code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math UpperCAmelCase_ : Tuple = '2020.9.26' UpperCAmelCase_ : List[str] = 'xcodz-dot, cclaus, dhruvmanila' def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if not all(isinstance(UpperCamelCase__ , (float, int) ) for val in locals().values() ): _lowerCamelCase : Optional[Any] = F'Input values must either be float or int: {list(locals().values() )}' raise TypeError(UpperCamelCase__ ) _lowerCamelCase : int = ((x * distance) / (z + distance)) * scale _lowerCamelCase : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : str , _lowerCAmelCase : float ): """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError("Axis must be a str" ) _lowerCamelCase : Any = locals() del input_variables["axis"] if not all(isinstance(UpperCamelCase__ , (float, int) ) for val in input_variables.values() ): _lowerCamelCase : str = ( """Input values except axis must either be float or int: """ F'{list(input_variables.values() )}' ) raise TypeError(UpperCamelCase__ ) _lowerCamelCase : Optional[int] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _lowerCamelCase : Optional[Any] = x * math.cos(UpperCamelCase__ ) - y * math.sin(UpperCamelCase__ ) _lowerCamelCase : Optional[int] = y * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) _lowerCamelCase : str = z elif axis == "x": _lowerCamelCase : str = y * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) _lowerCamelCase : int = z * math.cos(UpperCamelCase__ ) + y * math.sin(UpperCamelCase__ ) _lowerCamelCase : Dict = x elif axis == "y": _lowerCamelCase : List[Any] = x * math.cos(UpperCamelCase__ ) - z * math.sin(UpperCamelCase__ ) _lowerCamelCase : List[str] = z * math.cos(UpperCamelCase__ ) + x * math.sin(UpperCamelCase__ ) _lowerCamelCase : List[Any] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def A_ ( ) -> Tuple: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase_ : Union[str, Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) _lowerCamelCase : Any = os.path.join(_lowerCAmelCase , "words.txt" ) _lowerCamelCase : Dict = "" with open(_lowerCAmelCase ) as f: _lowerCamelCase : List[str] = f.readline() _lowerCamelCase : Optional[Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _lowerCamelCase : List[str] = [ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCAmelCase_ : Tuple = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: UpperCAmelCase_ : Optional[Any] = json.load(f) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : int,__A : Optional[Any] ): return FSMTTokenizer.from_pretrained(__A ) def lowerCamelCase_ ( self : Tuple,__A : Tuple ): _lowerCamelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(__A ).to(__A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def lowerCamelCase_ ( self : int,__A : Optional[Any],__A : Any ): _lowerCamelCase : Tuple = f'facebook/wmt19-{pair}' _lowerCamelCase : Optional[int] = self.get_tokenizer(__A ) _lowerCamelCase : Tuple = self.get_model(__A ) _lowerCamelCase : List[str] = bleu_data[pair]["src"] _lowerCamelCase : int = bleu_data[pair]["tgt"] _lowerCamelCase : Optional[Any] = tokenizer(__A,return_tensors="pt",truncation=__A,padding="longest" ).to(__A ) _lowerCamelCase : List[str] = model.generate( input_ids=batch.input_ids,num_beams=8,) _lowerCamelCase : Any = tokenizer.batch_decode( __A,skip_special_tokens=__A,clean_up_tokenization_spaces=__A ) _lowerCamelCase : Dict = calculate_bleu(__A,__A ) print(__A ) self.assertGreaterEqual(scores["bleu"],__A )
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Union[str, Any],__A : Dict=1_3,__A : List[str]=3_2,__A : Tuple=3,__A : Union[str, Any]=4,__A : Optional[int]=[1_0, 2_0, 3_0, 4_0],__A : List[Any]=[2, 2, 3, 2],__A : int=True,__A : Union[str, Any]=True,__A : str=3_7,__A : Tuple="gelu",__A : Tuple=1_0,__A : Any=0.02,__A : int=["stage2", "stage3", "stage4"],__A : List[str]=[2, 3, 4],__A : int=None,): _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Optional[int] = image_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Any = num_stages _lowerCamelCase : List[Any] = hidden_sizes _lowerCamelCase : List[Any] = depths _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : int = use_labels _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = out_features _lowerCamelCase : Any = out_indices _lowerCamelCase : Optional[Any] = scope def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[int] = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size],self.num_labels ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Any ): return ConvNextVaConfig( num_channels=self.num_channels,hidden_sizes=self.hidden_sizes,depths=self.depths,num_stages=self.num_stages,hidden_act=self.hidden_act,is_decoder=__UpperCamelCase,initializer_range=self.initializer_range,out_features=self.out_features,out_indices=self.out_indices,num_labels=self.num_labels,) def lowerCamelCase_ ( self : List[Any],__A : List[str],__A : List[str],__A : Union[str, Any] ): _lowerCamelCase : List[str] = ConvNextVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase : int = model(__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2),) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : Optional[int],__A : List[Any] ): _lowerCamelCase : Tuple = ConvNextVaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase : str = model(__UpperCamelCase,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Dict,__A : Union[str, Any],__A : Any,__A : List[str] ): _lowerCamelCase : Any = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase : List[Any] = model(__UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase : List[str] = None _lowerCamelCase : Union[str, Any] = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _lowerCamelCase : List[str] = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __snake_case , __snake_case , unittest.TestCase ): lowerCAmelCase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = ConvNextVaModelTester(self ) _lowerCamelCase : str = ConfigTester(self,config_class=__UpperCamelCase,has_text_modality=__UpperCamelCase,hidden_size=3_7 ) def lowerCamelCase_ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Any ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def lowerCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def lowerCamelCase_ ( self : Tuple ): pass def lowerCamelCase_ ( self : List[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : List[str] = True if model_class.__name__ in [ *get_values(__UpperCamelCase ), *get_values(__UpperCamelCase ), ]: continue _lowerCamelCase : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _lowerCamelCase : List[str] = self._prepare_for_class(__UpperCamelCase,__UpperCamelCase,return_labels=__UpperCamelCase ) _lowerCamelCase : Union[str, Any] = model(**__UpperCamelCase ).loss loss.backward() def lowerCamelCase_ ( self : Tuple ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[Any] = True if ( model_class.__name__ in [*get_values(__UpperCamelCase ), *get_values(__UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _lowerCamelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _lowerCamelCase : Union[str, Any] = self._prepare_for_class(__UpperCamelCase,__UpperCamelCase,return_labels=__UpperCamelCase ) _lowerCamelCase : Optional[Any] = model(**__UpperCamelCase ).loss loss.backward() def lowerCamelCase_ ( self : str ): _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__UpperCamelCase ) _lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1],__UpperCamelCase ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCamelCase_ ( self : Any ): def check_hidden_states_output(__A : Union[str, Any],__A : Union[str, Any],__A : Optional[int] ): _lowerCamelCase : Union[str, Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(__UpperCamelCase,__UpperCamelCase ) ) _lowerCamelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ),expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = True check_hidden_states_output(__UpperCamelCase,__UpperCamelCase,__UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Any = True check_hidden_states_output(__UpperCamelCase,__UpperCamelCase,__UpperCamelCase ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowerCamelCase_ ( self : Dict ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Any = ConvNextVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : str ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__UpperCamelCase ) _lowerCamelCase : Dict = self.default_image_processor _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : Optional[int] = preprocessor(images=__UpperCamelCase,return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : int = model(**__UpperCamelCase ) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__UpperCamelCase ) _lowerCamelCase : List[str] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__UpperCamelCase,atol=1e-4 ) )
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _lowerCamelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def A_ ( _lowerCAmelCase : Union[str, Any] = 1000 ): """simple docstring""" _lowerCamelCase : Dict = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self : Optional[int],__A : int,__A : Optional[int]=1_3,__A : List[str]=7,__A : Optional[Any]=True,__A : int=False,__A : int=9_9,__A : Optional[Any]=3_2,__A : str=2,__A : Any=4,__A : Dict=3_7,__A : List[str]=0.1,__A : Optional[Any]=0.1,__A : List[str]=4_0,__A : Tuple=2,__A : Union[str, Any]=1,__A : Optional[int]=0,): _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Any = eos_token_id _lowerCamelCase : List[Any] = pad_token_id _lowerCamelCase : Union[str, Any] = bos_token_id def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ) _lowerCamelCase : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : List[Any] = tf.concat([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Any = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : int = prepare_pegasus_inputs_dict(lowercase__,lowercase__,lowercase__ ) return config, inputs_dict def lowerCamelCase_ ( self : int,__A : List[str],__A : Union[str, Any] ): _lowerCamelCase : Dict = TFPegasusModel(config=lowercase__ ).get_decoder() _lowerCamelCase : int = inputs_dict["""input_ids"""] _lowerCamelCase : Dict = input_ids[:1, :] _lowerCamelCase : Tuple = inputs_dict["""attention_mask"""][:1, :] _lowerCamelCase : Optional[Any] = inputs_dict["""head_mask"""] _lowerCamelCase : Dict = 1 # first forward pass _lowerCamelCase : Tuple = model(lowercase__,attention_mask=lowercase__,head_mask=lowercase__,use_cache=lowercase__ ) _lowerCamelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3),config.vocab_size ) _lowerCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3),2 ),tf.inta ) # append to next input_ids and _lowerCamelCase : Optional[int] = tf.concat([input_ids, next_tokens],axis=-1 ) _lowerCamelCase : List[str] = tf.concat([attention_mask, next_attn_mask],axis=-1 ) _lowerCamelCase : Optional[int] = model(lowercase__,attention_mask=lowercase__ )[0] _lowerCamelCase : Optional[int] = model(lowercase__,attention_mask=lowercase__,past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1],output_from_past.shape[1] ) # select random slice _lowerCamelCase : str = int(ids_tensor((1,),output_from_past.shape[-1] ) ) _lowerCamelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__,lowercase__,rtol=1e-3 ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : Tuple = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = TFPegasusModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self,config_class=lowercase__ ) def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCAmelCase_ = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase_ = """google/pegasus-xsum""" @cached_property def lowerCamelCase_ ( self : Optional[Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : List[Any],**__A : Union[str, Any] ): _lowerCamelCase : Any = self.translate_src_text(**lowercase__ ) assert self.expected_text == generated_words def lowerCamelCase_ ( self : Union[str, Any],**__A : Optional[Any] ): _lowerCamelCase : Dict = self.tokenizer(self.src_text,**lowercase__,padding=lowercase__,return_tensors="tf" ) _lowerCamelCase : Dict = self.model.generate( model_inputs.input_ids,attention_mask=model_inputs.attention_mask,num_beams=2,use_cache=lowercase__,) _lowerCamelCase : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy(),skip_special_tokens=lowercase__ ) return generated_words @slow def lowerCamelCase_ ( self : Union[str, Any] ): self._assert_generated_batch_equal_expected()
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' import numpy class UpperCAmelCase__ : def __init__( self : Dict,__A : numpy.ndarray,__A : numpy.ndarray ): _lowerCamelCase : Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _lowerCamelCase : Dict = numpy.random.rand( self.input_array.shape[1],4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _lowerCamelCase : Dict = numpy.random.rand( 4,3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _lowerCamelCase : Any = numpy.random.rand(3,1 ) # Real output values provided. _lowerCamelCase : Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _lowerCamelCase : List[str] = numpy.zeros(output_array.shape ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Any = sigmoid( numpy.dot(self.input_array,self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _lowerCamelCase : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer,self.first_hidden_layer_and_second_hidden_layer_weights,) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _lowerCamelCase : Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer,self.second_hidden_layer_and_output_layer_weights,) ) return self.layer_between_second_hidden_layer_and_output def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T,2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ),) _lowerCamelCase : Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T,numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ),self.second_hidden_layer_and_output_layer_weights.T,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ),) _lowerCamelCase : int = numpy.dot( self.input_array.T,numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ),self.second_hidden_layer_and_output_layer_weights.T,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ),self.first_hidden_layer_and_second_hidden_layer_weights.T,) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ),) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCamelCase_ ( self : Dict,__A : numpy.ndarray,__A : int,__A : bool ): for iteration in range(1,iterations + 1 ): _lowerCamelCase : Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: _lowerCamelCase : Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'Iteration {iteration} Loss: {loss}' ) def lowerCamelCase_ ( self : Optional[int],__A : numpy.ndarray ): _lowerCamelCase : int = input_arr _lowerCamelCase : Union[str, Any] = sigmoid( numpy.dot(self.array,self.input_layer_and_first_hidden_layer_weights ) ) _lowerCamelCase : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer,self.first_hidden_layer_and_second_hidden_layer_weights,) ) _lowerCamelCase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer,self.second_hidden_layer_and_output_layer_weights,) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def A_ ( _lowerCAmelCase : numpy.ndarray ): """simple docstring""" return 1 / (1 + numpy.exp(-value )) def A_ ( _lowerCAmelCase : numpy.ndarray ): """simple docstring""" return (value) * (1 - (value)) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _lowerCamelCase : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _lowerCamelCase : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' from __future__ import annotations UpperCAmelCase_ : Any = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : dict[str, list[str]],__A : str ): _lowerCamelCase : int = graph # mapping node to its parent in resulting breadth first tree _lowerCamelCase : str = {} _lowerCamelCase : Any = source_vertex def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = {self.source_vertex} _lowerCamelCase : Tuple = None _lowerCamelCase : List[Any] = [self.source_vertex] # first in first out queue while queue: _lowerCamelCase : Any = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) _lowerCamelCase : Any = vertex queue.append(__A ) def lowerCamelCase_ ( self : List[Any],__A : str ): if target_vertex == self.source_vertex: return self.source_vertex _lowerCamelCase : str = self.parent.get(__A ) if target_vertex_parent is None: _lowerCamelCase : int = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__A ) return self.shortest_path(__A ) + f'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' UpperCAmelCase_ : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[Any] = set() # keep track of all the paths to be checked _lowerCamelCase : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _lowerCamelCase : Tuple = queue.pop(0 ) # get the last node from the path _lowerCamelCase : Dict = path[-1] if node not in explored: _lowerCamelCase : int = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _lowerCamelCase : Optional[int] = list(lowercase_ ) new_path.append(lowercase_ ) queue.append(lowercase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase_ ) # in case there's no path between the 2 nodes return [] def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _lowerCamelCase : int = [start] _lowerCamelCase : Tuple = set(lowercase_ ) # Keep tab on distances from `start` node. _lowerCamelCase : str = {start: 0, target: -1} while queue: _lowerCamelCase : Union[str, Any] = queue.pop(0 ) if node == target: _lowerCamelCase : Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase_ ) queue.append(lowercase_ ) _lowerCamelCase : Tuple = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase_ : List[Any] = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ ( UpperCAmelCase_ ): lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowerCAmelCase_ = field(default=UpperCAmelCase_ , metadata={'help': 'Whether to SortishSamler or not.'} ) lowerCAmelCase_ = field( default=UpperCAmelCase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCAmelCase_ = field(default=UpperCAmelCase_ , metadata={'help': 'whether to use adafactor'} ) lowerCAmelCase_ = field( default=UpperCAmelCase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowerCAmelCase_ = field( default=UpperCAmelCase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowerCAmelCase_ = field(default=UpperCAmelCase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowerCAmelCase_ = field( default=UpperCAmelCase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowerCAmelCase_ = field( default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' import math import qiskit def A_ ( _lowerCAmelCase : Tuple = 1 , _lowerCAmelCase : str = 1 , _lowerCAmelCase : List[Any] = 1 ): """simple docstring""" if ( isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) or isinstance(_lowerCAmelCase , _lowerCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != input_a) or (math.floor(_lowerCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers _lowerCamelCase : Any = qiskit.QuantumRegister(4 , "qr" ) _lowerCamelCase : List[str] = qiskit.ClassicalRegister(2 , "cr" ) # list the entries _lowerCamelCase : Optional[int] = [input_a, input_a, carry_in] _lowerCamelCase : Union[str, Any] = qiskit.QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowerCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowerCAmelCase ) # measure the last two qbits _lowerCamelCase : int = qiskit.Aer.get_backend("aer_simulator" ) _lowerCamelCase : Optional[Any] = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
from datetime import datetime as dt import os from github import Github UpperCAmelCase_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def A_ ( ): """simple docstring""" _lowerCamelCase : int = Github(os.environ["GITHUB_TOKEN"] ) _lowerCamelCase : Tuple = g.get_repo("huggingface/transformers" ) _lowerCamelCase : Dict = repo.get_issues(state="open" ) for issue in open_issues: _lowerCamelCase : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCAmelCase : i.created_at , reverse=snake_case_ ) _lowerCamelCase : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : list[int] , _lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : Tuple = coefficient_matrix.shape _lowerCamelCase : List[str] = constant_matrix.shape if rowsa != colsa: _lowerCamelCase : Optional[Any] = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__UpperCamelCase ) if colsa != 1: _lowerCamelCase : Any = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: _lowerCamelCase : Union[str, Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: _lowerCamelCase : Dict = ( '''Number of initial values must be equal to number of rows in coefficient ''' F'matrix but received {len(__UpperCamelCase )} and {rowsa}' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) _lowerCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCamelCase : Union[str, Any] = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): _lowerCamelCase : str = [] for row in range(__UpperCamelCase ): _lowerCamelCase : Any = 0 for col in range(__UpperCamelCase ): if col == row: _lowerCamelCase : List[str] = table[row][col] elif col == cols - 1: _lowerCamelCase : Union[str, Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCamelCase : List[Any] = (temp + val) / denom new_val.append(__UpperCamelCase ) _lowerCamelCase : Any = new_val return [float(__UpperCamelCase ) for i in new_val] def A_ ( _lowerCAmelCase : NDArray[floataa] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = table.shape _lowerCamelCase : Union[str, Any] = True for i in range(0 , __UpperCamelCase ): _lowerCamelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase_ : Optional[Any] = 'scheduler_config.json' class UpperCAmelCase__ ( lowerCAmelCase__ ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 3 lowerCAmelCase_ = 4 lowerCAmelCase_ = 5 @dataclass class UpperCAmelCase__ ( lowerCAmelCase__ ): lowerCAmelCase_ = 42 class UpperCAmelCase__ : lowerCAmelCase_ = SCHEDULER_CONFIG_NAME lowerCAmelCase_ = ["dtype"] lowerCAmelCase_ = [] lowerCAmelCase_ = True @classmethod def lowerCamelCase_ ( cls : int,__A : Optional[Any] = None,__A : Union[str, Any] = None,__A : int=False,**__A : Tuple,): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase,subfolder=_lowerCamelCase,return_unused_kwargs=_lowerCamelCase,**_lowerCamelCase,) _lowerCamelCase , _lowerCamelCase : str = cls.from_config(_lowerCamelCase,return_unused_kwargs=_lowerCamelCase,**_lowerCamelCase ) if hasattr(_lowerCamelCase,"create_state" ) and getattr(_lowerCamelCase,"has_state",_lowerCamelCase ): _lowerCamelCase : str = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCamelCase_ ( self : Optional[int],__A : List[Any],__A : Union[str, Any] = False,**__A : Tuple ): self.save_config(save_directory=_lowerCamelCase,push_to_hub=_lowerCamelCase,**_lowerCamelCase ) @property def lowerCamelCase_ ( self : Dict ): return self._get_compatibles() @classmethod def lowerCamelCase_ ( cls : List[Any] ): _lowerCamelCase : int = list(set([cls.__name__] + cls._compatibles ) ) _lowerCamelCase : int = importlib.import_module(__name__.split("." )[0] ) _lowerCamelCase : List[str] = [ getattr(_lowerCamelCase,_lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase,_lowerCamelCase ) ] return compatible_classes def A_ ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : Tuple[int] ): """simple docstring""" assert len(lowerCamelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCamelCase_ ) - x.ndim) ) , lowerCamelCase_ ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0.9_9_9 , _lowerCAmelCase : Union[str, Any]=jnp.floataa ): """simple docstring""" def alpha_bar(_lowerCAmelCase : Any ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 _lowerCamelCase : Tuple = [] for i in range(lowerCamelCase_ ): _lowerCamelCase : Dict = i / num_diffusion_timesteps _lowerCamelCase : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCamelCase_ ) / alpha_bar(lowerCamelCase_ ) , lowerCamelCase_ ) ) return jnp.array(lowerCamelCase_ , dtype=lowerCamelCase_ ) @flax.struct.dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Dict ): _lowerCamelCase : Optional[Any] = scheduler.config if config.trained_betas is not None: _lowerCamelCase : Dict = jnp.asarray(config.trained_betas,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _lowerCamelCase : int = jnp.linspace(config.beta_start,config.beta_end,config.num_train_timesteps,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCamelCase : Optional[Any] = ( jnp.linspace( config.beta_start**0.5,config.beta_end**0.5,config.num_train_timesteps,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCamelCase : List[str] = betas_for_alpha_bar(config.num_train_timesteps,dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) _lowerCamelCase : int = 1.0 - betas _lowerCamelCase : List[Any] = jnp.cumprod(_lowerCamelCase,axis=0 ) return cls( alphas=_lowerCamelCase,betas=_lowerCamelCase,alphas_cumprod=_lowerCamelCase,) def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase : List[str] = state.alphas_cumprod _lowerCamelCase : Optional[int] = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : List[str] = sqrt_alpha_prod.flatten() _lowerCamelCase : List[Any] = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) _lowerCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() _lowerCamelCase : int = broadcast_to_shape_from_left(lowerCamelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A_ ( _lowerCAmelCase : CommonSchedulerState , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : jnp.ndarray ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = get_sqrt_alpha_prod(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( _A , _A , _A , unittest.TestCase ): lowerCAmelCase_ = StableDiffusionInstructPixaPixPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : Any ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=2,sample_size=3_2,in_channels=8,out_channels=4,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),cross_attention_dim=3_2,) _lowerCamelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],latent_channels=4,) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) _lowerCamelCase : Optional[Any] = CLIPTextModel(__A ) _lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _lowerCamelCase : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase_ ( self : Dict,__A : int,__A : Any=0 ): _lowerCamelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2),rng=random.Random(__A ) ).to(__A ) _lowerCamelCase : Tuple = image.cpu().permute(0,2,3,1 )[0] _lowerCamelCase : Union[str, Any] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ) if str(__A ).startswith("mps" ): _lowerCamelCase : Dict = torch.manual_seed(__A ) else: _lowerCamelCase : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Union[str, Any] = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) _lowerCamelCase : int = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Dict = self.get_dummy_inputs(__A ) _lowerCamelCase : Optional[Any] = sd_pipe(**__A ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Union[str, Any] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) _lowerCamelCase : Optional[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[int] = self.get_dummy_inputs(__A ) _lowerCamelCase : List[str] = "french fries" _lowerCamelCase : int = sd_pipe(**__A,negative_prompt=__A ) _lowerCamelCase : Optional[int] = output.images _lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Optional[int] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : Optional[int] = StableDiffusionInstructPixaPixPipeline(**__A ) _lowerCamelCase : List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = self.get_dummy_inputs(__A ) _lowerCamelCase : int = [inputs["prompt"]] * 2 _lowerCamelCase : Optional[Any] = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 _lowerCamelCase : Union[str, Any] = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) _lowerCamelCase : Tuple = image / 2 + 0.5 _lowerCamelCase : Tuple = image.permute(0,3,1,2 ) _lowerCamelCase : Dict = image.repeat(2,1,1,1 ) _lowerCamelCase : List[Any] = sd_pipe(**__A ).images _lowerCamelCase : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) _lowerCamelCase : str = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Dict = self.get_dummy_components() _lowerCamelCase : Any = EulerAncestralDiscreteScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear" ) _lowerCamelCase : Tuple = StableDiffusionInstructPixaPixPipeline(**__A ) _lowerCamelCase : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Dict = self.get_dummy_inputs(__A ) _lowerCamelCase : Dict = sd_pipe(**__A ).images _lowerCamelCase : int = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = [round(__A,4 ) for x in image_slice.flatten().tolist()] print(",".join([str(__A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : str = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Optional[Any] = self.get_dummy_components() _lowerCamelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) _lowerCamelCase : List[Any] = VaeImageProcessor(do_resize=__A,do_normalize=__A ) _lowerCamelCase : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(__A,input_image_type="pt" ) )[0] _lowerCamelCase : Dict = components["vae"] _lowerCamelCase : Optional[Any] = self.get_dummy_inputs_by_type(__A,input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _lowerCamelCase : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() _lowerCamelCase : Dict = pipe(**__A )[0] _lowerCamelCase : str = np.abs(out - out_latents_inputs ).max() self.assertLess(__A,1e-4,"passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : int,__A : Union[str, Any]=0 ): _lowerCamelCase : List[Any] = torch.manual_seed(__A ) _lowerCamelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) _lowerCamelCase : List[Any] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix",safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : int = self.get_inputs() _lowerCamelCase : List[str] = pipe(**__A ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Dict = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix",safety_checker=__A ) _lowerCamelCase : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[Any] = self.get_inputs() _lowerCamelCase : Dict = pipe(**__A ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix",safety_checker=__A ) _lowerCamelCase : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : Tuple = self.get_inputs() _lowerCamelCase : str = pipe(**__A ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = 0 def callback_fn(__A : List[Any],__A : Optional[Any],__A : Dict ) -> None: _lowerCamelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCamelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowerCamelCase : Any = latents[0, -3:, -3:, -1] _lowerCamelCase : Optional[Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _lowerCamelCase : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) _lowerCamelCase : List[str] = latents[0, -3:, -3:, -1] _lowerCamelCase : Tuple = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _lowerCamelCase : Any = False _lowerCamelCase : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix",safety_checker=__A,torch_dtype=torch.floataa ) _lowerCamelCase : Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : Dict = self.get_inputs() pipe(**__A,callback=__A,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase_ ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix",safety_checker=__A,torch_dtype=torch.floataa ) _lowerCamelCase : int = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCamelCase : Any = self.get_inputs() _lowerCamelCase : int = pipe(**__A ) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCamelCase : Optional[int] = inputs["image"].resize((5_0_4, 5_0_4) ) _lowerCamelCase : List[Any] = "timbrooks/instruct-pix2pix" _lowerCamelCase : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A,safety_checker=__A,) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = pipe(**__A ) _lowerCamelCase : Any = output.images[0] _lowerCamelCase : Union[str, Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) _lowerCamelCase : Optional[int] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = F'{sampling_rate}' _lowerCamelCase : Dict = "1" _lowerCamelCase : Optional[Any] = "f32le" _lowerCamelCase : Union[str, Any] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCamelCase : Any = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error _lowerCamelCase : List[Any] = output_stream[0] _lowerCamelCase : Optional[int] = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] = "f32le" , ): """simple docstring""" _lowerCamelCase : Dict = F'{sampling_rate}' _lowerCamelCase : Optional[Any] = "1" if format_for_conversion == "s16le": _lowerCamelCase : Tuple = 2 elif format_for_conversion == "f32le": _lowerCamelCase : List[Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) _lowerCamelCase : Any = platform.system() if system == "Linux": _lowerCamelCase : Tuple = "alsa" _lowerCamelCase : Union[str, Any] = "default" elif system == "Darwin": _lowerCamelCase : int = "avfoundation" _lowerCamelCase : Optional[Any] = ":0" elif system == "Windows": _lowerCamelCase : List[Any] = "dshow" _lowerCamelCase : Dict = "default" _lowerCamelCase : Any = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] _lowerCamelCase : List[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCamelCase : List[str] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : int = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: _lowerCamelCase : Optional[Any] = stream_chunk_s else: _lowerCamelCase : List[Any] = chunk_length_s _lowerCamelCase : List[str] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": _lowerCamelCase : int = np.intaa _lowerCamelCase : Optional[int] = 2 elif format_for_conversion == "f32le": _lowerCamelCase : Union[str, Any] = np.floataa _lowerCamelCase : List[str] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: _lowerCamelCase : Optional[int] = chunk_length_s / 6 _lowerCamelCase : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): _lowerCamelCase : Dict = [stride_length_s, stride_length_s] _lowerCamelCase : List[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCamelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCamelCase : List[Any] = datetime.datetime.now() _lowerCamelCase : str = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale _lowerCamelCase : List[Any] = np.frombuffer(item["raw"] , dtype=a__ ) _lowerCamelCase : Dict = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) _lowerCamelCase : int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] = False ): """simple docstring""" _lowerCamelCase : Optional[Any] = B"" _lowerCamelCase , _lowerCamelCase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) _lowerCamelCase : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: _lowerCamelCase : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator _lowerCamelCase : Optional[Any] = (_stride_left, stride_right) _lowerCamelCase : Dict = {"raw": acc[:chunk_len], "stride": stride} if stream: _lowerCamelCase : List[str] = False yield item _lowerCamelCase : List[str] = stride_left _lowerCamelCase : Any = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: _lowerCamelCase : Optional[int] = {"raw": acc, "stride": (_stride_left, 0)} if stream: _lowerCamelCase : Optional[Any] = False yield item def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: _lowerCamelCase : int = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase__ ( UpperCamelCase__ ): lowerCAmelCase_ = 'cvt' def __init__( self : Any,__A : List[str]=3,__A : Any=[7, 3, 3],__A : Optional[Any]=[4, 2, 2],__A : Union[str, Any]=[2, 1, 1],__A : List[str]=[6_4, 1_9_2, 3_8_4],__A : int=[1, 3, 6],__A : Any=[1, 2, 1_0],__A : Optional[int]=[4.0, 4.0, 4.0],__A : List[Any]=[0.0, 0.0, 0.0],__A : Tuple=[0.0, 0.0, 0.0],__A : Any=[0.0, 0.0, 0.1],__A : Any=[True, True, True],__A : Any=[False, False, True],__A : Dict=["dw_bn", "dw_bn", "dw_bn"],__A : Optional[Any]=[3, 3, 3],__A : Dict=[1, 1, 1],__A : List[str]=[2, 2, 2],__A : Dict=[1, 1, 1],__A : int=[1, 1, 1],__A : Any=0.02,__A : Optional[Any]=1e-12,**__A : Union[str, Any],): super().__init__(**__A ) _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = patch_sizes _lowerCamelCase : List[Any] = patch_stride _lowerCamelCase : Union[str, Any] = patch_padding _lowerCamelCase : Any = embed_dim _lowerCamelCase : str = num_heads _lowerCamelCase : int = depth _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Tuple = attention_drop_rate _lowerCamelCase : Optional[int] = drop_rate _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : int = qkv_bias _lowerCamelCase : Union[str, Any] = cls_token _lowerCamelCase : Optional[Any] = qkv_projection_method _lowerCamelCase : List[str] = kernel_qkv _lowerCamelCase : List[str] = padding_kv _lowerCamelCase : List[Any] = stride_kv _lowerCamelCase : List[Any] = padding_q _lowerCamelCase : Union[str, Any] = stride_q _lowerCamelCase : int = initializer_range _lowerCamelCase : int = layer_norm_eps
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] = 0 ): """simple docstring""" _lowerCamelCase : Any = length or len(_UpperCAmelCase ) _lowerCamelCase : Union[str, Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCamelCase , _lowerCamelCase : List[Any] = list_data[i + 1], list_data[i] _lowerCamelCase : Optional[Any] = True return list_data if not swapped else bubble_sort(_UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_ ( _lowerCAmelCase : str ): """simple docstring""" monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : Dict ): _lowerCamelCase : List[str] = metric_id class UpperCAmelCase__ : lowerCAmelCase_ = [MetricMock(UpperCamelCase_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def lowerCamelCase_ ( self : str ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): """simple docstring""" if "tmp_path" in args: _lowerCamelCase : Dict = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_lowerCAmelCase , match="https://huggingface.co/docs/evaluate" ): func(*_lowerCAmelCase )
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase_ : int = 'hf-internal-testing/tiny-random-bert' UpperCAmelCase_ : int = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') UpperCAmelCase_ : Dict = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = cached_file(__A,__A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__A,__A ) ) ) with open(os.path.join(__A,"refs","main" ) ) as f: _lowerCamelCase : Tuple = f.read() self.assertEqual(__A,os.path.join(__A,"snapshots",__A,__A ) ) self.assertTrue(os.path.isfile(__A ) ) # File is cached at the same place the second time. _lowerCamelCase : Any = cached_file(__A,__A ) self.assertEqual(__A,__A ) # Using a specific revision to test the full commit hash. _lowerCamelCase : Union[str, Any] = cached_file(__A,__A,revision="9b8c223" ) self.assertEqual(__A,os.path.join(__A,"snapshots",__A,__A ) ) def lowerCamelCase_ ( self : Optional[Any] ): with self.assertRaisesRegex(__A,"is not a valid model identifier" ): _lowerCamelCase : Tuple = cached_file("tiny-random-bert",__A ) with self.assertRaisesRegex(__A,"is not a valid git identifier" ): _lowerCamelCase : Optional[int] = cached_file(__A,__A,revision="aaaa" ) with self.assertRaisesRegex(__A,"does not appear to have a file named" ): _lowerCamelCase : List[Any] = cached_file(__A,"conf" ) def lowerCamelCase_ ( self : Dict ): with self.assertRaisesRegex(__A,"does not appear to have a file named" ): _lowerCamelCase : Union[str, Any] = cached_file(__A,"conf" ) with open(os.path.join(__A,"refs","main" ) ) as f: _lowerCamelCase : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(__A,".no_exist",__A,"conf" ) ) ) _lowerCamelCase : Optional[int] = cached_file(__A,"conf",_raise_exceptions_for_missing_entries=__A ) self.assertIsNone(__A ) _lowerCamelCase : int = cached_file(__A,"conf",local_files_only=__A,_raise_exceptions_for_missing_entries=__A ) self.assertIsNone(__A ) _lowerCamelCase : Dict = mock.Mock() _lowerCamelCase : Union[str, Any] = 5_0_0 _lowerCamelCase : int = {} _lowerCamelCase : str = HTTPError _lowerCamelCase : Union[str, Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request",return_value=__A ) as mock_head: _lowerCamelCase : Optional[Any] = cached_file(__A,"conf",_raise_exceptions_for_connection_errors=__A ) self.assertIsNone(__A ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self : Optional[Any] ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) def lowerCamelCase_ ( self : Tuple ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__A,"is not a valid model identifier" ): get_file_from_repo("bert-base-case",__A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__A,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased",__A,revision="ahaha" ) _lowerCamelCase : Any = get_file_from_repo("bert-base-cased",__A ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : List[str] = json.loads(open(__A,"r" ).read() ) self.assertEqual(config["hidden_size"],7_6_8 ) def lowerCamelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Any = Path(__A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(__A,"a.txt" ),str(__A ) ) self.assertIsNone(get_file_from_repo(__A,"b.txt" ) )
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( __snake_case , unittest.TestCase ): lowerCAmelCase_ = TransfoXLTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : str ): super().setUp() _lowerCamelCase : Dict = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : int,**__A : str ): _lowerCamelCase : List[str] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname,**_lowercase ) def lowerCamelCase_ ( self : Optional[Any],__A : List[str] ): _lowerCamelCase : Optional[int] = """<unk> UNwanted , running""" _lowerCamelCase : str = """<unk> unwanted, running""" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file,lower_case=_lowercase ) _lowerCamelCase : Optional[int] = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(_lowercase,["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ),[0, 4, 8, 7] ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = TransfoXLTokenizer(lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ),["hello", "!", "how", "are", "you", "?"] ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = TransfoXLTokenizer(lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ),["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = TransfoXLTokenizer(lower_case=_lowercase ) _lowerCamelCase : Union[str, Any] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" _lowerCamelCase : Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_lowercase ),_lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(_lowercase ),_lowercase ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : int = len(_lowercase ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1",1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_lowercase ),original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ),[1] ) self.assertEqual(tokenizer.decode([1] ),"new1" )
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) logging.set_verbosity_info() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase : Union[str, Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) _lowerCamelCase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) else: _lowerCamelCase : int = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) _lowerCamelCase : Optional[int] = ProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) _lowerCamelCase : Any = ["""key_proj""", """value_proj""", """query_proj"""] _lowerCamelCase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: _lowerCamelCase : Optional[int] = key.split("." ) if attributes[0] == "lm_head": _lowerCamelCase : int = prophet _lowerCamelCase : Tuple = prophet_old else: _lowerCamelCase : Optional[int] = prophet.prophetnet _lowerCamelCase : Optional[int] = prophet_old.model _lowerCamelCase : List[str] = False for attribute in attributes: if attribute in mapping: _lowerCamelCase : str = mapping[attribute] if not hasattr(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: _lowerCamelCase : Union[str, Any] = attribute elif hasattr(lowercase_ , lowercase_ ): _lowerCamelCase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase : Union[str, Any] = old_model.weight logger.info(F'{attribute} is initialized.' ) _lowerCamelCase : List[str] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase : Tuple = old_model.bias logger.info(F'{attribute} is initialized' ) _lowerCamelCase : Optional[Any] = True break elif attribute in special_keys and hasattr(lowercase_ , "in_proj_weight" ): _lowerCamelCase : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase : Dict = getattr(lowercase_ , lowercase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase : Dict = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _lowerCamelCase : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _lowerCamelCase : str = True break if attribute.isdigit(): _lowerCamelCase : Optional[Any] = model[int(lowercase_ )] _lowerCamelCase : Optional[int] = old_model[int(lowercase_ )] else: _lowerCamelCase : List[Any] = getattr(lowercase_ , lowercase_ ) if old_attribute == "": _lowerCamelCase : Any = old_model else: if not hasattr(lowercase_ , lowercase_ ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _lowerCamelCase : str = getattr(lowercase_ , lowercase_ ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(lowercase_ ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from __future__ import annotations import math def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : list[int] , _lowerCAmelCase : float ) -> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def A_ ( ) -> None: """simple docstring""" _lowerCamelCase : Any = [90, 23, 6, 33, 21, 65, 123, 34423] _lowerCamelCase : Dict = math.log(len(lowerCAmelCase__ ) , 2 ) print(F'Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str=1 ): """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]=0 ): """simple docstring""" _lowerCamelCase : List[Any] = [] for old_item in old_list: _lowerCamelCase : Union[str, Any] = old_item.replace("in_layers.0" , "norm1" ) _lowerCamelCase : List[str] = new_item.replace("in_layers.2" , "conv1" ) _lowerCamelCase : List[str] = new_item.replace("out_layers.0" , "norm2" ) _lowerCamelCase : Union[str, Any] = new_item.replace("out_layers.3" , "conv2" ) _lowerCamelCase : List[str] = new_item.replace("emb_layers.1" , "time_emb_proj" ) _lowerCamelCase : str = new_item.replace("skip_connection" , "conv_shortcut" ) _lowerCamelCase : int = shave_segments(_lowerCamelCase , n_shave_prefix_segments=_lowerCamelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=0 ): """simple docstring""" _lowerCamelCase : Any = [] for old_item in old_list: _lowerCamelCase : List[str] = old_item _lowerCamelCase : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) _lowerCamelCase : Optional[int] = new_item.replace("norm.bias" , "group_norm.bias" ) _lowerCamelCase : int = new_item.replace("proj_out.weight" , "proj_attn.weight" ) _lowerCamelCase : Any = new_item.replace("proj_out.bias" , "proj_attn.bias" ) _lowerCamelCase : Optional[Any] = shave_segments(_lowerCamelCase , n_shave_prefix_segments=_lowerCamelCase ) mapping.append({"old": old_item, "new": new_item} ) return mapping def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Tuple=None ): """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _lowerCamelCase : Optional[Any] = old_checkpoint[path] _lowerCamelCase : int = old_tensor.shape[0] // 3 _lowerCamelCase : Optional[int] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _lowerCamelCase : str = old_tensor.shape[0] // config["num_head_channels"] // 3 _lowerCamelCase : Union[str, Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = old_tensor.split(channels // num_heads , dim=1 ) _lowerCamelCase : Optional[Any] = query.reshape(_lowerCamelCase ) _lowerCamelCase : int = key.reshape(_lowerCamelCase ) _lowerCamelCase : str = value.reshape(_lowerCamelCase ) for path in paths: _lowerCamelCase : int = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _lowerCamelCase : Union[str, Any] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) _lowerCamelCase : Optional[Any] = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) _lowerCamelCase : Any = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: _lowerCamelCase : Any = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _lowerCamelCase : Optional[Any] = old_checkpoint[path["old"]][:, :, 0] else: _lowerCamelCase : List[str] = old_checkpoint[path["old"]] def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = {} _lowerCamelCase : Dict = checkpoint["time_embed.0.weight"] _lowerCamelCase : Tuple = checkpoint["time_embed.0.bias"] _lowerCamelCase : Tuple = checkpoint["time_embed.2.weight"] _lowerCamelCase : List[str] = checkpoint["time_embed.2.bias"] _lowerCamelCase : Optional[int] = checkpoint["input_blocks.0.0.weight"] _lowerCamelCase : Optional[int] = checkpoint["input_blocks.0.0.bias"] _lowerCamelCase : Any = checkpoint["out.0.weight"] _lowerCamelCase : Optional[Any] = checkpoint["out.0.bias"] _lowerCamelCase : Any = checkpoint["out.2.weight"] _lowerCamelCase : Union[str, Any] = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only _lowerCamelCase : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) _lowerCamelCase : Dict = { layer_id: [key for key in checkpoint if F'input_blocks.{layer_id}' in key] for layer_id in range(_lowerCamelCase ) } # Retrieves the keys for the middle blocks only _lowerCamelCase : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) _lowerCamelCase : List[Any] = { layer_id: [key for key in checkpoint if F'middle_block.{layer_id}' in key] for layer_id in range(_lowerCamelCase ) } # Retrieves the keys for the output blocks only _lowerCamelCase : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) _lowerCamelCase : Dict = { layer_id: [key for key in checkpoint if F'output_blocks.{layer_id}' in key] for layer_id in range(_lowerCamelCase ) } for i in range(1 , _lowerCamelCase ): _lowerCamelCase : Union[str, Any] = (i - 1) // (config["num_res_blocks"] + 1) _lowerCamelCase : Dict = (i - 1) % (config["num_res_blocks"] + 1) _lowerCamelCase : Union[str, Any] = [key for key in input_blocks[i] if F'input_blocks.{i}.0' in key] _lowerCamelCase : Any = [key for key in input_blocks[i] if F'input_blocks.{i}.1' in key] if F'input_blocks.{i}.0.op.weight' in checkpoint: _lowerCamelCase : str = checkpoint[ F'input_blocks.{i}.0.op.weight' ] _lowerCamelCase : Tuple = checkpoint[ F'input_blocks.{i}.0.op.bias' ] continue _lowerCamelCase : str = renew_resnet_paths(_lowerCamelCase ) _lowerCamelCase : int = {"old": F'input_blocks.{i}.0', "new": F'down_blocks.{block_id}.resnets.{layer_in_block_id}'} _lowerCamelCase : Optional[Any] = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path, resnet_op] , config=_lowerCamelCase ) if len(_lowerCamelCase ): _lowerCamelCase : List[Any] = renew_attention_paths(_lowerCamelCase ) _lowerCamelCase : List[str] = { "old": F'input_blocks.{i}.1', "new": F'down_blocks.{block_id}.attentions.{layer_in_block_id}', } _lowerCamelCase : Tuple = { F'input_blocks.{i}.1.qkv.bias': { "key": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', "query": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', "value": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'input_blocks.{i}.1.qkv.weight': { "key": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', "query": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', "value": F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=_lowerCamelCase , config=_lowerCamelCase , ) _lowerCamelCase : str = middle_blocks[0] _lowerCamelCase : Optional[int] = middle_blocks[1] _lowerCamelCase : Dict = middle_blocks[2] _lowerCamelCase : Dict = renew_resnet_paths(_lowerCamelCase ) assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase ) _lowerCamelCase : Tuple = renew_resnet_paths(_lowerCamelCase ) assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase ) _lowerCamelCase : Optional[int] = renew_attention_paths(_lowerCamelCase ) _lowerCamelCase : int = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , attention_paths_to_split=_lowerCamelCase , config=_lowerCamelCase ) for i in range(_lowerCamelCase ): _lowerCamelCase : Optional[int] = i // (config["num_res_blocks"] + 1) _lowerCamelCase : List[str] = i % (config["num_res_blocks"] + 1) _lowerCamelCase : int = [shave_segments(_lowerCamelCase , 2 ) for name in output_blocks[i]] _lowerCamelCase : Tuple = {} for layer in output_block_layers: _lowerCamelCase , _lowerCamelCase : str = layer.split("." )[0], shave_segments(_lowerCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowerCamelCase ) else: _lowerCamelCase : str = [layer_name] if len(_lowerCamelCase ) > 1: _lowerCamelCase : Optional[Any] = [key for key in output_blocks[i] if F'output_blocks.{i}.0' in key] _lowerCamelCase : Tuple = [key for key in output_blocks[i] if F'output_blocks.{i}.1' in key] _lowerCamelCase : Tuple = renew_resnet_paths(_lowerCamelCase ) _lowerCamelCase : int = renew_resnet_paths(_lowerCamelCase ) _lowerCamelCase : Optional[int] = {"old": F'output_blocks.{i}.0', "new": F'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , config=_lowerCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _lowerCamelCase : List[str] = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) _lowerCamelCase : Optional[int] = checkpoint[ F'output_blocks.{i}.{index}.conv.weight' ] _lowerCamelCase : List[Any] = checkpoint[ F'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(_lowerCamelCase ) == 2: _lowerCamelCase : str = [] if len(_lowerCamelCase ): _lowerCamelCase : Dict = renew_attention_paths(_lowerCamelCase ) _lowerCamelCase : List[str] = { "old": F'output_blocks.{i}.1', "new": F'up_blocks.{block_id}.attentions.{layer_in_block_id}', } _lowerCamelCase : Any = { F'output_blocks.{i}.1.qkv.bias': { "key": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', "query": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', "value": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'output_blocks.{i}.1.qkv.weight': { "key": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', "query": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', "value": F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=_lowerCamelCase , ) else: _lowerCamelCase : Union[str, Any] = renew_resnet_paths(_lowerCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _lowerCamelCase : int = ".".join(["output_blocks", str(_lowerCamelCase ), path["old"]] ) _lowerCamelCase : Union[str, Any] = ".".join(["up_blocks", str(_lowerCamelCase ), "resnets", str(_lowerCamelCase ), path["new"]] ) _lowerCamelCase : str = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCAmelCase_ : Dict = parser.parse_args() UpperCAmelCase_ : int = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCAmelCase_ : List[str] = json.loads(f.read()) UpperCAmelCase_ : Tuple = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCAmelCase_ : Union[str, Any] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCAmelCase_ : Optional[int] = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCAmelCase_ : Optional[Any] = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCAmelCase__ ( snake_case_ ): def lowerCamelCase_ ( self : Any ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[Any] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(__A ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = self._create_example_records() _lowerCamelCase : Union[str, Any] = Dataset.from_list(__A ) self.assertListEqual(dset.column_names,["col_1", "col_2"] ) for i, r in enumerate(__A ): self.assertDictEqual(__A,example_records[i] ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = self._create_example_records() _lowerCamelCase : int = Dataset.from_list(__A ) _lowerCamelCase : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info,dset_from_dict.info ) def lowerCamelCase_ ( self : Tuple ): # checks what happens with missing columns _lowerCamelCase : List[str] = [{"col_1": 1}, {"col_2": "x"}] _lowerCamelCase : Tuple = Dataset.from_list(__A ) self.assertDictEqual(dset[0],{"col_1": 1} ) self.assertDictEqual(dset[1],{"col_1": None} ) # NB: first record is used for columns def lowerCamelCase_ ( self : Optional[int] ): # checks if the type can be inferred from the second record _lowerCamelCase : List[Any] = [{"col_1": []}, {"col_1": [1, 2]}] _lowerCamelCase : Optional[int] = Dataset.from_list(__A ) self.assertEqual(dset.info.features["col_1"],Sequence(Value("int64" ) ) ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = Dataset.from_list([] ) self.assertEqual(len(__A ),0 ) self.assertListEqual(dset.column_names,[] )
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : str = sum(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowerCamelCase : List[Any] = True for i in range(1 , s + 1 ): _lowerCamelCase : Optional[Any] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowerCamelCase : List[str] = dp[i][j - 1] if arr[i - 1] <= j: _lowerCamelCase : List[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowerCamelCase : str = s - 2 * j break return diff
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = BlenderbotSmallTokenizer lowerCAmelCase_ = False def lowerCamelCase_ ( self : Any ): super().setUp() _lowerCamelCase : Any = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] _lowerCamelCase : str = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Union[str, Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] _lowerCamelCase : str = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : int = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : List[str],**__A : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Tuple,__A : Tuple ): _lowerCamelCase : Union[str, Any] = 'adapt act apte' _lowerCamelCase : List[Any] = 'adapt act apte' return input_text, output_text def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = BlenderbotSmallTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Dict = 'adapt act apte' _lowerCamelCase : str = ['adapt', 'act', 'ap@@', 'te'] _lowerCamelCase : Dict = tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] _lowerCamelCase : Any = 'I am a small frog.' _lowerCamelCase : List[str] = tok([src_text],padding=__A,truncation=__A )['input_ids'] _lowerCamelCase : Union[str, Any] = tok.batch_decode(__A,skip_special_tokens=__A,clean_up_tokenization_spaces=__A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) _lowerCamelCase : Optional[int] = 'I am a small frog .' _lowerCamelCase : Any = '.' _lowerCamelCase : Optional[int] = tok(__A )['input_ids'] _lowerCamelCase : Any = tok(__A )['input_ids'] assert encoded[-1] == encoded_dot[0]
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while second != 0: _lowerCamelCase : List[str] = first & second first ^= second _lowerCamelCase : str = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = int(input('Enter the first number: ').strip()) UpperCAmelCase_ : List[Any] = int(input('Enter the second number: ').strip()) print(f'''{add(first, second) = }''')
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" def merge(_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__snake_case ) <= 1: return collection _lowerCamelCase : Any = len(__snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : List[str] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ): """simple docstring""" if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate _lowerCamelCase : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCamelCase : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } UpperCAmelCase_ : Tuple = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } UpperCAmelCase_ : str = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Tuple = set() _lowerCamelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : Optional[Any] = char _lowerCamelCase : Optional[Any] = set(lowerCAmelCase_ ) return pairs class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any],__A : Optional[Any],__A : List[str],__A : Any="<s>",__A : Dict="</s>",__A : int="</s>",__A : List[Any]="<s>",__A : Any="<unk>",__A : str="<pad>",__A : Any="<mask>",**__A : Optional[Any],): super().__init__( bos_token=a_,eos_token=a_,unk_token=a_,sep_token=a_,cls_token=a_,pad_token=a_,mask_token=a_,**a_,) _lowerCamelCase : Optional[int] = vocab_file _lowerCamelCase : Any = merges_file _lowerCamelCase : Any = {} _lowerCamelCase : Any = 0 _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : Tuple = 2 _lowerCamelCase : List[str] = 3 self.add_from_file(a_ ) _lowerCamelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(a_,encoding="utf-8" ) as merges_handle: _lowerCamelCase : Optional[Any] = merges_handle.read().split("\n" )[:-1] _lowerCamelCase : Tuple = [tuple(merge.split()[:-1] ) for merge in merges] _lowerCamelCase : Tuple = dict(zip(a_,range(len(a_ ) ) ) ) _lowerCamelCase : List[str] = {} def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : Union[str, Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] _lowerCamelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : int = None,__A : Dict = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_,token_ids_a=a_,already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def lowerCamelCase_ ( self : Any,__A : int,__A : str = None ): _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self : Optional[Any] ): return len(self.encoder ) def lowerCamelCase_ ( self : str ): return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase_ ( self : Tuple,__A : List[str] ): if token in self.cache: return self.cache[token] _lowerCamelCase : Tuple = tuple(a_ ) _lowerCamelCase : int = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _lowerCamelCase : List[Any] = get_pairs(a_ ) if not pairs: return token while True: _lowerCamelCase : Tuple = min(a_,key=lambda __A : self.bpe_ranks.get(a_,float("inf" ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase : Any = bigram _lowerCamelCase : int = [] _lowerCamelCase : Optional[Any] = 0 while i < len(a_ ): try: _lowerCamelCase : Tuple = word.index(a_,a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase : Dict = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase : Optional[Any] = tuple(a_ ) _lowerCamelCase : List[Any] = new_word if len(a_ ) == 1: break else: _lowerCamelCase : Union[str, Any] = get_pairs(a_ ) _lowerCamelCase : Tuple = "@@ ".join(a_ ) _lowerCamelCase : Union[str, Any] = word[:-4] _lowerCamelCase : Any = word return word def lowerCamelCase_ ( self : Tuple,__A : Optional[Any] ): _lowerCamelCase : str = [] _lowerCamelCase : Dict = re.findall(r"\S+\n?",a_ ) for token in words: split_tokens.extend(list(self.bpe(a_ ).split(" " ) ) ) return split_tokens def lowerCamelCase_ ( self : Optional[int],__A : Optional[Any] ): return self.encoder.get(a_,self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : List[Any],__A : Dict ): return self.decoder.get(a_,self.unk_token ) def lowerCamelCase_ ( self : List[Any],__A : List[str] ): _lowerCamelCase : Any = " ".join(a_ ).replace("@@ ","" ).strip() return out_string def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : str = None ): if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Optional[int] = os.path.join( a_,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Optional[Any] = os.path.join( a_,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file,a_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(a_ ): copyfile(self.merges_file,a_ ) return out_vocab_file, out_merge_file def lowerCamelCase_ ( self : Optional[int],__A : Any ): if isinstance(a_,a_ ): try: with open(a_,"r",encoding="utf-8" ) as fd: self.add_from_file(a_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return _lowerCamelCase : Tuple = f.readlines() for lineTmp in lines: _lowerCamelCase : Dict = lineTmp.strip() _lowerCamelCase : Optional[Any] = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) _lowerCamelCase : Any = line[:idx] _lowerCamelCase : Optional[Any] = len(self.encoder )
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ShapEPipeline lowerCAmelCase_ = ['prompt'] lowerCAmelCase_ = ['prompt'] lowerCAmelCase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCAmelCase_ = False @property def lowerCamelCase_ ( self : Optional[int] ): return 3_2 @property def lowerCamelCase_ ( self : List[Any] ): return 3_2 @property def lowerCamelCase_ ( self : List[str] ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : Optional[Any] ): return 8 @property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=self.text_embedder_hidden_size,projection_dim=self.text_embedder_hidden_size,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) return CLIPTextModelWithProjection(__A ) @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 1_6, "embedding_dim": self.time_input_dim, "num_embeddings": 3_2, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _lowerCamelCase : Any = PriorTransformer(**__A ) return model @property def lowerCamelCase_ ( self : Optional[Any] ): torch.manual_seed(0 ) _lowerCamelCase : List[str] = { "param_shapes": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 1_2, "background": ( 0.1, 0.1, 0.1, ), } _lowerCamelCase : Any = ShapERenderer(**__A ) return model def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Tuple = self.dummy_prior _lowerCamelCase : Tuple = self.dummy_text_encoder _lowerCamelCase : List[str] = self.dummy_tokenizer _lowerCamelCase : Dict = self.dummy_renderer _lowerCamelCase : Optional[int] = HeunDiscreteScheduler( beta_schedule="exp",num_train_timesteps=1_0_2_4,prediction_type="sample",use_karras_sigmas=__A,clip_sample=__A,clip_sample_range=1.0,) _lowerCamelCase : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def lowerCamelCase_ ( self : Dict,__A : Any,__A : str=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : int = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[Any] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : Optional[Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 3_2, "output_type": "np", } return inputs def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = "cpu" _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : Optional[int] = self.pipeline_class(**__A ) _lowerCamelCase : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Dict = pipe(**self.get_dummy_inputs(__A ) ) _lowerCamelCase : str = output.images[0] _lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) _lowerCamelCase : Any = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Union[str, Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = torch_device == "cpu" _lowerCamelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2,test_max_difference=__A,relax_max_difference=__A,) def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**__A ) _lowerCamelCase : Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : List[str] = 1 _lowerCamelCase : Any = 2 _lowerCamelCase : List[str] = self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: _lowerCamelCase : Optional[int] = batch_size * [inputs[key]] _lowerCamelCase : Tuple = pipe(**__A,num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) _lowerCamelCase : Union[str, Any] = ShapEPipeline.from_pretrained("openai/shap-e" ) _lowerCamelCase : Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe( "a shark",generator=__A,guidance_scale=15.0,num_inference_steps=6_4,frame_size=6_4,output_type="np",).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__A,__A )
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase_ : int = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') UpperCAmelCase_ : str = f'''https://www.google.com/search?q={query}&num=100''' UpperCAmelCase_ : int = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: UpperCAmelCase_ : str = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: UpperCAmelCase_ : Any = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
UpperCAmelCase_ : Any = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = len(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _lowerCamelCase : Tuple = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = list(range(10, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase_ : Optional[Any] = 'src/transformers' # Matches is_xxx_available() UpperCAmelCase_ : int = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ : List[str] = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ : Dict = re.compile(R'\s+\"\S*\":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCAmelCase_ : List[str] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ : Dict = re.compile(R'^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ : int = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ : List[Any] = re.compile('^\s+\"([^\"]+)\",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ : Dict = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCAmelCase_ : str = re.compile(R'^\s*try:') # Catches a line with else: UpperCAmelCase_ : str = re.compile(R'^\s*else:') def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if _re_test_backend.search(__snake_case ) is None: return None _lowerCamelCase : Dict = [b[0] for b in _re_backend.findall(__snake_case )] backends.sort() return "_and_".join(__snake_case ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" with open(__snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : Optional[Any] = f.readlines() _lowerCamelCase : Optional[Any] = 0 while line_index < len(__snake_case ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__snake_case ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__snake_case ): _lowerCamelCase : Optional[Any] = _re_one_line_import_struct.search(__snake_case ).groups()[0] _lowerCamelCase : Optional[Any] = re.findall("\[([^\]]+)\]" , __snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _lowerCamelCase : Optional[Any] = _re_import_struct_key_value.search(__snake_case ) if single_line_import_search is not None: _lowerCamelCase : List[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__snake_case ) > 0] objects.extend(__snake_case ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _lowerCamelCase : Tuple = lines[line_index] if _re_import_struct_add_one.search(__snake_case ) is not None: objects.append(_re_import_struct_add_one.search(__snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(__snake_case ) is not None: _lowerCamelCase : Union[str, Any] = _re_import_struct_add_many.search(__snake_case ).groups()[0].split(", " ) _lowerCamelCase : List[Any] = [obj[1:-1] for obj in imports if len(__snake_case ) > 0] objects.extend(__snake_case ) elif _re_between_brackets.search(__snake_case ) is not None: _lowerCamelCase : str = _re_between_brackets.search(__snake_case ).groups()[0].split(", " ) _lowerCamelCase : Any = [obj[1:-1] for obj in imports if len(__snake_case ) > 0] objects.extend(__snake_case ) elif _re_quote_object.search(__snake_case ) is not None: objects.append(_re_quote_object.search(__snake_case ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : Optional[Any] = [] while ( line_index < len(__snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _lowerCamelCase : Optional[int] = lines[line_index] _lowerCamelCase : int = _re_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : str = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__snake_case ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _lowerCamelCase : Dict = lines[line_index] _lowerCamelCase : Tuple = _re_import.search(__snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" def find_duplicates(_lowerCAmelCase : List[Any] ): return [k for k, v in collections.Counter(__snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : Optional[int] = [] for key in import_dict_objects.keys(): _lowerCamelCase : List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) _lowerCamelCase : List[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : Tuple = "base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: _lowerCamelCase : str = os.path.join(__snake_case , "__init__.py" ) _lowerCamelCase : Dict = parse_init(__snake_case ) if objects is not None: _lowerCamelCase : List[Any] = analyze_results(*__snake_case ) if len(__snake_case ) > 0: _lowerCamelCase : Optional[Any] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(__snake_case ) ) if len(__snake_case ) > 0: raise ValueError("\n\n".join(__snake_case ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : Tuple = [] for path, directories, files in os.walk(__snake_case ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__snake_case ) / folder).glob("*.py" ) ) ) == 0: continue _lowerCamelCase : Tuple = str((Path(__snake_case ) / folder).relative_to(__snake_case ) ) _lowerCamelCase : Tuple = short_path.replace(os.path.sep , "." ) submodules.append(__snake_case ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : List[Any] = str((Path(__snake_case ) / fname).relative_to(__snake_case ) ) _lowerCamelCase : Union[str, Any] = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__snake_case ) return submodules UpperCAmelCase_ : Any = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def A_ ( ): """simple docstring""" _lowerCamelCase : Tuple = importlib.util.spec_from_file_location( "transformers" , os.path.join(__snake_case , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _lowerCamelCase : Dict = spec.loader.load_module() _lowerCamelCase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__snake_case ) > 0: _lowerCamelCase : Any = "\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase__ ( lowercase_ ): def lowerCamelCase_ ( self : Union[str, Any],__A : float ): return 0.0 def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = 512 _lowerCamelCase : Optional[int] = [1] + [0] * (size - 1) _lowerCamelCase : Tuple = [filter_type.process(lowerCamelCase_ ) for item in inputs] _lowerCamelCase : Any = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Optional[Any] = np.abs(np.fft.fft(lowerCamelCase_ ) ) _lowerCamelCase : Union[str, Any] = 20 * np.logaa(lowerCamelCase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(lowerCamelCase_ , lowerCamelCase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(lowerCamelCase_ ) plt.show() def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : int = 512 _lowerCamelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCamelCase : str = [filter_type.process(lowerCamelCase_ ) for item in inputs] _lowerCamelCase : List[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Optional[Any] = np.angle(np.fft.fft(lowerCamelCase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(lowerCamelCase_ , -2 * pi ) ) plt.show()
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase_ : Tuple = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Optional[str] = None ): _lowerCamelCase : List[Any] = ( os.path.join(UpperCamelCase_,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCamelCase : Tuple = Extractor def lowerCamelCase_ ( self : List[str],__A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCamelCase : Any = os.path.abspath(UpperCamelCase_ ) return os.path.join(self.extract_dir,hash_url_to_filename(UpperCamelCase_ ) ) def lowerCamelCase_ ( self : str,__A : str,__A : bool ): return force_extract or ( not os.path.isfile(UpperCamelCase_ ) and not (os.path.isdir(UpperCamelCase_ ) and os.listdir(UpperCamelCase_ )) ) def lowerCamelCase_ ( self : str,__A : str,__A : bool = False ): _lowerCamelCase : int = self.extractor.infer_extractor_format(UpperCamelCase_ ) if not extractor_format: return input_path _lowerCamelCase : Tuple = self._get_output_path(UpperCamelCase_ ) if self._do_extract(UpperCamelCase_,UpperCamelCase_ ): self.extractor.extract(UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ ) return output_path class UpperCAmelCase__ ( __lowerCamelCase ): @classmethod @abstractmethod def lowerCamelCase_ ( cls : Optional[Any],__A : Union[Path, str],**__A : Optional[int] ): ... @staticmethod @abstractmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): ... class UpperCAmelCase__ ( __lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ = [] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): with open(UpperCamelCase_,"rb" ) as f: return f.read(UpperCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : Any,__A : Union[Path, str],__A : bytes = b"" ): if not magic_number: _lowerCamelCase : Optional[int] = max(len(UpperCamelCase_ ) for cls_magic_number in cls.magic_numbers ) try: _lowerCamelCase : str = cls.read_magic_number(UpperCamelCase_,UpperCamelCase_ ) except OSError: return False return any(magic_number.startswith(UpperCamelCase_ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( __lowerCamelCase ): @classmethod def lowerCamelCase_ ( cls : Optional[int],__A : Union[Path, str],**__A : int ): return tarfile.is_tarfile(UpperCamelCase_ ) @staticmethod def lowerCamelCase_ ( __A : Tuple,__A : str ): def resolved(__A : str ) -> str: return os.path.realpath(os.path.abspath(UpperCamelCase_ ) ) def badpath(__A : str,__A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(UpperCamelCase_,UpperCamelCase_ ) ).startswith(UpperCamelCase_ ) def badlink(__A : Optional[int],__A : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCamelCase : Any = resolved(os.path.join(UpperCamelCase_,os.path.dirname(info.name ) ) ) return badpath(info.linkname,base=UpperCamelCase_ ) _lowerCamelCase : List[str] = resolved(UpperCamelCase_ ) for finfo in members: if badpath(finfo.name,UpperCamelCase_ ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(UpperCamelCase_,UpperCamelCase_ ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(UpperCamelCase_,UpperCamelCase_ ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(UpperCamelCase_,exist_ok=UpperCamelCase_ ) _lowerCamelCase : Any = tarfile.open(UpperCamelCase_ ) tar_file.extractall(UpperCamelCase_,members=TarExtractor.safemembers(UpperCamelCase_,UpperCamelCase_ ) ) tar_file.close() class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\x1F\x8B'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with gzip.open(UpperCamelCase_,"rb" ) as gzip_file: with open(UpperCamelCase_,"wb" ) as extracted_file: shutil.copyfileobj(UpperCamelCase_,UpperCamelCase_ ) class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def lowerCamelCase_ ( cls : str,__A : Union[Path, str],__A : bytes = b"" ): if super().is_extractable(UpperCamelCase_,magic_number=UpperCamelCase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(UpperCamelCase_,"rb" ) as fp: _lowerCamelCase : Tuple = _EndRecData(UpperCamelCase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCamelCase : Any = fp.read(UpperCamelCase_ ) # CD is where we expect it to be if len(UpperCamelCase_ ) == sizeCentralDir: _lowerCamelCase : int = struct.unpack(UpperCamelCase_,UpperCamelCase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(UpperCamelCase_,exist_ok=UpperCamelCase_ ) with zipfile.ZipFile(UpperCamelCase_,"r" ) as zip_file: zip_file.extractall(UpperCamelCase_ ) zip_file.close() class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with lzma.open(UpperCamelCase_ ) as compressed_file: with open(UpperCamelCase_,"wb" ) as extracted_file: shutil.copyfileobj(UpperCamelCase_,UpperCamelCase_ ) class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(UpperCamelCase_,exist_ok=UpperCamelCase_ ) _lowerCamelCase : Optional[int] = rarfile.RarFile(UpperCamelCase_ ) rf.extractall(UpperCamelCase_ ) rf.close() class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\x28\xb5\x2F\xFD'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _lowerCamelCase : Tuple = zstd.ZstdDecompressor() with open(UpperCamelCase_,"rb" ) as ifh, open(UpperCamelCase_,"wb" ) as ofh: dctx.copy_stream(UpperCamelCase_,UpperCamelCase_ ) class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\x42\x5A\x68'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with bza.open(UpperCamelCase_,"rb" ) as compressed_file: with open(UpperCamelCase_,"wb" ) as extracted_file: shutil.copyfileobj(UpperCamelCase_,UpperCamelCase_ ) class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(UpperCamelCase_,exist_ok=UpperCamelCase_ ) with pyazr.SevenZipFile(UpperCamelCase_,"r" ) as archive: archive.extractall(UpperCamelCase_ ) class UpperCAmelCase__ ( __lowerCamelCase ): lowerCAmelCase_ = [b'\x04\x22\x4D\x18'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(UpperCamelCase_,"rb" ) as compressed_file: with open(UpperCamelCase_,"wb" ) as extracted_file: shutil.copyfileobj(UpperCamelCase_,UpperCamelCase_ ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase_ ( cls : Union[str, Any] ): return max( len(UpperCamelCase_ ) for extractor in cls.extractors.values() if issubclass(UpperCamelCase_,UpperCamelCase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): try: return MagicNumberBaseExtractor.read_magic_number(UpperCamelCase_,magic_number_length=UpperCamelCase_ ) except OSError: return b"" @classmethod def lowerCamelCase_ ( cls : List[Any],__A : Union[Path, str],__A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.",category=UpperCamelCase_,) _lowerCamelCase : Tuple = cls.infer_extractor_format(UpperCamelCase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase_ ( cls : List[Any],__A : Union[Path, str] ): # <Added version="2.4.0"/> _lowerCamelCase : Optional[int] = cls._get_magic_number_max_length() _lowerCamelCase : int = cls._read_magic_number(UpperCamelCase_,UpperCamelCase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(UpperCamelCase_,magic_number=UpperCamelCase_ ): return extractor_format @classmethod def lowerCamelCase_ ( cls : Tuple,__A : Union[Path, str],__A : Union[Path, str],__A : Optional[str] = None,__A : Optional[BaseExtractor] = "deprecated",): os.makedirs(os.path.dirname(UpperCamelCase_ ),exist_ok=UpperCamelCase_ ) # Prevent parallel extractions _lowerCamelCase : str = str(Path(UpperCamelCase_ ).with_suffix(".lock" ) ) with FileLock(UpperCamelCase_ ): shutil.rmtree(UpperCamelCase_,ignore_errors=UpperCamelCase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(UpperCamelCase_,UpperCamelCase_ ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.",category=UpperCamelCase_,) _lowerCamelCase : List[str] = extractor if extractor != "deprecated" else extractor_format else: _lowerCamelCase : Dict = cls.extractors[extractor_format] return extractor.extract(UpperCamelCase_,UpperCamelCase_ ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.",category=UpperCamelCase_,) for extractor in cls.extractors.values(): if extractor.is_extractable(UpperCamelCase_ ): return extractor.extract(UpperCamelCase_,UpperCamelCase_ )
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase_ : str = logging.get_logger(__name__) class UpperCAmelCase__ ( _UpperCamelCase ): lowerCAmelCase_ = ['input_features'] def __init__( self : Dict,__A : int=8_0,__A : Union[str, Any]=1_6_0_0_0,__A : Optional[int]=1_6_0,__A : Optional[Any]=3_0,__A : Dict=4_0_0,__A : Optional[Any]=0.0,__A : int=False,**__A : Tuple,): super().__init__( feature_size=__A,sampling_rate=__A,padding_value=__A,return_attention_mask=__A,**__A,) _lowerCamelCase : List[str] = n_fft _lowerCamelCase : Any = hop_length _lowerCamelCase : Dict = chunk_length _lowerCamelCase : Union[str, Any] = chunk_length * sampling_rate _lowerCamelCase : Any = self.n_samples // hop_length _lowerCamelCase : List[Any] = sampling_rate _lowerCamelCase : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2,num_mel_filters=__A,min_frequency=0.0,max_frequency=8_0_0_0.0,sampling_rate=__A,norm="slaney",mel_scale="slaney",) def lowerCamelCase_ ( self : Optional[Any],__A : np.array ): _lowerCamelCase : Tuple = spectrogram( __A,window_function(self.n_fft,"hann" ),frame_length=self.n_fft,hop_length=self.hop_length,power=2.0,mel_filters=self.mel_filters,log_mel="log10",) _lowerCamelCase : Tuple = log_spec[:, :-1] _lowerCamelCase : Any = np.maximum(__A,log_spec.max() - 8.0 ) _lowerCamelCase : Optional[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase_ ( __A : List[np.ndarray],__A : List[np.ndarray],__A : float = 0.0 ): if attention_mask is not None: _lowerCamelCase : List[str] = np.array(__A,np.intaa ) _lowerCamelCase : List[str] = [] for vector, length in zip(__A,attention_mask.sum(-1 ) ): _lowerCamelCase : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowerCamelCase : List[Any] = padding_value normed_input_values.append(__A ) else: _lowerCamelCase : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : str,__A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],__A : bool = True,__A : Optional[int] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[bool] = None,__A : Optional[str] = "max_length",__A : Optional[int] = None,__A : Optional[int] = None,__A : Optional[bool] = None,**__A : List[Any],): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _lowerCamelCase : str = isinstance(__A,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCamelCase : Any = is_batched_numpy or ( isinstance(__A,(list, tuple) ) and (isinstance(raw_speech[0],(np.ndarray, tuple, list) )) ) if is_batched: _lowerCamelCase : Union[str, Any] = [np.asarray([speech],dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__A,np.ndarray ): _lowerCamelCase : Tuple = np.asarray(__A,dtype=np.floataa ) elif isinstance(__A,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCamelCase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCamelCase : Optional[Any] = [np.asarray([raw_speech] ).T] _lowerCamelCase : List[str] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding _lowerCamelCase : List[Any] = self.pad( __A,padding=__A,max_length=max_length if max_length else self.n_samples,truncation=__A,pad_to_multiple_of=__A,return_attention_mask=return_attention_mask or do_normalize,) # zero-mean and unit-variance normalization if do_normalize: _lowerCamelCase : Dict = self.zero_mean_unit_var_norm( padded_inputs["input_features"],attention_mask=padded_inputs["attention_mask"],padding_value=self.padding_value,) _lowerCamelCase : Dict = np.stack(padded_inputs["input_features"],axis=0 ) # make sure list is in array format _lowerCamelCase : Tuple = padded_inputs.get("input_features" ).transpose(2,0,1 ) _lowerCamelCase : str = [self._np_extract_fbank_features(__A ) for waveform in input_features[0]] if isinstance(input_features[0],__A ): _lowerCamelCase : Optional[int] = [np.asarray(__A,dtype=np.floataa ) for feature in input_features] else: _lowerCamelCase : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowerCamelCase : Optional[int] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: _lowerCamelCase : str = padded_inputs.convert_to_tensors(__A ) return padded_inputs def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) _lowerCamelCase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : int ): _lowerCamelCase : Tuple = data _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Optional[Any] = None def A_ ( _lowerCAmelCase : Optional[int] ): # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A_ ( ): # Main function for testing. """simple docstring""" _lowerCamelCase : Optional[Any] = Node(1 ) _lowerCamelCase : Optional[Any] = Node(2 ) _lowerCamelCase : List[str] = Node(3 ) _lowerCamelCase : Dict = Node(4 ) _lowerCamelCase : Optional[int] = Node(5 ) _lowerCamelCase : Tuple = Node(6 ) _lowerCamelCase : str = Node(7 ) _lowerCamelCase : Tuple = Node(8 ) _lowerCamelCase : List[Any] = Node(9 ) print(is_full_binary_tree(a__ ) ) print(depth_of_tree(a__ ) ) print("Tree is: " ) display(a__ ) if __name__ == "__main__": main()
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class UpperCAmelCase__ ( __lowerCAmelCase ): def __init__( self : Any,*__A : List[str],**__A : int ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead.",lowerCAmelCase_,) super().__init__(*lowerCAmelCase_,**lowerCAmelCase_ )
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__ : def __init__( self : List[Any],__A : Any,__A : Optional[int]=1_3,__A : str=7,__A : Any=True,__A : Optional[Any]=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : List[Any]=9_9,__A : str=[1, 1, 2],__A : Tuple=1,__A : Tuple=3_2,__A : str=4,__A : Dict=8,__A : Any=3_7,__A : Dict="gelu_new",__A : Optional[int]=0.1,__A : int=0.1,__A : str=0.0,__A : Tuple=5_1_2,__A : List[Any]=3,__A : int=0.02,__A : List[str]=3,__A : Union[str, Any]=4,__A : Optional[int]=None,__A : Optional[Any]=False,): _lowerCamelCase : List[str] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Optional[int] = block_sizes _lowerCamelCase : Optional[Any] = num_decoder_layers _lowerCamelCase : Union[str, Any] = d_model _lowerCamelCase : Tuple = n_head _lowerCamelCase : Optional[Any] = d_head _lowerCamelCase : Optional[int] = d_inner _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Dict = hidden_dropout _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : Tuple = num_choices _lowerCamelCase : Dict = scope _lowerCamelCase : int = initializer_std # Used in the tests to check the size of the first attention layer _lowerCamelCase : Any = n_head # Used in the tests to check the size of the first hidden state _lowerCamelCase : List[str] = self.d_model # Used in the tests to check the number of output hidden states/attentions _lowerCamelCase : Tuple = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _lowerCamelCase : Any = self.num_hidden_layers + 2 def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : str = FunnelConfig( vocab_size=self.vocab_size,block_sizes=self.block_sizes,num_decoder_layers=self.num_decoder_layers,d_model=self.d_model,n_head=self.n_head,d_head=self.d_head,d_inner=self.d_inner,hidden_act=self.hidden_act,hidden_dropout=self.hidden_dropout,attention_dropout=self.attention_dropout,activation_dropout=self.activation_dropout,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_std=self.initializer_std,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : Any,__A : Tuple,__A : List[str],__A : List[str],__A : Optional[Any],__A : Optional[Any],): _lowerCamelCase : Optional[int] = TFFunnelModel(config=UpperCAmelCase__ ) _lowerCamelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Union[str, Any] = model(UpperCAmelCase__ ) _lowerCamelCase : Tuple = [input_ids, input_mask] _lowerCamelCase : Dict = model(UpperCAmelCase__ ) _lowerCamelCase : List[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) _lowerCamelCase : str = False _lowerCamelCase : Union[str, Any] = TFFunnelModel(config=UpperCAmelCase__ ) _lowerCamelCase : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = TFFunnelModel(config=UpperCAmelCase__ ) _lowerCamelCase : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase_ ( self : Optional[Any],__A : List[str],__A : List[str],__A : List[Any],__A : Optional[int],__A : Union[str, Any],__A : Optional[Any],__A : str,): _lowerCamelCase : int = TFFunnelBaseModel(config=UpperCAmelCase__ ) _lowerCamelCase : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Optional[int] = model(UpperCAmelCase__ ) _lowerCamelCase : Optional[int] = [input_ids, input_mask] _lowerCamelCase : List[str] = model(UpperCAmelCase__ ) _lowerCamelCase : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 2, self.d_model) ) _lowerCamelCase : List[str] = False _lowerCamelCase : Union[str, Any] = TFFunnelBaseModel(config=UpperCAmelCase__ ) _lowerCamelCase : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 3, self.d_model) ) _lowerCamelCase : Any = False _lowerCamelCase : int = TFFunnelBaseModel(config=UpperCAmelCase__ ) _lowerCamelCase : int = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, 2, self.d_model) ) def lowerCamelCase_ ( self : List[str],__A : Any,__A : Union[str, Any],__A : Any,__A : Dict,__A : List[str],__A : int,__A : Dict,): _lowerCamelCase : Dict = TFFunnelForPreTraining(config=UpperCAmelCase__ ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : List[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : int,__A : Dict,__A : List[str],__A : List[str],__A : Optional[int],__A : int,): _lowerCamelCase : List[str] = TFFunnelForMaskedLM(config=UpperCAmelCase__ ) _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Tuple,__A : Dict,__A : Union[str, Any],__A : List[str],__A : List[str],__A : Union[str, Any],__A : str,__A : Any,): _lowerCamelCase : Any = self.num_labels _lowerCamelCase : Dict = TFFunnelForSequenceClassification(config=UpperCAmelCase__ ) _lowerCamelCase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : List[str] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int,__A : Union[str, Any],__A : Union[str, Any],__A : Any,__A : int,__A : List[str],__A : List[Any],__A : str,): _lowerCamelCase : Dict = self.num_choices _lowerCamelCase : Tuple = TFFunnelForMultipleChoice(config=UpperCAmelCase__ ) _lowerCamelCase : str = tf.tile(tf.expand_dims(UpperCAmelCase__,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase__,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__,1 ),(1, self.num_choices, 1) ) _lowerCamelCase : Union[str, Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _lowerCamelCase : Dict = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : int,__A : Optional[int],__A : List[str],__A : Optional[Any],__A : str,__A : int,__A : Any,__A : Optional[Any],): _lowerCamelCase : str = self.num_labels _lowerCamelCase : str = TFFunnelForTokenClassification(config=UpperCAmelCase__ ) _lowerCamelCase : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : Dict = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Dict,__A : List[Any],__A : List[Any],__A : Union[str, Any],__A : Optional[Any],__A : Dict,__A : List[str],__A : Optional[int],): _lowerCamelCase : Optional[int] = TFFunnelForQuestionAnswering(config=UpperCAmelCase__ ) _lowerCamelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _lowerCamelCase : List[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : List[Any] = config_and_inputs _lowerCamelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = TFFunnelModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self,config_class=UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @require_tf class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = TFFunnelModelTester(self,base=UpperCAmelCase__ ) _lowerCamelCase : Any = ConfigTester(self,config_class=UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ )
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' from collections import deque def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = len(__a ) _lowerCamelCase : Dict = deque() _lowerCamelCase : Union[str, Any] = [False for _ in range(__a )] _lowerCamelCase : Dict = [-1 for _ in range(__a )] _lowerCamelCase : Dict = index_of[:] def strong_connect(_lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ): _lowerCamelCase : Tuple = index # the number when this node is seen _lowerCamelCase : Union[str, Any] = index # lowest rank node reachable from here index += 1 stack.append(__a ) _lowerCamelCase : Optional[Any] = True for w in g[v]: if index_of[w] == -1: _lowerCamelCase : List[str] = strong_connect(__a , __a , __a ) _lowerCamelCase : Optional[int] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: _lowerCamelCase : int = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[Any] = stack.pop() _lowerCamelCase : str = False component.append(__a ) while w != v: _lowerCamelCase : Any = stack.pop() _lowerCamelCase : Any = False component.append(__a ) components.append(__a ) return index _lowerCamelCase : Tuple = [] for v in range(__a ): if index_of[v] == -1: strong_connect(__a , 0 , __a ) return components def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = [[] for _ in range(__a )] for u, v in edges: g[u].append(__a ) return g if __name__ == "__main__": # Test UpperCAmelCase_ : Dict = 7 UpperCAmelCase_ : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] UpperCAmelCase_ : Tuple = [1, 3, 2, 0, 1, 4, 5, 6, 5] UpperCAmelCase_ : Dict = [(u, v) for u, v in zip(source, target)] UpperCAmelCase_ : Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase_ : Tuple = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
from collections import Counter from timeit import timeit def A_ ( _lowerCAmelCase : str = "" , ): """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def A_ ( _lowerCAmelCase : str = "" ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return True _lowerCamelCase : Union[str, Any] = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string _lowerCamelCase : dict[str, int] = {} for character in lower_case_input_str: _lowerCamelCase : Dict = character_freq_dict.get(_lowerCAmelCase , 0 ) + 1 _lowerCamelCase : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A_ ( _lowerCAmelCase : str = "" ): """simple docstring""" print("\nFor string = " , _lowerCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_lowerCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": UpperCAmelCase_ : Dict = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCAmelCase_ : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase_ : int = False class UpperCAmelCase__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowerCamelCase : int = "A painting of a squirrel eating a burger " _lowerCamelCase : Any = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( prompt=_lowerCamelCase,generator=_lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase ) _lowerCamelCase : int = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = generator.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=_lowerCamelCase,generator=_lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : str ): _lowerCamelCase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion",torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowerCamelCase : Optional[Any] = "A painting of a squirrel eating a burger " _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : str = pipe( prompt=_lowerCamelCase,generator=_lowerCamelCase,guidance_scale=7.5,num_inference_steps=5_0,output_type="numpy" ).images _lowerCamelCase : List[str] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Dict = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from __future__ import annotations import math def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = u for i in range(1 , lowerCamelCase_ ): _lowerCamelCase : Optional[Any] = temp * (u - i) return temp def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = int(input("enter the numbers of values: " ) ) _lowerCamelCase : list[list[float]] = [] for _ in range(lowerCamelCase_ ): y.append([] ) for i in range(lowerCamelCase_ ): for j in range(lowerCamelCase_ ): y[i].append(lowerCamelCase_ ) _lowerCamelCase : int = 0 print("enter the values of parameters in a list: " ) _lowerCamelCase : Optional[int] = list(map(lowerCamelCase_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(lowerCamelCase_ ): _lowerCamelCase : List[str] = float(input() ) _lowerCamelCase : Union[str, Any] = int(input("enter the value to interpolate: " ) ) _lowerCamelCase : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCamelCase_ ): for j in range(n - i ): _lowerCamelCase : List[Any] = y[j + 1][i - 1] - y[j][i - 1] _lowerCamelCase : str = y[0][0] for i in range(1 , lowerCamelCase_ ): summ += (ucal(lowerCamelCase_ , lowerCamelCase_ ) * y[0][i]) / math.factorial(lowerCamelCase_ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = len(UpperCamelCase__ ) for i in range(1 , UpperCamelCase__ ): _lowerCamelCase : List[Any] = collection[i] _lowerCamelCase : Tuple = 0 _lowerCamelCase : Optional[Any] = i - 1 while low <= high: _lowerCamelCase : Optional[Any] = (low + high) // 2 if val < collection[mid]: _lowerCamelCase : Optional[int] = mid - 1 else: _lowerCamelCase : List[Any] = mid + 1 for j in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): _lowerCamelCase : Any = collection[j - 1] _lowerCamelCase : str = val return collection if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( snake_case__ , unittest.TestCase ): lowerCAmelCase_ = GPTaTokenizer lowerCAmelCase_ = GPTaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'add_prefix_space': True} lowerCAmelCase_ = False def lowerCamelCase_ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] _lowerCamelCase : List[str] = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) _lowerCamelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Any = {"unk_token": "<unk>"} _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def lowerCamelCase_ ( self : Dict,**__A : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname,**lowercase_ ) def lowerCamelCase_ ( self : Any,**__A : Any ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname,**lowercase_ ) def lowerCamelCase_ ( self : Dict,__A : List[Any] ): _lowerCamelCase : int = "lower newer" _lowerCamelCase : Any = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = GPTaTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : List[Any] = "lower newer" _lowerCamelCase : str = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : str = tokenizer.tokenize(lowercase_,add_prefix_space=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) _lowerCamelCase : int = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),lowercase_ ) def lowerCamelCase_ ( self : List[Any] ): if not self.test_rust_tokenizer: return _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) _lowerCamelCase : Union[str, Any] = "lower newer" # Testing tokenization _lowerCamelCase : List[str] = tokenizer.tokenize(lowercase_,add_prefix_space=lowercase_ ) _lowerCamelCase : int = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) # Testing conversion to ids without special tokens _lowerCamelCase : int = tokenizer.encode(lowercase_,add_special_tokens=lowercase_,add_prefix_space=lowercase_ ) _lowerCamelCase : int = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) # Testing conversion to ids with special tokens _lowerCamelCase : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) _lowerCamelCase : str = tokenizer.encode(lowercase_,add_prefix_space=lowercase_ ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) # Testing the unknown token _lowerCamelCase : int = tokens + [rust_tokenizer.unk_token] _lowerCamelCase : Optional[int] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase_ ),lowercase_ ) def lowerCamelCase_ ( self : List[str],*__A : Union[str, Any],**__A : Union[str, Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase_ ( self : Tuple,__A : List[str]=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input _lowerCamelCase : int = "This is a simple input" _lowerCamelCase : List[str] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : str = ("This is a simple input", "This is a pair") _lowerCamelCase : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding="max_length" ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding="max_length" ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding="max_length",) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding="max_length" ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding="max_length" ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding="max_length",) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = GPTaTokenizer.from_pretrained(self.tmpdirname,pad_token="<pad>" ) # Simple input _lowerCamelCase : Dict = "This is a simple input" _lowerCamelCase : Optional[Any] = ["This is a simple input looooooooong", "This is a simple input"] _lowerCamelCase : Optional[Any] = ("This is a simple input", "This is a pair") _lowerCamelCase : int = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] _lowerCamelCase : Optional[int] = tokenizer.pad_token_id _lowerCamelCase : Optional[int] = tokenizer(lowercase_,padding="max_length",max_length=3_0,return_tensors="np" ) _lowerCamelCase : Optional[int] = tokenizer(lowercase_,padding=lowercase_,truncate=lowercase_,return_tensors="np" ) _lowerCamelCase : List[str] = tokenizer(*lowercase_,padding="max_length",max_length=6_0,return_tensors="np" ) _lowerCamelCase : Tuple = tokenizer(lowercase_,padding=lowercase_,truncate=lowercase_,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1],3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1],3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1],6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1],5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = "$$$" _lowerCamelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname,bos_token=lowercase_,add_bos_token=lowercase_ ) _lowerCamelCase : Tuple = "This is a simple input" _lowerCamelCase : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] _lowerCamelCase : Tuple = tokenizer.bos_token_id _lowerCamelCase : Optional[int] = tokenizer(lowercase_ ) _lowerCamelCase : Optional[int] = tokenizer(lowercase_ ) self.assertEqual(out_s.input_ids[0],lowercase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCamelCase : int = tokenizer.decode(out_s.input_ids ) _lowerCamelCase : Optional[int] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0],lowercase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : Optional[Any] ): # TODO: change to self.get_tokenizers() when the fast version is implemented _lowerCamelCase : Dict = [self.get_tokenizer(do_lower_case=lowercase_,add_bos_token=lowercase_ )] for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCamelCase : Dict = "Encode this." _lowerCamelCase : Dict = "This one too please." _lowerCamelCase : str = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) encoded_sequence += tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] = tokenizer.encode_plus( lowercase_,lowercase_,add_special_tokens=lowercase_,return_special_tokens_mask=lowercase_,) _lowerCamelCase : List[str] = encoded_sequence_dict["input_ids"] _lowerCamelCase : Tuple = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(lowercase_ ),len(lowercase_ ) ) _lowerCamelCase : Any = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase_ ) ] _lowerCamelCase : Tuple = [x for x in filtered_sequence if x is not None] self.assertEqual(lowercase_,lowercase_ ) @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[Any] ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/opt-350m",from_slow=lowercase_ ) _lowerCamelCase : str = "A photo of a cat" _lowerCamelCase : int = tokenizer.encode( lowercase_,) self.assertEqual(lowercase_,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("./test_opt" ) _lowerCamelCase : int = tokenizer.encode( lowercase_,) self.assertEqual(lowercase_,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("facebook/opt-350m",use_slow=lowercase_ ) _lowerCamelCase : List[str] = "A photo of a cat" _lowerCamelCase : Dict = tokenizer.encode( lowercase_,) # Same as above self.assertEqual(lowercase_,[2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("facebook/opt-350m",from_slow=lowercase_ ) _lowerCamelCase : int = "bos" _lowerCamelCase : int = tokenizer.get_vocab()["bos"] _lowerCamelCase : List[Any] = "A photo of a cat" _lowerCamelCase : Optional[int] = tokenizer.encode( lowercase_,) # We changed the bos token self.assertEqual(lowercase_,[3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) _lowerCamelCase : Any = tokenizer.encode( lowercase_,) self.assertEqual(lowercase_,[3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = BigBirdConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: _lowerCamelCase : str = BigBirdForQuestionAnswering(_lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = BigBirdForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_lowerCAmelCase , _lowerCAmelCase , is_trivia_qa=_lowerCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' import numpy # List of input, output pairs UpperCAmelCase_ : Tuple = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCAmelCase_ : Tuple = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCAmelCase_ : List[str] = [2, 4, 1, 5] UpperCAmelCase_ : Tuple = len(train_data) UpperCAmelCase_ : Optional[Any] = 0.009 def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any="train" ): """simple docstring""" return calculate_hypothesis_value(_lowerCamelCase , _lowerCamelCase ) - output( _lowerCamelCase , _lowerCamelCase ) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = 0 for i in range(len(_lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any]=m ): """simple docstring""" _lowerCamelCase : int = 0 for i in range(_lowerCamelCase ): if index == -1: summation_value += _error(_lowerCamelCase ) else: summation_value += _error(_lowerCamelCase ) * train_data[i][0][index] return summation_value def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Tuple = summation_of_cost_derivative(_lowerCamelCase , _lowerCamelCase ) / m return cost_derivative_value def A_ ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output _lowerCamelCase : List[str] = 0.0_0_0_0_0_2 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = 0 while True: j += 1 _lowerCamelCase : int = [0, 0, 0, 0] for i in range(0 , len(_lowerCamelCase ) ): _lowerCamelCase : Union[str, Any] = get_cost_derivative(i - 1 ) _lowerCamelCase : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase , rtol=_lowerCamelCase , ): break _lowerCamelCase : Any = temp_parameter_vector print(("Number of iterations:", j) ) def A_ ( ): """simple docstring""" for i in range(len(_lowerCamelCase ) ): print(("Actual output value:", output(_lowerCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_lowerCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any],__A : Tuple,__A : Union[str, Any]=7,__A : Optional[int]=3,__A : str=3_0,__A : List[str]=4_0_0,__A : Optional[Any]=True,__A : str=None,__A : Tuple=0.9,__A : Union[str, Any]=None,__A : int=True,__A : List[Any]=[0.5, 0.5, 0.5],__A : str=[0.5, 0.5, 0.5],): _lowerCamelCase : List[str] = size if size is not None else {"shortest_edge": 3_0} _lowerCamelCase : int = crop_size if crop_size is not None else {"height": 3_0, "width": 3_0} _lowerCamelCase : Any = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[Any] = min_resolution _lowerCamelCase : Optional[Any] = max_resolution _lowerCamelCase : List[str] = do_resize_and_center_crop _lowerCamelCase : Dict = size _lowerCamelCase : List[str] = crop_pct _lowerCamelCase : Union[str, Any] = crop_size _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Tuple = image_mean _lowerCamelCase : str = image_std def lowerCamelCase_ ( self : Optional[Any] ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase_ ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(__UpperCamelCase,"size" ) ) self.assertTrue(hasattr(__UpperCamelCase,"crop_pct" ) ) self.assertTrue(hasattr(__UpperCamelCase,"do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase,"image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase,"image_std" ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"shortest_edge": 3_0} ) self.assertEqual(image_processor.crop_size,{"height": 3_0, "width": 3_0} ) _lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict,size=4_2,crop_size=8_4 ) self.assertEqual(image_processor.size,{"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size,{"height": 8_4, "width": 8_4} ) def lowerCamelCase_ ( self : Dict ): pass def lowerCamelCase_ ( self : List[Any] ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester,equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase,Image.Image ) # Test not batched input _lowerCamelCase : Tuple = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched _lowerCamelCase : List[str] = image_processing(__UpperCamelCase,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) def lowerCamelCase_ ( self : Optional[int] ): # Initialize image_processing _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__UpperCamelCase,numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase,np.ndarray ) # Test not batched input _lowerCamelCase : Dict = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched _lowerCamelCase : Any = image_processing(__UpperCamelCase,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) def lowerCamelCase_ ( self : List[Any] ): # Initialize image_processing _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester,equal_resolution=__UpperCamelCase,torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase,torch.Tensor ) # Test not batched input _lowerCamelCase : Any = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),) # Test batched _lowerCamelCase : List[str] = image_processing(__UpperCamelCase,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ),)
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = Dict[str, Any] UpperCAmelCase_ : List[Any] = List[Prediction] @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): def __init__( self : int,*__A : List[Any],**__A : Optional[int] ): super().__init__(*__A,**__A ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self,"vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def lowerCamelCase_ ( self : List[str],**__A : Tuple ): _lowerCamelCase : Optional[int] = {} if "threshold" in kwargs: _lowerCamelCase : Optional[int] = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple,*__A : Dict,**__A : Union[str, Any] ): return super().__call__(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : Any ): _lowerCamelCase : List[Any] = load_image(__A ) _lowerCamelCase : Dict = torch.IntTensor([[image.height, image.width]] ) _lowerCamelCase : Dict = self.image_processor(images=[image],return_tensors="pt" ) if self.tokenizer is not None: _lowerCamelCase : Optional[Any] = self.tokenizer(text=inputs["words"],boxes=inputs["boxes"],return_tensors="pt" ) _lowerCamelCase : Tuple = target_size return inputs def lowerCamelCase_ ( self : List[str],__A : List[str] ): _lowerCamelCase : Tuple = model_inputs.pop("target_size" ) _lowerCamelCase : Tuple = self.model(**__A ) _lowerCamelCase : Optional[Any] = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: _lowerCamelCase : List[str] = model_inputs["""bbox"""] return model_outputs def lowerCamelCase_ ( self : Tuple,__A : Optional[int],__A : int=0.9 ): _lowerCamelCase : Optional[int] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _lowerCamelCase : List[str] = target_size[0].tolist() def unnormalize(__A : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) _lowerCamelCase : Tuple = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _lowerCamelCase : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _lowerCamelCase : str = [unnormalize(__A ) for bbox in model_outputs["""bbox"""].squeeze(0 )] _lowerCamelCase : str = ["""score""", """label""", """box"""] _lowerCamelCase : Optional[int] = [dict(zip(__A,__A ) ) for vals in zip(scores.tolist(),__A,__A ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _lowerCamelCase : Optional[int] = self.image_processor.post_process_object_detection(__A,__A,__A ) _lowerCamelCase : Tuple = raw_annotations[0] _lowerCamelCase : Tuple = raw_annotation["""scores"""] _lowerCamelCase : Any = raw_annotation["""labels"""] _lowerCamelCase : List[Any] = raw_annotation["""boxes"""] _lowerCamelCase : List[Any] = scores.tolist() _lowerCamelCase : Union[str, Any] = [self.model.config.idalabel[label.item()] for label in labels] _lowerCamelCase : Optional[int] = [self._get_bounding_box(__A ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _lowerCamelCase : Tuple = ["""score""", """label""", """box"""] _lowerCamelCase : Optional[int] = [ dict(zip(__A,__A ) ) for vals in zip(raw_annotation["scores"],raw_annotation["labels"],raw_annotation["boxes"] ) ] return annotation def lowerCamelCase_ ( self : Optional[Any],__A : Union[str, Any] ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) _lowerCamelCase : Tuple = box.int().tolist() _lowerCamelCase : Union[str, Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def A_ ( _lowerCAmelCase : str ): """simple docstring""" return "".join(sorted(lowerCAmelCase__ ) ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" return word_by_signature[signature(lowerCAmelCase__ )] UpperCAmelCase_ : Optional[int] = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') UpperCAmelCase_ : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) UpperCAmelCase_ : Any = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCAmelCase_ : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : Any = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = "gelu" def __init__( self : Optional[int],__A : Union[str, Any],__A : List[str]=1_3,__A : Any=7,__A : Optional[Any]=True,__A : Any=False,__A : str=9_9,__A : Optional[Any]=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[int]=0.1,__A : Tuple=0.1,__A : Optional[int]=2_0,__A : Optional[int]=2,__A : Union[str, Any]=1,__A : str=0,): _lowerCamelCase : str = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Dict = eos_token_id _lowerCamelCase : Optional[int] = pad_token_id _lowerCamelCase : Optional[Any] = bos_token_id def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ).clip(3,self.vocab_size ) _lowerCamelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : Tuple = np.concatenate([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : int = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : Any = prepare_pegasus_inputs_dict(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_ ) return config, inputs_dict def lowerCamelCase_ ( self : List[Any],__A : Any,__A : Optional[int],__A : Union[str, Any] ): _lowerCamelCase : int = 2_0 _lowerCamelCase : Optional[Any] = model_class_name(lowerCamelCase_ ) _lowerCamelCase : List[str] = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0],lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length),dtype="i4" ) _lowerCamelCase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1],lowerCamelCase_,decoder_attention_mask=lowerCamelCase_,past_key_values=lowerCamelCase_,decoder_position_ids=lowerCamelCase_,) _lowerCamelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : List[Any] = model.decode( decoder_input_ids[:, -1:],lowerCamelCase_,decoder_attention_mask=lowerCamelCase_,past_key_values=outputs_cache.past_key_values,decoder_position_ids=lowerCamelCase_,) _lowerCamelCase : str = model.decode(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def lowerCamelCase_ ( self : List[Any],__A : Tuple,__A : Union[str, Any],__A : Optional[Any] ): _lowerCamelCase : Optional[Any] = 2_0 _lowerCamelCase : Optional[int] = model_class_name(lowerCamelCase_ ) _lowerCamelCase : str = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : Dict = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ],axis=-1,) _lowerCamelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0],lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1],lowerCamelCase_,decoder_attention_mask=lowerCamelCase_,past_key_values=lowerCamelCase_,decoder_position_ids=lowerCamelCase_,) _lowerCamelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : List[Any] = model.decode( decoder_input_ids[:, -1:],lowerCamelCase_,past_key_values=outputs_cache.past_key_values,decoder_attention_mask=lowerCamelCase_,decoder_position_ids=lowerCamelCase_,) _lowerCamelCase : Dict = model.decode(lowerCamelCase_,lowerCamelCase_,decoder_attention_mask=lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : Tuple = np.not_equal(_lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCamelCase : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( a__ , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = FlaxPegasusModelTester(self ) _lowerCamelCase : Union[str, Any] = ConfigTester(self,config_class=lowerCamelCase_ ) def lowerCamelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_,lowerCamelCase_,lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Optional[Any] = self._prepare_for_class(lowerCamelCase_,lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(__A : str,__A : Any=None,**__A : List[Any] ): return model.encode(input_ids=lowerCamelCase_,attention_mask=lowerCamelCase_ ) with self.subTest("JIT Enabled" ): _lowerCamelCase : Tuple = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : Any = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ),len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_,lowerCamelCase_ ): self.assertEqual(jitted_output.shape,output.shape ) def lowerCamelCase_ ( self : str ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Optional[int] = model_class(lowerCamelCase_ ) _lowerCamelCase : Optional[int] = model.encode(inputs_dict["input_ids"],inputs_dict["attention_mask"] ) _lowerCamelCase : Dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__A : Union[str, Any],__A : List[Any],__A : List[str] ): return model.decode( decoder_input_ids=lowerCamelCase_,decoder_attention_mask=lowerCamelCase_,encoder_outputs=lowerCamelCase_,) with self.subTest("JIT Enabled" ): _lowerCamelCase : int = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : Dict = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ),len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_,lowerCamelCase_ ): self.assertEqual(jitted_output.shape,output.shape ) @slow def lowerCamelCase_ ( self : str ): for model_class_name in self.all_model_classes: _lowerCamelCase : List[Any] = model_class_name.from_pretrained("google/pegasus-large",from_pt=lowerCamelCase_ ) _lowerCamelCase : Optional[Any] = np.ones((1, 1) ) _lowerCamelCase : str = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : List[Any] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : Dict = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _lowerCamelCase : List[str] = [ "California\'s largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.", ] _lowerCamelCase : List[str] = tokenizer(lowerCamelCase_,return_tensors="np",truncation=lowerCamelCase_,max_length=5_1_2,padding=lowerCamelCase_ ) _lowerCamelCase : Union[str, Any] = model.generate(**lowerCamelCase_,num_beams=2 ).sequences _lowerCamelCase : Optional[int] = tokenizer.batch_decode(lowerCamelCase_,skip_special_tokens=lowerCamelCase_ ) assert tgt_text == decoded
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : Optional[Any] ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ),supervised_keys=UpperCamelCase__,) def lowerCamelCase_ ( self : Dict,__A : Optional[int],__A : Optional[Any] ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_dummy_examples()} )] def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : Dict ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : Dict ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ),supervised_keys=UpperCamelCase__,) def lowerCamelCase_ ( self : str,__A : List[Any],__A : Dict ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_nested_examples()} ) ] def lowerCamelCase_ ( self : Union[str, Any],__A : Tuple,__A : str ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__ ) def A_ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def A_ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCAmelCase__ ( lowercase_ ): @require_beam def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Tuple = DummyBeamDataset(cache_dir=UpperCamelCase__,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,UpperCamelCase__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples,UpperCamelCase__ ) self.assertDictEqual(dset["train"][0],get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : Dict ): import apache_beam as beam _lowerCamelCase : Any = beam.io.parquetio.WriteToParquet _lowerCamelCase : str = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Dict = DummyBeamDataset(cache_dir=UpperCamelCase__,beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: _lowerCamelCase : List[str] = partial(UpperCamelCase__,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,UpperCamelCase__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples,UpperCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ),sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : List[Any] = DummyBeamDataset(cache_dir=UpperCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions,builder.download_and_prepare ) @require_beam def lowerCamelCase_ ( self : int ): _lowerCamelCase : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Optional[Any] = NestedBeamDataset(cache_dir=UpperCamelCase__,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features,datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) _lowerCamelCase : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,UpperCamelCase__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples,UpperCamelCase__ ) self.assertDictEqual(dset["train"][0],get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class UpperCAmelCase__ ( __UpperCAmelCase ): def __init__( self : Dict,**__A : Any ): super().__init__(**lowerCAmelCase_ ) requires_backends(self,"vision" ) requires_backends(self,"torch" ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(lowerCAmelCase_ ) def lowerCamelCase_ ( self : str,**__A : str ): _lowerCamelCase : int = {} _lowerCamelCase : Tuple = {} _lowerCamelCase : Dict = {} # preprocess args if "points_per_batch" in kwargs: _lowerCamelCase : Union[str, Any] = kwargs["points_per_batch"] if "points_per_crop" in kwargs: _lowerCamelCase : int = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: _lowerCamelCase : Union[str, Any] = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: _lowerCamelCase : Tuple = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: _lowerCamelCase : str = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: _lowerCamelCase : Any = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: _lowerCamelCase : str = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: _lowerCamelCase : Tuple = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: _lowerCamelCase : List[str] = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: _lowerCamelCase : List[str] = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: _lowerCamelCase : Optional[int] = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: _lowerCamelCase : Optional[int] = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any],__A : List[str],*__A : Any,__A : Optional[int]=None,__A : List[str]=None,**__A : str ): return super().__call__(lowerCAmelCase_,*lowerCAmelCase_,num_workers=lowerCAmelCase_,batch_size=lowerCAmelCase_,**lowerCAmelCase_ ) def lowerCamelCase_ ( self : Dict,__A : Optional[Any],__A : Optional[Any]=6_4,__A : int = 0,__A : float = 5_1_2 / 1_5_0_0,__A : Optional[int] = 3_2,__A : Optional[int] = 1,): _lowerCamelCase : Optional[int] = load_image(lowerCAmelCase_ ) _lowerCamelCase : Dict = self.image_processor.size["longest_edge"] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = self.image_processor.generate_crop_boxes( lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_ ) _lowerCamelCase : Union[str, Any] = self.image_processor(images=lowerCAmelCase_,return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": _lowerCamelCase : str = self.get_inference_context() with inference_context(): _lowerCamelCase : Any = self._ensure_tensor_on_device(lowerCAmelCase_,device=self.device ) _lowerCamelCase : Optional[Any] = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) _lowerCamelCase : List[Any] = image_embeddings _lowerCamelCase : List[Any] = grid_points.shape[1] _lowerCamelCase : int = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0,lowerCAmelCase_,lowerCAmelCase_ ): _lowerCamelCase : int = grid_points[:, i : i + points_per_batch, :, :] _lowerCamelCase : Union[str, Any] = input_labels[:, i : i + points_per_batch] _lowerCamelCase : Union[str, Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase_ ( self : Any,__A : List[Any],__A : Any=0.88,__A : Tuple=0.95,__A : str=0,__A : Dict=1,): _lowerCamelCase : Union[str, Any] = model_inputs.pop("input_boxes" ) _lowerCamelCase : Dict = model_inputs.pop("is_last" ) _lowerCamelCase : int = model_inputs.pop("original_sizes" ).tolist() _lowerCamelCase : str = model_inputs.pop("reshaped_input_sizes" ).tolist() _lowerCamelCase : int = self.model(**lowerCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _lowerCamelCase : Union[str, Any] = model_outputs["pred_masks"] _lowerCamelCase : Any = self.image_processor.post_process_masks( lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,binarize=lowerCAmelCase_ ) _lowerCamelCase : List[Any] = model_outputs["iou_scores"] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.image_processor.filter_masks( masks[0],iou_scores[0],original_sizes[0],input_boxes[0],lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase_ ( self : List[Any],__A : Optional[int],__A : Any=False,__A : List[Any]=False,__A : Tuple=0.7,): _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Tuple = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) _lowerCamelCase : Dict = torch.cat(lowerCAmelCase_ ) _lowerCamelCase : Tuple = torch.cat(lowerCAmelCase_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.image_processor.post_process_for_mask_generation( lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_,lowerCAmelCase_ ) _lowerCamelCase : Tuple = defaultdict(lowerCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_ ) _lowerCamelCase : List[Any] = {} if output_rle_mask: _lowerCamelCase : Optional[int] = rle_mask if output_bboxes_mask: _lowerCamelCase : int = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _lowerCamelCase : int = True if '''large''' in model_name or '''huge''' in model_name else False _lowerCamelCase : Dict = True if '''large''' in model_name or '''huge''' in model_name else False _lowerCamelCase : List[str] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowerCamelCase : int = [3, 3, 3, 3] _lowerCamelCase : str = [5, 5, 5, 5] elif "fl4" in model_name: _lowerCamelCase : List[str] = [4, 4, 4, 4] _lowerCamelCase : Union[str, Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowerCamelCase : Any = [3, 3, 3, 3] if "lrf" in model_name: _lowerCamelCase : Optional[Any] = [3, 3, 3, 3] else: _lowerCamelCase : Any = [2, 2, 2, 2] if "tiny" in model_name: _lowerCamelCase : Dict = 96 elif "small" in model_name: _lowerCamelCase : Any = 96 elif "base" in model_name: _lowerCamelCase : Union[str, Any] = 128 elif "large" in model_name: _lowerCamelCase : List[Any] = 192 elif "xlarge" in model_name: _lowerCamelCase : List[Any] = 256 elif "huge" in model_name: _lowerCamelCase : Optional[Any] = 352 # set label information _lowerCamelCase : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _lowerCamelCase : Optional[Any] = '''imagenet-22k-id2label.json''' else: _lowerCamelCase : Union[str, Any] = '''imagenet-1k-id2label.json''' _lowerCamelCase : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Dict = {int(a_ ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = FocalNetConfig( embed_dim=a_ , depths=a_ , focal_levels=a_ , focal_windows=a_ , use_conv_embed=a_ , idalabel=a_ , labelaid=a_ , use_post_layernorm=a_ , use_layerscale=a_ , ) return config def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" if "patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _lowerCamelCase : Dict = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _lowerCamelCase : Any = '''encoder.''' + name if "encoder.layers" in name: _lowerCamelCase : Any = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: _lowerCamelCase : Optional[int] = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: _lowerCamelCase : int = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowerCamelCase : int = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowerCamelCase : Union[str, Any] = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowerCamelCase : Tuple = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": _lowerCamelCase : Tuple = '''layernorm.weight''' if name == "norm.bias": _lowerCamelCase : List[Any] = '''layernorm.bias''' if "head" in name: _lowerCamelCase : List[Any] = name.replace("head" , "classifier" ) else: _lowerCamelCase : Tuple = '''focalnet.''' + name return name def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any]=False ): """simple docstring""" _lowerCamelCase : Optional[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _lowerCamelCase : Optional[int] = model_name_to_url[model_name] print("Checkpoint URL: " , a_ ) _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )['''model'''] # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : Union[str, Any] = state_dict.pop(a_ ) _lowerCamelCase : Union[str, Any] = val _lowerCamelCase : Optional[int] = get_focalnet_config(a_ ) _lowerCamelCase : Union[str, Any] = FocalNetForImageClassification(a_ ) model.eval() # load state dict model.load_state_dict(a_ ) # verify conversion _lowerCamelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Tuple = BitImageProcessor( do_resize=a_ , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=a_ , crop_size=224 , do_normalize=a_ , image_mean=a_ , image_std=a_ , ) _lowerCamelCase : Dict = Image.open(requests.get(a_ , stream=a_ ).raw ) _lowerCamelCase : Union[str, Any] = processor(images=a_ , return_tensors="pt" ) _lowerCamelCase : Dict = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowerCamelCase : List[str] = image_transforms(a_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a_ , atol=1E-4 ) _lowerCamelCase : Optional[Any] = model(**a_ ) _lowerCamelCase : int = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowerCamelCase : Optional[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": _lowerCamelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": _lowerCamelCase : Any = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": _lowerCamelCase : List[str] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": _lowerCamelCase : Any = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": _lowerCamelCase : Dict = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCAmelCase_ : List[str] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Optional[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( _a ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Any,__A : int=None,__A : Optional[int]=None,__A : List[str]="<|endoftext|>",__A : Optional[int]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : str=False,__A : Union[str, Any]=True,**__A : Dict,): super().__init__( ByteLevelBPETokenizer( vocab=_A,merges=_A,add_prefix_space=_A,trim_offsets=_A,),bos_token=_A,eos_token=_A,unk_token=_A,**_A,) _lowerCamelCase : Dict = add_prefix_space def lowerCamelCase_ ( self : Dict,__A : List[Any],__A : int=None ): _lowerCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : int,__A : Dict,__A : int = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): debug_launcher(test_script.main ) def lowerCamelCase_ ( self : Tuple ): debug_launcher(test_ops.main )
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( __UpperCAmelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCamelCase_ ( self : List[Any] ): super().setUp() _lowerCamelCase : Any = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCamelCase : int = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : Any,__A : Optional[int] ): _lowerCamelCase : List[str] = "UNwant\u00E9d,running" _lowerCamelCase : List[str] = "unwanted, running" return input_text, output_text def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _lowerCamelCase : Dict = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__A,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),[9, 6, 7, 1_2, 1_0, 1_1] ) def lowerCamelCase_ ( self : Optional[int] ): if not self.test_rust_tokenizer: return _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : str = self.get_rust_tokenizer() _lowerCamelCase : Optional[Any] = "UNwant\u00E9d,running" _lowerCamelCase : str = tokenizer.tokenize(__A ) _lowerCamelCase : str = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Optional[int] = tokenizer.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Optional[int] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Any = self.get_rust_tokenizer() _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : List[Any] = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) # With lower casing _lowerCamelCase : Optional[int] = self.get_tokenizer(do_lower_case=__A ) _lowerCamelCase : Tuple = self.get_rust_tokenizer(do_lower_case=__A ) _lowerCamelCase : List[str] = "UNwant\u00E9d,running" _lowerCamelCase : Tuple = tokenizer.tokenize(__A ) _lowerCamelCase : Union[str, Any] = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : int = tokenizer.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Optional[Any] = rust_tokenizer.encode(__A,add_special_tokens=__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : List[Any] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = tokenizer.encode(__A ) _lowerCamelCase : Any = rust_tokenizer.encode(__A ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ),["ah", "\u535A", "\u63A8", "zz"] ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ),["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ),["hello"] ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = BasicTokenizer(do_lower_case=__A,strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ),["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ),["h\u00E9llo"] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = BasicTokenizer(do_lower_case=__A,strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ),["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ),["hello"] ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Union[str, Any] = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ),["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ),["hello"] ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[str] = BasicTokenizer(do_lower_case=__A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ),["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = BasicTokenizer(do_lower_case=__A,strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ),["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : int = BasicTokenizer(do_lower_case=__A,strip_accents=__A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ),["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = BasicTokenizer(do_lower_case=__A,never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ),["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = BasicTokenizer() _lowerCamelCase : List[Any] = "a\n\'ll !!to?\'d of, can\'t." _lowerCamelCase : Any = ["a", "\'", "ll", "!", "!", "to", "?", "\'", "d", "of", ",", "can", "\'", "t", "."] self.assertListEqual(tokenizer.tokenize(__A ),__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowerCamelCase : int = {} for i, token in enumerate(__A ): _lowerCamelCase : Optional[int] = i _lowerCamelCase : int = WordpieceTokenizer(vocab=__A,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ),[] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ),["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ),["[UNK]", "runn", "##ing"] ) def lowerCamelCase_ ( self : List[Any] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCamelCase_ ( self : Union[str, Any] ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCamelCase_ ( self : Dict ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__A ) for t in ["Test", "\xad", "test"]],[["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__A ) for t in ["Test", "\xad", "test"]],[["[UNK]"], [], ["[UNK]"]] ) @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Dict = tokenizer.encode("sequence builders",add_special_tokens=__A ) _lowerCamelCase : List[Any] = tokenizer.encode("multi-sequence build",add_special_tokens=__A ) _lowerCamelCase : int = tokenizer.build_inputs_with_special_tokens(__A ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__A,__A ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def lowerCamelCase_ ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : List[str] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _lowerCamelCase : Any = tokenizer_r.encode_plus( __A,return_attention_mask=__A,return_token_type_ids=__A,return_offsets_mapping=__A,add_special_tokens=__A,) _lowerCamelCase : str = tokenizer_r.do_lower_case if hasattr(__A,"do_lower_case" ) else False _lowerCamelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results],tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results],tokens["offset_mapping"] ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Any = ["的", "人", "有"] _lowerCamelCase : Union[str, Any] = "".join(__A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : str = True _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : Tuple = tokenizer_p.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Dict = tokenizer_r.convert_ids_to_tokens(__A ) _lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__A,__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Any = False _lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : Optional[int] = tokenizer_r.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Any = tokenizer_p.encode(__A,add_special_tokens=__A ) _lowerCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__A ) _lowerCamelCase : int = tokenizer_p.convert_ids_to_tokens(__A ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCamelCase : Dict = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(__A ) ] self.assertListEqual(__A,__A ) self.assertListEqual(__A,__A )
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort UpperCAmelCase_ : List[Any] = "1" UpperCAmelCase_ : Optional[int] = "0" UpperCAmelCase_ : str = "1" UpperCAmelCase_ : str = ort.SessionOptions() UpperCAmelCase_ : str = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') UpperCAmelCase_ : Union[str, Any] = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCAmelCase_ : Optional[int] = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) UpperCAmelCase_ : str = ort.RunOptions() UpperCAmelCase_ : Optional[int] = 128 UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ : List[Any] = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ : List[str] = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') UpperCAmelCase_ : int = time.time() UpperCAmelCase_ : Any = 2000 UpperCAmelCase_ : Union[str, Any] = {} for iter in range(max_iters): UpperCAmelCase_ : Union[str, Any] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase_ : List[str] = 'src/transformers' # Matches is_xxx_available() UpperCAmelCase_ : Optional[int] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ : int = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCAmelCase_ : Tuple = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ : int = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ : List[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ : Optional[int] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ : Dict = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ : Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCAmelCase_ : List[Any] = re.compile(R'^\s*try:') # Catches a line with else: UpperCAmelCase_ : List[Any] = re.compile(R'^\s*else:') def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if _re_test_backend.search(snake_case_ ) is None: return None _lowerCamelCase : Optional[Any] = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" with open(snake_case_ , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCamelCase : str = f.readlines() _lowerCamelCase : Union[str, Any] = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : int = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): _lowerCamelCase : Optional[int] = _re_one_line_import_struct.search(snake_case_ ).groups()[0] _lowerCamelCase : Optional[Any] = re.findall("\[([^\]]+)\]" , snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue _lowerCamelCase : Optional[Any] = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: _lowerCamelCase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Dict = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): _lowerCamelCase : int = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: _lowerCamelCase : Tuple = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(", " ) _lowerCamelCase : List[str] = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: _lowerCamelCase : List[Any] = _re_between_brackets.search(snake_case_ ).groups()[0].split(", " ) _lowerCamelCase : int = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : Dict = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): _lowerCamelCase : Tuple = lines[line_index] _lowerCamelCase : Any = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : str = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): _lowerCamelCase : Dict = lines[line_index] _lowerCamelCase : Optional[int] = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" def find_duplicates(_lowerCAmelCase : List[str] ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : Optional[int] = [] for key in import_dict_objects.keys(): _lowerCamelCase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) _lowerCamelCase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : Any = '''base imports''' if key == '''none''' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A_ ( ): """simple docstring""" _lowerCamelCase : Dict = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: _lowerCamelCase : List[Any] = os.path.join(snake_case_ , "__init__.py" ) _lowerCamelCase : List[Any] = parse_init(snake_case_ ) if objects is not None: _lowerCamelCase : int = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: _lowerCamelCase : Dict = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError("\n\n".join(snake_case_ ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob("*.py" ) ) ) == 0: continue _lowerCamelCase : str = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) _lowerCamelCase : Optional[int] = short_path.replace(os.path.sep , "." ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : Optional[Any] = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) _lowerCamelCase : Dict = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(snake_case_ ) return submodules UpperCAmelCase_ : Optional[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = importlib.util.spec_from_file_location( "transformers" , os.path.join(snake_case_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _lowerCamelCase : str = spec.loader.load_module() _lowerCamelCase : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case_ ) > 0: _lowerCamelCase : Optional[Any] = '''\n'''.join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCAmelCase__ ( lowercase_ ): def __init__( self : List[str],__A : List[Any],__A : str=1_3,__A : List[Any]=7,__A : List[Any]=True,__A : Dict=True,__A : int=False,__A : List[str]=True,__A : Optional[int]=9_9,__A : Optional[Any]=3_2,__A : Any=5,__A : Union[str, Any]=4,__A : Optional[int]=3_7,__A : Union[str, Any]="gelu",__A : Any=0.1,__A : List[Any]=0.1,__A : Union[str, Any]=5_1_2,__A : str=1_6,__A : Optional[int]=2,__A : str=0.02,__A : Any=3,__A : Union[str, Any]=4,__A : List[Any]=None,): _lowerCamelCase : str = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : str = use_input_mask _lowerCamelCase : int = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Union[str, Any] = num_labels _lowerCamelCase : Tuple = num_choices _lowerCamelCase : Any = scope def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_input_mask: _lowerCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : int = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : int ): return DistilBertConfig( vocab_size=self.vocab_size,dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,hidden_dim=self.intermediate_size,hidden_act=self.hidden_act,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,) def lowerCamelCase_ ( self : str,__A : List[Any],__A : List[str],__A : Any,__A : str,__A : str,__A : Dict ): _lowerCamelCase : List[str] = DistilBertModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A,__A ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : str,__A : List[str],__A : Dict,__A : List[str],__A : int,__A : Tuple,__A : Dict ): _lowerCamelCase : List[Any] = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Optional[int],__A : List[str],__A : Any,__A : Tuple,__A : Any,__A : str,__A : str ): _lowerCamelCase : Union[str, Any] = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Any = model( __A,attention_mask=__A,start_positions=__A,end_positions=__A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : int,__A : Optional[Any],__A : str,__A : str,__A : List[str],__A : Union[str, Any],__A : int ): _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : str = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : int = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int],__A : int,__A : Tuple,__A : List[str],__A : Tuple,__A : List[Any],__A : Dict ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : int = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A,attention_mask=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str,__A : str,__A : str,__A : str,__A : str,__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : Any = self.num_choices _lowerCamelCase : int = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Any = model( __A,attention_mask=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[str] = config_and_inputs _lowerCamelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase_ = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = True def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = DistilBertModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self,config_class=__A,dim=3_7 ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def lowerCamelCase_ ( self : Dict ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def lowerCamelCase_ ( self : Any ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowerCamelCase : List[str] = True _lowerCamelCase : int = model_class(config=__A ) _lowerCamelCase : str = self._prepare_for_class(__A,__A ) _lowerCamelCase : Dict = torch.jit.trace( __A,(inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A,os.path.join(__A,"traced_model.pt" ) ) _lowerCamelCase : Any = torch.jit.load(os.path.join(__A,"traced_model.pt" ),map_location=__A ) loaded(inputs_dict["input_ids"].to(__A ),inputs_dict["attention_mask"].to(__A ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Any = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowerCamelCase : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : List[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : Optional[Any] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import cva import numpy as np class UpperCAmelCase__ : def __init__( self : List[Any],__A : float,__A : int ): if k in (0.04, 0.06): _lowerCamelCase : Optional[int] = k _lowerCamelCase : int = window_size else: raise ValueError("invalid k value" ) def __str__( self : List[str] ): return str(self.k ) def lowerCamelCase_ ( self : Optional[int],__A : str ): _lowerCamelCase : int = cva.imread(__A,0 ) _lowerCamelCase , _lowerCamelCase : List[Any] = img.shape _lowerCamelCase : str = [] _lowerCamelCase : Tuple = img.copy() _lowerCamelCase : List[Any] = cva.cvtColor(__A,cva.COLOR_GRAY2RGB ) _lowerCamelCase , _lowerCamelCase : Tuple = np.gradient(__A ) _lowerCamelCase : Tuple = dx**2 _lowerCamelCase : Tuple = dy**2 _lowerCamelCase : List[str] = dx * dy _lowerCamelCase : Optional[int] = 0.04 _lowerCamelCase : Tuple = self.window_size // 2 for y in range(__A,h - offset ): for x in range(__A,w - offset ): _lowerCamelCase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCamelCase : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCamelCase : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowerCamelCase : List[str] = (wxx * wyy) - (wxy**2) _lowerCamelCase : Dict = wxx + wyy _lowerCamelCase : Optional[int] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0),0 ) color_img.itemset((y, x, 1),0 ) color_img.itemset((y, x, 2),2_5_5 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase_ : Any = HarrisCorner(0.04, 3) UpperCAmelCase_, UpperCAmelCase_ : str = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import argparse import json import subprocess def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Any = [] _lowerCamelCase : Optional[Any] = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) _lowerCamelCase : Dict = subprocess.run(_lowerCAmelCase , shell=_lowerCAmelCase , stdout=subprocess.PIPE ) _lowerCamelCase : Any = output.stdout.decode("utf-8" ) _lowerCamelCase : Any = json.loads(_lowerCAmelCase ) _lowerCamelCase : Any = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCAmelCase ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: _lowerCamelCase : Union[str, Any] = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" return values.split("," ) UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) UpperCAmelCase_ : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase__ : def __init__( self : Tuple,__A : Any ): _lowerCamelCase : Any = str(id_ ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = {} # {vertex:distance} def __lt__( self : int,__A : List[Any] ): return self.key < other.key def __repr__( self : List[str] ): return self.id def lowerCamelCase_ ( self : List[str],__A : Optional[int] ): self.neighbors.append(__A ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : int ): _lowerCamelCase : Optional[Any] = weight def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ): """simple docstring""" _lowerCamelCase : str = [] for u in graph: _lowerCamelCase : Any = math.inf _lowerCamelCase : List[str] = None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Tuple = graph[:] while q: _lowerCamelCase : List[str] = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCamelCase : int = u _lowerCamelCase : Optional[Any] = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A_ ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ): """simple docstring""" for u in graph: _lowerCamelCase : Any = math.inf _lowerCamelCase : Tuple = None _lowerCamelCase : int = 0 _lowerCamelCase : Dict = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: _lowerCamelCase : Dict = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCamelCase : List[Any] = u _lowerCamelCase : List[str] = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : List[str] = 3 class UpperCAmelCase__ ( A ): pass def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" for shard in shards: for i in range(_lowerCAmelCase ): yield {"i": i, "shard": shard} def A_ ( ): """simple docstring""" _lowerCamelCase : str = int(os.environ["RANK"] ) _lowerCamelCase : List[str] = int(os.environ["WORLD_SIZE"] ) _lowerCamelCase : Optional[Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCAmelCase ) parser.add_argument("--local_rank" , type=_lowerCAmelCase ) parser.add_argument("--num_workers" , type=_lowerCAmelCase , default=0 ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : Tuple = args.streaming _lowerCamelCase : Any = args.num_workers _lowerCamelCase : Tuple = {"shards": [F'shard_{shard_idx}' for shard_idx in range(_lowerCAmelCase )]} _lowerCamelCase : int = IterableDataset.from_generator(_lowerCAmelCase , gen_kwargs=_lowerCAmelCase ) if not streaming: _lowerCamelCase : List[str] = Dataset.from_list(list(_lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = split_dataset_by_node(_lowerCAmelCase , rank=_lowerCAmelCase , world_size=_lowerCAmelCase ) _lowerCamelCase : List[str] = torch.utils.data.DataLoader(_lowerCAmelCase , num_workers=_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCamelCase : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCamelCase : Union[str, Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'feature_extractor'] lowerCAmelCase_ = 'TvltImageProcessor' lowerCAmelCase_ = 'TvltFeatureExtractor' def __init__( self : Any,__A : List[Any],__A : str ): super().__init__(image_processor=__A,feature_extractor=__A ) _lowerCamelCase : Dict = image_processor _lowerCamelCase : List[str] = feature_extractor def __call__( self : List[Any],__A : Optional[int]=None,__A : List[Any]=None,__A : List[str]=None,__A : int=None,__A : Tuple=False,__A : Dict=False,*__A : List[Any],**__A : Optional[Any],): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) _lowerCamelCase : List[Any] = None if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__A,mask_pixel=__A,*__A,**__A ) if images_mixed is not None: _lowerCamelCase : Dict = self.image_processor(__A,is_mixed=__A,*__A,**__A ) if audio is not None: _lowerCamelCase : Optional[int] = self.feature_extractor( __A,*__A,sampling_rate=__A,mask_audio=__A,**__A ) _lowerCamelCase : Dict = {} if audio is not None: output_dict.update(__A ) if images is not None: output_dict.update(__A ) if images_mixed_dict is not None: output_dict.update(__A ) return output_dict @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.image_processor.model_input_names _lowerCamelCase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[str] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Tuple = {"text": "string"} _lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features _lowerCamelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Any = TextDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = tmp_path / "cache" _lowerCamelCase : List[Any] = {"text": "string"} _lowerCamelCase : Dict = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): """simple docstring""" if issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Dict = text_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : int = [text_path] _lowerCamelCase : List[Any] = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Union[str, Any] = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=("train",) ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: _lowerCamelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : Dict = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Dict = TextDatasetReader({"train": text_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Optional[int] = features.copy() if features else default_expected_features _lowerCamelCase : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Tuple = TextDatasetReader({"train": text_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if split: _lowerCamelCase : Tuple = {split: text_path} else: _lowerCamelCase : List[str] = "train" _lowerCamelCase : List[str] = {"train": text_path, "test": text_path} _lowerCamelCase : str = tmp_path / "cache" _lowerCamelCase : int = {"text": "string"} _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ : Tuple = data_utils.TransfoXLTokenizer UpperCAmelCase_ : Any = data_utils.TransfoXLCorpus UpperCAmelCase_ : Union[str, Any] = data_utils UpperCAmelCase_ : int = data_utils def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase , "rb" ) as fp: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) _lowerCamelCase : Any = corpus.vocab.__dict__ torch.save(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , _lowerCAmelCase ) _lowerCamelCase : Tuple = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowerCamelCase : Union[str, Any] = os.path.abspath(_lowerCAmelCase ) _lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowerCamelCase : List[Any] = TransfoXLConfig() else: _lowerCamelCase : List[str] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) _lowerCamelCase : List[str] = load_tf_weights_in_transfo_xl(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) UpperCAmelCase_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 100 , _lowerCAmelCase : float = 0.0_1 , _lowerCAmelCase : float = 1 , ): """simple docstring""" _lowerCamelCase : int = False _lowerCamelCase : Optional[int] = search_prob _lowerCamelCase : Dict = start_temperate _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : int = None while not search_end: _lowerCamelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCamelCase : Tuple = current_state scores.append(_lowerCAmelCase ) iterations += 1 _lowerCamelCase : str = None _lowerCamelCase : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCamelCase : Dict = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor _lowerCamelCase : Union[str, Any] = neighbors.pop(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCamelCase : Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCamelCase : str = picked_neighbor else: _lowerCamelCase : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCamelCase : str = picked_neighbor _lowerCamelCase : str = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCamelCase : Tuple = True else: _lowerCamelCase : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : List[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" return (3 * x**2) - (6 * y) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' ) UpperCAmelCase_ : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : str = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' )
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'instructblip_vision_model' def __init__( self : List[Any],__A : Dict=1_4_0_8,__A : Dict=6_1_4_4,__A : Any=3_9,__A : Optional[int]=1_6,__A : Any=2_2_4,__A : List[str]=1_4,__A : Any="gelu",__A : int=1e-6,__A : str=0.0,__A : Dict=1e-10,__A : List[Any]=True,**__A : List[Any],): super().__init__(**__A ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Tuple = image_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Any = attention_dropout _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[int] = qkv_bias @classmethod def lowerCamelCase_ ( cls : Dict,__A : Union[str, os.PathLike],**__A : List[Any] ): cls._set_token_in_kwargs(__A ) _lowerCamelCase : Tuple = cls.get_config_dict(__A,**__A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _lowerCamelCase : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A,**__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'instructblip_qformer' def __init__( self : int,__A : Union[str, Any]=3_0_5_2_2,__A : Any=7_6_8,__A : Union[str, Any]=1_2,__A : List[str]=1_2,__A : Optional[Any]=3_0_7_2,__A : Dict="gelu",__A : Tuple=0.1,__A : str=0.1,__A : Union[str, Any]=5_1_2,__A : Optional[int]=0.02,__A : List[Any]=1e-12,__A : str=0,__A : Union[str, Any]="absolute",__A : str=2,__A : List[Any]=1_4_0_8,**__A : Optional[Any],): super().__init__(pad_token_id=__A,**__A ) _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : Optional[int] = cross_attention_frequency _lowerCamelCase : Dict = encoder_hidden_size @classmethod def lowerCamelCase_ ( cls : Dict,__A : Union[str, os.PathLike],**__A : Tuple ): cls._set_token_in_kwargs(__A ) _lowerCamelCase : Optional[int] = cls.get_config_dict(__A,**__A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _lowerCamelCase : Union[str, Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A,**__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'instructblip' lowerCAmelCase_ = True def __init__( self : Any,__A : Tuple=None,__A : Dict=None,__A : Union[str, Any]=None,__A : Dict=3_2,**__A : Tuple ): super().__init__(**__A ) if vision_config is None: _lowerCamelCase : Any = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _lowerCamelCase : Optional[int] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _lowerCamelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _lowerCamelCase : Dict = InstructBlipVisionConfig(**__A ) _lowerCamelCase : List[Any] = InstructBlipQFormerConfig(**__A ) _lowerCamelCase : List[str] = text_config["model_type"] if "model_type" in text_config else "opt" _lowerCamelCase : str = CONFIG_MAPPING[text_model_type](**__A ) _lowerCamelCase : Any = self.text_config.tie_word_embeddings _lowerCamelCase : Optional[int] = self.text_config.is_encoder_decoder _lowerCamelCase : Optional[int] = num_query_tokens _lowerCamelCase : Optional[int] = self.vision_config.hidden_size _lowerCamelCase : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCamelCase : Optional[Any] = 1.0 _lowerCamelCase : int = 0.02 @classmethod def lowerCamelCase_ ( cls : Optional[int],__A : InstructBlipVisionConfig,__A : InstructBlipQFormerConfig,__A : PretrainedConfig,**__A : Tuple,): return cls( vision_config=vision_config.to_dict(),qformer_config=qformer_config.to_dict(),text_config=text_config.to_dict(),**__A,) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCamelCase : str = self.vision_config.to_dict() _lowerCamelCase : List[str] = self.qformer_config.to_dict() _lowerCamelCase : Tuple = self.text_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : List[str],__A : Union[str, Any]=1_3,__A : str=7,__A : List[Any]=6,__A : Optional[Any]=1_7,__A : Tuple=2_3,__A : int=1_1,__A : Optional[int]=True,): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : List[Any] = act_dim _lowerCamelCase : Dict = state_dim _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : int = is_training def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCamelCase : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCamelCase : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, self.seq_length),vocab_size=1_0_0_0 ) _lowerCamelCase : Dict = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCamelCase : Optional[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self : int ): return DecisionTransformerConfig( batch_size=self.batch_size,seq_length=self.seq_length,act_dim=self.act_dim,state_dim=self.state_dim,hidden_size=self.hidden_size,max_length=self.max_length,) def lowerCamelCase_ ( self : int,__A : List[str],__A : Union[str, Any],__A : Dict,__A : Any,__A : List[str],__A : Any,__A : str,): _lowerCamelCase : Optional[int] = DecisionTransformerModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Any = model(__A,__A,__A,__A,__A,__A ) self.parent.assertEqual(result.state_preds.shape,states.shape ) self.parent.assertEqual(result.action_preds.shape,actions.shape ) self.parent.assertEqual(result.return_preds.shape,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Optional[int] = config_and_inputs _lowerCamelCase : List[str] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase_ = () lowerCAmelCase_ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Union[str, Any] = DecisionTransformerModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def lowerCamelCase_ ( self : Optional[Any] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = DecisionTransformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Tuple = [*signature.parameters.keys()] _lowerCamelCase : List[str] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__A )],__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = 2 # number of steps of autoregressive prediction we will perform _lowerCamelCase : Tuple = 1_0 # defined by the RL environment, may be normalized _lowerCamelCase : List[str] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _lowerCamelCase : str = model.to(__A ) _lowerCamelCase : Optional[Any] = model.config torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = torch.randn(1,1,config.state_dim ).to(device=__A,dtype=torch.floataa ) # env.reset() _lowerCamelCase : List[Any] = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]],device=__A ) _lowerCamelCase : Dict = torch.tensor(__A,device=__A,dtype=torch.floataa ).reshape(1,1,1 ) _lowerCamelCase : int = state _lowerCamelCase : int = torch.zeros(1,0,config.act_dim,device=__A,dtype=torch.floataa ) _lowerCamelCase : List[Any] = torch.zeros(1,0,device=__A,dtype=torch.floataa ) _lowerCamelCase : int = torch.tensor(0,device=__A,dtype=torch.long ).reshape(1,1 ) for step in range(__A ): _lowerCamelCase : Any = torch.cat([actions, torch.zeros(1,1,config.act_dim,device=__A )],dim=1 ) _lowerCamelCase : Any = torch.cat([rewards, torch.zeros(1,1,device=__A )],dim=1 ) _lowerCamelCase : Optional[int] = torch.ones(1,states.shape[1] ).to(dtype=torch.long,device=states.device ) with torch.no_grad(): _lowerCamelCase : List[Any] = model( states=__A,actions=__A,rewards=__A,returns_to_go=__A,timesteps=__A,attention_mask=__A,return_dict=__A,) self.assertEqual(action_pred.shape,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1],expected_outputs[step],atol=1e-4 ) ) _lowerCamelCase : Any = ( # env.step(action) torch.randn(1,1,config.state_dim ).to(device=__A,dtype=torch.floataa ), 1.0, False, {}, ) _lowerCamelCase : int = action_pred[0, -1] _lowerCamelCase : List[Any] = torch.cat([states, state],dim=1 ) _lowerCamelCase : Dict = returns_to_go[0, -1] - reward _lowerCamelCase : Any = torch.cat([returns_to_go, pred_return.reshape(1,1,1 )],dim=1 ) _lowerCamelCase : Dict = torch.cat( [timesteps, torch.ones((1, 1),device=__A,dtype=torch.long ) * (step + 1)],dim=1 )
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Tuple = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ['YolosFeatureExtractor'] UpperCAmelCase_ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import copy import re class UpperCAmelCase__ : lowerCAmelCase_ = 'hp' lowerCAmelCase_ = {} lowerCAmelCase_ = None @classmethod def lowerCamelCase_ ( cls : Any,__A : Tuple,__A : Dict ): _lowerCamelCase : Optional[Any] = prefix _lowerCamelCase : int = defaults cls.build_naming_info() @staticmethod def lowerCamelCase_ ( __A : List[str],__A : Tuple ): if len(__A ) == 0: return "" _lowerCamelCase : Any = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1,len(__A ) + 1 ): _lowerCamelCase : List[str] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowerCamelCase : Optional[int] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__A : Tuple ): _lowerCamelCase : Dict = "" while integer != 0: _lowerCamelCase : Optional[int] = chr(ord("A" ) + integer % 1_0 ) + s integer //= 1_0 return s _lowerCamelCase : Any = 0 while True: _lowerCamelCase : Optional[int] = word + "#" + int_to_alphabetic(__A ) if sword in info["reverse_short_word"]: continue else: _lowerCamelCase : Dict = sword break _lowerCamelCase : Dict = short_word _lowerCamelCase : List[Any] = word return short_word @staticmethod def lowerCamelCase_ ( __A : str,__A : List[str] ): _lowerCamelCase : Tuple = param_name.split("_" ) _lowerCamelCase : List[Any] = [TrialShortNamer.shortname_for_word(__A,__A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowerCamelCase : List[str] = ["", "_"] for separator in separators: _lowerCamelCase : int = separator.join(__A ) if shortname not in info["reverse_short_param"]: _lowerCamelCase : List[Any] = shortname _lowerCamelCase : Any = param_name return shortname return param_name @staticmethod def lowerCamelCase_ ( __A : Tuple,__A : Dict ): _lowerCamelCase : Optional[int] = TrialShortNamer.shortname_for_key(__A,__A ) _lowerCamelCase : Dict = short_name _lowerCamelCase : List[Any] = param_name @classmethod def lowerCamelCase_ ( cls : Union[str, Any] ): if cls.NAMING_INFO is not None: return _lowerCamelCase : Dict = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } _lowerCamelCase : List[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__A,__A ) _lowerCamelCase : Dict = info @classmethod def lowerCamelCase_ ( cls : List[str],__A : Any ): cls.build_naming_info() assert cls.PREFIX is not None _lowerCamelCase : str = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowerCamelCase : Tuple = cls.NAMING_INFO["short_param"][k] if isinstance(__A,__A ): _lowerCamelCase : List[Any] = 1 if v else 0 _lowerCamelCase : Any = "" if isinstance(__A,(int, float) ) else "-" _lowerCamelCase : int = f'{key}{sep}{v}' name.append(__A ) return "_".join(__A ) @classmethod def lowerCamelCase_ ( cls : Tuple,__A : Optional[Any] ): _lowerCamelCase : int = repr[len(cls.PREFIX ) + 1 :] if repr == "": _lowerCamelCase : int = [] else: _lowerCamelCase : List[str] = repr.split("_" ) _lowerCamelCase : Union[str, Any] = {} for value in values: if "-" in value: _lowerCamelCase : Optional[Any] = value.split("-" ) else: _lowerCamelCase : Optional[int] = re.sub("[0-9.]","",__A ) _lowerCamelCase : Optional[Any] = float(re.sub("[^0-9.]","",__A ) ) _lowerCamelCase : Tuple = cls.NAMING_INFO["reverse_short_param"][p_k] _lowerCamelCase : Any = p_v for k in cls.DEFAULTS: if k not in parameters: _lowerCamelCase : Any = cls.DEFAULTS[k] return parameters
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['prompt'] lowerCAmelCase_ = ['prompt', 'negative_prompt'] lowerCAmelCase_ = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowerCAmelCase_ = False @property def lowerCamelCase_ ( self : List[Any] ): return 3_2 @property def lowerCamelCase_ ( self : Union[str, Any] ): return 3_2 @property def lowerCamelCase_ ( self : Optional[int] ): return self.time_input_dim @property def lowerCamelCase_ ( self : Tuple ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : Optional[int] ): return 1_0_0 @property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=self.text_embedder_hidden_size,projection_dim=self.text_embedder_hidden_size,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) return CLIPTextModelWithProjection(__A ) @property def lowerCamelCase_ ( self : Any ): torch.manual_seed(0 ) _lowerCamelCase : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } _lowerCamelCase : Any = PriorTransformer(**__A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCamelCase : Optional[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size,image_size=2_2_4,projection_dim=self.text_embedder_hidden_size,intermediate_size=3_7,num_attention_heads=4,num_channels=3,num_hidden_layers=5,patch_size=1_4,) _lowerCamelCase : Any = CLIPVisionModelWithProjection(__A ) return model @property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = CLIPImageProcessor( crop_size=2_2_4,do_center_crop=__A,do_normalize=__A,do_resize=__A,image_mean=[0.48145466, 0.4578275, 0.40821073],image_std=[0.26862954, 0.26130258, 0.27577711],resample=3,size=2_2_4,) return image_processor def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = self.dummy_prior _lowerCamelCase : Any = self.dummy_image_encoder _lowerCamelCase : Any = self.dummy_text_encoder _lowerCamelCase : List[str] = self.dummy_tokenizer _lowerCamelCase : List[str] = self.dummy_image_processor _lowerCamelCase : Optional[Any] = UnCLIPScheduler( variance_type="fixed_small_log",prediction_type="sample",num_train_timesteps=1_0_0_0,clip_sample=__A,clip_sample_range=10.0,) _lowerCamelCase : Optional[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCamelCase_ ( self : int,__A : List[Any],__A : Tuple=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : Any = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = "cpu" _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**__A ) _lowerCamelCase : str = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : int = pipe(**self.get_dummy_inputs(__A ) ) _lowerCamelCase : Any = output.image_embeds _lowerCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(__A ),return_dict=__A,)[0] _lowerCamelCase : Any = image[0, -1_0:] _lowerCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) _lowerCamelCase : str = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self : str ): _lowerCamelCase : Tuple = torch_device == "cpu" _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = False self._test_inference_batch_single_identical( test_max_difference=__A,relax_max_difference=__A,test_mean_pixel_difference=__A,) @skip_mps def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = torch_device == "cpu" _lowerCamelCase : Any = False self._test_attention_slicing_forward_pass( test_max_difference=__A,test_mean_pixel_difference=__A,)
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'AutoTokenizer' lowerCAmelCase_ = ['tokenizer'] lowerCAmelCase_ = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : str,__A : int,__A : int=None ): super().__init__(__A ) _lowerCamelCase : Optional[Any] = speaker_embeddings @classmethod def lowerCamelCase_ ( cls : List[Any],__A : List[Any],__A : Optional[Any]="speaker_embeddings_path.json",**__A : Union[str, Any] ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : int = get_file_from_repo( __A,__A,subfolder=kwargs.pop("subfolder",__A ),cache_dir=kwargs.pop("cache_dir",__A ),force_download=kwargs.pop("force_download",__A ),proxies=kwargs.pop("proxies",__A ),resume_download=kwargs.pop("resume_download",__A ),local_files_only=kwargs.pop("local_files_only",__A ),use_auth_token=kwargs.pop("use_auth_token",__A ),revision=kwargs.pop("revision",__A ),) if speaker_embeddings_path is None: logger.warning( f'`{os.path.join(__A,__A )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _lowerCamelCase : Dict = None else: with open(__A ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(__A ) else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : Any = AutoTokenizer.from_pretrained(__A,**__A ) return cls(tokenizer=__A,speaker_embeddings=__A ) def lowerCamelCase_ ( self : Optional[Any],__A : List[str],__A : Optional[Any]="speaker_embeddings_path.json",__A : int="speaker_embeddings",__A : bool = False,**__A : Tuple,): if self.speaker_embeddings is not None: os.makedirs(os.path.join(__A,__A,"v2" ),exist_ok=__A ) _lowerCamelCase : Dict = {} _lowerCamelCase : Any = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Union[str, Any] = self._load_voice_preset(__A ) _lowerCamelCase : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"],__A,f'{prompt_key}_{key}' ),voice_preset[key],allow_pickle=__A,) _lowerCamelCase : List[str] = os.path.join(__A,f'{prompt_key}_{key}.npy' ) _lowerCamelCase : Any = tmp_dict with open(os.path.join(__A,__A ),"w" ) as fp: json.dump(__A,__A ) super().save_pretrained(__A,__A,**__A ) def lowerCamelCase_ ( self : Any,__A : str = None,**__A : Optional[int] ): _lowerCamelCase : Optional[int] = self.speaker_embeddings[voice_preset] _lowerCamelCase : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _lowerCamelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path","/" ),voice_preset_paths[key],subfolder=kwargs.pop("subfolder",__A ),cache_dir=kwargs.pop("cache_dir",__A ),force_download=kwargs.pop("force_download",__A ),proxies=kwargs.pop("proxies",__A ),resume_download=kwargs.pop("resume_download",__A ),local_files_only=kwargs.pop("local_files_only",__A ),use_auth_token=kwargs.pop("use_auth_token",__A ),revision=kwargs.pop("revision",__A ),) if path is None: raise ValueError( f'`{os.path.join(self.speaker_embeddings.get("repo_or_path","/" ),voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _lowerCamelCase : int = np.load(__A ) return voice_preset_dict def lowerCamelCase_ ( self : Any,__A : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key],np.ndarray ): raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Tuple,__A : List[Any]=None,__A : Optional[int]=None,__A : str="pt",__A : Tuple=2_5_6,__A : Dict=False,__A : List[Any]=True,__A : Dict=False,**__A : Tuple,): if voice_preset is not None and not isinstance(__A,__A ): if ( isinstance(__A,__A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Optional[Any] = self._load_voice_preset(__A ) else: if isinstance(__A,__A ) and not voice_preset.endswith(".npz" ): _lowerCamelCase : List[str] = voice_preset + ".npz" _lowerCamelCase : List[Any] = np.load(__A ) if voice_preset is not None: self._validate_voice_preset_dict(__A,**__A ) _lowerCamelCase : List[str] = BatchFeature(data=__A,tensor_type=__A ) _lowerCamelCase : Dict = self.tokenizer( __A,return_tensors=__A,padding="max_length",max_length=__A,return_attention_mask=__A,return_token_type_ids=__A,add_special_tokens=__A,**__A,) if voice_preset is not None: _lowerCamelCase : Any = voice_preset return encoded_text
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : List[str] = 1.0_5457_1817E-34 # unit of ℏ : J * s UpperCAmelCase_ : Any = 3E8 # unit of c : m * s^-1 def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCamelCase : List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCamelCase : Dict = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCamelCase : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase_ : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): """simple docstring""" return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": _lowerCamelCase : Optional[Any] = pd.read_csv(_lowerCAmelCase , sep="\t" , header=_lowerCAmelCase ) for answer_list in data[1]: _lowerCamelCase : Union[str, Any] = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: _lowerCamelCase : str = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : List[Any] = [[reference] for reference in references] _lowerCamelCase : Union[str, Any] = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Dict = 100.0 * em / total _lowerCamelCase : Dict = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : int = args.k _lowerCamelCase : Optional[Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Union[str, Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Optional[Any] = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = set(hypo.split("\t" )[:k] ) _lowerCamelCase : List[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCamelCase : List[Any] = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" def strip_title(_lowerCAmelCase : List[Any] ): if title.startswith("\"" ): _lowerCamelCase : Dict = title[1:] if title.endswith("\"" ): _lowerCamelCase : List[str] = title[:-1] return title _lowerCamelCase : str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )["input_ids"].to(args.device ) _lowerCamelCase : Any = rag_model.rag.question_encoder(_lowerCAmelCase ) _lowerCamelCase : str = question_enc_outputs[0] _lowerCamelCase : List[str] = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCamelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCamelCase : str = [] for docs in all_docs: _lowerCamelCase : Union[str, Any] = [strip_title(_lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCAmelCase ) ) return provenance_strings def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = inputs_dict.input_ids.to(args.device ) _lowerCamelCase : Any = inputs_dict.attention_mask.to(args.device ) _lowerCamelCase : Dict = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCamelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Q: {} - A: {}".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def A_ ( ): """simple docstring""" _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCamelCase : Union[str, Any] = parser.parse_args() _lowerCamelCase : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} if args.model_type is None: _lowerCamelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCamelCase : Any = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCamelCase : Dict = args.n_docs if args.index_name is not None: _lowerCamelCase : List[Any] = args.index_name if args.index_path is not None: _lowerCamelCase : Union[str, Any] = args.index_path else: _lowerCamelCase : Optional[Any] = BartForConditionalGeneration _lowerCamelCase : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCAmelCase ) _lowerCamelCase : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCamelCase : str = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCamelCase : List[Any] = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: _lowerCamelCase : str = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCamelCase : Optional[Any] = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: _lowerCamelCase : Optional[Any] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) + "\n" ) preds_file.flush() _lowerCamelCase : str = [] if len(_lowerCAmelCase ) > 0: _lowerCamelCase : Optional[int] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase_ : Any = get_args() main(args)
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : str = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = GPTSwaTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : int = GPTSwaTokenizer(__A,eos_token="<unk>",bos_token="<unk>",pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any],__A : Optional[int] ): _lowerCamelCase : Tuple = "This is a test" _lowerCamelCase : Any = "This is a test" return input_text, output_text def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : int = "<s>" _lowerCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ),__A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ),__A ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],"<unk>" ) self.assertEqual(vocab_keys[1],"<s>" ) self.assertEqual(vocab_keys[-1],"j" ) self.assertEqual(len(__A ),2_0_0_0 ) def lowerCamelCase_ ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size,2_0_0_0 ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = GPTSwaTokenizer(__A ) _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),[4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) _lowerCamelCase : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __A,["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."],) # fmt: on _lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A,[2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0],) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(__A ) # fmt: off self.assertListEqual( __A,["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Optional[int] = GPTSwaTokenizer(__A ) _lowerCamelCase : str = ["This is a test", "I was born in 92000, and this is falsé."] _lowerCamelCase : Tuple = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__A,__A ): self.assertListEqual(tokenizer.encode_fast(__A ),__A ) # Test that decode_fast returns the input text for text, token_ids in zip(__A,__A ): self.assertEqual(tokenizer.decode_fast(__A ),__A ) @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off _lowerCamelCase : List[Any] = {"input_ids": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A,model_name="AI-Sweden/gpt-sw3-126m",sequences=__A,)
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while a != 0: _lowerCamelCase : Union[str, Any] = b % a, a return b def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if gcd(_lowerCAmelCase , _lowerCAmelCase ) != 1: _lowerCamelCase : List[Any] = F'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 1, 0, a _lowerCamelCase : Optional[int] = 0, 1, m while va != 0: _lowerCamelCase : str = ua // va _lowerCamelCase : Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Optional[Any] = BlipImageProcessor() _lowerCamelCase : Union[str, Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) _lowerCamelCase : List[str] = BlipaProcessor(__A,__A ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Union[str, Any],**__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname,**__A ).tokenizer def lowerCamelCase_ ( self : Tuple,**__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname,**__A ).image_processor def lowerCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = [np.random.randint(2_5_5,size=(3, 3_0, 4_0_0),dtype=np.uinta )] _lowerCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(__A,0,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Dict = self.get_tokenizer(bos_token="(BOS)",eos_token="(EOS)" ) _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=__A,padding_value=1.0 ) _lowerCamelCase : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname,bos_token="(BOS)",eos_token="(EOS)",do_normalize=__A,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,__A ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Optional[Any] = self.prepare_image_inputs() _lowerCamelCase : Tuple = image_processor(__A,return_tensors="np" ) _lowerCamelCase : int = processor(images=__A,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1e-2 ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Tuple = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Dict = "lower newer" _lowerCamelCase : Optional[Any] = processor(text=__A ) _lowerCamelCase : Any = tokenizer(__A,return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : int = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : int = self.prepare_image_inputs() _lowerCamelCase : Any = processor(text=__A,images=__A ) self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Tuple = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Tuple = processor.batch_decode(__A ) _lowerCamelCase : Any = tokenizer.batch_decode(__A ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : str = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : List[Any] = "lower newer" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = processor(text=__A,images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] )
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> List[str]: """simple docstring""" if len(_lowerCAmelCase ) == 0: return False _lowerCamelCase : int = len(_lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Dict = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ : Any = [int(item.strip()) for item in user_input.split(',')] UpperCAmelCase_ : Optional[int] = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase_ : Union[str, Any] = '' if binary_search(sequence, target) else 'not ' print(f'''{target} was {not_str}found in {sequence}''')
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'tokenizer'] lowerCAmelCase_ = 'OwlViTImageProcessor' lowerCAmelCase_ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any],__A : str=None,__A : Optional[int]=None,**__A : Dict ): _lowerCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.",__A,) _lowerCamelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _lowerCamelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A,__A ) def __call__( self : Any,__A : Tuple=None,__A : Optional[Any]=None,__A : Optional[int]=None,__A : Union[str, Any]="max_length",__A : Dict="np",**__A : int ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__A,__A ) or (isinstance(__A,__A ) and not isinstance(text[0],__A )): _lowerCamelCase : Tuple = [self.tokenizer(__A,padding=__A,return_tensors=__A,**__A )] elif isinstance(__A,__A ) and isinstance(text[0],__A ): _lowerCamelCase : Dict = [] # Maximum number of queries across batch _lowerCamelCase : Optional[int] = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: _lowerCamelCase : Optional[Any] = t + [" "] * (max_num_queries - len(__A )) _lowerCamelCase : Union[str, Any] = self.tokenizer(__A,padding=__A,return_tensors=__A,**__A ) encodings.append(__A ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _lowerCamelCase : int = np.concatenate([encoding["input_ids"] for encoding in encodings],axis=0 ) _lowerCamelCase : List[str] = np.concatenate([encoding["attention_mask"] for encoding in encodings],axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowerCamelCase : str = jnp.concatenate([encoding["input_ids"] for encoding in encodings],axis=0 ) _lowerCamelCase : List[str] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings],axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowerCamelCase : Tuple = torch.cat([encoding["input_ids"] for encoding in encodings],dim=0 ) _lowerCamelCase : List[str] = torch.cat([encoding["attention_mask"] for encoding in encodings],dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowerCamelCase : str = tf.stack([encoding["input_ids"] for encoding in encodings],axis=0 ) _lowerCamelCase : str = tf.stack([encoding["attention_mask"] for encoding in encodings],axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _lowerCamelCase : Tuple = BatchEncoding() _lowerCamelCase : List[Any] = input_ids _lowerCamelCase : Dict = attention_mask if query_images is not None: _lowerCamelCase : Tuple = BatchEncoding() _lowerCamelCase : Optional[Any] = self.image_processor( __A,return_tensors=__A,**__A ).pixel_values _lowerCamelCase : Tuple = query_pixel_values if images is not None: _lowerCamelCase : Tuple = self.image_processor(__A,return_tensors=__A,**__A ) if text is not None and images is not None: _lowerCamelCase : Dict = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ),tensor_type=__A ) def lowerCamelCase_ ( self : List[str],*__A : int,**__A : Tuple ): return self.image_processor.post_process(*__A,**__A ) def lowerCamelCase_ ( self : Union[str, Any],*__A : List[str],**__A : List[str] ): return self.image_processor.post_process_object_detection(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : int,**__A : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__A,**__A ) def lowerCamelCase_ ( self : Tuple,*__A : List[Any],**__A : Union[str, Any] ): return self.tokenizer.batch_decode(*__A,**__A ) def lowerCamelCase_ ( self : Tuple,*__A : Tuple,**__A : Dict ): return self.tokenizer.decode(*__A,**__A ) @property def lowerCamelCase_ ( self : Dict ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",__A,) return self.image_processor_class @property def lowerCamelCase_ ( self : Any ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",__A,) return self.image_processor
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = 'gelu' def __init__( self : str,__A : Tuple,__A : Optional[Any]=1_3,__A : Tuple=7,__A : List[str]=True,__A : Any=False,__A : Tuple=9_9,__A : List[Any]=3_2,__A : Union[str, Any]=2,__A : Dict=4,__A : int=3_7,__A : Optional[Any]=0.1,__A : Optional[Any]=0.1,__A : Optional[int]=4_0,__A : List[str]=2,__A : List[str]=1,__A : List[Any]=0,): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Any = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[str] = eos_token_id _lowerCamelCase : List[str] = pad_token_id _lowerCamelCase : Union[str, Any] = bos_token_id def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ) _lowerCamelCase : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : Any = tf.concat([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : str = prepare_pegasus_inputs_dict(__A,__A,__A ) return config, inputs_dict def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : int ): _lowerCamelCase : Any = TFPegasusModel(config=__A ).get_decoder() _lowerCamelCase : List[str] = inputs_dict["input_ids"] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Any = inputs_dict["attention_mask"][:1, :] _lowerCamelCase : Tuple = inputs_dict["head_mask"] _lowerCamelCase : Optional[int] = 1 # first forward pass _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A,head_mask=__A,use_cache=__A ) _lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : int = ids_tensor((self.batch_size, 3),config.vocab_size ) _lowerCamelCase : int = tf.cast(ids_tensor((self.batch_size, 3),2 ),tf.inta ) # append to next input_ids and _lowerCamelCase : List[str] = tf.concat([input_ids, next_tokens],axis=-1 ) _lowerCamelCase : List[str] = tf.concat([attention_mask, next_attn_mask],axis=-1 ) _lowerCamelCase : Dict = model(__A,attention_mask=__A )[0] _lowerCamelCase : List[str] = model(__A,attention_mask=__A,past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1],output_from_past.shape[1] ) # select random slice _lowerCamelCase : Optional[int] = int(ids_tensor((1,),output_from_past.shape[-1] ) ) _lowerCamelCase : Dict = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A,__A,rtol=1e-3 ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = TFPegasusModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self,config_class=__A ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase_ = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase_ = 'google/pegasus-xsum' @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : List[Any],**__A : Dict ): _lowerCamelCase : Union[str, Any] = self.translate_src_text(**__A ) assert self.expected_text == generated_words def lowerCamelCase_ ( self : str,**__A : Dict ): _lowerCamelCase : Dict = self.tokenizer(self.src_text,**__A,padding=__A,return_tensors="tf" ) _lowerCamelCase : Any = self.model.generate( model_inputs.input_ids,attention_mask=model_inputs.attention_mask,num_beams=2,use_cache=__A,) _lowerCamelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy(),skip_special_tokens=__A ) return generated_words @slow def lowerCamelCase_ ( self : int ): self._assert_generated_batch_equal_expected()
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from collections.abc import Sequence def A_ ( _lowerCAmelCase : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) _lowerCamelCase : List[str] = nums[0] for i in range(1 , len(_lowerCAmelCase ) ): _lowerCamelCase : Optional[Any] = nums[i] _lowerCamelCase : Tuple = max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ : Union[str, Any] = int(input('Enter number of elements : ').strip()) UpperCAmelCase_ : Tuple = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor'] lowerCAmelCase_ = 'SamImageProcessor' def __init__( self : Any,__A : Optional[int] ): super().__init__(__A ) _lowerCamelCase : Union[str, Any] = self.image_processor _lowerCamelCase : Optional[int] = -1_0 _lowerCamelCase : List[str] = self.image_processor.size["longest_edge"] def __call__( self : Any,__A : Tuple=None,__A : Any=None,__A : Optional[Any]=None,__A : Dict=None,__A : Optional[Union[str, TensorType]] = None,**__A : str,): _lowerCamelCase : str = self.image_processor( __A,return_tensors=__A,**__A,) # pop arguments that are not used in the foward but used nevertheless _lowerCamelCase : List[Any] = encoding_image_processor["original_sizes"] if hasattr(__A,"numpy" ): # Checks if Torch or TF tensor _lowerCamelCase : Dict = original_sizes.numpy() _lowerCamelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=__A,input_labels=__A,input_boxes=__A,) _lowerCamelCase : Union[str, Any] = self._normalize_and_convert( __A,__A,input_points=__A,input_labels=__A,input_boxes=__A,return_tensors=__A,) return encoding_image_processor def lowerCamelCase_ ( self : List[str],__A : List[str],__A : Union[str, Any],__A : List[str]=None,__A : int=None,__A : Any=None,__A : int="pt",): if input_points is not None: if len(__A ) != len(__A ): _lowerCamelCase : Tuple = [ self._normalize_coordinates(self.target_size,__A,original_sizes[0] ) for point in input_points ] else: _lowerCamelCase : Dict = [ self._normalize_coordinates(self.target_size,__A,__A ) for point, original_size in zip(__A,__A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCamelCase : Dict = self._pad_points_and_labels(__A,__A ) _lowerCamelCase : Optional[int] = np.array(__A ) if input_labels is not None: _lowerCamelCase : List[Any] = np.array(__A ) if input_boxes is not None: if len(__A ) != len(__A ): _lowerCamelCase : Optional[Any] = [ self._normalize_coordinates(self.target_size,__A,original_sizes[0],is_bounding_box=__A ) for box in input_boxes ] else: _lowerCamelCase : List[str] = [ self._normalize_coordinates(self.target_size,__A,__A,is_bounding_box=__A ) for box, original_size in zip(__A,__A ) ] _lowerCamelCase : Dict = np.array(__A ) if input_boxes is not None: if return_tensors == "pt": _lowerCamelCase : str = torch.from_numpy(__A ) # boxes batch size of 1 by default _lowerCamelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCamelCase : str = tf.convert_to_tensor(__A ) # boxes batch size of 1 by default _lowerCamelCase : Optional[Any] = tf.expand_dims(__A,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCamelCase : Dict = torch.from_numpy(__A ) # point batch size of 1 by default _lowerCamelCase : int = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCamelCase : Any = tf.convert_to_tensor(__A ) # point batch size of 1 by default _lowerCamelCase : Any = tf.expand_dims(__A,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCamelCase : Optional[int] = torch.from_numpy(__A ) # point batch size of 1 by default _lowerCamelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCamelCase : Dict = tf.convert_to_tensor(__A ) # point batch size of 1 by default _lowerCamelCase : Tuple = tf.expand_dims(__A,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def lowerCamelCase_ ( self : List[str],__A : Dict,__A : str ): _lowerCamelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _lowerCamelCase : Dict = [] for i, point in enumerate(__A ): if point.shape[0] != expected_nb_points: _lowerCamelCase : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) _lowerCamelCase : Dict = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__A ) _lowerCamelCase : Tuple = processed_input_points return input_points, input_labels def lowerCamelCase_ ( self : int,__A : int,__A : np.ndarray,__A : Union[str, Any],__A : Optional[int]=False ): _lowerCamelCase : List[str] = original_size _lowerCamelCase : Union[str, Any] = self.image_processor._get_preprocess_shape(__A,longest_edge=__A ) _lowerCamelCase : str = deepcopy(__A ).astype(__A ) if is_bounding_box: _lowerCamelCase : Dict = coords.reshape(-1,2,2 ) _lowerCamelCase : int = coords[..., 0] * (new_w / old_w) _lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCamelCase : List[Any] = coords.reshape(-1,4 ) return coords def lowerCamelCase_ ( self : List[str],__A : str=None,__A : Tuple=None,__A : List[Any]=None,): if input_points is not None: if hasattr(__A,"numpy" ): # Checks for TF or Torch tensor _lowerCamelCase : Optional[int] = input_points.numpy().tolist() if not isinstance(__A,__A ) or not isinstance(input_points[0],__A ): raise ValueError("Input points must be a list of list of floating points." ) _lowerCamelCase : str = [np.array(__A ) for input_point in input_points] else: _lowerCamelCase : List[str] = None if input_labels is not None: if hasattr(__A,"numpy" ): _lowerCamelCase : Any = input_labels.numpy().tolist() if not isinstance(__A,__A ) or not isinstance(input_labels[0],__A ): raise ValueError("Input labels must be a list of list integers." ) _lowerCamelCase : str = [np.array(__A ) for label in input_labels] else: _lowerCamelCase : int = None if input_boxes is not None: if hasattr(__A,"numpy" ): _lowerCamelCase : str = input_boxes.numpy().tolist() if ( not isinstance(__A,__A ) or not isinstance(input_boxes[0],__A ) or not isinstance(input_boxes[0][0],__A ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _lowerCamelCase : str = [np.array(__A ).astype(np.floataa ) for box in input_boxes] else: _lowerCamelCase : str = None return input_points, input_labels, input_boxes @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(__A ) ) def lowerCamelCase_ ( self : List[str],*__A : int,**__A : Union[str, Any] ): return self.image_processor.post_process_masks(*__A,**__A )
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCAmelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCAmelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCAmelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCAmelCase , default=0 , help="cuda_id." , ) _lowerCamelCase : Union[str, Any] = parser.parse_args() return args def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not len(_lowerCAmelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _lowerCamelCase : Tuple = imgs[0].size _lowerCamelCase : List[str] = Image.new("RGB" , size=(cols * w, rows * h) ) _lowerCamelCase : List[Any] = grid.size for i, img in enumerate(_lowerCAmelCase ): grid.paste(_lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="robotic cat with wings" , _lowerCAmelCase : int=7.5 , _lowerCAmelCase : Optional[Any]=50 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Dict=42 , ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.Generator(pipeline.device ).manual_seed(_lowerCAmelCase ) _lowerCamelCase : List[Any] = pipeline( _lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , ).images _lowerCamelCase : List[str] = int(math.sqrt(_lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = image_grid(_lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCAmelCase_ : Any = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') UpperCAmelCase_ : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') UpperCAmelCase_ : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') UpperCAmelCase_ : Tuple = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') UpperCAmelCase_ : Optional[int] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase_ : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): UpperCAmelCase_ : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: UpperCAmelCase_ : Optional[int] = unet.to(torch.device('cuda', args.cuda_id)) UpperCAmelCase_ : Any = pipeline.to(unet.device) UpperCAmelCase_ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) UpperCAmelCase_ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Dict = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Optional[int] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase_ : str = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase_ : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase_ : int = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase_ : str = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModel) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ : int = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ : Any = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Dict = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" assert column_title.isupper() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Union[str, Any] = len(_lowerCAmelCase ) - 1 _lowerCamelCase : List[Any] = 0 while index >= 0: _lowerCamelCase : List[str] = (ord(column_title[index] ) - 64) * pow(26 , _lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCAmelCase_ : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Tuple,**__A : Optional[int] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCamelCase : Tuple = deprecated_arg[3:] _lowerCamelCase : Tuple = not kwargs.pop(__A ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) _lowerCamelCase : Dict = kwargs.pop("tpu_name",self.tpu_name ) _lowerCamelCase : List[Any] = kwargs.pop("device_idx",self.device_idx ) _lowerCamelCase : Optional[int] = kwargs.pop("eager_mode",self.eager_mode ) _lowerCamelCase : Optional[Any] = kwargs.pop("use_xla",self.use_xla ) super().__init__(**__A ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Name of TPU'} , ) lowerCAmelCase_ = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowerCAmelCase_ = field(default=A , metadata={'help': 'Benchmark models in eager model.'} ) lowerCAmelCase_ = field( default=A , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def lowerCamelCase_ ( self : List[str] ): requires_backends(self,["tf"] ) _lowerCamelCase : Any = None if self.tpu: try: if self.tpu_name: _lowerCamelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCamelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCamelCase : Tuple = None return tpu @cached_property def lowerCamelCase_ ( self : Any ): requires_backends(self,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCamelCase : int = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx],"GPU" ) _lowerCamelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([],"GPU" ) # disable GPU _lowerCamelCase : Optional[int] = tf.distribute.OneDeviceStrategy(device=f'/cpu:{self.device_idx}' ) return strategy @property def lowerCamelCase_ ( self : str ): requires_backends(self,["tf"] ) return self._setup_tpu is not None @property def lowerCamelCase_ ( self : Dict ): requires_backends(self,["tf"] ) return self._setup_strategy @property def lowerCamelCase_ ( self : Dict ): requires_backends(self,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCamelCase_ ( self : Dict ): requires_backends(self,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCamelCase_ ( self : Union[str, Any] ): return self.n_gpu > 0
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' from importlib import import_module from .logging import get_logger UpperCAmelCase_ : int = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : List[str],__A : Optional[Any],__A : Optional[Any]=None ): _lowerCamelCase : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self,__A,getattr(__A,__A ) ) _lowerCamelCase : List[str] = module._original_module if isinstance(__A,_PatchedModuleObj ) else module class UpperCAmelCase__ : lowerCAmelCase_ = [] def __init__( self : Any,__A : int,__A : str,__A : List[str],__A : Optional[Any]=None ): _lowerCamelCase : Union[str, Any] = obj _lowerCamelCase : List[Any] = target _lowerCamelCase : Any = new _lowerCamelCase : Optional[int] = target.split("." )[0] _lowerCamelCase : List[Any] = {} _lowerCamelCase : Any = attrs or [] def __enter__( self : Optional[Any] ): _lowerCamelCase : Tuple = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__A ) ): try: _lowerCamelCase : List[Any] = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _lowerCamelCase : str = getattr(self.obj,__A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__A,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): _lowerCamelCase : Optional[int] = obj_attr # patch at top level setattr(self.obj,__A,_PatchedModuleObj(__A,attrs=self.attrs ) ) _lowerCamelCase : Dict = getattr(self.obj,__A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__A,__A,_PatchedModuleObj(getattr(__A,__A,__A ),attrs=self.attrs ) ) _lowerCamelCase : Tuple = getattr(__A,__A ) # finally set the target attribute setattr(__A,__A,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _lowerCamelCase : List[Any] = getattr(import_module(".".join(__A ) ),__A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj,__A ) is attr_value: _lowerCamelCase : int = getattr(self.obj,__A ) setattr(self.obj,__A,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _lowerCamelCase : Any = globals()["__builtins__"][target_attr] setattr(self.obj,__A,self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Dict,*__A : int ): for attr in list(self.original ): setattr(self.obj,__A,self.original.pop(__A ) ) def lowerCamelCase_ ( self : Optional[int] ): self.__enter__() self._active_patches.append(self ) def lowerCamelCase_ ( self : int ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0