
null
null
from rest_framework import serializers from rest_framework.serializers import ModelSerializer from blog.models import Blog class BlogListSerializer(ModelSerializer): class Meta: model = Blog fields = ['id','title','slug','content','is_active'] class BlogDetailSerializer(ModelSerializer): class Meta: model = Blog fields = ['title','slug','content','is_active']
27
60
0.708642
4a1bbc2fe91a78228e6b27d66123adad72d4eb6b
3,435
py
Python
sdk/communication/azure-mgmt-communication/azure/mgmt/communication/_configuration.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/communication/azure-mgmt-communication/azure/mgmt/communication/_configuration.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
2
2021-11-03T06:10:36.000Z
2021-12-01T06:29:39.000Z
sdk/communication/azure-mgmt-communication/azure/mgmt/communication/_configuration.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
1
2021-05-19T02:55:10.000Z
2021-05-19T02:55:10.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential class CommunicationServiceManagementClientConfiguration(Configuration): """Configuration for CommunicationServiceManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: Gets subscription ID which uniquely identifies the Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(CommunicationServiceManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2020-08-20-preview" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-communication/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
47.708333
174
0.695488
4a1bbcb45603daa705d1b49be50128d8ff576329
4,115
py
Python
benchmark/startCirq1544.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq1544.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq1544.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=5 # total number=56 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=3 c.append(cirq.H.on(input_qubit[1])) # number=4 c.append(cirq.H.on(input_qubit[2])) # number=5 c.append(cirq.H.on(input_qubit[3])) # number=6 c.append(cirq.H.on(input_qubit[4])) # number=21 for i in range(2): c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.H.on(input_qubit[3])) # number=51 c.append(cirq.H.on(input_qubit[2])) # number=19 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.H.on(input_qubit[0])) # number=31 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=32 c.append(cirq.H.on(input_qubit[1])) # number=52 c.append(cirq.H.on(input_qubit[0])) # number=33 c.append(cirq.H.on(input_qubit[1])) # number=44 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=45 c.append(cirq.H.on(input_qubit[1])) # number=46 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=53 c.append(cirq.X.on(input_qubit[1])) # number=54 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=55 c.append(cirq.H.on(input_qubit[1])) # number=48 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=49 c.append(cirq.H.on(input_qubit[1])) # number=50 c.append(cirq.X.on(input_qubit[0])) # number=26 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=37 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=38 c.append(cirq.H.on(input_qubit[1])) # number=39 c.append(cirq.X.on(input_qubit[1])) # number=35 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=36 c.append(cirq.X.on(input_qubit[2])) # number=11 c.append(cirq.X.on(input_qubit[3])) # number=12 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[2])) # number=43 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[2])) # number=47 c.append(cirq.X.on(input_qubit[0])) # number=13 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=22 c.append(cirq.X.on(input_qubit[1])) # number=23 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=24 c.append(cirq.X.on(input_qubit[2])) # number=15 c.append(cirq.X.on(input_qubit[1])) # number=29 c.append(cirq.Y.on(input_qubit[4])) # number=28 c.append(cirq.X.on(input_qubit[3])) # number=16 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 5 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq1544.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
39.190476
77
0.64593
4a1bbed8bb2565d4ad0b36fa8cb795ab82feadcb
1,074
py
Python
mac/google-cloud-sdk/lib/third_party/requests_oauthlib/compliance_fixes/facebook.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
mac/google-cloud-sdk/lib/third_party/requests_oauthlib/compliance_fixes/facebook.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
11
2020-02-29T02:51:12.000Z
2022-03-30T23:20:08.000Z
mac/google-cloud-sdk/lib/third_party/requests_oauthlib/compliance_fixes/facebook.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
1
2020-07-25T18:17:57.000Z
2020-07-25T18:17:57.000Z
from json import dumps try: from urlparse import parse_qsl except ImportError: from urllib.parse import parse_qsl from oauthlib.common import to_unicode def facebook_compliance_fix(session): def _compliance_fix(r): # if Facebook claims to be sending us json, let's trust them. if 'application/json' in r.headers.get('content-type', {}): return r # Facebook returns a content-type of text/plain when sending their # x-www-form-urlencoded responses, along with a 200. If not, let's # assume we're getting JSON and bail on the fix. if 'text/plain' in r.headers.get('content-type', {}) and r.status_code == 200: token = dict(parse_qsl(r.text, keep_blank_values=True)) else: return r expires = token.get('expires') if expires is not None: token['expires_in'] = expires token['token_type'] = 'Bearer' r._content = to_unicode(dumps(token)).encode('UTF-8') return r session.register_compliance_hook('access_token_response', _compliance_fix) return session
30.685714
76
0.681564
4a1bc02ab810db3e56985f69ba800508c8f8e9c0
9,370
py
Python
dragonchain/lib/interfaces/storage_utest.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
dragonchain/lib/interfaces/storage_utest.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
dragonchain/lib/interfaces/storage_utest.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Dragonchain, Inc. # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # You may obtain a copy of the Apache License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. import os import importlib import unittest from unittest.mock import MagicMock, patch from dragonchain import test_env # noqa: F401 from dragonchain import exceptions from dragonchain.lib.interfaces import storage class TestStorageInterfaceImport(unittest.TestCase): def tearDown(self): # Make sure we fix the import after the test continuing os.environ["STORAGE_TYPE"] = "s3" importlib.reload(storage) def test_storage_raises_not_implemented_with_bad_storage_type(self): os.environ["STORAGE_TYPE"] = "testing" self.assertRaises(NotImplementedError, importlib.reload, storage) class TestStorageInterface(unittest.TestCase): def setUp(self): os.environ["STORAGE_TYPE"] = "s3" storage.STORAGE_LOCATION = "test" storage.storage = MagicMock() storage.redis.cache_get = MagicMock(return_value=None) storage.redis.cache_put = MagicMock(return_value=None) storage.redis.cache_delete = MagicMock(return_value=None) storage.redis.cache_condition = True def tearDown(self): importlib.reload(storage) importlib.reload(storage.redis) def test_get_calls_storage_get_with_params(self): storage.get("thing") storage.storage.get.assert_called_once_with("test", "thing") def test_get_raises_storage_error(self): storage.storage.get = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.get, "thing") def test_get_calls_cache_with_correct_params(self): storage.storage.get = MagicMock(return_value=b"val") storage.redis.cache_get = MagicMock(return_value=None) storage.redis.cache_put = MagicMock(return_value=None) storage.get("thing") storage.redis.cache_get.assert_called_once_with("thing") storage.redis.cache_put.assert_called_once_with("thing", b"val", None) def test_get_raises_not_found(self): storage.storage.get = MagicMock(side_effect=exceptions.NotFound) self.assertRaises(exceptions.NotFound, storage.get, "thing") def test_put_calls_storage_put_with_params(self): storage.put("thing", b"val") storage.storage.put.assert_called_once_with("test", "thing", b"val") def test_put_raises_storage_error(self): storage.storage.put = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.put, "thing", b"val") def test_put_calls_cache_with_correct_params(self): storage.put("thing", b"val") storage.redis.cache_put.assert_called_once_with("thing", b"val", None) def test_delete_calls_storage_delete_with_params(self): storage.delete("thing") storage.storage.delete.assert_called_once_with("test", "thing") def test_delete_raises_storage_error(self): storage.storage.delete = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.delete, "thing") def test_delete_calls_cache_with_correct_params(self): storage.delete("thing") storage.redis.cache_delete.assert_called_once_with("thing") def test_list_objects_calls_storage_list_objects_with_params(self): storage.storage.list_objects = MagicMock() storage.list_objects("prefix") storage.storage.list_objects.assert_called_once_with("test", "prefix") def test_list_objects_throws_storage_error(self): storage.storage.list_objects = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.list_objects, "thing") def test_does_superkey_exist_calls_storage_does_superkey_exist_with_params(self): storage.does_superkey_exist("prefix") storage.storage.does_superkey_exist.assert_called_once_with("test", "prefix") def test_does_superkey_exist_throws_storage_error(self): storage.storage.does_superkey_exist = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.does_superkey_exist, "thing") def test_does_object_exist_calls_storage_does_object_exist_with_params(self): storage.does_object_exist("prefix") storage.storage.does_object_exist.assert_called_once_with("test", "prefix") def test_does_object_exist_throws_storage_error(self): storage.storage.does_object_exist = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.does_object_exist, "thing") def test_put_object_as_json_calls_put_with_correct_params(self): storage.put = MagicMock() storage.put_object_as_json("key", {}) storage.put.assert_called_once_with("key", b"{}", None, True) def test_get_json_from_object_calls_get_with_correct_params(self): storage.get = MagicMock(return_value=b"{}") storage.get_json_from_object("key") storage.get.assert_called_once_with("key", None, True) def test_get_json_from_object_returns_correct_json(self): storage.get = MagicMock(return_value=b"{}") self.assertEqual(storage.get_json_from_object("key"), {}) storage.get_json_from_object("key") def test_delete_directory_calls_list_objects_with_correct_params(self): storage.list_objects = MagicMock(return_value=[]) storage.delete_directory("thing") storage.list_objects.assert_called_once_with("thing") def test_delete_directory_calls_delete_with_correct_params(self): storage.list_objects = MagicMock(return_value=["obj"]) storage.delete = MagicMock() storage.delete_directory("thing") storage.delete.assert_called_once_with("obj") def test_delete_directory_calls_delete_directory_with_correct_params(self): storage.list_objects = MagicMock(return_value=[]) storage.delete_directory("thing") storage.storage.delete_directory.assert_called_once_with("test", "thing") def test_delete_directory_raises_storage_exception(self): storage.list_objects = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.delete_directory, "thing") def test_select_transaction_calls_storage_select_transaction_with_params(self): storage.storage.select_transaction = MagicMock(return_value={}) storage.select_transaction("block", "txn") storage.storage.select_transaction.assert_called_once_with("test", "block", "txn") def test_select_transaction_calls_cache_get_with_params(self): storage.storage.select_transaction = MagicMock(return_value={}) storage.redis.cache_get = MagicMock(return_value="{}") storage.select_transaction("block", "txn") storage.redis.cache_get.assert_called_once_with("block/txn") def test_select_transaction_returns_correct_value_from_cache(self): storage.storage.select_transaction = MagicMock(return_value={}) storage.redis.cache_get = MagicMock(return_value="{}") self.assertEqual(storage.select_transaction("block", "txn"), {}) def test_select_transaction_returns_correct_value_from_storage(self): storage.storage.select_transaction = MagicMock(return_value={}) self.assertEqual(storage.select_transaction("block", "txn"), {}) def test_select_transaction_calls_cache_put_with_params(self): storage.storage.select_transaction = MagicMock(return_value={}) storage.select_transaction("block", "txn") storage.redis.cache_put("block/txn", "{}", None) def test_select_transaction_raises_not_found(self): storage.storage.select_transaction = MagicMock(side_effect=exceptions.NotFound) self.assertRaises(exceptions.NotFound, storage.select_transaction, "block", "transaction") def test_select_transaction_raises_storage_error(self): storage.storage.select_transaction = MagicMock(side_effect=RuntimeError) self.assertRaises(exceptions.StorageError, storage.select_transaction, "block", "txn") @patch("time.time", return_value=123) def test_save_error_message(self, mock_time): storage.put = MagicMock() storage.save_error_message("some message") storage.put.assert_called_once_with("error_testing_123.log", b"some message", should_cache=False)
48.051282
105
0.746638
4a1bc0a80e692edd597794f82d1a51f5584a99fa
2,869
py
Python
google/cloud/devtools/containeranalysis_v1/types/containeranalysis.py
LaudateCorpus1/python-containeranalysis
72c88b3f38cf4fde60d8fae7462869857719782b
[ "Apache-2.0" ]
null
null
null
google/cloud/devtools/containeranalysis_v1/types/containeranalysis.py
LaudateCorpus1/python-containeranalysis
72c88b3f38cf4fde60d8fae7462869857719782b
[ "Apache-2.0" ]
null
null
null
google/cloud/devtools/containeranalysis_v1/types/containeranalysis.py
LaudateCorpus1/python-containeranalysis
72c88b3f38cf4fde60d8fae7462869857719782b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from grafeas.grafeas_v1.types import severity # type: ignore __protobuf__ = proto.module( package="google.devtools.containeranalysis.v1", manifest={ "GetVulnerabilityOccurrencesSummaryRequest", "VulnerabilityOccurrencesSummary", }, ) class GetVulnerabilityOccurrencesSummaryRequest(proto.Message): r"""Request to get a vulnerability summary for some set of occurrences. Attributes: parent (str): Required. The name of the project to get a vulnerability summary for in the form of ``projects/[PROJECT_ID]``. filter (str): The filter expression. """ parent = proto.Field(proto.STRING, number=1,) filter = proto.Field(proto.STRING, number=2,) class VulnerabilityOccurrencesSummary(proto.Message): r"""A summary of how many vulnerability occurrences there are per resource and severity type. Attributes: counts (Sequence[google.cloud.devtools.containeranalysis_v1.types.VulnerabilityOccurrencesSummary.FixableTotalByDigest]): A listing by resource of the number of fixable and total vulnerabilities. """ class FixableTotalByDigest(proto.Message): r"""Per resource and severity counts of fixable and total vulnerabilities. Attributes: resource_uri (str): The affected resource. severity (grafeas.v1.severity.Severity): The severity for this count. SEVERITY_UNSPECIFIED indicates total across all severities. fixable_count (int): The number of fixable vulnerabilities associated with this resource. total_count (int): The total number of vulnerabilities associated with this resource. """ resource_uri = proto.Field(proto.STRING, number=1,) severity = proto.Field(proto.ENUM, number=2, enum=severity.Severity,) fixable_count = proto.Field(proto.INT64, number=3,) total_count = proto.Field(proto.INT64, number=4,) counts = proto.RepeatedField(proto.MESSAGE, number=1, message=FixableTotalByDigest,) __all__ = tuple(sorted(__protobuf__.manifest))
34.566265
129
0.682468
4a1bc0e9c2d4a0bf97e27e9bc50d7e615ad0613c
511
py
Python
aio-server.py
menecio/aiohttp-django-example
b7c4142a5bf6dddc7d49224cc160204159f002fc
[ "Apache-2.0" ]
4
2020-04-05T10:33:01.000Z
2020-07-16T17:27:39.000Z
aio-server.py
menecio/aiohttp-django-example
b7c4142a5bf6dddc7d49224cc160204159f002fc
[ "Apache-2.0" ]
null
null
null
aio-server.py
menecio/aiohttp-django-example
b7c4142a5bf6dddc7d49224cc160204159f002fc
[ "Apache-2.0" ]
2
2020-06-14T20:36:27.000Z
2020-11-24T03:39:11.000Z
from aiohttp import web from django import setup from django.conf import settings from mymoviedb import settings as my_settings # not the same as django.conf.settings from movies.routes import movies_app async def setup_django(app): settings.configure( INSTALLED_APPS=my_settings.INSTALLED_APPS, DATABASES=my_settings.DATABASES) setup() app = web.Application() app.on_startup.append(setup_django) app.add_subapp('/api/', movies_app) if __name__ == '__main__': web.run_app(app)
24.333333
85
0.761252
4a1bc2f49e44556ecf9eb7f68ba624eb41d85b4b
3,542
py
Python
openGaussBase/testcase/TOOLS/INTERNAL_TOOLS/gs_ctl/Opengauss_Function_Tools_gs_ctl_Case0094.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/TOOLS/INTERNAL_TOOLS/gs_ctl/Opengauss_Function_Tools_gs_ctl_Case0094.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/TOOLS/INTERNAL_TOOLS/gs_ctl/Opengauss_Function_Tools_gs_ctl_Case0094.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : 系统内部使用工具 Case Name : 主机执行gs_ctl notify使用-D指定正确数据库实例目录是否成功 Description : 1.以pending的方式启动主机 2.查看集群状态,主节点是否为pending状态 3.主机指定正确的数据库实录目录执行notify 4.查看集群状态,主节点是否为primary Expect : 1.以pending的方式启动主机成功 2.查看集群状态成功,主节点为pending状态 3.主机指定正确的数据库实录目录执行notify成功 4.查看集群状态,主节点为primary History : """ import unittest from testcase.utils.CommonSH import CommonSH from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger from yat.test import Node from yat.test import macro LOG = Logger() class SystemInternalTools(unittest.TestCase): def setUp(self): LOG.info('----this is setup------') LOG.info('---Opengauss_Function_Tools_gs_ctl_Case0094开始执行-----') self.constant = Constant() self.PrimaryNode = Node('PrimaryDbUser') self.sh_primary = CommonSH('PrimaryDbUser') def test_system_internal_tools(self): LOG.info('-------若为单机环境,后续不执行,直接通过-------') query_cmd = f'''source {macro.DB_ENV_PATH}; gs_om -t status --detail; ''' LOG.info(query_cmd) query_msg = self.PrimaryNode.sh(query_cmd).result() LOG.info(query_msg) if 'Standby' not in query_msg: return '单机环境,后续不执行,直接通过' else: self.StandbyNode = Node('Standby1DbUser') self.sh_standby = CommonSH('Standby1DbUser') LOG.info('--------------以pending的方式启动主机------------------') query_cmd = f'''source {macro.DB_ENV_PATH}; gs_ctl restart -D {macro.DB_INSTANCE_PATH} -M pending ; ''' LOG.info(query_cmd) query_msg = self.PrimaryNode.sh(query_cmd).result() LOG.info(query_msg) self.assertIn(self.constant.RESTART_SUCCESS_MSG, query_msg) LOG.info('----------------查看主机状态-------------------') excute_cmd = f'''source {macro.DB_ENV_PATH}; gs_ctl query -D {macro.DB_INSTANCE_PATH}; ''' LOG.info(excute_cmd) msg = self.PrimaryNode.sh(excute_cmd).result() LOG.info(msg) self.assertIn('Pending', msg) LOG.info('---------主机指定正确的数据库实录目录执行notify------') query_cmd = f'''source {macro.DB_ENV_PATH}; gs_ctl notify -D {macro.DB_INSTANCE_PATH} -M primary ; ''' LOG.info(query_cmd) query_msg = self.StandbyNode.sh(query_cmd).result() LOG.info(query_msg) status = self.sh_primary.get_db_instance_status() self.assertTrue(status) def tearDown(self): LOG.info('--------------this is tearDown--------------') LOG.info('----------------恢复集群状态------------------') query_cmd = f'''source {macro.DB_ENV_PATH}; gs_ctl restart -D {macro.DB_INSTANCE_PATH} -M primary ; ''' LOG.info(query_cmd) query_msg = self.PrimaryNode.sh(query_cmd).result() LOG.info(query_msg) LOG.info('---Opengauss_Function_Tools_gs_ctl_Case0094执行完成---')
34.72549
84
0.618577
4a1bc331bc96a2041b2715b487b1aa526e30a932
5,573
py
Python
section3.py
csivitu/TechEx-Flappy-Bird
6f8d45d4f098c94aac122944f2e0ba9314dbda8c
[ "MIT" ]
null
null
null
section3.py
csivitu/TechEx-Flappy-Bird
6f8d45d4f098c94aac122944f2e0ba9314dbda8c
[ "MIT" ]
null
null
null
section3.py
csivitu/TechEx-Flappy-Bird
6f8d45d4f098c94aac122944f2e0ba9314dbda8c
[ "MIT" ]
null
null
null
import random # For generating random numbers import sys # We will use sys.exit to exit the program import pygame from pygame.locals import * # Basic pygame imports # Global Variables for the game FPS = 40 # number of times the frame will be rendered in 1 sec SCREENWIDTH = 289 # defining width SCREENHEIGHT = 511 # defining height SCREEN = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT)) # sending height and GROUNDY = SCREENHEIGHT * 0.8 GAME_SPRITES = {} PLAYER = "gallery/sprites/bird.png" BACKGROUND = "gallery/sprites/background.png" PIPE = "gallery/sprites/pipe.png" def welcomeScreen(): """ Shows welcome images on the screen """ playerx = int(SCREENWIDTH / 5) playery = int((SCREENHEIGHT - GAME_SPRITES["player"].get_height()) / 2) messagex = int((SCREENWIDTH - GAME_SPRITES["message"].get_width()) / 2) messagey = int(SCREENHEIGHT * 0.13) basex = 0 # Game while True: for event in pygame.event.get(): # if user clicks on cross button, close the game if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() # If the user presses space or up key, start the game for them elif event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): return else: SCREEN.blit(GAME_SPRITES["background"], (0, 0)) SCREEN.blit(GAME_SPRITES["player"], (playerx, playery)) SCREEN.blit(GAME_SPRITES["message"], (messagex, messagey)) SCREEN.blit(GAME_SPRITES["base"], (basex, GROUNDY)) pygame.display.update() FPSCLOCK.tick(FPS) def mainGame(): playerx = int(SCREENWIDTH / 5) playery = int(SCREENWIDTH / 2) basex = 0 # Create 2 pipes for blitting on the screen newPipe1 = getRandomPipe() newPipe2 = getRandomPipe() # my List of upper pipes upperPipes = [ {"x": SCREENWIDTH + 200, "y": newPipe1[0]["y"]}, {"x": SCREENWIDTH + 200 + (SCREENWIDTH / 2), "y": newPipe2[0]["y"]}, ] # my List of lower pipes lowerPipes = [ {"x": SCREENWIDTH + 200, "y": newPipe1[1]["y"]}, {"x": SCREENWIDTH + 200 + (SCREENWIDTH / 2), "y": newPipe2[1]["y"]}, ] pipeVelX = -4 playerVelY = -9 playerMaxVelY = 10 playerMinVelY = -8 playerAccY = 1 playerFlapAccv = -8 # velocity while flapping while True: for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): if playery > 0: # Player is in the screen playerVelY = playerFlapAccv if playerVelY < playerMaxVelY: playerVelY += playerAccY print(playerVelY) playerHeight = GAME_SPRITES["player"].get_height() playery = playery + min(playerVelY, GROUNDY - playery - playerHeight) # move pipes to the left for upperPipe, lowerPipe in zip(upperPipes, lowerPipes): upperPipe["x"] += pipeVelX lowerPipe["x"] += pipeVelX # Add a new pipe when the first is about to cross the leftmost part of the screen if 0 < upperPipes[0]["x"] < 5: newpipe = getRandomPipe() upperPipes.append(newpipe[0]) lowerPipes.append(newpipe[1]) # if the pipe is out of the screen, remove it if upperPipes[0]["x"] < -GAME_SPRITES["pipe"][0].get_width(): upperPipes.pop(0) lowerPipes.pop(0) # Lets blit our sprites now SCREEN.blit(GAME_SPRITES["background"], (0, 0)) for upperPipe, lowerPipe in zip(upperPipes, lowerPipes): SCREEN.blit(GAME_SPRITES["pipe"][0], (upperPipe["x"], upperPipe["y"])) SCREEN.blit(GAME_SPRITES["pipe"][1], (lowerPipe["x"], lowerPipe["y"])) SCREEN.blit(GAME_SPRITES["base"], (basex, GROUNDY)) SCREEN.blit(GAME_SPRITES["player"], (playerx, playery)) pygame.display.update() FPSCLOCK.tick(FPS) def getRandomPipe(): pipeHeight = GAME_SPRITES["pipe"][0].get_height() fixpoint = int(SCREENHEIGHT / 3) y2 = random.randint( int(fixpoint + 0.2 * fixpoint), int(SCREENHEIGHT - GAME_SPRITES["base"].get_height() - 0.5 * fixpoint), ) y1 = pipeHeight - y2 + 100 pipex = SCREENWIDTH + 10 pipe = [{"x": pipex, "y": -y1}, {"x": pipex, "y": y2}] # Upper Pipe # lowepipe return pipe pygame.init() # Initialize all pygame's modules FPSCLOCK = pygame.time.Clock() pygame.display.set_caption("Flappy Bird CSI") GAME_SPRITES["message"] = pygame.image.load( "gallery/sprites/message.png" ).convert_alpha() GAME_SPRITES["base"] = pygame.image.load("gallery/sprites/base.png").convert_alpha() GAME_SPRITES["pipe"] = ( pygame.transform.rotate(pygame.image.load(PIPE).convert_alpha(), 180), pygame.image.load(PIPE).convert_alpha(), ) GAME_SPRITES["background"] = pygame.image.load(BACKGROUND).convert() GAME_SPRITES["player"] = pygame.image.load(PLAYER).convert_alpha() print(GAME_SPRITES["pipe"]) while True: welcomeScreen() # Shows welcome screen to the user until he presses a button mainGame()
34.83125
90
0.594653
4a1bc3a36525c87113d2378e5927a9dbbbf9ee93
1,043
py
Python
manage.py
Echie/MealTracker
117fcfdfeee76af8829aca558a08675b22097c96
[ "MIT" ]
null
null
null
manage.py
Echie/MealTracker
117fcfdfeee76af8829aca558a08675b22097c96
[ "MIT" ]
null
null
null
manage.py
Echie/MealTracker
117fcfdfeee76af8829aca558a08675b22097c96
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys from pathlib import Path if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django # noqa except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise # This allows easy placement of apps within the interior # mealtracker directory. current_path = Path(__file__).parent.resolve() sys.path.append(str(current_path / "mealtracker")) execute_from_command_line(sys.argv)
32.59375
77
0.659636