hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a1a5f97d2b356e735d40f301af546f938382c01
9,684
py
Python
egg/zoo/systematicity/calculate_TRE.py
XeniaOhmer/SystematicRepresentations
825208d1be659dc820e61f577cdb53afc47302f4
[ "MIT" ]
null
null
null
egg/zoo/systematicity/calculate_TRE.py
XeniaOhmer/SystematicRepresentations
825208d1be659dc820e61f577cdb53afc47302f4
[ "MIT" ]
null
null
null
egg/zoo/systematicity/calculate_TRE.py
XeniaOhmer/SystematicRepresentations
825208d1be659dc820e61f577cdb53afc47302f4
[ "MIT" ]
null
null
null
from egg.zoo.systematicity.metrics.tre import * from typing import Iterable, Type import torch import os from abc import ABC import argparse import copy import pickle def get_protocol(interaction, vocab_size): sender_in = interaction.sender_input.cpu() n_atts = int(sum(sender_in[0])) n_vals = int(len(sender_in[0]) // n_atts) messages = interaction.message[:, :-1].cpu() - 1 k_hot_messages = [] for m in messages: k_hot_messages.append(torch.nn.functional.one_hot( m, num_classes=vocab_size).reshape(-1)) k_hot_messages = torch.stack(k_hot_messages, dim=0) derivations = [] for att in range(n_atts): derivations.append(torch.argmax(sender_in[:, att * n_vals:(att + 1) * n_vals], dim=1)) derivations = torch.stack(derivations, dim=1) protocol = {} for i, derivation in enumerate(derivations): protocol[tuple([torch.unsqueeze(elem, dim=0) for elem in derivation])] = k_hot_messages[i] return protocol def get_name(atts, vals, vs, ml, seed): name = ('atts' + str(atts) + '_vals' + str(vals) + '_vs' + str(vs) + '_len' + str(ml) + '/seed' + str(seed) + '/') return name class TreeReconstructionError(ABC): def __init__( self, num_concepts: int, message_length: int, vocab_size: int, composition_fn: Type[CompositionFunction], weight_decay=1e-1, lr=1e-3, early_stopping=True ): self.num_concepts = num_concepts self.message_length = message_length self.composition_fn = composition_fn self.weight_decay = weight_decay self.vocab_size = vocab_size self.learning_rate = lr if early_stopping: self.patience = 50 else: self.patience = 1000 def measure(self, interaction) -> (float, float): protocol = get_protocol(interaction, self.vocab_size) objective = Objective( num_concepts=self.num_concepts, vocab_size=self.vocab_size, message_length=self.message_length, composition_fn=self.composition_fn(representation_size=self.message_length * self.vocab_size), loss_fn=MultipleCrossEntropyLoss(representation_size=self.message_length * self.vocab_size, message_length=self.message_length) ) error_train, error_val, objective_final, objective_es, epoch_es = self._train_model( messages=list(protocol.values()), derivations=list(protocol.keys()), objective=objective, optimizer=torch.optim.Adam(objective.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay), n_epochs=1000 ) return error_train, error_val, objective_final, objective_es, epoch_es def evaluate(self, interaction, trained_objective) -> (float, float): protocol = get_protocol(interaction, self.vocab_size) messages = protocol.values() derivations = protocol.keys() with torch.no_grad(): errors = [trained_objective(message, derivation) for message, derivation in zip(messages, derivations)] return torch.mean(torch.tensor(errors)).item() def _train_model( self, messages: Iterable[torch.Tensor], derivations: Iterable[torch.Tensor], objective: torch.nn.Module, optimizer: torch.optim.Optimizer, n_epochs: int, quiet: bool = False ) -> (float, float): collect_error_train = [] collect_error_val = [] n_samples = len(messages) n_train = int(round(n_samples * 0.9)) messages_train = messages[:n_train] messages_val = messages[n_train:] derivations_train = derivations[:n_train] derivations_val = derivations[n_train:] patience_count = 0 min_val_error = 1e10 early_stopping_flag = False for t in range(n_epochs): if patience_count == self.patience: early_stopping_flag = True optimizer.zero_grad() errors = [objective(message, derivation) for message, derivation in zip(messages_train, derivations_train)] loss = sum(errors) loss.backward() optimizer.step() mean_train_loss = torch.mean(torch.tensor(errors)).item() collect_error_train.append(mean_train_loss) with torch.no_grad(): errors_val = [objective(message, derivation) for message, derivation in zip(messages_val, derivations_val)] mean_val_loss = torch.mean(torch.tensor(errors_val)).item() collect_error_val.append(mean_val_loss) if (mean_val_loss < min_val_error) and (early_stopping_flag is False): min_val_error = mean_val_loss patience_count = 0 min_val_objective = copy.deepcopy(objective) min_val_epoch = t elif early_stopping_flag is False: patience_count += 1 if (t == n_epochs - 1) and (early_stopping_flag is False): min_val_epoch = t-1 min_val_objective = copy.deepcopy(objective) if not quiet and t % 50 == 0: print(f'Training loss at epoch {t} is {mean_train_loss:.4f}', f'Validation loss at epoch {t} is {mean_val_loss:.4f}') return collect_error_train, collect_error_val, objective, min_val_objective, min_val_epoch def main(n_atts, n_vals, prefix, composition_fn): modes = ['test', 'generalization_hold_out', 'uniform_holdout'] try: if composition_fn == 'linear': composition_function = LinearComposition elif composition_fn == 'mlp': composition_function = MLPComposition except UnboundLocalError: print('Invalid composition function provided') for message_length in [3, 4, 6, 8]: for vocab_size in [10, 50, 100]: for seed_orig in range(3): print(composition_fn, "values", n_vals, "vs", vocab_size, "ml", message_length, seed_orig) path = (prefix + 'egg/zoo/systematicity/results/' + get_name(n_atts, n_vals, vocab_size, message_length, seed_orig)) try: interaction_paths = {} for mode in modes: interaction_paths[mode] = path + 'interactions/' + mode + '/' interactions = {} for mode in modes: for filename in os.listdir(interaction_paths[mode]): interactions[mode] = torch.load( interaction_paths[mode] + filename + '/interaction_gpu0') except FileNotFoundError: continue NUM_SEEDS = 1 tre_errors = {} for seed in range(NUM_SEEDS): tre_errors['seed' + str(seed)] = {} TRE = TreeReconstructionError(n_atts * n_vals, message_length, vocab_size, composition_function) error_train, error_val, objective, ES_objective, ES_epoch = TRE.measure(interactions['test']) print('mean error train', error_train[-1], 'mean_error val', error_val[-1]) tre_errors['seed' + str(seed)]['training_mean'] = error_train tre_errors['seed' + str(seed)]['validation_mean'] = error_val tre_errors['seed' + str(seed)]['early_stopping_epoch'] = ES_epoch error_gen_holdout = TRE.evaluate(interactions['generalization_hold_out'], objective) tre_errors['seed' + str(seed)]['generalization_holdout_mean'] = error_gen_holdout error_gen_holdout = TRE.evaluate(interactions['generalization_hold_out'], ES_objective) tre_errors['seed' + str(seed)]['generalization_holdout_mean_es'] = error_gen_holdout error_uniform_holdout = TRE.evaluate(interactions['uniform_holdout'], objective) tre_errors['seed' + str(seed)]['uniform_holdout_mean'] = error_uniform_holdout print('generalization error', error_uniform_holdout) error_uniform_holdout = TRE.evaluate(interactions['uniform_holdout'], ES_objective) tre_errors['seed' + str(seed)]['uniform_holdout_mean_es'] = error_uniform_holdout print('generalization error es', error_uniform_holdout) if not os.path.exists(path + 'tre/'): os.makedirs(path + 'tre/') pickle.dump(tre_errors, open(path + 'tre/tre_' + composition_fn + '.pkl', 'wb')) torch.save(objective, open(path + 'tre/tre_objective_' + composition_fn + '.pt', 'wb')) torch.save(objective, open(path + 'tre/tre_objective_es_' + composition_fn + '.pt', 'wb')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--n_attributes", type=int, default=2) parser.add_argument("--n_values", type=int, default=50) parser.add_argument("--composition_fn", type=str, default='mlp') parser.add_argument("--prefix", type=str, default='C:/Users/Xenia/PycharmProjects/SystematicRepresentations/') args = parser.parse_args() main(args.n_attributes, args.n_values, args.prefix, args.composition_fn)
43.426009
119
0.604709
4a1a60d958da7b3e4e95656f042d140f590977ac
3,476
py
Python
salt/states/keystone_group.py
ipmb/salt
699912ef9cde28040378aa53d6c7a12d8af756b1
[ "Apache-2.0" ]
null
null
null
salt/states/keystone_group.py
ipmb/salt
699912ef9cde28040378aa53d6c7a12d8af756b1
[ "Apache-2.0" ]
null
null
null
salt/states/keystone_group.py
ipmb/salt
699912ef9cde28040378aa53d6c7a12d8af756b1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Management of OpenStack Keystone Groups ======================================= .. versionadded:: Oxygen :depends: shade :configuration: see :py:mod:`salt.modules.keystoneng` for setup instructions Example States .. code-block:: yaml create group: keystone_group.present: - name: group1 delete group: keystone_group.absent: - name: group1 create group with optional params: keystone_group.present: - name: group1 - domain: domain1 - description: 'my group' ''' from __future__ import absolute_import __virtualname__ = 'keystone_endpoint' def __virtual__(): if 'keystoneng.group_get' in __salt__: return __virtualname__ return (False, 'The keystoneng execution module failed to load: shade python module is not available') def _common(kwargs): ''' Returns: None if group wasn't found, otherwise a group object ''' search_kwargs = {'name': kwargs['name']} if 'domain' in kwargs: domain = __salt__['keystoneng.get_entity']( 'domain', name=kwargs.pop('domain')) domain_id = domain.id if hasattr(domain, 'id') else domain search_kwargs['filters'] = {'domain_id': domain_id} kwargs['domain'] = domain return __salt__['keystoneng.group_get'](**search_kwargs) def present(name, auth=None, **kwargs): ''' Ensure an group exists and is up-to-date name Name of the group domain The name or id of the domain description An arbitrary description of the group ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} __salt__['keystoneng.setup_cloud'](auth) kwargs['name'] = name group = _common(kwargs) if group is None: if __opts__['test'] is True: ret['result'] = None ret['changes'] = kwargs ret['pchanges'] = ret['changes'] ret['comment'] = 'Group will be created.' return ret group = __salt__['keystoneng.group_create'](**kwargs) ret['changes'] = group ret['comment'] = 'Created group' return ret changes = __salt__['keystoneng.compare_changes'](group, **kwargs) if changes: if __opts__['test'] is True: ret['result'] = None ret['changes'] = changes ret['pchanges'] = ret['changes'] ret['comment'] = 'Group will be updated.' return ret __salt__['keystoneng.group_update'](**kwargs) ret['changes'].update(changes) ret['comment'] = 'Updated group' return ret def absent(name, auth=None, **kwargs): ''' Ensure group does not exist name Name of the group domain The name or id of the domain ''' ret = {'name': name, 'changes': {}, 'result': True, 'comment': ''} __salt__['keystoneng.setup_cloud'](auth) kwargs['name'] = name group = _common(kwargs) if group: if __opts__['test'] is True: ret['result'] = None ret['changes'] = {'id': group.id} ret['pchanges'] = ret['changes'] ret['comment'] = 'Group will be deleted.' return ret __salt__['keystoneng.group_delete'](name=group) ret['changes']['id'] = group.id ret['comment'] = 'Deleted group' return ret
24.652482
106
0.569908
4a1a61298fd488865f439c918e78abc7d1a64a35
1,980
py
Python
users/migrations/0010_auto_20200418_2304.py
andywar65/rp_repo
726c1426d738b962cabeabd8995aa35767df0c41
[ "BSD-2-Clause" ]
null
null
null
users/migrations/0010_auto_20200418_2304.py
andywar65/rp_repo
726c1426d738b962cabeabd8995aa35767df0c41
[ "BSD-2-Clause" ]
null
null
null
users/migrations/0010_auto_20200418_2304.py
andywar65/rp_repo
726c1426d738b962cabeabd8995aa35767df0c41
[ "BSD-2-Clause" ]
null
null
null
# Generated by Django 3.0.5 on 2020-04-18 21:04 from django.db import migrations, models import users.models class Migration(migrations.Migration): dependencies = [ ('users', '0009_profile_is_trusted'), ] operations = [ migrations.AddField( model_name='profile', name='mc_expiry', field=models.DateField(blank=True, null=True, verbose_name='Scadenza CM/CMA'), ), migrations.AddField( model_name='profile', name='mc_state', field=models.CharField(blank=True, choices=[('0-NF', 'Manca il file'), ('1-VF', 'Verifica file'), ('2-RE', 'Regolare'), ('6-IS', 'In scadenza'), ('3-SV', 'Scaduto, da verificare'), ('4-SI', 'Scaduto, inviare notifica'), ('5-NI', 'Scaduto, notifica inviata')], max_length=4, null=True, verbose_name='Stato del CM/CMA'), ), migrations.AddField( model_name='profile', name='membership', field=models.CharField(blank=True, max_length=50, null=True, verbose_name='Tessera'), ), migrations.AddField( model_name='profile', name='settled', field=models.CharField(blank=True, choices=[('VI', 'Verifica importo totale'), ('YES', 'A posto'), ('NO', 'No!')], max_length=4, null=True, verbose_name='In regola?'), ), migrations.AddField( model_name='profile', name='total_amount', field=models.FloatField(default=0.0, verbose_name='Importo totale'), ), migrations.AlterField( model_name='profile', name='is_trusted', field=models.BooleanField(default=False, verbose_name='Di fiducia'), ), migrations.AlterField( model_name='usermessage', name='attachment', field=models.FileField(blank=True, null=True, upload_to=users.models.user_directory_path, verbose_name='Allegato'), ), ]
39.6
330
0.589899
4a1a6239b22d83eef3de71706341aa33456278c0
4,119
py
Python
train.py
iShohei220/svm
738e350f93228865ed423a9bbf661f9c182bd71f
[ "MIT" ]
null
null
null
train.py
iShohei220/svm
738e350f93228865ed423a9bbf661f9c182bd71f
[ "MIT" ]
null
null
null
train.py
iShohei220/svm
738e350f93228865ed423a9bbf661f9c182bd71f
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import matplotlib.pyplot as plt from SVM import SVM np.random.seed(0) def linear_data(N): X_1_pos = np.random.rand(N) X_2_pos = X_1_pos + np.random.normal(0, 0.3, N) + 0.5 X_pos = np.array([[x_1, x_2, 1] for x_1, x_2 in zip(X_1_pos, X_2_pos)]) X_1_neg = np.random.rand(N) X_2_neg = X_1_neg + np.random.normal(0, 0.3, N) - 0.5 X_neg = np.array([[x_1, x_2, -1] for x_1, x_2 in zip(X_1_neg, X_2_neg)]) X = np.vstack([X_pos, X_neg]) np.random.shuffle(X) y = X[:, 2] X = X[:, :2] return X, y def sin_data(N): X_1_pos = np.random.rand(N) * 4 * np.pi X_2_pos = np.sin(X_1_pos) + np.random.normal(0, 0.4, N) X_pos = np.array([[x_1, x_2, 1] for x_1, x_2 in zip(X_1_pos, X_2_pos)]) X_1_neg = np.random.rand(N) * 4 * np.pi X_2_neg = np.sin(X_1_neg) + np.random.normal(0, 0.4, N) - 1.5 X_neg = np.array([[x_1, x_2, -1] for x_1, x_2 in zip(X_1_neg, X_2_neg)]) X = np.vstack([X_pos, X_neg]) np.random.shuffle(X) y = X[:, 2] X = X[:, :2] return X, y def train_test_split(X, y): X_train, X_test = np.split(X, [int(len(X) * 0.8)]) y_train, y_test = np.split(y, [int(len(y) * 0.8)]) return X_train, X_test, y_train, y_test def show_data(X, y): X_pos = X[y==1] X_neg = X[y==-1] plt.plot(X_pos[:, 0], X_pos[:, 1], 'o', c='b') plt.plot(X_neg[:, 0], X_neg[:, 1], 'o', c='r') def show_boader(model, X): X_border = np.linspace(min(X[:, 0]), max(X[:, 0])) y_border = -(model.w[0] * X_border + model.b) / model.w[1] plt.plot(X_border, y_border, c='y') plt.show() # 正解率 def score(y, y_pred): true_idx = np.where(y_pred == 1) TP = np.sum(y_pred[true_idx] == y[true_idx]) false_idx = np.where(y_pred == -1) TN = np.sum(y_pred[false_idx] == y[false_idx]) return float(TP + TN) / len(y) # 学習 def train(model, X_train, X_test, y_train, y_test): # 学習 model.fit(X_train, y_train) # 予測値 y_pred = model.predict(X_test) # 正解率 acc = model.score(y_test, y_pred) print('正解率: %.3f' % acc) print('学習時間: %.3f' % model.elapsed_time) return acc def main(): print('線形データ') X, y = linear_data(500) X_train, X_test, y_train, y_test = train_test_split(X, y) # 初期化 model = SVM(kernel='rbf') # 学習 acc = train(model, X_train, X_test, y_train, y_test) show_data(X_test, y_test) show_boader(model, X_train) print('実験2: 非線形データ') Ns = [50, 100, 500, 1000] print('実験2-1: 異なるカーネルでの実験') models = [SVM(kernel='rbf'), SVM(kernel='sigmoid'), SVM(kernel='linear')] kernels = ['RBF', 'Sigmoid', 'Linear'] df_score = pd.DataFrame(index=Ns, columns=kernels) df_time = pd.DataFrame(index=Ns, columns=kernels) for N in Ns: print('データ数: %d' % N) X, y = sin_data(N) X_train, X_test, y_train, y_test = train_test_split(X, y) show_data(X, y) plt.show() for model, kernel in zip(models, kernels): print(kernel) acc = train(model, X_train, X_test, y_train, y_test) df_score.loc[N, kernel] = acc df_time.loc[N, kernel] = model.elapsed_time print(df_score) print(df_time) df_score.to_csv('カーネルごとの正解率') df_time.to_csv('カーネルごとの学習時間') print('実験2-2: 異なるパラメータでの実験') X, y = sin_data(500) X_train, X_test, y_train, y_test = train_test_split(X, y) show_data(X, y) plt.show() Cs = [2**a for a in range(-2, 3)] gammas = [2**a for a in range(-4, 2)] df_score = pd.DataFrame(index=Cs, columns=gammas) df_time = pd.DataFrame(index=Cs, columns=gammas) for C in Cs: for gamma in gammas: print('C: %.2f, gamma: %.4f' % (C, gamma)) model = SVM(C=C, gamma=gamma) # 学習 acc = train(model, X_train, X_test, y_train, y_test) df_score.loc[C, gamma] = acc df_time.loc[C, gamma] = model.elapsed_time print(df_score) print(df_time) df_score.to_csv('パラメータごとの正解率.csv') df_time.to_csv('パラメータごとの学習時間.csv') if __name__ == '__main__': main()
32.179688
77
0.584365
4a1a62b9e57ece83c844824e3f11933923a575ba
3,172
py
Python
cpo/lib/fyre/data/openshift_version_data.py
IBM/data-gate-cli
fc0cb1a560a0156c71eb63a550e198d0cd36e1df
[ "Apache-2.0" ]
9
2020-08-21T08:46:34.000Z
2021-09-02T15:47:41.000Z
cpo/lib/fyre/data/openshift_version_data.py
IBM/data-gate-cli
fc0cb1a560a0156c71eb63a550e198d0cd36e1df
[ "Apache-2.0" ]
10
2020-11-26T15:31:43.000Z
2021-11-08T15:00:01.000Z
cpo/lib/fyre/data/openshift_version_data.py
IBM/data-gate-cli
fc0cb1a560a0156c71eb63a550e198d0cd36e1df
[ "Apache-2.0" ]
1
2022-03-10T07:14:49.000Z
2022-03-10T07:14:49.000Z
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import click import semver from tabulate import tabulate class OpenShiftVersionData: def __init__( self, openshift_versions_p: List[semver.VersionInfo], openshift_versions_x: List[semver.VersionInfo], openshift_versions_z: List[semver.VersionInfo], ): self._openshift_versions_p = openshift_versions_p self._openshift_versions_x = openshift_versions_x self._openshift_versions_z = openshift_versions_z def format(self): openshift_versions_union: List[semver.VersionInfo] = [] openshift_versions_union += self._openshift_versions_p openshift_versions_union += self._openshift_versions_x openshift_versions_union += self._openshift_versions_z openshift_versions_union = list(dict.fromkeys(openshift_versions_union)) openshift_versions_union.sort() openshift_versions_list: List[List[str]] = [] openshift_versions_list.append( self._add_openshift_versions_list_element("p", openshift_versions_union, self._openshift_versions_p) ) openshift_versions_list.append( self._add_openshift_versions_list_element("x", openshift_versions_union, self._openshift_versions_x) ) openshift_versions_list.append( self._add_openshift_versions_list_element("z", openshift_versions_union, self._openshift_versions_z) ) click.echo( tabulate( openshift_versions_list, headers=["Platform"] + list( map( lambda openshift_version: str(openshift_version), openshift_versions_union, ) ), ) ) def get_openshift_versions_p(self) -> List[semver.VersionInfo]: return self._openshift_versions_p def get_openshift_versions_x(self) -> List[semver.VersionInfo]: return self._openshift_versions_x def get_openshift_versions_z(self) -> List[semver.VersionInfo]: return self._openshift_versions_z def _add_openshift_versions_list_element( self, platform: str, openshift_versions_union: List[semver.VersionInfo], openshift_versions: List[semver.VersionInfo], ): openshift_version_list: List[str] = [platform] for openshift_version in openshift_versions_union: openshift_version_list.append("✓" if openshift_version in openshift_versions else "-") return openshift_version_list
36.045455
112
0.692308
4a1a63f80d29ab94150b21b7883017f177955c02
668
py
Python
test/read_img.py
ethan4335/pytorch-YOLOv4
44f67130d83fc2949efb50afe67337735836169b
[ "Apache-2.0" ]
null
null
null
test/read_img.py
ethan4335/pytorch-YOLOv4
44f67130d83fc2949efb50afe67337735836169b
[ "Apache-2.0" ]
null
null
null
test/read_img.py
ethan4335/pytorch-YOLOv4
44f67130d83fc2949efb50afe67337735836169b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = 'pytorch-YOLOv4' __author__ = 'deagle' __date__ = '11/15/2020 23:27' # code is far away from bugs with the god animal protecting I love animals. They taste delicious. """ import datetime import cv2 img_path = 'D:/work_source/CV_Project/datasets/footbridge_20201111/train2/pic/IMG_1824_4260.jpg' img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) print(img) def main(): print() if __name__ == '__main__': start_time = datetime.datetime.now() main() end_time = datetime.datetime.now() time_cost = end_time - start_time print(str(time_cost).split('.')[0])
22.266667
96
0.697605
4a1a6409b635c40302aa1ee9c39aadbb8b4f2c1c
901
py
Python
1/sjb.py
xuegao-tzx/Python-exampe
f757c2e3292e883826185a55f6a61f7127cc03bb
[ "Apache-2.0" ]
2
2021-06-20T09:23:36.000Z
2021-12-13T08:34:26.000Z
1/sjb.py
xuegao-tzx/Python-exampe
f757c2e3292e883826185a55f6a61f7127cc03bb
[ "Apache-2.0" ]
null
null
null
1/sjb.py
xuegao-tzx/Python-exampe
f757c2e3292e883826185a55f6a61f7127cc03bb
[ "Apache-2.0" ]
null
null
null
import random import requests import json import datetime from urllib import parse #数据包的POST请求 head={ 'Content-Type': '网络文件的类型和网页的编码', 'Accept-Encoding': 'gzip'#浏览器发给服务器,声明浏览器支持的编码类型 'User-Agent':'eg:Mozilla/5.0 (Linux; Harmony 2; ***-**** Build/HUAWEI***-****; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/83.0.4103.106 Mobile Safari/537.36'#特殊字符串头,使得服务器能够识别客户使用,不一定必须有 } def main(): print("开始发送") try: sj = requests.post( url='你的目标链接地址', headers=head, data='你要发送的数据包内容' ) # 通过字符串创建map,来检查结果 res_map = json.loads(sj.text) except: print("请求错误!") return False if res_map['code'] != '200': print(f"发送失败,错误信息:[{res_map['msg']}]") return False else: print("发送成功!") return True #Writen by TZX. #2021.5.20
25.742857
209
0.570477
4a1a647c6129765555c2b3afe7458681fa4d7b0f
33,390
py
Python
tests/test_sns/test_publishing_boto3.py
orenmazor/moto
4778377e8ecaf729d26602a2c5202b72c1438503
[ "Apache-2.0" ]
null
null
null
tests/test_sns/test_publishing_boto3.py
orenmazor/moto
4778377e8ecaf729d26602a2c5202b72c1438503
[ "Apache-2.0" ]
4
2017-09-30T07:52:52.000Z
2021-12-13T06:56:55.000Z
tests/test_sns/test_publishing_boto3.py
orenmazor/moto
4778377e8ecaf729d26602a2c5202b72c1438503
[ "Apache-2.0" ]
2
2021-11-24T08:05:43.000Z
2021-11-25T16:18:48.000Z
from __future__ import unicode_literals import base64 import json import boto3 import re from freezegun import freeze_time import sure # noqa from botocore.exceptions import ClientError import pytest from moto import mock_sns, mock_sqs, settings from moto.core import ACCOUNT_ID from moto.core.models import responses_mock from moto.sns import sns_backend MESSAGE_FROM_SQS_TEMPLATE = ( '{\n "Message": "%s",\n "MessageId": "%s",\n "Signature": "EXAMPLElDMXvB8r9R83tGoNn0ecwd5UjllzsvSvbItzfaMpN2nk5HVSw7XnOn/49IkxDKz8YrlH2qJXj2iZB0Zo2O71c4qQk1fMUDi3LGpij7RCW7AW9vYYsSqIKRnFS94ilu7NFhUzLiieYr4BKHpdTmdD6c0esKEYBpabxDSc=",\n "SignatureVersion": "1",\n "SigningCertURL": "https://sns.us-east-1.amazonaws.com/SimpleNotificationService-f3ecfb7224c7233fe7bb5f59f96de52f.pem",\n "Subject": "my subject",\n "Timestamp": "2015-01-01T12:00:00.000Z",\n "TopicArn": "arn:aws:sns:%s:' + ACCOUNT_ID + ':some-topic",\n "Type": "Notification",\n "UnsubscribeURL": "https://sns.us-east-1.amazonaws.com/?Action=Unsubscribe&SubscriptionArn=arn:aws:sns:us-east-1:' + ACCOUNT_ID + ':some-topic:2bcfbf39-05c3-41de-beaa-fcfcc21c8f55"\n}' ) @mock_sqs @mock_sns def test_publish_to_sqs(): conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs_conn = boto3.resource("sqs", region_name="us-east-1") sqs_conn.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint="arn:aws:sqs:us-east-1:{}:test-queue".format(ACCOUNT_ID), ) message = "my message" with freeze_time("2015-01-01 12:00:00"): published_message = conn.publish(TopicArn=topic_arn, Message=message) published_message_id = published_message["MessageId"] queue = sqs_conn.get_queue_by_name(QueueName="test-queue") with freeze_time("2015-01-01 12:00:01"): messages = queue.receive_messages(MaxNumberOfMessages=1) expected = MESSAGE_FROM_SQS_TEMPLATE % (message, published_message_id, "us-east-1") acquired_message = re.sub( r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z", "2015-01-01T12:00:00.000Z", messages[0].body, ) acquired_message.should.equal(expected) @mock_sqs @mock_sns def test_publish_to_sqs_raw(): sns = boto3.resource("sns", region_name="us-east-1") topic = sns.create_topic(Name="some-topic") sqs = boto3.resource("sqs", region_name="us-east-1") queue = sqs.create_queue(QueueName="test-queue") subscription = topic.subscribe( Protocol="sqs", Endpoint=queue.attributes["QueueArn"] ) subscription.set_attributes( AttributeName="RawMessageDelivery", AttributeValue="true" ) message = "my message" with freeze_time("2015-01-01 12:00:00"): topic.publish(Message=message) with freeze_time("2015-01-01 12:00:01"): messages = queue.receive_messages(MaxNumberOfMessages=1) messages[0].body.should.equal(message) @mock_sqs @mock_sns def test_publish_to_sqs_bad(): conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs_conn = boto3.resource("sqs", region_name="us-east-1") sqs_conn.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint="arn:aws:sqs:us-east-1:{}:test-queue".format(ACCOUNT_ID), ) message = "my message" try: # Test missing Value conn.publish( TopicArn=topic_arn, Message=message, MessageAttributes={"store": {"DataType": "String"}}, ) except ClientError as err: err.response["Error"]["Code"].should.equal("InvalidParameterValue") try: # Test empty DataType (if the DataType field is missing entirely # botocore throws an exception during validation) conn.publish( TopicArn=topic_arn, Message=message, MessageAttributes={ "store": {"DataType": "", "StringValue": "example_corp"} }, ) except ClientError as err: err.response["Error"]["Code"].should.equal("InvalidParameterValue") try: # Test empty Value conn.publish( TopicArn=topic_arn, Message=message, MessageAttributes={"store": {"DataType": "String", "StringValue": ""}}, ) except ClientError as err: err.response["Error"]["Code"].should.equal("InvalidParameterValue") try: # Test Number DataType, with a non numeric value conn.publish( TopicArn=topic_arn, Message=message, MessageAttributes={"price": {"DataType": "Number", "StringValue": "error"}}, ) except ClientError as err: err.response["Error"]["Code"].should.equal("InvalidParameterValue") err.response["Error"]["Message"].should.equal( "An error occurred (ParameterValueInvalid) when calling the Publish operation: Could not cast message attribute 'price' value to number." ) @mock_sqs @mock_sns def test_publish_to_sqs_msg_attr_byte_value(): conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs = boto3.resource("sqs", region_name="us-east-1") queue = sqs.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint=queue.attributes["QueueArn"], ) queue_raw = sqs.create_queue(QueueName="test-queue-raw") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint=queue_raw.attributes["QueueArn"], Attributes={"RawMessageDelivery": "true"}, ) conn.publish( TopicArn=topic_arn, Message="my message", MessageAttributes={ "store": {"DataType": "Binary", "BinaryValue": b"\x02\x03\x04"} }, ) message = json.loads(queue.receive_messages()[0].body) message["Message"].should.equal("my message") message["MessageAttributes"].should.equal( { "store": { "Type": "Binary", "Value": base64.b64encode(b"\x02\x03\x04").decode(), } } ) message = queue_raw.receive_messages()[0] message.body.should.equal("my message") @mock_sqs @mock_sns def test_publish_to_sqs_msg_attr_number_type(): sns = boto3.resource("sns", region_name="us-east-1") topic = sns.create_topic(Name="test-topic") sqs = boto3.resource("sqs", region_name="us-east-1") queue = sqs.create_queue(QueueName="test-queue") topic.subscribe(Protocol="sqs", Endpoint=queue.attributes["QueueArn"]) queue_raw = sqs.create_queue(QueueName="test-queue-raw") topic.subscribe( Protocol="sqs", Endpoint=queue_raw.attributes["QueueArn"], Attributes={"RawMessageDelivery": "true"}, ) topic.publish( Message="test message", MessageAttributes={"retries": {"DataType": "Number", "StringValue": "0"}}, ) message = json.loads(queue.receive_messages()[0].body) message["Message"].should.equal("test message") message["MessageAttributes"].should.equal( {"retries": {"Type": "Number", "Value": 0}} ) message = queue_raw.receive_messages()[0] message.body.should.equal("test message") @mock_sns def test_publish_sms(): client = boto3.client("sns", region_name="us-east-1") result = client.publish(PhoneNumber="+15551234567", Message="my message") result.should.contain("MessageId") if not settings.TEST_SERVER_MODE: sns_backend.sms_messages.should.have.key(result["MessageId"]).being.equal( ("+15551234567", "my message") ) @mock_sns def test_publish_bad_sms(): client = boto3.client("sns", region_name="us-east-1") # Test invalid number with pytest.raises(ClientError) as cm: client.publish(PhoneNumber="NAA+15551234567", Message="my message") cm.value.response["Error"]["Code"].should.equal("InvalidParameter") cm.value.response["Error"]["Message"].should.contain("not meet the E164") # Test to long ASCII message with pytest.raises(ClientError) as cm: client.publish(PhoneNumber="+15551234567", Message="a" * 1601) cm.value.response["Error"]["Code"].should.equal("InvalidParameter") cm.value.response["Error"]["Message"].should.contain("must be less than 1600") @mock_sqs @mock_sns def test_publish_to_sqs_dump_json(): conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs_conn = boto3.resource("sqs", region_name="us-east-1") sqs_conn.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint="arn:aws:sqs:us-east-1:{}:test-queue".format(ACCOUNT_ID), ) message = json.dumps( { "Records": [ { "eventVersion": "2.0", "eventSource": "aws:s3", "s3": {"s3SchemaVersion": "1.0"}, } ] }, sort_keys=True, ) with freeze_time("2015-01-01 12:00:00"): published_message = conn.publish(TopicArn=topic_arn, Message=message) published_message_id = published_message["MessageId"] queue = sqs_conn.get_queue_by_name(QueueName="test-queue") with freeze_time("2015-01-01 12:00:01"): messages = queue.receive_messages(MaxNumberOfMessages=1) escaped = message.replace('"', '\\"') expected = MESSAGE_FROM_SQS_TEMPLATE % (escaped, published_message_id, "us-east-1") acquired_message = re.sub( r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z", "2015-01-01T12:00:00.000Z", messages[0].body, ) acquired_message.should.equal(expected) @mock_sqs @mock_sns def test_publish_to_sqs_in_different_region(): conn = boto3.client("sns", region_name="us-west-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs_conn = boto3.resource("sqs", region_name="us-west-2") sqs_conn.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint="arn:aws:sqs:us-west-2:{}:test-queue".format(ACCOUNT_ID), ) message = "my message" with freeze_time("2015-01-01 12:00:00"): published_message = conn.publish(TopicArn=topic_arn, Message=message) published_message_id = published_message["MessageId"] queue = sqs_conn.get_queue_by_name(QueueName="test-queue") with freeze_time("2015-01-01 12:00:01"): messages = queue.receive_messages(MaxNumberOfMessages=1) expected = MESSAGE_FROM_SQS_TEMPLATE % (message, published_message_id, "us-west-1") acquired_message = re.sub( r"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d{3}Z", "2015-01-01T12:00:00.000Z", messages[0].body, ) acquired_message.should.equal(expected) @freeze_time("2013-01-01") @mock_sns def test_publish_to_http(): def callback(request): request.headers["Content-Type"].should.equal("text/plain; charset=UTF-8") json.loads.when.called_with(request.body.decode()).should_not.throw(Exception) return 200, {}, "" responses_mock.add_callback( method="POST", url="http://example.com/foobar", callback=callback ) conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] conn.subscribe( TopicArn=topic_arn, Protocol="http", Endpoint="http://example.com/foobar" ) response = conn.publish( TopicArn=topic_arn, Message="my message", Subject="my subject" ) @mock_sqs @mock_sns def test_publish_subject(): conn = boto3.client("sns", region_name="us-east-1") conn.create_topic(Name="some-topic") response = conn.list_topics() topic_arn = response["Topics"][0]["TopicArn"] sqs_conn = boto3.resource("sqs", region_name="us-east-1") sqs_conn.create_queue(QueueName="test-queue") conn.subscribe( TopicArn=topic_arn, Protocol="sqs", Endpoint="arn:aws:sqs:us-east-1:{}:test-queue".format(ACCOUNT_ID), ) message = "my message" subject1 = "test subject" subject2 = "test subject" * 20 with freeze_time("2015-01-01 12:00:00"): conn.publish(TopicArn=topic_arn, Message=message, Subject=subject1) # Just that it doesnt error is a pass try: with freeze_time("2015-01-01 12:00:00"): conn.publish(TopicArn=topic_arn, Message=message, Subject=subject2) except ClientError as err: err.response["Error"]["Code"].should.equal("InvalidParameter") else: raise RuntimeError("Should have raised an InvalidParameter exception") @mock_sns def test_publish_message_too_long(): sns = boto3.resource("sns", region_name="us-east-1") topic = sns.create_topic(Name="some-topic") with pytest.raises(ClientError): topic.publish(Message="".join(["." for i in range(0, 262145)])) # message short enough - does not raise an error topic.publish(Message="".join(["." for i in range(0, 262144)])) def _setup_filter_policy_test(filter_policy): sns = boto3.resource("sns", region_name="us-east-1") topic = sns.create_topic(Name="some-topic") sqs = boto3.resource("sqs", region_name="us-east-1") queue = sqs.create_queue(QueueName="test-queue") subscription = topic.subscribe( Protocol="sqs", Endpoint=queue.attributes["QueueArn"] ) subscription.set_attributes( AttributeName="FilterPolicy", AttributeValue=json.dumps(filter_policy) ) return topic, subscription, queue @mock_sqs @mock_sns def test_filtering_exact_string(): topic, subscription, queue = _setup_filter_policy_test({"store": ["example_corp"]}) topic.publish( Message="match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"store": {"Type": "String", "Value": "example_corp"}}] ) @mock_sqs @mock_sns def test_filtering_exact_string_multiple_message_attributes(): topic, subscription, queue = _setup_filter_policy_test({"store": ["example_corp"]}) topic.publish( Message="match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"}, "event": {"DataType": "String", "StringValue": "order_cancelled"}, }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [ { "store": {"Type": "String", "Value": "example_corp"}, "event": {"Type": "String", "Value": "order_cancelled"}, } ] ) @mock_sqs @mock_sns def test_filtering_exact_string_OR_matching(): topic, subscription, queue = _setup_filter_policy_test( {"store": ["example_corp", "different_corp"]} ) topic.publish( Message="match example_corp", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"} }, ) topic.publish( Message="match different_corp", MessageAttributes={ "store": {"DataType": "String", "StringValue": "different_corp"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match example_corp", "match different_corp"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [ {"store": {"Type": "String", "Value": "example_corp"}}, {"store": {"Type": "String", "Value": "different_corp"}}, ] ) @mock_sqs @mock_sns def test_filtering_exact_string_AND_matching_positive(): topic, subscription, queue = _setup_filter_policy_test( {"store": ["example_corp"], "event": ["order_cancelled"]} ) topic.publish( Message="match example_corp order_cancelled", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"}, "event": {"DataType": "String", "StringValue": "order_cancelled"}, }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match example_corp order_cancelled"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [ { "store": {"Type": "String", "Value": "example_corp"}, "event": {"Type": "String", "Value": "order_cancelled"}, } ] ) @mock_sqs @mock_sns def test_filtering_exact_string_AND_matching_no_match(): topic, subscription, queue = _setup_filter_policy_test( {"store": ["example_corp"], "event": ["order_cancelled"]} ) topic.publish( Message="match example_corp order_accepted", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"}, "event": {"DataType": "String", "StringValue": "order_accepted"}, }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_exact_string_no_match(): topic, subscription, queue = _setup_filter_policy_test({"store": ["example_corp"]}) topic.publish( Message="no match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "different_corp"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_exact_string_no_attributes_no_match(): topic, subscription, queue = _setup_filter_policy_test({"store": ["example_corp"]}) topic.publish(Message="no match") messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_exact_number_int(): topic, subscription, queue = _setup_filter_policy_test({"price": [100]}) topic.publish( Message="match", MessageAttributes={"price": {"DataType": "Number", "StringValue": "100"}}, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([{"price": {"Type": "Number", "Value": 100}}]) @mock_sqs @mock_sns def test_filtering_exact_number_float(): topic, subscription, queue = _setup_filter_policy_test({"price": [100.1]}) topic.publish( Message="match", MessageAttributes={"price": {"DataType": "Number", "StringValue": "100.1"}}, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([{"price": {"Type": "Number", "Value": 100.1}}]) @mock_sqs @mock_sns def test_filtering_exact_number_float_accuracy(): topic, subscription, queue = _setup_filter_policy_test({"price": [100.123456789]}) topic.publish( Message="match", MessageAttributes={ "price": {"DataType": "Number", "StringValue": "100.1234561"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"price": {"Type": "Number", "Value": 100.1234561}}] ) @mock_sqs @mock_sns def test_filtering_exact_number_no_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [100]}) topic.publish( Message="no match", MessageAttributes={"price": {"DataType": "Number", "StringValue": "101"}}, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_exact_number_with_string_no_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [100]}) topic.publish( Message="no match", MessageAttributes={"price": {"DataType": "String", "StringValue": "100"}}, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_string_array_match(): topic, subscription, queue = _setup_filter_policy_test( {"customer_interests": ["basketball", "baseball"]} ) topic.publish( Message="match", MessageAttributes={ "customer_interests": { "DataType": "String.Array", "StringValue": json.dumps(["basketball", "rugby"]), } }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [ { "customer_interests": { "Type": "String.Array", "Value": json.dumps(["basketball", "rugby"]), } } ] ) @mock_sqs @mock_sns def test_filtering_string_array_no_match(): topic, subscription, queue = _setup_filter_policy_test( {"customer_interests": ["baseball"]} ) topic.publish( Message="no_match", MessageAttributes={ "customer_interests": { "DataType": "String.Array", "StringValue": json.dumps(["basketball", "rugby"]), } }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_string_array_with_number_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [100, 500]}) topic.publish( Message="match", MessageAttributes={ "price": {"DataType": "String.Array", "StringValue": json.dumps([100, 50])} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"price": {"Type": "String.Array", "Value": json.dumps([100, 50])}}] ) @mock_sqs @mock_sns def test_filtering_string_array_with_number_float_accuracy_match(): topic, subscription, queue = _setup_filter_policy_test( {"price": [100.123456789, 500]} ) topic.publish( Message="match", MessageAttributes={ "price": { "DataType": "String.Array", "StringValue": json.dumps([100.1234561, 50]), } }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"price": {"Type": "String.Array", "Value": json.dumps([100.1234561, 50])}}] ) @mock_sqs @mock_sns # this is the correct behavior from SNS def test_filtering_string_array_with_number_no_array_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [100, 500]}) topic.publish( Message="match", MessageAttributes={"price": {"DataType": "String.Array", "StringValue": "100"}}, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"price": {"Type": "String.Array", "Value": "100"}}] ) @mock_sqs @mock_sns def test_filtering_string_array_with_number_no_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [500]}) topic.publish( Message="no_match", MessageAttributes={ "price": {"DataType": "String.Array", "StringValue": json.dumps([100, 50])} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns # this is the correct behavior from SNS def test_filtering_string_array_with_string_no_array_no_match(): topic, subscription, queue = _setup_filter_policy_test({"price": [100]}) topic.publish( Message="no_match", MessageAttributes={ "price": {"DataType": "String.Array", "StringValue": "one hundred"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_attribute_key_exists_match(): topic, subscription, queue = _setup_filter_policy_test( {"store": [{"exists": True}]} ) topic.publish( Message="match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"store": {"Type": "String", "Value": "example_corp"}}] ) @mock_sqs @mock_sns def test_filtering_attribute_key_exists_no_match(): topic, subscription, queue = _setup_filter_policy_test( {"store": [{"exists": True}]} ) topic.publish( Message="no match", MessageAttributes={ "event": {"DataType": "String", "StringValue": "order_cancelled"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_attribute_key_not_exists_match(): topic, subscription, queue = _setup_filter_policy_test( {"store": [{"exists": False}]} ) topic.publish( Message="match", MessageAttributes={ "event": {"DataType": "String", "StringValue": "order_cancelled"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [{"event": {"Type": "String", "Value": "order_cancelled"}}] ) @mock_sqs @mock_sns def test_filtering_attribute_key_not_exists_no_match(): topic, subscription, queue = _setup_filter_policy_test( {"store": [{"exists": False}]} ) topic.publish( Message="no match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"} }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([]) @mock_sqs @mock_sns def test_filtering_all_AND_matching_match(): topic, subscription, queue = _setup_filter_policy_test( { "store": [{"exists": True}], "event": ["order_cancelled"], "customer_interests": ["basketball", "baseball"], "price": [100], } ) topic.publish( Message="match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"}, "event": {"DataType": "String", "StringValue": "order_cancelled"}, "customer_interests": { "DataType": "String.Array", "StringValue": json.dumps(["basketball", "rugby"]), }, "price": {"DataType": "Number", "StringValue": "100"}, }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal(["match"]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal( [ { "store": {"Type": "String", "Value": "example_corp"}, "event": {"Type": "String", "Value": "order_cancelled"}, "customer_interests": { "Type": "String.Array", "Value": json.dumps(["basketball", "rugby"]), }, "price": {"Type": "Number", "Value": 100}, } ] ) @mock_sqs @mock_sns def test_filtering_all_AND_matching_no_match(): topic, subscription, queue = _setup_filter_policy_test( { "store": [{"exists": True}], "event": ["order_cancelled"], "customer_interests": ["basketball", "baseball"], "price": [100], "encrypted": [False], } ) topic.publish( Message="no match", MessageAttributes={ "store": {"DataType": "String", "StringValue": "example_corp"}, "event": {"DataType": "String", "StringValue": "order_cancelled"}, "customer_interests": { "DataType": "String.Array", "StringValue": json.dumps(["basketball", "rugby"]), }, "price": {"DataType": "Number", "StringValue": "100"}, }, ) messages = queue.receive_messages(MaxNumberOfMessages=5) message_bodies = [json.loads(m.body)["Message"] for m in messages] message_bodies.should.equal([]) message_attributes = [json.loads(m.body)["MessageAttributes"] for m in messages] message_attributes.should.equal([])
33.490471
496
0.645343
4a1a65a3405fabd6e5dc6ce3a56a8139491f5eb4
11,986
py
Python
custom_components/alexa_media/alexa_entity.py
JoshuaGarrison27/Home-Assistant-Configuration
18d1b7df7d15400008bc93c40d7f0fb5babc90fa
[ "MIT" ]
27
2018-10-13T10:00:53.000Z
2022-02-07T23:33:12.000Z
custom_components/alexa_media/alexa_entity.py
JoshuaGarrison27/Home-Assistant-Configuration
18d1b7df7d15400008bc93c40d7f0fb5babc90fa
[ "MIT" ]
3
2018-10-03T03:13:21.000Z
2019-11-11T22:16:26.000Z
custom_components/alexa_media/alexa_entity.py
JoshuaGarrison27/Home-Assistant-Configuration
18d1b7df7d15400008bc93c40d7f0fb5babc90fa
[ "MIT" ]
5
2019-06-01T10:27:37.000Z
2020-09-18T14:14:56.000Z
""" Alexa Devices Sensors. SPDX-License-Identifier: Apache-2.0 For more details about this platform, please refer to the documentation at https://community.home-assistant.io/t/echo-devices-alexa-as-media-player-testers-needed/58639 """ from datetime import datetime import json import logging import re from typing import Any, Dict, List, Optional, Text, Tuple, TypedDict, Union from alexapy import AlexaAPI, AlexaLogin, hide_serial from homeassistant.helpers.update_coordinator import DataUpdateCoordinator _LOGGER = logging.getLogger(__name__) def has_capability( appliance: Dict[Text, Any], interface_name: Text, property_name: Text ) -> bool: """Determine if an appliance from the Alexa network details offers a particular interface with enough support that is worth adding to Home Assistant. Args: appliance(Dict[Text, Any]): An appliance from a call to AlexaAPI.get_network_details interface_name(Text): One of the interfaces documented by the Alexa Smart Home Skills API property_name(Text): The property that matches the interface name. """ for cap in appliance["capabilities"]: props = cap.get("properties") if ( cap["interfaceName"] == interface_name and props and (props["retrievable"] or props["proactivelyReported"]) ): for prop in props["supported"]: if prop["name"] == property_name: return True return False def is_hue_v1(appliance: Dict[Text, Any]) -> bool: """Determine if an appliance is managed via the Philips Hue v1 Hub. This check catches old Philips Hue bulbs and hubs, but critically, it also catches things pretending to be older Philips Hue bulbs and hubs. This includes things exposed by HA to Alexa using the emulated_hue integration. """ return appliance.get("manufacturerName") == "Royal Philips Electronics" def is_local(appliance: Dict[Text, Any]) -> bool: """Test whether locally connected. This is mainly present to prevent loops with the official Alexa integration. There is probably a better way to prevent that, but this works. """ if appliance.get("connectedVia"): # connectedVia is a flag that determines which Echo devices holds the connection. Its blank for # skill derived devices and includes an Echo name for zigbee and local devices. return True # This catches the Echo/AVS devices. connectedVia isn't reliable in this case. # Only the first appears to get that set. if "ALEXA_VOICE_ENABLED" in appliance.get("applianceTypes", []): namespace = appliance.get("driverIdentity", {}).get("namespace", "") return namespace and namespace != "SKILL" # Zigbee devices are guaranteed to be local and have a particular pattern of id zigbee_pattern = re.compile( "AAA_SonarCloudService_([0-9A-F][0-9A-F]:){7}[0-9A-F][0-9A-F]", flags=re.I ) return zigbee_pattern.fullmatch(appliance.get("applianceId", "")) is not None def is_alexa_guard(appliance: Dict[Text, Any]) -> bool: """Is the given appliance the guard alarm system of an echo.""" return appliance["modelName"] == "REDROCK_GUARD_PANEL" and has_capability( appliance, "Alexa.SecurityPanelController", "armState" ) def is_temperature_sensor(appliance: Dict[Text, Any]) -> bool: """Is the given appliance the temperature sensor of an Echo.""" return is_local(appliance) and has_capability( appliance, "Alexa.TemperatureSensor", "temperature" ) def is_light(appliance: Dict[Text, Any]) -> bool: """Is the given appliance a light controlled locally by an Echo.""" return ( is_local(appliance) and "LIGHT" in appliance["applianceTypes"] and has_capability(appliance, "Alexa.PowerController", "powerState") ) def get_friendliest_name(appliance: Dict[Text, Any]) -> Text: """Find the best friendly name. Alexa seems to store manual renames in aliases. Prefer that one.""" aliases = appliance.get("aliases", []) for alias in aliases: friendly = alias.get("friendlyName") if friendly: return friendly return appliance["friendlyName"] def get_device_serial(appliance: Dict[Text, Any]) -> Optional[Text]: """Find the device serial id if it is present.""" alexa_device_id_list = appliance.get("alexaDeviceIdentifierList", []) for alexa_device_id in alexa_device_id_list: if isinstance(alexa_device_id, dict): return alexa_device_id.get("dmsDeviceSerialNumber") return None class AlexaEntity(TypedDict): """Class for Alexaentity.""" id: Text appliance_id: Text name: Text is_hue_v1: bool class AlexaLightEntity(AlexaEntity): """Class for AlexaLightEntity.""" brightness: bool color: bool color_temperature: bool class AlexaTemperatureEntity(AlexaEntity): """Class for AlexaTemperatureEntity.""" device_serial: Text class AlexaEntities(TypedDict): """Class for holding entities.""" light: List[AlexaLightEntity] guard: List[AlexaEntity] temperature: List[AlexaTemperatureEntity] def parse_alexa_entities(network_details: Optional[Dict[Text, Any]]) -> AlexaEntities: """Turn the network details into a list of useful entities with the important details extracted.""" lights = [] guards = [] temperature_sensors = [] location_details = network_details["locationDetails"]["locationDetails"] for location in location_details.values(): amazon_bridge_details = location["amazonBridgeDetails"]["amazonBridgeDetails"] for bridge in amazon_bridge_details.values(): appliance_details = bridge["applianceDetails"]["applianceDetails"] for appliance in appliance_details.values(): processed_appliance = { "id": appliance["entityId"], "appliance_id": appliance["applianceId"], "name": get_friendliest_name(appliance), "is_hue_v1": is_hue_v1(appliance), } if is_alexa_guard(appliance): guards.append(processed_appliance) elif is_temperature_sensor(appliance): serial = get_device_serial(appliance) processed_appliance["device_serial"] = ( serial if serial else appliance["entityId"] ) temperature_sensors.append(processed_appliance) elif is_light(appliance): processed_appliance["brightness"] = has_capability( appliance, "Alexa.BrightnessController", "brightness" ) processed_appliance["color"] = has_capability( appliance, "Alexa.ColorController", "color" ) processed_appliance["color_temperature"] = has_capability( appliance, "Alexa.ColorTemperatureController", "colorTemperatureInKelvin", ) lights.append(processed_appliance) return {"light": lights, "guard": guards, "temperature": temperature_sensors} class AlexaCapabilityState(TypedDict): """Class for AlexaCapabilityState.""" name: Text namespace: Text value: Union[int, Text, TypedDict] AlexaEntityData = Dict[Text, List[AlexaCapabilityState]] async def get_entity_data( login_obj: AlexaLogin, entity_ids: List[Text] ) -> AlexaEntityData: """Get and process the entity data into a more usable format.""" raw = await AlexaAPI.get_entity_state(login_obj, entity_ids=entity_ids) entities = {} device_states = raw.get("deviceStates") if device_states: for device_state in device_states: entity_id = device_state["entity"]["entityId"] entities[entity_id] = [] for cap_state in device_state["capabilityStates"]: entities[entity_id].append(json.loads(cap_state)) return entities def parse_temperature_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text ) -> Optional[Text]: """Get the temperature of an entity from the coordinator data.""" value = parse_value_from_coordinator( coordinator, entity_id, "Alexa.TemperatureSensor", "temperature" ) return value.get("value") if value and "value" in value else None def parse_brightness_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text, since: datetime ) -> Optional[int]: """Get the brightness in the range 0-100.""" return parse_value_from_coordinator( coordinator, entity_id, "Alexa.BrightnessController", "brightness", since ) def parse_color_temp_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text, since: datetime ) -> Optional[int]: """Get the color temperature in kelvin""" return parse_value_from_coordinator( coordinator, entity_id, "Alexa.ColorTemperatureController", "colorTemperatureInKelvin", since, ) def parse_color_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text, since: datetime ) -> Optional[Tuple[float, float, float]]: """Get the color as a tuple of (hue, saturation, brightness)""" value = parse_value_from_coordinator( coordinator, entity_id, "Alexa.ColorController", "color", since ) if value is not None: hue = value.get("hue", 0) saturation = value.get("saturation", 0) brightness = parse_brightness_from_coordinator(coordinator, entity_id, since) if brightness is not None: return hue, saturation, brightness / 100 return None def parse_power_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text, since: datetime ) -> Optional[Text]: """Get the power state of the entity.""" return parse_value_from_coordinator( coordinator, entity_id, "Alexa.PowerController", "powerState", since ) def parse_guard_state_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text ) -> Optional[Text]: """Get the guard state from the coordinator data.""" return parse_value_from_coordinator( coordinator, entity_id, "Alexa.SecurityPanelController", "armState" ) def parse_value_from_coordinator( coordinator: DataUpdateCoordinator, entity_id: Text, namespace: Text, name: Text, since: Optional[datetime] = None, ) -> Any: """Parse out values from coordinator for Alexa Entities.""" if coordinator.data and entity_id in coordinator.data: for cap_state in coordinator.data[entity_id]: if ( cap_state.get("namespace") == namespace and cap_state.get("name") == name ): if is_cap_state_still_acceptable(cap_state, since): return cap_state.get("value") else: _LOGGER.debug( "Coordinator data for %s is too old to be returned.", hide_serial(entity_id), ) return None else: _LOGGER.debug("Coordinator has no data for %s", hide_serial(entity_id)) return None def is_cap_state_still_acceptable( cap_state: Dict[Text, Any], since: Optional[datetime] ) -> bool: """Determine if a particular capability state is still usable given its age.""" if since is not None: formatted_time_of_sample = cap_state.get("timeOfSample") if formatted_time_of_sample: try: time_of_sample = datetime.strptime( formatted_time_of_sample, "%Y-%m-%dT%H:%M:%S.%fZ" ) return time_of_sample >= since except ValueError: pass return True
36.431611
153
0.661689
4a1a67116e1697ed19728189b38f94e83e10adca
304
py
Python
ledger/__init__.py
Funk66/ledger
b06f39281b81cebb75a6c5f92fa3b8e47b65800c
[ "MIT" ]
null
null
null
ledger/__init__.py
Funk66/ledger
b06f39281b81cebb75a6c5f92fa3b8e47b65800c
[ "MIT" ]
3
2021-11-16T06:38:48.000Z
2021-11-16T06:43:18.000Z
ledger/__init__.py
Funk66/ledger
b06f39281b81cebb75a6c5f92fa3b8e47b65800c
[ "MIT" ]
null
null
null
from logging import getLogger from pathlib import Path __author__ = "Guillermo Guirao Aguilar" __email__ = "contact@guillermoguiraoaguilar.com" __license__ = "MIT" __version__ = "0.2.1" log = getLogger('ledger') home = Path(Path.home() / '.config' / 'ledger') home.mkdir(parents=True, exist_ok=True)
21.714286
48
0.743421
4a1a6737321fc88873cec88540448bfcf7787054
790
py
Python
Tests/Validation/Material/M400_50A.py
Superomeg4/pyleecan
2b695b5f39e77475a07aa0ea89489fb0a9659337
[ "Apache-2.0" ]
null
null
null
Tests/Validation/Material/M400_50A.py
Superomeg4/pyleecan
2b695b5f39e77475a07aa0ea89489fb0a9659337
[ "Apache-2.0" ]
null
null
null
Tests/Validation/Material/M400_50A.py
Superomeg4/pyleecan
2b695b5f39e77475a07aa0ea89489fb0a9659337
[ "Apache-2.0" ]
null
null
null
from pyleecan.Classes.Material import Material from pyleecan.Classes.MatLamination import MatLamination from pyleecan.Classes.ImportMatrixXls import ImportMatrixXls from os.path import dirname, abspath, join file_path = abspath(join(dirname(__file__), "M400-50A.xlsx")) M400_50A = Material(name="M400-50A") M400_50A.mag = MatLamination() M400_50A.mag.mur_lin = 2500.0 M400_50A.mag.Wlam = 0.0005 M400_50A.mag.BH_curve = ImportMatrixXls(file_path=file_path, sheet="BH") M400_50A.struct.rho = 7650.0 M400_50A.struct.Ex = 215000000000.0 M400_50A.struct.Ey = 215000000000.0 M400_50A.struct.Ez = 80000000000.0 M400_50A.struct.Gxy = 0.0 M400_50A.struct.Gxz = 2000000000.0 M400_50A.struct.Gyz = 2000000000.0 M400_50A.struct.nu_xy = 0.3 M400_50A.struct.nu_xz = 0.03 M400_50A.struct.nu_yz = 0.03
31.6
72
0.794937
4a1a6aa72e0d5c104455a233e7bfe231e6485944
3,677
py
Python
src/gameobjects/players/player.py
Isaac-Muscat/Pygame-Smash-Bros-Platformer
1e527efabc9252de8e8cdf5dfc1fb3623f8b00e8
[ "MIT" ]
null
null
null
src/gameobjects/players/player.py
Isaac-Muscat/Pygame-Smash-Bros-Platformer
1e527efabc9252de8e8cdf5dfc1fb3623f8b00e8
[ "MIT" ]
null
null
null
src/gameobjects/players/player.py
Isaac-Muscat/Pygame-Smash-Bros-Platformer
1e527efabc9252de8e8cdf5dfc1fb3623f8b00e8
[ "MIT" ]
1
2021-05-21T16:10:29.000Z
2021-05-21T16:10:29.000Z
# Imports from other modules from physics.rigidbody import Rigidbody from physics.collider2 import BoxCollider2 import settings as s from physics.vector2 import Vector2 import physics.vector2 as vec class Player(Rigidbody): ''' This class handles the generic makeup of a character/player. This should be used as an abstract class and it should be extended. ''' def __init__(self, x, y, key_bindings, **settings): ''' Constructor. :param x: the starting x postion. :param y: the starting y position. :param key_bindings: the key bindings of the player. :param settings: a dictionary/**kwargs that stores mutable stats and abilities of different players. This should be tuned to balance the character stats. ''' super().__init__(int(x), int(y), settings.get('mass', 10)) self.key_bindings = key_bindings self.max_fallspeed = settings.get('max_fallspeed', 0.7) self.max_runspeed = settings.get('max_runspeed', 0.8) self.gravity_coef = settings.get('gravity_coef', 0.22) self.friction_coef = settings.get('friction_coef', 0.05) self.drag_coef = settings.get('drag_coef', 0.1) self.jump_force = settings.get('jump_force', Vector2(0, -10)) self.run_force = settings.get('run_force', Vector2(0.3, 0)) self.jumps = settings.get('jumps', 4) self.jumps_left = self.jumps # Basically acts as a stun duration self.frames_in_tumble = 0 self.direction_facing = settings.get('direction_facing', 1) # 1 for player facing right and -1 for player facing left self.grounded_on = None # Holds obstacle if player is on a ground and None if in the air self.lives = 3 self.damage_percentage = 0 self.size = (settings.get('width',25), settings.get('height', 50)) # The hitbox for the player. self.collider = BoxCollider2(self.position.x, self.position.y, self.position.x + self.size[0], self.position.y + self.size[1]) # The hitbox for the attack if there is one. self.attack_collider = None # The previous hitbox for the player used for detecting collisions using interpolation. self.prev_collider = self.collider.clone() def draw(self, screen): print("You did not override this in the child class.") def update(self, time): super().update(time) # Update previous collider position for interpollation self.prev_collider.set_position(self.collider.p1.x, self.collider.p1.y) # Update collider position based on physics self.collider.set_position(int(self.position.x), int(self.position.y)) # Update attack collider position and duration if self.attack_collider is not None: if self.attack_collider.total_lag <= 0: self.attack_collider = None else: self.attack_collider.set_position_from_player(self) self.attack_collider.total_lag -= vec.clamp(time * s.FPS / 1000, 0, 100000) # Update tumble/stun duration if self.frames_in_tumble > 0: self.frames_in_tumble -= time * s.FPS / 1000 self.frames_in_tumble = vec.clamp(self.frames_in_tumble, 0, 100000) # Reset the player if out of bounds if self.position.y > 1400 or self.position.y < -300 or -300>self.position.x or self.position.x>2400: self.position.x = (1000) self.position.y = (400) self.lives += -1 self.damage_percentage = 0 self.frames_in_tumble = 0
40.855556
126
0.644275
4a1a6ac065146619777ac795268f62a704014ede
11,623
py
Python
cwr/grammar/factory/adapter.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
37
2015-04-21T15:33:53.000Z
2022-02-07T00:02:29.000Z
cwr/grammar/factory/adapter.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
86
2015-02-01T22:26:02.000Z
2021-07-09T08:49:36.000Z
cwr/grammar/factory/adapter.py
orenyodfat/CWR-DataApi
f3b6ba8308c901b6ab87073c155c08e30692333c
[ "MIT" ]
27
2015-01-26T16:01:09.000Z
2021-11-08T23:53:55.000Z
# -*- coding: utf-8 -*- from abc import ABCMeta, abstractmethod from cwr.grammar.field import basic, special, table, filename """ CWR fields grammar adapters. These classes allow the factories to create rules in an homogeneous way, by setting a basic interface which will wrap around field rules, giving a basic common method through which rules can be created. This interface is the FieldAdapter, having only the get_field method, which will receive a series of parameters, all of them optional, and generate a field rule from them. The concrete rule will depend on the implementation. Additionally, it offers the wrap_as_optional method, which allows setting a field as optional. It is meant to be used with a field created by the adapter, so it can be overriden for specific fields. """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development' class FieldAdapter(object, metaclass=ABCMeta): """ Interface for adapting field rules creation to the parser factory requirements. This is meant to receive always the same, or similar, groups of values, and then generate a specific field rule from them. """ def __init__(self): pass @abstractmethod def get_field(self, name=None, columns=None, values=None): """ Generates the rules for the field, applying the received parameters. :param name: the name of the field :param columns: number of columns :param values: allowed values for the field :return: the rule for the field """ raise NotImplementedError("The get_field method is not implemented") def is_numeric(self): return False class AlphanumAdapter(FieldAdapter): """ Creates the grammar for an Alphanumeric (A) field, accepting only the specified number of characters. By default Alphanumeric fields accept only ASCII characters, excluding lowercases. If the extended flag is set to True, then non-ASCII characters are allowed, but the no ASCII lowercase constraint is kept. This can be a compulsory field, in which case the empty string is disallowed. The text will be stripped of heading and trailing whitespaces. """ def __init__(self): super(AlphanumAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): field = basic.alphanum(columns, name, extended=False) return field class ExtendedAlphanumAdapter(FieldAdapter): """ Creates the grammar for an Alphanumeric (A) field, accepting only the specified number of characters. By default Alphanumeric fields accept only ASCII characters, excluding lowercases. If the extended flag is set to True, then non-ASCII characters are allowed, but the no ASCII lowercase constraint is kept. This can be a compulsory field, in which case the empty string is disallowed. The text will be stripped of heading and trailing whitespaces. """ def __init__(self): super(ExtendedAlphanumAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.alphanum(columns, name, extended=True) class EndAlphanumAdapter(FieldAdapter): """ Creates the grammar for an Alphanumeric (A) field, accepting only the specified number of characters. By default Alphanumeric fields accept only ASCII characters, excluding lowercases. If the extended flag is set to True, then non-ASCII characters are allowed, but the no ASCII lowercase constraint is kept. This can be a compulsory field, in which case the empty string is disallowed. The text will be stripped of heading and trailing whitespaces. """ def __init__(self): super(EndAlphanumAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): reg = basic.alphanum(columns, name, extended=True, isLast=True) return reg class NumericAdapter(FieldAdapter): """ Creates the grammar for a Numeric (N) field, accepting only the specified number of characters. This version only allows integers. """ def __init__(self): super(NumericAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.numeric(columns, name) class BooleanAdapter(FieldAdapter): """ Creates the grammar for a Boolean (B) field, accepting only 'Y' or 'N' """ def __init__(self): super(BooleanAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.boolean(name) class FlagAdapter(FieldAdapter): """ Creates the grammar for a Flag (F) field, accepting only 'Y', 'N' or 'U'. """ def __init__(self): super(FlagAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.flag(name) class DateAdapter(FieldAdapter): """ Creates the grammar for a Date (D) field, accepting only numbers in a certain pattern. """ def __init__(self): super(DateAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.date(name) def is_numeric(self): return True class TimeAdapter(FieldAdapter): """ Creates the grammar for a Time (D) field, accepting only numbers in a certain pattern. """ def __init__(self): super(TimeAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.time(name) class DateTimeAdapter(FieldAdapter): """ Creates the grammar for a date and time field, which is a combination of the Date (D) and Time or Duration field (T) . """ def __init__(self): super(DateTimeAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.date_time(name) class BlankAdapter(FieldAdapter): """ Creates the grammar for a blank field. These are for constant empty strings which should be ignored, as they are used just as fillers. """ def __init__(self): super(BlankAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.blank(columns, name) class LookupAdapter(FieldAdapter): """ Creates the grammar for a Lookup (L) field, accepting only values from a list. """ def __init__(self): super(LookupAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return basic.lookup(values, name) class ISWCAdapter(FieldAdapter): """ ISWC field. """ def __init__(self): super(ISWCAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.iswc(name) class IPIBaseNumberAdapter(FieldAdapter): """ IPI Base Number field. """ def __init__(self): super(IPIBaseNumberAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.ipi_base_number(name) class IPINameNumberAdapter(FieldAdapter): """ IPI Name Number field. """ def __init__(self): super(IPINameNumberAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.ipi_name_number(name, ) class PercentageAdapter(FieldAdapter): """ Creates the grammar for a Numeric (N) field storing a percentage and accepting only the specified number of characters. """ def __init__(self): super(PercentageAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): if values is not None and len(values) > 0: maximum = int(values[0]) else: maximum = 100 return special.percentage(columns=columns, maximum=maximum, name=name) class EAN13Adapter(FieldAdapter): """ Creates the grammar for an EAN 13 code. """ def __init__(self): super(EAN13Adapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.ean_13(name=name) class ISRCAdapter(FieldAdapter): """ Creates the grammar for an ISRC code. """ def __init__(self): super(ISRCAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.isrc(name=name) class VISANAdapter(FieldAdapter): """ Creates the grammar for a V-ISAN code. """ def __init__(self): super(VISANAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.visan(name=name) class AudioVisualKeydapter(FieldAdapter): """ Creates the grammar for an Audio Visual Key code. """ def __init__(self): super(AudioVisualKeydapter, self).__init__() def get_field(self, name=None, columns=None, values=None): field = special.audio_visual_key(name=name) return field class CharSetAdapter(FieldAdapter): """ Character set code field. """ def __init__(self): super(CharSetAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return table.char_code(columns=columns, name=name) class VariableAlphanumAdapter(FieldAdapter): """ Creates the grammar for an alphanumeric code where the size ranges between two values. """ def __init__(self): super(VariableAlphanumAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): if values is not None and len(values) > 0: min_size = int(values[0]) else: min_size = columns return filename.alphanum_variable(min_size=min_size, max_size=columns, name=name) class NumericFloatAdapter(FieldAdapter): """ Creates the grammar for a Numeric (N) field, accepting only the specified number of characters. """ def __init__(self): super(NumericFloatAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): if values is not None and len(values) > 0: nums_int = int(values[0]) else: nums_int = columns return basic.numeric_float(columns=columns, nums_int=nums_int, name=name) class YearAdapter(FieldAdapter): """ Creates the grammar for a year field, accepting only the specified number of integers. """ def __init__(self): super(YearAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return filename.year(columns=columns, name=name) class FilenameVersionAdapter(FieldAdapter): """ Creates the grammar for a filename version field, accepting only specific delimiters. """ def __init__(self): super(FilenameVersionAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return filename.filename_version(values=values, name=name) class LookupIntAdapter(FieldAdapter): """ Creates the grammar for an integer lookup field, accepting only specific values, and transforming them to an integer. """ def __init__(self): super(LookupIntAdapter, self).__init__() def get_field(self, name=None, columns=None, values=None): return special.lookup_int(values=values, name=name)
27.220141
78
0.677364
4a1a6ba3b936d0ce79c49141fda740d3a10ea993
8,362
py
Python
processor/processor.py
WangTaoAs/PFD_Net
14a598108e4b16772273057ac7a8fa8674dfc35f
[ "MIT" ]
39
2021-12-06T02:02:13.000Z
2022-03-30T13:00:45.000Z
processor/processor.py
WangTaoAs/PFD-Net-Pose-guided-feature-distangling
14a598108e4b16772273057ac7a8fa8674dfc35f
[ "MIT" ]
5
2021-12-13T03:12:07.000Z
2022-03-24T13:22:56.000Z
processor/processor.py
WangTaoAs/PFD-Net-Pose-guided-feature-distangling
14a598108e4b16772273057ac7a8fa8674dfc35f
[ "MIT" ]
5
2021-12-20T07:47:04.000Z
2022-03-09T07:44:46.000Z
import logging import os import time import torch import torch.nn as nn from utils.meter import AverageMeter from utils.metrics import R1_mAP_eval from torch.cuda import amp import torch.distributed as dist from loss.pose_push_loss import Push_Loss_batch, Push_Loss def do_train(cfg, model, center_criterion, train_loader, val_loader, optimizer, optimizer_center, scheduler, loss_fn, num_query, local_rank): log_period = cfg.SOLVER.LOG_PERIOD checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD eval_period = cfg.SOLVER.EVAL_PERIOD device = "cuda" epochs = cfg.SOLVER.MAX_EPOCHS logger = logging.getLogger("PFDreid.train") logger.info('start training') _LOCAL_PROCESS_GROUP = None if device: # model.to(local_rank) model.to(local_rank) if torch.cuda.device_count() > 1 and cfg.MODEL.DIST_TRAIN: print('Using {} GPUs for training'.format(torch.cuda.device_count())) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True) loss_meter = AverageMeter() acc_meter = AverageMeter() acc_decoder = AverageMeter() evaluator = R1_mAP_eval(num_query, max_rank=50, feat_norm=cfg.TEST.FEAT_NORM, reranking=cfg.TEST.RE_RANKING) scaler = amp.GradScaler() # push_loss = Push_Loss_batch() push_single_loss = Push_Loss() # train for epoch in range(1, epochs + 1): start_time = time.time() loss_meter.reset() acc_meter.reset() acc_decoder.reset() evaluator.reset() scheduler.step(epoch) model.train() for n_iter, (img, vid, target_cam, target_view) in enumerate(train_loader): optimizer.zero_grad() optimizer_center.zero_grad() img = img.to(device) target = vid.to(device) target_cam = target_cam.to(device) target_view = target_view.to(device) # ------------- change --------------- with amp.autocast(enabled=True): encoder_score, encoder_feat, out_score, out, non_skt_parts = model(img, target, cam_label=target_cam, view_label=target_view ) loss_encoder = loss_fn(encoder_score, encoder_feat, target, target_cam) loss_decoder = loss_fn(out_score, out, target, target_cam) loss_push = push_single_loss(out[0], non_skt_parts) loss = 0.5*loss_encoder + 0.5*loss_decoder + loss_push scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() if 'center' in cfg.MODEL.METRIC_LOSS_TYPE: for param in center_criterion.parameters(): param.grad.data *= (1. / cfg.SOLVER.CENTER_LOSS_WEIGHT) scaler.step(optimizer_center) scaler.update() # score = torch.cat([encoder_score, out_score], dim=0) score = encoder_score decoder_score = out_score if isinstance(score, list): acc = (score[0].max(1)[1] == target).float().mean() else: acc = (score.max(1)[1] == target).float().mean() if isinstance(decoder_score, list): decoder_acc = (decoder_score[0].max(1)[1] == target).float().mean() else: decoder_acc = (decoder_score.max(1)[1] == target).float().mean() loss_meter.update(loss.item(), img.shape[0]) acc_meter.update(acc, 1) acc_decoder.update(decoder_acc,1) torch.cuda.synchronize() if (n_iter + 1) % log_period == 0: logger.info("Epoch[{}] Iteration[{}/{}] Loss: {:.3f}, Acc: {:.3f}, Decoder Acc: {:.3f} , Base Lr: {:.2e}" .format(epoch, (n_iter + 1), len(train_loader), loss_meter.avg, acc_meter.avg, acc_decoder.avg , scheduler._get_lr(epoch)[0])) end_time = time.time() time_per_batch = (end_time - start_time) / (n_iter + 1) if cfg.MODEL.DIST_TRAIN: pass else: logger.info("Epoch {} done. Time per batch: {:.3f}[s] Speed: {:.1f}[samples/s]" .format(epoch, time_per_batch, train_loader.batch_size / time_per_batch)) if epoch % checkpoint_period == 0: if cfg.MODEL.DIST_TRAIN: if dist.get_rank() == 0: torch.save(model.state_dict(), os.path.join(cfg.OUTPUT_DIR, cfg.MODEL.NAME + '_{}.pth'.format(epoch))) else: torch.save(model.state_dict(), os.path.join(cfg.OUTPUT_DIR, cfg.MODEL.NAME + '_{}.pth'.format(epoch))) if epoch % eval_period == 0: if cfg.MODEL.DIST_TRAIN: if dist.get_rank() == 0: model.eval() for n_iter, (img, vid, camid, camids, target_view, _) in enumerate(val_loader): with torch.no_grad(): img = img.to(device) camids = camids.to(device) target_view = target_view.to(device) feat = model(img, cam_label=camids, view_label=target_view) evaluator.update((feat, vid, camid)) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results - Epoch: {}".format(epoch)) logger.info("mAP: {:.1%}".format(mAP)) for r in [1, 5, 10]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) torch.cuda.empty_cache() else: model.eval() for n_iter, (img, vid, camid, camids, target_view, _) in enumerate(val_loader): with torch.no_grad(): img = img.to(device) camids = camids.to(device) target_view = target_view.to(device) feat = model(img, cam_label=camids, view_label=target_view) evaluator.update((feat, vid, camid)) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results - Epoch: {}".format(epoch)) logger.info("mAP: {:.1%}".format(mAP)) for r in [1, 5, 10]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) torch.cuda.empty_cache() def do_inference(cfg, model, val_loader, num_query): device = "cuda" logger = logging.getLogger("PFDreid.test") logger.info("Enter inferencing") evaluator = R1_mAP_eval(num_query, max_rank=50, feat_norm=cfg.TEST.FEAT_NORM, reranking=cfg.TEST.RE_RANKING) evaluator.reset() if device: if torch.cuda.device_count() > 1: print('Using {} GPUs for inference'.format(torch.cuda.device_count())) model = nn.DataParallel(model) model.to(device) model.eval() img_path_list = [] cum = 0 for n_iter, (img, pid, camid, camids, target_view, imgpath) in enumerate(val_loader): with torch.no_grad(): img = img.to(device) camids = camids.to(device) target_view = target_view.to(device) feat = model(img, cam_label=camids, view_label=target_view) evaluator.update((feat, pid, camid)) img_path_list.extend(imgpath) cum = cum + 1 # break print('iter num', cum) cmc, mAP, _, _, _, _, _ = evaluator.compute() logger.info("Validation Results ") logger.info("mAP: {:.1%}".format(mAP)) if cfg.TEST.DATASET_TEST == 'partial' or cfg.TEST.DATASET_TEST == 'partial_idils': for r in [1, 3]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) return cmc[0], cmc[2] else: for r in [1, 5, 10]: logger.info("CMC curve, Rank-{:<3}:{:.1%}".format(r, cmc[r - 1])) return cmc[0], cmc[4]
38.182648
142
0.544009
4a1a6cce5a786933a2616476be952f412ff5fac4
2,602
py
Python
src/edubot/snapext/joystick/mappings.py
wendlers/edubot-snap
09c471ef8738a3fc2aae6772a1e02ef8e15d5737
[ "MIT" ]
null
null
null
src/edubot/snapext/joystick/mappings.py
wendlers/edubot-snap
09c471ef8738a3fc2aae6772a1e02ef8e15d5737
[ "MIT" ]
null
null
null
src/edubot/snapext/joystick/mappings.py
wendlers/edubot-snap
09c471ef8738a3fc2aae6772a1e02ef8e15d5737
[ "MIT" ]
null
null
null
## # The MIT License (MIT) # # Copyright (c) 2016 Stefan Wendler # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ## from edubot.snapext.joystick.constants import * # map JS functions to axis and buttons JS_MAPPINGS = { "Generic": { AXIS: { X_AXIS_1: 0, Y_AXIS_1: 1, }, BUTTONS: { BUTTON_1: 0, BUTTON_2: 1, BUTTON_3: 2, BUTTON_4: 3, }, }, "Sony PLAYSTATION(R)3 Controller": { AXIS: { X_AXIS_1: 0, Y_AXIS_1: 1, X_AXIS_2: 2, Y_AXIS_2: 3 }, BUTTONS: { BUTTON_1: 10, BUTTON_2: 11, BUTTON_3: 8, BUTTON_4: 9, L_UP: 4, L_DOWN: 6, L_LEFT: 7, L_RIGHT: 5, R_UP: 12, R_DOWN: 14, R_LEFT: 15, R_RIGHT: 13, L_1: 10, L_2: 8, R_1: 11, R_2: 9, SELECT: 0, START: 3 }, }, "Microsoft X-Box 360 pad": { AXIS: { X_AXIS_1: 0, Y_AXIS_1: 1, X_AXIS_2: 3, Y_AXIS_2: 4, X_AXIS_3: 2, Y_AXIS_3: 5 }, BUTTONS: { BUTTON_1: 4, BUTTON_2: 5, BUTTON_3: 3, BUTTON_4: 0, R_UP: 3, R_DOWN: 0, R_LEFT: 2, R_RIGHT: 1, L_1: 4, R_1: 5, SELECT: 6, START: 7 }, }, }
27.680851
79
0.534589
4a1a6d403e6805470528914f154178cdf5c71f42
2,981
py
Python
setup.py
tobias-urdin/cinder-auto-snapshot
0b136c42be0aca2017b416f56f84e35712a2762b
[ "Apache-2.0" ]
null
null
null
setup.py
tobias-urdin/cinder-auto-snapshot
0b136c42be0aca2017b416f56f84e35712a2762b
[ "Apache-2.0" ]
null
null
null
setup.py
tobias-urdin/cinder-auto-snapshot
0b136c42be0aca2017b416f56f84e35712a2762b
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # cinder-auto-snapshot # Copyright (C) 2015 Tobias Urdin # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os from distutils.core import setup from distutils.core import Command from unittest import TextTestRunner, TestLoader from subprocess import call class TestCommand(Command): description = "run test" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): status = self._run_tests() sys.exit(status) def _run_tests(self): print "hello world" class Pep8Command(Command): description = "run pep8" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): status = self._run_tests() sys.exit(status) def _run_tests(self): try: import pep8 pep8 except ImportError: print('Missing "pep8" library. You can install it using pip:' 'pip install pep8') sys.exit(1) cwd = os.getcwd() retcode = call(('pep8 %s/cinder_auto_snapshot/ %s/test/' % (cwd, cwd)).split(' ')) sys.exit(retcode) class CoverageCommand(Command): description = "run coverage" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): try: import coverage except ImportError: print('Missing "coverage" library. You can install it using pip:' 'pip install coverage') sys.exit(1) cover = coverage.coverage(config_file='.coveragerc') cover.start() tc = TestCommand(self.distribution) tc._run_tests() cover.stop() cover.save() cover.html_report() setup(name='cinder-auto-snapshot', version='1.0', description='Create and delete cinder snapshots automatically.', author='Tobias Urdin', author_email='tobias.urdin@gmail.com', license='Apache License 2.0', packages=['cinder_auto_snapshot'], package_dir={ 'cinder_auto_snapshot': 'cinder_auto_snapshot', }, url='https://github.com/tobias-urdin/cinder-auto-snapshot', cmdclass={ 'test': TestCommand, 'pep8': Pep8Command, 'coverage': CoverageCommand }, )
24.841667
77
0.621939
4a1a6ec889f51461d2f21c1f4a6757912b8bda49
66
py
Python
dict_hash/__version__.py
KairosAerospace/dict_hash
8c6343639cc66d46f7ec6621f27792d4ce56ad22
[ "MIT" ]
11
2020-09-01T20:17:17.000Z
2022-01-27T08:45:21.000Z
dict_hash/__version__.py
KairosAerospace/dict_hash
8c6343639cc66d46f7ec6621f27792d4ce56ad22
[ "MIT" ]
4
2020-05-28T08:46:02.000Z
2021-10-03T15:57:54.000Z
dict_hash/__version__.py
KairosAerospace/dict_hash
8c6343639cc66d46f7ec6621f27792d4ce56ad22
[ "MIT" ]
2
2021-10-02T12:41:49.000Z
2022-01-19T03:21:14.000Z
"""Current version of package dict_hash""" __version__ = "1.1.20"
22
42
0.712121
4a1a6ed4bed1b4a60130338a30dc8b7a302232d3
1,629
py
Python
profiles_api/models.py
abdulbasidh/profiles-rest-api
b97fad3d2588f92abeb0c78897838d6f93c86074
[ "MIT" ]
null
null
null
profiles_api/models.py
abdulbasidh/profiles-rest-api
b97fad3d2588f92abeb0c78897838d6f93c86074
[ "MIT" ]
null
null
null
profiles_api/models.py
abdulbasidh/profiles-rest-api
b97fad3d2588f92abeb0c78897838d6f93c86074
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """Create a new user profile""" if not email: raise ValueError('User must have an email address') email = self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """Create and save new superuser with given details""" user = self.create_user(email,name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """DB model fro user in the sysytem""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FILED = ['name'] def get_full_name(self): """Retrive full name of user""" return self.name def get_short_name(self): """Retrive short name of user""" return self.name def __str__(self): """Return string representation of user""" return self.email
28.578947
63
0.674647
4a1a6f1f8799e7096e391137961093d55cb289cb
372
py
Python
mushroom/__init__.py
ML2R-center/mushroom
07fe4f43fd7bb7ebdec71db8f75e0a9b87573e00
[ "MIT" ]
2
2019-02-28T04:56:29.000Z
2020-09-01T07:52:35.000Z
mushroom/__init__.py
ML2R-center/mushroom
07fe4f43fd7bb7ebdec71db8f75e0a9b87573e00
[ "MIT" ]
1
2020-02-15T03:15:04.000Z
2022-03-24T05:21:08.000Z
mushroom/__init__.py
ML2R-center/mushroom
07fe4f43fd7bb7ebdec71db8f75e0a9b87573e00
[ "MIT" ]
2
2019-12-05T03:15:46.000Z
2021-01-12T11:23:35.000Z
from mushroom.result_analysis import get_accuracy_precision_recall_from_series from mushroom.result_analysis import analysis_with_different_length_stems from mushroom.result_analysis import get_accuracy_precision_recall_from_series_with_stem_length from mushroom.core import mushroom_triple_classification_with_different_pars from mushroom.util import download_nball_files
74.4
95
0.935484
4a1a704c81f45b2d6ff90141933b441cf59e8e06
10,448
py
Python
foo/comm.py
ThomasZh/legend-league-portal
df06ac05ea506c3e257517716b6d692b69c8bf6b
[ "Apache-2.0" ]
null
null
null
foo/comm.py
ThomasZh/legend-league-portal
df06ac05ea506c3e257517716b6d692b69c8bf6b
[ "Apache-2.0" ]
null
null
null
foo/comm.py
ThomasZh/legend-league-portal
df06ac05ea506c3e257517716b6d692b69c8bf6b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # _*_ coding: utf-8_*_ # # Copyright 2016 planc2c.com # thomas@time2box.com # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import tornado.web import logging import time import sys import os import uuid import smtplib import random import hashlib from hashlib import md5 import string import json as JSON # 启用别名,不会跟方法里的局部变量混淆 from bson import json_util from tornado.escape import json_encode, json_decode from tornado.httpclient import * from tornado.httputil import url_concat from global_const import * class singleton(object): _singleton = None; def __new__(cls): if cls._singleton is None: cls._singleton = object.__new__(cls); return cls._singleton; #获取脚本文件的当前路径 def cur_file_dir(): #获取脚本路径 path = sys.path[0] #判断为脚本文件还是py2exe编译后的文件,如果是脚本文件,则返回的是脚本的目录,如果是py2exe编译后的文件,则返回的是编译后的文件路径 if os.path.isdir(path): return path elif os.path.isfile(path): return os.path.dirname(path) # 时间格式转换 def timestamp_date(value): #_format = '%Y-%m-%d %H:%M:%S' _format = '%Y/%m/%d/%H' # value is timestamp(int), eg: 1332888820 _value = time.localtime(value) ## time.struct_time(tm_year=2012, tm_mon=3, tm_mday=28, tm_hour=6, tm_min=53, tm_sec=40, tm_wday=2, tm_yday=88, tm_isdst=0) _dt = time.strftime(_format, _value) return _dt def timestamp_friendly_date(value): #_format = '%Y-%m-%d %H:%M:%S' y_format = '%Y' m_format = '%m' d_format = '%d' w_format = '%w' # value is timestamp(int), eg: 1332888820 _value = time.localtime(value) _current = time.localtime() ## time.struct_time(tm_year=2012, tm_mon=3, tm_mday=28, tm_hour=6, tm_min=53, tm_sec=40, tm_wday=2, tm_yday=88, tm_isdst=0) current_y_dt = time.strftime(y_format, _current) y_dt = time.strftime(y_format, _value) m_dt = time.strftime(m_format, _value) d_dt = time.strftime(d_format, _value) w_dt = time.strftime(w_format, _value) if w_dt == '0': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期日' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期日' elif w_dt == '1': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期一' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期一' elif w_dt == '2': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期二' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期二' elif w_dt == '3': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期三' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期三' elif w_dt == '4': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期四' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期四' elif w_dt == '5': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期五' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期五' elif w_dt == '6': if current_y_dt == y_dt: _dt = str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期六' else: _dt = str(int(y_dt)) + '年' + str(int(m_dt)) + '月' + str(int(d_dt)) + ' 星期六' return _dt def timestamp_datetime(value): #_format = '%Y-%m-%d %H:%M:%S' _format = '%m/%d/%Y %H:%M' # value is timestamp(int), eg: 1332888820 _value = time.localtime(value) ## time.struct_time(tm_year=2012, tm_mon=3, tm_mday=28, tm_hour=6, tm_min=53, tm_sec=40, tm_wday=2, tm_yday=88, tm_isdst=0) _dt = time.strftime(_format, _value) return _dt def datetime_timestamp(dt): # dt is string time.strptime(dt, '%m/%d/%Y %H:%M') ## time.struct_time(tm_year=2012, tm_mon=3, tm_mday=28, tm_hour=6, tm_min=53, tm_sec=40, tm_wday=2, tm_yday=88, tm_isdst=-1) # "2012-03-28 06:53:40" to timestamp(int) _timestamp = time.mktime(time.strptime(dt, '%m/%d/%Y %H:%M')) return int(_timestamp) def generate_md5(fp): m = md5() m.update(fp) return m.hexdigest() # 创建发生短信的 sendcloud 签名 def generate_sms_sign(SMS_KEY, param): param_keys = list(param.keys()) param_keys.sort() param_str = "" for key in param_keys: param_str += key + '=' + str(param[key]) + '&' param_str = param_str[:-1] sign_str = SMS_KEY + '&' + param_str + '&' + SMS_KEY #sign = generate_md5(sign_str) sign = hashlib.md5(sign_str).hexdigest() return sign # 生成4位数字验证码 def generate_verify_code(): chars=['0','1','2','3','4','5','6','7','8','9'] x = random.choice(chars),random.choice(chars),random.choice(chars),random.choice(chars) verifyCode = "".join(x) return verifyCode #验证码函数 def randon_x(i): code = [] for i in range(i): if i == random.randint(1,3): code.append(str(random.randint(1,9))) else: tmp = random.randint(65,90) code.append(chr(tmp)) return ''.join(code) def generate_uuid_str(): return str(uuid.uuid1()).replace('-', '') def generate_nonce_str(): return ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10)) def hash_pwd(md5pwd, salt): md5salt = hashlib.md5(salt).hexdigest() ecrypted_pwd = hashlib.md5(md5pwd + md5salt).hexdigest() return ecrypted_pwd class PageNotFoundHandler(tornado.web.RequestHandler): def get(self): self.render('comm/page-404.html') class BaseHandler(tornado.web.RequestHandler): def set_default_headers(self): self.set_header("pragma","no-cache") self.set_header("Cache-Control","no-store") self.set_header("Cache-Control","no-cache") self.set_header("expires","0") def get_league_info(self): # league(联盟信息) url = API_DOMAIN+"/api/leagues/"+LEAGUE_ID http_client = HTTPClient() response = http_client.fetch(url, method="GET") logging.info("got response %r", response.body) data = json_decode(response.body) league_info = data['rs'] return league_info def get_code(self): url = API_DOMAIN+"/api/auth/codes" http_client = HTTPClient() data = {"appid":"7x24hs:blog", "app_secret":"2518e11b3bc89ebec594350d5739f29e"} _json = json_encode(data) response = http_client.fetch(url, method="POST", body=_json) session_code = json_decode(response.body) logging.info("got session_code %r", session_code) code = session_code['code'] return code def write_error(self, status_code, **kwargs): host = self.request.headers['Host'] logging.info("got host %r", host) try: reason = "" for line in traceback.format_exception(*kwargs["exc_info"]): if "HTTP 404: Not Found" in line: self.render('comm/page-404.html') self.finish() reason += line logging.info("got status_code %r reason %r", status_code, reason) params = {"app":"club-ops", "sys":host, "level":status_code, "message": reason} url = url_concat("http://kit.7x24hs.com/api/sys-error", params) http_client = HTTPClient() _json = json_encode(params) response = http_client.fetch(url, method="POST", body=_json) logging.info("got response.body %r", response.body) except: logging.warn("write log to http://kit.7x24hs.com/api/sys-error error") self.render("comm/page-500.html", status_code=status_code) class AuthorizationHandler(BaseHandler): def get_current_user(self): self.set_secure_cookie("login_next", self.request.uri) access_token = self.get_secure_cookie("access_token") logging.info("got access_token %r from cookie", access_token) if not access_token: return None else: expires_at = self.get_secure_cookie("expires_at") logging.info("got expires_at %r from cookie", expires_at) if not expires_at: return None else: _timestamp = int(time.time()) if int(expires_at) > _timestamp: return access_token else: # Logic: refresh_token refresh_token = self.get_secure_cookie("refresh_token") if not refresh_token: return None else: try: url = API_DOMAIN+"/api/auth/tokens" http_client = HTTPClient() headers={"Authorization":"Bearer "+refresh_token} data = {"action":"refresh"} _json = json_encode(data) logging.info("request %r body %r", url, _json) response = http_client.fetch(url, method="POST", headers=headers, body=_json) logging.info("got response %r", response.body) session_ticket = json_decode(response.body) self.set_secure_cookie("access_token", session_ticket['access_token']) self.set_secure_cookie("expires_at", str(session_ticket['expires_at'])) self.set_secure_cookie("refresh_token", session_ticket['refresh_token']) return session_ticket['access_token'] except: return None return None
34.710963
129
0.584992
4a1a7058a8ffe5b60680836ac2a1f0dc268ff553
525
py
Python
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/fabfile.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/fabfile.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
Build_Web_With_Flask/Building web applications with Flask_Code/chapter10/chapter10/fabfile.py
abacuspix/NFV_project
f5585a6750119b1f954fea65c37a14badad1fd62
[ "MIT" ]
null
null
null
# coding:utf-8 from fabric.api import * from fabric.contrib.files import exists env.linewise = True # forward_agent allows you to git pull from your repository # if you have your ssh key setup env.forward_agent = True env.hosts = ['your.host.ip.address'] def create_project(): if not exists('~/project'): run('git clone git://path/to/repo.git') def update_code(): with cd('~/project'): run('git pull') def reload(): "Reloads project instance" run('touch --no-dereference /tmp/reload')
20.192308
59
0.678095
4a1a705df8527f8cf57558cb597ced9fd49cbe27
7,524
py
Python
pettingzoo/classic/connect_four/connect_four.py
raphaelavalos/PettingZoo
f34b57a9f4f20947ae56c6708f66c4510413d148
[ "Apache-2.0" ]
null
null
null
pettingzoo/classic/connect_four/connect_four.py
raphaelavalos/PettingZoo
f34b57a9f4f20947ae56c6708f66c4510413d148
[ "Apache-2.0" ]
null
null
null
pettingzoo/classic/connect_four/connect_four.py
raphaelavalos/PettingZoo
f34b57a9f4f20947ae56c6708f66c4510413d148
[ "Apache-2.0" ]
null
null
null
from pettingzoo import AECEnv from gym import spaces import numpy as np import os import pygame from pettingzoo.utils import wrappers from pettingzoo.utils.agent_selector import agent_selector def get_image(path): import pygame from os import path as os_path cwd = os_path.dirname(__file__) image = pygame.image.load(cwd + '/' + path) return image def env(): env = raw_env() env = wrappers.TerminateIllegalWrapper(env, illegal_reward=-1) env = wrappers.AssertOutOfBoundsWrapper(env) env = wrappers.OrderEnforcingWrapper(env) return env class raw_env(AECEnv): metadata = {'render.modes': ['human', "rgb_array"], "name": "connect_four_v3"} def __init__(self): super().__init__() # 6 rows x 7 columns # blank space = 0 # agent 0 -- 1 # agent 1 -- 2 # flat representation in row major order self.screen = None self.board = [0] * (6 * 7) self.agents = ['player_0', 'player_1'] self.possible_agents = self.agents[:] self.action_spaces = {i: spaces.Discrete(7) for i in self.agents} self.observation_spaces = {i: spaces.Dict({ 'observation': spaces.Box(low=0, high=1, shape=(6, 7, 2), dtype=np.int8), 'action_mask': spaces.Box(low=0, high=1, shape=(7,), dtype=np.int8) }) for i in self.agents} # Key # ---- # blank space = 0 # agent 0 = 1 # agent 1 = 2 # An observation is list of lists, where each list represents a row # # array([[0, 1, 1, 2, 0, 1, 0], # [1, 0, 1, 2, 2, 2, 1], # [0, 1, 0, 0, 1, 2, 1], # [1, 0, 2, 0, 1, 1, 0], # [2, 0, 0, 0, 1, 1, 0], # [1, 1, 2, 1, 0, 1, 0]], dtype=int8) def observe(self, agent): board_vals = np.array(self.board).reshape(6, 7) cur_player = self.possible_agents.index(agent) opp_player = (cur_player + 1) % 2 cur_p_board = np.equal(board_vals, cur_player + 1) opp_p_board = np.equal(board_vals, opp_player + 1) observation = np.stack([cur_p_board, opp_p_board], axis=2).astype(np.int8) legal_moves = self._legal_moves() if agent == self.agent_selection else [] action_mask = np.zeros(7, int) for i in legal_moves: action_mask[i] = 1 return {'observation': observation, 'action_mask': action_mask} def _legal_moves(self): return [i for i in range(7) if self.board[i] == 0] # action in this case is a value from 0 to 6 indicating position to move on the flat representation of the connect4 board def step(self, action): if self.dones[self.agent_selection]: return self._was_done_step(action) # assert valid move assert (self.board[0:7][action] == 0), "played illegal move." piece = self.agents.index(self.agent_selection) + 1 for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))): if self.board[i] == 0: self.board[i] = piece break next_agent = self._agent_selector.next() winner = self.check_for_winner() # check if there is a winner if winner: self.rewards[self.agent_selection] += 1 self.rewards[next_agent] -= 1 self.dones = {i: True for i in self.agents} # check if there is a tie elif all(x in [1, 2] for x in self.board): # once either play wins or there is a draw, game over, both players are done self.dones = {i: True for i in self.agents} else: # no winner yet self.agent_selection = next_agent self._accumulate_rewards() def reset(self): # reset environment self.board = [0] * (6 * 7) self.agents = self.possible_agents[:] self.rewards = {i: 0 for i in self.agents} self._cumulative_rewards = {name: 0 for name in self.agents} self.dones = {i: False for i in self.agents} self.infos = {i: {} for i in self.agents} self._agent_selector = agent_selector(self.agents) self.agent_selection = self._agent_selector.reset() def render(self, mode='human'): screen_width = 1287 screen_height = 1118 if self.screen is None: if mode == "human": pygame.init() self.screen = pygame.display.set_mode((screen_width, screen_height)) else: self.screen = pygame.Surface((screen_width, screen_height)) if mode == "human": pygame.event.get() # Load and scale all of the necessary images tile_size = (screen_width * (91 / 99)) / 7 red_chip = get_image(os.path.join('img', 'C4RedPiece.png')) red_chip = pygame.transform.scale(red_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))) black_chip = get_image(os.path.join('img', 'C4BlackPiece.png')) black_chip = pygame.transform.scale(black_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))) board_img = get_image(os.path.join('img', 'Connect4Board.png')) board_img = pygame.transform.scale(board_img, ((int(screen_width)), int(screen_height))) self.screen.blit(board_img, (0, 0)) # Blit the necessary chips and their positions for i in range(0, 42): if self.board[i] == 1: self.screen.blit(red_chip, ((i % 7) * (tile_size) + (tile_size * (6 / 13)), int((i / 7)) * (tile_size) + (tile_size * (6 / 13)))) elif self.board[i] == 2: self.screen.blit(black_chip, ((i % 7) * (tile_size) + (tile_size * (6 / 13)), int((i / 7)) * (tile_size) + (tile_size * (6 / 13)))) if mode == "human": pygame.display.update() observation = np.array(pygame.surfarray.pixels3d(self.screen)) return np.transpose(observation, axes=(1, 0, 2)) if mode == "rgb_array" else None def close(self): if self.screen is not None: import pygame pygame.quit() self.screen = None def check_for_winner(self): board = np.array(self.board).reshape(6, 7) piece = self.agents.index(self.agent_selection) + 1 # Check horizontal locations for win column_count = 7 row_count = 6 for c in range(column_count - 3): for r in range(row_count): if board[r][c] == piece and board[r][c + 1] == piece and board[r][c + 2] == piece and board[r][c + 3] == piece: return True # Check vertical locations for win for c in range(column_count): for r in range(row_count - 3): if board[r][c] == piece and board[r + 1][c] == piece and board[r + 2][c] == piece and board[r + 3][c] == piece: return True # Check positively sloped diagonals for c in range(column_count - 3): for r in range(row_count - 3): if board[r][c] == piece and board[r + 1][c + 1] == piece and board[r + 2][c + 2] == piece and board[r + 3][c + 3] == piece: return True # Check negatively sloped diagonals for c in range(column_count - 3): for r in range(3, row_count): if board[r][c] == piece and board[r - 1][c + 1] == piece and board[r - 2][c + 2] == piece and board[r - 3][c + 3] == piece: return True return False
36.347826
147
0.569112
4a1a706333e97d749328f9bcaba45ede8eb9ce96
4,796
py
Python
software/multifluids_icferst/tests/turbine_flux_penalty_2plus1/mesh/scripts/triangle_add_edgeowner.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
2
2020-05-11T02:39:46.000Z
2020-05-11T03:08:38.000Z
software/multifluids_icferst/tests/turbine_flux_dg_2d/mesh/scripts/triangle_add_edgeowner.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
null
null
null
software/multifluids_icferst/tests/turbine_flux_dg_2d/mesh/scripts/triangle_add_edgeowner.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
2
2020-05-21T22:50:19.000Z
2020-10-28T17:16:31.000Z
#!/usr/bin/env python import sys import triangle import copy import numpy from sets import Set #input surface_id, filename # 5.5.2010: this script adds a new attribute to the .edge file which holds the "owner" element number of this edge # Here is an examle geo file for this script: # Point(1) = {0, 0, 0, 2}; # Point(2) = {1, 0, 0, 2}; # Point(3) = {1, 1, 0, 2}; # Point(4) = {0, 1, 0, 2}; # Point(5) = {0.5, 0, 0, 2}; # Point(6) = {0.5, 1, 0, 2}; # Point(7) = {0.500001, 0, 0, 2}; # Point(8) = {0.500001, 1, 0, 2}; # Point(9) = {0.4, -0.1, 0, 2}; # Point(10) = {0.4, 1.1, 0, 2}; # # # Line(1) = {4, 1}; # Line(2) = {1, 9}; # Line(3) = {9, 5}; # Line(4) = {5, 6}; # Line(9) = {6, 10}; # Line(10) = {10, 4}; # # Line(5) = {8, 7}; # Line(6) = {7, 2}; # Line(7) = {2, 3}; # Line(8) = {3, 8}; # # Physical Line(20) = {1}; # Physical Line(21) = {2}; # Physical Line(22) = {3}; # Physical Line(23) = {4}; # Physical Line(28) = {9}; # Physical Line(29) = {10}; # # Physical Line(24) = {5}; # Physical Line(25) = {6}; # Physical Line(26) = {7}; # Physical Line(27) = {8}; # # Line Loop(10) = {4, 9, 10, 1, 2, 3}; # Line Loop(11) = {8, 5, 6, 7}; # # Plane Surface(11) = {10}; # Plane Surface(12) = {11}; # Physical Surface(12) = {11, 12}; ######################################################################################################## def nodedupl_recursion(elein, edgein, nodeid, boundary_id): global copy_eles, copy_edges, copy_nodes, debug, copy_surface_ids, copy_surface_id, copy_surfaceowner_ids, copy_region_ids next_edgein=triangle.get_partner_edge(edgein, nodeid, boundary_id) if next_edgein==None: print "Reached one end of the surface boundary." return if debug>1: print "Lets loop around nodeid", nodeid, " starting with ele", elein+1, " with boundary edge ", edgein+1, " until we reach the next surface edge with id ", next_edgein+1 next_elein_list=triangle.get_eles_on_ele_side(elein, nodeid, edgein, boundary_id) if debug>1: print "Duplicate edge ", next_edgein +1 copy_edges.append(triangle.edges[next_edgein]) copy_surface_ids.append(new_surface_id) copy_surfaceowner_ids.append(next_elein_list[len(next_elein_list)-1]+1) # update copy_surfaceowner_ids for the new edge # update copy_surfaceowner_ids for the old edge if triangle.ele_with_edgeids(next_edgein)[0]==next_elein_list[len(next_elein_list)-1]: copy_surfaceowner_ids[next_edgein]=triangle.ele_with_edgeids(next_edgein)[1]+1 else: copy_surfaceowner_ids[next_edgein]=triangle.ele_with_edgeids(next_edgein)[0]+1 if (triangle.edges[next_edgein][0]==nodeid): next_nodeid=triangle.edges[next_edgein][1] else: next_nodeid=triangle.edges[next_edgein][0] nodedupl_recursion(next_elein_list[len(next_elein_list)-1], next_edgein, next_nodeid, boundary_id) ######################################################################################################## if not len(sys.argv)==2: print "Usage: seperate_internal_boundary.py file" print "" print "output fixed .edge, .ele and .node file with new edge attribute holding the element owner of the edge. " print "" print "The outout files will be have the suffix edgow" exit() filename=sys.argv[1] debug=2 triangle.read_nodefile(filename+'.node') if triangle.dim!=2: print "Only 2 dim meshes supported so far" triangle.read_edgefile(filename+'.edge') triangle.read_elefile(filename+'.ele') copy_eles=copy.deepcopy(triangle.eles) copy_region_ids=copy.deepcopy(triangle.region_ids) copy_edges=copy.deepcopy(triangle.edges) copy_surface_ids=copy.deepcopy(triangle.surface_ids) copy_surfaceowner_ids=[-1 for i in range(0,len(triangle.surface_ids))] # Will store the elemed id for each surface edge copy_nodes=copy.deepcopy(triangle.nodes) # Now assign the surfaceowner_id to the external boundaries for e in range(0,len(copy_surfaceowner_ids)): if copy_surfaceowner_ids[e]>=0: print "Internal Error. Ask simon.funke@gmail.com!" exit() if len(triangle.ele_with_edgeids(e))!=1: print "Error Found internal boundary!" exit() copy_surfaceowner_ids[e]=triangle.ele_with_edgeids(e)[0]+1 if debug>0: print "save node file as ", filename, "_edgow.node" triangle.save_nodefile(copy_nodes, 2, filename+"_edgow.node") if debug>0: print "save ele file as ", filename, "_edgow.ele" triangle.save_elefile(copy_eles, copy_region_ids, filename+"_edgow.ele") if debug>0: print "save edge file as ", filename, "_edgow.edge" triangle.save_edgefile2(copy_edges, copy_surface_ids, copy_surfaceowner_ids, filename+"_edgow.edge")
35.007299
177
0.634487
4a1a707cfdfd24389298bd4acb4d9bf4b007347e
4,860
py
Python
selfdrive/car/vw/carcontroller.py
micksmi/openpilot
15e128d08cf6fcbb12bb9c665b711f16f75a4e5a
[ "MIT" ]
null
null
null
selfdrive/car/vw/carcontroller.py
micksmi/openpilot
15e128d08cf6fcbb12bb9c665b711f16f75a4e5a
[ "MIT" ]
null
null
null
selfdrive/car/vw/carcontroller.py
micksmi/openpilot
15e128d08cf6fcbb12bb9c665b711f16f75a4e5a
[ "MIT" ]
null
null
null
from cereal import car from common.numpy_fast import clip, interp from common.realtime import sec_since_boot from selfdrive.config import Conversions as CV from selfdrive.boardd.boardd import can_list_to_can_capnp from selfdrive.car.vw.carstate import CarState, get_gateway_can_parser, get_extended_can_parser from selfdrive.car.vw import vwcan from selfdrive.car.vw.values import CAR, DBC from selfdrive.can.packer import CANPacker VisualAlert = car.CarControl.HUDControl.VisualAlert AudibleAlert = car.CarControl.HUDControl.AudibleAlert AUDIBLE_WARNINGS = [AudibleAlert.chimeWarning1, AudibleAlert.chimeWarning2, AudibleAlert.chimeWarningRepeat] class CarControllerParams(): def __init__(self, car_fingerprint): self.HCA_STEP_ACTIVE = 2 # HCA_01 message frequency 50Hz when applying torque (100 / 2) self.HCA_STEP_INACTIVE = 10 # HCA_01 message frequency 10Hz when not applying torque (100 / 10) self.LDW_STEP = 10 # LDW_02 message frequency 10Hz (100 / 10) self.STEER_MAX = 300 # Max heading control assist torque 3.00nm self.STEER_DELTA_INC = 16 # Max HCA reached in 0.375s (STEER_MAX / (50Hz * 0.375)) self.STEER_DELTA_DEC = 16 # Min HCA reached in 0.375s (STEER_MAX / (50Hz * 0.375)) class CarController(object): def __init__(self, canbus, car_fingerprint): self.start_time = sec_since_boot() self.counter = 0 self.apply_steer_prev = 0 self.car_fingerprint = car_fingerprint # Setup detection helper. Routes commands to # an appropriate CAN bus number. self.canbus = canbus self.params = CarControllerParams(car_fingerprint) print(DBC) self.packer_gw = CANPacker(DBC[car_fingerprint]['pt']) def update(self, sendcan, enabled, CS, frame, actuators, visual_alert, audible_alert, leftLaneVisible, rightLaneVisible): """ Controls thread """ P = self.params # Send CAN commands. can_sends = [] canbus = self.canbus # # Prepare HCA_01 steering torque message # if (frame % P.HCA_STEP_ACTIVE) == 0: if enabled and not CS.standstill: # TODO: Verify our lkas_enabled DBC bit is correct, VCDS thinks it may not be lkas_enabled = 1 plan_requested_torque = int(round(actuators.steer * P.STEER_MAX)) # If the driver is actively providing steering input, prevent the planned torque request # from exceeding one-third of maximum. We adjust the plan prior to smoothing so we get # smooth ramp-down of HCA torque if we were above this before the driver intervened. if(CS.steer_override): plan_requested_torque = clip(plan_requested_torque, -P.STEER_MAX / 3, P.STEER_MAX / 3) # Apply increase and decrease rate limits for HCA torque in accordance with safety model. if self.apply_steer_prev >= 0: # Previously steering LEFT or STRAIGHT, normal calculations hca_steer_min = max(self.apply_steer_prev - P.STEER_DELTA_DEC, 0 - P.STEER_DELTA_INC) hca_steer_max = min(self.apply_steer_prev + P.STEER_DELTA_INC, P.STEER_MAX) else: # Previously steering RIGHT, inverted calculations hca_steer_min = max(self.apply_steer_prev - P.STEER_DELTA_INC, -P.STEER_MAX) hca_steer_max = min(self.apply_steer_prev + P.STEER_DELTA_DEC, 0 + P.STEER_DELTA_INC) apply_steer = clip(plan_requested_torque, hca_steer_min, hca_steer_max) self.apply_steer_prev = apply_steer # FIXME: Ugly hack to reset EPS hardcoded 180 second limit for HCA intervention. # Deal with this by disengaging HCA anytime we have a zero-crossing. Need to refactor # the up/down rate code above to enforce a zero-crossing on all changes of direction # just for additional safety margin. if apply_steer == 0: lkas_enabled = 0 else: # Disable heading control assist lkas_enabled = 0 apply_steer = 0 self.apply_steer_prev = 0 idx = (frame / P.HCA_STEP_ACTIVE) % 16 can_sends.append(vwcan.create_steering_control(self.packer_gw, canbus.gateway, CS.CP.carFingerprint, apply_steer, idx, lkas_enabled)) # # Prepare LDW_02 HUD message with lane lines and confidence levels # if (frame % P.LDW_STEP) == 0: if enabled and not CS.standstill: lkas_enabled = 1 else: lkas_enabled = 0 if visual_alert == VisualAlert.steerRequired: if audible_alert in AUDIBLE_WARNINGS: hud_alert = 7 else: hud_alert = 8 else: hud_alert = 0 can_sends.append(vwcan.create_hud_control(self.packer_gw, canbus.gateway, CS.CP.carFingerprint, lkas_enabled, hud_alert, leftLaneVisible, rightLaneVisible)) sendcan.send(can_list_to_can_capnp(can_sends, msgtype='sendcan').to_bytes())
42.631579
162
0.703086
4a1a70a5bfd96eb835ca829ff5a1442f9bbaa2fb
939
py
Python
directvscraper/items.py
santteegt/directv-scraper
f5b87a8409fad6cff5148c9045b8ce4f4fb549a6
[ "MIT" ]
null
null
null
directvscraper/items.py
santteegt/directv-scraper
f5b87a8409fad6cff5148c9045b8ce4f4fb549a6
[ "MIT" ]
null
null
null
directvscraper/items.py
santteegt/directv-scraper
f5b87a8409fad6cff5148c9045b8ce4f4fb549a6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy import logging logger = logging.getLogger('serializerLogger') def unicode_serialization(stream): logger.info(stream) new_stream = stream.encode('utf-8') logger.info(new_stream) return new_stream class Program(scrapy.Item): show_id = scrapy.Field(serializer=str) channel_number = scrapy.Field(serializer=int) channel_name = scrapy.Field(serializer=str) title = scrapy.Field(serializer=unicode_serialization) start_time = scrapy.Field(serializer=str) time_length = scrapy.Field(serializer=str) day = scrapy.Field(serializer=unicode_serialization) query_date = scrapy.Field(serializer=str) class TvShow(scrapy.Item): id = scrapy.Field(serializer=str) description = scrapy.Field(serializer=unicode_serialization)
26.083333
64
0.743344
4a1a70bff0812194a3af47f5021bd00b1254ecc3
47,396
py
Python
cogs/pug.py
rksouthee/pugbot
9802c2f10574b350ca78adfb613048d5830ac858
[ "MIT" ]
null
null
null
cogs/pug.py
rksouthee/pugbot
9802c2f10574b350ca78adfb613048d5830ac858
[ "MIT" ]
null
null
null
cogs/pug.py
rksouthee/pugbot
9802c2f10574b350ca78adfb613048d5830ac858
[ "MIT" ]
null
null
null
import asyncio import collections import collections.abc import contextlib import functools import heapq import itertools import random import re import shelve import os from discord.ext import commands import discord import pendulum PICKMODES = [ [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0]] MAXPLAYERS = len(PICKMODES[0]) + 2 MAXTAGLENGTH = 10 PLASEP = '\N{SMALL ORANGE DIAMOND}' MODSEP = '\N{SMALL BLUE DIAMOND}' OKMSG = '\N{OK HAND SIGN}' DISCORD_MD_CHARS = '*~_`' DISCORD_MD_ESCAPE_RE = re.compile('[{}]'.format(DISCORD_MD_CHARS)) DISCORD_MD_ESCAPE_DICT = {c: '\\' + c for c in DISCORD_MD_CHARS} def discord_md_escape(value): return DISCORD_MD_ESCAPE_RE.sub(lambda match: DISCORD_MD_ESCAPE_DICT[match.group(0)], value) def display_name(member): return discord_md_escape(member.display_name) class Mod(collections.abc.MutableSet): """Maintains the state for players in a PUG""" def __init__(self, name, desc, maxplayers): self.name = name self.desc = desc self.maxplayers = maxplayers self.players = [] self.maps = set() def __contains__(self, member): return member in self.players def __iter__(self): return iter(self.players) def __len__(self): return len(self.players) def __getstate__(self): state = self.__dict__.copy() del state['players'] return state def __setstate__(self, state): self.__dict__ = state self.players = [] @property def brief(self): return '**{}** [{}/{}]'.format(self.name, len(self), self.maxplayers) @property def full(self): return len(self) == self.maxplayers @property def needed(self): return self.maxplayers - len(self) @property def teamgame(self): return False def add(self, member): if member not in self and not self.full: self.players.append(member) return True def discard(self, member): if member in self: self.players.remove(member) return True def fullreset(self): self.players = [] class Team(list): def __init__(self): super().__init__() @property def captain(self): return self[0] class TeamMod(Mod): def __init__(self, name, desc, maxplayers, pickmode): super().__init__(name, desc, maxplayers) self.teams = (Team(), Team()) self.pickmode = pickmode self.task = None self.here = [True, True] def __getstate__(self): state = super().__getstate__() del state['teams'] del state['task'] del state['here'] return state def __setstate__(self, state): super().__setstate__(state) self.teams = (Team(), Team()) self.task = None self.here = [True, True] @property def teamgame(self): return True @property def hascaptains(self): return self.red and self.blue @property def team(self): return PICKMODES[self.pickmode][len(self.red) + len(self.blue) - 2] @property def captain(self): return self.teams[self.team].captain if self.hascaptains else None @property def teamsready(self): return len(self.red) + len(self.blue) == self.maxplayers @property def red(self): return self.teams[0] @property def blue(self): return self.teams[1] def __contains__(self, member): return member in (self.players + self.red + self.blue) def discard(self, member): if member in self: if self.red: self.reset() if self.task: self.task.cancel() self.players.remove(member) return True def reset(self): if self.red: self.players += self.red + self.blue self.players = list(filter(None, self.players)) self.red.clear() self.blue.clear() self.here = [True, True] if self.task: self.task.cancel() return True return False def fullreset(self): self.players = [] self.red.clear() self.blue.clear() self.here = [True, True] if self.task: self.task.cancel() def setcaptain(self, player): if player in self.players and self.full: index = self.players.index(player) if not self.red: self.red.append(player) elif not self.blue: self.blue.append(player) else: return False self.players[index] = None return True return False def pick(self, captain, index): if captain == self.captain: self.here[self.team] = True if all(self.here) and self.task: self.task.cancel() if index < 0 or index >= len(self) or not self.players[index]: return False player = self.players[index] self.teams[self.team].append(player) self.players[index] = None # check to see if next team has any choice and move them index = len(self.red) + len(self.blue) - 2 remaining = PICKMODES[self.pickmode][index:self.maxplayers - 2] if len(set(remaining)) == 1: self.teams[remaining[0]].extend(p for p in self.players if p) return True class PUGChannel(collections.abc.MutableMapping): def __init__(self): self.active = True self.server_name = '' self.randcaptaintimer = 20 self.idlecaptaintimer = 60 self.mods = collections.OrderedDict() def __setitem__(self, key: str, mod: Mod): self.mods[key.lower()] = mod def __getitem__(self, key: str): return self.mods[key.lower()] def __delitem__(self, key: str): del self.mods[key.lower()] def __iter__(self): return iter(self.mods) def __len__(self): return len(self.mods) @property def team_mods(self): return (mod for mod in self.values() if mod.teamgame) class ModStats: def __init__(self): self.total = 0 self.timestamp = pendulum.now().timestamp self.last_timestamp = self.timestamp @property def last(self): return HistoryItem(self.last_timestamp) @property def daily(self): days = (pendulum.now() - pendulum.from_timestamp(self.timestamp)).days return self.total / (days + 1) def update(self, timestamp): self.total += 1 self.last_timestamp = timestamp return self class TeamStats(ModStats): def __init__(self): super().__init__() self.picks = 0 self.captain = 0 @property def average_pick(self): total = self.total - self.captain return 0 if total == 0 else self.picks / total def update(self, timestamp, pick): self.picks += pick self.captain += 0 if pick else 1 return super().update(timestamp) class HistoryItem: def __init__(self, timestamp, players=None, modid=None): self.timestamp = timestamp self.players = '\n' + players if players else '' self.modid = modid def __str__(self): name = '**{}** '.format(self.modid) if self.modid else '' when = (pendulum.now() - pendulum.from_timestamp(self.timestamp)).in_words() return '{}[{} ago]{}'.format(name, when, self.players) def __lt__(self, other): return self.timestamp < other.timestamp class PUGStats: def __init__(self): self.total = 0 self.timestamp = pendulum.now().timestamp self.history = collections.deque(maxlen=3) @property def daily(self): days = (pendulum.now() - pendulum.from_timestamp(self.timestamp)).days return self.total / (days + 1) @property def last_timestamp(self): return self.last.timestamp @property def last(self): return HistoryItem(*self.history[-1]) @property def lastt(self): return HistoryItem(*self.history[min(0, len(self.history) - 1)]) @property def lasttt(self): return HistoryItem(*self.history[0]) def update(self, timestamp, players): self.total += 1 self.history.append((timestamp, players)) return self class Stats(collections.abc.MutableMapping): def __init__(self): self.data = dict() def __getitem__(self, mod): return self.data[mod.name] def __setitem__(self, mod, value): self.data[mod.name] = value def __delitem__(self, mod): del self.data[mod.name] def __iter__(self): return iter(self.data) def __len__(self): return len(self.data) def items(self): return self.data.items() def values(self): return self.data.values() @property def timestamp(self): return min(self.values(), key=lambda x: x.timestamp).timestamp @property def total(self): return sum(mod.total for mod in self.values()) @property def daily(self): days = (pendulum.now() - pendulum.from_timestamp(self.timestamp)).days return self.total / (days + 1) @property def last(self): modid, stats = max(self.items(), key=lambda x: x[1].last) last = stats.last last.modid = modid return last class ChannelStats(Stats): """Stores the PUG stats for the channel""" @property def history(self): for mod, stats in self.items(): for timestamp, players in stats.history: yield HistoryItem(timestamp, players, modid=mod) @property def lastt(self): history = sorted(self.history, reverse=True) return history[min(1, len(history) - 1)] @property def lasttt(self): history = sorted(self.history, reverse=True) return history[min(2, len(history) - 1)] class MemberStats(Stats): """Stores the member's stats for a channel""" @property def team_stats(self): return (mod for mod in self.values() if isinstance(mod, TeamStats)) @property def captain(self): return sum(mod.captain for mod in self.team_stats) @property def average_pick(self): total, picks = 0, 0 for mod in self.team_stats: total += mod.total - mod.captain picks += mod.picks return 0 if total == 0 else picks / total class ChannelStatsView: def __init__(self, db, channel): self.db = db self.channel = channel def __iter__(self): for member_id, stats in self.db.items(): member = self.channel.server.get_member(member_id) if member and not member.bot and self.channel.id in stats: yield member, stats[self.channel.id] class ModStatsView(ChannelStatsView): def __init__(self, db, channel, mod): super().__init__(db, channel) self.mod = mod def __iter__(self): return ((member, stats[self.mod]) for member, stats in super().__iter__() if self.mod in stats) class StatsDB(collections.abc.MutableMapping): def __init__(self, db, channel, mod): self.db = db self.channel = channel self.mod = mod def __getitem__(self, member): stats = self.db[member.id] if self.channel.id in stats: if self.mod is None: return stats[self.channel.id] elif self.mod in stats[self.channel.id]: return stats[self.channel.id][self.mod] raise KeyError def __setitem__(self, member, value): stats = self.db.get(member.id, dict()) cls = ChannelStats if member.bot else MemberStats channel_stats = stats.setdefault(self.channel.id, cls()) channel_stats[self.mod] = value self.db[member.id] = stats def __delitem__(self, member): del self.db[member.id] def __len__(self): return len(self.db) def __iter__(self): if self.mod is None: return iter(ChannelStatsView(self.db, self.channel)) return iter(ModStatsView(self.db, self.channel, self.mod)) @contextlib.contextmanager def stats_open(channel, mod, flag='c', writeback=False): with shelve.open('data/stats', flag=flag, writeback=writeback) as db: yield StatsDB(db, channel, mod) def clamp(n, low, high): return max(low, min(n, high)) def ispugchannel(ctx): pugchannel = ctx.bot.get_cog('PUG').channels.get(ctx.message.channel) return pugchannel is not None and pugchannel.active class ModConverter(commands.Converter): def convert(self): mod = self.ctx.cog.channels[self.ctx.message.channel].get(self.argument) if mod is None: raise commands.errors.BadArgument('PUG "{}" not found'.format(self.argument)) return mod class TeamModConverter(ModConverter): def convert(self): mod = super().convert() if not mod.teamgame: raise commands.errors.BadArgument('"{}" is not a team PUG'.format(mod.name)) return mod class PUG: """PUG related commands""" def __init__(self, bot): self.bot = bot self.last_teams = dict() self.tags = collections.defaultdict(lambda: collections.defaultdict(str)) self.nocaptains = collections.defaultdict(set) self.channels = dict() async def on_ready(self): """Load PUGChannels""" with shelve.open('data/pug') as db: for (channel_id, pugchannel) in list(db.items()): channel = self.bot.get_channel(channel_id) if channel is not None: self.channels[channel] = pugchannel else: del db[channel_id] @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_server=True) async def pugbot(self, ctx, enable: bool): """Enables/Disables PUG commands in the channel""" pugchannel = self.channels.get(ctx.message.channel) if pugchannel is None: if not enable: return self.channels[ctx.message.channel] = PUGChannel() else: if pugchannel.active == enable: return pugchannel.active = enable status = ' enabled' if enable else ' disabled' await self.bot.say('PUG commands have been' + status) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = self.channels[ctx.message.channel] @commands.command(no_pm=True, aliases=['pickorders']) @commands.check(ispugchannel) async def pickmodes(self): """Displays the available pickmodes""" await self.bot.say('```{}```'.format( '\n'.join('{}) {}'.format(i, ', '.join(map(str, pm))) for i, pm in enumerate(PICKMODES)))) @commands.command(pass_context=True, no_pm=True, aliases=['setpickorder']) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setpickmode(self, ctx, mod: TeamModConverter, pickmode: int): """Set pickmode for mod""" if 0 <= pickmode < len(PICKMODES): mod.pickmode = pickmode await self.bot.say(OKMSG) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = self.channels[ctx.message.channel] @commands.command(no_pm=True, aliases=['pickorder']) @commands.check(ispugchannel) async def pickmode(self, mod: TeamModConverter): """Displays the pickmode for mod""" pickmode = PICKMODES[mod.pickmode][:mod.maxplayers - 2] await self.bot.say('```[{}]```'.format(', '.join(map(str, pickmode)))) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setlimit(self, ctx, mod: ModConverter, limit: int): """Sets number of players required to fill mod""" if limt > 1 and not mod.full and (not mod.teamgame or limit <= MAXPLAYERS): mod.maxplayers = limit await self.bot.say(OKMSG) with shelve.open('data/pug') as db: db[ctx.message.channel.id] = self.channels[ctx.message.channel] @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setrandcaptaintimer(self, ctx, duration: int): """Set the amount of time before selecting random captains duration - number of seconds to wait (clamped to 10-999) """ pugchannel = self.channels[ctx.message.channel] pugchannel.randcaptaintimer = clamp(duration, 10, 999) await self.bot.say(OKMSG) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = pugchannel @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setidlecaptaintimer(self, ctx, duration: int): """Set the amount time before kicking idle captains duration - number of seconds to wait (clamped to 10-999) """ pugchannel = self.channels[ctx.message.channel] pugchannel.idlecaptaintimer = clamp(duration, 10, 999) await self.bot.say(OKMSG) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = pugchannel @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setserver(self, ctx, *, server: str): """Set the channel's PUG server""" pugchannel = self.channels[ctx.message.channel] pugchannel.server_name = server await self.bot.say(OKMSG) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = pugchannel @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def server(self, ctx): """Displays channel's PUG server""" pugchannel = self.channels[ctx.message.channel] if pugchannel.server_name: await self.bot.say(pugchannel.server_name) else: await self.bot.say('No server set, use `.setserver` to set the server') @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def addmod(self, ctx, mod: str, name: str, n: int, teams: bool=True, pickmode: int=1): """Adds new mod to the channel""" pugchannel = self.channels[ctx.message.channel] if n < 2 or mod in pugchannel: return if n == 2: teams = False if teams: if 4 > n > MAXPLAYERS or n % 2 == 1 or 0 > pickmode >= len(PICKMODES): return pickmode = 0 if n == 4 else pickmode pugchannel[mod] = TeamMod(mod, name, n, pickmode) else: pugchannel[mod] = Mod(mod, name, n) await self.bot.say(OKMSG) with shelve.open('data/pug') as db: db[ctx.message.channel.id] = pugchannel @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def delmod(self, ctx, mod: ModConverter): """Deletes mod from the channel""" pugchannel = self.channels[ctx.message.channel] del pugchannel[mod.name] await self.bot.say(OKMSG) with shelve.open('data/pug', 'w') as db: db[ctx.message.channel.id] = pugchannel async def on_command_error(self, error, ctx): """If a PUG command is used in a channel that doesn't have active PUGs send a message display the active channels on the server """ cmds = {'join', 'list', 'last', 'liast', 'lastt', 'liastt', 'lasttt', 'liasttt'} if isinstance(error, commands.errors.CheckFailure) and ctx.command.name in cmds: server = ctx.message.server active_channels = (channel for channel in self.channels if channel.server == server and self.channels[channel].active) channel_mentions = [channel.mention for channel in active_channels] if channel_mentions: await self.bot.send_message(ctx.message.channel, '**Active Channels:** {}'.format(' '.join(channel_mentions))) def get_tag(self, member): return self.tags[member.server][member] def format_players(self, ps, number=False, mention=False, tags=True): def name(p): return p.mention if mention else display_name(p) xs = ((i, name(p), self.get_tag(p)) for i, p in enumerate(ps, 1) if p) fmt = '**{0})** {1}' if number else '{1}' fmt += '{2}' if tags else '' return PLASEP.join(fmt.format(*x) for x in xs) def format_mod(self, mod): fmt = '**__{0.desc} [{1}/{0.maxplayers}]:__**\n{2}' return fmt.format(mod, len(mod), self.format_players(mod, number=mod.full)) def format_teams(self, mod, mention=False, tags=False): teams = '**Red Team:** {}\n**Blue Team:** {}' red = self.format_players(mod.red, mention=mention, tags=tags) blue = self.format_players(mod.blue, mention=mention, tags=tags) return teams.format(red, blue) def format_last(self, channel, mod, attr='last'): with stats_open(channel, mod, flag='r') as db: pugstats = db.get(self.bot.user, None) if pugstats is not None: history_item = getattr(pugstats, attr) return '**{}:** {}'.format(attr.title(), history_item) return 'No PUGs recorded' def format_list(self, channel, mod): if mod is None: pugchannel = self.channels[channel] return MODSEP.join(mod.brief for mod in pugchannel.values()) else: return self.format_mod(mod) def format_liast(self, channel, mod, attr='last'): ls = self.format_list(channel, mod) la = self.format_last(channel, mod, attr) return '{}\n{}'.format(ls, la) @commands.command(name='list', pass_context=True, no_pm=True, aliases=['ls']) @commands.check(ispugchannel) async def _list(self, ctx, mod: ModConverter=None): """Displays mods/players in the channel""" await self.bot.say(self.format_list(ctx.message.channel, mod)) @commands.command(pass_context=True, no_pm=True, aliases=['la']) @commands.check(ispugchannel) async def last(self, ctx, mod: ModConverter=None): """Displays players from last PUG""" await self.bot.say(self.format_last(ctx.message.channel, mod)) @commands.command(pass_context=True, no_pm=True, aliases=['lia']) @commands.check(ispugchannel) async def liast(self, ctx, mod: ModConverter=None): """Display mods/players and last PUG""" await self.bot.say(self.format_liast(ctx.message.channel, mod)) @commands.command(pass_context=True, no_pm=True, hidden=True) @commands.check(ispugchannel) async def lastt(self, ctx, mod: ModConverter=None): await self.bot.say(self.format_last(ctx.message.channel, mod, 'lastt')) @commands.command(pass_context=True, no_pm=True, hidden=True) @commands.check(ispugchannel) async def liastt(self, ctx, mod: ModConverter=None): await self.bot.say(self.format_liast(ctx.message.channel, mod, 'lastt')) @commands.command(pass_context=True, no_pm=True, hidden=True) @commands.check(ispugchannel) async def lasttt(self, ctx, mod: ModConverter=None): await self.bot.say(self.format_last(ctx.message.channel, mod, 'lasttt')) @commands.command(pass_context=True, no_pm=True, hidden=True) @commands.check(ispugchannel) async def liasttt(self, ctx, mod: ModConverter=None): await self.bot.say(self.format_liast(ctx.message.channel, mod, 'lasttt')) async def addplayers_impl(self, channel, mod, members): if not any(list(mod.add(m) for m in members)): return if not mod.full: return await self.bot.say(self.format_mod(mod)) msg = ['**{}** has been filled'.format(mod.name)] msg.append(self.format_players(mod, mention=True, tags=False)) mods = (other for other in self.channels[channel].values() if other is not mod) for other in mods: wasfull = other.full if any(list(other.discard(p) for p in mod)) and wasfull: msg.append('**{}** was reset'.format(other.name)) await self.bot.say('\n'.join(msg)) if mod.teamgame: mod.task = self.bot.loop.create_task(self.randcaptains(channel, mod)) else: timestamp = pendulum.now().timestamp with stats_open(channel, mod) as db: for member in mod: db[member] = db.get(member, ModStats()).update(timestamp) self.remove_tags(member) players = self.format_players(mod, mention=False, tags=False) db[self.bot.user] = db.get(self.bot.user, PUGStats()).update(timestamp, players) mod.fullreset() @commands.command(pass_context=True, no_pm=True, aliases=['addplayer']) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def addplayers(self, ctx, mod: ModConverter, *members: discord.Member): """Adds players to mod""" await self.addplayers_impl(ctx.message.channel, mod, (m for m in members if not m.bot)) @commands.command(pass_context=True, no_pm=True, aliases=['j']) @commands.check(ispugchannel) async def join(self, ctx, mod: ModConverter): """Joins mod""" await self.addplayers_impl(ctx.message.channel, mod, [ctx.message.author]) async def randcaptains(self, channel, mod): """Waits for n seconds before selecting random captains""" content = '`Random captains in {:3d} seconds`' seconds = self.channels[channel].randcaptaintimer message = await self.bot.send_message(channel, content.format(seconds)) mod.here = [False, False] for i in range(seconds - 1, -1, -1): try: await asyncio.sleep(1) if i % 5 == 0 or i < 10: message = await self.bot.edit_message(message, content.format(i)) except asyncio.CancelledError: return await self.bot.edit_message(message, '`Random captains cancelled`') if not mod.full or mod.hascaptains: return candidates = [p for p in mod if p and p not in self.nocaptains[channel.server]] if len(candidates) < 2: candidates = list(mod) random.shuffle(candidates) msg, redset = [], False if not mod.red: redset = mod.setcaptain(candidates.pop(0)) msg.append(mod.red.captain.mention + ' is captain for the **Red Team**') blue_captain = candidates.pop(0) mod.setcaptain(blue_captain) mod.here = [not redset, False] await self.bot.edit_message(message, '`Random captains selected`') msg.append(blue_captain.mention + ' is captain for the **Blue Team**') msg.append('Type .here to prevent being kicked') msg.append('{} to pick'.format(mod.captain.mention)) msg.append(self.format_players(mod, number=True)) await self.bot.send_message(channel, '\n'.join(msg)) mod.task = self.bot.loop.create_task(self.kick_idle(channel, mod)) async def kick_idle(self, channel, mod): """Removes captains if they did not pick or type .here""" try: await asyncio.sleep(self.channels[channel].idlecaptaintimer) except asyncio.CancelledError: return if mod.hascaptains and not all(mod.here): msg = ['**{}** was reset'.format(mod.name)] kick = [] for i in range(2): if not mod.here[i]: captain = mod.teams[i].captain kick.append(captain) msg.append('{} was removed for being idle'.format(captain.mention)) # Send the message before we kick the players, otherwise the task will be cancelled await self.bot.send_message(channel, '\n'.join(msg)) [mod.discard(p) for p in kick] @commands.command(pass_context=True, no_pm=True, aliases=['pro']) @commands.cooldown(2, 5.0, type=commands.BucketType.channel) @commands.check(ispugchannel) async def promote(self, ctx, mod: ModConverter): """Notify other members in the channel""" await self.bot.say('@here Only **{0.needed}** more needed for **{0.name}**'.format(mod)) async def remove_player(self, channel, mod, player, reason): wasfull = mod.full name = player.mention if reason == 'was removed' else display_name(player) if mod.discard(player): if wasfull: await self.bot.say('**{}** was reset because **{}** {}'.format(mod.name, name, reason)) else: await self.bot.say('**{}** was removed from **{}** because they {}'.format(name, mod.name, reason)) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def delplayer(self, ctx, mod: ModConverter, member: discord.Member): """Removes player from mod""" await self.remove_player(ctx.message.channel, mod, member, 'was removed') @commands.command(pass_context=True, no_pm=True, aliases=['l']) @commands.check(ispugchannel) async def leave(self, ctx, mod: ModConverter): """Leave mod""" await self.remove_player(ctx.message.channel, mod, ctx.message.author, 'left') @commands.command(pass_context=True, no_pm=True, aliases=['lva']) @commands.check(ispugchannel) async def leaveall(self, ctx): """Leaves all mods you have joined, including other channels""" for channel in self.channels: await self.remove_from_channel(ctx.message.author, channel, 'left') async def on_member_update(self, before, after): """Remove member from all mods if they go offline""" if after.status is discord.Status.offline: await self.remove_from_server(before, 'quit') def removed_from(self, member, channel): pugchannel = self.channels[channel] mods = (mod for mod in pugchannel.values() if member in mod) for mod in mods: yield mod mod.discard(member) async def remove_from_channel(self, member, channel, reason): reset, removed = None, [] for mod in self.removed_from(member, channel): if mod.full: reset = mod.name else: removed.append(mod.name) msg, name = [], display_name(member) if reset: fmt = '**{}** was reset because **{}** {}' msg.append(fmt.format(reset, name, reason)) if removed: fmt = '**{}** was removed from **{}** because they {}' if len(removed) > 1: mods = ', '.join(removed[:-1]) + ' & ' + removed[-1] else: mods = removed[0] msg.append(fmt.format(name, mods, reason)) if msg: await self.bot.send_message(channel, '\n'.join(msg)) async def remove_from_server(self, member, reason): """Removes the member from the server""" self.remove_tags(member) for channel in self.channels: if channel.server == member.server: await self.remove_from_channel(member, channel, reason) async def on_member_remove(self, member): """Remove member from all mods in the server""" await self.remove_from_server(member, 'left the server') async def on_member_ban(self, member): """Remove member from all mods in the server""" with shelve.open('data/bans') as db: bans = db.get(member.server.id, collections.Counter()) bans[member.id] += 1 db[member.server.id] = bans await self.remove_from_server(member, 'was banned') async def on_channel_delete(self, channel): """Remove PUGChannel if the associated channel was deleted""" if channel in self.channels: del self.channels[channel] with shelve.open('data/pug', 'w') as db: del db[channel.id] async def on_server_remove(self, server): """Remove server tags when server is removed from the bot""" self.tags.pop(server) self.nocaptains.pop(server) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def reset(self, ctx, mod: TeamModConverter=None): """Resets teams""" if mod is None: pugchannel = self.channels[ctx.message.channel] mods = [mod for mod in pugchannel.team_mods if mod.red] if len(mods) == 1: mod = mods[0] if mod is not None and mod.reset(): await self.bot.say('**{}** was reset'.format(mod.name)) mod.task = self.bot.loop.create_task(self.randcaptains(ctx.message.channel, mod)) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def fullreset(self, ctx, mod: ModConverter): """Resets players in the mod""" mod.fullreset() await self.bot.say('**{}** was reset'.format(mod.name)) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def here(self, ctx): """Prevent being kicked when set as random captain""" channel = ctx.message.channel pugchannel = self.channels[channel] captain = ctx.message.author for mod in pugchannel.team_mods: if mod.red: if mod.red.captain == captain: mod.here[0] = True return elif mod.blue and mod.blue.captain == captain: if not mod.here[1]: mod.here[1] = True if all(mod.here) and mod.task: mod.task.cancel() return async def setcaptain_impl(self, channel, member, mention=False): pugchannel = self.channels[channel] mod = next((mod for mod in pugchannel.team_mods if mod.setcaptain(member)), None) name = member.mention if mention else '**{}**'.format(display_name(member)) if mod is not None: if mod.hascaptains: if mod.task is not None: mod.task.cancel() msg = [name + ' is captain for the **Blue Team**'] msg.append('{} to pick'.format(mod.captain.mention)) msg.append(self.format_players(mod, number=True)) await self.bot.say('\n'.join(msg)) else: await self.bot.say('**{}** is captain for the **Red Team**'.format(name)) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def setcaptain(self, ctx, member: discord.Member): """Set player as captain""" await self.setcaptain_impl(ctx.message.channel, member, mention=True) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def captain(self, ctx): """Become captain for mod""" await self.setcaptain_impl(ctx.message.channel, ctx.message.author) @commands.command(pass_context=True, no_pm=True, aliases=['p']) @commands.check(ispugchannel) async def pick(self, ctx, *players: int): """Pick player by number""" channel = ctx.message.channel pugchannel = self.channels[channel] captain = ctx.message.author mod = next((mod for mod in pugchannel.team_mods if mod.captain == captain), None) if mod is None: return picks = list(itertools.takewhile(functools.partial(mod.pick, captain), (x - 1 for x in players))) if picks: teams = self.format_teams(mod) if mod.teamsready: self.last_teams[channel] = '**{}**\n{}'.format(mod.desc, teams) msg = 'Teams have been selected:\n{}'.format(self.format_teams(mod, mention=True)) await self.bot.say(msg) timestamp = pendulum.now().timestamp with stats_open(channel, mod) as db: members = mod.red + mod.blue xs = PICKMODES[mod.pickmode][:mod.maxplayers - 2] picks = [0] + [i + 1 for i, x in enumerate(xs) if x == 0] picks += [0] + [i + 1 for i, x in enumerate(xs) if x == 1] for i in range(mod.maxplayers): member = members[i] db[member] = db.get(member, TeamStats()).update(timestamp, picks[i]) self.remove_tags(member) db[self.bot.user] = db.get(self.bot.user, PUGStats()).update(timestamp, teams) mod.fullreset() else: msg = '\n'.join([ self.format_players(mod, number=True, tags=True), self.format_teams(mod, tags=True), '{} to pick'.format(mod.captain.mention)]) await self.bot.say(msg) @pick.error async def pick_error(self, error, ctx): if isinstance(error, commands.errors.BadArgument) and ctx.invoked_with == 'p': ctx.view = commands.view.StringView(ctx.message.content[len(ctx.prefix) + 1:]) await self.promote.invoke(ctx) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def teams(self, ctx): """Displays current teams, or teams from last PUG""" pugchannel = self.channels[ctx.message.channel] mods = [(mod.desc, self.format_teams(mod, tags=True)) for mod in pugchannel.team_mods if mod.red] if mods: await self.bot.say('\n'.join('**__{}:__**\n{}'.format(*mod) for mod in mods)) elif ctx.message.channel in self.last_teams: await self.bot.say(self.last_teams[ctx.message.channel]) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def turn(self, ctx): """Displays captain whose turn it is to pick and current teams""" pugchannel = self.channels[ctx.message.channel] mods = [(display_name(mod.captain), mod.desc) for mod in pugchannel.team_mods if mod.hascaptains] if mods: await self.bot.say('\n'.join('**{}** to pick for **{}**'.format(*mod) for mod in mods)) async def display_stats(self, member, channel, mod): with stats_open(channel, mod, flag='r') as db: stats = db.get(member) if stats is None: return await self.bot.say('No stats available') out = [] out.append('**Total:** [{}]'.format(stats.total)) out.append('**Daily:** [{:.2f}]'.format(stats.daily)) if hasattr(stats, 'captain') and not member.bot: out.append('**Captain:** [{}]'.format(stats.captain)) mp = '/' + str(mod.maxplayers - 2) if mod is not None else '' out.append('**Avg. Pick:** [{:.2f}{}]'.format(stats.average_pick, mp)) if not member.bot: try: db = shelve.open('data/bans', 'r') except: out.append('**Bans:** [0]') else: bans = db.get(member.server.id, collections.Counter()) db.close() out.append('**Bans:** [{}]'.format(bans[member.id])) out.append('**Last:** {}'.format(stats.last)) await self.bot.say(MODSEP.join(out)) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def stats(self, ctx, member: discord.Member, mod: ModConverter=None): """Display PUG stats for player""" await self.display_stats(member, ctx.message.channel, mod) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def mystats(self, ctx, mod: ModConverter=None): """Display your PUG stats""" await self.display_stats(ctx.message.author, ctx.message.channel, mod) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def pugstats(self, ctx, mod: ModConverter=None): """Display channel PUG stats""" await self.display_stats(self.bot.user, ctx.message.channel, mod) @commands.command(pass_context=True, no_pm=True, aliases=['nocapt']) @commands.check(ispugchannel) async def nocaptain(self, ctx): """Prevent being made captain for next PUG, resets after next PUG""" self.nocaptains[ctx.message.server].add(ctx.message.author) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def nomic(self, ctx): """Sets tag to 'nomic'""" self.tags[ctx.message.server][ctx.message.author] = ' [nomic]' @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def tag(self, ctx, *, tag: str): """Sets custom tag for all mods""" if tag == 'nocapt' or tag == 'nocaptain': self.nocaptains[ctx.message.server].add(ctx.message.author) else: self.tags[ctx.message.server][ctx.message.author] = ' [{}]'.format(discord_md_escape(tag[:MAXTAGLENGTH])) def remove_tags(self, member): self.nocaptains[member.server].discard(member) self.tags[member.server].pop(member, None) @commands.command(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def deltag(self, ctx): """Deletes tags""" self.remove_tags(ctx.message.author) @commands.command(pass_context=True, no_pm=True, hidden=True) @commands.has_permissions(manage_server=True) async def cleartags(self, ctx): """Clear current tags for the server""" self.nocaptains.pop(ctx.message.server) self.tags.pop(ctx.message.server) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_server=True) async def numtags(self, ctx): """Displays the number tags in use on the server""" server = ctx.message.server await self.bot.whisper('tags: {}\nnocaptains: {}'.format(len(self.tags[server]), len(self.nocaptains[server]))) @commands.group(pass_context=True, no_pm=True) @commands.check(ispugchannel) async def top(self, ctx, n: int): """Displays a top n list for the channel""" if ctx.invoked_subcommand is not None: self.count = n @top.command(pass_context=True, no_pm=True) async def picks(self, ctx, mod: TeamModConverter=None): """Displays top average picks""" with stats_open(ctx.message.channel, mod, flag='r') as db: ps = ((display_name(p[0]), p[1].average_pick) for p in db if p[1].average_pick) topn = heapq.nsmallest(self.count, ps, key=lambda p: p[1]) if topn: entries = ('**{})** {} [{:.2f}]'.format(i, *p) for i, p in enumerate(topn, 1)) await self.bot.say(PLASEP.join(entries)) @top.command(pass_context=True, no_pm=True) async def puggers(self, ctx, mod: ModConverter=None): """Displays top puggers""" with stats_open(ctx.message.channel, mod, flag='r') as db: ps = ((display_name(p[0]), p[1].total) for p in db) topn = heapq.nlargest(self.count, ps, key=lambda p: p[1]) if topn: entries = ('**{})** {} [{}]'.format(i, *p) for i, p in enumerate(topn, 1)) await self.bot.say(PLASEP.join(entries)) @top.command(pass_context=True, no_pm=True) async def lamers(self, ctx, mod: ModConverter=None): """Displays top lamers""" with stats_open(ctx.message.channel, mod, flag='r') as db: ps = ((display_name(p[0]), p[1].total) for p in db) topn = heapq.nsmallest(self.count, ps, key=lambda p: p[1]) if topn: entries = ('**{})** {} [{}]'.format(i, *p) for i, p in enumerate(topn, 1)) await self.bot.say(PLASEP.join(entries)) @top.command(pass_context=True, no_pm=True) async def captains(self, ctx, mod: TeamModConverter=None): """Display top captains""" with stats_open(ctx.message.channel, mod, flag='r') as db: ps = ((display_name(p[0]), p[1].captain) for p in db if p[1].captain) topn = heapq.nlargest(self.count, ps, key=lambda p: p[1]) if topn: entries = ('**{})** {} [{}]'.format(i, *p) for i, p in enumerate(topn, 1)) await self.bot.say(PLASEP.join(entries)) @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def addmaps(self, ctx, mod: ModConverter, *maps: str): """Adds maps to mod""" if maps: mod.maps.update(maps) await self.bot.say(OKMSG) with shelve.open('data/pug') as db: db[ctx.message.channel.id] = self.channels[ctx.message.channel] @commands.command(pass_context=True, no_pm=True) @commands.has_permissions(manage_channels=True) @commands.check(ispugchannel) async def delmaps(self, ctx, mod: ModConverter, *maps: str): """Removes maps from mod""" if maps: mod.maps -= set(maps) await self.bot.say(OKMSG) with shelve.open('data/pug') as db: db[ctx.message.channel.id] = self.channels[ctx.message.channel] @commands.command(pass_context=True, no_pm=True, aliases=['maps']) @commands.check(ispugchannel) async def maplist(self, ctx, mod: ModConverter=None): """Displays maps for mod""" if mod is not None and mod.maps: await self.bot.say('**__{}__:**\n{}'.format(mod.desc, MODSEP.join(sorted(mod.maps)))) elif mod is None: pugchannel = self.channels[ctx.message.channel] mods = [mod for mod in pugchannel.values() if mod.maps] if mods: await self.bot.say('\n'.join('**__{}__:** {}'.format(mod.desc, MODSEP.join(sorted(mod.maps))) for mod in mods)) def setup(bot): if not os.path.exists('data'): os.makedirs('data') shelve.open('data/stats', 'c').close() bot.add_cog(PUG(bot))
37.645751
130
0.605473
4a1a729c1854a3240bbc870f7d4eb2fb9b5858cc
14,922
py
Python
O365/event.py
BDeliers/python-o365
24bf6d8aa82b00b02faf9a5d1d790481d19991b7
[ "Apache-2.0" ]
null
null
null
O365/event.py
BDeliers/python-o365
24bf6d8aa82b00b02faf9a5d1d790481d19991b7
[ "Apache-2.0" ]
null
null
null
O365/event.py
BDeliers/python-o365
24bf6d8aa82b00b02faf9a5d1d790481d19991b7
[ "Apache-2.0" ]
null
null
null
from O365.contact import Contact from O365.group import Group from O365.connection import Connection import logging import json import requests import time log = logging.getLogger(__name__) class Event( object ): ''' Class for managing the creation and manipluation of events in a calendar. Methods: create -- Creates the event in a calendar. update -- Sends local changes up to the cloud. delete -- Deletes event from the cloud. toJson -- returns the json representation. fullcalendarioJson -- gets a specific json representation used for fullcalendario. getSubject -- gets the subject of the event. getBody -- gets the body of the event. getStart -- gets the starting time of the event. (struct_time) getEnd -- gets the ending time of the event. (struct_time) getAttendees -- gets the attendees of the event. getReminder -- returns True if reminder is enabled, False if not. getCategories -- returns a list of the event's categories. addAttendee -- adds an attendee to the event. update needs to be called for notification. setSubject -- sets the subject line of the event. setBody -- sets the body of the event. setStart -- sets the starting time of the event. (struct_time) setEnd -- sets the starting time of the event. (struct_time) setAttendees -- sets the attendee list. setStartTimeZone -- sets the timezone for the start of the event item. setEndTimeZone -- sets the timezone for the end of the event item. setReminder -- sets the reminder. setCategories -- sets a list of the event's categories. Variables: time_string -- Formated time string for translation to and from json. create_url -- url for creating a new event. update_url -- url for updating an existing event. delete_url -- url for deleting an event. ''' #Formated time string for translation to and from json. time_string = '%Y-%m-%dT%H:%M:%S' #takes a calendar ID create_url = 'https://outlook.office365.com/api/v1.0/me/calendars/{0}/events' #takes current event ID update_url = 'https://outlook.office365.com/api/v1.0/me/events/{0}' #takes current event ID delete_url = 'https://outlook.office365.com/api/v1.0/me/events/{0}' def __init__(self,json=None,auth=None,cal=None,verify=True): ''' Creates a new event wrapper. Keyword Argument: json (default = None) -- json representation of an existing event. mostly just used by this library internally for events that are downloaded by the callendar class. auth (default = None) -- a (email,password) tuple which will be used for authentication to office365. cal (default = None) -- an instance of the calendar for this event to associate with. ''' self.auth = auth self.calendar = cal self.attendees = [] if json: self.json = json self.isNew = False else: self.json = {} self.verify = verify self.startTimeZone = time.strftime("%Z", time.gmtime()) self.endTimeZone = time.strftime("%Z", time.gmtime()) def create(self,calendar=None): ''' This method creates an event on the calender passed. IMPORTANT: It returns that event now created in the calendar, if you wish to make any changes to this event after you make it, use the returned value and not this particular event any further. calendar -- a calendar class onto which you want this event to be created. If this is left empty then the event's default calendar, specified at instancing, will be used. If no default is specified, then the event cannot be created. ''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.create_url = self.create_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: log.debug('failed authentication check when creating event.') return False if calendar: calId = calendar.calendarId self.calendar = calendar log.debug('sent to passed calendar.') elif self.calendar: calId = self.calendar.calendarId log.debug('sent to default calendar.') else: log.debug('no valid calendar to upload to.') return False headers = {'Content-type': 'application/json', 'Accept': 'application/json'} log.debug('creating json for request.') data = json.dumps(self.json) response = None try: log.debug('sending post request now') response = connection.post_data(self.create_url.format(calId),data,headers=headers,auth=self.auth,verify=self.verify) log.debug('sent post request.') if response.status_code > 399: log.error("Invalid response code [{}], response text: \n{}".format(response.status_code, response.text)) return False except Exception as e: if response: log.debug('response to event creation: %s',str(response)) else: log.error('No response, something is very wrong with create: %s',str(e)) return False log.debug('response to event creation: %s',str(response)) return Event(response.json(),self.auth,calendar) def update(self): '''Updates an event that already exists in a calendar.''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.update_url = self.update_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: return False if self.calendar: calId = self.calendar.calendarId else: return False headers = {'Content-type': 'application/json', 'Accept': 'application/json'} data = json.dumps(self.json) response = None print(data) try: response = connection.patch_data(self.update_url.format(self.json['id']),data,headers=headers,auth=self.auth,verify=self.verify) log.debug('sending patch request now') except Exception as e: if response: log.debug('response to event creation: %s',str(response)) else: log.error('No response, something is very wrong with update: %s',str(e)) return False log.debug('response to event creation: %s',str(response)) return Event(json.dumps(response),self.auth) def delete(self): ''' Delete's an event from the calendar it is in. But leaves you this handle. You could then change the calendar and transfer the event to that new calendar. You know, if that's your thing. ''' connection = Connection() # Change URL if we use Oauth if connection.is_valid() and connection.oauth != None: self.delete_url = self.delete_url.replace("outlook.office365.com/api", "graph.microsoft.com") elif not self.auth: return False headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} response = None try: log.debug('sending delete request') response = connection.delete_data(self.delete_url.format(self.json['id']),headers=headers,auth=self.auth,verify=self.verify) except Exception as e: if response: log.debug('response to deletion: %s',str(response)) else: log.error('No response, something is very wrong with delete: %s',str(e)) return False return response def toJson(self): ''' Creates a JSON representation of the calendar event. oh. uh. I mean it simply returns the json representation that has always been in self.json. ''' return self.json def fullcalendarioJson(self): ''' returns a form of the event suitable for the vehicle booking system here. oh the joys of having a library to yourself! ''' ret = {} ret['title'] = self.json['subject'] ret['driver'] = self.json['organizer']['emailAddress']['name'] ret['driverEmail'] = self.json['organizer']['emailAddress']['address'] ret['start'] = self.json['start'] ret['end'] = self.json['end'] ret['isAllDay'] = self.json['isAllDay'] return ret def getSubject(self): '''Gets event subject line.''' return self.json['subject'] def getBody(self): '''Gets event body content.''' return self.json['body']['content'] def getStart(self): '''Gets event start struct_time''' if 'Z' in self.json['start']: return time.strptime(self.json['start'], self.time_string+'Z') else: return time.strptime(self.json['start']["dateTime"].split('.')[0], self.time_string) def getEnd(self): '''Gets event end struct_time''' if 'Z' in self.json['end']: return time.strptime(self.json['end'], self.time_string+'Z') else: return time.strptime(self.json['end']["dateTime"].split('.')[0], self.time_string) def getAttendees(self): '''Gets list of event attendees.''' return self.json['attendees'] def getReminder(self): '''Gets the reminder's state.''' return self.json['isReminderOn'] def getCategories(self): '''Gets the list of categories for this event''' return self.json['categories'] def setSubject(self,val): '''sets event subject line.''' self.json['subject'] = val def setBody(self,val,contentType='Text'): ''' sets event body content: Examples for ContentType could be 'Text' or 'HTML' ''' cont = False while not cont: try: self.json['body']['content'] = val self.json['body']['contentType'] = contentType cont = True except: self.json['body'] = {} def setStart(self,val): ''' sets event start time. Argument: val - this argument can be passed in three different ways. You can pass it in as a int or float, in which case the assumption is that it's seconds since Unix Epoch. You can pass it in as a struct_time. Or you can pass in a string. The string must be formated in the json style, which is %Y-%m-%dT%H:%M:%S. If you stray from that in your string you will break the library. ''' if isinstance(val,time.struct_time): self.json['start'] = {"dateTime":time.strftime(self.time_string,val), "timeZone": self.startTimeZone} elif isinstance(val,int): self.json['start'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.startTimeZone} elif isinstance(val,float): self.json['start'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.startTimeZone} else: #this last one assumes you know how to format the time string. if it brakes, check #your time string! self.json['start'] = val def setEnd(self,val): ''' sets event end time. Argument: val - this argument can be passed in three different ways. You can pass it in as a int or float, in which case the assumption is that it's seconds since Unix Epoch. You can pass it in as a struct_time. Or you can pass in a string. The string must be formated in the json style, which is %Y-%m-%dT%H:%M:%SZ. If you stray from that in your string you will break the library. ''' if isinstance(val,time.struct_time): self.json['end'] = {"dateTime":time.strftime(self.time_string,val), "timeZone": self.endTimeZone} elif isinstance(val,int): self.json['end'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.endTimeZone} elif isinstance(val,float): self.json['end'] = {"dateTime":time.strftime(self.time_string,time.gmtime(val)), "timeZone": self.endTimeZone} else: #this last one assumes you know how to format the time string. if it brakes, check #your time string! self.json['end'] = val def setAttendees(self,val): ''' set the attendee list. val: the one argument this method takes can be very flexible. you can send: a dictionary: this must to be a dictionary formated as such: {"EmailAddress":{"Address":"recipient@example.com"}} with other options such ass "Name" with address. but at minimum it must have this. a list: this must to be a list of libraries formatted the way specified above, or it can be a list of libraries objects of type Contact. The method will sort out the libraries from the contacts. a string: this is if you just want to throw an email address. a contact: type Contact from this library. For each of these argument types the appropriate action will be taken to fit them to the needs of the library. ''' self.json['attendees'] = [] if isinstance(val,list): self.json['attendees'] = val elif isinstance(val,dict): self.json['attendees'] = [val] elif isinstance(val,str): if '@' in val: self.addAttendee(val) elif isinstance(val,Contact): self.addAttendee(val) elif isinstance(val,Group): self.addAttendee(val) else: return False return True def setStartTimeZone(self,val): '''sets event start timezone''' self.startTimeZone = val self.json['start']["startTimeZone"] = val def setEndTimeZone(self,val): '''sets event end timezone''' self.endTimeZone = val self.json['end']["endTimeZone"] = val def addAttendee(self,address,name=None): ''' Adds a recipient to the attendee list. Arguments: address -- the email address of the person you are sending to. <<< Important that. Address can also be of type Contact or type Group. name -- the name of the person you are sending to. mostly just a decorator. If you send an email address for the address arg, this will give you the ability to set the name properly, other wise it uses the email address up to the at sign for the name. But if you send a type Contact or type Group, this argument is completely ignored. ''' if isinstance(address,Contact): self.json['attendees'].append(address.getFirstEmailAddress()) elif isinstance(address,Group): for con in address.contacts: self.json['attendees'].append(address.getFirstEmailAddress()) else: if name is None: name = address[:address.index('@')] self.json['attendees'].append({'emailAddress':{'address':address,'name':name}}) def setLocation(self,loc): ''' Sets the event's location. Arguments: loc -- two options, you can send a dictionary in the format discribed here: https://msdn.microsoft.com/en-us/office/office365/api/complex-types-for-mail-contacts-calendar#LocationBeta this will allow you to set address, coordinates, displayname, location email address, location uri, or any combination of the above. If you don't need that much detail you can simply send a string and it will be set as the locations display name. If you send something not a string or a dict, it will try to cast whatever you send into a string and set that as the display name. ''' if 'Location' not in self.json: self.json['location'] = {"adress":None} if isinstance(loc,dict): self.json['location'] = loc else: self.json['location'] = {'displayName':str(loc)} def getLocation(self): ''' Get the current location, if one is set. ''' if 'location' in self.json: return self.json['location'] return None def setReminder(self,val): ''' Sets the event's reminder. Argument: val -- a boolean ''' if val == True or val == False: self.json['isReminderOn'] = val def setCategories(self,cats): ''' Sets the event's categories. Argument: cats -- a list of categories ''' if isinstance(cats, (list, tuple)): self.json['categories'] = cats #To the King!
32.940397
131
0.704798
4a1a73927d9a85a5378529c7edd1c4a37f95ee68
695
py
Python
backend/tests/factories.py
DSBUGAY2/zcash-grant-system
729b9edda13bd1eeb3f445d889264230c6470d7e
[ "MIT" ]
8
2019-06-03T16:29:49.000Z
2021-05-11T20:38:36.000Z
backend/tests/factories.py
DSBUGAY2/zcash-grant-system
729b9edda13bd1eeb3f445d889264230c6470d7e
[ "MIT" ]
342
2019-01-15T19:13:58.000Z
2020-03-24T16:38:13.000Z
backend/tests/factories.py
DSBUGAY2/zcash-grant-system
729b9edda13bd1eeb3f445d889264230c6470d7e
[ "MIT" ]
5
2019-02-15T09:06:47.000Z
2022-01-24T21:38:41.000Z
# -*- coding: utf-8 -*- """Factories to help in tests.""" from factory import PostGenerationMethodCall, Sequence from factory.alchemy import SQLAlchemyModelFactory from grant.app import db class BaseFactory(SQLAlchemyModelFactory): """Base factory.""" class Meta: """Factory configuration.""" abstract = True sqlalchemy_session = db.session class UserFactory(BaseFactory): """User factory.""" username = Sequence(lambda n: 'user{0}'.format(n)) email = Sequence(lambda n: 'user{0}@example.com'.format(n)) password = PostGenerationMethodCall('set_password', 'example') active = True class Meta: """Factory configuration."""
23.965517
66
0.67482
4a1a73eb6f2a2f6181f925554b845a9a4c5caff6
5,744
py
Python
google/ads/googleads/v9/resources/types/campaign_simulation.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v9/resources/types/campaign_simulation.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v9/resources/types/campaign_simulation.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v9.common.types import simulation from google.ads.googleads.v9.enums.types import simulation_modification_method from google.ads.googleads.v9.enums.types import simulation_type __protobuf__ = proto.module( package="google.ads.googleads.v9.resources", marshal="google.ads.googleads.v9", manifest={"CampaignSimulation",}, ) class CampaignSimulation(proto.Message): r"""A campaign simulation. Supported combinations of advertising channel type, simulation type and simulation modification method is detailed below respectively. SEARCH - CPC_BID - UNIFORM SEARCH - CPC_BID - SCALING SEARCH - TARGET_CPA - UNIFORM SEARCH - TARGET_CPA - SCALING SEARCH - TARGET_ROAS - UNIFORM SEARCH - TARGET_IMPRESSION_SHARE - UNIFORM SEARCH - BUDGET - UNIFORM SHOPPING - BUDGET - UNIFORM SHOPPING - TARGET_ROAS - UNIFORM MULTIPLE - TARGET_CPA - UNIFORM OWNED_AND_OPERATED - TARGET_CPA - DEFAULT DISPLAY - TARGET_CPA - UNIFORM This message has `oneof`_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: resource_name (str): Output only. The resource name of the campaign simulation. Campaign simulation resource names have the form: ``customers/{customer_id}/campaignSimulations/{campaign_id}~{type}~{modification_method}~{start_date}~{end_date}`` campaign_id (int): Output only. Campaign id of the simulation. type_ (google.ads.googleads.v9.enums.types.SimulationTypeEnum.SimulationType): Output only. The field that the simulation modifies. modification_method (google.ads.googleads.v9.enums.types.SimulationModificationMethodEnum.SimulationModificationMethod): Output only. How the simulation modifies the field. start_date (str): Output only. First day on which the simulation is based, in YYYY-MM-DD format. end_date (str): Output only. Last day on which the simulation is based, in YYYY-MM-DD format cpc_bid_point_list (google.ads.googleads.v9.common.types.CpcBidSimulationPointList): Output only. Simulation points if the simulation type is CPC_BID. This field is a member of `oneof`_ ``point_list``. target_cpa_point_list (google.ads.googleads.v9.common.types.TargetCpaSimulationPointList): Output only. Simulation points if the simulation type is TARGET_CPA. This field is a member of `oneof`_ ``point_list``. target_roas_point_list (google.ads.googleads.v9.common.types.TargetRoasSimulationPointList): Output only. Simulation points if the simulation type is TARGET_ROAS. This field is a member of `oneof`_ ``point_list``. target_impression_share_point_list (google.ads.googleads.v9.common.types.TargetImpressionShareSimulationPointList): Output only. Simulation points if the simulation type is TARGET_IMPRESSION_SHARE. This field is a member of `oneof`_ ``point_list``. budget_point_list (google.ads.googleads.v9.common.types.BudgetSimulationPointList): Output only. Simulation points if the simulation type is BUDGET. This field is a member of `oneof`_ ``point_list``. """ resource_name = proto.Field(proto.STRING, number=1,) campaign_id = proto.Field(proto.INT64, number=2,) type_ = proto.Field( proto.ENUM, number=3, enum=simulation_type.SimulationTypeEnum.SimulationType, ) modification_method = proto.Field( proto.ENUM, number=4, enum=simulation_modification_method.SimulationModificationMethodEnum.SimulationModificationMethod, ) start_date = proto.Field(proto.STRING, number=5,) end_date = proto.Field(proto.STRING, number=6,) cpc_bid_point_list = proto.Field( proto.MESSAGE, number=7, oneof="point_list", message=simulation.CpcBidSimulationPointList, ) target_cpa_point_list = proto.Field( proto.MESSAGE, number=8, oneof="point_list", message=simulation.TargetCpaSimulationPointList, ) target_roas_point_list = proto.Field( proto.MESSAGE, number=9, oneof="point_list", message=simulation.TargetRoasSimulationPointList, ) target_impression_share_point_list = proto.Field( proto.MESSAGE, number=10, oneof="point_list", message=simulation.TargetImpressionShareSimulationPointList, ) budget_point_list = proto.Field( proto.MESSAGE, number=11, oneof="point_list", message=simulation.BudgetSimulationPointList, ) __all__ = tuple(sorted(__protobuf__.manifest))
39.888889
128
0.696205
4a1a747df51a0428c835594168f000e0b51798ca
9,271
py
Python
pypureclient/flashblade/FB_2_0/models/file_system_performance.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
14
2018-12-07T18:30:27.000Z
2022-02-22T09:12:33.000Z
pypureclient/flashblade/FB_2_0/models/file_system_performance.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
28
2019-09-17T21:03:52.000Z
2022-03-29T22:07:35.000Z
pypureclient/flashblade/FB_2_0/models/file_system_performance.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
15
2020-06-11T15:50:08.000Z
2022-03-21T09:27:25.000Z
# coding: utf-8 """ FlashBlade REST API Client A lightweight client for FlashBlade REST API 2.0, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_0 import models class FileSystemPerformance(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'id': 'str', 'bytes_per_op': 'float', 'bytes_per_read': 'float', 'bytes_per_write': 'float', 'others_per_sec': 'float', 'read_bytes_per_sec': 'float', 'reads_per_sec': 'float', 'time': 'int', 'usec_per_other_op': 'float', 'usec_per_read_op': 'float', 'usec_per_write_op': 'float', 'write_bytes_per_sec': 'float', 'writes_per_sec': 'float' } attribute_map = { 'name': 'name', 'id': 'id', 'bytes_per_op': 'bytes_per_op', 'bytes_per_read': 'bytes_per_read', 'bytes_per_write': 'bytes_per_write', 'others_per_sec': 'others_per_sec', 'read_bytes_per_sec': 'read_bytes_per_sec', 'reads_per_sec': 'reads_per_sec', 'time': 'time', 'usec_per_other_op': 'usec_per_other_op', 'usec_per_read_op': 'usec_per_read_op', 'usec_per_write_op': 'usec_per_write_op', 'write_bytes_per_sec': 'write_bytes_per_sec', 'writes_per_sec': 'writes_per_sec' } required_args = { } def __init__( self, name=None, # type: str id=None, # type: str bytes_per_op=None, # type: float bytes_per_read=None, # type: float bytes_per_write=None, # type: float others_per_sec=None, # type: float read_bytes_per_sec=None, # type: float reads_per_sec=None, # type: float time=None, # type: int usec_per_other_op=None, # type: float usec_per_read_op=None, # type: float usec_per_write_op=None, # type: float write_bytes_per_sec=None, # type: float writes_per_sec=None, # type: float ): """ Keyword args: name (str): Name of the object (e.g., a file system or snapshot). id (str): A non-modifiable, globally unique ID chosen by the system. bytes_per_op (float): Average operation size (read bytes+write bytes/read ops+write ops). bytes_per_read (float): Average read size in bytes per read operation. bytes_per_write (float): Average write size in bytes per write operation. others_per_sec (float): Other operations processed per second. read_bytes_per_sec (float): Bytes read per second. reads_per_sec (float): Read requests processed per second. time (int): Sample time in milliseconds since UNIX epoch. usec_per_other_op (float): Average time, measured in microseconds, it takes the array to process other operations. usec_per_read_op (float): Average time, measured in microseconds, it takes the array to process a read request. usec_per_write_op (float): Average time, measured in microseconds, it takes the array to process a write request. write_bytes_per_sec (float): Bytes written per second. writes_per_sec (float): Write requests processed per second. """ if name is not None: self.name = name if id is not None: self.id = id if bytes_per_op is not None: self.bytes_per_op = bytes_per_op if bytes_per_read is not None: self.bytes_per_read = bytes_per_read if bytes_per_write is not None: self.bytes_per_write = bytes_per_write if others_per_sec is not None: self.others_per_sec = others_per_sec if read_bytes_per_sec is not None: self.read_bytes_per_sec = read_bytes_per_sec if reads_per_sec is not None: self.reads_per_sec = reads_per_sec if time is not None: self.time = time if usec_per_other_op is not None: self.usec_per_other_op = usec_per_other_op if usec_per_read_op is not None: self.usec_per_read_op = usec_per_read_op if usec_per_write_op is not None: self.usec_per_write_op = usec_per_write_op if write_bytes_per_sec is not None: self.write_bytes_per_sec = write_bytes_per_sec if writes_per_sec is not None: self.writes_per_sec = writes_per_sec def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `FileSystemPerformance`".format(key)) if key == "bytes_per_op" and value is not None: if value < 0.0: raise ValueError("Invalid value for `bytes_per_op`, must be a value greater than or equal to `0.0`") if key == "bytes_per_read" and value is not None: if value < 0.0: raise ValueError("Invalid value for `bytes_per_read`, must be a value greater than or equal to `0.0`") if key == "bytes_per_write" and value is not None: if value < 0.0: raise ValueError("Invalid value for `bytes_per_write`, must be a value greater than or equal to `0.0`") if key == "others_per_sec" and value is not None: if value < 0.0: raise ValueError("Invalid value for `others_per_sec`, must be a value greater than or equal to `0.0`") if key == "read_bytes_per_sec" and value is not None: if value < 0.0: raise ValueError("Invalid value for `read_bytes_per_sec`, must be a value greater than or equal to `0.0`") if key == "reads_per_sec" and value is not None: if value < 0.0: raise ValueError("Invalid value for `reads_per_sec`, must be a value greater than or equal to `0.0`") if key == "usec_per_other_op" and value is not None: if value < 0.0: raise ValueError("Invalid value for `usec_per_other_op`, must be a value greater than or equal to `0.0`") if key == "usec_per_read_op" and value is not None: if value < 0.0: raise ValueError("Invalid value for `usec_per_read_op`, must be a value greater than or equal to `0.0`") if key == "usec_per_write_op" and value is not None: if value < 0.0: raise ValueError("Invalid value for `usec_per_write_op`, must be a value greater than or equal to `0.0`") if key == "write_bytes_per_sec" and value is not None: if value < 0.0: raise ValueError("Invalid value for `write_bytes_per_sec`, must be a value greater than or equal to `0.0`") if key == "writes_per_sec" and value is not None: if value < 0.0: raise ValueError("Invalid value for `writes_per_sec`, must be a value greater than or equal to `0.0`") self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(FileSystemPerformance, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FileSystemPerformance): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
41.573991
126
0.596807
4a1a74b966d0956a3bebe66b65a241795398078f
273
py
Python
probability_combinatorics/distribute_stuff.py
codecakes/random_games
1e670021ec97a196726e937e658878dc63ba9d34
[ "MIT" ]
null
null
null
probability_combinatorics/distribute_stuff.py
codecakes/random_games
1e670021ec97a196726e937e658878dc63ba9d34
[ "MIT" ]
null
null
null
probability_combinatorics/distribute_stuff.py
codecakes/random_games
1e670021ec97a196726e937e658878dc63ba9d34
[ "MIT" ]
null
null
null
def distribute_something(count, people): """ Given count = X things distribute it among people=N """ l = [0] * people while count > 0: for i in xrange(len(l)): l[i] += 1 count -= 1 if count == 0: return l
22.75
40
0.490842
4a1a753458e4de149ecb045549c7dfb81ef4d62c
3,763
py
Python
tests/test_euklid_vector.py
airgproducts/euklid_rd
3222cfeca8a9216d1a6bfc5c41606fb0801192d0
[ "MIT" ]
null
null
null
tests/test_euklid_vector.py
airgproducts/euklid_rd
3222cfeca8a9216d1a6bfc5c41606fb0801192d0
[ "MIT" ]
15
2022-01-07T16:42:39.000Z
2022-03-01T18:13:22.000Z
tests/test_euklid_vector.py
airgproducts/euklid_rs
3222cfeca8a9216d1a6bfc5c41606fb0801192d0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 """Unittest for euklid_rs.vector against euklid.vector""" import math import unittest import euklid import euklid_rs class TestVectorFunctions(unittest.TestCase): """Test euklid_rs.vector against euklid.vector""" def setUp(self) -> None: # Vector2D self.c_p2d_1 = euklid.vector.Vector2D([2, 3]) self.c_p2d_2 = euklid.vector.Vector2D([-4, -3]) self.r_p2d_1 = euklid_rs.vector.Vector2D([2, 3]) self.r_p2d_2 = euklid_rs.vector.Vector2D([-4, -3]) # Vector3D self.c_p3d_1 = euklid.vector.Vector3D([2, 3, 4]) self.c_p3d_2 = euklid.vector.Vector3D([-4, -3, -2]) self.r_p3d_1 = euklid_rs.vector.Vector3D([2, 3, 4]) self.r_p3d_2 = euklid_rs.vector.Vector3D([-4, -3, -2]) def test_angle(self): """test_angle comparision""" assert self.r_p2d_1.angle() == self.c_p2d_1.angle() def test_cross(self): """test_cross comparision""" assert self.r_p2d_1.cross(self.r_p2d_2) == self.c_p2d_1.cross(self.c_p2d_2) assert str(self.r_p3d_1.cross(self.r_p3d_2)) == str( self.c_p3d_1.cross(self.c_p3d_2) ) def test_copy(self): """test_copy comparision""" assert str(self.r_p2d_1.copy()) == str(self.c_p2d_1.copy()) assert str(self.r_p3d_1.copy()) == str(self.c_p3d_1.copy()) def test_dot(self): """test_dot comparision""" assert self.r_p2d_1.dot(self.r_p2d_2) == self.c_p2d_1.dot(self.c_p2d_2) assert self.r_p3d_1.dot(self.r_p3d_2) == self.c_p3d_1.dot(self.c_p3d_2) def test_length(self): """test_length comparision""" assert self.r_p2d_1.length() == self.c_p2d_1.length() assert self.r_p3d_1.length() == self.c_p3d_1.length() def test_normalized(self): """test_normalized comparision""" assert str(self.r_p2d_1.normalized()) == str(self.c_p2d_1.normalized()) assert str(self.r_p3d_1.normalized()) == str(self.c_p3d_1.normalized()) def test__repr__(self): """test__repr__ comparision""" assert str(self.r_p2d_1) == str(self.c_p2d_1) assert str(self.r_p3d_1) == str(self.c_p3d_1) class TestVectorTransformFunctions(unittest.TestCase): """Test euklid_rs.vector.Transformation against euklid.vector.Transformation""" def setUp(self) -> None: self.c_p3d_1 = euklid.vector.Vector3D([3, 4, 5]) self.c_p3d_2 = euklid.vector.Vector3D([-1, -2, -3]) self.r_p3d_1 = euklid_rs.vector.Vector3D([3, 4, 5]) self.r_p3d_2 = euklid_rs.vector.Vector3D([-1, -2, -3]) def test_translation(self): """test_translation comparision""" excepted = euklid.vector.Transformation.translation(self.c_p3d_1).apply( self.c_p3d_2 ) result = euklid_rs.vector.Transformation.translation(self.r_p3d_1).apply( self.r_p3d_2 ) assert str(result) == str(excepted) def test_rotation(self): """test_rotation comparision""" c_axis = euklid.vector.Vector3D([1, 1, 0]) c_rotation = euklid.vector.Transformation.rotation(math.pi, c_axis).apply( self.c_p3d_1 ) r_axis = euklid_rs.vector.Vector3D([1, 1, 0]) r_rotation = euklid_rs.vector.Transformation.rotation(math.pi, r_axis).apply( self.r_p3d_1 ) assert str(c_rotation) == str(r_rotation) def test_scale(self): """test_scale comparision""" excepted = euklid.vector.Transformation.scale(0.5).apply(self.c_p3d_1).length() result = euklid_rs.vector.Transformation.scale(0.5).apply(self.r_p3d_1).length() assert result == excepted if __name__ == "__main__": unittest.main(exit=False)
35.838095
88
0.639383
4a1a757ec031f7126b0bba916e35fc7bcca487f4
12,770
py
Python
fairseq/tasks/translation_multi_simple_epoch.py
cece95/fairseq
92f27771b4cec979d4e7c1dc47b63d40d8220823
[ "MIT" ]
null
null
null
fairseq/tasks/translation_multi_simple_epoch.py
cece95/fairseq
92f27771b4cec979d4e7c1dc47b63d40d8220823
[ "MIT" ]
null
null
null
fairseq/tasks/translation_multi_simple_epoch.py
cece95/fairseq
92f27771b4cec979d4e7c1dc47b63d40d8220823
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import datetime import time import torch from fairseq.data import ( data_utils, FairseqDataset, iterators, LanguagePairDataset, ListDataset, ) from fairseq.tasks import FairseqTask, register_task from fairseq.data.multilingual.sampling_method import SamplingMethod from fairseq.data.multilingual.multilingual_data_manager import MultilingualDatasetManager ### def get_time_gap(s, e): return (datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s)).__str__() ### logger = logging.getLogger(__name__) @register_task('translation_multi_simple_epoch') class TranslationMultiSimpleEpochTask(FairseqTask): """ Translate from one (source) language to another (target) language. Args: langs (List[str]): a list of languages that are being supported dicts (Dict[str, fairseq.data.Dictionary]): mapping from supported languages to their dictionaries training (bool): whether the task should be configured for training or not .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='inference source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='inference target language') parser.add_argument('--lang-pairs', default=None, metavar='PAIRS', help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr') SamplingMethod.add_arguments(parser) MultilingualDatasetManager.add_args(parser) # fmt: on def __init__(self, args, langs, dicts, training): super().__init__(args) self.langs = langs self.dicts = dicts self.training = training if training: self.lang_pairs = args.lang_pairs else: self.lang_pairs = ['{}-{}'.format(args.source_lang, args.target_lang)] # eval_lang_pairs for multilingual translation is usually all of the # lang_pairs. However for other multitask settings or when we want to # optimize for certain languages we want to use a different subset. Thus # the eval_lang_pairs class variable is provided for classes that extend # this class. self.eval_lang_pairs = self.lang_pairs # model_lang_pairs will be used to build encoder-decoder model pairs in # models.build_model(). This allows multitask type of sub-class can # build models other than the input lang_pairs self.model_lang_pairs = self.lang_pairs self.sampling_method = SamplingMethod.build_sampler(args, self) self.data_manager = MultilingualDatasetManager.setup_data_manager( args, self.lang_pairs, langs, dicts, self.sampling_method) @classmethod def setup_task(cls, args, **kwargs): langs, dicts, training = MultilingualDatasetManager.prepare( cls.load_dictionary, args, **kwargs ) return cls(args, langs, dicts, training) def has_sharded_data(self, split): return self.data_manager.has_sharded_data(split) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if split in self.datasets: dataset = self.datasets[split] if self.has_sharded_data(split) and dataset.load_next_shard: shard_epoch = dataset.shard_epoch else: # no need to load next shard so skip loading # also this avoid always loading from beginning of the data return else: shard_epoch = None logger.info(f'loading data for {split} epoch={epoch}/{shard_epoch}') self.datasets[split] = self.data_manager.load_sampled_multi_epoch_dataset( split, self.training, epoch=epoch, combine=combine, shard_epoch=shard_epoch, **kwargs ) def build_dataset_for_inference(self, src_tokens, src_lengths): src_data = ListDataset(src_tokens, src_lengths) dataset = LanguagePairDataset(src_data, src_lengths, self.source_dictionary) src_langtok_spec, tgt_langtok_spec = self.args.langtoks['main'] if self.args.lang_tok_replacing_bos_eos: dataset = self.data_manager.alter_dataset_langtok( dataset, src_eos=self.source_dictionary.eos(), src_lang=self.args.source_lang, tgt_eos=self.target_dictionary.eos(), tgt_lang=self.args.target_lang, src_langtok_spec=src_langtok_spec, tgt_langtok_spec=tgt_langtok_spec, ) else: dataset.src = self.data_manager.src_dataset_tranform_func( self.args.source_lang, self.args.target_lang, dataset=dataset.src, spec=src_langtok_spec, ) return dataset def build_model(self, args): return super().build_model(args) def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) return loss, sample_size, logging_output def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): _, tgt_langtok_spec = self.args.langtoks['main'] if not self.args.lang_tok_replacing_bos_eos: if prefix_tokens is None and tgt_langtok_spec: tgt_lang_tok = self.data_manager.get_decoder_langtok(self.args.target_lang, tgt_langtok_spec) src_tokens = sample['net_input']['src_tokens'] bsz = src_tokens.size(0) prefix_tokens = torch.LongTensor( [[tgt_lang_tok]] ).expand(bsz, 1).to(src_tokens) return generator.generate( models, sample, prefix_tokens=prefix_tokens, ) else: return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=self.data_manager.get_decoder_langtok(self.args.target_lang, tgt_langtok_spec) if tgt_langtok_spec else self.target_dictionary.eos(), ) def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): if self.training: return next(iter(self.dicts.values())) else: return self.dicts[self.args.source_lang] @property def target_dictionary(self): if self.training: return next(iter(self.dicts.values())) else: return self.dicts[self.args.target_lang] def create_batch_sampler_func( self, max_positions, ignore_invalid_inputs, max_tokens, max_sentences ): def construct_batch_sampler( dataset, epoch ): splits = [s for s, _ in self.datasets.items() if self.datasets[s] == dataset] split = splits[0] if len(splits) > 0 else None if epoch is not None: dataset.set_epoch(epoch) start_time = time.time() # get indices ordered by example size indices = dataset.ordered_indices() logger.debug(f'[{split}] @batch_sampler order indices time: {get_time_gap(start_time, time.time())}') # filter examples that are too large if max_positions is not None: my_time = time.time() indices = data_utils.filter_by_size( indices, dataset, max_positions, raise_exception=(not ignore_invalid_inputs), ) logger.debug(f'[{split}] @batch_sampler filter_by_size time: {get_time_gap(my_time, time.time())}') # create mini-batches with given size constraints my_time = time.time() batch_sampler = data_utils.batch_by_size( indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, ) logger.debug(f'[{split}] @batch_sampler batch_by_size time: {get_time_gap(my_time, time.time())}') logger.debug(f'[{split}] per epoch batch_sampler set-up time: {get_time_gap(start_time, time.time())}') return batch_sampler return construct_batch_sampler # we need to override get_batch_iterator because we want to reset the epoch iterator each time def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 0). Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ # initialize the dataset with the correct starting epoch assert isinstance(dataset, FairseqDataset) if dataset in self.dataset_to_epoch_iter: return self.dataset_to_epoch_iter[dataset] if ( self.args.sampling_method == 'RoundRobin' ): batch_iter = super().get_batch_iterator( dataset, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, ) self.dataset_to_epoch_iter[dataset] = batch_iter return batch_iter construct_batch_sampler = self.create_batch_sampler_func( max_positions, ignore_invalid_inputs, max_tokens, max_sentences) epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=construct_batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, ) return epoch_iter
42.006579
119
0.626703
4a1a7722274bfd7b333b96412ddc86e49d966dd0
208
py
Python
spockpy/config/__init__.py
gavindsouza/spockpy
8664550d46be088a5ef8439220353ba4c33893f8
[ "Apache-2.0" ]
58
2017-03-25T05:52:23.000Z
2021-09-11T08:16:14.000Z
spockpy/config/__init__.py
gavindsouza/spockpy
8664550d46be088a5ef8439220353ba4c33893f8
[ "Apache-2.0" ]
4
2017-08-16T13:51:57.000Z
2018-06-12T08:09:17.000Z
spockpy/config/__init__.py
gavindsouza/spockpy
8664550d46be088a5ef8439220353ba4c33893f8
[ "Apache-2.0" ]
18
2017-03-26T18:26:21.000Z
2021-03-25T23:08:17.000Z
# module - spockpy.config # imports - compatibility imports from __future__ import absolute_import # imports - module imports from spockpy.config.base import Config from spockpy.config.app import AppConfig
26
41
0.8125
4a1a774be5fc53ca407b375c0783fe70fdf2e193
586
py
Python
hackerrank/30 Days of Code/Day 0 - Hello, World/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
4
2020-07-24T01:59:50.000Z
2021-07-24T15:14:08.000Z
hackerrank/30 Days of Code/Day 0 - Hello, World/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
hackerrank/30 Days of Code/Day 0 - Hello, World/test.py
ATrain951/01.python-com_Qproject
c164dd093954d006538020bdf2e59e716b24d67c
[ "MIT" ]
null
null
null
import io import unittest from contextlib import redirect_stdout from unittest.mock import patch class TestQ(unittest.TestCase): @patch('builtins.input', return_value='Welcome to 30 Days of Code!') def test_case_0(self, input_mock=None): text_trap = io.StringIO() with redirect_stdout(text_trap): import solution self.assertEqual(text_trap.getvalue(), 'Hello, World.' + '\n' + 'Welcome to 30 Days of Code!' + '\n' ) if __name__ == '__main__': unittest.main()
27.904762
72
0.595563
4a1a78c94f8f49f22753e98aceaf4ca83f82ceae
1,806
py
Python
Python/code.py
snehalovhal/greyatom-python-for-data-science
54da11b6ab64ecc6556249554ebe3f03f3d73aad
[ "MIT" ]
null
null
null
Python/code.py
snehalovhal/greyatom-python-for-data-science
54da11b6ab64ecc6556249554ebe3f03f3d73aad
[ "MIT" ]
null
null
null
Python/code.py
snehalovhal/greyatom-python-for-data-science
54da11b6ab64ecc6556249554ebe3f03f3d73aad
[ "MIT" ]
null
null
null
# -------------- # Code starts here # Create the lists class_1 = ['Geoffrey Hinton','Andrew Ng','Sebastian Raschka','Yoshua Bengio'] class_2 = ['Hilary Mason','Carla Gentry','Corinna Cortes'] # Concatenate both the strings new_class = class_1 + class_2 print(new_class) # Append the list new_class.append('Peter Warden') # Print updated list print(new_class) # Remove the element from the list new_class.remove('Carla Gentry') # Print the list print(new_class) # Create the Dictionary courses = {'Math':65, 'English':70, 'History':80, 'French':70, 'Science':60} # Slice the dict and stores the all subjects marks in variable math = courses['Math'] english = courses['English'] history = courses['History'] french = courses['French'] science = courses['Science'] # Store the all the subject in one variable `Total` total = math + english + history + french + science # Print the total print(total) # Insert percentage formula percentage = total * 100/500 # Print the percentage print(percentage) # Create the Dictionary mathematics = {'Geoffrey Hinton':78, 'Andrew Ng':95, 'Sebastian Raschka':65, 'Yoshua Benjio':50, 'Hilary Mason':70, 'Corinna Cortes':66, 'Peter Warden':75} topper = max(mathematics,key = mathematics.get) print(topper) # Given string topper = 'andrew ng' topper.split(' ') print(topper) # Create variable first_name first_name = (topper.split()[0]) print(first_name) # Create variable Last_name and store last two element in the list last_name = (topper.split()[1]) print(last_name) # Concatenate the string full_name = last_name + ' ' + first_name # print the full_name print(full_name) # print the name in upper case certificate_name = full_name.upper() print(certificate_name) # Code ends here
24.405405
156
0.700443
4a1a78f6884ca6f5e27b39090583d0be9d780925
3,313
py
Python
src/niweb/apps/noclook/tests/test_views.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
2
2018-12-21T09:35:27.000Z
2019-07-31T18:51:58.000Z
src/niweb/apps/noclook/tests/test_views.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
6
2019-07-25T07:10:23.000Z
2021-02-08T09:58:57.000Z
src/niweb/apps/noclook/tests/test_views.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
5
2019-02-06T12:00:26.000Z
2021-11-19T14:48:06.000Z
from .neo4j_base import NeoTestCase from apps.noclook.helpers import set_user, set_noclook_auto_manage from apps.noclook import forms from django.urls import reverse class ViewTest(NeoTestCase): """ Excercises the view fiels, by running at least one of the views in them. """ def test_router_list_view(self): router1 = self.create_node('awesome-router.test.dev', 'router') router2 = self.create_node('fine.test.dev', 'router') router3 = self.create_node('different-router.test.dev', 'router') resp = self.client.get('/router/') self.assertContains(resp, router1.node_name) self.assertContains(resp, router2.node_name) self.assertContains(resp, router3.node_name) table_rows = resp.context['table'].rows self.assertEqual(table_rows[0].cols[0].get('handle_id'), router1.handle_id) self.assertEqual(table_rows[2].cols[0].get('handle_id'), router2.handle_id) self.assertEqual(table_rows[1].cols[0].get('handle_id'), router3.handle_id) def test_host_detail_view(self): host = self.create_node('sweet-host.nordu.net', 'host') resp = self.client.get(reverse('detail_host', args=[host.handle_id])) self.assertContains(resp, host.node_name) self.assertEqual(resp.context['node_handle'].handle_id, host.handle_id) def test_router_edit_view(self): router = self.create_node('awesome-router.test.dev', 'router') resp = self.client.get(reverse('generic_edit', args=['router', router.handle_id])) self.assertContains(resp, router.node_name) self.assertEqual(resp.context['node_handle'].handle_id, router.handle_id) self.assertIsInstance(resp.context['form'], forms.EditRouterForm) def test_debug_view(self): something = self.create_node('fancy.test.dev', 'magic-device') resp = self.client.get(reverse('debug', args=[something.handle_id])) self.assertContains(resp, something.node_name) self.assertEqual(resp.context['node_handle'].handle_id, something.handle_id) def test_create_view(self): resp = self.client.get(reverse('create_node', args=['host'])) self.assertIsInstance(resp.context['form'], forms.NewHostForm) def test_other_view(self): router = self.create_node('nice.test.dev', 'router') resp = self.client.get(reverse('visualize', args=['router', router.handle_id])) self.assertEqual(resp.context['slug'], 'router') self.assertEqual(resp.context['node_handle'].handle_id, router.handle_id) def test_redirect_view(self): router = self.create_node('nice.test.dev', 'router') resp = self.client.get(reverse('node_redirect', args=[router.handle_id])) self.assertRedirects(resp, router.url()) def test_report_view(self): host_user = self.create_node('AwesomeCo', 'host-user', 'Relation') host = self.create_node('sweet-host.nordu.net', 'host', 'Logical') host_node = host.get_node() set_noclook_auto_manage(host_node, True) set_user(self.user, host.get_node(), host_user.handle_id) url = reverse('host_users_report') resp = self.client.get(url) self.assertContains(resp, host.node_name) # import nodes? it is tested seperatly
42.474359
90
0.686991
4a1a79033fe86d457ccf1a04fe9fdfc1cbaf33db
21,406
py
Python
tests/packagedcode/test_maven.py
quepop/scancode-toolkit
cea1d29064812e89a5d59cc3a3a39a5adb0b3e15
[ "Apache-2.0", "CC-BY-4.0" ]
1
2021-06-25T20:11:53.000Z
2021-06-25T20:11:53.000Z
tests/packagedcode/test_maven.py
quepop/scancode-toolkit
cea1d29064812e89a5d59cc3a3a39a5adb0b3e15
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
tests/packagedcode/test_maven.py
quepop/scancode-toolkit
cea1d29064812e89a5d59cc3a3a39a5adb0b3e15
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
# # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # import io import json import os.path import pytest from commoncode import fileutils from commoncode import text from commoncode import testcase from packagedcode import maven from commoncode.resource import Codebase class TestIsPom(testcase.FileBasedTesting): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def test_is_pom_non_pom(self): test_file = self.get_test_loc('maven_misc/non-maven.pom') assert not maven.is_pom(test_file) def test_is_pom_maven2(self): test_dir = self.get_test_loc('maven2') for test_file in fileutils.resource_iter(test_dir, with_dirs=False): if test_file.endswith('.json'): continue loc = os.path.join(test_dir, test_file) assert maven.is_pom(loc), loc + ' should be a POM' def test_is_pom_not_misc2(self): test_file = self.get_test_loc('maven_misc/properties-section-single.xml') assert not maven.is_pom(test_file) def test_is_pom_m2(self): test_dir = self.get_test_loc('m2') for test_file in fileutils.resource_iter(test_dir, with_dirs=False): if test_file.endswith('.json'): continue loc = os.path.join(test_dir, test_file) assert maven.is_pom(loc), 'file://' + loc + ' should be a POM' def test_is_pom_not_misc(self): test_file = self.get_test_loc('maven_misc/properties-section.xml') assert not maven.is_pom(test_file) def compare_results(results, test_pom_loc, expected_json_loc, regen=False): if regen: with open(expected_json_loc, 'w') as ex: json.dump(results, ex, indent=2) with io.open(expected_json_loc, encoding='utf-8') as ex: expected = json.load(ex) results_dump = json.dumps(results, indent=2) expected_dump = json.dumps(expected, indent=2) try: assert results_dump == expected_dump except AssertionError: test_pom_loc = 'file://' + test_pom_loc expected_json_loc = 'file://' + expected_json_loc expected = [test_pom_loc, expected_json_loc, expected_dump] assert results_dump == '\n'.join(expected) def parse_pom(location=None, text=None, check_is_pom=False): """ Return a POM mapping from the Maven POM file at location. """ pom = maven.get_maven_pom(location, text, check_is_pom) if not pom: return {} return pom.to_dict() class BaseMavenCase(testcase.FileBasedTesting): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def check_parse_pom(self, test_pom, regen=False): """ Test the parsing of POM at test_pom against an expected JSON from the same name with a .json extension. """ test_pom_loc = self.get_test_loc(test_pom) expected_json_loc = test_pom_loc + '.json' results = parse_pom(location=test_pom_loc) compare_results(results, test_pom_loc, expected_json_loc, regen) def check_parse_to_package(self, test_pom, regen=False): """ Test the creation of a Package from a POM at test_pom against an expected JSON from the same name with a .package.json extension. """ test_pom_loc = self.get_test_loc(test_pom) expected_json_loc = test_pom_loc + '.package.json' package = maven.parse(location=test_pom_loc) if not package: results = {} else: package.license_expression = package.compute_normalized_license() results = package.to_dict() compare_results(results, test_pom_loc, expected_json_loc, regen) class TestMavenMisc(BaseMavenCase): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def test_parse_pom_non_pom(self): test_pom_loc = self.get_test_loc('maven_misc/non-maven.pom') results = parse_pom(location=test_pom_loc, check_is_pom=True) assert results == {} self.check_parse_pom(test_pom_loc, regen=False) def test_MavenPom_simple_creation(self): test_loc = self.get_test_loc('maven_misc/mini-pom.xml') pom = maven.MavenPom(test_loc) assert pom.artifact_id == 'activemq-camel' # note: there has been no parent resolving yet assert pom.group_id == None def test_pom_dependencies(self): test_loc = self.get_test_loc('maven2/activemq-camel-pom.xml') pom = maven.MavenPom(test_loc) expected = [ ('compile', [ (('commons-logging', 'commons-logging-api', 'latest.release'), True), (('org.apache.camel', 'camel-jms', 'latest.release'), True), (('${project.groupId}', 'activemq-core', 'latest.release'), True), (('${project.groupId}', 'activemq-pool', 'latest.release'), True), (('org.apache.geronimo.specs', 'geronimo-annotation_1.0_spec', 'latest.release'), False) ]), ('test', [ (('${project.groupId}', 'activemq-core', 'latest.release'), True), (('org.apache.camel', 'camel-core', 'latest.release'), True), (('org.apache.camel', 'camel-spring', 'latest.release'), True), (('org.springframework', 'spring-test', 'latest.release'), True), (('junit', 'junit', 'latest.release'), True), (('org.hamcrest', 'hamcrest-all', 'latest.release'), True), ]), ] expected = [(s, sorted(v)) for s, v in expected] results = [(s, sorted(v)) for s, v in pom.dependencies.items()] assert results == expected def test_pom_issue_management_properties_are_resolved(self): test_loc = self.get_test_loc('maven2/xml-format-maven-plugin-3.0.6.pom') pom = maven.MavenPom(test_loc) pom.resolve() expected = dict([ (u'system', 'GitHub Issues'), (u'url', 'https://github.com/acegi/xml-format-maven-plugin/issues')] ) result = pom.issue_management assert result == expected def test_pom_dependencies_are_resolved(self): test_loc = self.get_test_loc('maven2/activemq-camel-pom.xml') pom = maven.MavenPom(test_loc) pom.resolve() expected = [ (u'compile', [ ((u'commons-logging', u'commons-logging-api', u'latest.release'), True), ((u'org.apache.camel', u'camel-jms', u'latest.release'), True), ((u'org.apache.activemq', u'activemq-core', u'latest.release'), True), ((u'org.apache.activemq', u'activemq-pool', u'latest.release'), True), ((u'org.apache.geronimo.specs', u'geronimo-annotation_1.0_spec', u'latest.release'), False) ]), (u'test', [ ((u'org.apache.activemq', u'activemq-core', u'latest.release'), True), ((u'org.apache.camel', u'camel-core', u'latest.release'), True), ((u'org.apache.camel', u'camel-spring', u'latest.release'), True), ((u'org.springframework', u'spring-test', u'latest.release'), True), ((u'junit', u'junit', u'latest.release'), True), ((u'org.hamcrest', u'hamcrest-all', u'latest.release'), True), ]), ] expected = [(s, sorted(v)) for s, v in expected] results = [(s, sorted(v)) for s, v in pom.dependencies.items()] assert results == expected def test_parse_to_package_base(self): test_file = self.get_test_loc('maven_misc/spring-beans-4.2.2.RELEASE.pom.xml') self.check_parse_pom(test_file, regen=False) def test_parse_to_package_and_validate(self): test_file = self.get_test_loc('maven_misc/spring-beans-4.2.2.RELEASE.pom.xml') package = maven.parse(test_file) assert isinstance(package, maven.MavenPomPackage) def test_parse_to_package_then_back(self): test_file = self.get_test_loc('maven_misc/spring-beans-4.2.2.RELEASE.pom.xml') package = maven.parse(test_file) package2 = maven.MavenPomPackage.create(**package.to_dict()) assert package2.to_dict().items() == package.to_dict().items() def test_package_root_is_properly_returned_for_metainf_poms(self): from packagedcode.plugin_package import PackageScanner test_dir = self.get_test_loc('maven_misc/package_root') codebase = Codebase(test_dir, resource_attributes=PackageScanner.resource_attributes) manifest_resource = [r for r in codebase.walk() if r.name == 'pom.xml'][0] packages = list(maven.MavenPomPackage.recognize(manifest_resource.location)) assert packages manifest_resource.packages.append(packages[0].to_dict()) manifest_resource.save(codebase) proot = maven.MavenPomPackage.get_package_root(manifest_resource, codebase) assert proot.name == 'activiti-image-generator-7-201802-EA-sources.jar-extract' def test_package_dependency_not_missing(self): test_file = self.get_test_loc('maven2/log4j-pom.xml') self.check_parse_to_package(test_file, regen=False) class TestPomProperties(testcase.FileBasedTesting): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def test_resolve_properties(self): properties = {'groupId': 'org.apache'} value = '${groupId}.mycomponent' expected = 'org.apache.mycomponent' test = maven.MavenPom._replace_props(value, properties) assert test == expected def test_resolve_properties_with_expression(self): properties = {'groupId': 'org.apache'} value = '${groupId.substring(4)}.mycomponent' expected = 'apache.mycomponent' test = maven.MavenPom._replace_props(value, properties) assert test == expected def test_resolve_properties_with_substring_expression(self): properties = {'groupId': 'org.apache'} value = '${groupId.substring(0,3)}.mycomponent' expected = 'org.mycomponent' test = maven.MavenPom._replace_props(value, properties) assert test == expected def test_get_properties(self): test_loc = self.get_test_loc('maven2_props/multiple/pom.xml') pom = maven.MavenPom(test_loc) test = pom.properties expected = { 'groupId': 'org.apache.geronimo.bundles', 'project.groupId': 'org.apache.geronimo.bundles', 'pom.groupId': 'org.apache.geronimo.bundles', 'artifactId': 'axis', 'project.artifactId': 'axis', 'pom.artifactId': 'axis', 'version': '1.4_1-SNAPSHOT', 'project.version': '1.4_1-SNAPSHOT', 'pom.version': '1.4_1-SNAPSHOT', 'parent.groupId': 'org.apache.geronimo.framework', 'project.parent.groupId': 'org.apache.geronimo.framework', 'pom.parent.groupId': 'org.apache.geronimo.framework', 'parent.artifactId': 'framework', 'project.parent.artifactId': 'framework', 'pom.parent.artifactId': 'framework', 'parent.version': '3.0-SNAPSHOT', 'project.parent.version': '3.0-SNAPSHOT', 'pom.parent.version': '3.0-SNAPSHOT', 'pkgArtifactId': 'axis', 'pkgGroupId': 'org.apache.axis', 'pkgVersion': '1.4', } assert test == expected def test_get_properties_single(self): test_loc = self.get_test_loc('maven2_props/single/pom.xml') pom = maven.MavenPom(test_loc) test = pom.properties expected = { 'artifactId': None, 'groupId': None, 'pkgGroupId': 'org.apache.axis', 'pom.artifactId': None, 'pom.groupId': None, 'pom.version': None, 'project.artifactId': None, 'project.groupId': None, 'project.version': None, 'version': None } assert test == expected def test_get_properties_advanced(self): test_loc = self.get_test_loc('maven2_props/xml-format-maven-plugin-3.0.6.pom') pom = maven.MavenPom(test_loc) test = pom.properties expected = { 'artifactId': 'xml-format-maven-plugin', 'github.org': 'acegi', 'github.repo': 'xml-format-maven-plugin', 'groupId': 'au.com.acegi', 'license.excludes': '**/test*.xml,**/invalid.xml', 'license.licenseName': 'apache_v2', 'maven.compiler.source': '1.7', 'maven.compiler.target': '1.7', 'maven.enforcer.java': '1.7', 'parent.artifactId': u'acegi-standard-project', 'parent.groupId': u'au.com.acegi', 'parent.version': '0.1.4', 'pom.artifactId': 'xml-format-maven-plugin', 'pom.groupId': 'au.com.acegi', 'pom.parent.artifactId': u'acegi-standard-project', 'pom.parent.groupId': u'au.com.acegi', 'pom.parent.version': '0.1.4', 'pom.version': '3.0.6', 'project.artifactId': 'xml-format-maven-plugin', 'project.groupId': 'au.com.acegi', 'project.parent.artifactId': u'acegi-standard-project', 'project.parent.groupId': u'au.com.acegi', 'project.parent.version': '0.1.4', 'project.version': '3.0.6', 'version': '3.0.6' } assert test == expected def test_parse_can_run_without_pom_check(self): test_loc = self.get_test_loc('maven_misc/ant-1.6.5.maven') pom = maven.parse(test_loc, check_is_pom=False) assert pom pom = maven.parse(test_loc, check_is_pom=True) assert not pom def test_parse_will_load_extra_pom_properties_if_file_present(self): # there is a file at maven2_props/props_file/activiti-image-generator/pom.properties test_loc = self.get_test_loc('maven2_props/props_file/activiti-image-generator/pom.xml') pom = maven.parse(test_loc, check_is_pom=False) assert pom.namespace == 'org.activiti' class TestMavenComputeNormalizedLicense(testcase.FileBasedTesting): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') def test_compute_normalized_license_two_names_only(self): declared_license = [ {'name': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_tree_nodes(self): declared_license = [ {'name': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_with_unknown_url(self): declared_license = [ {'name': 'apache-2.0', 'url': 'unknown'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_with_unknown_url_known_comments(self): declared_license = [ {'name': 'apache-2.0', 'url': 'unknown', 'comments': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_with_unknown_url_unknown_comments(self): declared_license = [ {'name': 'apache-2.0', 'url': 'unknown', 'comments': 'unknown'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_unknown_name(self): declared_license = [ {'name': 'unknown', 'url': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = '(unknown AND apache-2.0) AND mit' assert result == expected def test_compute_normalized_license_same_name_and_url(self): declared_license = [ {'name': 'apache-2.0', 'url': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_same_name_url_comments(self): declared_license = [ {'name': 'apache-2.0', 'url': 'apache-2.0', 'comments': 'apache-2.0'}, {'name': 'mit'} ] result = maven.compute_normalized_license(declared_license) expected = 'apache-2.0 AND mit' assert result == expected def test_compute_normalized_license_with_url_invalid(self): declared_license = [ {'name': 'MIT', 'url': 'LICENSE.txt'}, ] result = maven.compute_normalized_license(declared_license) expected = 'mit' assert result == expected def test_compute_normalized_license_with_duplicated_license(self): declared_license = [ {'name': 'LGPL'}, {'name': 'GNU Lesser General Public License', 'url': 'http://www.gnu.org/licenses/lgpl.html'}, ] result = maven.compute_normalized_license(declared_license) expected = 'lgpl-2.0-plus' assert result == expected def relative_walk(dir_path): """ Walk path and yield POM files paths relative to dir_path. """ for base_dir, _dirs, files in os.walk(dir_path): for file_name in files: if file_name.endswith('.json'): continue file_path = os.path.join(base_dir, file_name) file_path = file_path.replace(dir_path, '', 1) file_path = file_path.strip(os.path.sep) yield file_path def create_test_function(test_pom_loc, test_name, check_pom=True, regen=False): """ Return a test function closed on test arguments. If check_parse_pom is True, test the POM parsing; otherwise, test Package creation """ # closure on the test params if check_pom: def test_pom(self): self.check_parse_pom(test_pom_loc, regen) else: def test_pom(self): self.check_parse_to_package(test_pom_loc, regen) # set a proper function name to display in reports and use in discovery # function names are best as bytes if isinstance(test_name, bytes): test_name = test_name.decode('utf-8') test_pom.__name__ = test_name return test_pom def build_tests(test_dir, clazz, prefix='test_maven2_parse_', check_pom=True, regen=False): """ Dynamically build test methods for each POMs in `test_dir` and attach the test method to the `clazz` class. If check_parse_pom is True, test the POM parsing; otherwise, test Package creation """ test_data_dir = os.path.join(os.path.dirname(__file__), 'data') test_dir = os.path.join(test_data_dir, test_dir) # loop through all items and attach a test method to our test class for test_file in relative_walk(test_dir): test_name = prefix + text.python_safe_name(test_file) test_pom_loc = os.path.join(test_dir, test_file) test_method = create_test_function(test_pom_loc, test_name, check_pom=check_pom, regen=regen) # attach that method to the class setattr(clazz, test_name, test_method) class TestMavenDataDrivenPomMisc(BaseMavenCase): pytestmark = pytest.mark.scanslow test_data_dir = os.path.join(os.path.dirname(__file__), 'data') build_tests(test_dir='maven_misc/parse', clazz=TestMavenDataDrivenPomMisc, prefix='test_maven2_parse_misc_', check_pom=True, regen=False) build_tests(test_dir='maven_misc/parse', clazz=TestMavenDataDrivenPomMisc, prefix='test_maven2_package_misc_', check_pom=False, regen=False) class TestMavenDataDrivenPomBasic(BaseMavenCase): test_data_dir = os.path.join(os.path.dirname(__file__), 'data') build_tests(test_dir='maven2', clazz=TestMavenDataDrivenPomBasic, prefix='test_maven2_basic_parse_', check_pom=True, regen=False) build_tests(test_dir='maven2', clazz=TestMavenDataDrivenPomBasic, prefix='test_maven2_basic_package_', check_pom=False, regen=False) class TestMavenDataDrivenPomComprehensive(BaseMavenCase): pytestmark = pytest.mark.scanslow test_data_dir = os.path.join(os.path.dirname(__file__), 'data') # note: we use short dir names to deal with Windows long paths limitations build_tests(test_dir='m2', clazz=TestMavenDataDrivenPomComprehensive, prefix='test_maven2_parse', check_pom=True, regen=False) build_tests(test_dir='m2', clazz=TestMavenDataDrivenPomComprehensive, prefix='test_maven2_package', check_pom=False, regen=False)
40.388679
107
0.638045
4a1a7996e893afce90861c72fe40ca794de7eaff
255
py
Python
employee_management/employee_management/doctype/product_bin_gg/product_bin_gg.py
Vivekananthan112599/Frappe-Vivek
6a2b70c736e17e9748c6a30e5722341acfb3b5c5
[ "MIT" ]
null
null
null
employee_management/employee_management/doctype/product_bin_gg/product_bin_gg.py
Vivekananthan112599/Frappe-Vivek
6a2b70c736e17e9748c6a30e5722341acfb3b5c5
[ "MIT" ]
null
null
null
employee_management/employee_management/doctype/product_bin_gg/product_bin_gg.py
Vivekananthan112599/Frappe-Vivek
6a2b70c736e17e9748c6a30e5722341acfb3b5c5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, Gopi and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class ProductBinGG(Document): pass
23.181818
49
0.772549
4a1a79b62106e9a5f7ece770f6285cbc29d164b3
4,377
py
Python
triopg/_triopg.py
touilleMan/triopg
1178ce8cf0bd5eb133b3f709af7157f7591a8284
[ "Apache-2.0", "MIT" ]
2
2021-11-08T02:44:55.000Z
2021-11-08T09:41:05.000Z
triopg/_triopg.py
touilleMan/triopg
1178ce8cf0bd5eb133b3f709af7157f7591a8284
[ "Apache-2.0", "MIT" ]
null
null
null
triopg/_triopg.py
touilleMan/triopg
1178ce8cf0bd5eb133b3f709af7157f7591a8284
[ "Apache-2.0", "MIT" ]
null
null
null
from functools import wraps, partial import trio import asyncpg import trio_asyncio def _shielded(f): @wraps(f) async def wrapper(*args, **kwargs): with trio.open_cancel_scope(shield=True): return await f(*args, **kwargs) return wrapper def connect(*args, **kwargs): return TrioConnectionProxy(*args, **kwargs) def create_pool(*args, **kwargs): return TrioPoolProxy(*args, **kwargs) class TrioTransactionProxy: def __init__(self, asyncpg_transaction): self._asyncpg_transaction = asyncpg_transaction @trio_asyncio.aio_as_trio async def __aenter__(self, *args): return await self._asyncpg_transaction.__aenter__(*args) @_shielded @trio_asyncio.aio_as_trio async def __aexit__(self, *args): return await self._asyncpg_transaction.__aexit__(*args) class TrioConnectionProxy: def __init__(self, *args, **kwargs): self._asyncpg_create_connection = partial( asyncpg.connect, *args, **kwargs ) self._asyncpg_conn = None def transaction(self, *args, **kwargs): asyncpg_transaction = self._asyncpg_conn.transaction(*args, **kwargs) return TrioTransactionProxy(asyncpg_transaction) def __getattr__(self, attr): target = getattr(self._asyncpg_conn, attr) if callable(target): @wraps(target) @trio_asyncio.aio_as_trio async def wrapper(*args, **kwargs): return await target(*args, **kwargs) # Only generate the function wrapper once per connection instance setattr(self, attr, wrapper) return wrapper return target @_shielded @trio_asyncio.aio_as_trio async def close(self): return await self._asyncpg_conn.close() async def __aenter__(self): if not self._asyncpg_conn: self._asyncpg_conn = await trio_asyncio.aio_as_trio( self._asyncpg_create_connection )() return self async def __aexit__(self, *exc): return await self.close() class TrioPoolAcquireContextProxy: def __init__(self, asyncpg_acquire_context): self._asyncpg_acquire_context = asyncpg_acquire_context @trio_asyncio.aio_as_trio async def __aenter__(self, *args): proxy = await self._asyncpg_acquire_context.__aenter__(*args) conn_proxy = TrioConnectionProxy() conn_proxy._asyncpg_conn = proxy._con return conn_proxy @_shielded @trio_asyncio.aio_as_trio async def __aexit__(self, *args): return await self._asyncpg_acquire_context.__aexit__(*args) class TrioPoolProxy: def __init__(self, *args, **kwargs): self._asyncpg_create_pool = partial( asyncpg.create_pool, *args, **kwargs ) self._asyncpg_pool = None def acquire(self): return TrioPoolAcquireContextProxy(self._asyncpg_pool.acquire()) async def execute(self, statement: str, *args, timeout: float = None): async with self.acquire() as conn: return await conn.execute(statement, *args, timeout=timeout) async def executemany( self, statement: str, args, *, timeout: float = None ): async with self.acquire() as conn: return await conn.executemany(statement, args, timeout=timeout) async def fetch(self, query, *args, timeout: float = None): async with self.acquire() as conn: return await conn.fetch(query, *args, timeout=timeout) async def fetchval(self, query, *args, timeout: float = None): async with self.acquire() as conn: return await conn.fetchval(query, *args, timeout=timeout) async def fetchrow(self, query, *args, timeout: float = None): async with self.acquire() as conn: return await conn.fetchrow(query, *args, timeout=timeout) @_shielded @trio_asyncio.aio_as_trio async def close(self): return await self._asyncpg_pool.close() def terminate(self): return self._asyncpg_pool.terminate() async def __aenter__(self): if not self._asyncpg_pool: self._asyncpg_pool = await trio_asyncio.aio_as_trio( self._asyncpg_create_pool )() return self async def __aexit__(self, *exc): return await self.close()
29.574324
77
0.657756
4a1a7a5802cdd1b5519551a8694336f1c7730411
5,082
py
Python
007/src/object_detector/yolov3.py
AzharMithani/99-ML-Learning-Projects
88777e6da153f3de97fe8ec09ee86c7d8ebbf27b
[ "MIT" ]
null
null
null
007/src/object_detector/yolov3.py
AzharMithani/99-ML-Learning-Projects
88777e6da153f3de97fe8ec09ee86c7d8ebbf27b
[ "MIT" ]
null
null
null
007/src/object_detector/yolov3.py
AzharMithani/99-ML-Learning-Projects
88777e6da153f3de97fe8ec09ee86c7d8ebbf27b
[ "MIT" ]
null
null
null
# Azhar Mithani import os import time import itertools import cv2 import numpy as np # A class defining all the functions used in the detection of People aka PeopleDetector function class PeopleDetector: def __init__(self, yolocfg='yolo_weights/yolov3.cfg', yoloweights='yolo_weights/yolov3.weights', labelpath='yolo_weights/coco.names', confidence=0.5, nmsthreshold=0.4): self._yolocfg = yolocfg self._yoloweights = yoloweights self._confidence = confidence self._nmsthreshold = nmsthreshold self._labels = open(labelpath).read().strip().split("\n") self._colors = np.random.randint( 0, 255, size=(len(self._labels), 3), dtype="uint8") self._net = None self._layer_names = None self._boxes = [] self._confidences = [] self._classIDs = [] self._centers = [] self._layerouts = [] self._MIN_DIST = 150 self._mindistances = {} # Loading the yolov3 network backend def load_network(self): self._net = cv2.dnn.readNetFromDarknet( self._yolocfg, self._yoloweights) self._net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) self._net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) self._layer_names = [self._net.getLayerNames()[i[0] - 1] for i in self._net.getUnconnectedOutLayers()] print("yolov3 loaded successfully\n") # Function calculating time for prediction def predict(self, image): blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), [0, 0, 0], 1, crop=False) self._net.setInput(blob) start = time.time() self._layerouts = self._net.forward(self._layer_names) end = time.time() print("yolo took {:.6f} seconds".format(end - start)) return(self._layerouts) # Function performing prediction def process_preds(self, image, outs): (frameHeight, frameWidth) = image.shape[:2] for out in outs: for detection in out: scores = detection[5:] classId = np.argmax(scores) if classId != 0: # filter person class continue confidence = scores[classId] if confidence > self._confidence: center_x = int(detection[0] * frameWidth) center_y = int(detection[1] * frameHeight) width = int(detection[2] * frameWidth) height = int(detection[3] * frameHeight) left = int(center_x - width / 2) top = int(center_y - height / 2) self._classIDs.append(classId) self._confidences.append(float(confidence)) self._boxes.append([left, top, width, height]) self._centers.append((center_x, center_y)) indices = cv2.dnn.NMSBoxes( self._boxes, self._confidences, self._confidence, self._nmsthreshold) for i in indices: i = i[0] box = self._boxes[i] left = box[0] top = box[1] width = box[2] height = box[3] self.draw_pred(image, self._classIDs[i], self._confidences[i], left, top, left + width, top + height) return self._centers # Function initializing variables def clear_preds(self): self._boxes = [] self._confidences = [] self._classIDs = [] self._centers = [] self._layerouts = [] self._mindistances = {} # Function drawing prediction based on frames def draw_pred(self, frame, classId, conf, left, top, right, bottom): cv2.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3) label = '%.2f' % conf label = '%s:%s' % (self._labels[classId], label) labelSize, baseLine = cv2.getTextSize( label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) cv2.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round( 1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv2.FILLED) cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1) self.find_min_distance(self._centers) for k in self._mindistances: cv2.line(frame, k[0], k[1], (0, 0, 255), 7) # Function returning minimum euclidean distance between predicted anchor boxes def find_min_distance(self, centers): ''' return min euclidean distance between predicted anchor boxes ''' centers = self._centers comp = list(itertools.combinations(centers, 2)) for pts in comp: ecdist = np.linalg.norm(np.asarray(pts[0])-np.asarray(pts[1])) if ecdist < self._MIN_DIST: self._mindistances.update({pts: ecdist})
39.395349
96
0.569264
4a1a7a734a30f82148461097c717170372a6a88d
7,272
py
Python
onnxruntime/python/tools/bert/compare_bert_results.py
lizy14/onnxruntime
8f00147c14c64715ffd4b1512df5356ddeb75462
[ "MIT" ]
1
2020-07-12T16:33:35.000Z
2020-07-12T16:33:35.000Z
onnxruntime/python/tools/bert/compare_bert_results.py
Montaer/onnxruntime
6dc25a60f8b058a556964801d99d5508641dcf69
[ "MIT" ]
null
null
null
onnxruntime/python/tools/bert/compare_bert_results.py
Montaer/onnxruntime
6dc25a60f8b058a556964801d99d5508641dcf69
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- # It is a tool to compare the inference results of the original model and optimized model. import sys import argparse import numpy as np import os import random from pathlib import Path import statistics import onnx import onnx.utils import psutil import csv import timeit from datetime import datetime from onnx import ModelProto, TensorProto, numpy_helper from OnnxModel import OnnxModel from bert_test_data import get_bert_inputs, generate_test_data, output_test_data from bert_perf_test import create_session, onnxruntime_inference, setup_openmp_environ def run_model(model_path, all_inputs, use_gpu, use_openmp, disable_optimization): # Import onnxruntime shall be after OpenMP environment variable setting. # So we put import here to delay importing. import onnxruntime graph_optimization_level = None if disable_optimization: graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL intra_op_num_threads = 1 if use_openmp else psutil.cpu_count(logical=False) session = create_session(model_path, use_gpu, intra_op_num_threads, graph_optimization_level) output_names = [output.name for output in session.get_outputs()] results, latency_list = onnxruntime_inference(session, all_inputs, output_names) return results, latency_list, output_names def compare(baseline_results, treatment_results, verbose, rtol=1e-3, atol=1e-4): # Validate the output of baseline and treatment, to make sure the results are similar. diff_count = 0 max_rel_diff = 0 max_abs_diff = 0 for test_case_id, results in enumerate(baseline_results): case_passed = True for i in range(len(results)): treatment_output = treatment_results[test_case_id][i] rel_diff = np.amax(np.abs((treatment_output - results[i]) / results[i])) abs_diff = np.amax(np.abs(treatment_output - results[i])) max_rel_diff = max(max_rel_diff, rel_diff) max_abs_diff = max(max_abs_diff, abs_diff) if not np.allclose(results[i].tolist(), treatment_output.tolist(), rtol=rtol, atol=atol): if case_passed: case_passed = False diff_count += 1 if verbose: print("case {} output {}".format(test_case_id, i)) print("baseline={}\ntreatment={}".format(results[i].tolist(), treatment_output)) print("rel_diff={} abs_diff={}".format(rel_diff, abs_diff)) if diff_count == 0: print("100% passed for {} random inputs given thresholds (rtol={}, atol={}).".format(len(baseline_results), rtol, atol)) else: print("{} out of {} results not passed for thresholds (rtol={}, atol={}).".format(diff_count, len(baseline_results), rtol, atol)) print("maximum absolute difference={}".format(max_abs_diff)) print("maximum relative difference={}".format(max_rel_diff)) def run_test(baseline_model, optimized_model, output_dir, batch_size, sequence_length, use_gpu, test_cases, seed, use_openmp, verbose, rtol, atol): # Try deduce input names from optimized model. input_ids, segment_ids, input_mask = get_bert_inputs(optimized_model) # Use random mask length for accuracy test. It might introduce slight inflation in latency reported in this script. all_inputs = generate_test_data(batch_size, sequence_length, test_cases, seed, verbose, input_ids, segment_ids, input_mask, random_mask_length=True) # OpenMP environment variables must be set before the very first "import onnxruntime" if use_openmp: setup_openmp_environ(omp_num_threads=psutil.cpu_count(logical=False), omp_wait_policy='ACTIVE') else: setup_openmp_environ(omp_num_threads=1, omp_wait_policy='ACTIVE') baseline_results, baseline_latency, output_names = run_model(baseline_model, all_inputs, use_gpu, use_openmp, disable_optimization=True) if verbose: print("baseline average latency (all optimizations disabled): {} ms".format(statistics.mean(baseline_latency) * 1000)) if output_dir is not None: for i, inputs in enumerate(all_inputs): output_test_data(output_dir, i, inputs) treatment_results, treatment_latency, treatment_output_names = run_model(optimized_model, all_inputs, use_gpu, use_openmp, disable_optimization=False) if verbose: print("treatment average latency: {} ms".format(statistics.mean(treatment_latency) * 1000)) # Validate the output of baseline and treatment, to make sure the results are similar. compare(baseline_results, treatment_results, verbose, rtol, atol) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--baseline_model', required=True, type=str, help="baseline onnx model path.") parser.add_argument('--optimized_model', required=True, type=str, default=None, help="path of the optimized model. It shall have same inputs as the baseline model.") parser.add_argument('--output_dir', required=False, type=str, default=None, help="output test data path. If not specified, test data will not be saved.") parser.add_argument('--batch_size', required=True, type=int, help="batch size of input") parser.add_argument('--sequence_length', required=True, type=int, help="maximum sequence length of input") parser.add_argument('--rtol', required=False, type=float, default=1e-3, help="relative tolerance") parser.add_argument('--atol', required=False, type=float, default=1e-4, help="absolute tolerance") parser.add_argument('--samples', required=False, type=int, default=100, help="number of test cases to be generated") parser.add_argument('--seed', required=False, type=int, default=3, help="random seed") parser.add_argument('--use_gpu', required=False, action='store_true', help="use GPU") parser.set_defaults(use_gpu=False) parser.add_argument('--openmp', required=False, action='store_true', help="use openmp") parser.set_defaults(openmp=False) parser.add_argument('--verbose', required=False, action='store_true', help="print verbose information") parser.set_defaults(verbose=False) args = parser.parse_args() return args def main(): args = parse_arguments() if args.output_dir is not None: # create the output directory if not existed path = Path(args.output_dir) path.mkdir(parents=True, exist_ok=True) run_test( args.baseline_model, args.optimized_model, args.output_dir, args.batch_size, args.sequence_length, args.use_gpu, args.samples, args.seed, args.openmp, args.verbose, args.rtol, args.atol) if __name__ == "__main__": main()
43.029586
154
0.679318
4a1a7b55989de2db00140e9f2e2173d3c0269bf1
2,212
py
Python
webhook_trigger_service/basic/run.py
GShepherdTC/tcex-app-templates
fae927965563f98eed0bd7716afa3bf4d4fda3bf
[ "Apache-2.0" ]
1
2022-02-23T16:04:16.000Z
2022-02-23T16:04:16.000Z
webhook_trigger_service/basic/run.py
GShepherdTC/tcex-app-templates
fae927965563f98eed0bd7716afa3bf4d4fda3bf
[ "Apache-2.0" ]
null
null
null
webhook_trigger_service/basic/run.py
GShepherdTC/tcex-app-templates
fae927965563f98eed0bd7716afa3bf4d4fda3bf
[ "Apache-2.0" ]
3
2022-02-16T18:13:58.000Z
2022-03-31T18:46:20.000Z
"""Playbook App""" # standard library import traceback # first-party from app_lib import AppLib # pylint: disable=no-member def run(**kwargs) -> None: """Update path and run the App.""" # update the path to ensure the App has access to required modules app_lib = AppLib() app_lib.update_path() # import modules after path has been updated # third-party from tcex import TcEx # pylint: disable=import-outside-toplevel # first-party from app import App # pylint: disable=import-outside-toplevel from app_inputs import AppInputs # pylint: disable=import-outside-toplevel tcex = TcEx() try: # load App class app = App(tcex) # set app property in testing framework if callable(kwargs.get('set_app')): kwargs.get('set_app')(app) # configure custom trigger message handler tcex.service.create_config_callback = app.create_config_callback tcex.service.delete_config_callback = app.delete_config_callback tcex.service.shutdown_callback = app.shutdown_callback tcex.service.webhook_event_callback = app.webhook_event_callback # set the createConfig model tcex.service.trigger_input_model = AppInputs # perform prep/setup operations app.setup(**{}) # listen on channel/topic tcex.service.listen() # start heartbeat threads tcex.service.heartbeat() # inform TC that micro-service is Ready tcex.service.ready = True # loop until exit if hasattr(app, 'loop_forever'): app.loop_forever() # pylint: disable=no-member else: tcex.log.info('Looping until shutdown') while tcex.service.loop_forever(sleep=1): pass # perform cleanup/teardown operations app.teardown(**{}) # explicitly call the exit method tcex.playbook.exit(msg=app.exit_message) except Exception as e: main_err = f'Generic Error. See logs for more details ({e}).' tcex.log.error(traceback.format_exc()) tcex.playbook.exit(1, main_err) if __name__ == '__main__': # Run the App run()
27.65
79
0.64557
4a1a7bdbc5158595bec15ee75f44f44f07597f14
952
py
Python
baselibs/python/example_lsres.py
openhpi2/openhpi_apr25
720d4043124ac44d17715db4ffb735c623c08e38
[ "BSD-3-Clause" ]
5
2018-12-18T01:32:53.000Z
2021-11-15T10:41:48.000Z
baselibs/python/example_lsres.py
openhpi2/openhpi_apr25
720d4043124ac44d17715db4ffb735c623c08e38
[ "BSD-3-Clause" ]
34
2018-05-11T21:31:33.000Z
2021-01-12T07:13:46.000Z
baselibs/python/example_lsres.py
openhpi2/openhpi_apr25
720d4043124ac44d17715db4ffb735c623c08e38
[ "BSD-3-Clause" ]
8
2018-08-27T22:48:44.000Z
2022-03-15T03:49:55.000Z
# -*- python -*- # # Copyright (C) 2012, Pigeon Point Systems # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. This # file and program are licensed under a BSD style license. See # the Copying file included with the OpenHPI distribution for # full licensing terms. # # Author(s): # Anton Pak <anton.pak@pigeonpoint.com> # from openhpi_baselib import * ( rv, sid ) = saHpiSessionOpen( SAHPI_UNSPECIFIED_DOMAIN_ID, None ) if rv != SA_OK: print "ERROR: saHpiSessionOpen: %s " % HpiUtil.fromSaErrorT( rv ) exit() for rpte in HpiIterators.Rpt( sid ): tag = HpiUtil.fromSaHpiTextBufferT( rpte.ResourceTag ) print "Resource Id: %d, Tag: %s" % ( rpte.ResourceId, tag ) rv = saHpiSessionClose( sid ) if rv != SA_OK: print "ERROR: saHpiSessionClose: %s " % HpiUtil.fromSaErrorT( rv )
28.848485
70
0.705882
4a1a7d0ea611db492931467cc0f853c3adbc334e
631
py
Python
encoding.py
Hydrazer/vyxal-2.4.1
fc377aeba95928cfbf7c2aa5cf98961948c09d9a
[ "MIT" ]
1
2021-05-26T02:00:14.000Z
2021-05-26T02:00:14.000Z
encoding.py
Command-Master/Vyxal
2a1fd535c786dcbce2796360931c994438777cca
[ "MIT" ]
null
null
null
encoding.py
Command-Master/Vyxal
2a1fd535c786dcbce2796360931c994438777cca
[ "MIT" ]
null
null
null
from commands import codepage import string def vyxal_to_utf8(code): # Taken from the old 05AB1E interpreter processed_code = "" for char in code: processed_code += codepage[char] return processed_code def utf8_to_vyxal(code): # Taken from the old 05AB1E interpreter processed_code = "" for char in code: processed_code += chr(codepage.index(char)) return processed_code compression = codepage for char in string.printable: compression = compression.replace(char, "") codepage_number_compress = codepage.replace("»", "") codepage_string_compress = codepage.replace("«", "")
25.24
52
0.713154
4a1a7e003a3969eec1c8ad2c8d85b621112b8886
3,001
py
Python
plugins/yahoo_weather.1h.py
longpdo/bitbar-plugins-custom
58cff1571ae4a939f7edac9c42fcd1156e3c8661
[ "MIT" ]
4
2020-07-08T23:47:51.000Z
2021-04-15T12:03:08.000Z
plugins/yahoo_weather.1h.py
longpdo/bitbar-plugins-custom
58cff1571ae4a939f7edac9c42fcd1156e3c8661
[ "MIT" ]
null
null
null
plugins/yahoo_weather.1h.py
longpdo/bitbar-plugins-custom
58cff1571ae4a939f7edac9c42fcd1156e3c8661
[ "MIT" ]
3
2020-07-08T23:48:29.000Z
2021-03-17T07:37:02.000Z
#!/usr/bin/env LC_ALL=en_US.UTF-8 /usr/local/bin/python3 # # <bitbar.title>Yahoo Weather</bitbar.title> # <bitbar.version>v3.0</bitbar.version> # <bitbar.author>mgjo5899</bitbar.author> # <bitbar.author.github>mgjo5899</bitbar.author.github> # <bitbar.desc>It tells you the current weather condition of the location where your computer is located at. It knows the location of the computer by using its public IP. You can also manually set the city and region through modifying the file. </bitbar.desc> # <bitbar.image>https://i.imgur.com/YNypf0P.jpg</bitbar.image> # <bitbar.dependencies>python</bitbar.dependencies> # # by mgjo589 # tweaked by longpdo (https://github.com/longpdo) import json import uuid import time import hmac import hashlib from base64 import b64encode from datetime import datetime from urllib.request import urlopen, Request from urllib.parse import urlencode, quote # General Placeholders url = 'https://weather-ydn-yql.media.yahoo.com/forecastrss' # Credentials app_id = 'f776QQ32' consumer_key = 'dj0yJmk9RlJhbUVpUEpsSUxEJmQ9WVdrOVpqYzNObEZSTXpJbWNHbzlNQS0tJnM9Y29uc3VtZXJzZWNyZXQmc3Y9MCZ4PTk0' consumer_secret = '75c592717d22c5cce623d2c2a1d5a5b36786d865' # Query and authentication related query = { 'location': 'Nuremberg,BY', 'format': 'json', 'u': 'c' } def get_auth_header(): oauth = { 'oauth_consumer_key': consumer_key, 'oauth_nonce': uuid.uuid4().hex, 'oauth_signature_method': 'HMAC-SHA1', 'oauth_timestamp': str(int(time.time())), 'oauth_version': '1.0' } merged_dict = {**query, **oauth} sorted_dict = [k + '=' + quote(merged_dict[k], safe='') for k in sorted(merged_dict.keys())] signature_base = 'GET&' + \ quote(url, safe='') + '&' + quote('&'.join(sorted_dict)) composite_key = consumer_secret + '&' oauth_signature = b64encode(hmac.new(composite_key.encode( ), msg=signature_base.encode(), digestmod=hashlib.sha1).digest()).decode() oauth['oauth_signature'] = oauth_signature auth_header = 'OAuth ' + \ ', '.join(['{}="{}"'.format(k, v) for k, v in oauth.items()]) return auth_header def get_weather(auth_header): request_url = url + '?' + urlencode(query) request = Request(request_url) request.add_header('Authorization', auth_header) request.add_header('X-Yahoo-App-Id', app_id) r = urlopen(request).read() j = json.loads(r) return j if __name__ == '__main__': auth_header = get_auth_header() weather_data = get_weather(auth_header) current_temperatur = weather_data['current_observation']['condition']['temperature'] forecasts = weather_data['forecasts'] print(str(current_temperatur) + '°C') # Dropdown info print('---') for day in forecasts: date = datetime.fromtimestamp(int(day['date'])) print(date.strftime('%A %d. %B')) print(day['text'] + ': ' + str(day['low']) + '-' + str(day['high']) + '°C') print('---')
33.344444
261
0.681106
4a1a7e4c7a135a427fa569ff73aa4b12532b9faf
37,568
py
Python
chia/wallet/wallet_node.py
Kaieida/bluepool
88feb12da64673815ff20c503e497b28fa9f9b82
[ "Apache-2.0" ]
15
2021-06-05T00:53:48.000Z
2021-06-22T10:33:40.000Z
chia/wallet/wallet_node.py
Kaieida/bluepool
88feb12da64673815ff20c503e497b28fa9f9b82
[ "Apache-2.0" ]
24
2021-06-06T16:50:33.000Z
2021-08-31T19:14:09.000Z
chia/wallet/wallet_node.py
Kaieida/bluepool
88feb12da64673815ff20c503e497b28fa9f9b82
[ "Apache-2.0" ]
13
2021-06-06T13:21:27.000Z
2021-12-31T01:34:59.000Z
import asyncio import json import logging import socket import time import traceback from pathlib import Path from typing import Callable, Dict, List, Optional, Set, Tuple, Union from blspy import PrivateKey from chia.consensus.block_record import BlockRecord from chia.consensus.constants import ConsensusConstants from chia.consensus.multiprocess_validation import PreValidationResult from chia.protocols import wallet_protocol from chia.protocols.full_node_protocol import RequestProofOfWeight, RespondProofOfWeight from chia.protocols.protocol_message_types import ProtocolMessageTypes from chia.protocols.wallet_protocol import ( RejectAdditionsRequest, RejectRemovalsRequest, RequestAdditions, RequestHeaderBlocks, RespondAdditions, RespondBlockHeader, RespondHeaderBlocks, RespondRemovals, ) from chia.server.node_discovery import WalletPeers from chia.server.outbound_message import Message, NodeType, make_msg from chia.server.server import ChiaServer from chia.server.ws_connection import WSChiaConnection from chia.types.blockchain_format.coin import Coin, hash_coin_list from chia.types.blockchain_format.sized_bytes import bytes32 from chia.types.header_block import HeaderBlock from chia.types.peer_info import PeerInfo from chia.util.byte_types import hexstr_to_bytes from chia.util.errors import Err, ValidationError from chia.util.ints import uint32, uint128 from chia.util.keychain import Keychain from chia.util.merkle_set import ( MerkleSet, confirm_included_already_hashed, confirm_not_included_already_hashed, ) from chia.util.path import mkdir, path_from_root from chia.wallet.block_record import HeaderBlockRecord from chia.wallet.derivation_record import DerivationRecord from chia.wallet.settings.settings_objects import BackupInitialized from chia.wallet.transaction_record import TransactionRecord from chia.wallet.util.backup_utils import open_backup_file from chia.wallet.util.wallet_types import WalletType from chia.wallet.wallet_action import WalletAction from chia.wallet.wallet_blockchain import ReceiveBlockResult from chia.wallet.wallet_state_manager import WalletStateManager class WalletNode: key_config: Dict config: Dict constants: ConsensusConstants server: Optional[ChiaServer] log: logging.Logger wallet_peers: WalletPeers # Maintains the state of the wallet (blockchain and transactions), handles DB connections wallet_state_manager: Optional[WalletStateManager] # How far away from LCA we must be to perform a full sync. Before then, do a short sync, # which is consecutive requests for the previous block short_sync_threshold: int _shut_down: bool root_path: Path state_changed_callback: Optional[Callable] syncing: bool full_node_peer: Optional[PeerInfo] peer_task: Optional[asyncio.Task] logged_in: bool def __init__( self, config: Dict, keychain: Keychain, root_path: Path, consensus_constants: ConsensusConstants, name: str = None, ): self.config = config self.constants = consensus_constants self.root_path = root_path if name: self.log = logging.getLogger(name) else: self.log = logging.getLogger(__name__) # Normal operation data self.cached_blocks: Dict = {} self.future_block_hashes: Dict = {} self.keychain = keychain # Sync data self._shut_down = False self.proof_hashes: List = [] self.header_hashes: List = [] self.header_hashes_error = False self.short_sync_threshold = 15 # Change the test when changing this self.potential_blocks_received: Dict = {} self.potential_header_hashes: Dict = {} self.state_changed_callback = None self.wallet_state_manager = None self.backup_initialized = False # Delay first launch sync after user imports backup info or decides to skip self.server = None self.wsm_close_task = None self.sync_task: Optional[asyncio.Task] = None self.new_peak_lock: Optional[asyncio.Lock] = None self.logged_in_fingerprint: Optional[int] = None self.peer_task = None self.logged_in = False def get_key_for_fingerprint(self, fingerprint: Optional[int]): private_keys = self.keychain.get_all_private_keys() if len(private_keys) == 0: self.log.warning("No keys present. Create keys with the UI, or with the 'chia keys' program.") return None private_key: Optional[PrivateKey] = None if fingerprint is not None: for sk, _ in private_keys: if sk.get_g1().get_fingerprint() == fingerprint: private_key = sk break else: private_key = private_keys[0][0] return private_key async def _start( self, fingerprint: Optional[int] = None, new_wallet: bool = False, backup_file: Optional[Path] = None, skip_backup_import: bool = False, ) -> bool: private_key = self.get_key_for_fingerprint(fingerprint) if private_key is None: self.logged_in = False return False db_path_key_suffix = str(private_key.get_g1().get_fingerprint()) db_path_replaced: str = ( self.config["database_path"] .replace("CHALLENGE", self.config["selected_network"]) .replace("KEY", db_path_key_suffix) ) path = path_from_root(self.root_path, db_path_replaced) mkdir(path.parent) assert self.server is not None self.wallet_state_manager = await WalletStateManager.create( private_key, self.config, path, self.constants, self.server ) self.wsm_close_task = None assert self.wallet_state_manager is not None backup_settings: BackupInitialized = self.wallet_state_manager.user_settings.get_backup_settings() if backup_settings.user_initialized is False: if new_wallet is True: await self.wallet_state_manager.user_settings.user_created_new_wallet() self.wallet_state_manager.new_wallet = True elif skip_backup_import is True: await self.wallet_state_manager.user_settings.user_skipped_backup_import() elif backup_file is not None: await self.wallet_state_manager.import_backup_info(backup_file) else: self.backup_initialized = False await self.wallet_state_manager.close_all_stores() self.wallet_state_manager = None self.logged_in = False return False self.backup_initialized = True if backup_file is not None: json_dict = open_backup_file(backup_file, self.wallet_state_manager.private_key) if "start_height" in json_dict["data"]: start_height = json_dict["data"]["start_height"] self.config["starting_height"] = max(0, start_height - self.config["start_height_buffer"]) else: self.config["starting_height"] = 0 else: self.config["starting_height"] = 0 if self.state_changed_callback is not None: self.wallet_state_manager.set_callback(self.state_changed_callback) self.wallet_state_manager.set_pending_callback(self._pending_tx_handler) self._shut_down = False self.peer_task = asyncio.create_task(self._periodically_check_full_node()) self.sync_event = asyncio.Event() self.sync_task = asyncio.create_task(self.sync_job()) self.logged_in_fingerprint = fingerprint self.logged_in = True return True def _close(self): self.log.info("self._close") self.logged_in_fingerprint = None self._shut_down = True async def _await_closed(self): self.log.info("self._await_closed") await self.server.close_all_connections() asyncio.create_task(self.wallet_peers.ensure_is_closed()) if self.wallet_state_manager is not None: await self.wallet_state_manager.close_all_stores() self.wallet_state_manager = None if self.sync_task is not None: self.sync_task.cancel() self.sync_task = None if self.peer_task is not None: self.peer_task.cancel() self.peer_task = None self.logged_in = False def _set_state_changed_callback(self, callback: Callable): self.state_changed_callback = callback if self.wallet_state_manager is not None: self.wallet_state_manager.set_callback(self.state_changed_callback) self.wallet_state_manager.set_pending_callback(self._pending_tx_handler) def _pending_tx_handler(self): if self.wallet_state_manager is None or self.backup_initialized is False: return asyncio.create_task(self._resend_queue()) async def _action_messages(self) -> List[Message]: if self.wallet_state_manager is None or self.backup_initialized is False: return [] actions: List[WalletAction] = await self.wallet_state_manager.action_store.get_all_pending_actions() result: List[Message] = [] for action in actions: data = json.loads(action.data) action_data = data["data"]["action_data"] if action.name == "request_puzzle_solution": coin_name = bytes32(hexstr_to_bytes(action_data["coin_name"])) height = uint32(action_data["height"]) msg = make_msg( ProtocolMessageTypes.request_puzzle_solution, wallet_protocol.RequestPuzzleSolution(coin_name, height), ) result.append(msg) return result async def _resend_queue(self): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return for msg, sent_peers in await self._messages_to_resend(): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return full_nodes = self.server.get_full_node_connections() for peer in full_nodes: if peer.peer_node_id in sent_peers: continue await peer.send_message(msg) for msg in await self._action_messages(): if ( self._shut_down or self.server is None or self.wallet_state_manager is None or self.backup_initialized is None ): return await self.server.send_to_all([msg], NodeType.FULL_NODE) async def _messages_to_resend(self) -> List[Tuple[Message, Set[bytes32]]]: if self.wallet_state_manager is None or self.backup_initialized is False or self._shut_down: return [] messages: List[Tuple[Message, Set[bytes32]]] = [] records: List[TransactionRecord] = await self.wallet_state_manager.tx_store.get_not_sent() for record in records: if record.spend_bundle is None: continue msg = make_msg( ProtocolMessageTypes.send_transaction, wallet_protocol.SendTransaction(record.spend_bundle), ) already_sent = set() for peer, status, _ in record.sent_to: already_sent.add(hexstr_to_bytes(peer)) messages.append((msg, already_sent)) return messages def set_server(self, server: ChiaServer): self.server = server self.wallet_peers = WalletPeers( self.server, self.root_path, self.config["target_peer_count"], self.config["wallet_peers_path"], self.config["introducer_peer"], self.config["peer_connect_interval"], self.log, ) asyncio.create_task(self.wallet_peers.start()) async def on_connect(self, peer: WSChiaConnection): if self.wallet_state_manager is None or self.backup_initialized is False: return messages_peer_ids = await self._messages_to_resend() for msg, peer_ids in messages_peer_ids: if peer.peer_node_id in peer_ids: continue await peer.send_message(msg) if not self.has_full_node() and self.wallet_peers is not None: asyncio.create_task(self.wallet_peers.on_connect(peer)) async def _periodically_check_full_node(self) -> None: tries = 0 while not self._shut_down and tries < 5: if self.has_full_node(): await self.wallet_peers.ensure_is_closed() break tries += 1 await asyncio.sleep(self.config["peer_connect_interval"]) def has_full_node(self) -> bool: if self.server is None: return False if "full_node_peer" in self.config: full_node_peer = PeerInfo( self.config["full_node_peer"]["host"], self.config["full_node_peer"]["port"], ) peers = [c.get_peer_info() for c in self.server.get_full_node_connections()] full_node_resolved = PeerInfo(socket.gethostbyname(full_node_peer.host), full_node_peer.port) if full_node_peer in peers or full_node_resolved in peers: self.log.info(f"Will not attempt to connect to other nodes, already connected to {full_node_peer}") for connection in self.server.get_full_node_connections(): if ( connection.get_peer_info() != full_node_peer and connection.get_peer_info() != full_node_resolved ): self.log.info(f"Closing unnecessary connection to {connection.get_peer_info()}.") asyncio.create_task(connection.close()) return True return False async def complete_blocks(self, header_blocks: List[HeaderBlock], peer: WSChiaConnection): if self.wallet_state_manager is None: return header_block_records: List[HeaderBlockRecord] = [] async with self.wallet_state_manager.blockchain.lock: for block in header_blocks: if block.is_transaction_block: # Find additions and removals (additions, removals,) = await self.wallet_state_manager.get_filter_additions_removals( block, block.transactions_filter, None ) # Get Additions added_coins = await self.get_additions(peer, block, additions) if added_coins is None: raise ValueError("Failed to fetch additions") # Get removals removed_coins = await self.get_removals(peer, block, added_coins, removals) if removed_coins is None: raise ValueError("Failed to fetch removals") hbr = HeaderBlockRecord(block, added_coins, removed_coins) else: hbr = HeaderBlockRecord(block, [], []) header_block_records.append(hbr) ( result, error, fork_h, ) = await self.wallet_state_manager.blockchain.receive_block(hbr) if result == ReceiveBlockResult.NEW_PEAK: if not self.wallet_state_manager.sync_mode: self.wallet_state_manager.blockchain.clean_block_records() self.wallet_state_manager.state_changed("new_block") self.wallet_state_manager.state_changed("sync_changed") elif result == ReceiveBlockResult.INVALID_BLOCK: self.log.info(f"Invalid block from peer: {peer.get_peer_info()} {error}") await peer.close() return else: self.log.debug(f"Result: {result}") async def new_peak_wallet(self, peak: wallet_protocol.NewPeakWallet, peer: WSChiaConnection): if self.wallet_state_manager is None: return curr_peak = self.wallet_state_manager.blockchain.get_peak() if curr_peak is not None and curr_peak.weight >= peak.weight: return if self.new_peak_lock is None: self.new_peak_lock = asyncio.Lock() async with self.new_peak_lock: request = wallet_protocol.RequestBlockHeader(peak.height) response: Optional[RespondBlockHeader] = await peer.request_block_header(request) if response is None or not isinstance(response, RespondBlockHeader) or response.header_block is None: return header_block = response.header_block if (curr_peak is None and header_block.height < self.constants.WEIGHT_PROOF_RECENT_BLOCKS) or ( curr_peak is not None and curr_peak.height > header_block.height - 200 ): top = header_block blocks = [top] # Fetch blocks backwards until we hit the one that we have, # then complete them with additions / removals going forward while not self.wallet_state_manager.blockchain.contains_block(top.prev_header_hash) and top.height > 0: request_prev = wallet_protocol.RequestBlockHeader(top.height - 1) response_prev: Optional[RespondBlockHeader] = await peer.request_block_header(request_prev) if response_prev is None: return if not isinstance(response_prev, RespondBlockHeader): return prev_head = response_prev.header_block blocks.append(prev_head) top = prev_head blocks.reverse() await self.complete_blocks(blocks, peer) elif header_block.height >= self.constants.WEIGHT_PROOF_RECENT_BLOCKS: # Request weight proof # Sync if PoW validates if self.wallet_state_manager.sync_mode: return weight_request = RequestProofOfWeight(header_block.height, header_block.header_hash) weight_proof_response: RespondProofOfWeight = await peer.request_proof_of_weight( weight_request, timeout=180 ) if weight_proof_response is None: return weight_proof = weight_proof_response.wp if self.wallet_state_manager is None: return if self.server is not None and self.server.is_trusted_peer(peer, self.config["trusted_peers"]): ( valid, fork_point, ) = self.wallet_state_manager.weight_proof_handler.get_fork_point_no_validations(weight_proof) else: ( valid, fork_point, ) = await self.wallet_state_manager.weight_proof_handler.validate_weight_proof(weight_proof) if not valid: self.log.error( f"invalid weight proof, num of epochs {len(weight_proof.sub_epochs)}" f" recent blocks num ,{len(weight_proof.recent_chain_data)}" ) self.log.debug(f"{weight_proof}") return None self.log.info(f"Validated, fork point is {fork_point}") self.wallet_state_manager.sync_store.add_potential_fork_point( header_block.header_hash, uint32(fork_point) ) self.wallet_state_manager.sync_store.add_potential_peak(header_block) self.start_sync() def start_sync(self) -> None: self.log.info("self.sync_event.set()") self.sync_event.set() async def check_new_peak(self) -> None: if self.wallet_state_manager is None: return current_peak: Optional[BlockRecord] = self.wallet_state_manager.blockchain.get_peak() if current_peak is None: return potential_peaks: List[ Tuple[bytes32, HeaderBlock] ] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples() for _, block in potential_peaks: if current_peak.weight < block.weight: await asyncio.sleep(5) self.start_sync() return async def sync_job(self) -> None: while True: self.log.info("Loop start in sync job") if self._shut_down is True: break asyncio.create_task(self.check_new_peak()) await self.sync_event.wait() self.sync_event.clear() if self._shut_down is True: break try: assert self.wallet_state_manager is not None self.wallet_state_manager.set_sync_mode(True) await self._sync() except Exception as e: tb = traceback.format_exc() self.log.error(f"Loop exception in sync {e}. {tb}") finally: if self.wallet_state_manager is not None: self.wallet_state_manager.set_sync_mode(False) self.log.info("Loop end in sync job") async def _sync(self) -> None: """ Wallet has fallen far behind (or is starting up for the first time), and must be synced up to the LCA of the blockchain. """ if self.wallet_state_manager is None or self.backup_initialized is False or self.server is None: return highest_weight: uint128 = uint128(0) peak_height: uint32 = uint32(0) peak: Optional[HeaderBlock] = None potential_peaks: List[ Tuple[bytes32, HeaderBlock] ] = self.wallet_state_manager.sync_store.get_potential_peaks_tuples() self.log.info(f"Have collected {len(potential_peaks)} potential peaks") for header_hash, potential_peak_block in potential_peaks: if potential_peak_block.weight > highest_weight: highest_weight = potential_peak_block.weight peak_height = potential_peak_block.height peak = potential_peak_block if peak_height is None or peak_height == 0: return if self.wallet_state_manager.peak is not None and highest_weight <= self.wallet_state_manager.peak.weight: self.log.info("Not performing sync, already caught up.") return peers: List[WSChiaConnection] = self.server.get_full_node_connections() if len(peers) == 0: self.log.info("No peers to sync to") return async with self.wallet_state_manager.blockchain.lock: fork_height = None if peak is not None: fork_height = self.wallet_state_manager.sync_store.get_potential_fork_point(peak.header_hash) if fork_height is None: fork_height = uint32(0) await self.wallet_state_manager.blockchain.warmup(fork_height) batch_size = self.constants.MAX_BLOCK_COUNT_PER_REQUESTS advanced_peak = False for i in range(max(0, fork_height - 1), peak_height, batch_size): start_height = i end_height = min(peak_height, start_height + batch_size) peers = self.server.get_full_node_connections() added = False for peer in peers: try: added, advanced_peak = await self.fetch_blocks_and_validate( peer, uint32(start_height), uint32(end_height), None if advanced_peak else fork_height, ) if added: break except Exception as e: await peer.close() exc = traceback.format_exc() self.log.error(f"Error while trying to fetch from peer:{e} {exc}") if not added: raise RuntimeError(f"Was not able to add blocks {start_height}-{end_height}") peak = self.wallet_state_manager.blockchain.get_peak() assert peak is not None self.wallet_state_manager.blockchain.clean_block_record( min( end_height - self.constants.BLOCKS_CACHE_SIZE, peak.height - self.constants.BLOCKS_CACHE_SIZE, ) ) async def fetch_blocks_and_validate( self, peer: WSChiaConnection, height_start: uint32, height_end: uint32, fork_point_with_peak: Optional[uint32], ) -> Tuple[bool, bool]: """ Returns whether the blocks validated, and whether the peak was advanced """ if self.wallet_state_manager is None: return False, False self.log.info(f"Requesting blocks {height_start}-{height_end}") request = RequestHeaderBlocks(uint32(height_start), uint32(height_end)) res: Optional[RespondHeaderBlocks] = await peer.request_header_blocks(request) if res is None or not isinstance(res, RespondHeaderBlocks): raise ValueError("Peer returned no response") header_blocks: List[HeaderBlock] = res.header_blocks advanced_peak = False if header_blocks is None: raise ValueError(f"No response from peer {peer}") if ( self.full_node_peer is not None and peer.peer_host == self.full_node_peer.host or peer.peer_host == "127.0.0.1" ): trusted = True pre_validation_results: Optional[List[PreValidationResult]] = None else: trusted = False pre_validation_results = await self.wallet_state_manager.blockchain.pre_validate_blocks_multiprocessing( header_blocks ) if pre_validation_results is None: return False, advanced_peak assert len(header_blocks) == len(pre_validation_results) for i in range(len(header_blocks)): header_block = header_blocks[i] if not trusted and pre_validation_results is not None and pre_validation_results[i].error is not None: raise ValidationError(Err(pre_validation_results[i].error)) fork_point_with_old_peak = None if advanced_peak else fork_point_with_peak if header_block.is_transaction_block: # Find additions and removals (additions, removals,) = await self.wallet_state_manager.get_filter_additions_removals( header_block, header_block.transactions_filter, fork_point_with_old_peak, ) # Get Additions added_coins = await self.get_additions(peer, header_block, additions) if added_coins is None: raise ValueError("Failed to fetch additions") # Get removals removed_coins = await self.get_removals(peer, header_block, added_coins, removals) if removed_coins is None: raise ValueError("Failed to fetch removals") header_block_record = HeaderBlockRecord(header_block, added_coins, removed_coins) else: header_block_record = HeaderBlockRecord(header_block, [], []) start_t = time.time() if trusted: (result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block( header_block_record, None, trusted, fork_point_with_old_peak ) else: assert pre_validation_results is not None (result, error, fork_h,) = await self.wallet_state_manager.blockchain.receive_block( header_block_record, pre_validation_results[i], trusted, fork_point_with_old_peak, ) self.log.debug( f"Time taken to validate {header_block.height} with fork " f"{fork_point_with_old_peak}: {time.time() - start_t}" ) if result == ReceiveBlockResult.NEW_PEAK: advanced_peak = True self.wallet_state_manager.state_changed("new_block") elif result == ReceiveBlockResult.INVALID_BLOCK: raise ValueError("Value error peer sent us invalid block") if advanced_peak: await self.wallet_state_manager.create_more_puzzle_hashes() return True, advanced_peak def validate_additions( self, coins: List[Tuple[bytes32, List[Coin]]], proofs: Optional[List[Tuple[bytes32, bytes, Optional[bytes]]]], root, ): if proofs is None: # Verify root additions_merkle_set = MerkleSet() # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle_hash, coins_l in coins: additions_merkle_set.add_already_hashed(puzzle_hash) additions_merkle_set.add_already_hashed(hash_coin_list(coins_l)) additions_root = additions_merkle_set.get_root() if root != additions_root: return False else: for i in range(len(coins)): assert coins[i][0] == proofs[i][0] coin_list_1: List[Coin] = coins[i][1] puzzle_hash_proof: bytes32 = proofs[i][1] coin_list_proof: Optional[bytes32] = proofs[i][2] if len(coin_list_1) == 0: # Verify exclusion proof for puzzle hash not_included = confirm_not_included_already_hashed( root, coins[i][0], puzzle_hash_proof, ) if not_included is False: return False else: try: # Verify inclusion proof for coin list included = confirm_included_already_hashed( root, hash_coin_list(coin_list_1), coin_list_proof, ) if included is False: return False except AssertionError: return False try: # Verify inclusion proof for puzzle hash included = confirm_included_already_hashed( root, coins[i][0], puzzle_hash_proof, ) if included is False: return False except AssertionError: return False return True def validate_removals(self, coins, proofs, root): if proofs is None: # If there are no proofs, it means all removals were returned in the response. # we must find the ones relevant to our wallets. # Verify removals root removals_merkle_set = MerkleSet() for name_coin in coins: # TODO review all verification name, coin = name_coin if coin is not None: removals_merkle_set.add_already_hashed(coin.name()) removals_root = removals_merkle_set.get_root() if root != removals_root: return False else: # This means the full node has responded only with the relevant removals # for our wallet. Each merkle proof must be verified. if len(coins) != len(proofs): return False for i in range(len(coins)): # Coins are in the same order as proofs if coins[i][0] != proofs[i][0]: return False coin = coins[i][1] if coin is None: # Verifies merkle proof of exclusion not_included = confirm_not_included_already_hashed( root, coins[i][0], proofs[i][1], ) if not_included is False: return False else: # Verifies merkle proof of inclusion of coin name if coins[i][0] != coin.name(): return False included = confirm_included_already_hashed( root, coin.name(), proofs[i][1], ) if included is False: return False return True async def get_additions(self, peer: WSChiaConnection, block_i, additions) -> Optional[List[Coin]]: if len(additions) > 0: additions_request = RequestAdditions(block_i.height, block_i.header_hash, additions) additions_res: Optional[Union[RespondAdditions, RejectAdditionsRequest]] = await peer.request_additions( additions_request ) if additions_res is None: await peer.close() return None elif isinstance(additions_res, RespondAdditions): validated = self.validate_additions( additions_res.coins, additions_res.proofs, block_i.foliage_transaction_block.additions_root, ) if not validated: await peer.close() return None added_coins = [] for ph_coins in additions_res.coins: ph, coins = ph_coins added_coins.extend(coins) return added_coins elif isinstance(additions_res, RejectRemovalsRequest): await peer.close() return None return None else: added_coins = [] return added_coins async def get_removals(self, peer: WSChiaConnection, block_i, additions, removals) -> Optional[List[Coin]]: assert self.wallet_state_manager is not None request_all_removals = False # Check if we need all removals for coin in additions: puzzle_store = self.wallet_state_manager.puzzle_store record_info: Optional[DerivationRecord] = await puzzle_store.get_derivation_record_for_puzzle_hash( coin.puzzle_hash.hex() ) if record_info is not None and record_info.wallet_type == WalletType.COLOURED_COIN: # TODO why ? request_all_removals = True break if record_info is not None and record_info.wallet_type == WalletType.DISTRIBUTED_ID: request_all_removals = True break if len(removals) > 0 or request_all_removals: if request_all_removals: removals_request = wallet_protocol.RequestRemovals(block_i.height, block_i.header_hash, None) else: removals_request = wallet_protocol.RequestRemovals(block_i.height, block_i.header_hash, removals) removals_res: Optional[Union[RespondRemovals, RejectRemovalsRequest]] = await peer.request_removals( removals_request ) if removals_res is None: return None elif isinstance(removals_res, RespondRemovals): validated = self.validate_removals( removals_res.coins, removals_res.proofs, block_i.foliage_transaction_block.removals_root, ) if validated is False: await peer.close() return None removed_coins = [] for _, coins_l in removals_res.coins: if coins_l is not None: removed_coins.append(coins_l) return removed_coins elif isinstance(removals_res, RejectRemovalsRequest): return None else: return None else: return []
42.885845
119
0.594575
4a1a7f1f20cc46c762d68b98e026daece631e120
2,613
py
Python
duckietown_rl/gym_duckietown/envs/multimap_env.py
rizavelioglu/AIDO-CITEC
97f4d8564dc6eb743063a7902a8932a429349c04
[ "MIT" ]
18
2020-08-31T11:30:41.000Z
2022-02-15T07:35:12.000Z
duckietown_rl/gym_duckietown/envs/multimap_env.py
rizavelioglu/AIDO-CITEC
97f4d8564dc6eb743063a7902a8932a429349c04
[ "MIT" ]
5
2020-09-27T02:15:56.000Z
2022-01-23T17:56:24.000Z
duckietown_rl/gym_duckietown/envs/multimap_env.py
rizavelioglu/AIDO-CITEC
97f4d8564dc6eb743063a7902a8932a429349c04
[ "MIT" ]
21
2020-04-28T16:38:01.000Z
2021-11-16T14:21:08.000Z
# coding=utf-8 import os import gym from .duckietown_env import DuckietownEnv from ..utils import get_subdir_path class MultiMapEnv(gym.Env): """ Environment which samples from multiple environments, for multi-taks learning """ def __init__(self, **kwargs): self.env_list = [] maps_dir = get_subdir_path('maps') self.window = None # Try loading each of the available map files for map_file in os.listdir(maps_dir): map_name = map_file.split('.')[0] # Do not load the regression test maps if map_name.startswith('regress'): continue env = DuckietownEnv(map_name=map_name, **kwargs) self.action_space = env.action_space self.observation_space = env.observation_space self.reward_range = env.reward_range self.env_list.append(env) assert len(self.env_list) > 0 self.cur_env_idx = 0 self.cur_reward_sum = 0 self.cur_num_steps = 0 def seed(self, seed): for env in self.env_list: env.seed(seed) # Seed the random number generator self.np_random, _ = gym.utils.seeding.np_random(seed) return [seed] def reset(self): #self.cur_env_idx = self.np_random.randint(0, len(self.env_list)) self.cur_env_idx = (self.cur_env_idx + 1) % len(self.env_list) env = self.env_list[self.cur_env_idx] return env.reset() def step(self, action): env = self.env_list[self.cur_env_idx] obs, reward, done, info = env.step(action) # Keep track of the total reward for this episode self.cur_reward_sum += reward self.cur_num_steps += 1 # If the episode is done, sample a new environment if done: self.cur_reward_sum = 0 self.cur_num_steps = 0 return obs, reward, done, info def render(self, mode='human', close=False): env = self.env_list[self.cur_env_idx] # Make all environments use the same rendering window if self.window is None: ret = env.render(mode, close) self.window = env.window else: env.window = self.window ret = env.render(mode, close) return ret def close(self): for env in self.env_list: env.close() self.cur_env_idx = 0 self.env_names = None self.env_list = None @property def step_count(self): env = self.env_list[self.cur_env_idx] return env.step_count
26.13
73
0.600459
4a1a800e7b1ec1c3c27bddad5ff399926f8f1d70
4,168
py
Python
wordnet2neo4j.py
sergey-zarealye-com/wordnet2neo4j
2e97dda005549d60f284f851a2e6432f9a71422f
[ "Apache-2.0" ]
null
null
null
wordnet2neo4j.py
sergey-zarealye-com/wordnet2neo4j
2e97dda005549d60f284f851a2e6432f9a71422f
[ "Apache-2.0" ]
null
null
null
wordnet2neo4j.py
sergey-zarealye-com/wordnet2neo4j
2e97dda005549d60f284f851a2e6432f9a71422f
[ "Apache-2.0" ]
3
2016-07-01T19:05:39.000Z
2020-04-01T17:28:23.000Z
# -*- coding: utf-8 -*- """ Created on Tue Aug 4 15:03:08 2015 @author: sergey, comcon1 Example usage: NOUNS -i dict/data.noun --neo4j bolt://127.0.0.1:7687 --nodelabel Enwordnet --reltype Pointer --limit 1000 VERBS -i dict/data.verb --neo4j bolt://127.0.0.1:7687 --nodelabel Enwordnet --reltype Pointer --limit 1000 """ import argparse import re, sys from neo4jstuff import StuffNeo4j def main(argv): parser = argparse.ArgumentParser(description= "Parses WordNet database. Stores the results in neo4j dtabase/") parser.add_argument( "--neo4j", required=True, help="URI string for connection to neo4j database, e.g. 'bolt://127.0.0.1:7687'." ) parser.add_argument( "--password", required=False, help="Password for neo4j user for connection to DB." ) parser.add_argument( "-i", "--input", required=True, help="Wordnet data file e.g. dict/data.noun ." ) parser.add_argument( "--nodelabel", required=True, help="Wordnet node label." ) parser.add_argument( "--reltype", required=True, help="Wordnet relation type." ) parser.add_argument( "--limit", default=sys.maxsize, type=int, help="Maximum number of lines to process in input file, for debugging." ) parser.add_argument( "--encoding", help="Wordnet data file encoding e.g. cp1251." ) args = parser.parse_args() # Initialize params the = StuffNeo4j(args.nodelabel, args.reltype) # Connect to DB if args.password is None: the.connect(args.neo4j) else: the.connect(args.neo4j, pwd=args.password) entry_pattern = re.compile(r'(\d{8,8}) \d\d (\w) \d\d (\w+) ') dictionary = [] cnt = 0 pos = None with open(args.input) as wordnet: for raw_line in wordnet: if args.encoding is not None: line = raw_line.decode(args.encoding) else: line = raw_line entry = entry_pattern.findall(line) if len(entry): name = entry[0][2] pos = entry[0][1] synset_id = pos + entry[0][0] word_node = the.create_node(args.nodelabel, name=name, synset_id=synset_id) dictionary.append(word_node) cnt += 1 if cnt % 100 == 0: the.insert_bulk(dictionary) print( "%d/%d words inserted" % (len(dictionary), cnt) ) dictionary = [] if cnt > args.limit: break the.insert_bulk(dictionary) the.create_indexes() #TODO we only add relations to existing nodes! pointer_pattern = re.compile(r'([@!;~i#msp%=+-cru<\^>*]{1,2} \d{8,8} \w)') cnt = 0 relations = [] with open(args.input) as wordnet: for line in wordnet: entry = entry_pattern.findall(line) if len(entry): name = entry[0][2] synset_id = entry[0][1] + entry[0][0] pointers = pointer_pattern.findall(line) if len(pointers): for pointer in pointers: ptype, target, target_pos = pointer.split() try: rel = the.create_wordnet_rel(synset_id, target_pos+target, ptype) relations.append(rel) except: pass cnt += 1 if cnt % 100 == 0: the.insert_bulk(relations) print( "%d/%d relations inserted" % \ (len(relations), cnt) ) relations = [] if cnt > args.limit: break the.insert_bulk(relations) if __name__ == '__main__': main(sys.argv)
32.818898
100
0.5
4a1a802518ab8315af45466eec97e5dfda31e5d7
1,147
py
Python
tests/test_provider_gavinbunney_kubectl.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
tests/test_provider_gavinbunney_kubectl.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
tests/test_provider_gavinbunney_kubectl.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# tests/test_provider_gavinbunney_kubectl.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:20:27 UTC) def test_provider_import(): import terrascript.provider.gavinbunney.kubectl def test_resource_import(): from terrascript.resource.gavinbunney.kubectl import kubectl_manifest from terrascript.resource.gavinbunney.kubectl import kubectl_server_version def test_datasource_import(): from terrascript.data.gavinbunney.kubectl import kubectl_file_documents from terrascript.data.gavinbunney.kubectl import kubectl_filename_list from terrascript.data.gavinbunney.kubectl import kubectl_path_documents from terrascript.data.gavinbunney.kubectl import kubectl_server_version # TODO: Shortcut imports without namespace for official and supported providers. # TODO: This has to be moved into a required_providers block. # def test_version_source(): # # import terrascript.provider.gavinbunney.kubectl # # t = terrascript.provider.gavinbunney.kubectl.kubectl() # s = str(t) # # assert 'https://github.com/gavinbunney/terraform-provider-kubectl' in s # assert '1.11.3' in s
31
80
0.787271
4a1a8028bee7a7c47ec7a99a8e7eb8965401d944
11,230
py
Python
caer/io/resize.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
null
null
null
caer/io/resize.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
null
null
null
caer/io/resize.py
brccabral/caer
2ddb84095202aa98224b04612eff9e97c8680309
[ "MIT" ]
null
null
null
# _____ ______ _____ # / ____/ /\ | ____ | __ \ # | | / \ | |__ | |__) | Caer - Modern Computer Vision # | | / /\ \ | __| | _ / Languages: Python, C, C++, Cuda # | |___ / ____ \ | |____ | | \ \ http://github.com/jasmcaus/caer # \_____\/_/ \_ \______ |_| \_\ # Licensed under the MIT License <http://opensource.org/licenses/MIT> # SPDX-License-Identifier: MIT # Copyright (c) 2020-2021 The Caer Authors <http://github.com/jasmcaus> import math import cv2 as cv from ..coreten import Tensor, to_tensor from .._internal import _check_target_size from ..globals import ( INTER_AREA, INTER_CUBIC, INTER_NEAREST, INTER_LINEAR ) __all__ = [ 'resize' ] def resize(tens, target_size=None, resize_factor=None, preserve_aspect_ratio=False, interpolation='bilinear'): r""" Resizes an image to a target_size without aspect ratio distortion. Your output images will be of size ``target_size``, and will not be distorted. Instead, the parts of the image that do not fit within the target size get cropped out. The resizing process is: 1. Resize the image as minimally as possible. 2. Take the largest centered crop of the image with dimensions = ``target_size``. Alternatively, you may use: ```python size = (200,200) tens = caer.resize(tens, target_size=size, preserve_aspect_ratio=True) ``` Note: ``caer.imread()`` comes with an in-built functionality to resize your images, eliminating the need for you to call ``caer.resize()``. This is purely optional and may appeal to certain users. You may also use ``caer.smart_resize()`` for on-the-fly image resizing that `preserves the aspect ratio`. Args: tens (Tensor): Input Image. Must be in the format ``(height, width, channels)``. target_size (tuple): Target size. Must be a tuple of ``(width, height)`` integer. resize_factor (float, tuple): Resizing Factor to employ. Shrinks the image if ``resize_factor < 1`` Enlarges the image if ``resize_factor > 1`` preserve_aspect_ratio (bool): Prevent aspect ratio distortion (employs center crop). interpolation (str): Interpolation to use for resizing. Defaults to `'bilinear'`. Supports `'bilinear'`, `'bicubic'`, `'area'`, `'nearest'`. Returns: Tensor of shape ``(height, width, channels)``. Examples:: >> tens = caer.data.sunrise() >> tens.shape (427, 640, 3) >> resized = caer.resize(tens, target_size=(200,200)) # Hard-resize. May distort aspect ratio >> resized.shape (200, 200, 3) >> resized_wf = caer.resize(tens, resize_factor=.5) # Resizes the image to half its dimensions >> resized_wf.shape (213, 320, 3) >> resized = caer.resize(tens, target_size=(200,200), preserve_aspect_ratio=True) # Preserves aspect ratio >> resized.shape (200, 200, 3) """ # Opencv uses the (h,w) format height, width = tens.shape[:2] interpolation = str(interpolation) cspace = None if isinstance(tens, Tensor): # We'll need to preserve this before returning cspace = tens.cspace if resize_factor is None: if target_size is None: if preserve_aspect_ratio: raise ValueError('Specify a target size') else: raise ValueError('Specify either a resize factor or target dimensions') if target_size is not None: if len(target_size) == 2: new_shape = target_size else: raise ValueError('Tuple shape must be = 2 (width, height)') if resize_factor is not None: target_size = None preserve_aspect_ratio = False if not isinstance(resize_factor, (int, float)): raise ValueError('resize_factor must be an integer or float') if resize_factor > 1: interpolation = 'bicubic' new_shape = (int(resize_factor * width), int(resize_factor * height)) interpolation_methods = { 'nearest': INTER_NEAREST, '0': INTER_NEAREST, 0: INTER_NEAREST, # 0 'bilinear': INTER_LINEAR, '1': INTER_LINEAR, 1: INTER_LINEAR, # 1 'bicubic': INTER_CUBIC, '2': INTER_CUBIC, 2: INTER_CUBIC, # 2 'area': INTER_AREA, '3': INTER_AREA, 3: INTER_AREA # 3 } if interpolation not in interpolation_methods: raise ValueError('Specify a valid interpolation type - area/nearest/bicubic/bilinear') if preserve_aspect_ratio: im = _resize_with_ratio(tens, target_size=target_size, preserve_aspect_ratio=preserve_aspect_ratio, interpolation=interpolation_methods[interpolation]) else: width, height = new_shape[:2] im = _cv2_resize(tens, (width, height), interpolation=interpolation_methods[interpolation]) # For this function, the <cspace> attribute is not required. # So, we disable the mandatory check that the <cspace> attribute needs to be passed for # foreign Tensors/ndarrays return to_tensor(im, cspace=cspace, override_checks=True) def smart_resize(tens, target_size, interpolation='bilinear'): r""" Resizes an image to a target_size without aspect ratio distortion. Your output images will be of size `target_size`, and will not be distorted. Instead, the parts of the image that do not fit within the target size get cropped out. The resizing process is: 1. Resize the image as minimally as possible. 2. Take the largest centered crop of the image with dimensions = `target_size`. Alternatively, you may use: ```python size = (200,200) tens = caer.resize(tens, target_size=size, preserve_aspect_ratio=True) ``` Args: tens (Tensor): Input Image. Must be in the format `(height, width, channels)`. target_size (tuple): Target size. Must be a tuple of `(width, height)` integer. interpolation (str): Interpolation to use for resizing. Defaults to `'bilinear'`. Supports `'bilinear'`, `'bicubic'`, `'area'`, `'nearest'`. Returns: Tensor of shape `(height, width, channels)` Examples:: >> tens = caer.data.sunrise() >> tens.shape (427, 640, 3) >> resized = caer.smart_resize(tens, target_size=(200,200)) >> resized.shape (200, 200, 3) """ # if not isinstance(tens, Tensor): # raise ValueError('To use `caer.smart_resize()`, `tens` needs to be a caer.Tensor') im = _resize_with_ratio(tens, target_size=target_size, preserve_aspect_ratio=True, interpolation=interpolation) # For this function, the <cspace> attribute is not required. # So, we disable the mandatory check that the <cspace> attribute needs to be passed for # foreign Tensors/ndarrays return to_tensor(im, override_checks=True) def _cv2_resize(image, target_size, interpolation=None): """ ONLY TO BE USED INTERNALLY. NOT AVAILABLE FOR EXTERNAL USAGE. Resizes the image ignoring the aspect ratio of the original image """ _ = _check_target_size(target_size) width, height = target_size[:2] if interpolation is None: interpolation = INTER_AREA dimensions = (width, height) return cv.resize(image, dimensions, interpolation=interpolation) def _resize_with_ratio(tens, target_size, preserve_aspect_ratio=False, interpolation='bilinear'): """ Resizes an image using advanced algorithms :param target_size: Tuple of size 2 in the format (width,height) :param preserve_aspect_ratio: Boolean to keep/ignore aspect ratio when resizing """ _ = _check_target_size(target_size) interpolation = str(interpolation) if not isinstance(preserve_aspect_ratio, bool): raise ValueError('preserve_aspect_ratio must be a boolean') interpolation_methods = { 'nearest': INTER_NEAREST, '0': INTER_NEAREST, # 0 'bilinear': INTER_LINEAR, '1': INTER_LINEAR,# 1 'bicubic': INTER_CUBIC, '2': INTER_CUBIC,# 2 'area': INTER_AREA, '3': INTER_AREA,# 3 } if interpolation not in interpolation_methods: raise ValueError('Specify a valid interpolation type - area/nearest/bicubic/bilinear') oh, ow = tens.shape[:2] target_w, target_h = target_size if target_h > oh or target_w > ow: raise ValueError('To compute resizing keeping the aspect ratio, the target size dimensions must be <= actual image dimensions') # Computing minimal resize # min_width, w_factor = _compute_minimal_resize(ow, target_w) # min_height, h_factor = _compute_minimal_resize(oh, target_h) minimal_resize_factor = _compute_minimal_resize((ow, oh), (target_w, target_h)) # Resizing minimally tens = _cv2_resize(tens, (ow//minimal_resize_factor, oh//minimal_resize_factor)) # Computing centre crop (to avoid extra crop, we resize minimally first) tens = _compute_centre_crop(tens, (target_w, target_h)) if tens.shape[:2] != target_size[:2]: tens = _cv2_resize(tens, (target_w, target_h), interpolation=interpolation_methods[interpolation]) return tens def _compute_minimal_resize(org_size, target_dim): # for i in range(10): # i += 1 # d = dim*i # if org_dim >= d and dim < dim*(i+1): # if (org_dim - dim*(i+1)) > dim: # continue # else: # return d, i # import math # mi = math.floor(org_dim/dim) # d = dim * mi # return d, mi if not isinstance(org_size, tuple) or not isinstance(target_dim, tuple): raise ValueError('org_size and target_dim must be a tuple') if len(org_size) != 2 or len(target_dim) != 2: raise ValueError('Size of tuple must be = 2') oh, ow = org_size[:2] targ_w, targ_h = target_dim[:2] h_factor = math.floor(oh/targ_h) w_factor = math.floor(ow/targ_w) if h_factor <= w_factor: return h_factor else: return w_factor def _compute_centre_crop(tens, target_size): _ = _check_target_size(target_size) # Getting org height and target oh, ow = tens.shape[:2] target_w, target_h = target_size # The following line is actually the right way of accessing height and width of an opencv-specific image (height, width). However for some reason, while the code runs, this is flipped (it now becomes (width,height)). Testing needs to be done to catch this little bug # oh, ow = tens.shape[:2] if target_h > oh or target_w > ow: raise ValueError('To compute centre crop, target size dimensions must be <= tens dimensions') diff_h = (oh - target_h) // 2 diff_w = (ow - target_w ) // 2 # tens[y:y+h, x:x+h] return tens[diff_h:diff_h + target_h, diff_w:diff_w + target_w]
37.811448
270
0.634907
4a1a81945766d3bfa7a4bdf301ebfca34eb81973
12,840
py
Python
gibson/gibson/envs/minitaur_env.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
120
2019-04-22T04:45:28.000Z
2022-03-23T01:53:17.000Z
gibson/envs/minitaur_env.py
bradleyemi/GibsonEnv
30c2b54c29e8561fc5b5127cb4bdb08ef6869299
[ "MIT" ]
14
2019-06-12T08:21:21.000Z
2021-08-25T15:36:58.000Z
gibson/envs/minitaur_env.py
bradleyemi/GibsonEnv
30c2b54c29e8561fc5b5127cb4bdb08ef6869299
[ "MIT" ]
19
2019-06-19T07:00:36.000Z
2022-03-24T07:18:30.000Z
''' Customized Minitaur Environment for Cambria Author: Zhiyang He, Stanford University Original: Pybullet Note that in the original pybullet environment, major difference exist in simulation accuracy. Original: Solver iterations: 300 (Major difference) Time step: 1/100.0 Action repeat: 1 Original Accurate: Solver iterations: 60 Time step: 1/500.0 Action repeat: 5 Current: Solver iterations: 5 Time step: 1/88.0 Action repeat: 4 ''' from gibson.envs.env_modalities import CameraRobotEnv, BaseRobotEnv from gibson.envs.env_bases import * from gibson.core.physics.drivers.minitaur import Minitaur import os, inspect import math import time import gym from gym import spaces from gym.utils import seeding import gibson import numpy as np import pybullet MINITAUR_TIMESTEP = 1.0/(4 * 22) MINITAUR_FRAMESKIP = 4 ACTION_EPS = 0.01 tracking_camera = { 'yaw': 40, 'z_offset': 0.3, 'distance': 1, 'pitch': -0 } class MinitaurNavigateEnv(CameraRobotEnv): """The gym environment for the minitaur. It simulates the locomotion of a minitaur, a quadruped robot. The state space include the angles, velocities and torques for all the motors and the action space is the desired motor angle for each motor. The reward function is based on how far the minitaur walks in 1000 steps and penalizes the energy expenditure. """ distance_weight = 1.0 energy_weight = 0.005 shake_weight = 0.0 drift_weight = 0.0 distance_limit = float("inf") observation_noise_stdev = 0.0 action_bound = 1 env_randomizer = None hard_reset = False leg_model_enabled = True num_bullet_solver_iterations = 300 pd_control_enabled = True accurate_motor_model_enabled = True NUM_SUBSTEPS = 5 # PD control needs smaller time step for stability. def __init__(self, config, gpu_count=0): """Initialize the minitaur gym environment. Args: distance_weight: The weight of the distance term in the reward. energy_weight: The weight of the energy term in the reward. shake_weight: The weight of the vertical shakiness term in the reward. drift_weight: The weight of the sideways drift term in the reward. distance_limit: The maximum distance to terminate the episode. observation_noise_stdev: The standard deviation of observation noise. leg_model_enabled: Whether to use a leg motor to reparameterize the action space. hard_reset: Whether to wipe the simulation and load everything when reset is called. If set to false, reset just place the minitaur back to start position and set its pose to initial configuration. env_randomizer: An EnvRandomizer to randomize the physical properties during reset(). """ self.config = self.parse_config(config) assert(self.config["envname"] == self.__class__.__name__ or self.config["envname"] == "TestEnv") CameraRobotEnv.__init__(self, self.config, gpu_count, scene_type="building", tracking_camera=tracking_camera) self.robot_introduce(Minitaur(self.config, env=self, pd_control_enabled=self.pd_control_enabled, accurate_motor_model_enabled=self.accurate_motor_model_enabled)) self.scene_introduce() self.gui = self.config["mode"] == "gui" self.total_reward = 0 self.total_frame = 0 self.action_repeat = 1 ## Important: PD controller needs more accuracy '''if self.pd_control_enabled or self.accurate_motor_model_enabled: self.time_step = self.config["speed"]["timestep"] self.time_step /= self.NUM_SUBSTEPS self.num_bullet_solver_iterations /= self.NUM_SUBSTEPS self.action_repeat *= self.NUM_SUBSTEPS pybullet.setPhysicsEngineParameter(physicsClientId=self.physicsClientId, numSolverIterations=int(self.num_bullet_solver_iterations)) pybullet.setTimeStep(self.time_step, physicsClientId=self.physicsClientId) ''' pybullet.setPhysicsEngineParameter(physicsClientId=self.physicsClientId, numSolverIterations=int(self.num_bullet_solver_iterations)) self._observation = [] self._last_base_position = [0, 0, 0] self._action_bound = self.action_bound self._env_randomizer = self.env_randomizer if self._env_randomizer is not None: self._env_randomizer.randomize_env(self) self._objectives = [] self.viewer = None self.Amax = [0] * 8 def set_env_randomizer(self, env_randomizer): self._env_randomizer = env_randomizer def configure(self, args): self._args = args #def _reset(self): #if self._env_randomizer is not None: # self._env_randomizer.randomize_env(self) #self._last_base_position = [0, 0, 0] #self._objectives = [] #if not self._torque_control_enabled: # for _ in range(1 / self.timestep): # if self._pd_control_enabled or self._accurate_motor_model_enabled: # self.robot.ApplyAction([math.pi / 2] * 8) # pybullet.stepSimulation() #return self._noisy_observation() def _transform_action_to_motor_command(self, action): if self.leg_model_enabled: #for i, action_component in enumerate(action): # if not (-self._action_bound - ACTION_EPS <= action_component <= self._action_bound + ACTION_EPS): # raise ValueError("{}th action {} out of bounds.".format(i, action_component)) action = self.robot.ConvertFromLegModel(action) return action def _step(self, action): """Step forward the simulation, given the action. Args: action: A list of desired motor angles for eight motors. Returns: observations: The angles, velocities and torques of all motors. reward: The reward for the current state-action pair. done: Whether the episode has ended. info: A dictionary that stores diagnostic information. Raises: ValueError: The action dimension is not the same as the number of motors. ValueError: The magnitude of actions is out of bounds. """ #print("Env apply raw action", action) action = self._transform_action_to_motor_command(action) #print("Env apply action", action) #for _ in range(self._action_repeat): # self.robot.ApplyAction(action) # pybullet.stepSimulation() for i in range(len(self.Amax)): if action[i] > self.Amax[i]: self.Amax[i] = action[i] #print("Action max", self.Amax) for _ in range(self.action_repeat): state = CameraRobotEnv._step(self, action) return state def calc_rewards_and_done(self, action, state): ## TODO (hzyjerry): make use of action, state done = self._termination(state) rewards = self._rewards(a) #return reward, False return rewards, done def get_minitaur_motor_angles(self): """Get the minitaur's motor angles. Returns: A numpy array of motor angles. """ return self.robot.GetMotorAngles() def get_minitaur_motor_velocities(self): """Get the minitaur's motor velocities. Returns: A numpy array of motor velocities. """ return self.robot.GetMotorVelocities() def get_minitaur_motor_torques(self): """Get the minitaur's motor torques. Returns: A numpy array of motor torques. """ return self.robot.GetMotorTorques() def get_minitaur_base_orientation(self): """Get the minitaur's base orientation, represented by a quaternion. Returns: A numpy array of minitaur's orientation. """ return self.robot.GetBaseOrientation() def is_fallen(self): """Decide whether the minitaur has fallen. If the up directions between the base and the world is larger (the dot product is smaller than 0.85) or the base is very low on the ground (the height is smaller than 0.13 meter), the minitaur is considered fallen. Returns: Boolean value that indicates whether the minitaur has fallen. """ orientation = self.robot.GetBaseOrientation() rot_mat = pybullet.getMatrixFromQuaternion(orientation) local_up = rot_mat[6:] pos = self.robot.GetBasePosition() #return (np.dot(np.asarray([0, 0, 1]), np.asarray(local_up)) < 0.85 or # pos[2] < 0.13) return False def _termination(self, state=None, debugmode=False): position = self.robot.GetBasePosition() distance = math.sqrt(position[0]**2 + position[1]**2) #return self.is_fallen() or distance > self.distance_limit return False def _rewards(self, action=None, debugmode=False): a = action current_base_position = self.robot.GetBasePosition() forward_reward = current_base_position[0] - self._last_base_position[0] drift_reward = -abs(current_base_position[1] - self._last_base_position[1]) shake_reward = -abs(current_base_position[2] - self._last_base_position[2]) self._last_base_position = current_base_position energy_reward = np.abs( np.dot(self.robot.GetMotorTorques(), self.robot.GetMotorVelocities())) * self.timestep reward = ( self.distance_weight * forward_reward - self.energy_weight * energy_reward + self.drift_weight * drift_reward + self.shake_weight * shake_reward) self._objectives.append( [forward_reward, energy_reward, drift_reward, shake_reward]) return [reward, ] def get_objectives(self): return self._objectives def _get_observation(self): self._observation = self.robot.GetObservation() return self._observation def _noisy_observation(self): self._get_observation() observation = np.array(self._observation) if self.observation_noise_stdev > 0: observation += (np.random.normal( scale=self.observation_noise_stdev, size=observation.shape) * self.robot.GetObservationUpperBound()) return observation #==================== Environemnt Randomizer ==================== ## (hzyjerry) TODO: still under construction, not ready to use def randomize_env(self, env): self._randomize_minitaur(env.minitaur) def _randomize_minitaur(self, minitaur): """Randomize various physical properties of minitaur. It randomizes the mass/inertia of the base, mass/inertia of the legs, friction coefficient of the feet, the battery voltage and the motor damping at each reset() of the environment. Args: minitaur: the Minitaur instance in minitaur_gym_env environment. """ base_mass = minitaur.GetBaseMassFromURDF() randomized_base_mass = random.uniform( base_mass * (1.0 + self._minitaur_base_mass_err_range[0]), base_mass * (1.0 + self._minitaur_base_mass_err_range[1])) minitaur.SetBaseMass(randomized_base_mass) leg_masses = minitaur.GetLegMassesFromURDF() leg_masses_lower_bound = np.array(leg_masses) * ( 1.0 + self._minitaur_leg_mass_err_range[0]) leg_masses_upper_bound = np.array(leg_masses) * ( 1.0 + self._minitaur_leg_mass_err_range[1]) randomized_leg_masses = [ np.random.uniform(leg_masses_lower_bound[i], leg_masses_upper_bound[i]) for i in range(len(leg_masses)) ] minitaur.SetLegMasses(randomized_leg_masses) randomized_battery_voltage = random.uniform(BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1]) minitaur.SetBatteryVoltage(randomized_battery_voltage) randomized_motor_damping = random.uniform(MOTOR_VISCOUS_DAMPING_RANGE[0], MOTOR_VISCOUS_DAMPING_RANGE[1]) minitaur.SetMotorViscousDamping(randomized_motor_damping) randomized_foot_friction = random.uniform(MINITAUR_LEG_FRICTION[0], MINITAUR_LEG_FRICTION[1]) minitaur.SetFootFriction(randomized_foot_friction)
37.988166
114
0.648442
4a1a81a27d9347befdb44374a33456f35cc5bcd1
2,189
py
Python
deeprob/spn/utils/statistics.py
deeprob-org/deeprob-kit
c46050eb8047dcfa0cc2420887624184c042e32e
[ "MIT" ]
38
2021-09-27T11:39:23.000Z
2022-02-09T15:33:44.000Z
deeprob/spn/utils/statistics.py
deeprob-org/deeprob-kit
c46050eb8047dcfa0cc2420887624184c042e32e
[ "MIT" ]
14
2021-09-27T15:04:46.000Z
2021-12-08T21:08:01.000Z
deeprob/spn/utils/statistics.py
deeprob-org/deeprob-kit
c46050eb8047dcfa0cc2420887624184c042e32e
[ "MIT" ]
3
2021-09-30T08:05:06.000Z
2022-01-02T04:44:19.000Z
# MIT License: Copyright (c) 2021 Lorenzo Loconte, Gennaro Gala from deeprob.spn.structure.leaf import Leaf from deeprob.spn.structure.node import Node, Sum, Product, bfs from deeprob.spn.utils.filter import collect_nodes, filter_nodes_by_type def compute_statistics(root: Node) -> dict: """ Compute some statistics of a SPN given its root. The computed statistics are the following: - n_nodes, the number of nodes - n_sum, the number of sum nodes - n_prod, the number of product nodes - n_leaves, the number of leaves - n_edges, the number of edges - n_params, the number of parameters - depth, the depth of the network :param root: The root of the SPN. :return: A dictionary containing the statistics. """ stats = { 'n_nodes': len(collect_nodes(root)), 'n_sum': len(filter_nodes_by_type(root, Sum)), 'n_prod': len(filter_nodes_by_type(root, Product)), 'n_leaves': len(filter_nodes_by_type(root, Leaf)), 'n_edges': compute_edges_count(root), 'n_params': compute_parameters_count(root), 'depth': compute_depth(root) } return stats def compute_edges_count(root: Node) -> int: """ Get the number of edges of a SPN given its root. :param root: The root of the SPN. :return: The number of edges. """ return sum(len(n.children) for n in filter_nodes_by_type(root, (Sum, Product))) def compute_parameters_count(root: Node) -> int: """ Get the number of parameters of a SPN given its root. :param root: The root of the SPN. :return: The number of parameters. """ n_weights = sum(len(n.weights) for n in filter_nodes_by_type(root, Sum)) n_leaf_params = sum(n.params_count() for n in filter_nodes_by_type(root, Leaf)) return n_weights + n_leaf_params def compute_depth(root: Node) -> int: """ Get the depth of the SPN given its root. :param root: The root of the SPN. :return: The depth of the network. """ depths = dict() for node in bfs(root): d = depths.setdefault(node, 0) for c in node.children: depths[c] = d + 1 return max(depths.values())
30.830986
83
0.66423
4a1a81ea5908d97445ea0eab3151ee37164ae532
2,048
py
Python
sandbox/src1/TCSE3-3rd-examples/src/py/intro/loop4simviz2.py
sniemi/SamPy
e048756feca67197cf5f995afd7d75d8286e017b
[ "BSD-2-Clause" ]
5
2016-05-28T14:12:28.000Z
2021-04-22T10:23:12.000Z
sandbox/src1/TCSE3-3rd-examples/src/py/intro/loop4simviz2.py
sniemi/SamPy
e048756feca67197cf5f995afd7d75d8286e017b
[ "BSD-2-Clause" ]
null
null
null
sandbox/src1/TCSE3-3rd-examples/src/py/intro/loop4simviz2.py
sniemi/SamPy
e048756feca67197cf5f995afd7d75d8286e017b
[ "BSD-2-Clause" ]
2
2015-07-13T10:04:10.000Z
2021-04-22T10:23:23.000Z
#!/usr/bin/env python """ As loop4simviz1.py, but here we call simviz2.py, make movies, and also allow any simviz2.py option to be varied in a loop. """ import sys, os, commands usage = 'Usage: %s parameter min max increment '\ '[ simviz2.py options ]' % sys.argv[0] try: option_name = sys.argv[1] min = float(sys.argv[2]) max = float(sys.argv[3]) incr = float(sys.argv[4]) except: print usage; sys.exit(1) simviz2_options = ' '.join(sys.argv[5:]) html = open('tmp_%s_runs.html' % option_name, 'w') html.write('<HTML><BODY BGCOLOR="white">\n') psfiles = [] # plot files in PostScript format pngfiles = [] # plot files in PNG format value = min while value <= max: case = 'tmp_%s_%g' % (option_name, value) cmd = 'python simviz2.py %s -%s %g -case %s' % \ (simviz2_options, option_name, value, case) print 'running', cmd failure, output = commands.getstatusoutput(cmd) psfile = os.path.join(case,case+'.ps') pngfile = os.path.join(case,case+'.png') html.write('<H1>%s=%g</H1> <IMG SRC="%s">\n' \ % (option_name, value, pngfile)) psfiles.append(psfile) pngfiles.append(pngfile) value += incr cmd = 'convert -delay 50 -loop 1000 %s tmp_%s.gif' \ % (' '.join(pngfiles), option_name) print 'converting PNG files to animated GIF:\n', cmd failure, output = commands.getstatusoutput(cmd) html.write('<H1>Movie</H1> <IMG SRC="tmp_%s.gif">\n' % \ option_name) cmd = 'ps2mpeg.py %s' % ' '.join(psfiles) print 'converting PostScript files to an MPEG movie:\n', cmd failure, output = commands.getstatusoutput(cmd) os.rename('movie.mpeg', 'tmp_%s.mpeg' % option_name) html.write('<H1><A HREF="tmp_%s.mpeg">MPEG Movie</A></H1>\n' \ % option_name) html.write('</BODY></HTML>\n') html.close() cmd = 'epsmerge -o tmp_%s_runs.ps -x 2 -y 3 -par %s' \ % (option_name, ' '.join(psfiles)) print cmd failure, output = commands.getstatusoutput(cmd) failure, output = commands.getstatusoutput(\ 'ps2pdf tmp_%s_runs.ps' % option_name)
35.310345
62
0.643066
4a1a8531b4f4c89cf1764ca0c5bd8ed8443a1df5
4,171
py
Python
modules/kmeans_vector_quantizer.py
lahiruts/Online-Speech-Recognition
6f1b231d6cdd164505a612b008d60120547f0f87
[ "Apache-2.0" ]
201
2020-06-15T15:48:12.000Z
2021-02-02T04:25:31.000Z
modules/kmeans_vector_quantizer.py
lahiruts/Online-Speech-Recognition
6f1b231d6cdd164505a612b008d60120547f0f87
[ "Apache-2.0" ]
14
2021-02-03T00:33:08.000Z
2021-11-14T13:19:25.000Z
modules/kmeans_vector_quantizer.py
lahiruts/Online-Speech-Recognition
6f1b231d6cdd164505a612b008d60120547f0f87
[ "Apache-2.0" ]
25
2020-06-22T15:46:25.000Z
2021-01-21T15:31:07.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from modules.group_norm import Fp32GroupNorm class KmeansVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, groups, combine_groups, vq_dim, time_first, gamma=0.25 ): """Vector quantization using straight pass-through estimator (i.e. kmeans) Args: dim: input dimension (channels) num_vars: number of quantized vectors per group groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT gamma: commitment loss coefficient """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.vq_dim = vq_dim self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" self.var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.embedding = nn.Parameter( 0.01 * torch.randn(num_vars, num_groups, self.var_dim) ) self.projection = nn.Sequential( nn.Conv1d(dim, dim, kernel_size=1, groups=groups, bias=False), Fp32GroupNorm(groups, dim), ) self.gamma = gamma self.mse_mean = nn.MSELoss(reduction="mean") def _pass_grad(self, x, y): """Manually set gradient for backward pass. for y = f(x), ensure that during the backward pass, dL/dy = dL/dx regardless of f(x). Returns: y, with the gradient forced to be dL/dy = dL/dx. """ return y.detach() + (x - x.detach()) @property def expand_embedding(self): if self.combine_groups: return self.embedding.expand(self.num_vars, self.groups, self.var_dim) return self.embedding def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars} if self.time_first: x = x.transpose(1, 2) bsz, fsz, tsz = x.shape ze = self.projection(x) ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2) d = ( (ze_.unsqueeze(0) - self.expand_embedding.unsqueeze(1).unsqueeze(1)) .view(self.num_vars, bsz, tsz, self.groups, -1) .norm(dim=-1, p=2) ) idx = d.argmin(dim=0) zq = ( torch.stack( [ self.expand_embedding[idx[..., group], group] for group in range(self.groups) ], dim=-2, ) .view(bsz, tsz, self.groups * self.var_dim) .permute(0, 2, 1) ) assert ze.shape == zq.shape, (ze.shape, zq.shape) x = self._pass_grad(ze, zq) hard_x = ( idx.new_zeros(bsz * tsz * self.groups, self.num_vars) .scatter_(-1, idx.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() if produce_targets: result["targets"] = idx if self.time_first: x = x.transpose(1, 2) # BCT -> BTC result["x"] = x ze = ze.float() zq = zq.float() latent_loss = self.mse_mean(zq, ze.detach()) commitment_loss = self.mse_mean(ze, zq.detach()) result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss return result
33.103175
83
0.572525
4a1a858bad6a74755ef95024f907938d5bb202b2
1,122
py
Python
testTordu.py
icarito/guy
9477b548b91ae81bfc327dac7ba1ec80804f4f8d
[ "Apache-2.0" ]
null
null
null
testTordu.py
icarito/guy
9477b548b91ae81bfc327dac7ba1ec80804f4f8d
[ "Apache-2.0" ]
null
null
null
testTordu.py
icarito/guy
9477b548b91ae81bfc327dac7ba1ec80804f4f8d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from guy import Guy from datetime import datetime class Simplest(Guy): size=(200,200) __doc__=""" <h1>Hello</h1> <button style="float:right;font-size:2em" onclick="self.exit()">X</button> """ class Tordu(Guy): size=(200,400) __doc__=""" <style>body {margin:0px; padding:5px; border: 1px solid black}</style> <script> async function testInstance() { var x=await self.testInstance() } async function testJsReturn() { var x=await self.testJsReturn() } </script> <button onclick="testInstance()">Run another instance</button> <button onclick="testJsReturn()">testJsReturn</button> <button onclick="self.testOpen()">testOpen</button> <button style="float:right;font-size:2em" onclick="guy.exit()">X</button> <hr/> """ def testInstance(self): t=Simplest() t.run() async def testJsReturn(self): return dict( script="guy.exit()" ) #it's evil! def testOpen(self): return Simplest() if __name__ == "__main__": x=Tordu() x.run()
23.375
78
0.612299
4a1a859b30ba8ea78451d9ec57adb117cf92c1e4
7,352
py
Python
flink-python/pyflink/ml/tests/test_pipeline_it_case.py
mnmhouse/flink
8b05cbee4425c5ee33d73bed1473e075d7e17387
[ "Apache-2.0" ]
41
2018-11-14T04:05:42.000Z
2022-02-09T10:39:23.000Z
flink-python/pyflink/ml/tests/test_pipeline_it_case.py
mnmhouse/flink
8b05cbee4425c5ee33d73bed1473e075d7e17387
[ "Apache-2.0" ]
15
2021-06-13T18:06:12.000Z
2022-02-09T22:40:04.000Z
flink-python/pyflink/ml/tests/test_pipeline_it_case.py
fantasticKe/flink
c42ad0fcbcd5f2666952ee3fc4763490915091f6
[ "Apache-2.0" ]
16
2019-01-04T09:19:03.000Z
2022-01-10T14:34:31.000Z
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ from pyflink import keyword from pyflink.java_gateway import get_gateway from pyflink.ml.api import JavaTransformer, Transformer, Estimator, Model, \ MLEnvironmentFactory, Pipeline from pyflink.ml.api.param import WithParams, ParamInfo, TypeConverters from pyflink.ml.lib.param.colname import HasSelectedCols, \ HasPredictionCol, HasOutputCol from pyflink.table.types import DataTypes from pyflink.testing import source_sink_utils from pyflink.testing.test_case_utils import MLTestCase class HasVectorCol(WithParams): """ Trait for parameter vectorColName. """ vector_col = ParamInfo( "vectorCol", "Name of a vector column", is_optional=False, type_converter=TypeConverters.to_string) def set_vector_col(self, v: str) -> 'HasVectorCol': return super().set(self.vector_col, v) def get_vector_col(self) -> str: return super().get(self.vector_col) class WrapperTransformer(JavaTransformer, HasSelectedCols): """ A Transformer wrappers Java Transformer. """ @keyword def __init__(self, *, selected_cols=None): _j_obj = get_gateway().jvm.org.apache.flink.ml.pipeline.\ UserDefinedPipelineStages.SelectColumnTransformer() super().__init__(_j_obj) kwargs = self._input_kwargs self._set(**kwargs) class PythonAddTransformer(Transformer, HasSelectedCols, HasOutputCol): """ A Transformer which is implemented with Python. Output a column contains the sum of all columns. """ @keyword def __init__(self, *, selected_cols=None, output_col=None): super().__init__() kwargs = self._input_kwargs self._set(**kwargs) def transform(self, table_env, table): input_columns = self.get_selected_cols() expr = "+".join(input_columns) expr = expr + " as " + self.get_output_col() return table.add_columns(expr) class PythonEstimator(Estimator, HasVectorCol, HasPredictionCol): def __init__(self): super().__init__() def fit(self, table_env, table): return PythonModel( table_env, table.select("max(features) as max_sum"), self.get_prediction_col()) class PythonModel(Model): def __init__(self, table_env, model_data_table, output_col_name): self._model_data_table = model_data_table self._output_col_name = output_col_name self.max_sum = 0 self.load_model(table_env) def load_model(self, table_env): """ Train the model to get the max_sum value which is used to predict data. """ table_sink = source_sink_utils.TestRetractSink(["max_sum"], [DataTypes.BIGINT()]) table_env.register_table_sink("Model_Results", table_sink) self._model_data_table.execute_insert("Model_Results").wait() actual = source_sink_utils.results() self.max_sum = actual.apply(0) def transform(self, table_env, table): """ Use max_sum to predict input. Return turn if input value is bigger than max_sum """ return table\ .add_columns("features > {} as {}".format(self.max_sum, self._output_col_name))\ .select("{}".format(self._output_col_name)) class PythonPipelineTest(MLTestCase): def test_java_transformer(self): t_env = MLEnvironmentFactory().get_default().get_stream_table_environment() table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) t_env.register_table_sink("TransformerResults", table_sink) source_table = t_env.from_elements([(1, 2, 3, 4), (4, 3, 2, 1)], ['a', 'b', 'c', 'd']) transformer = WrapperTransformer(selected_cols=["a", "b"]) transformer.transform(t_env, source_table).execute_insert("TransformerResults").wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,2", "4,3"]) def test_pipeline(self): t_env = MLEnvironmentFactory().get_default().get_stream_table_environment() train_table = t_env.from_elements( [(1, 2), (1, 4), (1, 0), (10, 2), (10, 4), (10, 0)], ['a', 'b']) serving_table = t_env.from_elements([(0, 0), (12, 3)], ['a', 'b']) table_sink = source_sink_utils.TestAppendSink( ['predict_result'], [DataTypes.BOOLEAN()]) t_env.register_table_sink("PredictResults", table_sink) # transformer, output features column which is the sum of a and b. transformer = PythonAddTransformer(selected_cols=["a", "b"], output_col="features") # estimator estimator = PythonEstimator()\ .set_vector_col("features")\ .set_prediction_col("predict_result") # pipeline pipeline = Pipeline().append_stage(transformer).append_stage(estimator) pipeline.fit(t_env, train_table).transform(t_env, serving_table) \ .execute_insert('PredictResults').wait() actual = source_sink_utils.results() # the first input is false since 0 + 0 is smaller than the max_sum 14. # the second input is true since 12 + 3 is bigger than the max_sum 14. self.assert_equals(actual, ["false", "true"]) def test_pipeline_from_and_to_java_json(self): # json generated from Java api java_json = '[{"stageClassName":"org.apache.flink.ml.pipeline.' \ 'UserDefinedPipelineStages$SelectColumnTransformer",' \ '"stageJson":"{\\"selectedCols\\":\\"[\\\\\\"a\\\\\\",' \ '\\\\\\"b\\\\\\"]\\"}"}]' # load json p = Pipeline() p.load_json(java_json) python_json = p.to_json() t_env = MLEnvironmentFactory().get_default().get_stream_table_environment() table_sink = source_sink_utils.TestAppendSink( ['a', 'b'], [DataTypes.BIGINT(), DataTypes.BIGINT()]) t_env.register_table_sink("TestJsonResults", table_sink) source_table = t_env.from_elements([(1, 2, 3, 4), (4, 3, 2, 1)], ['a', 'b', 'c', 'd']) transformer = p.get_stages()[0] transformer.transform(t_env, source_table).execute_insert("TestJsonResults").wait() actual = source_sink_utils.results() self.assert_equals(actual, ["1,2", "4,3"]) self.assertEqual(python_json, java_json)
39.106383
94
0.646763
4a1a86089297721a5a0bdd05581ba2df4e0ba508
7,223
py
Python
mir_driver/nodes/laithlin_move.py
K-F-P/mir_robot
1c2a4f2efbe20f2bc6eabf8ea7d0528ac50363c6
[ "BSD-3-Clause" ]
null
null
null
mir_driver/nodes/laithlin_move.py
K-F-P/mir_robot
1c2a4f2efbe20f2bc6eabf8ea7d0528ac50363c6
[ "BSD-3-Clause" ]
null
null
null
mir_driver/nodes/laithlin_move.py
K-F-P/mir_robot
1c2a4f2efbe20f2bc6eabf8ea7d0528ac50363c6
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import rospy import sys import argparse import numpy import time import geometry_msgs.msg as gm from move_base_msgs.msg import MoveBaseActionFeedback, MoveBaseActionGoal, MoveBaseActionResult, MoveBaseFeedback, MoveBaseResult from std_msgs.msg import String from geometry_msgs.msg import Pose, PoseStamped, PoseArray, Quaternion from tf.transformations import quaternion_from_euler from actionlib_msgs.msg import GoalStatusArray from scipy.spatial import distance #wspolrzedne punkyow (x, y, obrot z) mir1_position = [[17.5, 17.6, 6.6, 6.9], [8.0, 5.0, 5.1, 10.7], [-0.71, -1.0, 0.71, -0.15]] # [0.71, 0.00, 0.70, 0.99]] mir2_position = [[5.0, 11.0, 5.0, 11.0], [1.2, 9.0, 5.0, 11.0], [0.0, 1.0, 5.0, 11.0]] # [1.06, 0.0, 5.0, 11.0]] #obecne wspolrzedne brane z feedback pos_m1 = [0.0, 0.0] pos_m2 = [0.0, 0.0] #moj kod m1_m = PoseStamped() m2_m = PoseStamped() stat_go1 = 0 stat_go2 = 0 #flagi do grafow mir_status = [-1, -1] #flaga startowa jak rowna zero to startuje # f1 = 0 #moj kod f_mir1 = 0 f_mir2 = 0 done1 = False done2 = False started = False send1 = False send2 = False #to jest wlasny pub pub = rospy.Publisher('/mir_state', String, queue_size=10) #moj kod mir1_pub = rospy.Publisher("mir/move_base_simple/goal", PoseStamped, queue_size=5) mir2_pub = rospy.Publisher("mir2/move_base_simple/goal", PoseStamped, queue_size=5) def mir1_feed(data): # global pos_m1_x, pos_m1_y global pos_m1, mir_status location = data.feedback.base_position.pose status = data.status.status print(1, status, location.position.x, location.position.y) # pos_m1_x = float(location.position.x) # pos_m1_y = float(location.position.y) pos_m1 = [float(location.position.x), float(location.position.y)] mir_status[0] = status # rospy.sleep(0.5) #moj kod global done1 if(not done1): done1 = True def mir2_feed(data): # global pos_m2_x, pos_m2_y global pos_m2, mir_status location = data.feedback.base_position.pose status = data.status.status print(2, status, location.position.x, location.position.y) # pos_m2_x = float(location.position.x) # pos_m2_y = float(location.position.y) pos_m2 = [float(location.position.x), float(location.position.y)] mir_status[1] = status # rospy.sleep(0.5) # moj kod global done2 if (not done2): done2 = True # def mir1_status(data): # print(data.status_list.goal_id.status) # # # def mir2_status(data): # print(data.status_list.goal_id.status) # # def mir1_move(p_x, p_y, o_z): # to ponizej bylo tylko odkomentowane #mir1_pub = rospy.Publisher("mir/move_base_simple/goal", PoseStamped, queue_size=5) p = PoseStamped() p.header.seq = 1 p.header.stamp = rospy.Time.now() p.header.frame_id = "map" p.pose.position.x = p_x p.pose.position.y = p_y p.pose.position.z = 0.0 p.pose.orientation.x = 0.0 p.pose.orientation.y = 0.0 p.pose.orientation.z = o_z p.pose.orientation.w = 1.0 # rospy.sleep(1) # to ponizej bylo tylko odkomentowane # mir1_pub.publish(p) # # print("done mir1") #moj kod return p def mir2_move(p_x, p_y, o_z): # to ponizej bylo tylko odkomentowane #mir2_pub = rospy.Publisher("mir2/move_base_simple/goal", PoseStamped, queue_size=5) p = PoseStamped() p.header.seq = 1 p.header.stamp = rospy.Time.now() p.header.frame_id = "map" p.pose.position.x = p_x p.pose.position.y = p_y p.pose.position.z = 0.0 p.pose.orientation.x = 0.0 p.pose.orientation.y = 0.0 p.pose.orientation.z = o_z p.pose.orientation.w = 1.0 # rospy.sleep(1) #to ponizej bylo tylko odkomentowane #mir2_pub.publish(p) #print("done mir 2") #moj kod return p def timer_callback(event): global mir_status, mir2_pub, m1_m, m2_m, send1, send2, stat_go2, stat_go1 #to bylo odkomentowane # while not rospy.is_shutdown(): # pub.publish(mir_status) #moj kod if (done1 is True) and (done2 is True): pub.publish(mir_status) if (started): mir2_pub.publish(m2_m) print("m2 done") mir1_pub.publish(m1_m) print("m1 done") if stat_go1 == 2: send1 = True if stat_go2 == 2: send2 = True def start(): global f_mir1, f_mir2, middle1, middle2 # mir1_move(mir1_position[0][0], mir1_position[1][0], mir1_position[2][0]) # mir2_move(mir2_position[0][0], mir2_position[1][0], mir2_position[2][0]) #moj kod global m1_m, m2_m, started m1_m = mir1_move(mir1_position[0][0], mir1_position[1][0], mir1_position[2][0]) m2_m = mir2_move(mir2_position[0][0], mir2_position[1][0], mir2_position[2][0]) if(not started): started = True #moj kod f_mir1 = 1 f_mir2 = 1 #moj kod def mir1_reach(m_r): global m1_m, f_mir1, send1, stat_go1 stat = m_r.status_list[0] #print(stat.status) stat_go1 = stat.status if stat_go1 == 3: if (f_mir1 == 1) and (send1 is True): m1_m = mir1_move(mir1_position[0][1], mir1_position[1][1], mir1_position[2][1]) print("mir 1 krok 2") f_mir1 = 2 send1 = False elif (f_mir1 == 2) and (send1 is True): m1_m = mir1_move(mir1_position[0][2], mir1_position[1][2], mir1_position[2][2]) print("mir 1 krok 3") f_mir1 = 0 send1 = False def mir2_reach(m_r): global m2_m, f_mir2, send2, stat_go2 stat = m_r.status_list[0] #print(stat.status) stat_go2 = stat.status if stat_go2 == 3: if (f_mir2 == 1) and (send2 is True): m2_m = mir2_move(mir2_position[0][1], mir2_position[1][1], mir2_position[2][1]) print("mir 2 krok 2") f_mir2 = 2 send2 = False elif (f_mir2 == 2) and (send2 is True): m2_m = mir2_move(mir2_position[0][2], mir2_position[1][2], mir2_position[2][2]) print("mir 2 krok 3") f_mir2 = 0 send2 = False #moj kod #TODO funkcja obliczajaca odleglosc razem z tym zeby sie zatrzymywaly jak ona jest za mala def mir_distance(): global pos_m1, pos_m2 dist = distance.euclidean(pos_m1, pos_m2) return dist def make_it_happen(): global f_mir1, f_mir2 rospy.init_node('kfp_mir_move') if (f_mir1 == 0) and (f_mir2 == 0): start() #TODO z /move_base/status wyciac numr statusu jak zrobie echo na tym topicu to jest cyfra ktora trzeba wyciagnac #moj kod rospy.Subscriber("mir/move_base/status", GoalStatusArray, mir1_reach) rospy.Subscriber("mir2/move_base/status", GoalStatusArray, mir2_reach) rospy.Subscriber("mir/move_base/feedback", MoveBaseActionFeedback, mir1_feed) rospy.Subscriber("mir2/move_base/feedback", MoveBaseActionFeedback, mir2_feed) timer = rospy.Timer(rospy.Duration(2.0), timer_callback) rospy.spin() timer.shutdown() if __name__ == '__main__': try: make_it_happen() except rospy.ROSInterruptException: pass
23.759868
129
0.637685
4a1a862653498fe786d568cbe7d3bd9bdeb70bf0
3,536
py
Python
pydeconz/api.py
klada/deconz
485e915822404d292156ff2a83488954e1ed8286
[ "MIT" ]
null
null
null
pydeconz/api.py
klada/deconz
485e915822404d292156ff2a83488954e1ed8286
[ "MIT" ]
null
null
null
pydeconz/api.py
klada/deconz
485e915822404d292156ff2a83488954e1ed8286
[ "MIT" ]
null
null
null
"""API base classes.""" import logging from asyncio import get_running_loop from .errors import BridgeBusy LOGGER = logging.getLogger(__name__) class APIItems: """Base class for a map of API Items.""" def __init__(self, raw, request, path, item_cls) -> None: self._request = request self._path = path self._item_cls = item_cls self._items = {} self.process_raw(raw) def update(self) -> None: raw = self._request("get", self._path) self.process_raw(raw) def process_raw(self, raw: dict, **kwargs) -> None: for id, raw_item in raw.items(): obj = self._items.get(id) if obj is not None: obj.update(raw_item, **kwargs) else: self._items[id] = self._item_cls(id, raw_item, self._request) def items(self): return self._items.items() def keys(self): return self._items.keys() def values(self): return self._items.values() def __getitem__(self, obj_id: str): return self._items[obj_id] def __iter__(self): return iter(self._items) class APIItem: def __init__(self, raw, request): self._raw = raw self._request = request self._loop = get_running_loop() self._callbacks = [] self._cancel_retry = None self._changed_keys = set() @property def raw(self): """Read only raw data.""" return self._raw @property def changed_keys(self): """Read only changed keys data.""" return self._changed_keys def register_callback(self, callback): """Register callback for signalling. Callback will be called at the end of updating device information in self.async_update. """ self._callbacks.append(callback) def remove_callback(self, callback): """Remove callback previously registered.""" if callback in self._callbacks: self._callbacks.remove(callback) def update(self, raw, **kwargs): """Update input attr in self. Store a set of keys with changed values. Kwargs will be passed on to callbacks. """ changed_keys = set() for k, v in raw.items(): changed_keys.add(k) if isinstance(self.raw.get(k), dict) and isinstance(v, dict): changed_keys.update(set(v.keys())) self._raw[k].update(v) else: self._raw[k] = v self._changed_keys = changed_keys for async_signal_update in self._callbacks: async_signal_update(**kwargs) async def async_set(self, field, data, tries=0): """Set state of device.""" self.cancel_retry() try: await self._request("put", field, json=data) except BridgeBusy: LOGGER.debug("BridgeBusy, schedule retry %s %s", field, str(data)) def retry_set(): """Retry set state.""" self._cancel_retry = None self._loop.create_task(self.async_set(field, data, tries + 1)) if tries < 3: retry_delay = 2 ** (tries + 1) self._cancel_retry = self._loop.call_later(retry_delay, retry_set) def cancel_retry(self): """Cancel retry. Called at the start of async_set. """ if self._cancel_retry is not None: self._cancel_retry.cancel() self._cancel_retry = None
26.38806
95
0.580034
4a1a86ff341aa444b877c8289a2416a952f0e606
12,278
py
Python
hw/dendogram/cluster.py
colonel8377/hkust_machine_learning
80d880a8bd6a0139d5d5409000f836900855b0ba
[ "MIT" ]
3
2021-09-14T11:45:08.000Z
2022-03-24T14:15:45.000Z
hw/dendogram/cluster.py
colonel8377/hkust_machine_learning
80d880a8bd6a0139d5d5409000f836900855b0ba
[ "MIT" ]
1
2021-11-02T09:05:03.000Z
2021-11-02T09:05:03.000Z
hw/dendogram/cluster.py
colonel8377/hkust_machine_learning
80d880a8bd6a0139d5d5409000f836900855b0ba
[ "MIT" ]
2
2021-09-04T12:04:47.000Z
2021-09-29T02:22:27.000Z
from __future__ import division from __future__ import absolute_import import numpy import copy import argparse from operator import itemgetter from collections import defaultdict from itertools import combinations, product import numpy as np from api import AbstractClusterer from dendrogram import Dendrogram from linkage import linkage_fn from distance import * from sklearn.metrics.pairwise import pairwise_distances class CooccurrenceMatrix(numpy.ndarray): """ Represents a co-occurrence matrix. """ def __new__(cls, data, dtype=None): if not isinstance(data, CooccurrenceMatrix): data, rownames, colnames = CooccurrenceMatrix.convert(data) else: rownames, colnames = data.rownames, data.colnames obj = numpy.asarray(data).view(cls) obj.rownames = rownames obj.colnames = colnames return obj def __array_finialize__(self, obj): if obj is None: return self.rownames = getattr(obj, 'rownames', None) self.colnames = getattr(obj, 'colnames', None) def row(self, row): return self[self.rownames.get(row)] def col(self, col): return self[:, self.colnames.get(col)] def cell(self, row, col): return self[self.rownames.get(row), self.colnames.get(col)] @classmethod def convert(cls, data): matrix = numpy.zeros( (len(set(k for k, v in data)), len(set(v for k, v in data)))) colnames, rownames = {}, {} for k, v in sorted(data): if k not in rownames: rownames[k] = len(rownames) if v not in colnames: colnames[v] = len(colnames) matrix[rownames[k], colnames[v]] += 1 # rownames = [k for k,v in sorted(rownames.items(), key=itemgetter(1))] # colnames = [k for k,v in sorted(colnames.items(), key=itemgetter(1))] return matrix, rownames, colnames def tfidf(self): """ Returns a matrix in which for all entries in the co-occurence matrix the 'term frequency-inverse document frequency' is calculated. """ matrix = numpy.zeros(self.shape) # the number of words in a document words_per_doc = numpy.asarray(self.sum(axis=1), dtype=float) # the number of documents in which a word is attested. word_frequencies = numpy.asarray(numpy.sum(self > 0, axis=0), dtype=float) # calculate the term frequencies for i in range(self.shape[0]): tf = self[i] / words_per_doc[i] # array of tf's matrix[i] = tf * (numpy.log(self.shape[0] / word_frequencies)) return matrix class DistanceMatrix(numpy.ndarray): """ Simple wrapper around numpy.ndarray, to provide some custom Distance Matrix functionality like plotting the distance matrix with matplotlib. """ def __new__(cls, data, dist_metric=euclidean_distance, lower=True): if (not isinstance(data, (numpy.ndarray, DistanceMatrix)) or len(data) != len(data[0]) or not max(numpy.diag(data)) == 0): data = DistanceMatrix.convert_to_distmatrix(data, dist_metric, lower=lower) obj = numpy.asarray(data).view(cls) obj.distance_metric = dist_metric return obj def __array_finialize__(self, obj): if obj is None: return self.distance_metric = getattr(obj, 'distance_metric', None) def row(self, row): return self[self.rownames.get(row)] def col(self, col): return self[:, self.colnames.get(col)] def cell(self, row, col): return self[self.rownames.get(row), self.colnames.get(col)] def rows(self): return [k for k, v in sorted(self.rownames.items(), key=itemgetter(1))] @classmethod def convert_to_distmatrix(cls, data, distance, lower=True): matrix = numpy.zeros((len(data), len(data))) for i, j in combinations(range(len(data)), 2): matrix[i][j] = distance(data[i], data[j]) if lower == True: matrix[j][i] = matrix[i][j] # add a nan-diagonal, useful for further computations. numpy.fill_diagonal(matrix, numpy.nan) return matrix def diag_is_zero(self): """Check if the diagonal contains only distances of 0.""" return max(numpy.diag(self)) == 0 def remove(self, idx): """ Delete a row and column with index IDX. WARNING this function is NOT destructive! """ indices = range(len(self)) indices.remove(idx) return self.take(indices, axis=0).take(indices, axis=1) def draw(self, save=False, format="pdf"): """Make a nice colorful plot of the distance matrix.""" try: import pylab except ImportError: raise ImportError("Install pylab.") fig = pylab.figure() axmatrix = fig.add_axes([0.1, 0.1, 0.8, 0.8]) im = axmatrix.matshow(self, aspect='auto', origin='upper', cmap=pylab.cm.YlGnBu) axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.8]) pylab.colorbar(im, cax=axcolor) fig.show() if save: fig.savefig('distance-matrix.%s' % (format, )) def summary(self): """Return a small summary of the matrix.""" print('DistanceMatrix (n=%s)' % len(self)) print('Distance metric = %s' % self.distance_metric.__name__) print(self) class Clusterer(AbstractClusterer): """ The Hierarchical Agglomerative Clusterer starts with each of the N vectors as singleton clusters. It then iteratively merges pairs of clusters which have the smallest distance according to function LINKAGE. This continues until there is only one cluster. """ def __init__(self, data, linkage='ward', num_clusters=1): self._num_clusters = num_clusters vector_ids = [[i] for i in range(len(data))] self._dendrogram = Dendrogram(vector_ids) numpy.fill_diagonal(data, numpy.inf) self._dist_matrix = data self.linkage = linkage_fn(linkage) def smallest_distance(self, clusters): """ Return the smallest distance in the distance matrix. The smallest distance depends on the possible connections in the distance matrix. @param clusters: an object of the class L{DistanceMatrix} holding the clusters at a specific state in the clustering procedure. @type clusters: L{DistanceMatrix} @return: a tuple containing the smallest distance and the indexes of the clusters yielding the smallest distance. """ i, j = numpy.unravel_index(numpy.argmin(clusters), clusters.shape) return clusters[i, j], i, j def cluster(self, verbose=0, sum_ess=False): clusters = copy.copy(self._dist_matrix) # clusters = self._dist_matrix summed_ess = 0.0 while len(clusters) > max(self._num_clusters, 1): if verbose >= 1: print('k=%s' % len(clusters)) if verbose == 2: print(clusters) best, i, j = self.smallest_distance(clusters) print(str(best)) # In Ward (1963) ess is summed at each iteration # in R's hclust and Python's hcluster and some text books it is not. # Here it is optional... if sum_ess: summed_ess += best else: summed_ess = best clusters = self.update_distmatrix(i, j, clusters) self._dendrogram.merge(i, j) self._dendrogram[i].distance = summed_ess indices = numpy.arange(clusters.shape[0]) indices = indices[indices != j] clusters = clusters.take(indices, axis=0).take(indices, axis=1) print(clusters) def update_distmatrix(self, i, j, clusters): """ Update the distance matrix using the specified linkage method so that it represents the correct distances to the newly formed cluster. """ return self.linkage(clusters, i, j, self._dendrogram) @property def dendrogram(self): """Return the dendrogram object.""" return self._dendrogram def num_clusters(self): return self._num_clusters def __repr__(self): return """<Hierarchical Agglomerative Clusterer(linkage method: %r, n=%d clusters>""" % (self.linkage.__name__, self._num_clusters) class VNClusterer(Clusterer): """ Variability Neighbor Clustering Class. A subclass of the regular Clusterer where the order of clustering can be predetermined. In the normal clustering procedure, all clusters can be clustered with all other clusters. In this class, the clusters that are allowed to be clustered follow a specific order. """ def __init__(self, data, linkage='ward', num_clusters=1): Clusterer.__init__(self, data, linkage, num_clusters=num_clusters) def iterate_clusters(self, clusters): for i in range(1, len(clusters)): yield i - 1, i def smallest_distance(self, clusters): best = None for i, j in self.iterate_clusters(clusters): if best is None or clusters[i][j] <= best[0]: best = (clusters[i][j], i, j) print(best) return best def cluster(self, verbose=False): # we must sum the error sum of squares in order not to obtain # singleton clustering. Clusterer.cluster(self, verbose=verbose, sum_ess=True) class EuclideanNeighborClusterer(VNClusterer): def iterate_clusters(self, x, y): n_features, n_samples = x, y offset = (0, -1, 1) indices = ((i, j) for i in range(n_features) for j in range(n_samples)) for i, j in indices: all_neigh = ((i + x, j + y) for x in offset for y in offset) valid = ((i * n_features + j) for i, j in all_neigh if (0 <= i < n_features) and (0 <= j < n_samples)) target = valid.next() for neighbor in list(valid): yield target, neighbor def demo(): """ Demo to show some basic functionality. """ # declare dummy input vector with two dimensions: # vectors = numpy.array([[0, 0], [5, 6], [1, 1], [3, 2], [4, 0], [2, 2], [8, 9], [8, 11]]) # compute the distance matrix on the basis of the vectors via sklearn: # dist_matrix = pairwise_distances(vectors, metric='cityblock') # dist_matrix = np.array([[0.0, 11.0, 5.0, 12.0, 7.0, 13.0, 9.0, 11.0], # [11.0, 0.0, 13.0, 2.0, 17.0, 4.0, 15.0, 20.0], # [5.0, 13.0, 0.0, 14.0, 1.0, 15.0, 12.0, 12.0], # [12.0, 2.0, 14.0, 0.0, 18.0, 5.0, 16.0, 21.0], # [7.0, 17.0, 1.0, 18.0, 0.0, 20.0, 15.0, 17.0], # [13.0, 4.0, 15.0, 5.0, 20.0, 0.0, 19.0, 22.0], # [9.0, 15.0, 12.0, 16.0, 15.0, 19.0, 0.0, 30.0], # [11.0, 20.0, 12.0, 21.0, 17.0, 22.0, 30.0, 0.0]]) dist_matrix = np.array([[0.0, 1.0, 4.0, 5.10], [1.0, 0.0, 3.0, 4.12], [4.0, 3.0, 0.0, 1.41], [5.10, 4.12, 1.41, 0.0]]) print(dist_matrix) # plot the distance matrix: # dist_matrix.draw() this doesn't work anymore # initialize a temporal VNC clusterer, here with the Ward linkage method: clusterer = Clusterer(dist_matrix, linkage='median') # could also be a plain Clusterer() # start the clustering procedure: clusterer.cluster(verbose=0) labels = ['n' + str(i + 1) for i in range(dist_matrix.shape[0])] # plot the result as a dendrogram clusterer.dendrogram.draw(save=True, labels=labels, title="VNC Analysis (Group Average's Linkage)") if __name__ == '__main__': demo()
37.895062
94
0.586252
4a1a878c105a5271a80e688070f9672278848e49
3,816
py
Python
simulation/src/simulation_evaluation/src/state_machine/states/overtaking.py
LeonardII/KitCarFork
b2802c5b08cc8250446ce3731cb622af064db4ca
[ "MIT" ]
13
2020-06-30T17:18:28.000Z
2021-07-20T16:55:35.000Z
simulation/src/simulation_evaluation/src/state_machine/states/overtaking.py
LeonardII/KitCarFork
b2802c5b08cc8250446ce3731cb622af064db4ca
[ "MIT" ]
1
2020-11-10T20:15:42.000Z
2020-12-25T18:27:56.000Z
simulation/src/simulation_evaluation/src/state_machine/states/overtaking.py
LeonardII/KitCarFork
b2802c5b08cc8250446ce3731cb622af064db4ca
[ "MIT" ]
3
2020-07-20T09:09:08.000Z
2021-07-20T17:00:37.000Z
"""States used in the OvertakingStateMachine.""" from simulation_evaluation.msg import Speaker as SpeakerMsg from simulation_evaluation.msg import State as StateMsg from ..state_machines.state_machine import StateMachine from .state import State class OvertakingState(State): def next(self, state_machine, input_msg: int): """Return updated state.""" if input_msg == SpeakerMsg.NO_OVERTAKING_ZONE: return state_machine.off return super().next(state_machine, input_msg) class Off(OvertakingState): """This state is the default state. Once the state machine receives this state, the next state will we chage accordingly to its next method. """ def __init__(self): """Init state. Initializing does not need any arguments however description and value have to initialized to super. """ super().__init__( description="Car is not inside an overtaking zone.", value=StateMsg.OVERTAKING_BEFORE_START, ) def next(self, state_machine: StateMachine, input_msg: int): """Next state. Arguments: state_machine: On which state machine the states gets executed input_msg: Integer of message Returns: Class object of next state. If no state change was detected here, check for failure state before returning this state. """ if input_msg == SpeakerMsg.OVERTAKING_ZONE: return state_machine.right return super().next(state_machine, input_msg) class Right(OvertakingState): """This state occurs when the car drives into the overtaking zone and is on the right line. Once the state machine receives this state, the next state will we chage accordingly to its next method. """ def __init__(self): """Init state. Initializing does not need any arguments however description and value have to initialized to super. """ super().__init__( description="Car is inside an overtaking zone, on the right line.", value=StateMsg.OVERTAKING_RIGHT, ) def next(self, state_machine, input_msg: int): """Next state. Arguments: state_machine: On which state machine the states gets executed input_msg: Integer of message Returns: Class object of next state. If no state change was detected here, check for failure state before returning this state. """ if input_msg == SpeakerMsg.LEFT_LANE: return state_machine.left return super().next(state_machine, input_msg) class Left(OvertakingState): """This state occurs when the car is in the overtaking zone and in the left line. Once the state machine receives this state, the next state will we chage accordingly to its next method. """ def __init__(self): """Init state. Initializing does not need any arguments however description and value have to initialized to super. """ super().__init__( description="Car is inside an overtaking zone, on the left line.", value=StateMsg.OVERTAKING_LEFT, ) def next(self, state_machine, input_msg: int): """Next state. Arguments: state_machine (StateMachine): On which state machine the states gets executed input_msg: Integer of message Returns: Class object of next state. If no state change was detected here, check for failure state before returning this state. """ if input_msg == SpeakerMsg.RIGHT_LANE: return state_machine.right return super().next(state_machine, input_msg)
31.02439
91
0.650419
4a1a888d255abe1228513fb6d10c8eee86b438f5
28,225
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/aio/operations/_route_filter_rules_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/aio/operations/_route_filter_rules_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
4
2019-04-17T17:57:49.000Z
2020-04-24T21:11:22.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/aio/operations/_route_filter_rules_operations.py
beltr0n/azure-sdk-for-python
2f7fb8bee881b0fc0386a0ad5385755ceedd0453
[ "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteFilterRulesOperations: """RouteFilterRulesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def get( self, resource_group_name: str, route_filter_name: str, rule_name: str, **kwargs ) -> "_models.RouteFilterRule": """Gets the specified rule from a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the rule. :type rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteFilterRule, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_04_01.models.RouteFilterRule :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.RouteFilterRule", **kwargs ) -> "_models.RouteFilterRule": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_filter_rule_parameters, 'RouteFilterRule') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.RouteFilterRule", **kwargs ) -> AsyncLROPoller["_models.RouteFilterRule"]: """Creates or updates a route in the specified route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the route filter rule. :type rule_name: str :param route_filter_rule_parameters: Parameters supplied to the create or update route filter rule operation. :type route_filter_rule_parameters: ~azure.mgmt.network.v2018_04_01.models.RouteFilterRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteFilterRule or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_04_01.models.RouteFilterRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, route_filter_rule_parameters=route_filter_rule_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def _update_initial( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.PatchRouteFilterRule", **kwargs ) -> "_models.RouteFilterRule": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_filter_rule_parameters, 'PatchRouteFilterRule') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore async def begin_update( self, resource_group_name: str, route_filter_name: str, rule_name: str, route_filter_rule_parameters: "_models.PatchRouteFilterRule", **kwargs ) -> AsyncLROPoller["_models.RouteFilterRule"]: """Updates a route in the specified route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :param rule_name: The name of the route filter rule. :type rule_name: str :param route_filter_rule_parameters: Parameters supplied to the update route filter rule operation. :type route_filter_rule_parameters: ~azure.mgmt.network.v2018_04_01.models.PatchRouteFilterRule :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteFilterRule or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_04_01.models.RouteFilterRule] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRule"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, route_filter_name=route_filter_name, rule_name=rule_name, route_filter_rule_parameters=route_filter_rule_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteFilterRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'ruleName': self._serialize.url("rule_name", rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules/{ruleName}'} # type: ignore def list_by_route_filter( self, resource_group_name: str, route_filter_name: str, **kwargs ) -> AsyncIterable["_models.RouteFilterRuleListResult"]: """Gets all RouteFilterRules in a route filter. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_filter_name: The name of the route filter. :type route_filter_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteFilterRuleListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_04_01.models.RouteFilterRuleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteFilterRuleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_route_filter.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeFilterName': self._serialize.url("route_filter_name", route_filter_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteFilterRuleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_route_filter.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeFilters/{routeFilterName}/routeFilterRules'} # type: ignore
50.22242
221
0.673056
4a1a8897b1cd7eebc62ab1f33dd53b52c384ae1b
6,591
py
Python
link-prediction/GIC/GIC/execute_link.py
Super-Dainiu/DATA130007.01-Community-Detection-Link-Prediction-and-Node-Classification-on-Ego-Facebook-and-Cites
1b5077342756ba6dc587a2af49abd2451319e5df
[ "MIT" ]
3
2021-07-04T04:32:33.000Z
2022-01-14T08:36:02.000Z
link-prediction/GIC/GIC/execute_link.py
super-dainiu/DATA130007.01-Community-Detection-Link-Prediction-and-Node-Classification-on-Ego-Facebook-and-Cites
1b5077342756ba6dc587a2af49abd2451319e5df
[ "MIT" ]
null
null
null
link-prediction/GIC/GIC/execute_link.py
super-dainiu/DATA130007.01-Community-Detection-Link-Prediction-and-Node-Classification-on-Ego-Facebook-and-Cites
1b5077342756ba6dc587a2af49abd2451319e5df
[ "MIT" ]
1
2022-01-16T11:35:45.000Z
2022-01-16T11:35:45.000Z
"Implementation based on https://github.com/PetarV-/DGI" import numpy as np import scipy.sparse as sp import torch import torch.nn as nn from models import GIC, LogReg from utils import process from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score import statistics import argparse def get_roc_score(edges_pos, edges_neg, embeddings, adj_sparse): "from https://github.com/tkipf/gae" score_matrix = np.dot(embeddings, embeddings.T) def sigmoid(x): return 1 / (1 + np.exp(-x)) # Store positive edge predictions, actual values preds_pos = [] pos = [] for edge in edges_pos: preds_pos.append(sigmoid(score_matrix[edge[0], edge[1]])) # predicted score pos.append(adj_sparse[edge[0], edge[1]]) # actual value (1 for positive) # Store negative edge predictions, actual values preds_neg = [] neg = [] for edge in edges_neg: preds_neg.append(sigmoid(score_matrix[edge[0], edge[1]])) # predicted score neg.append(adj_sparse[edge[0], edge[1]]) # actual value (0 for negative) # Calculate scores preds_all = np.hstack([preds_pos, preds_neg]) labels_all = np.hstack([np.ones(len(preds_pos)), np.zeros(len(preds_neg))]) #print(preds_all, labels_all ) roc_score = roc_auc_score(labels_all, preds_all) ap_score = average_precision_score(labels_all, preds_all) return roc_score, ap_score torch.manual_seed(1234) parser = argparse.ArgumentParser(description='Options') parser.add_argument('--d', dest='dataset', type=str, default='cora',help='') parser.add_argument('--b', dest='beta', type=int, default=100,help='') parser.add_argument('--c', dest='num_clusters', type=float, default=128,help='') parser.add_argument('--a', dest='alpha', type=float, default=0.5,help='') parser.add_argument('--test_rate', dest='test_rate', type=float, default=0.1,help='') args = parser.parse_args() #print(args.accumulate(args.integers)) cuda0 = torch.cuda.is_available()#False beta = args.beta alpha = args.alpha num_clusters = int(args.num_clusters) dataset = args.dataset # training params batch_size = 1 nb_epochs = 2000 patience = 50 lr = 0.001 l2_coef = 0.0 drop_prob = 0.0 hid_units = 16 sparse = True nonlinearity = 'prelu' # special name to separate parameters torch.cuda.empty_cache() roc0=[] ap0=[] roc1=[] ap1=[] roc100 = [] ap100 = [] for m in range(1): adj, features, labels, idx_train, idx_val, idx_test = process.load_data(dataset) adj_sparse = adj #print('Edges init',adj.getnnz()) adj_train, train_edges, train_edges_false, val_edges, val_edges_false, \ test_edges, test_edges_false = process.mask_test_edges(adj, test_frac=args.test_rate, val_frac=0.05) adj = adj_train #print('Edges new',adj.getnnz()) ylabels = labels features, _ = process.preprocess_features(features) nb_nodes = features.shape[0] ft_size = features.shape[1] nb_classes = labels.shape[1] adj = process.normalize_adj(adj + sp.eye(adj.shape[0])) if sparse: sp_adj = process.sparse_mx_to_torch_sparse_tensor(adj) else: adj = (adj + sp.eye(adj.shape[0])).todense() features = torch.FloatTensor(features[np.newaxis]) if not sparse: adj = torch.FloatTensor(adj[np.newaxis]) labels = torch.FloatTensor(labels[np.newaxis]) #idx_train = torch.LongTensor(idx_train) #idx_val = torch.LongTensor(idx_val) #idx_test = torch.LongTensor(idx_test) if cuda0: #print('Using CUDA') features = features.cuda() if sparse: sp_adj = sp_adj.cuda() else: adj = adj.cuda() labels = labels.cuda() #idx_train = idx_train.cuda() #idx_val = idx_val.cuda() #idx_test = idx_test.cuda() b_xent = nn.BCEWithLogitsLoss() b_bce = nn.BCELoss() #xent = nn.CrossEntropyLoss() all_accs = [] for beta in [args.beta]: print() for K in [int(args.num_clusters)]: #K = int(Kr * nb_nodes) for alpha in [args.alpha]: #print(m, alpha) model = GIC(nb_nodes,ft_size, hid_units, nonlinearity, num_clusters, beta) optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef) cnt_wait = 0 best = 1e9 best_t = 0 val_best = 0 if cuda0: #print('Using CUDA') model.cuda() for epoch in range(nb_epochs): model.train() optimiser.zero_grad() idx = np.random.permutation(nb_nodes) shuf_fts = features[:, idx, :] lbl_1 = torch.ones(batch_size, nb_nodes) lbl_2 = torch.zeros(batch_size, nb_nodes) lbl = torch.cat((lbl_1, lbl_2), 1) if cuda0: shuf_fts = shuf_fts.cuda() lbl = lbl.cuda() logits, logits2 = model(features, shuf_fts, sp_adj if sparse else adj, sparse, None, None, None, beta) loss = alpha* b_xent(logits, lbl) + (1-alpha)*b_xent(logits2, lbl) if loss < best: best = loss best_t = epoch cnt_wait = 0 torch.save(model.state_dict(), dataset+'-link.pkl') else: cnt_wait += 1 if cnt_wait == patience: #print('Early stopping!') break loss.backward() optimiser.step() model.load_state_dict(torch.load(dataset+'-link.pkl')) embeds, _,_, S= model.embed(features, sp_adj if sparse else adj, sparse, None, beta) embs = embeds[0, :] embs = embs / embs.norm(dim=1)[:, None] sc_roc, sc_ap = get_roc_score(test_edges, test_edges_false, embs.cpu().detach().numpy(), adj_sparse) #print(beta, K, alpha, sc_roc, sc_ap,flush=True) print('Dataset',args.dataset) print('alpha, beta, K:',alpha,beta,K) print('AUC', sc_roc, 'AP', sc_ap)
29.959091
124
0.572144
4a1a8d0153e92b0a5c2ef7b848d1c01db85feb86
74
py
Python
learn2learn/optim/update_rules/__init__.py
Brikwerk/learn2learn
7997c13c26ec627d13ce77ba98427260df78ada8
[ "MIT" ]
1,774
2019-09-05T20:41:16.000Z
2022-03-30T09:49:02.000Z
learn2learn/optim/update_rules/__init__.py
Kostis-S-Z/learn2learn
c0b7c088f15986880b136ec27059644ac513db60
[ "MIT" ]
196
2019-09-05T08:11:31.000Z
2022-03-31T12:08:25.000Z
learn2learn/optim/update_rules/__init__.py
Kostis-S-Z/learn2learn
c0b7c088f15986880b136ec27059644ac513db60
[ "MIT" ]
266
2019-09-13T10:17:54.000Z
2022-03-28T07:17:21.000Z
#!/usr/bin/env python3 from .differentiable_sgd import DifferentiableSGD
18.5
49
0.824324
4a1a8e797922624e7b5fb7b664574c388ac12d78
1,172
py
Python
core/voice.py
xe1gyq/NuupXe
94608ac72bb1cf3e648c27d8402831dfb165b8af
[ "Apache-2.0" ]
null
null
null
core/voice.py
xe1gyq/NuupXe
94608ac72bb1cf3e648c27d8402831dfb165b8af
[ "Apache-2.0" ]
null
null
null
core/voice.py
xe1gyq/NuupXe
94608ac72bb1cf3e648c27d8402831dfb165b8af
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import commands import subprocess import time from core.irlp import Irlp class Voice(object): def __init__(self): self.filename = "voice.wav" self.proc = None self.irlp = Irlp() def filenameset(self, name): self.filename = name def recordstart(self): args = ['arecord','-t', 'wav', '-f', 'S16_LE', '-r', '48000', self.filename] proc = subprocess.Popen(args) print "PID:", proc.pid return proc def recordstop(self, proc): proc.kill() def record(self): time.sleep(1) if self.irlp.exists(): while self.irlp.cosenabled() is 256: pass while self.irlp.cosenabled() is 0: pass proc = self.recordstart() if self.irlp.exists(): while self.irlp.cosenabled() is 256: pass else: time.sleep(5) self.recordstop(proc) def play(self): status, output = commands.getstatusoutput("aplay " + self.filename) def erase(self): status, output = commands.getstatusoutput("rm " + self.filename) # End of File
23.44
84
0.558874
4a1a8ed453fb5f8b2da73333682c640adac71a20
3,189
py
Python
kuryr_kubernetes/handlers/k8s_base.py
al1216/kuryr-kubernetes
e21d2f3d8bc12384fb2e352e024e2637c523b1e3
[ "Apache-2.0" ]
null
null
null
kuryr_kubernetes/handlers/k8s_base.py
al1216/kuryr-kubernetes
e21d2f3d8bc12384fb2e352e024e2637c523b1e3
[ "Apache-2.0" ]
1
2021-04-16T11:12:00.000Z
2021-04-16T11:12:00.000Z
kuryr_kubernetes/handlers/k8s_base.py
al1216/kuryr-kubernetes
e21d2f3d8bc12384fb2e352e024e2637c523b1e3
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016 Mirantis, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from kuryr_kubernetes.handlers import dispatch from kuryr_kubernetes.handlers import health def object_kind(event): try: return event['object']['kind'] except KeyError: return None def object_uid(event): try: return event['object']['metadata']['uid'] except KeyError: return None class ResourceEventHandler(dispatch.EventConsumer, health.HealthHandler): """Base class for K8s event handlers. Implementing classes should override both `OBJECT_KIND` and 'OBJECT_WATCH_PATH' attributes. The `OBJECT_KIND` should be set to a valid Kubernetes object type name (e.g. 'Pod' or 'Namespace'; see [1] for more details). The `OBJECT_WATCH_PATH` should point to object's watched path, (e.g. for the 'Pod' case the OBJECT_WATCH_PATH should be '/api/v1/pods'). Implementing classes are expected to override any or all of the `on_added`, `on_present`, `on_modified`, `on_deleted` methods that would be called depending on the type of the event (with K8s object as a single argument). [1] https://github.com/kubernetes/kubernetes/blob/release-1.4/docs/devel\ /api-conventions.md#types-kinds """ OBJECT_KIND = None OBJECT_WATCH_PATH = None def __init__(self): super(ResourceEventHandler, self).__init__() def get_watch_path(self): return self.OBJECT_WATCH_PATH @property def consumes(self): return {object_kind: self.OBJECT_KIND} def _check_finalize(self, obj): deletion_timestamp = None try: deletion_timestamp = obj['metadata']['deletionTimestamp'] except (KeyError, TypeError): pass return deletion_timestamp def __call__(self, event, *args, **kwargs): event_type = event.get('type') obj = event.get('object') if 'MODIFIED' == event_type: if self._check_finalize(obj): self.on_finalize(obj) return self.on_modified(obj) self.on_present(obj) elif 'ADDED' == event_type: if self._check_finalize(obj): self.on_finalize(obj) return self.on_added(obj) self.on_present(obj) elif 'DELETED' == event_type: self.on_deleted(obj) def on_added(self, obj): pass def on_present(self, obj): pass def on_modified(self, obj): pass def on_deleted(self, obj): pass def on_finalize(self, obj): pass
29.527778
78
0.648793
4a1a8f0f2090f2cc961ba72a704d399369517e0d
878
py
Python
Deep-Learning/Licence_Plate_Recognition/character_segmentation.py
ghassenetanabene6/Vehicle-Recognition-System-in-Tunisia
3d34d8ca535f73a0be4107483c0cc7fcfa1806b3
[ "CNRI-Python" ]
3
2020-07-08T10:25:00.000Z
2021-06-19T16:24:48.000Z
Deep-Learning/Licence_Plate_Recognition/character_segmentation.py
ghassenetanabene6/Vehicle-Recognition-System-in-Tunisia
3d34d8ca535f73a0be4107483c0cc7fcfa1806b3
[ "CNRI-Python" ]
null
null
null
Deep-Learning/Licence_Plate_Recognition/character_segmentation.py
ghassenetanabene6/Vehicle-Recognition-System-in-Tunisia
3d34d8ca535f73a0be4107483c0cc7fcfa1806b3
[ "CNRI-Python" ]
2
2020-07-20T14:14:27.000Z
2021-08-28T06:24:01.000Z
# Find characters in the resulting images def segment_characters(image) : # Preprocess cropped license plate image img = cv2.resize(image, (333, 75)) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, img_binary = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) img_erode = cv2.erode(img_binary, (3,3)) img_dilate = cv2.dilate(img_erode, (3,3)) LP_WIDTH = img_dilate.shape[0] LP_HEIGHT = img_dilate.shape[1] # Make borders white img_dilate[0:3,:] = 255 img_dilate[:,0:3] = 255 img_dilate[72:75,:] = 255 img_dilate[:,330:333] = 255 # Estimations of character contours sizes of cropped license plates dimensions = [LP_WIDTH/6, LP_WIDTH/2, LP_HEIGHT/10, 2*LP_HEIGHT/3] # Get contours within cropped license plate char_list = find_contours(dimensions, img_dilate) return char_list
31.357143
88
0.697039
4a1a902f5e2c8fa225633af27feb573ba35259d6
2,498
py
Python
nanoblocks/wallet/wallet.py
ipazc/nanoblocks
d7433b60029e4bcda4c2c802c3ff05c53d7b220a
[ "MIT" ]
3
2021-03-16T23:59:37.000Z
2021-12-11T13:52:46.000Z
nanoblocks/wallet/wallet.py
ipazc/nanoblocks
d7433b60029e4bcda4c2c802c3ff05c53d7b220a
[ "MIT" ]
1
2021-04-02T14:11:02.000Z
2021-06-16T00:03:33.000Z
nanoblocks/wallet/wallet.py
ipazc/nanoblocks
d7433b60029e4bcda4c2c802c3ff05c53d7b220a
[ "MIT" ]
null
null
null
from nanoblocks.base import NanoblocksClass from nanoblocks.protocol.crypto.crypto_functions import make_seed, derive_seed, derive_bip39, fill_bip39_words from nanoblocks.wallet.wallet_accounts import WalletAccounts class Wallet(NanoblocksClass): """ Represents a Wallet in the Nano ecosystem. This is class does not use any backend for creating or managing account keys. Keep in mind that this class holds private keys, thus should be secured. """ def __init__(self, nano_network, seed=None): """ Creates a new Wallet. :param nano_network: A network object giving access to node and work backends. :param seed: Seed to use for the accounts management within the wallet. If None, a random seed will be sampled from a valid cryptographic randomizer. """ super().__init__(nano_network) if seed is None: seed = make_seed() self._seed = seed @classmethod def from_mnemonic(cls, words_list, nano_network): """ Instantiates this class based on a bip39 mnemonic list of keywords. This method tolerates missing words in the list (set to None). In case it detects missing words, the method will attempt to refill them with a random word. :param words_list: List of 24 words to use for importing the seed. :param nano_network: A network object giving access to node and work backends. """ if len(words_list) != 24: raise KeyError("The length of the list should be 24, no more, no less words") if any([x is None for x in words_list]): words_list = fill_bip39_words(words_list) seed = derive_seed(words_list) return cls(nano_network=nano_network, seed=seed) @property def seed(self): """ Retrieves the seed of this wallet """ return self._seed @property def mnemonic(self): """ Derives the bip39 mnemonic for the seed of this wallet. """ return derive_bip39(self._seed) @property def accounts(self): """ Retrieves access to the accounts from this wallet. """ return WalletAccounts(self._seed, nano_network=self.network) def __repr__(self): return "Nano Wallet (Type wallet.accounts[integer_index] to access an account)." def __str__(self): return self.__repr__()
29.388235
115
0.644516
4a1a90866677bb7a30d8106651c53c91f9ab4dca
3,026
py
Python
meiduo3/apps/users/migrations/0001_initial.py
caoyongpeng/CYP_meiduo
378cc05a8621b36dc15714a10258606860bb5ad2
[ "MIT" ]
null
null
null
meiduo3/apps/users/migrations/0001_initial.py
caoyongpeng/CYP_meiduo
378cc05a8621b36dc15714a10258606860bb5ad2
[ "MIT" ]
null
null
null
meiduo3/apps/users/migrations/0001_initial.py
caoyongpeng/CYP_meiduo
378cc05a8621b36dc15714a10258606860bb5ad2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-10-20 08:21 from __future__ import unicode_literals import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=30, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('mobile', models.CharField(max_length=11, unique=True, verbose_name='手机号')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': '用户', 'verbose_name_plural': '用户', 'db_table': 'tb_users', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
63.041667
329
0.66226
4a1a91d353a7ac7abd5afa1066c881ea1e33c751
1,810
py
Python
customers/migrations/0001_initial.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
customers/migrations/0001_initial.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
customers/migrations/0001_initial.py
chorna/taxi24
09e174a0cb3b9543ca4987e60cd0d37ecda6ac3c
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-07-11 04:16 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ ('drivers', '0002_cab_vehicle'), ] operations = [ migrations.CreateModel( name='CustomerCategory', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Customer', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('first_name', models.CharField(max_length=100)), ('last_name', models.CharField(max_length=100)), ('document_number', models.CharField(max_length=15, unique=True)), ('gener', models.CharField(blank=True, choices=[('F', 'Female'), ('M', 'Male')], max_length=1, null=True)), ('active', models.BooleanField(default=True)), ('picture', models.ImageField(blank=True, null=True, upload_to='')), ('email', models.EmailField(blank=True, max_length=254, null=True)), ('category_id', models.ForeignKey(blank=True, db_column='category_id', null=True, on_delete=django.db.models.deletion.SET_NULL, to='customers.customercategory')), ('document_type_id', models.ForeignKey(blank=True, db_column='document_type_id', null=True, on_delete=django.db.models.deletion.SET_NULL, to='drivers.documenttype')), ], options={ 'abstract': False, }, ), ]
42.093023
182
0.596133
4a1a92a68aa930168528884f5808a4870e3e74c8
2,271
py
Python
bak/nasa_ngrams.py
NorthDecoder/nasaMining
81706cb9e48d9469b27314123a4f7b6e063f033e
[ "MIT" ]
18
2015-04-16T03:12:57.000Z
2021-08-20T08:07:23.000Z
bak/nasa_ngrams.py
jonroberts/nasaMining
32680b58de9111dfa714e355dbc79de3faba59c3
[ "MIT" ]
17
2021-05-25T23:45:19.000Z
2022-03-31T22:55:06.000Z
bak/nasa_ngrams.py
NorthDecoder/nasaMining
81706cb9e48d9469b27314123a4f7b6e063f033e
[ "MIT" ]
12
2015-04-14T20:21:57.000Z
2021-05-12T22:01:53.000Z
from __future__ import unicode_literals import json from gensim.models.phrases import Phrases from textblob import TextBlob # from gensim: threshold represents a threshold for forming the phrases (higher means fewer phrases). # A phrase of words a and b is accepted if (cnt(a, b) - min_count) * N / (cnt(a) * cnt(b)) > threshold, where N is the total vocabulary size. thresh = 10 # n = 5 if __name__ == '__main__': data = json.load(open('data/nasa.json')) dataset = data['dataset'] print len(dataset), 'datasets' # tokenize description fields print 'Tokenizing descriptions' desc = [] doc_id = [] for i, ds in enumerate(dataset): text = TextBlob(ds['description']) for sentence in text.sentences: desc.append(sentence.tokens) doc_id.append(i) # text = TextBlob(ds['title']) # for sentence in text.sentences: # desc.append(sentence.tokens) # doc_id.append(i) print 'Constructing ngrams' print 'Bigrams' desc_bigrams = Phrases(desc, threshold=thresh) bigrams = desc_bigrams[desc] print 'Trigrams' desc_trigrams = Phrases(bigrams, threshold=thresh) trigrams = desc_trigrams[bigrams] print 'Fourgrams' desc_fourgrams = Phrases(trigrams, threshold=thresh) fourgrams = desc_fourgrams[trigrams] print 'Fivegrams' desc_fivegrams = Phrases(fourgrams, threshold=thresh) fivegrams = desc_fivegrams[fourgrams] # pull out keywords field = 'gensim_ngram_kw_%s' % thresh for i, ngram in enumerate(fivegrams): doc = doc_id[i] if field not in dataset[doc]: dataset[doc][field] = set() for kw in filter(lambda k: '_' in k, ngram): keyword = kw.replace('_', ' ').lower() # filter out punctuation, etc (make sure that there are two non-punc words) if len(TextBlob(keyword).words) < 2: continue dataset[doc][field].add(keyword) # convert set into list for json serialization for d in dataset: d[field] = list(d[field]) # update the original data json and save data['dataset'] = dataset with open('data/nasa_ngram_%s.json' % thresh, 'w') as f: json.dump(data, f)
29.881579
141
0.639806
4a1a9305f053139b4890f03eaf9f50e093973bce
1,165
py
Python
src/airing.py
punkhere/HerokuAnimeDLBot
90c0e34577d50981f4180f218b91f9bb7ad78a72
[ "MIT" ]
null
null
null
src/airing.py
punkhere/HerokuAnimeDLBot
90c0e34577d50981f4180f218b91f9bb7ad78a72
[ "MIT" ]
null
null
null
src/airing.py
punkhere/HerokuAnimeDLBot
90c0e34577d50981f4180f218b91f9bb7ad78a72
[ "MIT" ]
null
null
null
# Copyright © 2021 BaraniARR # Encoding = 'utf-8' # Licensed under MIT License # Special Thanks for gogoanime from pyrogram import * from pyrogram.types import * import requests from requests_html import HTMLSession from bs4 import BeautifulSoup import sys # Getting currently airing Anime from the API # Returns an "Inline Keyboard List" of Currently airing Anime def airing_eps(client, message): url = f"https://gogoanime.pe/" session = HTMLSession() response = session.get(url) response_html = response.text soup = BeautifulSoup(response_html, 'html.parser') anime = soup.find("nav", {"class": "menu_series cron"}).find("ul") air = [] for link in anime.find_all('a'): airing_link = link.get('href') name = link.get('title') link = airing_link.split('/') lnk_final = link[2] res = sys.getsizeof(lnk_final) if int(res) > 64: pass else: air.append([InlineKeyboardButton(f"{name}", callback_data=f"dt_{lnk_final}")]) repl = InlineKeyboardMarkup(air) message.reply_text("**Currently Airing Anime: **", reply_markup=repl, parse_mode="markdown")
32.361111
96
0.671245
4a1a940984c95031184ed3256dbf5cad58a1f7fe
1,150
py
Python
6/6.py
dvento/projectEuler
3debbc9453ae50166a91b990145418f3c26fced8
[ "MIT" ]
null
null
null
6/6.py
dvento/projectEuler
3debbc9453ae50166a91b990145418f3c26fced8
[ "MIT" ]
null
null
null
6/6.py
dvento/projectEuler
3debbc9453ae50166a91b990145418f3c26fced8
[ "MIT" ]
null
null
null
# coding=utf-8 ''' Daniel Vento, 2020 PROBLEM #6: The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 55^2 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is: 3025 - 385 = 2640 Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum of the first one hundredd natural numbers ''' # target number n = 100 def squaredSum(): # the mathematical formula to calculate the sum of n numbers is (n*(n + 1)) / 2 res = ((n*(n + 1)) / 2)**2 return res def sumOfSquares(): # The mathematical formula to calculate the sum of n squared is (n*(n + 1)*(2*n + 1)) / 6 res = (n*(n + 1)*(2*n + 1)) / 6 return res def diff(): res = squaredSum() - sumOfSquares() print("Result of the difference between the sum of the squares of the first " "one hundred natural numbers and the square of the sum of the first one hundredd natural numbers is: ", int(res)) diff()
28.75
159
0.66
4a1a940ad1729b93c4de0d6cd1355d5abcc91c68
724
py
Python
examples/CNCEncoderPad/layers/layer0.py
lesley-byte/pykey
ce21b5b6c0da938bf24891e5acb196d6779c433a
[ "MIT" ]
null
null
null
examples/CNCEncoderPad/layers/layer0.py
lesley-byte/pykey
ce21b5b6c0da938bf24891e5acb196d6779c433a
[ "MIT" ]
null
null
null
examples/CNCEncoderPad/layers/layer0.py
lesley-byte/pykey
ce21b5b6c0da938bf24891e5acb196d6779c433a
[ "MIT" ]
null
null
null
from pykey.keycode import PK_Keycode as KC # REQUIRED if using KC.* values layer = { # REQUIRED dict, must be named 'layer' 'name' : 'Layer 0', # Application name 'encoder' : [ (0x202000, 'LEFT', [ KC.LEFT ]), (0x202000, 'RIGHT',[ KC.RIGHT ]) ], 'macros' : [ # keys ... # COLOR LABEL KEY SEQUENCE (0x202000, '1', [ KC.ONE ]), (0x202000, '2', [ KC.TWO ]), (0x202000, '3', [ KC.THREE ]), (0x202000, '4', [ KC.FOUR ]), (0x101010, '5', [ KC.FIVE ]), (0x202000, '6', [ KC.SIX ]), (0x202000, '7', [ KC.SEVEN ]), (0x202000, '8', [ KC.EIGHT ]), (0x101010, '9', [ KC.NINE ]) ] }
34.47619
74
0.453039
4a1a964338ba2191de4113e3263f76536df807c8
2,445
py
Python
python/tvm/exec/rpc_tracker.py
janifer112x/incubator-tvm
98c2096f4944bdbdbbb2b7b20ccd35c6c11dfbf6
[ "Apache-2.0" ]
40
2021-06-14T23:14:46.000Z
2022-03-21T14:32:23.000Z
python/tvm/exec/rpc_tracker.py
janifer112x/incubator-tvm
98c2096f4944bdbdbbb2b7b20ccd35c6c11dfbf6
[ "Apache-2.0" ]
14
2021-06-08T03:15:54.000Z
2022-02-01T23:50:24.000Z
python/tvm/exec/rpc_tracker.py
janifer112x/incubator-tvm
98c2096f4944bdbdbbb2b7b20ccd35c6c11dfbf6
[ "Apache-2.0" ]
11
2021-06-14T05:56:18.000Z
2022-02-27T06:52:07.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=redefined-outer-name, invalid-name """Tool to start RPC tracker""" from __future__ import absolute_import import logging import argparse import multiprocessing import sys from ..rpc.tracker import Tracker def main(args): """Main funciton""" tracker = Tracker(args.host, port=args.port, port_end=args.port_end, silent=args.silent) tracker.proc.join() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", help="the hostname of the tracker") parser.add_argument("--port", type=int, default=9190, help="The port of the RPC") parser.add_argument("--port-end", type=int, default=9199, help="The end search port of the RPC") parser.add_argument( "--no-fork", dest="fork", action="store_false", help="Use spawn mode to avoid fork. This option \ is able to avoid potential fork problems with Metal, OpenCL \ and ROCM compilers.", ) parser.add_argument("--silent", action="store_true", help="Whether run in silent mode.") parser.set_defaults(fork=True) args = parser.parse_args() logging.basicConfig(level=logging.INFO) if args.fork is False: if sys.version_info[0] < 3: raise RuntimeError("Python3 is required for spawn mode.") multiprocessing.set_start_method("spawn") else: if not args.silent: logging.info( "If you are running ROCM/Metal, fork will cause " "compiler internal error. Try to launch with arg ```--no-fork```" ) main(args)
38.809524
100
0.685072
4a1a96d339e935eb446e26650691412d21a90fd0
447
py
Python
code_week10_629_75/pascals_triangle_ii.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
code_week10_629_75/pascals_triangle_ii.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
code_week10_629_75/pascals_triangle_ii.py
dylanlee101/leetcode
b059afdadb83d504e62afd1227107de0b59557af
[ "Apache-2.0" ]
null
null
null
''' 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。 在杨辉三角中,每个数是它左上方和右上方的数的和。 示例: 输入: 3 输出: [1,3,3,1] 进阶: 你可以优化你的算法到 O(k) 空间复杂度吗? 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/pascals-triangle-ii ''' class Solution: def getRow(self, rowIndex: int) -> List[int]: row = [1 for _ in range(rowIndex+1)] for i in range(rowIndex + 1): for j in range(i-1,0,-1): row[j] = row[j] + row[j-1] return row
17.88
55
0.579418
4a1a9716a9976e844b69083435237d3f29d0a98d
3,530
py
Python
app/template_db/template_engine/model_handler/utils.py
Plawn/petit_publipost_gateway
e0a09207ae5bcad1623f8e7662e004ad9b59ffbe
[ "Apache-2.0" ]
null
null
null
app/template_db/template_engine/model_handler/utils.py
Plawn/petit_publipost_gateway
e0a09207ae5bcad1623f8e7662e004ad9b59ffbe
[ "Apache-2.0" ]
7
2021-06-22T09:48:59.000Z
2022-01-10T16:08:00.000Z
app/template_db/template_engine/model_handler/utils.py
Plawn/petit_publiposter
e0a09207ae5bcad1623f8e7662e004ad9b59ffbe
[ "Apache-2.0" ]
null
null
null
from abc import ABC, abstractmethod from collections.abc import Mapping from typing import Any, Dict, Iterable, List, Set, Tuple, Callable from ..adapter_middleware import MultiAdapter class FallbackAction(ABC): def __init__(self, field_name: str, replacer: MultiAdapter): self.field_name = field_name self.replacer = replacer @abstractmethod def prepare_fallback(self, _dict: dict, key: str) -> None: pass class MissingPlaceholderFallbackAction(FallbackAction): def prepare_fallback(self, _dict: dict, key: str) -> None: """ Prevents error by recreating the missing keys in the input data, we won't have missing fields so we can avoid errors and let the placeholder in place """ new_key = self.replacer.to_doc(key) _dict[new_key] = _dict[key][self.field_name] if key != new_key: del _dict[key] def merge_dict(d1: dict, d2: dict): """ Modifies d1 in-place to contain values from d2. If any value in d1 is a dictionary (or dict-like), *and* the corresponding value in d2 is also a dictionary, then merge them in-place. """ for key, v2 in d2.items(): v1 = d1.get(key) # returns None if v1 has no value for this key if (isinstance(v1, Mapping) and isinstance(v2, Mapping)): merge_dict(v1, v2) else: d1[key] = v2 def ensure_keys(d: dict, fallback_action: FallbackAction): for key, item in d.items(): if isinstance(item, Mapping) and fallback_action.field_name in item: fallback_action.prepare_fallback(d, key) else: if isinstance(item, Mapping): ensure_keys(item, fallback_action) def change_keys(obj: dict, convert: Callable) -> dict: """ Recursively goes through the dictionary obj and replaces keys with the convert function. """ if isinstance(obj, (str, int, float)): return obj if isinstance(obj, dict): new = obj.__class__() for k, v in obj.items(): new[convert(k)] = change_keys(v, convert) elif isinstance(obj, (list, set, tuple)): new = obj.__class__(change_keys(v, convert) for v in obj) else: return obj return new def prepare_name(string: str) -> Tuple[str, str]: top_level, *other_level = string.split('.') return top_level, '.'.join(other_level) def prepare_names(strings: Iterable[str]) -> Dict[str, List[str]]: d: Dict[str, Set[str]] = {} for string in strings: top_level, rest = prepare_name(string) if top_level in d: d[top_level].add(rest) else: d[top_level] = {rest} return { i: list(j) for i, j in d.items() } def from_strings_to_dict(data: Dict[str, Any]): """ Makes a model for a given list of string like : "mission.document.name": "test" => { mission: { document: { name: "test" } } } """ res = {} for key, value in data.items(): l = key.split('.') previous = [] end = len(l) - 1 for i, item in enumerate(l): d = res for prev in previous[:-1]: d = d[prev] if len(previous) > 0: d = d[previous[-1]] if item not in d: if i != end: d[item] = {} else: d[item] = value previous.append(item) return res
29.416667
92
0.57932
4a1a97a393eba06d6fa6498ac5afd499e0b8a29d
3,778
py
Python
automl/cloud-client/get_model_evaluation.py
summersab/python-docs-samples
7c1e9685fe190f7789d8e1dbcfe8c01a20e3dc66
[ "Apache-2.0" ]
2
2020-09-19T04:22:52.000Z
2020-09-23T14:04:17.000Z
automl/cloud-client/get_model_evaluation.py
summersab/python-docs-samples
7c1e9685fe190f7789d8e1dbcfe8c01a20e3dc66
[ "Apache-2.0" ]
1
2020-07-24T19:18:29.000Z
2020-07-24T19:45:23.000Z
automl/cloud-client/get_model_evaluation.py
summersab/python-docs-samples
7c1e9685fe190f7789d8e1dbcfe8c01a20e3dc66
[ "Apache-2.0" ]
2
2020-11-24T18:20:51.000Z
2020-12-12T12:21:52.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def get_model_evaluation(project_id, model_id, model_evaluation_id): """Get model evaluation.""" # [START automl_language_entity_extraction_get_model_evaluation] # [START automl_language_sentiment_analysis_get_model_evaluation] # [START automl_language_text_classification_get_model_evaluation] # [START automl_translate_get_model_evaluation] # [START automl_vision_classification_get_model_evaluation] # [START automl_vision_object_detection_get_model_evaluation] from google.cloud import automl # TODO(developer): Uncomment and set the following variables # project_id = "YOUR_PROJECT_ID" # model_id = "YOUR_MODEL_ID" # model_evaluation_id = "YOUR_MODEL_EVALUATION_ID" client = automl.AutoMlClient() # Get the full path of the model evaluation. model_evaluation_full_id = client.model_evaluation_path( project_id, "us-central1", model_id, model_evaluation_id ) # Get complete detail of the model evaluation. response = client.get_model_evaluation(model_evaluation_full_id) print("Model evaluation name: {}".format(response.name)) print("Model annotation spec id: {}".format(response.annotation_spec_id)) print("Create Time:") print("\tseconds: {}".format(response.create_time.seconds)) print("\tnanos: {}".format(response.create_time.nanos / 1e9)) print( "Evaluation example count: {}".format(response.evaluated_example_count) ) # [END automl_language_sentiment_analysis_get_model_evaluation] # [END automl_language_text_classification_get_model_evaluation] # [END automl_translate_get_model_evaluation] # [END automl_vision_classification_get_model_evaluation] # [END automl_vision_object_detection_get_model_evaluation] print( "Entity extraction model evaluation metrics: {}".format( response.text_extraction_evaluation_metrics ) ) # [END automl_language_entity_extraction_get_model_evaluation] # [START automl_language_sentiment_analysis_get_model_evaluation] print( "Sentiment analysis model evaluation metrics: {}".format( response.text_sentiment_evaluation_metrics ) ) # [END automl_language_sentiment_analysis_get_model_evaluation] # [START automl_language_text_classification_get_model_evaluation] # [START automl_vision_classification_get_model_evaluation] print( "Classification model evaluation metrics: {}".format( response.classification_evaluation_metrics ) ) # [END automl_language_text_classification_get_model_evaluation] # [END automl_vision_classification_get_model_evaluation] # [START automl_translate_get_model_evaluation] print( "Translation model evaluation metrics: {}".format( response.translation_evaluation_metrics ) ) # [END automl_translate_get_model_evaluation] # [START automl_vision_object_detection_get_model_evaluation] print( "Object detection model evaluation metrics: {}".format( response.image_object_detection_evaluation_metrics ) ) # [END automl_vision_object_detection_get_model_evaluation]
40.623656
79
0.750926
4a1a97e4d96a38157a2896fd70e283df8e7f63ff
16,311
py
Python
codebuddy.py
davidfurlong/CodeBuddy
eb76272987c187a8cd18547348b5fc1fd3009fa3
[ "MIT" ]
1
2015-12-06T23:53:24.000Z
2015-12-06T23:53:24.000Z
codebuddy.py
davidfurlong/CodeBuddy
eb76272987c187a8cd18547348b5fc1fd3009fa3
[ "MIT" ]
null
null
null
codebuddy.py
davidfurlong/CodeBuddy
eb76272987c187a8cd18547348b5fc1fd3009fa3
[ "MIT" ]
null
null
null
import sublime, sublime_plugin, math, random # GNU License Copyright David Furlong # Used some Scrolling code from # https://github.com/zzjin/syncViewScroll # which is licensed under GNU # Copyright (C) 2012 Tito Bouzout <tito.bouzout@gmail.com> # TODOS: Auto Language detection + comment syntax {} # Find, Search, Replace, Save, Save as, Save all # IE Non text based shortcuts # Double click to select a line selects the new line char too, so isnt being counted as "select line" # Probably falsely. languagesCommentSymbol = [] keyHistory = [] actionLog = [] actionLineLog = [] specialkey = "cmd" if sublime.platform() == "osx" else "ctrl" sublime.log_commands(False) sublime.log_input(False) global hasWarned sublime.run_command('toggle_sync_scroll') todaysFocus = random.randrange(1,5+1) if(sublime.active_window().active_view().size() > 50000): sublime.run_command("sub_notify", {"title": "Welcome to CodeBuddy, Try "+specialkey+" + R", "msg": "This file is big, use "+specialkey+" + R to quickly navigate functions", "sound": False}) # sublime.message_dialog("Welcome to CodeBuddy. This file is sizeable, so remember to use "+specialkey+" + R to quickly navigate functions") elif(todaysFocus == 1): sublime.run_command("sub_notify", {"title": "Welcome to CodeBuddy, Try "+specialkey+" + P", "msg": specialkey+" + P to quickly navigate files", "sound": False}) # sublime.message_dialog(". Try to focus on using "+specialkey+" + P to quickly navigate files") elif(todaysFocus == 2): sublime.run_command("sub_notify", {"title": "Welcome to CodeBuddy, Try "+specialkey+" + D", "msg": "Did you know you can use "+specialkey+" + D or "+specialkey+" + click to create multiple cursors?", "sound": False}) # sublime.message_dialog("Welcome to CodeBuddy. Did you know you can use "+specialkey+" + D or "+specialkey+" + click to create multiple cursors?") elif(todaysFocus == 3): sublime.run_command("sub_notify", {"title": "Welcome to CodeBuddy, Try "+specialkey+" + P then :40", "msg": specialkey+" + P followed by :<line> to navigate by line", "sound": False}) # sublime.message_dialog("Welcome to CodeBuddy. Did you know you can use "+specialkey+" + D or "+specialkey+" + click to create multiple cursors?") elif(todaysFocus == 4): sublime.run_command("sub_notify", {"title": "Welcome to CodeBuddy", "msg": "Try "+specialkey+" + K B to toggle sidebar", "sound": False}) # sublime.message_dialog("Welcome to CodeBuddy. Did you know you can use "+specialkey+" + D or "+specialkey+" + click to create multiple cursors?") class isDeletingLineCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if not region.empty(): lineA = self.view.full_line(region.a) lineB = self.view.full_line(region.b) posA = self.view.rowcol(region.a) posB = self.view.rowcol(region.b) if(posA[0] - posB[0] == 1 or posA[0] - posB[0] == -1): if(posA[0] > posB[0]): if(len(self.view.substr(lineA)[:posA[1]].replace(' ', '').replace('\t', '')) == 0 and self.view.substr(lineB)[posB[1]:].replace(' ', '').replace('\t', '') == "\n"): sublime.run_command("sub_notify", {"title": "Shortcut Tip, "+specialkey+" + J", "msg": "Press Cmd J to delete the new line after the current line", "sound": False}) else: if(len(self.view.substr(lineB)[:posB[1]].replace(' ', '').replace('\t', '')) == 0 and self.view.substr(lineA)[posA[1]:].replace(' ', '').replace('\t', '') == "\n"): sublime.run_command("sub_notify", {"title": "Shortcut Tip, "+specialkey+" + J", "msg": "Press Cmd J to delete the new line after the current line", "sound": False}) pos = self.view.rowcol(region.a)[1] line_contents = self.view.substr(lineA) if(pos > 0): l = len(actionLog) if(l > 1): if(actionLog[l-1] == "drag_select" or actionLog[l-2] == "drag_select"): if(line_contents[pos-1] == "{" or line_contents[pos] == "{" or line_contents[pos-1] == "}" or line_contents[pos] == "}"): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "Press ^ + M to find matching bracket, or ^ + shift + M to select all contents of current parentheses", "sound": False}) class isNextToBracketCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if region.empty(): lines = self.view.line(region) pos = self.view.rowcol(region.a)[1] line_contents = self.view.substr(lines) + '\n' if(pos > 0): l = len(actionLog) if(l > 1): if(actionLog[l-1] == "drag_select" or actionLog[l-2] == "drag_select"): if(line_contents[pos-1] == "{" or line_contents[pos] == "{" or line_contents[pos-1] == "}" or line_contents[pos] == "}"): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "Press ^ + M to find matching bracket, or ^ + shift + M to select all contents of current parentheses", "sound": False}) # sublime.message_dialog("Press ^ + M to find matching bracket, or ^ + shift + M to select all contents of current parentheses") class getSelectedRegionCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if region.empty(): line = self.view.line(region) line_contents = self.view.substr(line) + '\n' else: print(region) class isRegionWholeLineCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if region.empty(): return else: if(self.view.rowcol(region.a)[0] != self.view.rowcol(region.b)[0]): return else: if (self.view.rowcol(region.a)[1] == 0 and len(self.view.substr(self.view.line(region.b))) == self.view.rowcol(region.b)[1]) or (self.view.rowcol(region.b)[1] == 0 and len(self.view.substr(self.view.line(region.a))) == self.view.rowcol(region.a)[1]) or (self.view.rowcol(region.a)[1] == 0 and len(self.view.substr(self.view.full_line(region.b))) == self.view.rowcol(region.b)[1]) or (self.view.rowcol(region.b)[1] == 0 and len(self.view.substr(self.view.full_line(region.a))) == self.view.rowcol(region.a)[1]): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "Press "+specialkey+" + L to select line", "sound": False}) # sublime.message_dialog("Press "+specialkey+" + L to select line") actionLog.append('select_line') actionLineLog.append(self.view.rowcol(region.a)[0]) return class isAtLineStartCommand(sublime_plugin.TextCommand): def run(self, edit): for region in self.view.sel(): if region.empty(): x = self.view.line(region.a) p = self.view.rowcol(region.a)[1] if len(self.view.substr(x)[:p].replace(" ", "").replace("\t", "").replace("//", "").replace("/*", "").replace("<!--", "").replace('#', '')) != 0: return else: if len(self.view.substr(region).replace(" ", "").replace("\t", "").replace("//", "").replace("/*", "").replace("<!--", "").replace('#', '')) != 0: return sublime.run_command("sub_notify", {"title": "Comment current Line "+specialkey+" + /", "msg": "To Comment current line press "+specialkey+" + /", "sound": False}) # sublime.message_dialog("To Comment current line press "+specialkey+" + /") class isAtLineStartTabCommand(sublime_plugin.TextCommand): def run(self, edit): print ('tab') for region in self.view.sel(): if region.empty(): x = self.view.line(region.a) p = self.view.rowcol(region.a)[1] if len(self.view.substr(x)[:p].replace(" ", "").replace("\t", "").replace("//", "").replace("/*", "").replace("<!--", "").replace('#', '')) != 0: return else: if len(self.view.substr(region).replace(" ", "").replace("\t", "").replace("//", "").replace("/*", "").replace("<!--", "").replace('#', '')) != 0: return sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": specialkey+" + [ to indent line, and "+specialkey+" + ] to unindent line from cursor anywhere in the line", "sound": False}) # sublime.message_dialog("Better than tab to indent is "+specialkey+" + [ to indent line, and "+specialkey+" + ] to unindent line") class CodeBuddy(sublime_plugin.EventListener): def on_modified(self, view): print("on modified") actionLog.append(view.command_history(0)) actionLineLog.append(view.rowcol(view.sel()[0].a)[0]) # actionLineLog.append(view.) # view.command_history(0); keyHistory.append(view.substr(sublime.Region(0, view.size()))) if (view.command_history(0)[1]): # Comment Line for 2 languages? if (view.command_history(0)[1]['characters'] == "//" or view.command_history(0)[1]['characters'] == "<!--" or view.command_history(0)[1]['characters'] == "/*" or view.command_history(0)[1]['characters'] == "#"): view.run_command('is_at_line_start') def on_text_command(command_name, view, args, ne): #args and command_name is swapped? print('text command') if(sublime.active_window().active_view().name() == "Find Results"): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": 'Double click the left gutter in find to go to the file and line number', "sound": False}) # sublime.status_message('Double click the gutter in find to go to the file and line number') # if args == "drag_select": # view.run_command('is_region_whole_line') view.run_command('is_deleting_line') view.run_command('is_next_to_bracket') try: if len(actionLog) > 0 and (actionLog[len(actionLog)-1] == "drag_select" or ne['by'] == 'lines'): if (args == "left_delete"): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": specialkey+' + X to delete the current line', "sound": False}) else: view.run_command('is_region_whole_line') except: pass actionLog.append(args) actionLineLog.append(view.rowcol(view.sel()[0].a)[0]) keyHistory.append(command_name) try: if( ne['default'] == "\t"): view.run_command('is_at_line_start_tab') except: pass l = len(actionLog) # TODO if(l > 2 and len(keyHistory) != 0): # scenario 1 no new line try: if(actionLog[l-1]=="paste_and_indent" and actionLog[l-2] == "drag_select" and actionLog[l-3][0]=="cut" and actionLog[l-5]=="drag_select" and (actionLineLog[l-3] == 1+actionLineLog[l-1] or actionLineLog[l-3]+1 == actionLineLog[l-1] or actionLineLog[l-3]+2 == actionLineLog[l-1] or actionLineLog[l-3] == 2+actionLineLog[l-1])): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "ctrl + "+specialkey+" + ↑ or ↓ to swap lines (transpose)", "sound": False}) except: pass # scenario 2 new line try: if(actionLog[l-1]=="paste_and_indent" and actionLog[l-2][1]['characters'] == "\n" and actionLog[l-3]=="insert" and actionLog[l-5][0]=="cut" and (actionLineLog[l-5] == 1+actionLineLog[l-1] or actionLineLog[l-5]+1 == actionLineLog[l-1] or actionLineLog[l-5]+2 == actionLineLog[l-1] or actionLineLog[l-5] == 2+actionLineLog[l-1])): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "ctrl + "+specialkey+" + ↑ or ↓ to swap lines (transpose)", "sound": False}) except: pass try: if(actionLog[l-1]=="paste_and_indent" and actionLog[l-2][1]['characters'] == "\n" and actionLog[l-3]=="insert" and actionLog[l-5]=="copy" and (actionLineLog[l-5] == 1+actionLineLog[l-1] or actionLineLog[l-5]+1 == actionLineLog[l-1])): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": specialkey+" + shift + D to duplicate a line. Remember, D for duplicate", "sound": False}) # sublime.message_dialog(""+specialkey+" + shift + D to duplicate a line. Remember, D for duplicate") except: pass def on_window_command(self, window, command_name, args): print('window command') print(window) print(command_name) print(args) if(sublime.active_window().active_view().name() == "Find Results"): sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": 'Double click the gutter in find to go to the file and line number', "sound": False}) # sublime.status_message('Double click the gutter in find to go to the file and line number') if len(actionLog) > 0 and actionLog[len(actionLog)-1] == "drag_select": window.active_view().run_command('is_region_whole_line') actionLog.append(args) actionLineLog.append(sublime.active_window().active_view().rowcol(sublime.active_window().active_view().sel()[0].a)[0]) # UNUSED. FOR FUTURE EXTENSION INTO SCROLLING import _thread as thread import time synch_scroll_running = False synch_scroll_current_view_object = None def updatePos(view): view.settings().set('origPos',view.viewport_position()[1]) def initialize(view): #print 'initialize' if not view.settings().has('syncScroll'): view.settings().set('syncScroll',False) #the add on change should be here, it's elsewhere for debug reasons updatePos(view) view.settings().clear_on_change('syncScroll') #for debug reasons view.settings().add_on_change('syncScroll', updateStatus) #when syncScroll is toggled, update status bar def plugin_loaded(): if not 'running_synch_scroll_loop' in globals(): global running_synch_scroll_loop running_synch_scroll_loop = True thread.start_new_thread(synch_scroll_loop, ()) #on startup initialize every view print ("syncScroll starting") for window in sublime.windows(): for view in window.views(): initialize(view) def synch_scroll_loop(): while True: global synch_scroll_running if not synch_scroll_running: synch_scroll_running = True sublime.set_timeout(lambda: synch_scroll(), 0) time.sleep(0.08) def synch_scroll(): global synch_scroll_running global synch_scroll_current_view_object # print ("one timeout") current_view = synch_scroll_current_view_object try: if(100 < current_view.viewport_position()[1] and not hasWarned): hasWarned = True sublime.run_command("sub_notify", {"title": "Shortcut Tip", "msg": "Stop scrolling! Use "+specialkey+" + P then : for line number, enter or @ for function definitions. You can also try bookmarking by installing the SublimeBookmarks package", "sound": False}) # sublime.message_dialog("Stop scrolling! Use "+specialkey+" + P then : for line number, enter or @ for function definitions. You can also try bookmarking by installing the SublimeBookmarks package") except: hasWarned = False pass # x = 1 # previousPosition = current_view.viewport_position()[1] if current_view is None or current_view.is_loading() or not current_view.settings().get('syncScroll'): synch_scroll_running = False return callingViewPos = current_view.viewport_position()[1] origCallingViewPos = current_view.settings().get('origPos') # print ('modified. origCallingViewPos=', origCallingViewPos, 'callingViewPos= ', callingViewPos) if callingViewPos != origCallingViewPos: #and it moved vertically # print ("it moved") for view in current_view.window().views(): if view.settings().get('syncScroll') and view.id() != current_view.id(): #if view has syncScroll enabled AND we're not talking about the same view as view #we move view viewPos = view.viewport_position()[1] newViewPos = viewPos+callingViewPos-origCallingViewPos # print ("moving. viewPos= ",viewPos," newViewPos= ",newViewPos) view.set_viewport_position((view.viewport_position()[0],newViewPos), True) #move the other view updatePos(view) updatePos(current_view) #update original positions synch_scroll_running = False def updateStatus(): # print "updateStatus" for window in sublime.windows(): for view in window.views(): if view.settings().get('syncScroll'): view.set_status('syncScroll','[Sync ON]') else: view.erase_status('syncScroll') class syncScrollListener(sublime_plugin.EventListener): def on_activated(self, view): global synch_scroll_current_view_object synch_scroll_current_view_object = view def on_load(self,view): #on load add settings to a view # print ("on_load") initialize(view) class ToggleSyncScrollCommand(sublime_plugin.TextCommand): def run(self, edit, setting): current_state = self.view.settings().get('syncScroll') self.view.settings().set('syncScroll',not current_state) def is_checked(self, setting): if not self.view.settings().has('syncScroll'): initialize(self.view) # print ("current setting",self.view.settings().get('syncScroll')) return self.view.settings().get('syncScroll')
50.187692
515
0.68414
4a1a97f286f12baacd82d676d7147ad0f559e5bf
2,585
py
Python
bench/benchmark/bm.py
gaaalmeida/trab_benchmark
4e42c6c34b6859050b792cefcad9627ecc5906bd
[ "MIT" ]
null
null
null
bench/benchmark/bm.py
gaaalmeida/trab_benchmark
4e42c6c34b6859050b792cefcad9627ecc5906bd
[ "MIT" ]
null
null
null
bench/benchmark/bm.py
gaaalmeida/trab_benchmark
4e42c6c34b6859050b792cefcad9627ecc5906bd
[ "MIT" ]
null
null
null
from queue import Queue from threading import Thread import pandas as pd import time import codecs import os import numpy as np _time = [0,0,0] _words = [] _tf = False _size = 0 _finished = False def setup_words(cv): global _words for _ in range(cv): _words.append([0]) def clearResults(names): for name in names: try: os.remove(f'results/{name}.txt') except FileNotFoundError: pass def write(q): global _words, _time, _size, _tf, _finished while True: data = None x = False if not q.empty(): data = q.get() x = True if x: _tf = False ptime_s = time.time() names = data.columns.values ptime_e = time.time() - ptime_s _time[1] += ptime_e for i in range(_size): iotime_s = time.time() file = f"results/{names[i]}.txt" f = codecs.open(file, 'a', 'utf-8') f.write(u'\ufeff') iotime_e = time.time() - iotime_s _time[2] += iotime_e # Verifca se a coluna é numerica if pd.api.types.is_string_dtype(data[names[i]]): ptime_s = time.time() _words[i][0] += data[names[i]].str.count(' ') + 1 ptime_e = time.time() - ptime_s _time[1] += ptime_e # Escreve no arquivo o valor da linha iotime_s = time.time() np.savetxt(f, data[names[i]].to_string(index=False, header=False).strip().split('\n'), fmt='%s') iotime_e = time.time() - iotime_s _time[2] += iotime_e else: iotime_s = time.time() np.savetxt(f, data[names[i]].to_string(index=False, header=False).strip().split('\n'), fmt='%s') iotime_e = time.time() - iotime_s _time[2] += iotime_e iotime_s = time.time() f.close() iotime_e = time.time() - iotime_s _time[2] += iotime_e data = None elif _finished: _tf = True def run_benchmark(hw): global _words, _time, _tf, _size, _finished q = Queue() thread = Thread(target = write, daemon=False, args =(q,)) thread.start() q.join() i = 0 for chunk in pd.read_csv("bench/benchmark/dataset.csv", chunksize=3000000, encoding='utf-8', low_memory=False): if i == 0: _size = len(chunk.columns) setup_words(_size) try: os.mkdir('results') except FileExistsError: clearResults(chunk.columns.values) i += 1 mtime_s = time.time() q.put((chunk)) mtime_e = time.time() - mtime_s _time[0] += mtime_e _finished = True while True: if _tf: break return _time
23.935185
113
0.57911
4a1a980a5355306d5714ee31ec2949c436e3f816
7,390
py
Python
user_manager/tests.py
MOOCworkbench/MOOCworkbench
c478dd4f185c50e0a48319e2b30d418533c32a34
[ "MIT" ]
null
null
null
user_manager/tests.py
MOOCworkbench/MOOCworkbench
c478dd4f185c50e0a48319e2b30d418533c32a34
[ "MIT" ]
1
2017-07-09T17:38:21.000Z
2017-07-09T17:38:22.000Z
user_manager/tests.py
MOOCworkbench/MOOCworkbench
c478dd4f185c50e0a48319e2b30d418533c32a34
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from django.core.management import call_command from django.shortcuts import reverse from django.test import Client, TestCase from dataschema_manager.models import DataSchema from experiments_manager.models import Experiment from git_manager.models import GitRepository from user_manager.models import WorkbenchUser class UserManagerTestCase(TestCase): def setUp(self): self.user = User.objects.create_user('test', 'test@test.nl', 'test') self.workbench_user = WorkbenchUser.objects.get(user=self.user) self.git_repo = GitRepository.objects.create(name='Experiment', owner=self.workbench_user, github_url='https://github') schema = DataSchema(name='main') schema.save() self.experiment = Experiment.objects.create(title='Experiment', description='test', owner=self.workbench_user, git_repo=self.git_repo, language_id=1, template_id=2, schema=schema) self.client = Client() self.client.login(username='test', password='test') call_command('loaddata', 'fixtures/steps.json', verbosity=0) call_command('loaddata', 'fixtures/measures.json', verbosity=0) call_command('loaddata', 'fixtures/package_categories_languages.json', verbosity=0) def test_index(self): response = self.client.get(reverse('index')) self.assertEqual(response.status_code, 200) def test_detail_profile_view(self): response = self.client.get(reverse('view_my_profile')) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['workbench_user'], self.workbench_user) def test_sign_out(self): response = self.client.get(reverse('logout'), follow=True) self.assertEqual(response.status_code, 200) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_sign_out_without_signed_in(self): c = Client() response = c.get(reverse('logout'), follow=True) self.assertEqual(response.status_code, 200) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_sign_in_get(self): response = self.client.get(reverse('login')) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) def test_sign_in_post(self): c = Client() data = {'username': 'test', 'password': 'test'} response = c.post(reverse('login'), data=data, follow=True) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['user'], self.user) def test_sign_in_post_incorrect_username(self): c = Client() data = {'username': 'NON_EXISTENT_USER', 'password': 'test'} response = c.post(reverse('login'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_sign_in_post_incorrect_password(self): c = Client() data = {'username': 'test', 'password': 'INCORRECT_PASSWORD'} response = c.post(reverse('login'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_sign_in_post_missing_password(self): c = Client() data = {'username': 'test'} response = c.post(reverse('login'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_sign_in_post_missing_username(self): c = Client() data = {'password': 'RANDOM_PASSWORD'} response = c.post(reverse('login'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) self.assertEqual(str(response.context['user']), 'AnonymousUser') def test_edit_profile_view_get(self): response = self.client.get(reverse('edit_profile')) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) def test_edit_profile_view_post(self): data = {'netid': '123456789'} response = self.client.post(reverse('edit_profile'), data=data) self.assertEqual(response.status_code, 302) self.workbench_user.refresh_from_db() self.assertEqual(self.workbench_user.netid, '123456789') def test_edit_profile_view_post_none(self): data = {} response = self.client.post(reverse('edit_profile'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) def test_register_view_get(self): c = Client() response = c.get(reverse('register')) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) def test_register_view_post(self): c = Client() data = {'username': 'test3', 'email': 'test2@test2.nl', 'password': 'test', 'password_again': 'test', 'netid': '123456789'} response = c.post(reverse('register'), data=data) self.assertEqual(response.status_code, 302) new_user = User.objects.filter(email=data['email']) self.assertTrue(new_user) def test_register_view_post_missing_data(self): c = Client() data = {'username': 'test3', 'email': 'test2@test2.nl', 'password': 'test', 'password_again': 'test',} response = c.post(reverse('register'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) def test_register_view_post_same_username(self): c = Client() data = {'username': 'test', 'email': 'test2@test2.nl', 'password': 'DIFFERENT_PASSWORD', 'password_again': 'DIFFERENT_PASSWORD', 'netid': '123456789'} response = c.post(reverse('register'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) self.user.refresh_from_db() self.assertNotEqual(self.user.email, data['email']) def test_register_view_post_same_email(self): c = Client() data = {'username': 'test2', 'email': self.user.email, 'password': 'DIFFERENT_PASSWORD', 'password_again': 'DIFFERENT_PASSWORD', 'netid': '123456789'} response = c.post(reverse('register'), data=data) self.assertEqual(response.status_code, 200) self.assertIsNotNone(response.context['form']) new_user = User.objects.filter(username=data['username']) self.assertFalse(new_user)
43.216374
91
0.623951
4a1a98cf424d148f2ae09bad11a3b81f6039a3b8
2,952
py
Python
ops.py
mato00/TFAN_HS_Segmentation
21e95fdcbec8b2c06909bc8cb99cb87727a9da6f
[ "MIT" ]
1
2021-07-14T01:36:38.000Z
2021-07-14T01:36:38.000Z
ops.py
mato00/TFAN_HS_Segmentation
21e95fdcbec8b2c06909bc8cb99cb87727a9da6f
[ "MIT" ]
null
null
null
ops.py
mato00/TFAN_HS_Segmentation
21e95fdcbec8b2c06909bc8cb99cb87727a9da6f
[ "MIT" ]
null
null
null
import math import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim from tensorflow.python.framework import ops import tensorflow.contrib.layers as tflayers from utils import * from ncausalconv import * def batch_norm(input, is_training=True, name="batch_norm"): x = tflayers.batch_norm(inputs=input, scale=True, is_training=is_training, trainable=True, reuse=None) return x def instance_norm(input, name="instance_norm", is_training=True): with tf.variable_scope(name): depth = input.get_shape()[2] scale = tf.get_variable("scale", [depth], initializer=tf.random_normal_initializer(1.0, 0.02, dtype=tf.float32)) offset = tf.get_variable("offset", [depth], initializer=tf.constant_initializer(0.0)) mean, variance = tf.nn.moments(input, axes=[1], keep_dims=True) epsilon = 1e-5 inv = tf.rsqrt(variance + epsilon) normalized = (input-mean)*inv return scale*normalized + offset def conv2d(input_, output_dim, ks=4, s=2, stddev=0.02, padding='SAME', name="conv2d", activation_fn=None): with tf.variable_scope(name): return slim.conv2d(input_, output_dim, ks, s, padding=padding, activation_fn=activation_fn, weights_initializer=tf.truncated_normal_initializer(stddev=stddev), biases_initializer=None) def deconv2d(input_, output_dim, ks=4, s=2, stddev=0.02, name="deconv2d"): with tf.variable_scope(name): input_ = tf.image.resize_images(images=input_, size=tf.shape(input_)[1:3] * s, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) # That is optional return conv2d(input_=input_, output_dim=output_dim, ks=ks, s=1, padding='SAME') def lrelu(x, leak=0.2, name="lrelu"): return tf.maximum(x, leak*x) def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False): with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [input_.get_shape()[-1], output_size], tf.float32, tf.random_normal_initializer(stddev=stddev)) bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start)) if with_w: return tf.matmul(input_, matrix) + bias, matrix, bias else: return tf.matmul(input_, matrix) + bias def TempBlock(input_, outchannels_, layer_index=0, ks=2, s=1, dilation_rate_=1, dropout_=0.2, name='TemBlock', is_training=True): with tf.variable_scope(name): tb = TemporalBlock(outchannels_, ks, s, dilation_rate_, dropout_, name="tblock_{}".format(layer_index)) return tb(input_, training=is_training)
42.171429
120
0.629065
4a1a99c2f5752f2cefa22247417a3ba3df8f57d8
563
py
Python
deployments/migrations/0018_auto_20200319_0431.py
IFRCGo/ifrcgo-api
c1c3e0cf1076ab48d03db6aaf7a00f8485ca9e1a
[ "MIT" ]
11
2018-06-11T06:05:12.000Z
2022-03-25T09:31:44.000Z
deployments/migrations/0018_auto_20200319_0431.py
IFRCGo/ifrcgo-api
c1c3e0cf1076ab48d03db6aaf7a00f8485ca9e1a
[ "MIT" ]
498
2017-11-07T21:20:13.000Z
2022-03-31T14:37:18.000Z
deployments/migrations/0018_auto_20200319_0431.py
IFRCGo/ifrcgo-api
c1c3e0cf1076ab48d03db6aaf7a00f8485ca9e1a
[ "MIT" ]
6
2018-04-11T13:29:50.000Z
2020-07-16T16:52:11.000Z
# Generated by Django 2.0.12 on 2020-03-19 04:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('deployments', '0017_auto_20200122_1434'), ] operations = [ migrations.AlterField( model_name='project', name='project_district', field=models.ForeignKey(blank=True, help_text='No selection will indicate all districts.', null=True, on_delete=django.db.models.deletion.CASCADE, to='api.District'), ), ]
28.15
178
0.667851
4a1a9a16bab51ac31347cc052307597a4e91d441
6,888
py
Python
tensorflow_probability/python/distributions/vector_laplace_diag_test.py
sanket-kamthe/probability
c22b6201155c2e58d08a4ad30641d1aff59fbe7c
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/vector_laplace_diag_test.py
sanket-kamthe/probability
c22b6201155c2e58d08a4ad30641d1aff59fbe7c
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/vector_laplace_diag_test.py
sanket-kamthe/probability
c22b6201155c2e58d08a4ad30641d1aff59fbe7c
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for VectorLaplaceLinearOperator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.internal import test_util @test_util.test_all_tf_execution_regimes class VectorLaplaceDiagTest(test_util.TestCase): """Well tested because this is a simple override of the base class.""" def setUp(self): super(VectorLaplaceDiagTest, self).setUp() self._rng = np.random.RandomState(42) def testScalarParams(self): mu = -1. diag = -5. with self.assertRaisesRegexp(ValueError, "at least 1 dimension"): tfd.VectorLaplaceDiag(mu, diag) def testVectorParams(self): mu = [-1.] diag = [-5.] dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual([3, 1], dist.sample(3).shape) def testDistWithBatchShapeOneThenTransformedThroughSoftplus(self): # This complex combination of events resulted in a loss of static shape # information when tf.get_static_value(self._needs_rotation) was # being used incorrectly (resulting in always rotating). # Batch shape = [1], event shape = [3] mu = tf.zeros((1, 3)) diag = tf.ones((1, 3)) base_dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) dist = tfd.TransformedDistribution( base_dist, validate_args=True, bijector=tfp.bijectors.Softplus()) samps = dist.sample(5) # Shape [5, 1, 3]. self.assertAllEqual([5, 1], dist.log_prob(samps).shape) def testMean(self): mu = [-1., 1] diag = [1., -5] dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual(mu, self.evaluate(dist.mean())) def testMeanWithBroadcastLoc(self): mu = [-1.] diag = [1., -5] dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual([-1., -1.], self.evaluate(dist.mean())) def testSample(self): mu = [-1., 1] diag = [1., -2] dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) seed = test_util.test_seed() samps = self.evaluate(dist.sample(int(2e4), seed=seed)) cov_mat = 2. * self.evaluate(tf.linalg.diag(diag))**2 self.assertAllClose(mu, samps.mean(axis=0), atol=0., rtol=0.10) self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.15, rtol=0.10) def testSingularScaleRaises(self): mu = [-1., 1] diag = [1., 0] dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) with self.assertRaisesOpError("Singular"): self.evaluate(dist.sample()) def testSampleWithBroadcastScale(self): # mu corresponds to a 2-batch of 3-variate normals mu = np.zeros([2, 3]) # diag corresponds to no batches of 3-variate normals diag = np.ones([3]) dist = tfd.VectorLaplaceDiag(mu, diag, validate_args=True) mean = dist.mean() self.assertAllEqual([2, 3], mean.shape) self.assertAllClose(mu, self.evaluate(mean)) n = int(1e4) samps = self.evaluate(dist.sample(n, seed=test_util.test_seed())) cov_mat = 2. * self.evaluate(tf.linalg.diag(diag))**2 sample_cov = np.matmul( samps.transpose([1, 2, 0]), samps.transpose([1, 0, 2])) / n self.assertAllClose(mu, samps.mean(axis=0), atol=0.10, rtol=0.05) self.assertAllClose([cov_mat, cov_mat], sample_cov, atol=0.10, rtol=0.05) def testCovariance(self): vla = tfd.VectorLaplaceDiag( loc=tf.zeros([2, 3], dtype=tf.float32), validate_args=True) self.assertAllClose(2. * np.diag(np.ones([3], dtype=np.float32)), self.evaluate(vla.covariance())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_identity_multiplier=[3., 2.], validate_args=True) self.assertAllEqual([2], vla.batch_shape) self.assertAllEqual([3], vla.event_shape) self.assertAllClose( 2. * np.array([[[3., 0, 0], [0, 3, 0], [0, 0, 3]], [[2, 0, 0], [0, 2, 0], [0, 0, 2]]])**2., self.evaluate(vla.covariance())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_diag=[[3., 2, 1], [4, 5, 6]], validate_args=True) self.assertAllEqual([2], vla.batch_shape) self.assertAllEqual([3], vla.event_shape) self.assertAllClose( 2. * np.array([[[3., 0, 0], [0, 2, 0], [0, 0, 1]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]])**2., self.evaluate(vla.covariance())) def testVariance(self): vla = tfd.VectorLaplaceDiag( loc=tf.zeros([2, 3], dtype=tf.float32), validate_args=True) self.assertAllClose(2. * np.ones([3], dtype=np.float32), self.evaluate(vla.variance())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_identity_multiplier=[3., 2.], validate_args=True) self.assertAllClose(2. * np.array([[3., 3, 3], [2, 2, 2]])**2., self.evaluate(vla.variance())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_diag=[[3., 2, 1], [4, 5, 6]], validate_args=True) self.assertAllClose(2. * np.array([[3., 2, 1], [4, 5, 6]])**2., self.evaluate(vla.variance())) def testStddev(self): vla = tfd.VectorLaplaceDiag( loc=tf.zeros([2, 3], dtype=tf.float32), validate_args=True) self.assertAllClose( np.sqrt(2) * np.ones([3], dtype=np.float32), self.evaluate(vla.stddev())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_identity_multiplier=[3., 2.], validate_args=True) self.assertAllClose( np.sqrt(2) * np.array([[3., 3, 3], [2, 2, 2]]), self.evaluate(vla.stddev())) vla = tfd.VectorLaplaceDiag( loc=tf.zeros([3], dtype=tf.float32), scale_diag=[[3., 2, 1], [4, 5, 6]], validate_args=True) self.assertAllClose( np.sqrt(2) * np.array([[3., 2, 1], [4, 5, 6]]), self.evaluate(vla.stddev())) if __name__ == "__main__": tf.test.main()
36.444444
78
0.634146
4a1a9a1d21a4a56185df933b79061d6e57745d67
27,646
py
Python
sdk/textanalytics/azure-ai-textanalytics/tests/test_detect_language_async.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
1
2021-12-07T13:43:54.000Z
2021-12-07T13:43:54.000Z
sdk/textanalytics/azure-ai-textanalytics/tests/test_detect_language_async.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
1
2019-10-14T19:43:52.000Z
2019-10-14T19:43:52.000Z
sdk/textanalytics/azure-ai-textanalytics/tests/test_detect_language_async.py
ankitarorabit/azure-sdk-for-python
dd90281cbad9400f8080754a5ef2f56791a5a88f
[ "MIT" ]
null
null
null
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest import platform import functools from azure.core.exceptions import HttpResponseError, ClientAuthenticationError from azure.core.pipeline.transport import AioHttpTransport from azure.core.credentials import AzureKeyCredential from multidict import CIMultiDict, CIMultiDictProxy from azure.ai.textanalytics.aio import TextAnalyticsClient from azure.ai.textanalytics import ( VERSION, DetectLanguageInput, DetectLanguageInput, TextAnalyticsApiVersion, ) from testcase import GlobalTextAnalyticsAccountPreparer from testcase import TextAnalyticsClientPreparer as _TextAnalyticsClientPreparer from asynctestcase import AsyncTextAnalyticsTest # pre-apply the client_cls positional argument so it needn't be explicitly passed below TextAnalyticsClientPreparer = functools.partial(_TextAnalyticsClientPreparer, TextAnalyticsClient) class AiohttpTestTransport(AioHttpTransport): """Workaround to vcrpy bug: https://github.com/kevin1024/vcrpy/pull/461 """ async def send(self, request, **config): response = await super(AiohttpTestTransport, self).send(request, **config) if not isinstance(response.headers, CIMultiDictProxy): response.headers = CIMultiDictProxy(CIMultiDict(response.internal_response.headers)) response.content_type = response.headers.get("content-type") return response class TestDetectLanguage(AsyncTextAnalyticsTest): @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_no_single_input(self, client): with self.assertRaises(TypeError): response = await client.detect_language("hello world") @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_all_successful_passing_dict(self, client): docs = [{"id": "1", "text": "I should take my cat to the veterinarian."}, {"id": "2", "text": "Este es un document escrito en Español."}, {"id": "3", "text": "猫は幸せ"}, {"id": "4", "text": "Fahrt nach Stuttgart und dann zum Hotel zu Fu."}] response = await client.detect_language(docs, show_stats=True) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") self.assertEqual(response[0].primary_language.iso6391_name, "en") self.assertEqual(response[1].primary_language.iso6391_name, "es") self.assertEqual(response[2].primary_language.iso6391_name, "ja") self.assertEqual(response[3].primary_language.iso6391_name, "de") for doc in response: self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) self.assertIsNotNone(doc.primary_language.confidence_score) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_all_successful_passing_text_document_input(self, client): docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian"), DetectLanguageInput(id="2", text="Este es un document escrito en Español."), DetectLanguageInput(id="3", text="猫は幸せ"), DetectLanguageInput(id="4", text="Fahrt nach Stuttgart und dann zum Hotel zu Fu.") ] response = await client.detect_language(docs) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") self.assertEqual(response[0].primary_language.iso6391_name, "en") self.assertEqual(response[1].primary_language.iso6391_name, "es") self.assertEqual(response[2].primary_language.iso6391_name, "ja") self.assertEqual(response[3].primary_language.iso6391_name, "de") for doc in response: self.assertIsNotNone(doc.primary_language.confidence_score) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_passing_only_string(self, client): docs = [ u"I should take my cat to the veterinarian.", u"Este es un document escrito en Español.", u"猫は幸せ", u"Fahrt nach Stuttgart und dann zum Hotel zu Fu.", u"" ] response = await client.detect_language(docs) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") self.assertTrue(response[4].is_error) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_input_with_some_errors(self, client): docs = [{"id": "1", "country_hint": "United States", "text": "I should take my cat to the veterinarian."}, {"id": "2", "text": "Este es un document escrito en Español."}, {"id": "3", "text": ""}, {"id": "4", "text": "Fahrt nach Stuttgart und dann zum Hotel zu Fu."}] response = await client.detect_language(docs) self.assertTrue(response[0].is_error) self.assertFalse(response[1].is_error) self.assertTrue(response[2].is_error) self.assertFalse(response[3].is_error) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_input_with_all_errors(self, client): text = "" for _ in range(5121): text += "x" docs = [{"id": "1", "text": ""}, {"id": "2", "text": ""}, {"id": "3", "text": ""}, {"id": "4", "text": text}] response = await client.detect_language(docs) for resp in response: self.assertTrue(resp.is_error) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_output_same_order_as_input(self, client): docs = [ DetectLanguageInput(id="1", text="one"), DetectLanguageInput(id="2", text="two"), DetectLanguageInput(id="3", text="three"), DetectLanguageInput(id="4", text="four"), DetectLanguageInput(id="5", text="five") ] response = await client.detect_language(docs) for idx, doc in enumerate(response): self.assertEqual(str(idx + 1), doc.id) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer(client_kwargs={"text_analytics_account_key": ""}) async def test_empty_credential_class(self, client): with self.assertRaises(ClientAuthenticationError): response = await client.detect_language( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer(client_kwargs={"text_analytics_account_key": "xxxxxxxxxxxx"}) async def test_bad_credentials(self, client): with self.assertRaises(ClientAuthenticationError): response = await client.detect_language( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_bad_document_input(self, client): docs = "This is the wrong type" with self.assertRaises(TypeError): response = await client.detect_language(docs) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_mixing_inputs(self, client): docs = [ {"id": "1", "text": "Microsoft was founded by Bill Gates and Paul Allen."}, DetectLanguageInput(id="2", text="I did not like the hotel we stayed at. It was too expensive."), u"You cannot mix string input with the above documents" ] with self.assertRaises(TypeError): response = await client.detect_language(docs) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_out_of_order_ids(self, client): docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "22", "text": ""}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = await client.detect_language(docs) in_order = ["56", "0", "22", "19", "1"] for idx, resp in enumerate(response): self.assertEqual(resp.id, in_order[idx]) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_show_stats_and_model_version(self, client): def callback(response): self.assertIsNotNone(response) self.assertIsNotNone(response.model_version, msg=response.raw_response) self.assertIsNotNone(response.raw_response) self.assertEqual(response.statistics.document_count, 5) self.assertEqual(response.statistics.transaction_count, 4) self.assertEqual(response.statistics.valid_document_count, 4) self.assertEqual(response.statistics.erroneous_document_count, 1) docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "22", "text": ""}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = await client.detect_language( docs, show_stats=True, model_version="latest", raw_response_hook=callback ) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_batch_size_over_limit(self, client): docs = [u"hello world"] * 1050 with self.assertRaises(HttpResponseError): response = await client.detect_language(docs) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_country_hint(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed at. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = await client.detect_language(docs, country_hint="CA", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_dont_use_country_hint(self, client): def callback(resp): country_str = "\"countryHint\": \"\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed at. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = await client.detect_language(docs, country_hint="", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_per_item_dont_use_country_hint(self, client): def callback(resp): country_str = "\"countryHint\": \"\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) docs = [{"id": "1", "country_hint": "", "text": "I will go to the park."}, {"id": "2", "country_hint": "", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs, raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_country_hint_and_obj_input(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian."), DetectLanguageInput(id="2", text="Este es un document escrito en Español."), DetectLanguageInput(id="3", text="猫は幸せ"), ] response = await client.detect_language(docs, country_hint="CA", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_country_hint_and_dict_input(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs, country_hint="CA", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_country_hint_and_obj_per_item_hints(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian.", country_hint="CA"), DetectLanguageInput(id="4", text="Este es un document escrito en Español.", country_hint="CA"), DetectLanguageInput(id="3", text="猫は幸せ"), ] response = await client.detect_language(docs, country_hint="US", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_whole_batch_country_hint_and_dict_per_item_hints(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) docs = [{"id": "1", "country_hint": "US", "text": "I will go to the park."}, {"id": "2", "country_hint": "US", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs, country_hint="CA", raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer(client_kwargs={"default_country_hint": "CA"}) async def test_client_passed_default_country_hint(self, client): def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) def callback_2(resp): country_str = "\"countryHint\": \"DE\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs, raw_response_hook=callback) response = await client.detect_language(docs, country_hint="DE", raw_response_hook=callback_2) response = await client.detect_language(docs, raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() async def test_rotate_subscription_key(self, resource_group, location, text_analytics_account, text_analytics_account_key): credential = AzureKeyCredential(text_analytics_account_key) client = TextAnalyticsClient(text_analytics_account, credential) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs) self.assertIsNotNone(response) credential.update("xxx") # Make authentication fail with self.assertRaises(ClientAuthenticationError): response = await client.detect_language(docs) credential.update(text_analytics_account_key) # Authenticate successfully again response = await client.detect_language(docs) self.assertIsNotNone(response) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_user_agent(self, client): def callback(resp): self.assertIn("azsdk-python-ai-textanalytics/{} Python/{} ({})".format( VERSION, platform.python_version(), platform.platform()), resp.http_request.headers["User-Agent"] ) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed at."}, {"id": "3", "text": "The restaurant had really good food."}] response = await client.detect_language(docs, raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_document_attribute_error_no_result_attribute(self, client): docs = [{"id": "1", "text": ""}] response = await client.detect_language(docs) # Attributes on DocumentError self.assertTrue(response[0].is_error) self.assertEqual(response[0].id, "1") self.assertIsNotNone(response[0].error) # Result attribute not on DocumentError, custom error message try: primary_language = response[0].primary_language except AttributeError as custom_error: self.assertEqual( custom_error.args[0], '\'DocumentError\' object has no attribute \'primary_language\'. ' 'The service was unable to process this document:\nDocument Id: 1\nError: ' 'InvalidDocument - Document text is empty.\n' ) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_document_attribute_error_nonexistent_attribute(self, client): docs = [{"id": "1", "text": ""}] response = await client.detect_language(docs) # Attribute not found on DocumentError or result obj, default behavior/message try: primary_language = response[0].attribute_not_on_result_or_error except AttributeError as default_behavior: self.assertEqual( default_behavior.args[0], '\'DocumentError\' object has no attribute \'attribute_not_on_result_or_error\'' ) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_bad_model_version_error(self, client): docs = [{"id": "1", "language": "english", "text": "I did not like the hotel we stayed at."}] try: result = await client.detect_language(docs, model_version="bad") except HttpResponseError as err: self.assertEqual(err.error.code, "ModelVersionIncorrect") self.assertIsNotNone(err.error.message) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_document_errors(self, client): text = "" for _ in range(5121): text += "x" docs = [{"id": "1", "text": ""}, {"id": "2", "text": text}] doc_errors = await client.detect_language(docs) self.assertEqual(doc_errors[0].error.code, "InvalidDocument") self.assertIsNotNone(doc_errors[0].error.message) self.assertEqual(doc_errors[1].error.code, "InvalidDocument") self.assertIsNotNone(doc_errors[1].error.message) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_document_warnings(self, client): # No warnings actually returned for detect_language. Will update when they add docs = [ {"id": "1", "text": "This won't actually create a warning :'("}, ] result = await client.detect_language(docs) for doc in result: doc_warnings = doc.warnings self.assertEqual(len(doc_warnings), 0) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_not_passing_list_for_docs(self, client): docs = {"id": "1", "text": "hello world"} with pytest.raises(TypeError) as excinfo: await client.detect_language(docs) assert "Input documents cannot be a dict" in str(excinfo.value) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_missing_input_records_error(self, client): docs = [] with pytest.raises(ValueError) as excinfo: await client.detect_language(docs) assert "Input documents can not be empty or None" in str(excinfo.value) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_passing_none_docs(self, client): with pytest.raises(ValueError) as excinfo: await client.detect_language(None) assert "Input documents can not be empty or None" in str(excinfo.value) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_duplicate_ids_error(self, client): # Duplicate Ids docs = [{"id": "1", "text": "hello world"}, {"id": "1", "text": "I did not like the hotel we stayed at."}] try: result = await client.detect_language(docs) except HttpResponseError as err: self.assertEqual(err.error.code, "InvalidDocument") self.assertIsNotNone(err.error.message) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_batch_size_over_limit_error(self, client): # Batch size over limit docs = [u"hello world"] * 1001 try: response = await client.detect_language(docs) except HttpResponseError as err: self.assertEqual(err.error.code, "InvalidDocumentBatch") self.assertIsNotNone(err.error.message) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_invalid_country_hint_method(self, client): docs = [{"id": "1", "text": "hello world"}] response = await client.detect_language(docs, country_hint="United States") self.assertEqual(response[0].error.code, "InvalidCountryHint") self.assertIsNotNone(response[0].error.message) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_invalid_country_hint_docs(self, client): docs = [{"id": "1", "country_hint": "United States", "text": "hello world"}] response = await client.detect_language(docs) self.assertEqual(response[0].error.code, "InvalidCountryHint") self.assertIsNotNone(response[0].error.message) @GlobalTextAnalyticsAccountPreparer() async def test_country_hint_none(self, resource_group, location, text_analytics_account, text_analytics_account_key): client = TextAnalyticsClient(text_analytics_account, AzureKeyCredential(text_analytics_account_key)) # service will eventually support this and we will not need to send "" for input == "none" documents = [{"id": "0", "country_hint": "none", "text": "This is written in English."}] documents2 = [DetectLanguageInput(id="1", country_hint="none", text="This is written in English.")] def callback(response): country_str = "\"countryHint\": \"\"" country = response.http_request.body.count(country_str) self.assertEqual(country, 1) # test dict result = await client.detect_language(documents, raw_response_hook=callback) # test DetectLanguageInput result2 = await client.detect_language(documents2, raw_response_hook=callback) # test per-operation result3 = await client.detect_language(documents=["this is written in english"], country_hint="none", raw_response_hook=callback) # test client default new_client = TextAnalyticsClient(text_analytics_account, AzureKeyCredential(text_analytics_account_key), default_country_hint="none") result4 = await new_client.detect_language(documents=["this is written in english"], raw_response_hook=callback) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_country_hint_kwarg(self, client): def callback(response): country_str = "\"countryHint\": \"ES\"" self.assertEqual(response.http_request.body.count(country_str), 1) self.assertIsNotNone(response.model_version) self.assertIsNotNone(response.statistics) res = await client.detect_language( documents=["this is written in english"], model_version="latest", show_stats=True, country_hint="ES", raw_response_hook=callback ) @GlobalTextAnalyticsAccountPreparer() async def test_pass_cls(self, resource_group, location, text_analytics_account, text_analytics_account_key): def callback(pipeline_response, deserialized, _): return "cls result" text_analytics = TextAnalyticsClient(text_analytics_account, AzureKeyCredential(text_analytics_account_key)) res = await text_analytics.detect_language( documents=["Test passing cls to endpoint"], cls=callback ) assert res == "cls result" @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer(client_kwargs={"api_version": TextAnalyticsApiVersion.V3_0}) async def test_string_index_type_not_fail_v3(self, client): # make sure that the addition of the string_index_type kwarg for v3.1-preview.1 doesn't # cause v3.0 calls to fail await client.detect_language(["please don't fail"]) @GlobalTextAnalyticsAccountPreparer() @TextAnalyticsClientPreparer() async def test_disable_service_logs(self, client): def callback(resp): assert resp.http_request.query['loggingOptOut'] await client.detect_language( documents=["Test for logging disable"], disable_service_logs=True, raw_response_hook=callback, )
44.2336
141
0.653657
4a1a9a27bb1a4b82e7e785fa4cbafe968a1c3547
626
py
Python
runs/par-nobro-iter00600.cfg.py
janpawellek/broeval
57e31aa6e354d0bba88103b44910483e8d982d00
[ "MIT" ]
null
null
null
runs/par-nobro-iter00600.cfg.py
janpawellek/broeval
57e31aa6e354d0bba88103b44910483e8d982d00
[ "MIT" ]
null
null
null
runs/par-nobro-iter00600.cfg.py
janpawellek/broeval
57e31aa6e354d0bba88103b44910483e8d982d00
[ "MIT" ]
null
null
null
# Write results to this file OUTFILE = 'runs/par-nobro-iter00600.result.csv' # Source computers for the requests SOURCE = ['10.0.0.1'] # Should Bro be enabled on the source machines? SOURCE_BRO = [False] # Target machines for the requests (aka server) TARGET = ['10.0.0.2'] # Should Bro be enabled on the target machines? TARGET_BRO = [False] # Connection mode (par = parallel, seq = sequential) MODE = 'par' # Number of evaluation repetitions to run EPOCHS = 100 # Number of iterations to be run in each evaluation repetition ITER = 600 # Size of the file to be downloaded from target (in Bytes * 10^SIZE) SIZE = 5
21.586207
68
0.722045
4a1a9a3a8ddbff60a412ac97623216b4d3f845c0
20,540
py
Python
vino_nsyss2020/utils/GPU_models.py
onurbarut/Encrypted_Malware_Detection
2d2323c1e9ea3313b76bc2e37b68a9126587c6cd
[ "Apache-2.0" ]
1
2022-02-25T00:50:35.000Z
2022-02-25T00:50:35.000Z
vino_nsyss2020/utils/GPU_models.py
onurbarut/Encrypted_Malware_Detection
2d2323c1e9ea3313b76bc2e37b68a9126587c6cd
[ "Apache-2.0" ]
1
2022-03-12T01:15:51.000Z
2022-03-23T07:34:58.000Z
vino_nsyss2020/utils/GPU_models.py
onurbarut/Encrypted_Malware_Detection
2d2323c1e9ea3313b76bc2e37b68a9126587c6cd
[ "Apache-2.0" ]
null
null
null
import numpy as np import tensorflow as tf from tensorflow.keras.utils import plot_model from tensorflow.keras.models import Sequential, Model, model_from_json from tensorflow.keras.layers import Input, Dense, Dropout, BatchNormalization, Flatten, Conv1D, MaxPooling1D, Conv2D, MaxPooling2D def one_hot(y_, n_classes=None): # Function to encode neural one-hot output labels from number indexes # e.g.: # one_hot(y_=[[5], [0], [3]], n_classes=6): # return [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] if n_classes is None: n_classes = int(int(max(y_))+1) y_ = y_.reshape(len(y_)) return np.eye(n_classes)[np.array(y_, dtype=np.int32)] # Returns FLOATS class CNN_1D: """docstring for CNN_1D""" def __init__(self, input_shape, n_classes, filters=250, kernel_size=3, strides=1, dense_units=128, dropout_rate=0., CNN_layers=2, clf_reg=1e-4): # Model Definition #raw_inputs = Input(shape=(X_train.shape[1],1,)) raw_inputs = Input(shape=input_shape) xcnn = Conv1D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv1D_1')(raw_inputs) xcnn = BatchNormalization()(xcnn) xcnn = MaxPooling1D(pool_size=2, padding='same')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) for i in range(1, CNN_layers): xcnn = Conv1D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv1D_'+str(i+1))(xcnn) xcnn = BatchNormalization()(xcnn) xcnn = MaxPooling1D(pool_size=2, padding='same')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) # we flatten for dense layer xcnn = Flatten()(xcnn) xcnn = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC1_layer')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) xcnn = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC2_layer')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) top_level_predictions = Dense(n_classes, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='top_level_output')(xcnn) model = Model(inputs=raw_inputs, outputs=top_level_predictions) self.model = model self.n_classes = n_classes def train(self, X_train, y_train, X_val, y_val, n_batch, n_epochs, learning_rate, decay_rate, save_dir): if len(X_train.shape) < 3: X_train_1D = X_train.reshape(-1,X_train.shape[1],1) X_val_1D = X_val.reshape(-1,X_val.shape[1],1) else: X_train_1D = X_train X_val_1D = X_val print(self.model.summary()) # summarize layers plot_model(self.model, to_file=save_dir+'/model.png') # plot graph self.model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=learning_rate, decay=decay_rate), metrics=['accuracy']) # Train the model return self.model.fit(X_train_1D, one_hot(y_train, self.n_classes), batch_size=n_batch, epochs=n_epochs, validation_data=(X_val_1D, one_hot(y_val, self.n_classes))) def classify(self, data): if len(data.shape) < 3: X_test_1D = data.reshape(-1,data.shape[1],1) else: X_test_1D = data return self.model.predict(X_test_1D) class CNN_2D: """docstring for CNN_2D""" def __init__(self, input_shape, n_classes, filters=250, kernel_size=3, strides=1, dense_units=128, dropout_rate=0., CNN_layers=2, clf_reg=1e-4): # Model Definition #raw_inputs = Input(shape=(X_train.shape[1],1,)) raw_inputs = Input(shape=input_shape) xcnn = Conv2D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv2D_1')(raw_inputs) xcnn = BatchNormalization()(xcnn) xcnn = MaxPooling2D(pool_size=2, padding='same')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) for i in range(1, CNN_layers): xcnn = Conv2D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv2D_'+str(i+1))(xcnn) xcnn = BatchNormalization()(xcnn) xcnn = MaxPooling2D(pool_size=2, padding='same')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) # we flatten for dense layer xcnn = Flatten()(xcnn) xcnn = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC1_layer')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) xcnn = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC2_layer')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) top_level_predictions = Dense(n_classes, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='top_level_output')(xcnn) model = Model(inputs=raw_inputs, outputs=top_level_predictions) self.model = model self.n_classes = n_classes def train(self, X_train, y_train, X_val, y_val, n_batch, n_epochs, learning_rate, decay_rate, save_dir): if len(X_train.shape) > 2: X_train = X_train.reshape(-1, X_train.shape[1], X_train.shape[2], 1) X_val = X_val.reshape(-1, X_val.shape[1], X_val.shape[2], 1) print(self.model.summary()) # summarize layers plot_model(self.model, to_file=save_dir+'/model.png') # plot graph self.model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=learning_rate, decay=decay_rate), metrics=['accuracy']) # Train the model return self.model.fit(X_train, one_hot(y_train, self.n_classes), batch_size=n_batch, epochs=n_epochs, validation_data=(X_val, one_hot(y_val, self.n_classes))) def classify(self, data): if len(data.shape) > 2: return self.model.predict(data.reshape(-1, data.shape[1], data.shape[2], 1)) else: return self.model.predict(data) class LSTM: """docstring for LSTM""" def __init__(self, input_shape, n_classes, dense_units=128, dropout_rate=0., LSTM_layers=2, LSTM_units=128, lstm_reg=1e-4, clf_reg=1e-4): # Model Definition #raw_inputs = Input(shape=(X_train.shape[1],1,)) raw_inputs = Input(shape=input_shape) if LSTM_layers == 1: xlstm = tf.keras.layers.LSTM(LSTM_units, return_sequences=False, kernel_regularizer=tf.keras.regularizers.l2(lstm_reg), recurrent_regularizer=tf.keras.regularizers.l2(lstm_reg), bias_regularizer=tf.keras.regularizers.l2(lstm_reg), activity_regularizer=tf.keras.regularizers.l1(lstm_reg))(raw_inputs) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) else: xlstm = tf.keras.layers.LSTM(LSTM_units, return_sequences=True, kernel_regularizer=tf.keras.regularizers.l2(lstm_reg), recurrent_regularizer=tf.keras.regularizers.l2(lstm_reg), bias_regularizer=tf.keras.regularizers.l2(lstm_reg), activity_regularizer=tf.keras.regularizers.l1(lstm_reg))(raw_inputs) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) for i in range(1, LSTM_layers-1): xlstm = tf.keras.layers.LSTM(LSTM_units, return_sequences=True, kernel_regularizer=tf.keras.regularizers.l2(lstm_reg), recurrent_regularizer=tf.keras.regularizers.l2(lstm_reg), bias_regularizer=tf.keras.regularizers.l2(lstm_reg), activity_regularizer=tf.keras.regularizers.l1(lstm_reg))(xlstm) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) xlstm = tf.keras.layers.LSTM(LSTM_units, return_sequences=False, kernel_regularizer=tf.keras.regularizers.l2(lstm_reg), recurrent_regularizer=tf.keras.regularizers.l2(lstm_reg), bias_regularizer=tf.keras.regularizers.l2(lstm_reg), activity_regularizer=tf.keras.regularizers.l1(lstm_reg))(xlstm) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) top_level_predictions = Dense(n_classes, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='top_level_output')(xlstm) model = Model(inputs=raw_inputs, outputs=top_level_predictions) self.model = model self.n_classes = n_classes def train(self, X_train, y_train, X_val, y_val, n_batch, n_epochs, learning_rate, decay_rate, save_dir): print(self.model.summary()) # summarize layers plot_model(self.model, to_file=save_dir+'/model.png') # plot graph self.model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=learning_rate, decay=decay_rate), metrics=['accuracy']) # Train the model return self.model.fit(X_train, one_hot(y_train, self.n_classes), batch_size=n_batch, epochs=n_epochs, validation_data=(X_val, one_hot(y_val, self.n_classes))) def classify(self, data): return self.model.predict(data) class CNN_LSTM: """docstring for 1D_CNN_LSTM""" def __init__(self, input_shape, n_classes, filters=32, kernel_size=5, strides=1, dense_units=200, dropout_rate=0., LSTM_units=200, lstm_reg=1e-4, clf_reg=1e-4): # Model Definition #raw_inputs = Input(shape=(X_train.shape[1],1,)) raw_inputs = Input(shape=input_shape) xcnn = Conv1D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv1D_1')(raw_inputs) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) xcnn = Conv1D(filters, (kernel_size), padding='same', activation='relu', strides=strides, kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='Conv1D_2')(xcnn) xcnn = BatchNormalization()(xcnn) xcnn = MaxPooling1D(pool_size=2, padding='same')(xcnn) if dropout_rate != 0: xcnn = Dropout(dropout_rate)(xcnn) xlstm = tf.keras.layers.LSTM(LSTM_units, return_sequences=False, kernel_regularizer=tf.keras.regularizers.l2(lstm_reg), recurrent_regularizer=tf.keras.regularizers.l2(lstm_reg), bias_regularizer=tf.keras.regularizers.l2(lstm_reg), activity_regularizer=tf.keras.regularizers.l1(lstm_reg))(xcnn) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) # we flatten for dense layer xlstm = Flatten()(xlstm) xlstm = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC1_layer')(xlstm) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) xlstm = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC2_layer')(xlstm) if dropout_rate != 0: xlstm = Dropout(dropout_rate)(xlstm) top_level_predictions = Dense(n_classes, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='top_level_output')(xlstm) model = Model(inputs=raw_inputs, outputs=top_level_predictions) self.model = model self.n_classes = n_classes def train(self, X_train, y_train, X_val, y_val, n_batch, n_epochs, learning_rate, decay_rate, save_dir): if len(X_train.shape) < 3: X_train_1D = X_train.reshape(-1,X_train.shape[1],1) X_val_1D = X_val.reshape(-1,X_val.shape[1],1) else: X_train_1D = X_train X_val_1D = X_val print(self.model.summary()) # summarize layers plot_model(self.model, to_file=save_dir+'/model.png') # plot graph self.model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=learning_rate, decay=decay_rate), metrics=['accuracy']) # Train the model return self.model.fit(X_train_1D, one_hot(y_train, self.n_classes), batch_size=n_batch, epochs=n_epochs, validation_data=(X_val_1D, one_hot(y_val, self.n_classes))) def classify(self, data): if len(data.shape) < 3: X_test_1D = data.reshape(-1,data.shape[1],1) else: X_test_1D = data return self.model.predict(X_test_1D) class ANN: """docstring for ANN""" def __init__(self, input_shape, n_classes, dense_units=128, dropout_rate=0., clf_reg=1e-4): # Model Definition #raw_inputs = Input(shape=(X_train.shape[1],1,)) raw_inputs = Input(shape=input_shape) xann = Dense(dense_units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='FC1_layer')(raw_inputs) if dropout_rate != 0: xann = Dropout(dropout_rate)(xann) top_level_predictions = Dense(n_classes, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(clf_reg), bias_regularizer=tf.keras.regularizers.l2(clf_reg), activity_regularizer=tf.keras.regularizers.l1(clf_reg), name='top_level_output')(xann) model = Model(inputs=raw_inputs, outputs=top_level_predictions) self.model = model self.n_classes = n_classes def train(self, X_train, y_train, X_val, y_val, n_batch, n_epochs, learning_rate, decay_rate, save_dir): if len(X_train.shape) < 3: X_train_1D = X_train.reshape(-1,X_train.shape[1],) X_val_1D = X_val.reshape(-1,X_val.shape[1],) else: X_train_1D = X_train X_val_1D = X_val print(self.model.summary()) # summarize layers plot_model(self.model, to_file=save_dir+'/model.png') # plot graph self.model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=learning_rate, decay=decay_rate), metrics=['accuracy']) # Train the model return self.model.fit(X_train_1D, one_hot(y_train, self.n_classes), batch_size=n_batch, epochs=n_epochs, validation_data=(X_val_1D, one_hot(y_val, self.n_classes))) def classify(self, data): if len(data.shape) < 3: X_test_1D = data.reshape(-1,data.shape[1],) else: X_test_1D = data return self.model.predict(X_test_1D)
42.702703
130
0.558179
4a1a9a7064fbb1b719f52728ae7cfe44c41c3b47
2,928
py
Python
test_seirmodel.py
tomkooij/covid19
a7d8a5781ed84b4a59652fc4575c15679de7898a
[ "MIT" ]
6
2020-09-27T17:21:23.000Z
2022-02-06T11:20:48.000Z
test_seirmodel.py
tomkooij/covid19
a7d8a5781ed84b4a59652fc4575c15679de7898a
[ "MIT" ]
3
2020-11-23T13:44:31.000Z
2021-07-10T20:10:38.000Z
test_seirmodel.py
tomkooij/covid19
a7d8a5781ed84b4a59652fc4575c15679de7898a
[ "MIT" ]
5
2020-11-23T13:29:59.000Z
2021-12-25T02:23:32.000Z
"""Test cases for code validation.""" import numpy as np import pandas as pd from seirmodel import EpidemyModel def test_EpidemyModel(): """Test case""" em = EpidemyModel( R=2, T_lat=2.2, T_i2h=3.5, T_i2d=5.4, ihr=0.1, ifr=0.01, dispersion=0.0) # print(list(em.estate.labels)) expected_labels = [ 'Sus', 'La0', 'La1', 'La2', 'Sy0', 'Sy1', 'Ho0', 'Ho1', 'Ded', 'Rec', 'NewL', 'NewH', 'NewD' ] assert list(em.estate.labels) == expected_labels matf = em.mat_as_df() assert list(matf.index) == expected_labels assert list(matf.columns) == expected_labels expected_matrix = np.array([ [ 1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0.2,0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0.8,1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0.03,0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0.07,1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0.09,0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0.01,1, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0.9, 0, 0.9 ,0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0.07,1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0.01,1, 0, 0, 0, 0, 0 ]]) assert np.allclose(matf.to_numpy(), expected_matrix) # check preservation of number of people (ignore 'newX' rows/columns) submat = matf.loc['Sus':'Rec', 'Sus':'Rec'] assert np.allclose(submat.sum(axis=0), 1) def test_EpModel_disp(interactive=False): n = 4 labels = [f'Foo{i}' for i in range(n)] matf = pd.DataFrame(np.zeros((n, n)), index=labels, columns=labels) EpidemyModel._set_transfers_with_dispersion( matf, 'Foo', 3, 0.0) if interactive: print('First matrix:\n{repr(matf.to_numpy())}') expected_mat = np.array([ [0., 0., 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.]]) assert np.allclose(matf.to_numpy(), expected_mat) EpidemyModel._set_transfers_with_dispersion(matf, 'Foo', 3, 0.2) if interactive: print('Second matrix:\n{repr(matf.to_numpy())}') expected_mat = np.array([ [0., 0., 0., 0.], [1., 0.02, 0., 0.], [0., 0.96, 0., 0.], [0., 0.02, 1., 0.]]) assert np.allclose(matf.to_numpy(), expected_mat) n = 6 labels = [f'Foo{i}' for i in range(n)] matf = pd.DataFrame(np.zeros((n, n)), index=labels, columns=labels) EpidemyModel._set_transfers_with_dispersion(matf, 'Foo', 5, 1) if interactive: print('Third matrix:\n{repr(matf.to_numpy())}') if __name__ == '__main__': test_EpModel_disp() test_EpidemyModel()
33.655172
73
0.486339
4a1a9abc02e8fa90f470512daf2d6d720873bc83
3,494
py
Python
retired/old_version/original/example/servers/Speech.py
gecko-robotics/pygecko
a809593a894d8e591e992455a01aa73d8f7b7981
[ "MIT" ]
3
2019-06-13T07:52:12.000Z
2020-07-05T13:28:43.000Z
retired/old_version/original/example/servers/Speech.py
walchko/pygecko
a809593a894d8e591e992455a01aa73d8f7b7981
[ "MIT" ]
23
2017-07-07T01:29:33.000Z
2018-11-23T18:41:08.000Z
retired/old_version/original/example/servers/Speech.py
MomsFriendlyRobotCompany/pygecko
a809593a894d8e591e992455a01aa73d8f7b7981
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import division from __future__ import print_function import logging # logging import multiprocessing as mp # multiprocess import pygecko.lib.ZmqClass as zmq from pygecko.TTS import TTS from pygecko.Chatbot import Chatbot import speech_recognition class SphinxServer(mp.Process): def __init__(self, host='localhost', port=9000): """ """ # Initialize pyaudio # self.pyaudio_instance = pyaudio.PyAudio() # Create a speech recognizer mp.Process.__init__(self) self.host = host self.port = port logging.basicConfig(level=logging.DEBUG) self.logger = logging.getLogger(__name__) self.r = speech_recognition.Recognizer() # self.logger.info('soundserver stdin: ' + str(sys.stdin.fileno())) self.pub = zmq.Pub((host, port)) self.sub = zmq.Sub('text', (host, str(port + 1))) self.tts = TTS() self.tts.setOptions('-v Karen') # this works on macOS and say self.chatbot = Chatbot() print('WARNING ... I am going to move away from this') def __del__(self): """ Called when the AlexaAudio object is no longer needed. This closes the PyAudio instance. """ # Terminate the pyaudio instance # self.pyaudio_instance.terminate() pass def get_audio(self, timeout=None): """ Get audio from the microphone. The SpeechRecognition package is used to automatically stop listening when the user stops speaking. A timeout can also be specified. If the timeout is reached, the function returns None. This function can also be used for debugging purposes to read an example audio file. :param timeout: timeout in seconds, when to give up if the user did not speak. :return: the raw binary audio string (PCM) """ # Create a speech recognizer # r = speech_recognition.Recognizer() r = self.r audio = None # Open the microphone (and release is when done using "with") with speech_recognition.Microphone() as source: if timeout is None: # Prompt user to say something print("You can start talking now...") # TODO add sounds to prompt the user to do something, rather than text # Record audio until the user stops talking audio = r.listen(source) else: print("Start talking now, you have %d seconds" % timeout) # TODO add sounds to prompt the user to do something, rather than text try: audio = r.listen(source, timeout=timeout) except speech_recognition.WaitTimeoutError: return None if not audio: print('heard nothing') return audio def stt(self, audio): ret = self.r.recognize_sphinx(audio) # print('sphinx heard: {}'.format(ret)) return ret def getPCM(self, audio): # Convert audio to raw_data (PCM) raw_audio = audio.get_raw_data() return raw_audio def run(self): """ Main process run loop in: none out: none """ # main loop try: self.logger.info(str(self.name)+'['+str(self.pid)+'] started on ' + str(self.host) + ':' + str(self.port) + ', Daemon: '+str(self.daemon)) loop = True while loop: print('speak') audio = self.get_audio(5) if audio: txt = self.stt(audio) print('heard: {}'.format(txt)) txt = self.chatbot.run(txt) if txt == 'exit_loop': # self.tts.say('bye') loop = False elif txt: self.logger.debug('response' + txt) self.tts.say(txt) self.tts.say('Good bye ...') except KeyboardInterrupt: print('{} exiting'.format(__name__)) raise if __name__ == '__main__': t = SphinxServer() t.run()
27.296875
106
0.68403
4a1a9ae27be80cada7cfcf91702da5726f58f2ad
1,445
py
Python
extensions/jisho.py
TuxedoDiscord/TuxedoBot
77536b34c6778f3c97353c777cca5cd325bc16d3
[ "MIT" ]
5
2017-11-23T06:39:14.000Z
2018-02-05T16:03:26.000Z
extensions/jisho.py
TuxedoDiscord/TuxedoBot
77536b34c6778f3c97353c777cca5cd325bc16d3
[ "MIT" ]
11
2018-02-09T18:46:15.000Z
2018-04-12T19:05:11.000Z
extensions/jisho.py
TuxedoDiscord/TuxedoBot
77536b34c6778f3c97353c777cca5cd325bc16d3
[ "MIT" ]
7
2017-11-21T20:58:26.000Z
2018-02-05T14:50:52.000Z
#!/usr/bin/env python3 """jisho.org query command.""" import urllib.parse import requests import discord from discord.ext import commands BASE_URL = "http://jisho.org/api/v1/search/words" class Jisho: """A Japanese translation command.""" @commands.command(aliases=["jp"]) async def jisho(self, ctx, query): """Translate a string into Japanese""" with requests.get(BASE_URL, params={"keyword": query}) as response: data = response.json() if not data["data"]: await ctx.send("No matching result found on jisho.org.") jap = data["data"][0]["japanese"][0] senses = data["data"][0]["senses"][0] defs = ", ".join(senses["english_definitions"]) tags = senses["tags"] embed = discord.Embed(color=discord.Color.blurple()) embed.add_field(name="Kanji", value=str(jap.get("word"))) embed.add_field(name="Kana", value=str( jap.get("reading")), inline=False) embed.add_field(name="English", value=defs, inline=False) embed.add_field(name="Tags", value=tags) embed.set_thumbnail( url="https://www.tofugu.com/images/learn-japanese/jisho-org-9a549ffd.jpg") embed.set_footer(text="Powered by Jisho.org") await ctx.send(embed=embed) def setup(bot): """Set up the extension.""" bot.add_cog(Jisho())
31.413043
90
0.595156
4a1a9bac9d341358010e679e800f98f1451c2093
26,510
py
Python
pysolar/util.py
matthistuff/Decaying-Shelters-Rhino
38f5669f34da886bf4740f7fcaa9383872a1bf5b
[ "MIT" ]
null
null
null
pysolar/util.py
matthistuff/Decaying-Shelters-Rhino
38f5669f34da886bf4740f7fcaa9383872a1bf5b
[ "MIT" ]
1
2019-04-23T02:25:54.000Z
2019-04-23T12:41:50.000Z
pysolar/util.py
matthistuff/Decaying-Shelters-Rhino
38f5669f34da886bf4740f7fcaa9383872a1bf5b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2009-2010 Brandon Stafford # # This file is part of Pysolar. # # Pysolar is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Pysolar is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with Pysolar. If not, see <http://www.gnu.org/licenses/>. """Additional support functions for solar geometry, astronomy, radiation correlation :Original author: Simeon Nwaogaidu :Contact: SimeonObinna.Nwaogaidu AT lahmeyer DOT de :Additional author: Holger Zebner :Contact: holger.zebner AT lahmeyer DOT de :Additional author: Brandon Stafford """ from datetime import datetime as dt import math import pytz from pytz import all_timezones import solar # Some default constants AM_default = 2.0 # Default air mass is 2.0 TL_default = 1.0 # Default Linke turbidity factor is 1.0 SC_default = 1367.0 # Solar constant in W/m^2 is 1367.0. Note that this value could vary by +/-4 W/m^2 TY_default = 365 # Total year number from 1 to 365 days elevation_default = 0.0 # Default elevation is 0.0 # Useful equations for analysis def GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone): """This function calculates the astronomical sunrise and sunset times in local time. WARNING: THIS FUNCTION IS BROKEN. It relies on an unknown library called conversions_time, and another library called decimaldegrees that does not appear to have an active maintainer. TODO: Fix this function so it works without creating unnecessary dependencies. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) timezone : float timezone as numerical value: GMT offset in hours. A time zone is a region of the earth that has uniform standard time, usually referred to as the local time. Returns ------- sunrise_time_dt : datetime.datetime Sunrise time in local time as datetime_obj. sunset_time_dt : datetime.datetime Sunset time in local time as datetime_obj. References ---------- .. [1] http://www.skypowerinternational.com/pdf/Radiation/7.1415.01.121_cm121_bed-anleitung_engl.pdf .. [2] http://pysolar.org/ Examples -------- >>> gmt_offset = 1 >>> lat = 50.111512 >>> lon = 8.680506 >>> timezone_local = 'Europe/Berlin' >>> utct = dt.datetime.utcnow() >>> sr, ss = sb.GetSunriseSunset(lat, lon, utct, gmt_offset) >>> print 'sunrise: ', sr >>> print 'sunset:', ss """ # Day of the year day = solar.GetDayOfYear(utc_datetime) # Solar hour angle SHA = ((timezone) * 15.0 - longitude_deg) # Time adjustment TT = (279.134 + 0.985647 * day) * math.pi / 180 # Time adjustment in hours time_adst = ((5.0323 - 100.976 * math.sin(TT) + 595.275 * math.sin(2 * TT) + 3.6858 * math.sin(3 * TT) - 12.47 * math.sin(4 * TT) - 430.847 * math.cos(TT) + 12.5024 * math.cos(2 * TT) + 18.25 * math.cos(3 * TT)) / 3600) # Time of noon TON = (12 + (SHA / 15.0) - time_adst) sunn = (math.pi / 2 - (23.45 * math.pi / 180) * math.tan(latitude_deg * math.pi / 180) * math.cos(2 * math.pi * day / 365.25)) * (180 / (math.pi * 15)) # Sunrise_time in hours sunrise_time = (TON - sunn + time_adst) # Sunset_time in hours sunset_time = (TON + sunn - time_adst) sunrise_time_dt = date_with_decimal_hour(utc_datetime, sunrise_time) sunset_time_dt = date_with_decimal_hour(utc_datetime, sunset_time) return sunrise_time_dt, sunset_time_dt def GetSunriseTime(latitude_deg, longitude_deg, utc_datetime, timezone): "Wrapper for GetSunriseSunset that returns just the sunrise time" sr, ss = GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone) return sr def GetSunsetTime(latitude_deg, longitude_deg, utc_datetime, timezone): "Wrapper for GetSunriseSunset that returns just the sunset time" sr, ss = GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone) return ss def mean_earth_sun_distance(utc_datetime): """Mean Earth-Sun distance is the arithmetical mean of the maximum and minimum distances between a planet (Earth) and the object about which it revolves (Sun). However, the function is used to calculate the Mean earth sun distance. Parameters ---------- utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) Returns ------- KD : float Mean earth sun distance References ---------- .. [1] http://sunbird.jrc.it/pvgis/solres/solmod3.htm#clear-sky%20radiation .. [2] R. aguiar and et al, "The ESRA user guidebook, vol. 2. database", models and exploitation software-Solar radiation models, p.113 """ return (1 - (0.0335 * math.sin(360 * ((solar.GetDayOfYear(utc_datetime)) - 94)) / (365))) def extraterrestrial_irrad(utc_datetime, latitude_deg, longitude_deg, SC=SC_default): """Equation calculates Extratrestrial radiation. Solar radiation incident outside the earth's atmosphere is called extraterrestrial radiation. On average the extraterrestrial irradiance is 1367 Watts/meter2 (W/m2). This value varies by + or - 3 percent as the earth orbits the sun. The earth's closest approach to the sun occurs around January 4th and it is furthest from the sun around July 5th. Parameters ---------- utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. SC : float The solar constant is the amount of incoming solar electromagnetic radiation per unit area, measured on the outer surface of Earth's atmosphere in a plane perpendicular to the rays.It is measured by satellite to be roughly 1366 watts per square meter (W/m^2) Returns ------- EXTR1 : float Extraterrestrial irradiation References ---------- .. [1] http://solardat.uoregon.edu/SolarRadiationBasics.html .. [2] Dr. J. Schumacher and et al,"INSEL LE(Integrated Simulation Environment Language)Block reference",p.68 """ day = solar.GetDayOfYear(utc_datetime) ab = math.cos(2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0) / (365.0)) bc = math.sin(2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0) / (365.0)) cd = math.cos(2 * (2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0) / (365.0))) df = math.sin(2 * (2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0) / (365.0))) decl = solar.GetDeclination(day) ha = solar.GetHourAngle(utc_datetime, longitude_deg) ZA = math.sin(latitude_deg) * math.sin(decl) + math.cos(latitude_deg) * math.cos(decl) * math.cos(ha) return SC * ZA * (1.00010 + 0.034221 * ab + 0.001280 * bc + 0.000719 * cd + 0.000077 * df) def declination_degree(utc_datetime, TY=TY_default): """The declination of the sun is the angle between Earth's equatorial plane and a line between the Earth and the sun. It varies between 23.45 degrees and -23.45 degrees, hitting zero on the equinoxes and peaking on the solstices. Parameters ---------- utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) TY : float Total number of days in a year. eg. 365 days per year,(no leap days) Returns ------- DEC : float The declination of the Sun References ---------- .. [1] http://pysolar.org/ """ return 23.45 * math.sin((2 * math.pi / (TY)) * ((solar.GetDayOfYear(utc_datetime)) - 81)) def solarelevation_function_clear(latitude_deg, longitude_deg, utc_datetime, temperature_celsius=25, pressure_millibars=1013.25, elevation=elevation_default): """Equation calculates Solar elevation function for clear sky type. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. Returns ------- SOLALTC : float Solar elevation function clear sky References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ altitude = solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars) return (0.038175 + (1.5458 * (math.sin(altitude))) + ((-0.59980) * (0.5 * (1 - math.cos(2 * (altitude)))))) def solarelevation_function_overcast(latitude_deg, longitude_deg, utc_datetime, elevation=elevation_default, temperature_celsius=25, pressure_millibars=1013.25): """ The function calculates solar elevation function for overcast sky type. This associated hourly overcast radiation model is based on the estimation of the overcast sky transmittance with the sun directly overhead combined with the application of an over sky elavation function to estimate the overcast day global irradiation value at any solar elevation. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars Returns ------- SOLALTO : float Solar elevation function overcast References ---------- .. [1] Prof. Peter Tregenza,"Solar radiation and daylight models", p.89. .. [2] Also accessible through Google Books: http://tinyurl.com/5kdbwu Tariq Muneer, "Solar Radiation and Daylight Models, Second Edition: For the Energy Efficient Design of Buildings" """ altitude = solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars) return ((-0.0067133) + (0.78600 * (math.sin(altitude)))) + (0.22401 * (0.5 * (1 - math.cos(2 * altitude)))) def diffuse_transmittance(TL=TL_default): """Equation calculates the Diffuse_transmittance and the is the Theoretical Diffuse Irradiance on a horizontal surface when the sun is at the zenith. Parameters ---------- TL : float Linke turbidity factor Returns ------- DT : float diffuse_transmittance References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ return ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL))) def diffuse_underclear(latitude_deg, longitude_deg, utc_datetime, elevation=elevation_default, temperature_celsius=25, pressure_millibars=1013.25, TL=TL_default): """Equation calculates diffuse radiation under clear sky conditions. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars TL : float Linke turbidity factor Returns ------- DIFFC : float Diffuse Irradiation under clear sky References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ DT = ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL))) altitude = solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars) return mean_earth_sun_distance(utc_datetime) * DT * altitude def diffuse_underovercast(latitude_deg, longitude_deg, utc_datetime, elevation=elevation_default, temperature_celsius=25, pressure_millibars=1013.25, TL=TL_default): """Function calculates the diffuse radiation under overcast conditions. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars TL : float Linke turbidity factor Returns ------- DIFOC : float Diffuse Irradiation under overcast References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ DT = ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL))) DIFOC = ((mean_earth_sun_distance(utc_datetime) ) * (DT) * (solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars))) return DIFOC def direct_underclear(latitude_deg, longitude_deg, utc_datetime, temperature_celsius=25, pressure_millibars=1013.25, TY=TY_default, AM=AM_default, TL=TL_default, elevation=elevation_default): """Equation calculates direct radiation under clear sky conditions. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars TY : float Total number of days in a year. eg. 365 days per year,(no leap days) AM : float Air mass. An Air Mass is a measure of how far light travels through the Earth's atmosphere. One air mass, or AM1, is the thickness of the Earth's atmosphere. Air mass zero (AM0) describes solar irradiance in space, where it is unaffected by the atmosphere. The power density of AM1 light is about 1,000 W/m^2 TL : float Linke turbidity factor elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. Returns ------- DIRC : float Direct Irradiation under clear References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ KD = mean_earth_sun_distance(utc_datetime) DEC = declination_degree(utc_datetime, TY) DIRC = (1367 * KD * math.exp(-0.8662 * (AM) * (TL) * (DEC) ) * math.sin(solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars))) return DIRC def global_irradiance_clear(DIRC, DIFFC, latitude_deg, longitude_deg, utc_datetime, temperature_celsius=25, pressure_millibars=1013.25, TY=TY_default, AM=AM_default, TL=TL_default, elevation=elevation_default): """Equation calculates global irradiance under clear sky conditions. Parameters ---------- DIRC : float Direct Irradiation under clear DIFFC : float Diffuse Irradiation under clear sky latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. TY : float Total number of days in a year. eg. 365 days per year,(no leap days) AM : float Air mass. An Air Mass is a measure of how far light travels through the Earth's atmosphere. One air mass, or AM1, is the thickness of the Earth's atmosphere. Air mass zero (AM0) describes solar irradiance in space, where it is unaffected by the atmosphere. The power density of AM1 light is about 1,000 W/m. TL : float Linke turbidity factor elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. Returns ------- ghic : float Global Irradiation under clear sky References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ DIRC = direct_underclear(latitude_deg, longitude_deg, utc_datetime, TY, AM, TL, elevation, temperature_celsius=25, pressure_millibars=1013.25) DIFFC = diffuse_underclear(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius=25, pressure_millibars=1013.25) ghic = (DIRC + DIFFC) return ghic def global_irradiance_overcast(latitude_deg, longitude_deg, utc_datetime, elevation=elevation_default, temperature_celsius=25, pressure_millibars=1013.25): """Calculated Global is used to compare to the Diffuse under overcast conditions. Under overcast skies, global and diffuse are expected to be equal due to the absence of the beam component. Parameters ---------- latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) elevation : float The elevation of a geographic location is its height above a fixed reference point, often the mean sea level. temperature_celsius : float Temperature is a physical property of a system that underlies the common notions of hot and cold. pressure_millibars : float pressure_millibars Returns ------- ghioc : float Global Irradiation under overcast sky References ---------- .. [1] S. Younes, R.Claywell and el al, "Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ ghioc = (572 * (solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, elevation, temperature_celsius, pressure_millibars))) return ghioc def diffuse_ratio(DIFF_data, ghi_data): """Function calculates the Diffuse ratio. Parameters ---------- DIFF_data : array_like Diffuse horizontal irradiation data ghi_data : array_like global horizontal irradiation data array Returns ------- K : float diffuse_ratio References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ K = DIFF_data / ghi_data return K def clear_index(ghi_data, utc_datetime, latitude_deg, longitude_deg): """This calculates the clear index ratio. Parameters ---------- ghi_data : array_like global horizontal irradiation data array utc_datetime : date_object utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) latitude_deg : float latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a sphere. longitude_deg : float longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the Greenwich meridian. Returns ------- KT : float Clear index ratio References ---------- .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed new approaches", energy 30 (2005), pp 1533 - 1549. """ EXTR1 = extraterrestrial_irrad(utc_datetime, latitude_deg, longitude_deg) KT = (ghi_data / EXTR1) return KT def date_with_decimal_hour(date_utc, hour_decimal): """This converts dates with decimal hour to datetime_hour. An improved version :mod:`conversions_time` Parameters ---------- datetime : datetime.datetime A datetime object is a single object containing all the information from a date object and a time object. hour_decimal : datetime.datetime An hour is a unit of time 60 minutes, or 3,600 seconds in length. Returns -------. datetime_hour : datetime.datetime datetime_hour """ hour_dms = (int(hour_decimal), int((hour_decimal - int(hour_decimal)) * 60), 0,) datetime_hour = dt(date_utc.year, date_utc.month, date_utc.day, hour_dms[0], hour_dms[1], int(hour_dms[2])) return datetime_hour
39.626308
266
0.646247
4a1a9c316c33e460b47bee597d85a4509e9b9544
3,254
py
Python
dataset.py
atkirtland/pyffe
f6788a70ed495fb7dd3721ad2f8fc876cd09ca13
[ "MIT" ]
null
null
null
dataset.py
atkirtland/pyffe
f6788a70ed495fb7dd3721ad2f8fc876cd09ca13
[ "MIT" ]
null
null
null
dataset.py
atkirtland/pyffe
f6788a70ed495fb7dd3721ad2f8fc876cd09ca13
[ "MIT" ]
null
null
null
import os from collections import Counter import numpy as np import pandas as pd import pyffe # DataSubset is DEPRECATED class DataSubset(object): def __init__(self, parent, list_file_name): self.parent = parent self.list_file = list_file_name self.list_name = os.path.splitext(self.list_file)[0] self.list_absolute_path = self.parent.path + "/" + self.list_file self.count = None # FIXME Vars for deserialization # Used for transition from DataSubset to ListFile self.urls = None self.labels = None self.abs_path = None self._loaded = False self.get_count() def __getattr__(self, name): if hasattr(self.__dict__, name): return self.__dict__[name] elif 'parent' in self.__dict__ and hasattr(self.__dict__['parent'], name): return self.__dict__['parent'].__dict__[name] raise AttributeError("No attribute called {} is present".format(name)) def get_count(self): if self.count is not None: return self.count p = os.path.join(self.parent.path, self.list_file) with open(p) as f: for i, l in enumerate(f): pass self.count = i + 1 return self.count def get_list_full_path(self): p = os.path.join(self.parent.path, self.list_file) return p def get_name(self): return self.parent.name + '_' + self.list_name def __str__(self): return self.get_name() class Dataset(object): def __init__(self, dataset_path): self.path = os.path.abspath(dataset_path) self.name = os.path.basename(self.path) self.root_folder = None config_file = os.path.join(self.path, "config.py") if os.path.exists(config_file): with open(config_file) as f: code = compile(f.read(), config_file, 'exec') exec(code) # context = dict() # execfile(config_file, context) # execfile(config_file) # print config self.__dict__.update(config) self.load_subsets() def load_subsets(self): self.subsets = { os.path.splitext(list_file)[0]: pyffe.ListFile(self.path + '/' + list_file, self) for list_file in os.listdir(self.path) if list_file.endswith(".txt") } # TOFIX: this code is a hack for binary classification only def get_details(self): keys = [] frees = [] busys = [] for k, v in self.subsets.iteritems(): try: c = Counter(v.get_labels()) frees.append(c[0]) busys.append(c[1]) keys.append(k) except: print "Skipping", k, ": not a list file" return pd.DataFrame(np.array([frees, busys]).T, index=keys, columns=["free", "busy"]) def __getattr__(self, name): if hasattr(self.__dict__, name): return self.__dict__[name] elif 'subsets' in self.__dict__ and name in self.__dict__['subsets']: return self.__dict__['subsets'][name] raise AttributeError("No attribute called {} is present".format(name))
31.592233
93
0.588814
4a1a9d557c880d2fceee02a71c80cbc939374dcd
5,902
py
Python
pybat/cli/commands/get.py
lslap/pybat
72fcc703c095ab9841e8b13845c1bea780f02904
[ "MIT" ]
null
null
null
pybat/cli/commands/get.py
lslap/pybat
72fcc703c095ab9841e8b13845c1bea780f02904
[ "MIT" ]
null
null
null
pybat/cli/commands/get.py
lslap/pybat
72fcc703c095ab9841e8b13845c1bea780f02904
[ "MIT" ]
null
null
null
# Encoding: UTF-8 # Copyright (c) Marnik Bercx, University of Antwerp # Distributed under the terms of the MIT License import os import pdb from pybat.core import Cathode, DimerNEBAnalysis from pymatgen import Structure from pymatgen.io.vasp.outputs import Outcar from pymatgen.analysis.transition_state import NEBAnalysis """ Set of scripts used to extract information from VASP output files for analysis. """ __author__ = "Marnik Bercx" __copyright__ = "Copyright 2018, Marnik Bercx, University of Antwerp" __version__ = "0.1" __maintainer__ = "Marnik Bercx" __email__ = "marnik.bercx@uantwerpen.be" __date__ = "May 2018" # Total Energy per Li of metallic lithium LI_ENERGY = -1.89 def get_structure(directory, write_cif=False): """ Construct a .json file with the structure and magnetic moment from the output of a VASP calculation, i.e. the CONTCAR and OUTCAR file. Args: directory (str): Directory in which the geometry optimization output files (i.e. CONTCAR and OUTCAR) are stored. write_cif (bool): Flag that indicates whether the structure should also be written as a .cif file. """ directory = os.path.abspath(directory) structure = Structure.from_file(os.path.join(directory, "CONTCAR")) out = Outcar(os.path.join(directory, "OUTCAR")) magmom = [site["tot"] for site in out.magnetization] # Add the magnetic moments to the Structure try: structure.add_site_property("magmom", magmom) except ValueError: # If something goes wrong in assigning the magnetic moments, # give the user a warning and assign magnetic moment zero to all sites. print("WARNING: Could not assign the magnetic moments found in the " "OUTCAR file. They may be missing.") structure.add_site_property("magmom", len(structure.sites) * [0]) structure.to("json", "structure.json") if write_cif: structure.to("cif", "structure.cif") def get_cathode(directory, to_current_dir=False, write_cif=False, ignore_magmom=False): """ Construct a .json file of the updated Cathode from a geometry optimization, based on the initial_cathode.json file and the output of a VASP calculation, i.e. the CONTCAR and OUTCAR file. All these files must be present in the directory. Args: directory (str): Directory in which the geometry optimization calculation was performed. Must contain the initial_cathode.json, OUTCAR and CONTCAR file. to_current_dir (bool): Write the output final_cathode files to the current working directory. write_cif (bool): Flag that determines whether a .cif file of the cathode structure is written to the directory. ignore_magmom (bool): Flag that indicates that the final magnetic moments of the optimized structure should be ignored. This means that the magnetic moments of the initial structure will be used. Returns: None """ directory = os.path.abspath(directory) cathode = Cathode.from_file(os.path.join(directory, "initial_cathode.json")) cathode.update_sites(directory, ignore_magmom=ignore_magmom) if to_current_dir: filename = os.path.join(os.getcwd(), "final_cathode") else: filename = os.path.join(directory, "final_cathode") cathode.to("json", filename + ".json") if write_cif: cathode.to("cif", filename + ".cif") def get_barrier(directory, method="pymatgen"): """ Plot the migration barrier of a transition in a directory. Args: directory (str): method (str): Returns: """ if method == "pymatgen": # The pymatgen.analysis.transition_state module has an object that # allows you to neb = NEBAnalysis.from_dir(directory, relaxation_dirs=('initial', 'final')) neb.get_plot().show() if method == "dimers": # This method makes some assumptions about the directory structure # for it to work: # # - The image directories are two characters long, and there are no # other directories which are two characters long. # - The directory in which the nudged elastic band was performed # contains the dimer indices, delimited by '_', and with no other # numbers delimited in such a way present. if os.path.exists(os.path.join(directory, "neb_data.json")): neb = DimerNEBAnalysis.from_file( os.path.join(directory, "neb_data.json") ) else: neb = DimerNEBAnalysis.from_dir(directory) neb.to("json", os.path.join(directory, "neb_data.json")) neb.setup_spline({"saddle_point": "zero_slope"}) neb.get_plot(label_barrier=False).show() def get_voltage(directory, calculation="relax", functional=None): """ Calculate the voltage of a battery consisting of a cathode specified by the directory versus a metallic Li anode. Args: directory: calculation: functional: """ raise NotImplementedError def get_endiff(directory): """ Calculate the energy difference for a transition in a directory. Args: directory: Returns: """ initial_outcar = Outcar(os.path.join(directory, "initial", "OUTCAR")) final_outcar = Outcar(os.path.join(directory, "final", "OUTCAR")) initial_energy = initial_outcar.final_energy final_energy = final_outcar.final_energy print("The energy difference is: ", end="") print(str(final_energy - initial_energy) + " eV") # SO plagiarism def is_number(s): try: float(s) return True except ValueError: return False
32.251366
79
0.659268
4a1a9dd890766579078b4b73f34ba0e798ec9fc2
1,735
py
Python
autres/gestion-des-mots-de-passe.py
ehbc221/apprenez-a-programmer-en-python
16ed3ba8b914b77a576ef18a34702179acb25338
[ "MIT" ]
null
null
null
autres/gestion-des-mots-de-passe.py
ehbc221/apprenez-a-programmer-en-python
16ed3ba8b914b77a576ef18a34702179acb25338
[ "MIT" ]
null
null
null
autres/gestion-des-mots-de-passe.py
ehbc221/apprenez-a-programmer-en-python
16ed3ba8b914b77a576ef18a34702179acb25338
[ "MIT" ]
null
null
null
# -*-coding:Utf-8 -* ######################################################## # Réceptionner un mot de passe saisi par l'utilisateur # ######################################################## from getpass import getpass mot_de_passe = getpass("Tapez votre mot de passe : ") ############################ # Chiffrer un mot de passe # ############################ # Chiffrer un mot de passe import hashlib # Choisir un algorithme : algorithms_available ou hashlib.algorithms_guaranteed. Exemple : hashlib.algorithms_guaranteed import hashlib hashlib.algorithms_guaranteed {'sha1', 'sha224', 'sha384', 'sha256', 'sha512', 'md5'} # Utilisation d'un algorithme : SHA1 (chaîne-de-bytes) => utiliser b minuscule avant l'ouverture de votre chaîne mot_de_passe = hashlib.sha1(b"mot de passe") # Obtenir le chiffrement associé à cet objet : digest (renvoie un type bytes contenant notre mot de passe chiffré) et hexdigest (renvoie une chaîne str contenant une suite de symboles hexadécimaux => de 0 à 9 et de A à F) mot_de_passe.hexdigest() 'b47ea832576a75814e13351dcc97eaa985b9c6b7' ######################################## # Test de vérification de mot de passe # ######################################## import hashlib from getpass import getpass chaine_mot_de_passe = b"azerty" mot_de_passe_chiffre = hashlib.sha1(chaine_mot_de_passe).hexdigest() verrouille = True while verrouille: entre = getpass("Tapez le mot de passe : ") # azerty # On encode la saisie pour avoir un type bytes entre = entre.encode() entre_chiffre = hashlib.sha1(entre).hexdigest() if entre_chiffre == mot_de_passe_chiffre: verrouille = False else: print("Mot de passe incorrect") print("Mot de passe accepté...")
34.019608
221
0.637464
4a1a9f173226a6f677f68c6553ed2c29e67eb448
342
py
Python
src/main.py
codestrange/cool-compiler-2020
30508965d75a1a1d1362d0b51bef8da3978fd0c2
[ "MIT" ]
3
2020-01-14T04:47:32.000Z
2020-09-10T17:57:20.000Z
src/main.py
codestrange/cool-compiler-2020
30508965d75a1a1d1362d0b51bef8da3978fd0c2
[ "MIT" ]
5
2020-01-14T06:06:35.000Z
2020-02-19T01:01:33.000Z
src/main.py
codestrange/cool-compiler-2020
30508965d75a1a1d1362d0b51bef8da3978fd0c2
[ "MIT" ]
3
2020-01-14T04:58:24.000Z
2020-01-14T16:23:41.000Z
from os import system from sys import argv INPUT_FILE = argv[1] OUTPUT_FILE = f"{INPUT_FILE[0: -2]}mips" print("CodeStrange Cool Compiler v0.1") print( "Copyright (c) 2020: " + "Carlos Bermudez Porto, " + "Leynier Gutiérrez González, " + "Tony Raúl Blanco Fernández" ) system(f"python coolc.py {INPUT_FILE} {OUTPUT_FILE}")
21.375
53
0.687135
4a1aa0f55bb3dcf4ddcef486719549b7ebb8e53d
1,025
py
Python
Archive/appendix/Atari/baseline-QR-DQN/utils.py
uncharted-technologies/risk-and-uncertainty
d6bc518ebd3a661d3de6f298588bec5cc4c96e96
[ "MIT" ]
19
2019-05-28T14:30:23.000Z
2022-03-31T03:14:31.000Z
Archive/appendix/Atari/baseline-QR-DQN/utils.py
uncharted-technologies/risk-and-uncertainty
d6bc518ebd3a661d3de6f298588bec5cc4c96e96
[ "MIT" ]
4
2021-06-08T20:30:58.000Z
2022-03-12T00:02:29.000Z
Archive/appendix/Atari/baseline-QR-DQN/utils.py
uncharted-technologies/risk-and-uncertainty
d6bc518ebd3a661d3de6f298588bec5cc4c96e96
[ "MIT" ]
3
2019-07-20T14:40:03.000Z
2021-02-26T04:09:03.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import random import numpy as np import torch def set_global_seed(seed, env): torch.manual_seed(seed) env.seed(seed) np.random.seed(seed) random.seed(seed) def quantile_huber_loss(x,y, device, kappa=1): batch_size = x.shape[0] num_quant = x.shape[1] #Get x and y to repeat here x = x.unsqueeze(2).repeat(1,1,num_quant) y = y.unsqueeze(2).repeat(1,1,num_quant).transpose(1,2) tau_hat = torch.linspace(0.0, 1.0 - 1. / num_quant, num_quant) + 0.5 / num_quant tau_hat = tau_hat.to(device) tau_hat = tau_hat.unsqueeze(0).unsqueeze(2).repeat(batch_size, 1,num_quant) diff = y-x if kappa == 0: huber_loss = diff.abs() else: huber_loss = 0.5 * diff.abs().clamp(min=0.0, max=kappa).pow(2) huber_loss += kappa * (diff.abs() - diff.abs().clamp(min=0.0, max=kappa)) quantile_loss = (tau_hat - (diff < 0).float()).abs() * huber_loss return quantile_loss.mean(2).mean(0).sum()
24.404762
84
0.626341
4a1aa14630751a073bb1bf18454d0489502307b9
2,017
py
Python
AutomatedSpearPhisher/CommonFrame.py
tejarrpaladagu/phisher
ddfcc10820d6c995a44e7d7c302b5df860140480
[ "MIT" ]
3
2021-06-28T19:37:04.000Z
2022-03-18T23:27:53.000Z
AutomatedSpearPhisher/CommonFrame.py
tejarrpaladagu/phisher
ddfcc10820d6c995a44e7d7c302b5df860140480
[ "MIT" ]
null
null
null
AutomatedSpearPhisher/CommonFrame.py
tejarrpaladagu/phisher
ddfcc10820d6c995a44e7d7c302b5df860140480
[ "MIT" ]
4
2021-04-22T17:50:20.000Z
2021-08-13T01:57:38.000Z
from tkinter import Frame, PhotoImage, Label from warnings import warn from time import strftime # Common Frame with header and footer class CommonFrame(Frame): def __init__(self, parent): Frame.__init__(self, parent, bg='#0077e6') self.createHeading() self.createFooter() self.tick () #common heading def createHeading(self): heading_label = Label(self, text='Spear Phishing Tool', font=('orbitron', 45,'bold'), fg='white', bg='#0077e6') heading_label.pack(pady=25) def createFooter(self): #bottom frame for time and python logo bottom_frame = Frame(self,relief='raised', borderwidth=3) bottom_frame.pack(fill='x',side='bottom') #python develop sentence python_dev_label = Label(bottom_frame, text='Developed with: ', font=('orbitron', 12,'bold')) python_dev_label.place(relx=0) #python symbol python_image = PhotoImage (file='images/python.png') python_label = Label(bottom_frame, image=python_image) python_label.place(relx=0.11) python_label.image = python_image self.time_label = Label(bottom_frame,font=('orbitron-Bold',12)) self.time_label.pack (side='right') #time bar at the bottom def tick(self): current_time = strftime('%I:%M %p').lstrip('0').replace(' 0',' ') self.time_label.config(text=current_time) self.time_label.after(200,self.tick) #frame for buttons def createButtonFrame(self): self.button_frame = Frame(self,bg='#80c1ff') self.button_frame.pack(fill='both', expand=True) # make sure button frame exists def getButtonFrame(self): try: self.button_frame except NameError: self.createButtonFrame() warn('WARNING: Main button frame did not exist... Manually creating button frame') return self.button_frame def changePages(self, page_name: str): self.controller.show_frame(page_name)
35.385965
119
0.653941
4a1aa29b784174e35a2142b053855a39049f072e
2,665
py
Python
wolframclient/serializers/encoders/datetime.py
WolframResearch/WolframClientForPython
27cffef560eea8d16c02fe4086f42363604284b6
[ "MIT" ]
358
2018-10-18T13:39:48.000Z
2022-03-26T09:42:53.000Z
wolframclient/serializers/encoders/datetime.py
WolframResearch/WolframClientForPython
27cffef560eea8d16c02fe4086f42363604284b6
[ "MIT" ]
29
2018-10-20T09:04:12.000Z
2022-03-06T18:36:19.000Z
wolframclient/serializers/encoders/datetime.py
LaudateCorpus1/WolframClientForPython
26f7fa3d81691ba2a63d3eadcd9734b261130b7c
[ "MIT" ]
38
2018-10-19T21:52:14.000Z
2021-11-21T13:07:04.000Z
from __future__ import absolute_import, print_function, unicode_literals import datetime from wolframclient.utils.dispatch import Dispatch encoder = Dispatch() @encoder.dispatch(datetime.datetime) def encode_datetime(serializer, o): return serializer.serialize_function( serializer.serialize_symbol(b"DateObject"), ( serializer.serialize_iterable( ( serializer.serialize_int(o.year), serializer.serialize_int(o.month), serializer.serialize_int(o.day), serializer.serialize_int(o.hour), serializer.serialize_int(o.minute), serializer.serialize_float(o.second + o.microsecond / 1000000.0), ) ), serializer.serialize_string("Instant"), serializer.serialize_string("Gregorian"), serializer.serialize_tzinfo(o.tzinfo, o), ), ) @encoder.dispatch(datetime.tzinfo) def encode_tzinfo(serializer, o): return serializer.serialize_tzinfo(o) @encoder.dispatch(datetime.timedelta) def encode_timedelta(serializer, o): return serializer.serialize_function( serializer.serialize_symbol(b"Quantity"), ( serializer.serialize_float(o.total_seconds()), serializer.serialize_string("Seconds"), ), ) @encoder.dispatch(datetime.date) def encode_date(serializer, o): return serializer.serialize_function( serializer.serialize_symbol(b"DateObject"), ( serializer.serialize_iterable( ( serializer.serialize_int(o.year), serializer.serialize_int(o.month), serializer.serialize_int(o.day), ) ), serializer.serialize_string("Day"), serializer.serialize_string("Gregorian"), serializer.serialize_symbol(b"None"), ), ) @encoder.dispatch(datetime.time) def encode_time(serializer, o): inner = [ serializer.serialize_iterable( ( serializer.serialize_int(o.hour), serializer.serialize_int(o.minute), serializer.serialize_float(o.second + o.microsecond / 1000000.0), ) ) ] if o.tzinfo: inner.append( serializer.serialize_rule( serializer.serialize_symbol(b"TimeZone"), serializer.serialize_tzinfo(o.tzinfo, o, name_match=None), ) ) return serializer.serialize_function(serializer.serialize_symbol(b"TimeObject"), inner)
29.94382
91
0.605253
4a1aa2d9a44249a405091a6c5891bcf0418bb906
6,275
py
Python
src/hackeme/frontend/hackeme_parser.py
ThomasBollmeier/hackeme-native
1bd9eac3eb057661045bcc1a612f8fc704f6d809
[ "Apache-2.0" ]
null
null
null
src/hackeme/frontend/hackeme_parser.py
ThomasBollmeier/hackeme-native
1bd9eac3eb057661045bcc1a612f8fc704f6d809
[ "Apache-2.0" ]
null
null
null
src/hackeme/frontend/hackeme_parser.py
ThomasBollmeier/hackeme-native
1bd9eac3eb057661045bcc1a612f8fc704f6d809
[ "Apache-2.0" ]
null
null
null
from .hackeme_base_parser import HackemeBaseParser from komparse import Ast class HackemeParser(HackemeBaseParser): def __init__(self): HackemeBaseParser.__init__(self) self._init_transformations() def parse(self, source): ast = HackemeBaseParser.parse(self, source) if ast: arity_grouping = _ArityGrouping() ast.walk(arity_grouping) return arity_grouping.get_grouped_ast() else: return None def _init_transformations(self): g = self._grammar g.set_ast_transform('start', self._start) g.set_ast_transform('definition', lambda ast: ast.get_children()[0]) g.set_ast_transform('vardef', self._vardef) g.set_ast_transform('fundef', self._fundef) g.set_ast_transform('expr', lambda ast: ast.get_children()[0]) g.set_ast_transform('no_list', lambda ast: ast.get_children()[0]) g.set_ast_transform('if_expr', self._if_expr) g.set_ast_transform('cond_expr', self._cond_expr) g.set_ast_transform('cond_branch', self._cond_branch) g.set_ast_transform('call', self._call) g.set_ast_transform('operator', self._operator) g.set_ast_transform('boolean', self._boolean) g.set_ast_transform('list', self._list) g.set_ast_transform('list_item', self._list_item) # AST transformations: @staticmethod def _start(ast): ret = Ast('hackeme') for child in ast.get_children(): child.id = '' ret.add_child(child) return ret @staticmethod def _vardef(ast): ret = Ast('vardef') name_node = ast.find_children_by_id('name')[0] ret.set_attr('name', name_node.value) ret.add_children_by_id(ast, 'value') return ret @staticmethod def _fundef(ast): ret = Ast('fundef') name_node = ast.find_children_by_id('name')[0] ret.set_attr('name', name_node.value) params = Ast('parameters') ret.add_child(params) param_nodes = ast.find_children_by_id('param') for param_node in param_nodes: params.add_child(Ast('parameter', param_node.value)) vararg = ast.find_children_by_id('vararg') if vararg: vararg = vararg[0] params.add_child(Ast('var', vararg.value[:-1])) localdefs = Ast('localdefs') ret.add_child(localdefs) localdefs.add_children_by_id(ast, 'localdef') body = Ast('body') ret.add_child(body) body.add_children_by_id(ast, 'body') return ret @staticmethod def _if_expr(ast): ret = Ast('if_expr') test = Ast('test') ret.add_child(test) test.add_children_by_id(ast, 'test') consequent = Ast('consequent') ret.add_child(consequent) consequent.add_children_by_id(ast, 'consequent') alternate = Ast('alternate') ret.add_child(alternate) alternate.add_children_by_id(ast, 'alternate') return ret @staticmethod def _cond_expr(ast): ret = Ast('cond') ret.add_children_by_id(ast, 'branch') return ret @staticmethod def _cond_branch(ast): ret = Ast('branch') test = Ast('test') ret.add_child(test) test.add_children_by_id(ast, 'test') consequent = Ast('consequent') ret.add_child(consequent) consequent.add_children_by_id(ast, 'consequent') return ret @staticmethod def _call(ast): ret = Ast('call') callee = Ast('callee') ret.add_child(callee) callee.add_children_by_id(ast, 'callee') args = Ast('arguments') ret.add_child(args) args.add_children_by_id(ast, 'arg') return ret @staticmethod def _operator(ast): ret = Ast('operator') op = ast.get_children()[0].value ret.set_attr('value', op) return ret @staticmethod def _boolean(ast): child = ast.get_children()[0] if child.value == '#t' or child.value == '#true': return Ast('TRUE') else: return Ast('FALSE') @staticmethod def _list(ast): ret = Ast('list') ret.add_children_by_id(ast, 'li') return ret @staticmethod def _list_item(ast): children = ast.find_children_by_id('single') if children: ret = children[0] ret.id = '' return ret else: ret = Ast('list') ret.add_children_by_id(ast, 'li') return ret class _ArityGrouping(object): """ Group arities into function definition node """ def __init__(self): self._ast = None self._node_stack = [] self._func_stack = [] def get_grouped_ast(self): return self._ast def enter_node(self, node): if node.has_attr('root'): self._ast = node.copy() self._node_stack.append(self._ast) self._func_stack = [{}] elif node.name == 'fundef': arity = Ast("arity") func_name = node.get_attr('name') funcs = self._func_stack[-1] if func_name not in funcs: func_node = node.copy() funcs[func_name] = func_node self._add_to_parent(func_node) else: func_node = funcs[func_name] func_node.add_child(arity) self._node_stack.append(arity) self._func_stack.append({}) else: self._node_stack.append(node.copy()) def exit_node(self, node): child = self._node_stack.pop() if node.name != "fundef": self._add_to_parent(child) else: self._func_stack.pop() def visit_node(self, node): self._add_to_parent(node.copy()) def _add_to_parent(self, node): if self._node_stack: parent = self._node_stack[-1] parent.add_child(node)
30.31401
76
0.567649
4a1aa32d3c14b1be6a9b5623dbfba181e538efc0
2,367
py
Python
doc/scripts/docgen.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
2,045
2015-01-01T14:07:52.000Z
2022-03-08T08:56:41.000Z
doc/scripts/docgen.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
305
2015-01-02T13:18:24.000Z
2021-08-20T18:03:28.000Z
doc/scripts/docgen.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
976
2015-01-01T17:08:51.000Z
2022-03-25T19:53:17.000Z
from __future__ import print_function from collections import defaultdict import inspect import getopt import os import shutil import sys if __name__ == '__main__': throot = "/".join(sys.path[0].split("/")[:-2]) options = defaultdict(bool) options.update(dict([x, y or True] for x, y in getopt.getopt(sys.argv[1:], 'o:', ['epydoc', 'rst', 'help', 'nopdf', 'test'])[0])) if options['--help']: print('Usage: %s [OPTIONS]' % sys.argv[0]) print(' -o <dir>: output the html files in the specified dir') print(' --rst: only compile the doc (requires sphinx)') print(' --nopdf: do not produce a PDF file from the doc, only HTML') print(' --help: this help') # --test: build the docs with warnings=errors to test them (exclusive) sys.exit(0) options['--all'] = not options['--rst'] def mkdir(path): try: os.mkdir(path) except OSError: pass outdir = options['-o'] or (throot + '/html') mkdir(outdir) os.chdir(outdir) mkdir("doc") # Make sure the appropriate 'theano' directory is in the PYTHONPATH pythonpath = os.environ.get('PYTHONPATH', '') pythonpath = throot + ':' + pythonpath os.environ['PYTHONPATH'] = pythonpath if options['--test']: import sphinx sys.path[0:0] = [os.path.join(throot, 'doc')] out = sphinx.main(['', '-b' 'text', '-W', '-E', os.path.join(throot, 'doc'), '.']) sys.exit(out) elif options['--all'] or options['--rst']: import sphinx sys.path[0:0] = [os.path.join(throot, 'doc')] sphinx.main(['', '-E', os.path.join(throot, 'doc'), '.']) if not options['--nopdf']: # Generate latex file in a temp directory import tempfile workdir = tempfile.mkdtemp() sphinx.main(['', '-E', '-b', 'latex', os.path.join(throot, 'doc'), workdir]) # Compile to PDF os.chdir(workdir) os.system('make') try: shutil.copy(os.path.join(workdir, 'pylearn2.pdf'), outdir) os.chdir(outdir) shutil.rmtree(workdir) except OSError as e: print('OSError:', e) except IOError as e: print('IOError:', e)
32.424658
133
0.538657