code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'rwkv' lowerCAmelCase_ = {'max_position_embeddings': 'context_length'} def __init__( self : Optional[Any],__A : List[Any]=5_0_2_7_7,__A : Any=1_0_2_4,__A : Optional[int]=4_0_9_6,__A : int=3_2,__A : Optional[int]=None,__A : Optional[int]=None,__A : Tuple=1e-5,__A : Union[str, Any]=0,__A : Tuple=0,__A : Union[str, Any]=6,__A : int=False,__A : str=True,**__A : str,): _lowerCamelCase : str = vocab_size _lowerCamelCase : List[Any] = context_length _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size _lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : int = rescale_every _lowerCamelCase : str = use_cache _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : int = eos_token_id super().__init__( tie_word_embeddings=__A,bos_token_id=__A,eos_token_id=__A,**__A )
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : Optional[Any] = { 'gpt2': 1024, 'gpt2-medium': 1024, 'gpt2-large': 1024, 'gpt2-xl': 1024, 'distilgpt2': 1024, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = GPTaTokenizer def __init__( self : Optional[int],__A : str=None,__A : Tuple=None,__A : Union[str, Any]=None,__A : str="<|endoftext|>",__A : List[Any]="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Dict=False,**__A : Union[str, Any],): super().__init__( __A,__A,tokenizer_file=__A,unk_token=__A,bos_token=__A,eos_token=__A,add_prefix_space=__A,**__A,) _lowerCamelCase : Any = kwargs.pop("add_bos_token",__A ) _lowerCamelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Dict = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : int = add_prefix_space _lowerCamelCase : Union[str, Any] = pre_tok_class(**__A ) _lowerCamelCase : Tuple = add_prefix_space def lowerCamelCase_ ( self : Tuple,*__A : Tuple,**__A : List[Any] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : List[Any],*__A : Optional[int],**__A : Optional[Any] ): _lowerCamelCase : Optional[Any] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): _lowerCamelCase : int = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[Any],__A : "Conversation" ): _lowerCamelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A,add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] return input_ids
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : def __init__( self : str,__A : Tuple,__A : int=2,__A : List[str]=3,__A : Dict=4,__A : str=2,__A : Tuple=7,__A : List[str]=True,__A : int=True,__A : List[Any]=True,__A : Tuple=True,__A : Optional[Any]=9_9,__A : Optional[int]=3_6,__A : str=3,__A : Tuple=4,__A : Tuple=3_7,__A : Any="gelu",__A : Any=0.1,__A : Any=0.1,__A : Optional[int]=5_1_2,__A : Optional[int]=1_6,__A : int=2,__A : str=0.02,__A : Optional[int]=6,__A : Dict=6,__A : Optional[Any]=3,__A : Any=4,__A : int=None,__A : List[Any]=1_0_0_0,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : str = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Any = text_seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = coordinate_size _lowerCamelCase : int = shape_size _lowerCamelCase : Dict = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[Any] = scope _lowerCamelCase : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase : Dict = text_seq_length _lowerCamelCase : int = (image_size // patch_size) ** 2 + 1 _lowerCamelCase : Optional[Any] = self.text_seq_length + self.image_seq_length def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase : Optional[Any] = bbox[i, j, 3] _lowerCamelCase : Tuple = bbox[i, j, 1] _lowerCamelCase : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase : Union[str, Any] = bbox[i, j, 2] _lowerCamelCase : Optional[Any] = bbox[i, j, 0] _lowerCamelCase : Optional[int] = t _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : str = ids_tensor([self.batch_size, self.text_seq_length],self.type_vocab_size ) _lowerCamelCase : int = None _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.text_seq_length],self.num_labels ) _lowerCamelCase : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,coordinate_size=self.coordinate_size,shape_size=self.shape_size,input_size=self.image_size,patch_size=self.patch_size,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : Dict,__A : int,__A : str,__A : str,__A : List[Any],__A : List[Any],__A : Any,__A : Optional[Any],__A : List[Any] ): _lowerCamelCase : Union[str, Any] = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image _lowerCamelCase : Tuple = model(__A,pixel_values=__A ) _lowerCamelCase : int = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Optional[Any] = model(__A,bbox=__A,pixel_values=__A,token_type_ids=__A ) _lowerCamelCase : Any = model(__A,bbox=__A,pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase : str = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase : Tuple = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Tuple,__A : Optional[int],__A : Any,__A : Optional[Any],__A : Dict,__A : List[Any],__A : str,__A : List[str],__A : Union[str, Any] ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Union[str, Any] = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int,__A : int,__A : Optional[Any],__A : Optional[Any],__A : Optional[int],__A : Dict,__A : str,__A : Optional[int],__A : Optional[Any] ): _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : str = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str,__A : int,__A : Tuple,__A : Tuple,__A : Dict,__A : Optional[Any],__A : Optional[int],__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : Optional[Any] = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : Tuple,__A : Optional[int],__A : Optional[Any],__A : Tuple ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = LayoutLMvaModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : str,__A : Dict=False ): _lowerCamelCase : List[Any] = copy.deepcopy(__A ) if model_class in get_values(__A ): _lowerCamelCase : Dict = { k: v.unsqueeze(1 ).expand(-1,self.model_tester.num_choices,-1 ).contiguous() if isinstance(__A,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): _lowerCamelCase : Optional[Any] = torch.ones(self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in get_values(__A ): _lowerCamelCase : Optional[int] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) _lowerCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in [ *get_values(__A ), ]: _lowerCamelCase : Any = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in [ *get_values(__A ), ]: _lowerCamelCase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length),dtype=torch.long,device=__A,) return inputs_dict def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def lowerCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[Any] ): return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=__A,return_tensors="pt" ).pixel_values.to(__A ) _lowerCamelCase : str = torch.tensor([[1, 2]] ) _lowerCamelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase : Optional[int] = model( input_ids=input_ids.to(__A ),bbox=bbox.to(__A ),pixel_values=pixel_values.to(__A ),) # verify the logits _lowerCamelCase : List[str] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape,__A ) _lowerCamelCase : int = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3],__A,atol=1e-4 ) )
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Dict = sys.version_info >= (3, 10) def A_ ( _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'titi' lowerCAmelCase_ = 'toto' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'titi' lowerCAmelCase_ = 'toto' lowerCAmelCase_ = 42 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 'toto' def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[Any] = BasicEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 'toto' def lowerCamelCase_ ( self : str ): _lowerCamelCase : Tuple = MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=A , metadata={'help': 'help message'} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[1, 2, 3] ) lowerCAmelCase_ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) lowerCAmelCase_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field() lowerCAmelCase_ = field() lowerCAmelCase_ = field() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = field() lowerCAmelCase_ = None lowerCAmelCase_ = field(default='toto' , metadata={'help': 'help message'} ) lowerCAmelCase_ = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = None @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = None lowerCAmelCase_ = field(default=A , metadata={'help': 'help message'} ) lowerCAmelCase_ = None lowerCAmelCase_ = list_field(default=[] ) lowerCAmelCase_ = list_field(default=[] ) class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : int,__A : argparse.ArgumentParser,__A : argparse.ArgumentParser ): self.assertEqual(len(a._actions ),len(b._actions ) ) for x, y in zip(a._actions,b._actions ): _lowerCamelCase : List[str] = {k: v for k, v in vars(__A ).items() if k != "container"} _lowerCamelCase : List[Any] = {k: v for k, v in vars(__A ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices",__A ) and yy.get("choices",__A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__A ),yy["type"](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,required=__A ) expected.add_argument("--bar",type=__A,required=__A ) expected.add_argument("--baz",type=__A,required=__A ) expected.add_argument("--flag",type=__A,default=__A,const=__A,nargs="?" ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Any = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (_lowerCamelCase ) : Tuple = parser.parse_args_into_dataclasses(__A,look_for_args_file=__A ) self.assertFalse(example.flag ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo",default=4_2,type=__A ) expected.add_argument("--baz",default="toto",type=__A,help="help message" ) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,default=__A,const=__A,nargs="?" ) expected.add_argument("--baz",type=__A,default=__A,const=__A,nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz",action="store_false",default=__A,dest="baz" ) expected.add_argument("--opt",type=__A,default=__A ) _lowerCamelCase : Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCamelCase : str = HfArgumentParser(__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Dict = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : Optional[int] = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) _lowerCamelCase : List[str] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__A,Namespace(foo=__A,baz=__A,opt=__A ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = HfArgumentParser(__A ) _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo",default="toto",choices=["titi", "toto", 4_2],type=make_choice_type_function(["titi", "toto", 4_2] ),) self.argparsersEqual(__A,__A ) _lowerCamelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo,"toto" ) _lowerCamelCase : str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.toto ) _lowerCamelCase : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo,"titi" ) _lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.titi ) _lowerCamelCase : Optional[int] = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo,4_2 ) _lowerCamelCase : Any = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo,MixedTypeEnum.fourtytwo ) def lowerCamelCase_ ( self : Union[str, Any] ): @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 'toto' _lowerCamelCase : int = HfArgumentParser(__A ) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument( "--foo",default="toto",choices=("titi", "toto", 4_2),type=make_choice_type_function(["titi", "toto", 4_2] ),) self.argparsersEqual(__A,__A ) _lowerCamelCase : Any = parser.parse_args([] ) self.assertEqual(args.foo,"toto" ) _lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo,"titi" ) _lowerCamelCase : int = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo,4_2 ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo_int",nargs="+",default=[],type=__A ) expected.add_argument("--bar_int",nargs="+",default=[1, 2, 3],type=__A ) expected.add_argument("--foo_str",nargs="+",default=["Hallo", "Bonjour", "Hello"],type=__A ) expected.add_argument("--foo_float",nargs="+",default=[0.1, 0.2, 0.3],type=__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual( __A,Namespace(foo_int=[],bar_int=[1, 2, 3],foo_str=["Hallo", "Bonjour", "Hello"],foo_float=[0.1, 0.2, 0.3] ),) _lowerCamelCase : Any = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__A,Namespace(foo_int=[1],bar_int=[2, 3],foo_str=["a", "b", "c"],foo_float=[0.1, 0.7] ) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("--foo",default=__A,type=__A ) expected.add_argument("--bar",default=__A,type=__A,help="help message" ) expected.add_argument("--baz",default=__A,type=__A ) expected.add_argument("--ces",nargs="+",default=[],type=__A ) expected.add_argument("--des",nargs="+",default=[],type=__A ) _lowerCamelCase : Optional[int] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: _lowerCamelCase : Any = HfArgumentParser(__A ) self.argparsersEqual(__A,__A ) _lowerCamelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(__A,Namespace(foo=__A,bar=__A,baz=__A,ces=[],des=[] ) ) _lowerCamelCase : Any = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__A,Namespace(foo=1_2,bar=3.14,baz="42",ces=["a", "b", "c"],des=[1, 2, 3] ) ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[Any] = HfArgumentParser(__A ) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument("--required_list",nargs="+",type=__A,required=__A ) expected.add_argument("--required_str",type=__A,required=__A ) expected.add_argument( "--required_enum",type=make_choice_type_function(["titi", "toto"] ),choices=["titi", "toto"],required=__A,) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument("--foo",type=__A,required=__A ) expected.add_argument( "--required_enum",type=make_choice_type_function(["titi", "toto"] ),choices=["titi", "toto"],required=__A,) expected.add_argument("--opt",type=__A,default=__A ) expected.add_argument("--baz",default="toto",type=__A,help="help message" ) expected.add_argument("--foo_str",nargs="+",default=["Hallo", "Bonjour", "Hello"],type=__A ) self.argparsersEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = HfArgumentParser(__A ) _lowerCamelCase : Optional[Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } _lowerCamelCase : Tuple = parser.parse_dict(__A )[0] _lowerCamelCase : str = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = HfArgumentParser(__A ) _lowerCamelCase : str = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, "extra": 4_2, } self.assertRaises(__A,parser.parse_dict,__A,allow_extra_keys=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = HfArgumentParser(__A ) _lowerCamelCase : List[str] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict = os.path.join(__A,"temp_json" ) os.mkdir(__A ) with open(temp_local_path + ".json","w+" ) as f: json.dump(__A,__A ) _lowerCamelCase : Tuple = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] _lowerCamelCase : List[Any] = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Union[str, Any] = HfArgumentParser(__A ) _lowerCamelCase : List[str] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Tuple = os.path.join(__A,"temp_yaml" ) os.mkdir(__A ) with open(temp_local_path + ".yaml","w+" ) as f: yaml.dump(__A,__A ) _lowerCamelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] _lowerCamelCase : Optional[int] = BasicExample(**__A ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = HfArgumentParser(__A ) self.assertIsNotNone(__A )
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' from math import factorial class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : int,__A : List[Any] ): _lowerCamelCase : Dict = real if isinstance(__A,__A ): _lowerCamelCase : str = [1] * rank else: _lowerCamelCase : Union[str, Any] = rank def __repr__( self : Union[str, Any] ): return ( f'{self.real}+' f'{"+".join(str(__A )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real,__A ) def __add__( self : int,__A : str ): if not isinstance(__A,__A ): return Dual(self.real + other,self.duals ) _lowerCamelCase : int = self.duals.copy() _lowerCamelCase : Tuple = other.duals.copy() if len(__A ) > len(__A ): o_dual.extend([1] * (len(__A ) - len(__A )) ) elif len(__A ) < len(__A ): s_dual.extend([1] * (len(__A ) - len(__A )) ) _lowerCamelCase : Tuple = [] for i in range(len(__A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real,__A ) lowerCAmelCase_ = __add__ def __sub__( self : Dict,__A : int ): return self + other * -1 def __mul__( self : int,__A : Optional[int] ): if not isinstance(__A,__A ): _lowerCamelCase : str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other,__A ) _lowerCamelCase : Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real,__A ) lowerCAmelCase_ = __mul__ def __truediv__( self : List[str],__A : List[Any] ): if not isinstance(__A,__A ): _lowerCamelCase : Optional[int] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other,__A ) raise ValueError def __floordiv__( self : List[str],__A : Any ): if not isinstance(__A,__A ): _lowerCamelCase : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other,__A ) raise ValueError def __pow__( self : Optional[Any],__A : Optional[Any] ): if n < 0 or isinstance(__A,__A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self _lowerCamelCase : int = self for _ in range(n - 1 ): x *= self return x def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Any ): """simple docstring""" if not callable(_lowerCAmelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowerCAmelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("differentiate() requires an int as input for order" ) _lowerCamelCase : Optional[Any] = Dual(_lowerCAmelCase , 1 ) _lowerCamelCase : List[str] = func(_lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ : Any = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : str = 'RegNetConfig' # Base docstring UpperCAmelCase_ : Tuple = 'facebook/regnet-y-040' UpperCAmelCase_ : Optional[int] = [1, 1088, 7, 7] # Image classification docstring UpperCAmelCase_ : Dict = 'facebook/regnet-y-040' UpperCAmelCase_ : Tuple = 'tabby, tabby cat' UpperCAmelCase_ : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any,__A : int,__A : int = 3,__A : int = 1,__A : int = 1,__A : Optional[str] = "relu",**__A : str,): super().__init__(**__A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCamelCase : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCamelCase : str = tf.keras.layers.ConvaD( filters=__A,kernel_size=__A,strides=__A,padding="VALID",groups=__A,use_bias=__A,name="convolution",) _lowerCamelCase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5,momentum=0.9,name="normalization" ) _lowerCamelCase : Tuple = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase_ ( self : Any,__A : Optional[int] ): _lowerCamelCase : int = self.convolution(self.padding(__A ) ) _lowerCamelCase : List[str] = self.normalization(__A ) _lowerCamelCase : Union[str, Any] = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Tuple,__A : RegNetConfig,**__A : List[Any] ): super().__init__(**__A ) _lowerCamelCase : Tuple = config.num_channels _lowerCamelCase : int = TFRegNetConvLayer( out_channels=config.embedding_size,kernel_size=3,stride=2,activation=config.hidden_act,name="embedder",) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : List[str] = shape_list(__A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCamelCase : str = tf.transpose(__A,perm=(0, 2, 3, 1) ) _lowerCamelCase : Optional[int] = self.embedder(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : int,__A : int = 2,**__A : List[str] ): super().__init__(**__A ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=__A,kernel_size=1,strides=__A,use_bias=__A,name="convolution" ) _lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1e-5,momentum=0.9,name="normalization" ) def lowerCamelCase_ ( self : str,__A : tf.Tensor,__A : bool = False ): return self.normalization(self.convolution(__A ),training=__A ) class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : int,__A : int,**__A : Optional[Any] ): super().__init__(**__A ) _lowerCamelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A,name="pooler" ) _lowerCamelCase : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__A,kernel_size=1,activation="relu",name="attention.0" ), tf.keras.layers.ConvaD(filters=__A,kernel_size=1,activation="sigmoid",name="attention.2" ), ] def lowerCamelCase_ ( self : Optional[int],__A : int ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowerCamelCase : Union[str, Any] = self.pooler(__A ) for layer_module in self.attention: _lowerCamelCase : List[Any] = layer_module(__A ) _lowerCamelCase : List[str] = hidden_state * pooled return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any,__A : RegNetConfig,__A : int,__A : int,__A : int = 1,**__A : str ): super().__init__(**__A ) _lowerCamelCase : Dict = in_channels != out_channels or stride != 1 _lowerCamelCase : Dict = max(1,out_channels // config.groups_width ) _lowerCamelCase : Any = ( TFRegNetShortCut(__A,stride=__A,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear",name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(__A,kernel_size=1,activation=config.hidden_act,name="layer.0" ), TFRegNetConvLayer( __A,stride=__A,groups=__A,activation=config.hidden_act,name="layer.1" ), TFRegNetConvLayer(__A,kernel_size=1,activation=__A,name="layer.2" ), ] _lowerCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : Tuple,__A : Optional[int] ): _lowerCamelCase : List[str] = hidden_state for layer_module in self.layers: _lowerCamelCase : int = layer_module(__A ) _lowerCamelCase : int = self.shortcut(__A ) hidden_state += residual _lowerCamelCase : int = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : RegNetConfig,__A : int,__A : int,__A : int = 1,**__A : List[str] ): super().__init__(**__A ) _lowerCamelCase : str = in_channels != out_channels or stride != 1 _lowerCamelCase : str = max(1,out_channels // config.groups_width ) _lowerCamelCase : Optional[Any] = ( TFRegNetShortCut(__A,stride=__A,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear",name="shortcut" ) ) _lowerCamelCase : Dict = [ TFRegNetConvLayer(__A,kernel_size=1,activation=config.hidden_act,name="layer.0" ), TFRegNetConvLayer( __A,stride=__A,groups=__A,activation=config.hidden_act,name="layer.1" ), TFRegNetSELayer(__A,reduced_channels=int(round(in_channels / 4 ) ),name="layer.2" ), TFRegNetConvLayer(__A,kernel_size=1,activation=__A,name="layer.3" ), ] _lowerCamelCase : Any = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : str,__A : str ): _lowerCamelCase : Any = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[int] = layer_module(__A ) _lowerCamelCase : Optional[Any] = self.shortcut(__A ) hidden_state += residual _lowerCamelCase : Optional[int] = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str,__A : RegNetConfig,__A : int,__A : int,__A : int = 2,__A : int = 2,**__A : Dict ): super().__init__(**__A ) _lowerCamelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _lowerCamelCase : int = [ # downsampling is done in the first layer with stride of 2 layer(__A,__A,__A,stride=__A,name="layers.0" ), *[layer(__A,__A,__A,name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase_ ( self : Dict,__A : Dict ): for layer_module in self.layers: _lowerCamelCase : str = layer_module(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str,__A : RegNetConfig,**__A : Union[str, Any] ): super().__init__(**__A ) _lowerCamelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __A,config.embedding_size,config.hidden_sizes[0],stride=2 if config.downsample_in_first_stage else 1,depth=config.depths[0],name="stages.0",) ) _lowerCamelCase : str = zip(config.hidden_sizes,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__A,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__A,__A,__A,depth=__A,name=f'stages.{i+1}' ) ) def lowerCamelCase_ ( self : Optional[int],__A : tf.Tensor,__A : bool = False,__A : bool = True ): _lowerCamelCase : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCamelCase : str = hidden_states + (hidden_state,) _lowerCamelCase : List[Any] = stage_module(__A ) if output_hidden_states: _lowerCamelCase : List[str] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__A,hidden_states=__A ) @keras_serializable class UpperCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase_ = RegNetConfig def __init__( self : Dict,__A : List[str],**__A : Union[str, Any] ): super().__init__(**__A ) _lowerCamelCase : List[Any] = config _lowerCamelCase : str = TFRegNetEmbeddings(__A,name="embedder" ) _lowerCamelCase : str = TFRegNetEncoder(__A,name="encoder" ) _lowerCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A,name="pooler" ) @unpack_inputs def lowerCamelCase_ ( self : Union[str, Any],__A : tf.Tensor,__A : Optional[bool] = None,__A : Optional[bool] = None,__A : bool = False,): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Union[str, Any] = self.embedder(__A,training=__A ) _lowerCamelCase : Any = self.encoder( __A,output_hidden_states=__A,return_dict=__A,training=__A ) _lowerCamelCase : Union[str, Any] = encoder_outputs[0] _lowerCamelCase : str = self.pooler(__A ) # Change to NCHW output format have uniformity in the modules _lowerCamelCase : Optional[Any] = tf.transpose(__A,perm=(0, 3, 1, 2) ) _lowerCamelCase : str = tf.transpose(__A,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCamelCase : Tuple = tuple([tf.transpose(__A,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__A,pooler_output=__A,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = 'regnet' lowerCAmelCase_ = 'pixel_values' @property def lowerCamelCase_ ( self : List[str] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4),dtype=tf.floataa )} UpperCAmelCase_ : str = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ : int = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , A , ) class UpperCAmelCase__ ( A ): def __init__( self : Optional[Any],__A : RegNetConfig,*__A : int,**__A : Optional[Any] ): super().__init__(__A,*__A,**__A ) _lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(__A,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC,output_type=__A,config_class=_CONFIG_FOR_DOC,modality="vision",expected_output=_EXPECTED_OUTPUT_SHAPE,) def lowerCamelCase_ ( self : str,__A : tf.Tensor,__A : Optional[bool] = None,__A : Optional[bool] = None,__A : Optional[int]=False,): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : str = self.regnet( pixel_values=__A,output_hidden_states=__A,return_dict=__A,training=__A,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state,pooler_output=outputs.pooler_output,hidden_states=outputs.hidden_states,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , A , ) class UpperCAmelCase__ ( A , A ): def __init__( self : Union[str, Any],__A : RegNetConfig,*__A : Optional[int],**__A : Tuple ): super().__init__(__A,*__A,**__A ) _lowerCamelCase : List[Any] = config.num_labels _lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(__A,name="regnet" ) # classification head _lowerCamelCase : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT,output_type=__A,config_class=_CONFIG_FOR_DOC,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,) def lowerCamelCase_ ( self : Optional[Any],__A : tf.Tensor = None,__A : tf.Tensor = None,__A : bool = None,__A : bool = None,__A : Union[str, Any]=False,): _lowerCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Tuple = self.regnet( __A,output_hidden_states=__A,return_dict=__A,training=__A ) _lowerCamelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _lowerCamelCase : int = self.classifier[0](__A ) _lowerCamelCase : Optional[int] = self.classifier[1](__A ) _lowerCamelCase : List[str] = None if labels is None else self.hf_compute_loss(labels=__A,logits=__A ) if not return_dict: _lowerCamelCase : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__A,logits=__A,hidden_states=outputs.hidden_states )
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer UpperCAmelCase_ : Tuple = ['gpt2'] UpperCAmelCase_ : Optional[Any] = 'gpt2' if is_tf_available(): class UpperCAmelCase__ ( tf.Module ): def __init__( self : Any,__A : Dict ): super().__init__() _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Optional[Any] = TFGPTaLMHeadModel.from_config(__A ) @tf.function(input_signature=(tf.TensorSpec((None,),tf.string,name="text" ),) ) def lowerCamelCase_ ( self : List[Any],__A : Tuple ): _lowerCamelCase : int = self.tokenizer(__A ) _lowerCamelCase : str = tokenized["input_ids"].to_tensor() _lowerCamelCase : Tuple = tf.cast(input_ids_dense > 0,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCamelCase : List[Any] = self.model(input_ids=__A,attention_mask=__A )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): super().setUp() _lowerCamelCase : Any = [GPTaTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCamelCase : int = [TFGPTaTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCamelCase : str = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: ไธ€ ไบŒ ไธ‰ ไธ€ไบŒไธ‰", "And some much more rare Chinese: ้ฝ‰ ๅ ƒ ้ฝ‰ๅ ƒ", "Je vais aussi รฉcrire en franรงais pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaฤ‹, ๊ผ", ] _lowerCamelCase : int = list(zip(self.test_sentences,self.test_sentences[::-1] ) ) def lowerCamelCase_ ( self : Optional[int] ): for tokenizer, tf_tokenizer in zip(self.tokenizers,self.tf_tokenizers ): for test_inputs in self.test_sentences: _lowerCamelCase : str = tokenizer([test_inputs],return_tensors="tf" ) _lowerCamelCase : int = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCamelCase : str = python_outputs[key].numpy() _lowerCamelCase : List[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__A,tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase_ ( self : int ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Optional[Any] = tf.function(__A ) for test_inputs in self.test_sentences: _lowerCamelCase : List[Any] = tf.constant(__A ) _lowerCamelCase : str = compiled_tokenizer(__A ) _lowerCamelCase : List[Any] = tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase_ ( self : Optional[Any] ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : int = ModelToSave(tokenizer=__A ) _lowerCamelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Union[str, Any] = model.serving(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCamelCase : Optional[int] = Path(__A ) / "saved.model" tf.saved_model.save(__A,__A,signatures={"serving_default": model.serving} ) _lowerCamelCase : Tuple = tf.saved_model.load(__A ) _lowerCamelCase : Optional[Any] = loaded_model.signatures["serving_default"](__A )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase_ ( self : Any ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : str = tf_tokenizer(__A ) # Build model with some sample inputs _lowerCamelCase : List[Any] = tf_tokenizer.get_config() _lowerCamelCase : Union[str, Any] = TFGPTaTokenizer.from_config(__A ) _lowerCamelCase : int = model_from_config(__A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase_ ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCamelCase : Any = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: _lowerCamelCase : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Optional[Any] = tf_tokenizer(__A,max_length=__A ) _lowerCamelCase : Optional[Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def A_ ( _lowerCAmelCase : SplitDict ): """simple docstring""" _lowerCamelCase : List[Any] = split_dict._to_yaml_list() assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = SplitDict._from_yaml_list(_lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _lowerCamelCase : Any = None # the split name of split_dict takes over the name of the split info object _lowerCamelCase : Optional[int] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name="my_dataset" )] ) def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = 'โ–' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa lowerCAmelCase_ = True def lowerCamelCase_ ( self : Any ): super().setup() _lowerCamelCase : str = nn.Dense(5,dtype=self.dtype ) def __call__( self : Optional[int],*__A : Optional[int],**__A : Union[str, Any] ): _lowerCamelCase : Optional[int] = super().__call__(*__A,**__A ) _lowerCamelCase : int = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = FlaxBigBirdForNaturalQuestionsModule def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" def cross_entropy(_lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=None ): _lowerCamelCase : Optional[int] = logits.shape[-1] _lowerCamelCase : Optional[Any] = (labels[..., None] == jnp.arange(_lowerCAmelCase )[None]).astype("f4" ) _lowerCamelCase : str = jax.nn.log_softmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase : int = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase : List[Any] = reduction(_lowerCAmelCase ) return loss _lowerCamelCase : int = partial(_lowerCAmelCase , reduction=jnp.mean ) _lowerCamelCase : List[Any] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[int] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 'google/bigbird-roberta-base' lowerCAmelCase_ = 3000 lowerCAmelCase_ = 10500 lowerCAmelCase_ = 128 lowerCAmelCase_ = 3 lowerCAmelCase_ = 1 lowerCAmelCase_ = 5 # tx_args lowerCAmelCase_ = 3E-5 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = 20000 lowerCAmelCase_ = 0.0_0_9_5 lowerCAmelCase_ = 'bigbird-roberta-natural-questions' lowerCAmelCase_ = 'training-expt' lowerCAmelCase_ = 'data/nq-training.jsonl' lowerCAmelCase_ = 'data/nq-validation.jsonl' def lowerCamelCase_ ( self : Optional[int] ): os.makedirs(self.base_dir,exist_ok=__A ) _lowerCamelCase : Union[str, Any] = os.path.join(self.base_dir,self.save_dir ) _lowerCamelCase : Any = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 4096 # no dynamic padding on TPUs def __call__( self : Union[str, Any],__A : List[str] ): _lowerCamelCase : Dict = self.collate_fn(__A ) _lowerCamelCase : int = jax.tree_util.tree_map(__A,__A ) return batch def lowerCamelCase_ ( self : List[Any],__A : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.fetch_inputs(features["input_ids"] ) _lowerCamelCase : Dict = { "input_ids": jnp.array(__A,dtype=jnp.intaa ), "attention_mask": jnp.array(__A,dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"],dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"],dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"],dtype=jnp.intaa ), } return batch def lowerCamelCase_ ( self : Union[str, Any],__A : list ): _lowerCamelCase : str = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def lowerCamelCase_ ( self : Tuple,__A : list ): _lowerCamelCase : str = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=None ): """simple docstring""" if seed is not None: _lowerCamelCase : Union[str, Any] = dataset.shuffle(seed=_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) // batch_size ): _lowerCamelCase : Any = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): """simple docstring""" def loss_fn(_lowerCAmelCase : str ): _lowerCamelCase : List[Any] = model_inputs.pop("start_labels" ) _lowerCamelCase : Union[str, Any] = model_inputs.pop("end_labels" ) _lowerCamelCase : Optional[int] = model_inputs.pop("pooled_labels" ) _lowerCamelCase : List[str] = state.apply_fn(**_lowerCAmelCase , params=_lowerCAmelCase , dropout_rng=_lowerCAmelCase , train=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = outputs return state.loss_fn( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) _lowerCamelCase : List[Any] = jax.random.split(_lowerCAmelCase ) _lowerCamelCase : Tuple = jax.value_and_grad(_lowerCAmelCase ) _lowerCamelCase : int = grad_fn(state.params ) _lowerCamelCase : Optional[Any] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) _lowerCamelCase : Union[str, Any] = jax.lax.pmean(_lowerCAmelCase , "batch" ) _lowerCamelCase : Union[str, Any] = state.apply_gradients(grads=_lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def A_ ( _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = model_inputs.pop("start_labels" ) _lowerCamelCase : Any = model_inputs.pop("end_labels" ) _lowerCamelCase : Any = model_inputs.pop("pooled_labels" ) _lowerCamelCase : Optional[int] = state.apply_fn(**_lowerCAmelCase , params=state.params , train=_lowerCAmelCase ) _lowerCamelCase : Dict = outputs _lowerCamelCase : List[str] = state.loss_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): lowerCAmelCase_ = struct.field(pytree_node=A ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : int,__A : List[str],__A : Tuple=None ): _lowerCamelCase : Optional[Any] = model.params _lowerCamelCase : List[Any] = TrainState.create( apply_fn=model.__call__,params=__A,tx=__A,loss_fn=__A,) if ckpt_dir is not None: _lowerCamelCase : List[Any] = restore_checkpoint(__A,__A ) _lowerCamelCase : List[str] = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } _lowerCamelCase : Any = build_tx(**__A ) _lowerCamelCase : int = train_state.TrainState( step=__A,apply_fn=model.__call__,params=__A,tx=__A,opt_state=__A,) _lowerCamelCase : int = args _lowerCamelCase : str = data_collator _lowerCamelCase : Tuple = lr _lowerCamelCase : Tuple = params _lowerCamelCase : Tuple = jax_utils.replicate(__A ) return state def lowerCamelCase_ ( self : List[Any],__A : int,__A : Dict,__A : Optional[Any] ): _lowerCamelCase : str = self.args _lowerCamelCase : Union[str, Any] = len(__A ) // args.batch_size _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[int] = jax.random.split(__A,jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase : List[str] = jnp.array(0,dtype=jnp.floataa ) _lowerCamelCase : Any = get_batched_dataset(__A,args.batch_size,seed=__A ) _lowerCamelCase : Union[str, Any] = 0 for batch in tqdm(__A,total=__A,desc=f'Running EPOCH-{epoch}' ): _lowerCamelCase : Optional[Any] = self.data_collator(__A ) _lowerCamelCase : Optional[Any] = self.train_step_fn(__A,__A,**__A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase : Dict = jax_utils.unreplicate(state.step ) _lowerCamelCase : Optional[Any] = running_loss.item() / i _lowerCamelCase : Tuple = self.scheduler_fn(state_step - 1 ) _lowerCamelCase : Any = self.evaluate(__A,__A ) _lowerCamelCase : str = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A,commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}',state=__A ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : Tuple ): _lowerCamelCase : List[Any] = get_batched_dataset(__A,self.args.batch_size ) _lowerCamelCase : str = len(__A ) // self.args.batch_size _lowerCamelCase : Optional[Any] = jnp.array(0,dtype=jnp.floataa ) _lowerCamelCase : Dict = 0 for batch in tqdm(__A,total=__A,desc="Evaluating ... " ): _lowerCamelCase : str = self.data_collator(__A ) _lowerCamelCase : Dict = self.val_step_fn(__A,**__A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : Union[str, Any] ): _lowerCamelCase : Any = jax_utils.unreplicate(__A ) print(f'SAVING CHECKPOINT IN {save_dir}',end=" ... " ) self.model_save_fn(__A,params=state.params ) with open(os.path.join(__A,"opt_state.msgpack" ),"wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(__A,"args.joblib" ) ) joblib.dump(self.data_collator,os.path.join(__A,"data_collator.joblib" ) ) with open(os.path.join(__A,"training_state.json" ),"w" ) as f: json.dump({"step": state.step.item()},__A ) print("DONE" ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): """simple docstring""" print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=" ... " ) with open(os.path.join(_lowerCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: _lowerCamelCase : str = from_bytes(state.params , f.read() ) with open(os.path.join(_lowerCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: _lowerCamelCase : List[Any] = from_bytes(state.opt_state , f.read() ) _lowerCamelCase : Optional[int] = joblib.load(os.path.join(_lowerCAmelCase , "args.joblib" ) ) _lowerCamelCase : List[Any] = joblib.load(os.path.join(_lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(_lowerCAmelCase , "training_state.json" ) , "r" ) as f: _lowerCamelCase : str = json.load(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[str] = num_train_steps - warmup_steps _lowerCamelCase : Dict = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=_lowerCAmelCase , transition_steps=_lowerCAmelCase ) _lowerCamelCase : Dict = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=1E-7 , transition_steps=_lowerCAmelCase ) _lowerCamelCase : List[Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ): """simple docstring""" def weight_decay_mask(_lowerCAmelCase : List[Any] ): _lowerCamelCase : Tuple = traverse_util.flatten_dict(_lowerCAmelCase ) _lowerCamelCase : Tuple = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCAmelCase ) _lowerCamelCase : int = scheduler_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = optax.adamw(learning_rate=_lowerCAmelCase , weight_decay=_lowerCAmelCase , mask=_lowerCAmelCase ) return tx, lr
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", "โ€‰", "โ€Š", "โ€ฏ", "โ€…", "ใ€€", "โ€‚", " ", "โ€ˆ", "โ€ƒ", "๏ฟผ", "ย„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' import requests def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Tuple = {"Content-Type": "application/json"} _lowerCamelCase : Optional[Any] = requests.post(_lowerCAmelCase , json={"text": message_body} , headers=_lowerCAmelCase ) if response.status_code != 200: _lowerCamelCase : str = ( "Request to slack returned an error " F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'deta' lowerCAmelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any],__A : Union[str, Any]=None,__A : int=9_0_0,__A : Optional[int]=2_0_4_8,__A : Any=6,__A : str=2_0_4_8,__A : List[Any]=8,__A : Tuple=6,__A : Optional[Any]=1_0_2_4,__A : Optional[int]=8,__A : Union[str, Any]=0.0,__A : Optional[Any]=True,__A : Any="relu",__A : Dict=2_5_6,__A : int=0.1,__A : Dict=0.0,__A : Optional[int]=0.0,__A : Dict=0.02,__A : List[Any]=1.0,__A : Tuple=True,__A : int=False,__A : Optional[int]="sine",__A : Optional[int]=5,__A : List[Any]=4,__A : int=4,__A : Optional[Any]=True,__A : Optional[Any]=3_0_0,__A : Any=True,__A : Tuple=True,__A : Optional[Any]=1,__A : List[Any]=5,__A : List[str]=2,__A : Tuple=1,__A : int=1,__A : Tuple=5,__A : Optional[int]=2,__A : Optional[Any]=0.1,__A : Dict=0.25,**__A : List[str],): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : Dict = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__A,__A ): _lowerCamelCase : Dict = backbone_config.pop("model_type" ) _lowerCamelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[Any] = config_class.from_dict(__A ) _lowerCamelCase : List[str] = backbone_config _lowerCamelCase : Optional[int] = num_queries _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Any = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : Tuple = encoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : List[Any] = decoder_layers _lowerCamelCase : List[str] = decoder_attention_heads _lowerCamelCase : Tuple = dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Tuple = activation_dropout _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : int = init_std _lowerCamelCase : Optional[Any] = init_xavier_std _lowerCamelCase : Tuple = encoder_layerdrop _lowerCamelCase : Tuple = auxiliary_loss _lowerCamelCase : Optional[Any] = position_embedding_type # deformable attributes _lowerCamelCase : List[str] = num_feature_levels _lowerCamelCase : Optional[Any] = encoder_n_points _lowerCamelCase : str = decoder_n_points _lowerCamelCase : Any = two_stage _lowerCamelCase : List[Any] = two_stage_num_proposals _lowerCamelCase : int = with_box_refine _lowerCamelCase : Dict = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _lowerCamelCase : Optional[Any] = class_cost _lowerCamelCase : List[Any] = bbox_cost _lowerCamelCase : List[str] = giou_cost # Loss coefficients _lowerCamelCase : str = mask_loss_coefficient _lowerCamelCase : Union[str, Any] = dice_loss_coefficient _lowerCamelCase : Optional[int] = bbox_loss_coefficient _lowerCamelCase : List[Any] = giou_loss_coefficient _lowerCamelCase : Dict = eos_coefficient _lowerCamelCase : int = focal_alpha super().__init__(is_encoder_decoder=__A,**__A ) @property def lowerCamelCase_ ( self : str ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self : str ): return self.d_model def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = copy.deepcopy(self.__dict__ ) _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = None def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=0.9_9_9 , _lowerCAmelCase : Any="cosine" , ) -> Optional[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _lowerCamelCase : Tuple = [] for i in range(_lowerCAmelCase ): _lowerCamelCase : int = i / num_diffusion_timesteps _lowerCamelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class UpperCAmelCase__ ( A , A ): @register_to_config def __init__( self : Any,__A : int = 1_0_0_0,__A : str = "fixed_small_log",__A : bool = True,__A : Optional[float] = 1.0,__A : str = "epsilon",__A : str = "squaredcos_cap_v2",): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__A ) _lowerCamelCase : str = 1.0 - self.betas _lowerCamelCase : Any = torch.cumprod(self.alphas,dim=0 ) _lowerCamelCase : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Optional[Any] = 1.0 # setable values _lowerCamelCase : Optional[Any] = None _lowerCamelCase : str = torch.from_numpy(np.arange(0,__A )[::-1].copy() ) _lowerCamelCase : Optional[int] = variance_type def lowerCamelCase_ ( self : Union[str, Any],__A : torch.FloatTensor,__A : Optional[int] = None ): return sample def lowerCamelCase_ ( self : List[Any],__A : int,__A : Union[str, torch.device] = None ): _lowerCamelCase : Dict = num_inference_steps _lowerCamelCase : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0,__A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : List[str] = torch.from_numpy(__A ).to(__A ) def lowerCamelCase_ ( self : str,__A : Optional[Any],__A : str=None,__A : str=None,__A : Union[str, Any]=None ): if prev_timestep is None: _lowerCamelCase : Optional[int] = t - 1 _lowerCamelCase : str = self.alphas_cumprod[t] _lowerCamelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : int = 1 - alpha_prod_t _lowerCamelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] else: _lowerCamelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance ฮฒt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Tuple = torch.log(torch.clamp(__A,min=1e-20 ) ) _lowerCamelCase : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : Optional[int] = variance.log() _lowerCamelCase : List[Any] = beta.log() _lowerCamelCase : Optional[Any] = (predicted_variance + 1) / 2 _lowerCamelCase : List[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self : int,__A : torch.FloatTensor,__A : int,__A : torch.FloatTensor,__A : Optional[int] = None,__A : Optional[Any]=None,__A : bool = True,): _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase : Optional[Any] = torch.split(__A,sample.shape[1],dim=1 ) else: _lowerCamelCase : int = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : Optional[Any] = t - 1 _lowerCamelCase : str = self.alphas_cumprod[t] _lowerCamelCase : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Any = 1 - alpha_prod_t _lowerCamelCase : Optional[int] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Optional[Any] = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : str = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : int = torch.clamp( __A,-self.config.clip_sample_range,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : Tuple = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample ยต_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : List[Any] = 0 if t > 0: _lowerCamelCase : Tuple = randn_tensor( model_output.shape,dtype=model_output.dtype,generator=__A,device=model_output.device ) _lowerCamelCase : Optional[Any] = self._get_variance( __A,predicted_variance=__A,prev_timestep=__A,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Union[str, Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Any = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' " for the UnCLIPScheduler." ) _lowerCamelCase : Tuple = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__A,pred_original_sample=__A ) def lowerCamelCase_ ( self : Optional[Any],__A : torch.FloatTensor,__A : torch.FloatTensor,__A : torch.IntTensor,): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples _lowerCamelCase : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device,dtype=original_samples.dtype ) _lowerCamelCase : str = timesteps.to(original_samples.device ) _lowerCamelCase : str = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : Dict = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : str = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : List[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
def A_ ( _lowerCAmelCase : list ): """simple docstring""" for i in range(len(_lowerCAmelCase ) - 1 , 0 , -1 ): _lowerCamelCase : Tuple = False for j in range(_lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCamelCase : Dict = unsorted[j - 1], unsorted[j] _lowerCamelCase : str = True for j in range(_lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: _lowerCamelCase : Dict = unsorted[j + 1], unsorted[j] _lowerCamelCase : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : List[Any] = [int(item) for item in user_input.split(',')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase__ ( nn.Module ): def __init__( self : Tuple,__A : int = 1_6,__A : int = 8_8,__A : Optional[int] = None,__A : int = 1,__A : float = 0.0,__A : int = 3_2,__A : Optional[int] = None,__A : bool = False,__A : Optional[int] = None,__A : Optional[int] = None,__A : str = "geglu",__A : Optional[int] = None,): super().__init__() _lowerCamelCase : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__A,attention_head_dim=__A,in_channels=__A,num_layers=__A,dropout=__A,norm_num_groups=__A,cross_attention_dim=__A,attention_bias=__A,sample_size=__A,num_vector_embeds=__A,activation_fn=__A,num_embeds_ada_norm=__A,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowerCamelCase : Dict = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowerCamelCase : Dict = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowerCamelCase : int = [1, 0] def lowerCamelCase_ ( self : List[Any],__A : Dict,__A : List[str],__A : Dict=None,__A : Dict=None,__A : Tuple=None,__A : bool = True,): _lowerCamelCase : Optional[Any] = hidden_states _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowerCamelCase : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowerCamelCase : List[str] = self.transformer_index_for_condition[i] _lowerCamelCase : Optional[int] = self.transformers[transformer_index]( __A,encoder_hidden_states=__A,timestep=__A,cross_attention_kwargs=__A,return_dict=__A,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowerCamelCase : List[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowerCamelCase : Dict = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__A )
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : def __init__( self : Optional[int],__A : int,__A : Union[str, Any]=3,__A : Optional[Any]=3_2,__A : int=3,__A : Optional[int]=1_0,__A : str=[8, 1_6, 3_2, 6_4],__A : Optional[Any]=[1, 1, 2, 1],__A : Any=True,__A : str=True,__A : Union[str, Any]="relu",__A : List[Any]=3,__A : Union[str, Any]=None,__A : Union[str, Any]=["stage2", "stage3", "stage4"],__A : Tuple=[2, 3, 4],__A : Any=1,): _lowerCamelCase : Dict = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : List[str] = image_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Optional[Any] = embeddings_size _lowerCamelCase : str = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : List[str] = is_training _lowerCamelCase : Dict = use_labels _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_labels _lowerCamelCase : str = scope _lowerCamelCase : Tuple = len(__A ) _lowerCamelCase : Optional[int] = out_features _lowerCamelCase : Any = out_indices _lowerCamelCase : Union[str, Any] = num_groups def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Tuple = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.num_labels ) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): return BitConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,out_features=self.out_features,out_indices=self.out_indices,num_groups=self.num_groups,) def lowerCamelCase_ ( self : List[Any],__A : str,__A : List[str],__A : Tuple ): _lowerCamelCase : Dict = BitModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Tuple = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2),) def lowerCamelCase_ ( self : Optional[Any],__A : List[Any],__A : Dict,__A : Union[str, Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : Any = BitForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : Union[str, Any],__A : Optional[Any] ): _lowerCamelCase : str = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Tuple = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : int = config_and_inputs _lowerCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase_ = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = BitModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,has_text_modality=__A ) def lowerCamelCase_ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : int ): return @unittest.skip(reason="Bit does not output attentions" ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__A ) _lowerCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, module in model.named_modules(): if isinstance(__A,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) self.assertTrue( torch.all(module.bias == 0 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) def lowerCamelCase_ ( self : Dict ): def check_hidden_states_output(__A : Dict,__A : Union[str, Any],__A : Optional[Any] ): _lowerCamelCase : str = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__A ),expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : str = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase : Tuple = layer_type _lowerCamelCase : Tuple = True check_hidden_states_output(__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Union[str, Any] = True check_hidden_states_output(__A,__A,__A ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCamelCase_ ( self : Any ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = BitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Dict = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : int = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**__A ) # verify the logits _lowerCamelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase_ = BitConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = BitModelTester(self )
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Union[str, Any],__A : Optional[Any]=1_3,__A : Optional[Any]=3_2,__A : Union[str, Any]=3,__A : List[Any]=4,__A : List[str]=[1_0, 2_0, 3_0, 4_0],__A : Tuple=[2, 2, 3, 2],__A : int=True,__A : List[str]=True,__A : Dict=3_7,__A : Optional[int]="gelu",__A : Dict=1_0,__A : Optional[Any]=0.02,__A : Any=["stage2", "stage3", "stage4"],__A : List[Any]=3,__A : Any=None,): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = num_stages _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : Dict = depths _lowerCamelCase : Dict = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : List[Any] = out_features _lowerCamelCase : int = num_labels _lowerCamelCase : Union[str, Any] = scope _lowerCamelCase : str = num_stages def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Dict ): return ConvNextConfig( num_channels=self.num_channels,num_stages=self.num_stages,hidden_sizes=self.hidden_sizes,depths=self.depths,is_training=self.is_training,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,out_features=self.out_features,) def lowerCamelCase_ ( self : List[str] ): return UperNetConfig( backbone_config=self.get_backbone_config(),hidden_size=5_1_2,pool_scales=[1, 2, 3, 6],use_auxiliary_head=__A,auxiliary_loss_weight=0.4,auxiliary_in_channels=4_0,auxiliary_channels=2_5_6,auxiliary_num_convs=1,auxiliary_concat_input=__A,loss_ignore_index=2_5_5,num_labels=self.num_labels,) def lowerCamelCase_ ( self : Optional[int],__A : List[Any],__A : str,__A : List[Any] ): _lowerCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = UperNetModelTester(self ) _lowerCamelCase : str = ConfigTester(self,config_class=__A,has_text_modality=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : str ): return def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__A ) _lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="UperNet does not have a base model" ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip(reason="UperNet does not have a base model" ) def lowerCamelCase_ ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCamelCase_ ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : int ): def check_hidden_states_output(__A : int,__A : List[str],__A : Optional[int] ): _lowerCamelCase : Any = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(__A ),expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True check_hidden_states_output(__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(__A,__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = _config_zero_init(__A ) _lowerCamelCase : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(config=__A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip(reason="UperNet does not have tied weights" ) def lowerCamelCase_ ( self : Optional[Any] ): pass @slow def lowerCamelCase_ ( self : Any ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = UperNetForSemanticSegmentation.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) _lowerCamelCase : Any = Image.open(_lowerCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) _lowerCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__A ) _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : Dict = processor(images=__A,return_tensors="pt" ).to(__A ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__A ) _lowerCamelCase : Union[str, Any] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Optional[Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],__A,atol=1e-4 ) ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) _lowerCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__A ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Optional[Any] = processor(images=__A,return_tensors="pt" ).to(__A ) with torch.no_grad(): _lowerCamelCase : Any = model(**__A ) _lowerCamelCase : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],__A,atol=1e-4 ) )
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase_ : str = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(_lowerCAmelCase ) , version.parse(_lowerCAmelCase ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = F'\n{hint}' if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" , _lowerCAmelCase ): _lowerCamelCase : List[Any] = requirement, None, None else: _lowerCamelCase : Optional[int] = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , _lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F' got {requirement}' ) _lowerCamelCase : Tuple = match[0] _lowerCamelCase : Union[str, Any] = want_full.split("," ) # there could be multiple requirements _lowerCamelCase : List[str] = {} for w in want_range: _lowerCamelCase : int = re.findall(r"^([\s!=<>]{1,2})(.+)" , _lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F' but got {requirement}' ) _lowerCamelCase : Any = match[0] _lowerCamelCase : Union[str, Any] = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": _lowerCamelCase : Union[str, Any] = ".".join([str(_lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return # check if any version is installed try: _lowerCamelCase : Dict = importlib.metadata.version(_lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Dict = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(_lowerCAmelCase , _lowerCAmelCase )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : int ): _lowerCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode _lowerCamelCase : Optional[int] = False def lowerCamelCase_ ( self : str,__A : list[str] ): for word in words: self.insert(__A ) def lowerCamelCase_ ( self : Tuple,__A : str ): _lowerCamelCase : List[Any] = self for char in word: if char not in curr.nodes: _lowerCamelCase : Tuple = TrieNode() _lowerCamelCase : Any = curr.nodes[char] _lowerCamelCase : List[str] = True def lowerCamelCase_ ( self : Any,__A : str ): _lowerCamelCase : Dict = self for char in word: if char not in curr.nodes: return False _lowerCamelCase : Optional[int] = curr.nodes[char] return curr.is_leaf def lowerCamelCase_ ( self : Any,__A : str ): def _delete(__A : TrieNode,__A : str,__A : int ) -> bool: if index == len(__A ): # If word does not exist if not curr.is_leaf: return False _lowerCamelCase : int = False return len(curr.nodes ) == 0 _lowerCamelCase : Dict = word[index] _lowerCamelCase : Optional[Any] = curr.nodes.get(__A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCamelCase : List[Any] = _delete(__A,__A,index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self,__A,0 ) def A_ ( _lowerCAmelCase : TrieNode , _lowerCAmelCase : str ): """simple docstring""" if node.is_leaf: print(_lowerCAmelCase , end=" " ) for key, value in node.nodes.items(): print_words(_lowerCAmelCase , word + key ) def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "banana bananas bandana band apple all beast".split() _lowerCamelCase : str = TrieNode() root.insert_many(_lowerCAmelCase ) # print_words(root, "") assert all(root.find(_lowerCAmelCase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool ): """simple docstring""" print(str(_lowerCAmelCase ) , "works!" if passes else "doesn't work :(" ) def A_ ( ): """simple docstring""" assert test_trie() def A_ ( ): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase_ : Tuple = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class UpperCAmelCase__ : def __init__( self : List[str],__A : int = 1_4 ): if group not in primes: raise ValueError("Unsupported Group" ) _lowerCamelCase : Union[str, Any] = primes[group]["prime"] _lowerCamelCase : Tuple = primes[group]["generator"] _lowerCamelCase : Any = int(hexlify(urandom(3_2 ) ),base=1_6 ) def lowerCamelCase_ ( self : str ): return hex(self.__private_key )[2:] def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = pow(self.generator,self.__private_key,self.prime ) return hex(__A )[2:] def lowerCamelCase_ ( self : List[str],__A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__A,(self.prime - 1) // 2,self.prime ) == 1 ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Optional[int] = int(__A,base=1_6 ) if not self.is_valid_public_key(__A ): raise ValueError("Invalid public key" ) _lowerCamelCase : Tuple = pow(__A,self.__private_key,self.prime ) return shaaaa(str(__A ).encode() ).hexdigest() @staticmethod def lowerCamelCase_ ( __A : int,__A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__A,(prime - 1) // 2,__A ) == 1 ) @staticmethod def lowerCamelCase_ ( __A : str,__A : str,__A : int = 1_4 ): _lowerCamelCase : Optional[Any] = int(__A,base=1_6 ) _lowerCamelCase : Dict = int(__A,base=1_6 ) _lowerCamelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__A,__A ): raise ValueError("Invalid public key" ) _lowerCamelCase : Dict = pow(__A,__A,__A ) return shaaaa(str(__A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Any,*__A : Any,**__A : int ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead.",__A,) super().__init__(*__A,**__A )
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( A ): def __init__( self : Optional[int],__A : Union[str, Any]=0.01,__A : str=1_0_0_0 ): _lowerCamelCase : Any = p_stop _lowerCamelCase : Tuple = max_length def __iter__( self : Tuple ): _lowerCamelCase : int = 0 _lowerCamelCase : str = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : List[Any] = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str],__A : Union[str, Any]=False,__A : Dict=True ): _lowerCamelCase : Tuple = [ BatchSamplerShard(__A,2,__A,split_batches=__A,even_batches=__A ) for i in range(2 ) ] _lowerCamelCase : Dict = [list(__A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__A ) for shard in batch_sampler_shards],[len(__A ) for e in expected] ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCamelCase : int = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : int = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Any = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Any = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Tuple = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Tuple = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : int = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Any = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : List[Any] = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Tuple = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : List[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : int = [[], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) def lowerCamelCase_ ( self : Dict ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : str = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : List[str] = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Tuple = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : List[str] = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[str] = [[], []] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) def lowerCamelCase_ ( self : Tuple ): # Check the shards when the dataset is a round multiple of batch size. _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : List[Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : int = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _lowerCamelCase : List[str] = [BatchSamplerShard(__A,2,__A,even_batches=__A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ),3 ) self.assertEqual(len(batch_sampler_shards[1] ),2 ) self.assertListEqual(list(batch_sampler_shards[0] ),[[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ),[[3, 4], [9, 1_0, 1_1]] ) def lowerCamelCase_ ( self : int,__A : List[str],__A : int,__A : List[str],__A : Optional[int]=False,__A : List[str]=2,__A : Optional[Any]=False ): random.seed(__A ) _lowerCamelCase : str = list(__A ) _lowerCamelCase : List[str] = [ IterableDatasetShard( __A,batch_size=__A,drop_last=__A,num_processes=__A,process_index=__A,split_batches=__A,) for i in range(__A ) ] _lowerCamelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__A ) iterable_dataset_lists.append(list(__A ) ) _lowerCamelCase : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__A ),len(__A ) ) self.assertTrue(len(__A ) % shard_batch_size == 0 ) _lowerCamelCase : Optional[int] = [] for idx in range(0,len(__A ),__A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__A ) < len(__A ): reference += reference self.assertListEqual(__A,reference[: len(__A )] ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = 4_2 _lowerCamelCase : Optional[int] = RandomIterableDataset() self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) # Edge case with a very small dataset _lowerCamelCase : Tuple = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = BatchSampler(range(1_6 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Tuple = SkipBatchSampler(__A,2 ) self.assertListEqual(list(__A ),[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = SkipDataLoader(list(range(1_6 ) ),batch_size=4,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader],[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = DataLoader(list(range(1_6 ) ),batch_size=4 ) _lowerCamelCase : List[str] = skip_first_batches(__A,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader],[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = DataLoaderShard(list(range(1_6 ) ),batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) def lowerCamelCase_ ( self : Dict ): Accelerator() _lowerCamelCase : List[Any] = DataLoaderDispatcher(range(1_6 ),batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 )
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the ๐Ÿค— hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
import os import string import sys UpperCAmelCase_ : List[Any] = 1 << 8 UpperCAmelCase_ : int = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCAmelCase_ : List[Any] = KEYMAP['up'] UpperCAmelCase_ : int = KEYMAP['left'] if sys.platform == "win32": UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase_ : Dict = ord(str(i)) def A_ ( ): """simple docstring""" if os.name == "nt": import msvcrt _lowerCamelCase : List[str] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowerCAmelCase ) == 0: # Read the keystroke _lowerCamelCase : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_lowerCAmelCase ) if ord(_lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : str = chr(KEYMAP["esc"] ) except KeyError: _lowerCamelCase : Any = cha[1] else: _lowerCamelCase : Dict = ch.decode(_lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : Optional[Any] = sys.stdin.fileno() _lowerCamelCase : Dict = termios.tcgetattr(_lowerCAmelCase ) try: tty.setraw(_lowerCAmelCase ) _lowerCamelCase : List[str] = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowerCAmelCase , termios.TCSADRAIN , _lowerCAmelCase ) return ch def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = get_raw_chars() if ord(_lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowerCAmelCase ) == KEYMAP["esc"]: _lowerCamelCase : str = get_raw_chars() if ord(_lowerCAmelCase ) == KEYMAP["mod_int"]: _lowerCamelCase : Dict = get_raw_chars() if ord(_lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : int,__A : list[int] ): _lowerCamelCase : Any = len(__A ) _lowerCamelCase : List[Any] = [0] * len_array if len_array > 0: _lowerCamelCase : Tuple = array[0] for i in range(1,__A ): _lowerCamelCase : Any = self.prefix_sum[i - 1] + array[i] def lowerCamelCase_ ( self : str,__A : int,__A : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCamelCase_ ( self : Union[str, Any],__A : int ): _lowerCamelCase : List[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__A ) return False if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'codegen' lowerCAmelCase_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any,__A : Optional[int]=5_0_4_0_0,__A : Any=2_0_4_8,__A : str=2_0_4_8,__A : int=4_0_9_6,__A : Any=2_8,__A : str=1_6,__A : Optional[Any]=6_4,__A : str=None,__A : Optional[int]="gelu_new",__A : Optional[int]=0.0,__A : List[Any]=0.0,__A : str=0.0,__A : Union[str, Any]=1e-5,__A : Tuple=0.02,__A : str=True,__A : Any=5_0_2_5_6,__A : Optional[Any]=5_0_2_5_6,__A : int=False,**__A : Optional[int],): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Tuple = n_ctx _lowerCamelCase : int = n_positions _lowerCamelCase : int = n_embd _lowerCamelCase : List[str] = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : List[Any] = n_inner _lowerCamelCase : str = rotary_dim _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : Any = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Any = attn_pdrop _lowerCamelCase : Optional[int] = layer_norm_epsilon _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : str = eos_token_id super().__init__( bos_token_id=__A,eos_token_id=__A,tie_word_embeddings=__A,**__A ) class UpperCAmelCase__ ( A ): def __init__( self : Any,__A : PretrainedConfig,__A : str = "default",__A : List[PatchingSpec] = None,__A : bool = False,): super().__init__(__A,task=__A,patching_specs=__A,use_past=__A ) if not getattr(self._config,"pad_token_id",__A ): # TODO: how to do that better? _lowerCamelCase : Any = 0 @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__A,direction="inputs" ) _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase_ ( self : List[str] ): return self._config.n_layer @property def lowerCamelCase_ ( self : List[str] ): return self._config.n_head def lowerCamelCase_ ( self : Optional[Any],__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): _lowerCamelCase : str = super(__A,self ).generate_dummy_inputs( __A,batch_size=__A,seq_length=__A,is_pair=__A,framework=__A ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : Optional[int] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : List[Any] = seqlen + 2 _lowerCamelCase : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : Dict = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] _lowerCamelCase : Tuple = common_inputs["attention_mask"] if self.use_past: _lowerCamelCase : Optional[int] = ordered_inputs["attention_mask"].dtype _lowerCamelCase : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__A,__A,dtype=__A )],dim=1 ) return ordered_inputs @property def lowerCamelCase_ ( self : Optional[int] ): return 1_3
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase_ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A ): lowerCAmelCase_ = (DDPMScheduler,) def lowerCamelCase_ ( self : str,**__A : List[str] ): _lowerCamelCase : List[str] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__A ) return config def lowerCamelCase_ ( self : str ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def lowerCamelCase_ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1],[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__A,beta_end=__A ) def lowerCamelCase_ ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def lowerCamelCase_ ( self : Dict ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__A ) def lowerCamelCase_ ( self : int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def lowerCamelCase_ ( self : Tuple ): self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__A,prediction_type=__A,sample_max_value=__A,) def lowerCamelCase_ ( self : List[str] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCamelCase_ ( self : int ): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : Union[str, Any] = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : Optional[int] = scheduler_class(**__A ) _lowerCamelCase : List[Any] = len(__A ) _lowerCamelCase : Union[str, Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual _lowerCamelCase : int = model(__A,__A ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : int = scheduler.step(__A,__A,__A,generator=__A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCamelCase : Dict = pred_prev_sample _lowerCamelCase : Dict = torch.sum(torch.abs(__A ) ) _lowerCamelCase : Tuple = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = scheduler_class(**__A ) _lowerCamelCase : List[str] = len(__A ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter _lowerCamelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual _lowerCamelCase : str = model(__A,__A ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[str] = scheduler.step(__A,__A,__A,generator=__A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCamelCase : str = pred_prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(__A ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**__A ) _lowerCamelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__A ) _lowerCamelCase : List[str] = scheduler.timesteps for i, timestep in enumerate(__A ): if i == len(__A ) - 1: _lowerCamelCase : Union[str, Any] = -1 else: _lowerCamelCase : List[str] = timesteps[i + 1] _lowerCamelCase : Optional[int] = scheduler.previous_timestep(__A ) _lowerCamelCase : int = prev_t.item() self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : List[Any] = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__A ) _lowerCamelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__A,msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : List[str] = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__A ) _lowerCamelCase : Tuple = [1_0_0, 8_7, 5_0, 1, 0] _lowerCamelCase : Dict = len(__A ) with self.assertRaises(__A,msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__A,timesteps=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Tuple = self.get_scheduler_config() _lowerCamelCase : Optional[int] = scheduler_class(**__A ) _lowerCamelCase : int = [scheduler.config.num_train_timesteps] with self.assertRaises( __A,msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",): scheduler.set_timesteps(timesteps=__A )
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = input("Enter message: " ) _lowerCamelCase : List[str] = input("Enter key [alphanumeric]: " ) _lowerCamelCase : Optional[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _lowerCamelCase : Any = "encrypt" _lowerCamelCase : List[Any] = encrypt_message(_lowerCAmelCase , _lowerCAmelCase ) elif mode.lower().startswith("d" ): _lowerCamelCase : List[Any] = "decrypt" _lowerCamelCase : Any = decrypt_message(_lowerCAmelCase , _lowerCAmelCase ) print(F'\n{mode.title()}ed message:' ) print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" return translate_message(_lowerCAmelCase , _lowerCAmelCase , "encrypt" ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" return translate_message(_lowerCAmelCase , _lowerCAmelCase , "decrypt" ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = key.upper() for symbol in message: _lowerCamelCase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCAmelCase ): _lowerCamelCase : Dict = 0 else: translated.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = 'โ–' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", "โ€‰", "โ€Š", "โ€ฏ", "โ€…", "ใ€€", "โ€‚", " ", "โ€ˆ", "โ€ƒ", "๏ฟผ", "ย„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str = " " ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = 0 for index, char in enumerate(_lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _lowerCamelCase : List[Any] = index + 1 elif index + 1 == len(_lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ : Dict = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ : Tuple = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(s_dict.keys() ) for key in keys: _lowerCamelCase : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCamelCase : Tuple = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(F'{key} -> {new_key}' ) _lowerCamelCase : str = s_dict.pop(_lowerCAmelCase ) return s_dict def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Any = emb.weight.shape _lowerCamelCase : Optional[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : List[str] = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) _lowerCamelCase : str = os.path.basename(_lowerCAmelCase ) _lowerCamelCase : int = url.split("/" )[-2] _lowerCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not os.path.isfile(_lowerCAmelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(_lowerCAmelCase ): _lowerCamelCase : List[Any] = open(_lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(_lowerCAmelCase ) as source, open(_lowerCAmelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=_lowerCAmelCase , unit_divisor=1024 ) as loop: while True: _lowerCamelCase : List[Any] = source.read(8192 ) if not buffer: break output.write(_lowerCAmelCase ) loop.update(len(_lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = open(_lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): """simple docstring""" if ".pt" not in checkpoint_path: _lowerCamelCase : Optional[int] = _download(_MODELS[checkpoint_path] ) else: _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : Union[str, Any] = original_checkpoint["dims"] _lowerCamelCase : Optional[int] = original_checkpoint["model_state_dict"] _lowerCamelCase : Any = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Union[str, Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] _lowerCamelCase : List[Any] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=_lowerCAmelCase , decoder_ffn_dim=_lowerCAmelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _lowerCamelCase : List[str] = WhisperForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase : Any = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F' but all the following weights are missing {missing}' ) if tie_embeds: _lowerCamelCase : Dict = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCamelCase : int = proj_out_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Any = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ) -> Any: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ) -> Dict: """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> int: """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = RobertaTokenizer lowerCAmelCase_ = RobertaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'cls_token': '<s>'} def lowerCamelCase_ ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : List[Any] = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Union[str, Any] = {"unk_token": "<unk>"} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : int = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,**__A : Optional[int] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Tuple = "lower newer" _lowerCamelCase : Optional[int] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = self.tokenizer_class(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : int = "lower newer" _lowerCamelCase : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : Dict = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A,__A ) _lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!",add_special_tokens=__A ),[0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cรฉcรฉ herlolip 418",add_special_tokens=__A ),[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2],) @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = self.tokenizer_class.from_pretrained("roberta-base" ) _lowerCamelCase : List[str] = tokenizer.encode("sequence builders",add_special_tokens=__A ) _lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build",add_special_tokens=__A ) _lowerCamelCase : Optional[int] = tokenizer.encode( "sequence builders",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = tokenizer.encode( "sequence builders","multi-sequence build",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__A,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : int = "Encode this sequence." _lowerCamelCase : Union[str, Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments _lowerCamelCase : Optional[Any] = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A,__A ) _lowerCamelCase : List[Any] = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A,__A ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) _lowerCamelCase : Optional[Any] = tokenizer.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A,__A ) # Testing spaces after special tokens _lowerCamelCase : str = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__A,lstrip=__A,rstrip=__A )} ) # mask token has a left space _lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__A ) _lowerCamelCase : str = "Encode <mask> sequence" _lowerCamelCase : Optional[int] = "Encode <mask>sequence" _lowerCamelCase : int = tokenizer.encode(__A ) _lowerCamelCase : Any = encoded.index(__A ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A,__A ) _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : Dict = encoded.index(__A ) _lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A,__A ) def lowerCamelCase_ ( self : int ): pass def lowerCamelCase_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : int = self.tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : int = "A, <mask> AllenNLP sentence." _lowerCamelCase : Tuple = tokenizer_r.encode_plus(__A,add_special_tokens=__A,return_token_type_ids=__A ) _lowerCamelCase : str = tokenizer_p.encode_plus(__A,add_special_tokens=__A,return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ),sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ),sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ),) _lowerCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"],[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"],[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __A,["<s>", "A", ",", "<mask>", "ฤ Allen", "N", "LP", "ฤ sentence", ".", "</s>"] ) self.assertSequenceEqual( __A,["<s>", "A", ",", "<mask>", "ฤ Allen", "N", "LP", "ฤ sentence", ".", "</s>"] ) def lowerCamelCase_ ( self : List[Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False],repeat=2 ): _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"],__A ) self.assertEqual(post_processor_state["add_prefix_space"],__A ) self.assertEqual(post_processor_state["trim_offsets"],__A ) def lowerCamelCase_ ( self : List[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : List[Any] = f'{text_of_1_token} {text_of_1_token}' _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ) + 1, len(__A ) + 1 + len(__A )),) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : int = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ) + 1, len(__A ) + 1 + len(__A )),) _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : str = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ), len(__A ) + 1 + len(__A )),) _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : List[str] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ), len(__A ) + 1 + len(__A )),) _lowerCamelCase : Optional[Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )),) _lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : str = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )),) _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )),)
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _lowerCamelCase : Any = UNetaDModel( block_out_channels=(3_2, 6_4),layers_per_block=2,sample_size=3_2,in_channels=3,out_channels=3,down_block_types=("DownBlock2D", "AttnDownBlock2D"),up_block_types=("AttnUpBlock2D", "UpBlock2D"),) return model def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = self.dummy_uncond_unet _lowerCamelCase : List[str] = KarrasVeScheduler() _lowerCamelCase : Union[str, Any] = KarrasVePipeline(unet=__A,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = pipe(num_inference_steps=2,generator=__A,output_type="numpy" ).images _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : str = pipe(num_inference_steps=2,generator=__A,output_type="numpy",return_dict=__A )[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : int = "google/ncsnpp-celebahq-256" _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = KarrasVeScheduler() _lowerCamelCase : Dict = KarrasVePipeline(unet=__A,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = pipe(num_inference_steps=2_0,generator=__A,output_type="numpy" ).images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _lowerCamelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ : str = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' from math import loga def A_ ( _lowerCAmelCase : int ): """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCAmelCase_ : Union[str, Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'maskformer' lowerCAmelCase_ = {'hidden_size': 'mask_feature_size'} lowerCAmelCase_ = ['resnet', 'swin'] lowerCAmelCase_ = ['detr'] def __init__( self : str,__A : int = 2_5_6,__A : int = 2_5_6,__A : float = 0.1,__A : bool = False,__A : Optional[Dict] = None,__A : Optional[Dict] = None,__A : float = 0.02,__A : float = 1.0,__A : float = 1.0,__A : float = 1.0,__A : float = 20.0,__A : Optional[bool] = None,**__A : List[str],): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCamelCase : int = SwinConfig( image_size=3_8_4,in_channels=3,patch_size=4,embed_dim=1_2_8,depths=[2, 2, 1_8, 2],num_heads=[4, 8, 1_6, 3_2],window_size=1_2,drop_path_rate=0.3,out_features=["stage1", "stage2", "stage3", "stage4"],) if isinstance(__A,__A ): _lowerCamelCase : Optional[Any] = backbone_config.pop("model_type" ) _lowerCamelCase : str = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Union[str, Any] = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCamelCase : Optional[Any] = DetrConfig() else: # verify that the decoder is supported _lowerCamelCase : Dict = ( decoder_config.pop("model_type" ) if isinstance(__A,__A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(__A,__A ): _lowerCamelCase : str = CONFIG_MAPPING[decoder_type] _lowerCamelCase : List[str] = config_class.from_dict(__A ) _lowerCamelCase : Tuple = backbone_config _lowerCamelCase : str = decoder_config # main feature dimension for the model _lowerCamelCase : Dict = fpn_feature_size _lowerCamelCase : Any = mask_feature_size # initializer _lowerCamelCase : Optional[int] = init_std _lowerCamelCase : str = init_xavier_std # Hungarian matcher && loss _lowerCamelCase : Optional[int] = cross_entropy_weight _lowerCamelCase : Union[str, Any] = dice_weight _lowerCamelCase : Optional[Any] = mask_weight _lowerCamelCase : Any = use_auxiliary_loss _lowerCamelCase : List[Any] = no_object_weight _lowerCamelCase : List[Any] = output_auxiliary_logits _lowerCamelCase : int = self.decoder_config.encoder_attention_heads _lowerCamelCase : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**__A ) @classmethod def lowerCamelCase_ ( cls : Any,__A : PretrainedConfig,__A : PretrainedConfig,**__A : Optional[int] ): return cls( backbone_config=__A,decoder_config=__A,**__A,) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Dict = self.backbone_config.to_dict() _lowerCamelCase : Union[str, Any] = self.decoder_config.to_dict() _lowerCamelCase : Tuple = self.__class__.model_type return output
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['DeiTFeatureExtractor'] UpperCAmelCase_ : Any = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return [] _lowerCamelCase : Union[str, Any] = min(_lowerCAmelCase ), max(_lowerCAmelCase ) _lowerCamelCase : int = int(max_value - min_value ) + 1 _lowerCamelCase : list[list] = [[] for _ in range(_lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCAmelCase ) return [v for bucket in buckets for v in sorted(_lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] ): """simple docstring""" if not nums: return 0 _lowerCamelCase : List[Any] = nums[0] _lowerCamelCase : Tuple = 0 for num in nums[1:]: _lowerCamelCase : Optional[int] = ( max_excluding + num, max(_lowerCAmelCase , _lowerCAmelCase ), ) return max(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase_ : Union[str, Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase_ : List[Any] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase_ : Optional[int] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase_ : Tuple = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): """simple docstring""" for tf_name, hf_name in patterns: _lowerCamelCase : int = k.replace(_lowerCAmelCase , _lowerCAmelCase ) return k def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : dict ): """simple docstring""" _lowerCamelCase : Dict = BigBirdPegasusConfig(**_lowerCAmelCase ) _lowerCamelCase : Tuple = BigBirdPegasusForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = torch_model.state_dict() _lowerCamelCase : Optional[int] = {} # separating decoder weights _lowerCamelCase : Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _lowerCamelCase : int = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _lowerCamelCase : Any = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue _lowerCamelCase : Any = DECODER_PATTERNS _lowerCamelCase : List[str] = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _lowerCamelCase : Union[str, Any] = v.T _lowerCamelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _lowerCamelCase : Optional[int] = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue _lowerCamelCase : str = REMAINING_PATTERNS _lowerCamelCase : str = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _lowerCamelCase : int = v.T _lowerCamelCase : Optional[Any] = torch.from_numpy(_lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _lowerCamelCase : Dict = mapping["model.embed_positions.weight"] _lowerCamelCase : Union[str, Any] = mapping.pop("model.embed_positions.weight" ) _lowerCamelCase : List[str] = torch_model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = tf.train.list_variables(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[Any] = ["global_step"] for name, shape in tqdm(_lowerCAmelCase , desc="converting tf checkpoint to dict" ): _lowerCamelCase : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase : Any = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[Any] = array return tf_weights def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : dict ): """simple docstring""" _lowerCamelCase : str = get_tf_weights_as_numpy(_lowerCAmelCase ) _lowerCamelCase : Tuple = convert_bigbird_pegasus(_lowerCAmelCase , _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : str = parser.parse_args() UpperCAmelCase_ : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the ๐Ÿค— hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any],__A : int,__A : int ): _lowerCamelCase : Dict = jnp.ones((batch_size, length) ) / length return scores def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = None _lowerCamelCase : Any = 2_0 _lowerCamelCase : Optional[int] = self._get_uniform_logits(batch_size=2,length=__A ) # tweak scores to not be uniform anymore _lowerCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCamelCase : str = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCamelCase : Union[str, Any] = jax.nn.softmax(__A,axis=-1 ) _lowerCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCamelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__A,scores.copy(),cur_len=__A ),axis=-1 ) _lowerCamelCase : int = jax.nn.softmax(temp_dist_warper_smoother(__A,scores.copy(),cur_len=__A ),axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :],warped_prob_sharp[0, :],atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :],warped_prob_smooth[0, :],atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(),warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(),warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(),warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(),warped_prob_smooth[1, :].min() ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = 1_0 _lowerCamelCase : List[Any] = 2 # create ramp distribution _lowerCamelCase : int = np.broadcast_to(np.arange(__A )[None, :],(batch_size, vocab_size) ).copy() _lowerCamelCase : str = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCamelCase : List[str] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : Dict = top_k_warp(__A,__A,cur_len=__A ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(),7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(),2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCamelCase : List[Any] = 5 _lowerCamelCase : List[str] = FlaxTopKLogitsWarper(top_k=1,filter_value=0.0,min_tokens_to_keep=3 ) _lowerCamelCase : str = np.broadcast_to(np.arange(__A )[None, :],(batch_size, length) ).copy() _lowerCamelCase : str = top_k_warp_safety_check(__A,__A,cur_len=__A ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(),[2, 2] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = None _lowerCamelCase : int = 1_0 _lowerCamelCase : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCamelCase : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _lowerCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) _lowerCamelCase : List[Any] = np.exp(top_p_warp(__A,__A,cur_len=__A ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCamelCase : Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # check edge cases with negative and extreme logits _lowerCamelCase : int = np.broadcast_to(np.arange(__A )[None, :],(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCamelCase : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.9,min_tokens_to_keep=2,filter_value=0.0 ) _lowerCamelCase : Optional[Any] = top_p_warp(__A,__A,cur_len=__A ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(),[3, 2] ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = 2_0 _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Any = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) # check that min length is applied at length 5 _lowerCamelCase : Dict = ids_tensor((batch_size, 2_0),vocab_size=2_0 ) _lowerCamelCase : int = 5 _lowerCamelCase : List[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = min_dist_processor(__A,__A,cur_len=__A ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(),4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _lowerCamelCase : List[str] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Any = 1_5 _lowerCamelCase : List[str] = min_dist_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = 2_0 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : Any = 0 _lowerCamelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) # check that all scores are -inf except the bos_token_id score _lowerCamelCase : str = ids_tensor((batch_size, 1),vocab_size=2_0 ) _lowerCamelCase : List[str] = 1 _lowerCamelCase : Union[str, Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = logits_processor(__A,__A,cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(),4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = logits_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = 2_0 _lowerCamelCase : List[str] = 4 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = 5 _lowerCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCamelCase : Optional[Any] = ids_tensor((batch_size, 4),vocab_size=2_0 ) _lowerCamelCase : Any = 4 _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Tuple = logits_processor(__A,__A,cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(),4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Any = logits_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[str] = 4 _lowerCamelCase : Any = 1_0 _lowerCamelCase : int = 1_5 _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : str = 1_5 # dummy input_ids and scores _lowerCamelCase : Tuple = ids_tensor((batch_size, sequence_length),__A ) _lowerCamelCase : Tuple = input_ids.copy() _lowerCamelCase : Dict = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors _lowerCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) _lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) _lowerCamelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) _lowerCamelCase : Tuple = 1_0 # no processor list _lowerCamelCase : str = temp_dist_warp(__A,__A,cur_len=__A ) _lowerCamelCase : List[Any] = top_k_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Any = top_p_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Tuple = min_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Optional[int] = bos_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Union[str, Any] = eos_dist_proc(__A,__A,cur_len=__A ) # with processor list _lowerCamelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase : List[Any] = processor(__A,__A,cur_len=__A ) # scores should be equal self.assertTrue(jnp.allclose(__A,__A,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(),input_ids_comp.tolist() ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = 4 _lowerCamelCase : List[str] = 1_0 _lowerCamelCase : Any = 1_5 _lowerCamelCase : Dict = 2 _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Any = 1_5 # dummy input_ids and scores _lowerCamelCase : Optional[int] = ids_tensor((batch_size, sequence_length),__A ) _lowerCamelCase : Tuple = input_ids.copy() _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors _lowerCamelCase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) _lowerCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) _lowerCamelCase : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) _lowerCamelCase : List[str] = 1_0 # no processor list def run_no_processor_list(__A : Tuple,__A : str,__A : List[Any] ): _lowerCamelCase : str = temp_dist_warp(__A,__A,cur_len=__A ) _lowerCamelCase : List[str] = top_k_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Any = top_p_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Dict = min_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Dict = bos_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : int = eos_dist_proc(__A,__A,cur_len=__A ) return scores # with processor list def run_processor_list(__A : str,__A : int,__A : int ): _lowerCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase : List[str] = processor(__A,__A,cur_len=__A ) return scores _lowerCamelCase : str = jax.jit(__A ) _lowerCamelCase : Optional[Any] = jax.jit(__A ) _lowerCamelCase : Optional[Any] = jitted_run_no_processor_list(__A,__A,__A ) _lowerCamelCase : Any = jitted_run_processor_list(__A,__A,__A ) # scores should be equal self.assertTrue(jnp.allclose(__A,__A,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(),input_ids_comp.tolist() )
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A_ ( _lowerCAmelCase : str = "laptop" ): """simple docstring""" _lowerCamelCase : Dict = F'https://www.amazon.in/laptop/s?k={product}' _lowerCamelCase : Tuple = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCamelCase : int = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCamelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCamelCase : Dict = item.ha.text _lowerCamelCase : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCamelCase : Optional[int] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCamelCase : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCamelCase : Optional[Any] = "Not available" try: _lowerCamelCase : Dict = ( "โ‚น" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("โ‚น" )[1] ) except AttributeError: _lowerCamelCase : Union[str, Any] = "" try: _lowerCamelCase : Union[str, Any] = float( ( ( float(product_mrp.strip("โ‚น" ).replace("," , "" ) ) - float(product_price.strip("โ‚น" ).replace("," , "" ) ) ) / float(product_mrp.strip("โ‚น" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCamelCase : List[str] = float("nan" ) except AttributeError: pass _lowerCamelCase : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCamelCase : List[str] = " " _lowerCamelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCAmelCase_ : str = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ),supervised_keys=__A,) def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Dict ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_dummy_examples()} )] def lowerCamelCase_ ( self : Any,__A : Any,__A : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ),supervised_keys=__A,) def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : str ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_nested_examples()} ) ] def lowerCamelCase_ ( self : Tuple,__A : str,__A : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def A_ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def A_ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCAmelCase__ ( A ): @require_beam def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Optional[Any] = DummyBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) self.assertDictEqual(dset["train"][0],get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : Union[str, Any] ): import apache_beam as beam _lowerCamelCase : str = beam.io.parquetio.WriteToParquet _lowerCamelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Union[str, Any] = DummyBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: _lowerCamelCase : List[str] = partial(__A,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __A,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : str = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ),sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Dict = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions,builder.download_and_prepare ) @require_beam def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : str = NestedBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features,datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) _lowerCamelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) self.assertDictEqual(dset["train"][0],get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while b: _lowerCamelCase : List[str] = b, a % b return a def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_lowerCAmelCase , a % b ) def A_ ( ): """simple docstring""" print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase_ : Any = logging.get_logger(__name__) @add_end_docstrings( A , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Dict,__A : GenericTensor ): if self.framework == "tf": _lowerCamelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _lowerCamelCase : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=__A ) else: raise ValueError("Unsupported framework" ) return masked_index def lowerCamelCase_ ( self : Dict,__A : GenericTensor ): _lowerCamelCase : List[Any] = self.get_masked_index(__A ) _lowerCamelCase : List[Any] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask",self.model.base_model_prefix,f'No mask_token ({self.tokenizer.mask_token}) found on the input',) def lowerCamelCase_ ( self : Optional[Any],__A : GenericTensor ): if isinstance(__A,__A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__A ) def lowerCamelCase_ ( self : List[str],__A : Tuple,__A : List[Any]=None,**__A : str ): if return_tensors is None: _lowerCamelCase : Optional[int] = self.framework _lowerCamelCase : List[Any] = self.tokenizer(__A,return_tensors=__A ) self.ensure_exactly_one_mask_token(__A ) return model_inputs def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any] ): _lowerCamelCase : Any = self.model(**__A ) _lowerCamelCase : Optional[Any] = model_inputs["input_ids"] return model_outputs def lowerCamelCase_ ( self : List[str],__A : int,__A : Optional[Any]=5,__A : int=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _lowerCamelCase : str = target_ids.shape[0] _lowerCamelCase : int = model_outputs["input_ids"][0] _lowerCamelCase : int = model_outputs["logits"] if self.framework == "tf": _lowerCamelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _lowerCamelCase : List[Any] = outputs.numpy() _lowerCamelCase : List[str] = outputs[0, masked_index, :] _lowerCamelCase : Dict = stable_softmax(__A,axis=-1 ) if target_ids is not None: _lowerCamelCase : Dict = tf.gather_nd(tf.squeeze(__A,0 ),target_ids.reshape(-1,1 ) ) _lowerCamelCase : int = tf.expand_dims(__A,0 ) _lowerCamelCase : Tuple = tf.math.top_k(__A,k=__A ) _lowerCamelCase : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: _lowerCamelCase : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=__A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _lowerCamelCase : List[str] = outputs[0, masked_index, :] _lowerCamelCase : Optional[Any] = logits.softmax(dim=-1 ) if target_ids is not None: _lowerCamelCase : List[Any] = probs[..., target_ids] _lowerCamelCase : Optional[int] = probs.topk(__A ) _lowerCamelCase : int = [] _lowerCamelCase : Tuple = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist(),predictions.tolist() ) ): _lowerCamelCase : List[Any] = [] for v, p in zip(_values,_predictions ): # Copy is important since we're going to modify this array in place _lowerCamelCase : Optional[Any] = input_ids.numpy().copy() if target_ids is not None: _lowerCamelCase : List[str] = target_ids[p].tolist() _lowerCamelCase : Optional[int] = p # Filter padding out: _lowerCamelCase : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _lowerCamelCase : str = self.tokenizer.decode(__A,skip_special_tokens=__A ) _lowerCamelCase : Any = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__A ) result.append(__A ) if single_mask: return result[0] return result def lowerCamelCase_ ( self : Optional[Any],__A : Tuple,__A : Optional[Any]=None ): if isinstance(__A,__A ): _lowerCamelCase : Tuple = [targets] try: _lowerCamelCase : Dict = self.tokenizer.get_vocab() except Exception: _lowerCamelCase : Optional[int] = {} _lowerCamelCase : List[str] = [] for target in targets: _lowerCamelCase : Dict = vocab.get(__A,__A ) if id_ is None: _lowerCamelCase : int = self.tokenizer( __A,add_special_tokens=__A,return_attention_mask=__A,return_token_type_ids=__A,max_length=1,truncation=__A,)["input_ids"] if len(__A ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' "We cannot replace it with anything meaningful, ignoring it" ) continue _lowerCamelCase : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) _lowerCamelCase : Any = list(set(__A ) ) if len(__A ) == 0: raise ValueError("At least one target must be provided when passed." ) _lowerCamelCase : List[Any] = np.array(__A ) return target_ids def lowerCamelCase_ ( self : str,__A : Any=None,__A : int=None ): _lowerCamelCase : List[str] = {} if targets is not None: _lowerCamelCase : Optional[int] = self.get_target_ids(__A,__A ) _lowerCamelCase : Union[str, Any] = target_ids if top_k is not None: _lowerCamelCase : Optional[int] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask",self.model.base_model_prefix,"The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : int,__A : List[str],*__A : Dict,**__A : List[str] ): _lowerCamelCase : List[str] = super().__call__(__A,**__A ) if isinstance(__A,__A ) and len(__A ) == 1: return outputs[0] return outputs
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A_ ( _lowerCAmelCase : int = 8 ): """simple docstring""" _lowerCamelCase : str = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" i -= len(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = i // 3 _lowerCamelCase : str = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCamelCase : Optional[Any] = ( chars_incl + random(_lowerCAmelCase , quotient + remainder ) + random(_lowerCAmelCase , _lowerCAmelCase ) + random(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = list(_lowerCAmelCase ) shuffle(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) # random is a generalised function for letters, characters and numbers def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int = 8 ): """simple docstring""" if len(_lowerCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCamelCase : List[Any] = any(char in ascii_uppercase for char in password ) _lowerCamelCase : str = any(char in ascii_lowercase for char in password ) _lowerCamelCase : Any = any(char in digits for char in password ) _lowerCamelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A_ ( ): """simple docstring""" _lowerCamelCase : str = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCamelCase : Any = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCAmelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCAmelCase , _lowerCAmelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase_ : List[Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' UpperCAmelCase_ : Dict = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' UpperCAmelCase_ : Tuple = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ),homepage="https://github.com/hendrycks/math",codebase_urls=["https://github.com/hendrycks/math"],) def lowerCamelCase_ ( self : str,__A : List[Any],__A : List[str] ): _lowerCamelCase : int = 0.0 for i, j in zip(__A,__A ): n_correct += 1.0 if math_equivalence.is_equiv(__A,__A ) else 0.0 _lowerCamelCase : Tuple = n_correct / len(__A ) return { "accuracy": accuracy, }
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = 'โ–' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ : List[str] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir,"models/bert/" ) ) _lowerCamelCase : Any = self.transformer_dir shutil.copy( os.path.join(__A,"src/transformers/models/bert/modeling_bert.py" ),os.path.join(self.transformer_dir,"models/bert/modeling_bert.py" ),) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = "src/transformers" shutil.rmtree(self.transformer_dir ) def lowerCamelCase_ ( self : Any,__A : Dict,__A : List[Any],__A : Union[str, Any],__A : Any=None ): _lowerCamelCase : List[Any] = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: _lowerCamelCase : Union[str, Any] = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result _lowerCamelCase : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa},line_length=1_1_9 ) _lowerCamelCase : Union[str, Any] = black.format_str(__A,mode=__A ) _lowerCamelCase : Dict = os.path.join(self.transformer_dir,"new_code.py" ) with open(__A,"w",newline="\n" ) as f: f.write(__A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name,overwrite=__A ) with open(__A,"r" ) as f: self.assertTrue(f.read(),__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__A,__A ) def lowerCamelCase_ ( self : Dict ): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead","BertLMPredictionHead",REFERENCE_CODE + "\n",) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead","BertLMPredictionHead",__A,) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel","TestModelLMPredictionHead",re.sub("Bert","TestModel",__A ),) # Copy consistency with a really long name _lowerCamelCase : Tuple = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}',f'{long_class_name}LMPredictionHead',re.sub("Bert",__A,__A ),) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel","TestModelLMPredictionHead",__A,overwrite_result=re.sub("Bert","TestModel",__A ),) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Any = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _lowerCamelCase : int = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _lowerCamelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) _lowerCamelCase : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (ๆฅ่‡ช HuggingFace) ไผด้š่ฎบๆ–‡" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) ็”ฑ Victor Sanh, Lysandre Debut and Thomas Wolf ๅ‘ๅธƒใ€‚ The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (ๆฅ่‡ช" " Google Research/Stanford University) ไผด้š่ฎบๆ–‡ [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) ็”ฑ Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning ๅ‘ๅธƒใ€‚\n" ) _lowerCamelCase : Any = check_copies.convert_to_localized_md( __A,__A,localized_readme["format_model_list"] ) self.assertFalse(__A ) self.assertEqual(__A,__A ) _lowerCamelCase : Tuple = check_copies.convert_to_localized_md( __A,__A,localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__A ) _lowerCamelCase : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _lowerCamelCase : Tuple = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (ๆฅ่‡ช Google Research and" " the Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) _lowerCamelCase : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (ๆฅ่‡ช Google Research and the" " Toyota Technological Institute at Chicago) ไผด้š่ฎบๆ–‡ [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), ็”ฑ Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut ๅ‘ๅธƒใ€‚\n" ) _lowerCamelCase : List[Any] = check_copies.convert_to_localized_md( __A,__A,localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__A,__A )
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", "โ€‰", "โ€Š", "โ€ฏ", "โ€…", "ใ€€", "โ€‚", " ", "โ€ˆ", "โ€ƒ", "๏ฟผ", "ย„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowerCAmelCase_ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = self.task_name.lower() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' lowerCAmelCase_ = 'test' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Any,__A : GlueDataTrainingArguments,__A : PreTrainedTokenizerBase,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[str] = None,): warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the ๐Ÿค— Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",__A,) _lowerCamelCase : int = args _lowerCamelCase : int = glue_processors[args.task_name]() _lowerCamelCase : int = glue_output_modes[args.task_name] if isinstance(__A,__A ): try: _lowerCamelCase : Optional[Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file _lowerCamelCase : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}',) _lowerCamelCase : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCamelCase : Dict = label_list[2], label_list[1] _lowerCamelCase : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : Any = time.time() _lowerCamelCase : Dict = torch.load(__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: _lowerCamelCase : Any = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCamelCase : Optional[int] = self.processor.get_test_examples(args.data_dir ) else: _lowerCamelCase : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCamelCase : Union[str, Any] = examples[:limit_length] _lowerCamelCase : List[str] = glue_convert_examples_to_features( __A,__A,max_length=args.max_seq_length,label_list=__A,output_mode=self.output_mode,) _lowerCamelCase : int = time.time() torch.save(self.features,__A ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : str ): return len(self.features ) def __getitem__( self : str,__A : str ): return self.features[i] def lowerCamelCase_ ( self : Dict ): return self.label_list
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = credit_card_number _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[Any] = len(_lowerCAmelCase ) - 2 for i in range(_lowerCAmelCase , -1 , -2 ): # double the value of every second digit _lowerCamelCase : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 ร— 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _lowerCamelCase : Optional[int] = cc_number[:i] + str(_lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Any = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_lowerCAmelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_lowerCAmelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_lowerCAmelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int ) -> List[str]: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') UpperCAmelCase_ : Union[str, Any] = int(input('Enter number: ').strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : str = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : List[Any] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase_ : str = logging.WARNING UpperCAmelCase_ : Dict = True def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def A_ ( ): """simple docstring""" return __name__.split("." )[0] def A_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A_ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : Optional[int] = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : Tuple = False def A_ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : str = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : int = None def A_ ( ): """simple docstring""" return log_levels def A_ ( _lowerCAmelCase : Optional[str] = None ): """simple docstring""" if name is None: _lowerCamelCase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : Union[str, Any] = False def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : List[Any] = True def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : Dict = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase ) def A_ ( self : List[str] , *_lowerCAmelCase : int , **_lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase ) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Any = warning_advice @functools.lru_cache(_lowerCAmelCase ) def A_ ( self : Dict , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): """simple docstring""" self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : int = warning_once class UpperCAmelCase__ : def __init__( self : Optional[Any],*__A : List[str],**__A : Union[str, Any] ): # pylint: disable=unused-argument _lowerCamelCase : Optional[Any] = args[0] if args else None def __iter__( self : str ): return iter(self._iterator ) def __getattr__( self : List[Any],__A : Union[str, Any] ): def empty_fn(*__A : Optional[Any],**__A : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ): return self def __exit__( self : Any,__A : List[Any],__A : Optional[int],__A : int ): return class UpperCAmelCase__ : def __call__( self : Optional[Any],*__A : Optional[Any],**__A : Union[str, Any] ): if _tqdm_active: return tqdm_lib.tqdm(*__A,**__A ) else: return EmptyTqdm(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Tuple,**__A : Optional[int] ): _lowerCamelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A,**__A ) def lowerCamelCase_ ( self : Optional[Any] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : str = _tqdm_cls() def A_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Union[str, Any] = True hf_hub_utils.enable_progress_bars() def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : List[Any] = False hf_hub_utils.disable_progress_bars()
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import random def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : bool = False ): """simple docstring""" _lowerCamelCase : dict = {i: [] for i in range(_lowerCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCAmelCase ): for j in range(i + 1 , _lowerCAmelCase ): if random.random() < probability: graph[i].append(_lowerCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCAmelCase ) return graph def A_ ( _lowerCAmelCase : int ): """simple docstring""" return { i: [j for j in range(_lowerCAmelCase ) if i != j] for i in range(_lowerCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase_ : Optional[Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' UpperCAmelCase_ : List[Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' UpperCAmelCase_ : int = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(self._get_feature_types() ),reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ],) def lowerCamelCase_ ( self : Dict ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCamelCase_ ( self : Optional[Any],__A : Tuple,__A : Any,__A : Optional[int]=None,__A : List[str]="uniform_average",__A : List[Any]=True ): _lowerCamelCase : int = mean_squared_error( __A,__A,sample_weight=__A,multioutput=__A,squared=__A ) return {"mse": mse}
701
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Union[str, Any],__A : Union[str, Any]=1_3,__A : Union[str, Any]=7,__A : Tuple=False,__A : int=True,__A : int=False,__A : List[str]=False,__A : int=1_9,__A : Optional[Any]=3_2,__A : int=5,__A : str=4,__A : Optional[int]=3_7,__A : Dict="gelu",__A : Union[str, Any]=0.1,__A : List[str]=0.1,__A : Optional[Any]=5_1_2,__A : Optional[Any]=1_6,__A : Union[str, Any]=2,__A : Union[str, Any]=0.02,__A : str=3,__A : Optional[Any]=4,__A : str=None,): _lowerCamelCase : Any = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : int = is_training _lowerCamelCase : Tuple = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Dict = scope def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None _lowerCamelCase : Any = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : Tuple = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = EsmConfig( vocab_size=3_3,hidden_size=self.hidden_size,pad_token_id=1,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,is_folding_model=__A,esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False},) return config def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : int,__A : List[Any],__A : Tuple,__A : int,__A : Union[str, Any] ): _lowerCamelCase : int = EsmForProteinFolding(config=__A ).float() model.to(__A ) model.eval() _lowerCamelCase : int = model(__A,attention_mask=__A ) _lowerCamelCase : Optional[int] = model(__A ) _lowerCamelCase : Optional[int] = model(__A ) self.parent.assertEqual(result.positions.shape,(8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape,(8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Dict = config_and_inputs _lowerCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = False lowerCAmelCase_ = (EsmForProteinFolding,) if is_torch_available() else () lowerCAmelCase_ = () lowerCAmelCase_ = {} if is_torch_available() else {} lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Any = EsmFoldModelTester(self ) _lowerCamelCase : str = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @unittest.skip("Does not support attention outputs" ) def lowerCamelCase_ ( self : str ): pass @unittest.skip def lowerCamelCase_ ( self : Any ): pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCamelCase_ ( self : Optional[Any] ): pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCamelCase_ ( self : Any ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def lowerCamelCase_ ( self : str ): pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase_ ( self : str ): pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCamelCase_ ( self : int ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def lowerCamelCase_ ( self : str ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip("ESMFold only has one output format." ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def lowerCamelCase_ ( self : Optional[Any] ): pass @unittest.skip("ESMFold does not support input chunking." ) def lowerCamelCase_ ( self : Optional[Any] ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def lowerCamelCase_ ( self : str ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase_ ( self : Any ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCamelCase_ ( self : List[str] ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase_ ( self : Union[str, Any] ): pass @require_torch class UpperCAmelCase__ ( A ): @slow def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() _lowerCamelCase : Dict = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) _lowerCamelCase : Tuple = model(__A )["positions"] _lowerCamelCase : Optional[int] = torch.tensor([2.5828, 0.7993, -10.9334],dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0],__A,atol=1e-4 ) )
702
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase_ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Optional[str] = None ): _lowerCamelCase : List[str] = ( os.path.join(__A,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCamelCase : int = Extractor def lowerCamelCase_ ( self : List[str],__A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCamelCase : str = os.path.abspath(__A ) return os.path.join(self.extract_dir,hash_url_to_filename(__A ) ) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : bool ): return force_extract or ( not os.path.isfile(__A ) and not (os.path.isdir(__A ) and os.listdir(__A )) ) def lowerCamelCase_ ( self : Tuple,__A : str,__A : bool = False ): _lowerCamelCase : Tuple = self.extractor.infer_extractor_format(__A ) if not extractor_format: return input_path _lowerCamelCase : int = self._get_output_path(__A ) if self._do_extract(__A,__A ): self.extractor.extract(__A,__A,__A ) return output_path class UpperCAmelCase__ ( A ): @classmethod @abstractmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : int ): ... @staticmethod @abstractmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): ... class UpperCAmelCase__ ( A , A ): lowerCAmelCase_ = [] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): with open(__A,"rb" ) as f: return f.read(__A ) @classmethod def lowerCamelCase_ ( cls : int,__A : Union[Path, str],__A : bytes = b"" ): if not magic_number: _lowerCamelCase : int = max(len(__A ) for cls_magic_number in cls.magic_numbers ) try: _lowerCamelCase : Any = cls.read_magic_number(__A,__A ) except OSError: return False return any(magic_number.startswith(__A ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( A ): @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : Optional[int] ): return tarfile.is_tarfile(__A ) @staticmethod def lowerCamelCase_ ( __A : Optional[Any],__A : Dict ): def resolved(__A : str ) -> str: return os.path.realpath(os.path.abspath(__A ) ) def badpath(__A : str,__A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__A,__A ) ).startswith(__A ) def badlink(__A : int,__A : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCamelCase : Union[str, Any] = resolved(os.path.join(__A,os.path.dirname(info.name ) ) ) return badpath(info.linkname,base=__A ) _lowerCamelCase : Optional[Any] = resolved(__A ) for finfo in members: if badpath(finfo.name,__A ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = tarfile.open(__A ) tar_file.extractall(__A,members=TarExtractor.safemembers(__A,__A ) ) tar_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x1F\x8B'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with gzip.open(__A,"rb" ) as gzip_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],__A : bytes = b"" ): if super().is_extractable(__A,magic_number=__A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__A,"rb" ) as fp: _lowerCamelCase : Optional[Any] = _EndRecData(__A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCamelCase : List[Any] = fp.read(__A ) # CD is where we expect it to be if len(__A ) == sizeCentralDir: _lowerCamelCase : List[Any] = struct.unpack(__A,__A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) with zipfile.ZipFile(__A,"r" ) as zip_file: zip_file.extractall(__A ) zip_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with lzma.open(__A ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = rarfile.RarFile(__A ) rf.extractall(__A ) rf.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _lowerCamelCase : Optional[Any] = zstd.ZstdDecompressor() with open(__A,"rb" ) as ifh, open(__A,"wb" ) as ofh: dctx.copy_stream(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x42\x5A\x68'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with bza.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(__A,exist_ok=__A ) with pyazr.SevenZipFile(__A,"r" ) as archive: archive.extractall(__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x04\x22\x4D\x18'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase_ = { 'tar': TarExtractor, 'gzip': GzipExtractor, 'zip': ZipExtractor, 'xz': XzExtractor, 'rar': RarExtractor, 'zstd': ZstdExtractor, 'bz2': BzipaExtractor, '7z': SevenZipExtractor, # <Added version="2.4.0"/> 'lz4': LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase_ ( cls : Optional[Any] ): return max( len(__A ) for extractor in cls.extractors.values() if issubclass(__A,__A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): try: return MagicNumberBaseExtractor.read_magic_number(__A,magic_number_length=__A ) except OSError: return b"" @classmethod def lowerCamelCase_ ( cls : List[str],__A : Union[Path, str],__A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.",category=__A,) _lowerCamelCase : Optional[Any] = cls.infer_extractor_format(__A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase_ ( cls : Optional[int],__A : Union[Path, str] ): # <Added version="2.4.0"/> _lowerCamelCase : Optional[int] = cls._get_magic_number_max_length() _lowerCamelCase : Union[str, Any] = cls._read_magic_number(__A,__A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__A,magic_number=__A ): return extractor_format @classmethod def lowerCamelCase_ ( cls : List[Any],__A : Union[Path, str],__A : Union[Path, str],__A : Optional[str] = None,__A : Optional[BaseExtractor] = "deprecated",): os.makedirs(os.path.dirname(__A ),exist_ok=__A ) # Prevent parallel extractions _lowerCamelCase : Union[str, Any] = str(Path(__A ).with_suffix(".lock" ) ) with FileLock(__A ): shutil.rmtree(__A,ignore_errors=__A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__A,__A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.",category=__A,) _lowerCamelCase : Dict = extractor if extractor != "deprecated" else extractor_format else: _lowerCamelCase : str = cls.extractors[extractor_format] return extractor.extract(__A,__A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.",category=__A,) for extractor in cls.extractors.values(): if extractor.is_extractable(__A ): return extractor.extract(__A,__A )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Tuple = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Union[str, Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : List[str] = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : int = [256, 512, 1024, 1024] _lowerCamelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCamelCase : Dict = 768 _lowerCamelCase : List[Any] = [1, 1, 1, 0.5] _lowerCamelCase : Optional[int] = [256, 512, 768, 768] _lowerCamelCase : str = 150 _lowerCamelCase : List[Any] = 16 _lowerCamelCase : Optional[int] = (1, 384, 384) _lowerCamelCase : int = False _lowerCamelCase : Tuple = "project" if "ade" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[int] = [1, 1, 1, 0.5] _lowerCamelCase : Dict = 150 _lowerCamelCase : Dict = 16 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[int] = "ade20k-id2label.json" _lowerCamelCase : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : Any = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[Any] = [1, 150, 480, 480] return config, expected_shape def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _lowerCamelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _lowerCamelCase : str = name.replace("patch_embed" , "" ) if "pos_embed" in name: _lowerCamelCase : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _lowerCamelCase : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _lowerCamelCase : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: _lowerCamelCase : Dict = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCamelCase : List[str] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: _lowerCamelCase : Union[str, Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: _lowerCamelCase : Tuple = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _lowerCamelCase : Any = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _lowerCamelCase : Dict = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _lowerCamelCase : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _lowerCamelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _lowerCamelCase : List[Any] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _lowerCamelCase : int = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _lowerCamelCase : Union[str, Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : List[str] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _lowerCamelCase : Optional[Any] = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _lowerCamelCase : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _lowerCamelCase : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _lowerCamelCase : Union[str, Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _lowerCamelCase : Optional[int] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : List[str] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : int = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Any = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Optional[int] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _lowerCamelCase : List[Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: _lowerCamelCase : Union[str, Any] = name.replace("bn" , "batch_norm" ) if "head" in name: _lowerCamelCase : List[Any] = name.replace("head" , "head.head" ) if "encoder.norm" in name: _lowerCamelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _lowerCamelCase : Union[str, Any] = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: _lowerCamelCase : int = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: _lowerCamelCase : Dict = name.replace(".." , "." ) if "stem.conv" in name: _lowerCamelCase : Optional[int] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: _lowerCamelCase : Optional[Any] = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: _lowerCamelCase : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: _lowerCamelCase : Tuple = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: _lowerCamelCase : List[Any] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: _lowerCamelCase : List[str] = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: _lowerCamelCase : int = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) _lowerCamelCase : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Any = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : int = in_proj_bias[: config.hidden_size] _lowerCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : List[Any] = state_dict.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model _lowerCamelCase : Any = DPTForSemanticSegmentation(_lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image _lowerCamelCase : Dict = 480 if "ade" in checkpoint_url else 384 _lowerCamelCase : Union[str, Any] = DPTImageProcessor(size=_lowerCAmelCase ) _lowerCamelCase : str = prepare_img() _lowerCamelCase : Any = image_processor(_lowerCAmelCase , return_tensors="pt" ) # forward pass _lowerCamelCase : Dict = model(**_lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: _lowerCamelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
704
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : bool = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis _lowerCamelCase : Any = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] _lowerCamelCase : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check _lowerCamelCase : str = primes[:idx] break _lowerCamelCase : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _lowerCamelCase : int = False for r in range(_lowerCAmelCase ): _lowerCamelCase : Any = pow(_lowerCAmelCase , d * 2**r , _lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _lowerCamelCase : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A_ ( ): """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( _lowerCAmelCase : float = 0.1 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
0
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
707
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
0
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase__ : def __init__( self : Tuple,__A : int ): _lowerCamelCase : Union[str, Any] = num_of_nodes _lowerCamelCase : list[list[int]] = [] _lowerCamelCase : dict[int, int] = {} def lowerCamelCase_ ( self : str,__A : int,__A : int,__A : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCamelCase_ ( self : int,__A : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCamelCase_ ( self : Union[str, Any],__A : int ): if self.m_component[u_node] != u_node: for k in self.m_component: _lowerCamelCase : Optional[int] = self.find_component(__A ) def lowerCamelCase_ ( self : List[Any],__A : list[int],__A : int,__A : int ): if component_size[u_node] <= component_size[v_node]: _lowerCamelCase : Tuple = v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: _lowerCamelCase : Optional[int] = self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = 0 _lowerCamelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _lowerCamelCase : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowerCamelCase : List[Any] = edge _lowerCamelCase : List[str] = self.m_component[u] _lowerCamelCase : Dict = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowerCamelCase : Optional[int] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__A,__A ): _lowerCamelCase : Dict = edge _lowerCamelCase : Optional[Any] = self.m_component[u] _lowerCamelCase : Dict = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A,__A,__A ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 _lowerCamelCase : Tuple = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the ๐Ÿค— hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
0
def A_ ( _lowerCAmelCase : int = 600851475143 ): """simple docstring""" try: _lowerCamelCase : int = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowerCamelCase : Union[str, Any] = i while n % i == 0: _lowerCamelCase : Optional[int] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
709
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(),encoding="utf-8",check=__A,) assert hasattr(self,"env" ) def lowerCamelCase_ ( self : Optional[Any],__A : int ): _lowerCamelCase : Union[str, Any] = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings _lowerCamelCase : Tuple = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=__A,instance_count=__A,instance_type=self.instance_type,debugger_hook_config=__A,hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path},metric_definitions=self.env.metric_definitions,distribution=__A,py_version="py36",) def lowerCamelCase_ ( self : Dict,__A : Optional[Any] ): TrainingJobAnalytics(__A ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def lowerCamelCase_ ( self : Tuple,__A : Dict ): # create estimator _lowerCamelCase : Any = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds",9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json',"w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss},__A )
710
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'detr' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int],__A : Tuple=True,__A : List[Any]=None,__A : List[str]=3,__A : Any=1_0_0,__A : Union[str, Any]=6,__A : Union[str, Any]=2_0_4_8,__A : str=8,__A : Dict=6,__A : Tuple=2_0_4_8,__A : Optional[int]=8,__A : int=0.0,__A : Union[str, Any]=0.0,__A : Optional[Any]=True,__A : Union[str, Any]="relu",__A : str=2_5_6,__A : int=0.1,__A : List[str]=0.0,__A : Union[str, Any]=0.0,__A : int=0.02,__A : Union[str, Any]=1.0,__A : str=False,__A : int="sine",__A : List[str]="resnet50",__A : List[Any]=True,__A : Tuple=False,__A : Dict=1,__A : Optional[Any]=5,__A : Optional[int]=2,__A : List[str]=1,__A : int=1,__A : str=5,__A : List[Any]=2,__A : Union[str, Any]=0.1,**__A : Union[str, Any],): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__A,__A ): _lowerCamelCase : Union[str, Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[int] = config_class.from_dict(__A ) # set timm attributes to None _lowerCamelCase : List[Any] = None, None, None _lowerCamelCase : Tuple = use_timm_backbone _lowerCamelCase : Dict = backbone_config _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Union[str, Any] = num_queries _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : int = encoder_attention_heads _lowerCamelCase : Union[str, Any] = decoder_ffn_dim _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Dict = decoder_attention_heads _lowerCamelCase : Optional[Any] = dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : str = init_std _lowerCamelCase : Dict = init_xavier_std _lowerCamelCase : Tuple = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : List[str] = auxiliary_loss _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Union[str, Any] = backbone _lowerCamelCase : str = use_pretrained_backbone _lowerCamelCase : Union[str, Any] = dilation # Hungarian matcher _lowerCamelCase : Any = class_cost _lowerCamelCase : int = bbox_cost _lowerCamelCase : Tuple = giou_cost # Loss coefficients _lowerCamelCase : Union[str, Any] = mask_loss_coefficient _lowerCamelCase : Tuple = dice_loss_coefficient _lowerCamelCase : str = bbox_loss_coefficient _lowerCamelCase : Dict = giou_loss_coefficient _lowerCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=__A,**__A ) @property def lowerCamelCase_ ( self : Tuple ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self : str ): return self.d_model @classmethod def lowerCamelCase_ ( cls : str,__A : PretrainedConfig,**__A : Optional[Any] ): return cls(backbone_config=__A,**__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output class UpperCAmelCase__ ( A ): lowerCAmelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return 1e-5 @property def lowerCamelCase_ ( self : Optional[int] ): return 1_2
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[13.3523, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[16.1873, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the ๐Ÿค— hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
712
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase__ ( A ): @require_torch def lowerCamelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : Optional[int] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _lowerCamelCase : Optional[int] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _lowerCamelCase : List[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _lowerCamelCase : Optional[int] = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask",model=__A ) # baseline - just load from_pretrained with normal network _lowerCamelCase : Optional[int] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _lowerCamelCase : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : int = "1" _lowerCamelCase : Any = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[str] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : Any = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _lowerCamelCase : Union[str, Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _lowerCamelCase : Any = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _lowerCamelCase : Dict = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask",model=__A ) # baseline - just load from_pretrained with normal network _lowerCamelCase : Union[str, Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _lowerCamelCase : int = self.get_env() _lowerCamelCase : Optional[Any] = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : List[str] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " _lowerCamelCase : int = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network _lowerCamelCase : Optional[int] = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _lowerCamelCase : Dict = self.get_env() _lowerCamelCase : Any = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) # next emulate no network _lowerCamelCase : str = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : List[Any] = "1" _lowerCamelCase : int = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = "\nfrom transformers import pipeline\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " _lowerCamelCase : str = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " _lowerCamelCase : Union[str, Any] = self.get_env() _lowerCamelCase : Any = "1" _lowerCamelCase : List[str] = [sys.executable, "-c", "\n".join([load, mock, run] )] _lowerCamelCase : Tuple = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,1,result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode",result.stderr.decode().replace("\n","" ),) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = "\nfrom transformers import AutoModel\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network _lowerCamelCase : Tuple = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _lowerCamelCase : Optional[Any] = self.get_env() _lowerCamelCase : Tuple = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : str = "1" _lowerCamelCase : int = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() )
713
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
0
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" if n <= 0: print(" ... .... nothing printing :(" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') UpperCAmelCase_ : Any = 1 while K: UpperCAmelCase_ : Optional[Any] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) UpperCAmelCase_ : str = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
715
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'upernet' def __init__( self : Any,__A : Optional[Any]=None,__A : Dict=5_1_2,__A : Optional[Any]=0.02,__A : List[Any]=[1, 2, 3, 6],__A : Dict=True,__A : str=0.4,__A : Union[str, Any]=3_8_4,__A : Optional[Any]=2_5_6,__A : Optional[int]=1,__A : Any=False,__A : Dict=2_5_5,**__A : Optional[Any],): super().__init__(**__A ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(__A,__A ): _lowerCamelCase : List[Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Union[str, Any] = config_class.from_dict(__A ) _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : Any = hidden_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Dict = pool_scales _lowerCamelCase : Any = use_auxiliary_head _lowerCamelCase : Any = auxiliary_loss_weight _lowerCamelCase : str = auxiliary_in_channels _lowerCamelCase : str = auxiliary_channels _lowerCamelCase : Optional[int] = auxiliary_num_convs _lowerCamelCase : Dict = auxiliary_concat_input _lowerCamelCase : List[Any] = loss_ignore_index def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : Optional[int] = self.__class__.model_type return output
716
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = 'โ–' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
717
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", "โ€‰", "โ€Š", "โ€ฏ", "โ€…", "ใ€€", "โ€‚", " ", "โ€ˆ", "โ€ƒ", "๏ฟผ", "ย„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = {} _lowerCamelCase : Optional[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : Any = len(example["content"] ) / len(output["input_ids"] ) return output UpperCAmelCase_ : str = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ : Any = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : Any = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ : int = time.time() UpperCAmelCase_ : int = load_dataset(args.dataset_name, split='train') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : List[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : int = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
718
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
0
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : str ): """simple docstring""" return [ord(_lowerCAmelCase ) - 96 for elem in plain] def A_ ( _lowerCAmelCase : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = encode(input("-> " ).strip().lower() ) print("Encoded: " , _lowerCAmelCase ) print("Decoded:" , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCAmelCase__ ( nn.Module ): def __init__( self : str ): super().__init__() _lowerCamelCase : Union[str, Any] = nn.Linear(3,4 ) _lowerCamelCase : Optional[Any] = nn.BatchNormad(4 ) _lowerCamelCase : Dict = nn.Linear(4,5 ) def lowerCamelCase_ ( self : int,__A : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Optional[Any],__A : List[str],*__A : List[Any],**__A : str ): return (args[0] + 1,) + args[1:], kwargs class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Tuple,__A : int,__A : Union[str, Any] ): return output + 1 class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = ModelForTest() _lowerCamelCase : int = ModelHook() add_hook_to_module(__A,__A ) self.assertEqual(test_model._hf_hook,__A ) self.assertTrue(hasattr(__A,"_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__,"forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ),["x"] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A,"_hf_hook" ) ) self.assertFalse(hasattr(__A,"_old_forward" ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = ModelForTest() _lowerCamelCase : Any = ModelHook() add_hook_to_module(__A,__A ) add_hook_to_module(__A,__A,append=__A ) self.assertEqual(isinstance(test_model._hf_hook,__A ),__A ) self.assertEqual(len(test_model._hf_hook.hooks ),2 ) self.assertTrue(hasattr(__A,"_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__,"forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ),["x"] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A,"_hf_hook" ) ) self.assertFalse(hasattr(__A,"_old_forward" ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = ModelForTest() _lowerCamelCase : Tuple = torch.randn(2,3 ) _lowerCamelCase : Union[str, Any] = test_model(x + 1 ) _lowerCamelCase : int = test_model(x + 2 ) _lowerCamelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : str = test_model(__A ) self.assertTrue(torch.allclose(__A,__A,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCamelCase : List[str] = PreForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : List[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A,__A,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCamelCase : Any = SequentialHook(PreForwardHook(),PreForwardHook() ) add_hook_to_module(__A,__A ) _lowerCamelCase : Any = test_model(__A ) assert torch.allclose(__A,__A,atol=1e-5 ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = ModelForTest() _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : Optional[Any] = test_model(__A ) _lowerCamelCase : List[Any] = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : str = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCamelCase : int = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : Any = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCamelCase : Union[str, Any] = SequentialHook(PostForwardHook(),PostForwardHook() ) add_hook_to_module(__A,__A ) _lowerCamelCase : Tuple = test_model(__A ) assert torch.allclose(__A,output + 2,atol=1e-5 ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = ModelForTest() _lowerCamelCase : List[Any] = torch.randn(2,3 ) _lowerCamelCase : Union[str, Any] = test_model(__A ) _lowerCamelCase : Optional[int] = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : Optional[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1 ) ) self.assertTrue(outputa.requires_grad ) _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = test_model(__A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _lowerCamelCase : Optional[Any] = torch.randn(2,3 ) _lowerCamelCase : Dict = model(__A ) self.assertEqual(output.device,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__A,AlignDevicesHook(io_same_device=__A ) ) _lowerCamelCase : str = torch.randn(2,3 ).to(0 ) _lowerCamelCase : Any = model(__A ) self.assertEqual(output.device,torch.device(0 ) ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Optional[Any] = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Dict = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : int = torch.randn(2,3 ) _lowerCamelCase : Optional[int] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload _lowerCamelCase : Union[str, Any] = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : Dict = torch.randn(2,3 ) _lowerCamelCase : List[Any] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Union[str, Any] = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(__A,execution_device=__A,offload=__A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Optional[int] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : Any = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(__A,execution_device=__A,offload=__A,offload_buffers=__A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : int = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Tuple = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( __A,execution_device=__A,offload=__A,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Dict = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : Optional[Any] = torch.randn(2,3 ) _lowerCamelCase : List[Any] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( __A,execution_device=__A,offload=__A,weights_map=model.state_dict(),offload_buffers=__A,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : List[Any] = torch.randn(2,3 ) _lowerCamelCase : Optional[int] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) )
720
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase__ ( A ): lowerCAmelCase_ = DistilBertTokenizer lowerCAmelCase_ = DistilBertTokenizerFast lowerCAmelCase_ = True @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) _lowerCamelCase : str = tokenizer.encode("sequence builders",add_special_tokens=__A ) _lowerCamelCase : Union[str, Any] = tokenizer.encode("multi-sequence build",add_special_tokens=__A ) _lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__A ) _lowerCamelCase : Any = tokenizer.build_inputs_with_special_tokens(__A,__A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(__lowerCAmelCase ) as metadata_file: SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = LukeConfig(use_entity_aware_attention=__lowerCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file SCREAMING_SNAKE_CASE__ : Dict = load_original_entity_vocab(__lowerCAmelCase ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE__ : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken("""<ent>""" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken("""<ent2>""" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = """MLukeTokenizer""" with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0] SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] SCREAMING_SNAKE_CASE__ : Any = state_dict["""embeddings.word_embeddings.weight"""] SCREAMING_SNAKE_CASE__ : int = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ : List[str] = state_dict[bias_name] SCREAMING_SNAKE_CASE__ : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = F'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : Tuple = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ : List[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict["""entity_predictions.bias"""] SCREAMING_SNAKE_CASE__ : Optional[int] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE__ : Optional[int] = LukeForMaskedLM(config=__lowerCAmelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) SCREAMING_SNAKE_CASE__ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict[key] else: SCREAMING_SNAKE_CASE__ : Dict = state_dict[key] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if set(__lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(__lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE__ : Optional[Any] = MLukeTokenizer.from_pretrained(__lowerCAmelCase , task="""entity_classification""" ) SCREAMING_SNAKE_CASE__ : Tuple = """ISO 639-3 uses the code fas for the dialects spoken across Iran and ใ‚ขใƒ•ใ‚ฌใƒ‹ใ‚นใ‚ฟใƒณ (Afghanistan).""" SCREAMING_SNAKE_CASE__ : str = (0, 9) SCREAMING_SNAKE_CASE__ : int = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(**__lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : Tuple = torch.Size((1, 33, 768) ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE__ : Tuple = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = """Tokyo is the capital of <mask>.""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = (24, 30) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = encoding["""input_ids"""][0].tolist() SCREAMING_SNAKE_CASE__ : str = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) SCREAMING_SNAKE_CASE__ : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE__ : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__lowerCAmelCase ) ) model.save_pretrained(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] SCREAMING_SNAKE_CASE__ : List[str] = [json.loads(__lowerCAmelCase ) for line in open(__lowerCAmelCase )] SCREAMING_SNAKE_CASE__ : int = {} for entry in data: SCREAMING_SNAKE_CASE__ : List[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE__ : Optional[Any] = entity_id break SCREAMING_SNAKE_CASE__ : List[Any] = F'''{language}:{entity_name}''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": a :str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) a :int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
12
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a :str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a :int = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names a :Dict = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a :List[Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a :str = "allenai" def _lowercase ( __lowerCAmelCase ) -> Any: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE__ : str = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE__ : Tuple = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = d[k] # restore return da def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: # prep assert os.path.exists(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE__ : Optional[Any] = basename(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dirname(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE__ : Optional[int] = cls.hub_models() SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} SCREAMING_SNAKE_CASE__ : Optional[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = hub_utils.from_pretrained( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vars(chkpt["""args"""]["""model"""] ) SCREAMING_SNAKE_CASE__ : Any = args["""source_lang"""] SCREAMING_SNAKE_CASE__ : Any = args["""target_lang"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = dirname(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = basename(__lowerCAmelCase ) # dicts SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dictionary.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE__ : Optional[int] = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE__ : Optional[Any] = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE__ : Tuple = False break SCREAMING_SNAKE_CASE__ : Optional[Any] = Dictionary.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): break with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin: SCREAMING_SNAKE_CASE__ : Any = fin.read() SCREAMING_SNAKE_CASE__ : Tuple = re.sub(r""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout: fout.write(__lowerCAmelCase ) # model config SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' SCREAMING_SNAKE_CASE__ : str = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with SCREAMING_SNAKE_CASE__ : Tuple = 5 SCREAMING_SNAKE_CASE__ : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model SCREAMING_SNAKE_CASE__ : Dict = chkpt["""models"""][0] SCREAMING_SNAKE_CASE__ : int = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE__ : str = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = FSMTConfig.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTForConditionalGeneration(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) # save SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a :List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
12
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a :Dict = logging.get_logger(__name__) a :Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off a :Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] a :Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = """whisper""" _SCREAMING_SNAKE_CASE :Optional[Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE :Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _a=51_865 , _a=80 , _a=6 , _a=4 , _a=6 , _a=4 , _a=1_536 , _a=1_536 , _a=0.0 , _a=0.0 , _a=50_257 , _a=True , _a=True , _a="gelu" , _a=256 , _a=0.0 , _a=0.0 , _a=0.0 , _a=0.02 , _a=False , _a=1_500 , _a=448 , _a=50_256 , _a=50_256 , _a=50_256 , _a=None , _a=[220, 50_256] , _a=False , _a=256 , _a=False , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a=7 , **_a , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = num_mel_bins SCREAMING_SNAKE_CASE__ : List[Any] = d_model SCREAMING_SNAKE_CASE__ : int = encoder_layers SCREAMING_SNAKE_CASE__ : Any = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_layers SCREAMING_SNAKE_CASE__ : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : str = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = dropout SCREAMING_SNAKE_CASE__ : int = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] = activation_function SCREAMING_SNAKE_CASE__ : Optional[Any] = init_std SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = use_cache SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : Any = max_source_positions SCREAMING_SNAKE_CASE__ : Optional[int] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE__ : Optional[int] = classifier_proj_size SCREAMING_SNAKE_CASE__ : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE__ : Optional[int] = apply_spec_augment SCREAMING_SNAKE_CASE__ : Optional[Any] = mask_time_prob SCREAMING_SNAKE_CASE__ : Dict = mask_time_length SCREAMING_SNAKE_CASE__ : Any = mask_time_min_masks SCREAMING_SNAKE_CASE__ : Any = mask_feature_prob SCREAMING_SNAKE_CASE__ : Any = mask_feature_length SCREAMING_SNAKE_CASE__ : Dict = mask_feature_min_masks SCREAMING_SNAKE_CASE__ : str = median_filter_width super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , suppress_tokens=_a , begin_suppress_tokens=_a , **_a , ) class __a (UpperCamelCase_): '''simple docstring''' @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Union[str, Any] = {0: """batch"""} else: SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_a , direction="""inputs""" ) return common_inputs def _a ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , _a = 22_050 , _a = 5.0 , _a = 220 , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = OrderedDict() SCREAMING_SNAKE_CASE__ : List[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_a , framework=_a , sampling_rate=_a , time_duration=_a , frequency=_a , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_inputs["""input_features"""].shape[2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , _a , _a , _a , _a ) SCREAMING_SNAKE_CASE__ : Any = encoder_inputs.pop("""input_features""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _a ( self ) -> float: """simple docstring""" return 1E-3
12
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,) def _a ( self , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_a ) return config def _a ( self ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def _a ( self ) -> Any: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def _a ( self ) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def _a ( self ) -> int: """simple docstring""" self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def _a ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _a ( self ) -> str: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Any = len(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ : str = pred_prev_sample SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Dict = len(_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ : int = model(_a , _a ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = -1 else: SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1] SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item() self.assertEqual(_a , _a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE__ : List[str] = len(_a ) with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_a )
12
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = IFPipeline _SCREAMING_SNAKE_CASE :str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} _SCREAMING_SNAKE_CASE :Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE :Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def _a ( self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def _a ( self , _a , _a=0 ) -> int: """simple docstring""" if str(_a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.manual_seed(_a ) else: SCREAMING_SNAKE_CASE__ : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _a ( self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : str = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_a , tokenizer=_a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_a , _a , _a , _a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Dict = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_a , _a , _a , _a ) def _a ( self , _a , _a , _a , _a ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _a ( self , _a , _a , _a , _a ) -> Optional[Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _a ( self , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , num_inference_steps=2 , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(_a , _a ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe_a( prompt_embeds=_a , negative_prompt_embeds=_a , image=_a , mask_image=_a , original_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Any = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(_a , _a ) def _lowercase ( ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
12
"""simple docstring""" import os a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 while index < len(__lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]] SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] = """""" SCREAMING_SNAKE_CASE__ : int = num // 1000 numerals += m_count * "M" num %= 1000 SCREAMING_SNAKE_CASE__ : List[str] = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 SCREAMING_SNAKE_CASE__ : List[Any] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int: SCREAMING_SNAKE_CASE__ : int = 0 with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea: SCREAMING_SNAKE_CASE__ : str = filea.readlines() for line in lines: SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip() SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase ) savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase ) return savings if __name__ == "__main__": print(f'{solution() = }')
12
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) SCREAMING_SNAKE_CASE__ : Dict = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
12
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple[int, int]: def constraint_to_multiple_of(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 , __lowerCAmelCase=None ): SCREAMING_SNAKE_CASE__ : List[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE__ : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE__ : Dict = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE__ : List[str] = (output_size, output_size) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else output_size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = get_image_size(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = output_size # determine new height and width SCREAMING_SNAKE_CASE__ : Optional[Any] = output_height / input_height SCREAMING_SNAKE_CASE__ : str = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE__ : List[Any] = scale_width else: # fit height SCREAMING_SNAKE_CASE__ : List[Any] = scale_height SCREAMING_SNAKE_CASE__ : Tuple = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCAmelCase ) return (new_height, new_width) class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = False , _a = 1 , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : int = size if size is not None else {"""height""": 384, """width""": 384} SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size SCREAMING_SNAKE_CASE__ : Tuple = keep_aspect_ratio SCREAMING_SNAKE_CASE__ : int = ensure_multiple_of SCREAMING_SNAKE_CASE__ : str = resample SCREAMING_SNAKE_CASE__ : str = do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE__ : Any = do_normalize SCREAMING_SNAKE_CASE__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , _a , _a , _a = False , _a = 1 , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = get_resize_output_image_size( _a , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_a , multiple=_a , ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def _a ( self , _a , _a , _a = None , **_a , ) -> int: """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def _a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: """simple docstring""" return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def _a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : str = get_size_dict(_a ) SCREAMING_SNAKE_CASE__ : str = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE__ : Union[str, Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE__ : List[Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : Any = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : int = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : Tuple = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : str = [to_numpy_array(_a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : List[Any] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : List[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : int = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[Any] = [to_channel_dimension_format(_a , _a ) for image in images] SCREAMING_SNAKE_CASE__ : Any = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a ) def _a ( self , _a , _a = None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_a ): SCREAMING_SNAKE_CASE__ : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ : Tuple = [] for idx in range(len(_a ) ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
12
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a :List[Any] = logging.get_logger(__name__) a :Optional[int] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = """focalnet""" def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes SCREAMING_SNAKE_CASE__ : Optional[int] = depths SCREAMING_SNAKE_CASE__ : Any = focal_levels SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE__ : str = use_layerscale SCREAMING_SNAKE_CASE__ : int = layerscale_value SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = encoder_stride SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
12
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) a :Dict = logging.getLogger(__name__) a :int = {"facebook/bart-base": BartForConditionalGeneration} a :List[str] = {"facebook/bart-base": BartTokenizer} def _lowercase ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=__lowerCAmelCase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__lowerCAmelCase , ) parser.add_argument( """--config_name""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=__lowerCAmelCase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Where to store the final ONNX file.""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() return args def _lowercase ( __lowerCAmelCase , __lowerCAmelCase="cpu" ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : List[Any] = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = 0 return huggingface_model, tokenizer def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: model.eval() SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = """My friends are cool but they eat too many carbs.""" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) SCREAMING_SNAKE_CASE__ : int = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=__lowerCAmelCase , ) logger.info("""Model exported to {}""".format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Dict = onnxruntime.InferenceSession(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = ort_sess.run( __lowerCAmelCase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(__lowerCAmelCase ), """max_length""": np.array(__lowerCAmelCase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE__ : Union[str, Any] = parse_args() SCREAMING_SNAKE_CASE__ : List[Any] = 5 SCREAMING_SNAKE_CASE__ : Dict = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE__ : Tuple = torch.device(args.device ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(__lowerCAmelCase ) if args.max_length: SCREAMING_SNAKE_CASE__ : Dict = args.max_length if args.num_beams: SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.num_beams if args.output_file_path: SCREAMING_SNAKE_CASE__ : List[Any] = args.output_file_path else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
12
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __a (unittest.TestCase): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = True _SCREAMING_SNAKE_CASE :Optional[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self ) @slow def _a ( self ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a ) SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __a (unittest.TestCase): '''simple docstring''' @slow def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : str = model(_a )[0] SCREAMING_SNAKE_CASE__ : List[Any] = 50_000 SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
12
1
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = LxmertTokenizer _SCREAMING_SNAKE_CASE :List[Any] = LxmertTokenizerFast _SCREAMING_SNAKE_CASE :Optional[Any] = True _SCREAMING_SNAKE_CASE :List[Any] = True def _a ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _a ( self , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE__ : str = """unwanted, running""" return input_text, output_text def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def _a ( self ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Any = """I was born in 92000, and this is falsรฉ.""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.tokenize(_a ) SCREAMING_SNAKE_CASE__ : Tuple = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) SCREAMING_SNAKE_CASE__ : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(_a ) SCREAMING_SNAKE_CASE__ : int = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
12
"""simple docstring""" a :List[str] = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" # Imports import numpy as np class __a : '''simple docstring''' def __init__( self , _a=None , _a=None , _a=None , _a=None , _a=None ) -> Dict: """simple docstring""" self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a ) def _a ( self , _a=None , _a=None , _a=None , _a=None , _a=None ) -> Optional[Any]: """simple docstring""" if red is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = red if green is not None: SCREAMING_SNAKE_CASE__ : Tuple = green if blue is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = blue if red_edge is not None: SCREAMING_SNAKE_CASE__ : List[str] = red_edge if nir is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = nir return True def _a ( self , _a="" , _a=None , _a=None , _a=None , _a=None , _a=None ) -> Optional[Any]: """simple docstring""" self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a ) SCREAMING_SNAKE_CASE__ : Dict = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _a ( self ) -> Optional[int]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _a ( self ) -> List[Any]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _a ( self ) -> Union[str, Any]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def _a ( self ) -> int: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _a ( self ) -> List[str]: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def _a ( self ) -> List[str]: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def _a ( self ) -> Dict: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def _a ( self ) -> List[Any]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def _a ( self ) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _a ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _a ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _a ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _a ( self , _a=0.08 , _a=1.22 , _a=0.03 ) -> List[str]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _a ( self ) -> Optional[Any]: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _a ( self ) -> List[str]: """simple docstring""" return (self.nir / self.green) - 1 def _a ( self ) -> Tuple: """simple docstring""" return (self.nir / self.redEdge) - 1 def _a ( self ) -> List[Any]: """simple docstring""" return (self.red - self.blue) / self.red def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _a ( self ) -> Tuple: """simple docstring""" return self.nir - self.green def _a ( self ) -> Optional[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _a ( self , _a=0.16 ) -> str: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def _a ( self , _a=0.5 ) -> Optional[Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _a ( self ) -> List[Any]: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _a ( self , _a=None , _a=None ) -> Optional[int]: """simple docstring""" return (self.nir - b) / (a * self.red) def _a ( self ) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _a ( self ) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def _a ( self ) -> int: """simple docstring""" return self.nir / self.red def _a ( self ) -> Dict: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def _a ( self ) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _a ( self ) -> List[str]: """simple docstring""" return self.green / (self.nir + self.red + self.green) def _a ( self ) -> Tuple: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def _a ( self ) -> Optional[int]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def _a ( self ) -> str: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def _a ( self ) -> List[Any]: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) SCREAMING_SNAKE_CASE__ : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _a ( self ) -> List[Any]: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _a ( self ) -> Dict: """simple docstring""" return self.nir / self.red def _a ( self ) -> Optional[int]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def _a ( self ) -> Union[str, Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a :Any = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Union[str, Any] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[Any] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[Any] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Dict = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = (32, 32) SCREAMING_SNAKE_CASE__ : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def _a ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _a ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _a ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(_a ) @property def _a ( self ) -> Optional[int]: """simple docstring""" def extract(*_a , **_a ): class __a : '''simple docstring''' def __init__( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = torch.ones([0] ) def _a ( self , _a ) -> List[str]: """simple docstring""" self.pixel_values.to(_a ) return self return Out() return extract def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_cond_unet SCREAMING_SNAKE_CASE__ : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) SCREAMING_SNAKE_CASE__ : str = self.dummy_vae SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ : Dict = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ : List[str] = torch.Generator(device=_a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device=_a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_a , )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Dict = self.dummy_cond_unet SCREAMING_SNAKE_CASE__ : int = PNDMScheduler(skip_prk_steps=_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_vae SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=_a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ : int = output.images SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=_a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=_a , )[0] SCREAMING_SNAKE_CASE__ : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE__ : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) SCREAMING_SNAKE_CASE__ : Dict = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE__ : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.dummy_cond_unet SCREAMING_SNAKE_CASE__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=_a ) SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_vae SCREAMING_SNAKE_CASE__ : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 SCREAMING_SNAKE_CASE__ : Optional[int] = unet.half() SCREAMING_SNAKE_CASE__ : Tuple = vae.half() SCREAMING_SNAKE_CASE__ : Dict = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE__ : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = """A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) SCREAMING_SNAKE_CASE__ : Any = 4_003_660_346 SCREAMING_SNAKE_CASE__ : str = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : int = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE__ : Tuple = output.images SCREAMING_SNAKE_CASE__ : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Tuple = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Tuple = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : int = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=_a ) SCREAMING_SNAKE_CASE__ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : List[str] = """padme amidala taking a bath artwork, safe for work, no nudity""" SCREAMING_SNAKE_CASE__ : Tuple = 2_734_971_755 SCREAMING_SNAKE_CASE__ : int = 7 SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : str = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE__ : str = output.images SCREAMING_SNAKE_CASE__ : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images SCREAMING_SNAKE_CASE__ : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = 1_044_355_234 SCREAMING_SNAKE_CASE__ : List[str] = 12 SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def _a ( self , **_a ) -> List[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def _a ( self , **_a ) -> List[Any]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def _a ( self , **_a ) -> Any: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a ) def _a ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer""" SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer""" SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
12
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Input value must be a 'int' type""" ) return bin(__lowerCAmelCase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a :Optional[Any] = logging.get_logger(__name__) a :Union[str, Any] = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = """t5""" _SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = d_model SCREAMING_SNAKE_CASE__ : int = d_kv SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers SCREAMING_SNAKE_CASE__ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE__ : Tuple = num_heads SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj SCREAMING_SNAKE_CASE__ : str = use_cache SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" ) SCREAMING_SNAKE_CASE__ : Dict = act_info[-1] SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated""" if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new""" super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , ) class __a (UpperCamelCase_): '''simple docstring''' @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence""" SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""} SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""} SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_a , direction="""inputs""" ) return common_inputs @property def _a ( self ) -> int: """simple docstring""" return 13
12
1
"""simple docstring""" import unittest import numpy as np def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ : Any = np.shape(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = np.shape(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = np.shape(__lowerCAmelCase ) if shape_a[0] != shape_b[0]: SCREAMING_SNAKE_CASE__ : int = ( """Expected the same number of rows for A and B. """ F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__lowerCAmelCase ) if shape_b[1] != shape_c[1]: SCREAMING_SNAKE_CASE__ : Any = ( """Expected the same number of columns for B and C. """ F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = pseudo_inv if a_inv is None: try: SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.linalg.inv(__lowerCAmelCase ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : str = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([[2, 1], [6, 3]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = schur_complement(_a , _a , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.block([[a, b], [b.T, c]] ) SCREAMING_SNAKE_CASE__ : int = np.linalg.det(_a ) SCREAMING_SNAKE_CASE__ : str = np.linalg.det(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.linalg.det(_a ) self.assertAlmostEqual(_a , det_a * det_s ) def _a ( self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) def _a ( self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : int = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_a ): schur_complement(_a , _a , _a ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
12
"""simple docstring""" from __future__ import annotations import time import numpy as np a :Optional[Any] = [8, 5, 9, 7] a :List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a :int = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __a : '''simple docstring''' def __init__( self , _a , _a , _a , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = claim_vector SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table def _a ( self ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _a ( self ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _a ( self ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _a ( self ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(_a ): i for i in self.__need()} def _a ( self , **_a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need() SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources() SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: SCREAMING_SNAKE_CASE__ : List[str] = False for each_need in need_list: SCREAMING_SNAKE_CASE__ : Dict = True for index, need in enumerate(_a ): if need > available_resources[index]: SCREAMING_SNAKE_CASE__ : Optional[int] = False break if execution: SCREAMING_SNAKE_CASE__ : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE__ : Tuple = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(_a ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _a ( self ) -> Any: """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(_a ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(_a ) + 1}''' + """ """.join(f'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(_a ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = (CMStochasticIterativeScheduler,) _SCREAMING_SNAKE_CASE :Tuple = 10 def _a ( self , **_a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**_a ) return config def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 10 SCREAMING_SNAKE_CASE__ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) SCREAMING_SNAKE_CASE__ : Any = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ : int = self.dummy_sample SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.step(_a , _a , _a ).prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self ) -> Tuple: """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = 1 scheduler.set_timesteps(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.timesteps SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input SCREAMING_SNAKE_CASE__ : List[str] = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : List[Any] = model(_a , _a ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample SCREAMING_SNAKE_CASE__ : List[str] = pred_prev_sample SCREAMING_SNAKE_CASE__ : Tuple = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7_614 ) < 1E-2 assert abs(result_mean.item() - 0.2_510 ) < 1E-3 def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : str = [106, 0] scheduler.set_timesteps(timesteps=_a ) SCREAMING_SNAKE_CASE__ : str = scheduler.timesteps SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , _a ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample SCREAMING_SNAKE_CASE__ : Any = pred_prev_sample SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : str = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6_357 ) < 1E-2 assert abs(result_mean.item() - 0.4_527 ) < 1E-3 def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ : Optional[int] = len(_a ) with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_a )
12
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a :List[Any] = None a :Optional[int] = logging.get_logger(__name__) a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a :Optional[int] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } a :Dict = { "xlnet-base-cased": None, "xlnet-large-cased": None, } a :int = "โ–" # Segments (not really needed) a :Dict = 0 a :Optional[int] = 1 a :Tuple = 2 a :List[str] = 3 a :Optional[Any] = 4 class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = """left""" _SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE__ : List[str] = remove_space SCREAMING_SNAKE_CASE__ : int = keep_accents SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Tuple = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
12
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""}) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""}) _SCREAMING_SNAKE_CASE :Optional[bool] = field(default=UpperCamelCase_ , metadata={"""help""": """If True the data is pretokenized."""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=UpperCamelCase_ , metadata={"""help""": """Number of workers used for code evaluation."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """Sample from the language model's output distribution."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """If True, near-duplicate samples are removed."""}) _SCREAMING_SNAKE_CASE :Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""}) _SCREAMING_SNAKE_CASE :Optional[bool] = field(default=UpperCamelCase_ , metadata={"""help""": """Push saved tokenizer to the hub."""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default=UpperCamelCase_ , metadata={"""help""": """Number of workers used for code evaluation."""}) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""}) _SCREAMING_SNAKE_CASE :Optional[bool] = field(default=UpperCamelCase_ , metadata={"""help""": """Push saved tokenizer to the hub."""})
12
"""simple docstring""" def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1 SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length SCREAMING_SNAKE_CASE__ : Dict = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: SCREAMING_SNAKE_CASE__ : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j] else: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 else: SCREAMING_SNAKE_CASE__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a :Any = "aab" a :Optional[Any] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
12
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a :Optional[int] = 2 class __a : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments _a="<s>" , _a="<pad>" , _a="</s>" , _a="<unk>" , _a=None , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = bos, unk, pad, eos SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.add_symbol(_a ) SCREAMING_SNAKE_CASE__ : Tuple = self.add_symbol(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.add_symbol(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.add_symbol(_a ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = len(self.symbols ) def __eq__( self , _a ) -> Union[str, Any]: """simple docstring""" return self.indices == other.indices def __getitem__( self , _a ) -> List[str]: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> str: """simple docstring""" return len(self.symbols ) def __contains__( self , _a ) -> Optional[Any]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = cls() d.add_from_file(_a ) return d def _a ( self , _a , _a=1 , _a=False ) -> Optional[Any]: """simple docstring""" if word in self.indices and not overwrite: SCREAMING_SNAKE_CASE__ : str = self.indices[word] SCREAMING_SNAKE_CASE__ : Any = self.count[idx] + n return idx else: SCREAMING_SNAKE_CASE__ : List[str] = len(self.symbols ) SCREAMING_SNAKE_CASE__ : List[str] = idx self.symbols.append(_a ) self.count.append(_a ) return idx def _a ( self , _a ) -> Tuple: """simple docstring""" return 0 def _a ( self , _a ) -> Tuple: """simple docstring""" if isinstance(_a , _a ): try: with open(_a , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_a ) ) return SCREAMING_SNAKE_CASE__ : Any = f.readlines() SCREAMING_SNAKE_CASE__ : Dict = self._load_meta(_a ) for line in lines[indices_start_line:]: try: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = line.rsplit(""" """ , 1 ) else: SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : str = int(_a ) SCREAMING_SNAKE_CASE__ : List[str] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_a ) ) self.add_symbol(_a , n=_a , overwrite=_a ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def _lowercase ( __lowerCAmelCase ) -> Dict: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE__ : int = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] SCREAMING_SNAKE_CASE__ : str = d[k] # restore return da def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: # prep if not os.path.exists(__lowerCAmelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , """checkpoint.pt""" ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) SCREAMING_SNAKE_CASE__ : Tuple = torch.load(__lowerCAmelCase , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : Dict = chkpt["""cfg"""]["""model"""] # dicts SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """dict.txt""" ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) SCREAMING_SNAKE_CASE__ : int = Dictionary.load(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE__ : Tuple = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(__lowerCAmelCase , """bpecodes""" ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """config.json""" ) SCREAMING_SNAKE_CASE__ : List[Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model SCREAMING_SNAKE_CASE__ : Union[str, Any] = chkpt["""model"""] # remove unneeded keys SCREAMING_SNAKE_CASE__ : Tuple = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): SCREAMING_SNAKE_CASE__ : Tuple = model_state_dict.pop(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : List[str] = model_state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = BioGptConfig.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": a :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a :Dict = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
12
"""simple docstring""" from math import sqrt def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int: SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'{solution() = }')
12
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = MBartConfig _SCREAMING_SNAKE_CASE :int = {} _SCREAMING_SNAKE_CASE :int = """gelu""" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : Any = seq_length SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = eos_token_id SCREAMING_SNAKE_CASE__ : int = pad_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE__ : str = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE__ : int = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def _a ( self , _a , _a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFMBartModel(config=_a ).get_decoder() SCREAMING_SNAKE_CASE__ : Tuple = inputs_dict["""input_ids"""] SCREAMING_SNAKE_CASE__ : Any = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : int = inputs_dict["""attention_mask"""][:1, :] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict["""head_mask"""] SCREAMING_SNAKE_CASE__ : Any = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = outputs.to_tuple() SCREAMING_SNAKE_CASE__ : str = past_key_values[1] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Any: if attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _SCREAMING_SNAKE_CASE :List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _SCREAMING_SNAKE_CASE :Optional[int] = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE :str = True _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :Optional[Any] = False def _a ( self , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFMBartModelTester(self ) SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self , config_class=_a ) def _a ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __a (unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = [ """ UN Chief Says There Is No Military Solution in Syria""", ] _SCREAMING_SNAKE_CASE :str = [ """ลžeful ONU declarฤƒ cฤƒ nu existฤƒ o soluลฃie militarฤƒ รฎn Siria""", ] _SCREAMING_SNAKE_CASE :Optional[int] = """facebook/mbart-large-en-ro""" @cached_property def _a ( self ) -> str: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def _a ( self , **_a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer(self.src_text , **_a , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" self._assert_generated_batch_equal_expected()
12
"""simple docstring""" class __a : '''simple docstring''' def __init__( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Optional[Any] = value SCREAMING_SNAKE_CASE__ : List[Any] = weight def __repr__( self ) -> List[Any]: """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _a ( self ) -> Dict: """simple docstring""" return self.value def _a ( self ) -> int: """simple docstring""" return self.name def _a ( self ) -> Optional[Any]: """simple docstring""" return self.weight def _a ( self ) -> Dict: """simple docstring""" return self.value / self.weight def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = [] for i in range(len(__lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0 for i in range(len(__lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _lowercase ( ) -> List[str]: pass if __name__ == "__main__": import doctest doctest.testmod()
12
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) SCREAMING_SNAKE_CASE__ : Tuple = """""" while len(__lowerCAmelCase ) % 3 != 0: SCREAMING_SNAKE_CASE__ : str = """0""" + bin_string SCREAMING_SNAKE_CASE__ : List[str] = [ bin_string[index : index + 3] for index in range(len(__lowerCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE__ : List[Any] = 0 for index, val in enumerate(__lowerCAmelCase ): oct_val += int(2 ** (2 - index) * int(__lowerCAmelCase ) ) oct_string += str(__lowerCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
12
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a :Optional[int] = None a :Optional[Any] = logging.get_logger(__name__) a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} a :Union[str, Any] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } a :Any = { "facebook/nllb-large-en-ro": 1_024, "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer _SCREAMING_SNAKE_CASE :List[int] = [] _SCREAMING_SNAKE_CASE :List[int] = [] def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour super().__init__( vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[str] = { lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn""" SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE__ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ : Dict = src_lang SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id return inputs def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = src_lang SCREAMING_SNAKE_CASE__ : Dict = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a ) if self.legacy_behaviour: SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id] SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return SCREAMING_SNAKE_CASE__ : Dict = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
12
1
"""simple docstring""" from __future__ import annotations import time a :Optional[int] = list[tuple[int, int]] a :Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a :Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = pos_x SCREAMING_SNAKE_CASE__ : Tuple = pos_y SCREAMING_SNAKE_CASE__ : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE__ : Optional[int] = goal_x SCREAMING_SNAKE_CASE__ : List[Any] = goal_y SCREAMING_SNAKE_CASE__ : Dict = parent class __a : '''simple docstring''' def __init__( self , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = Node(start[1] , start[0] , goal[1] , goal[0] , _a ) SCREAMING_SNAKE_CASE__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.start] SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def _a ( self ) -> Path | None: """simple docstring""" while self.node_queue: SCREAMING_SNAKE_CASE__ : str = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ : Tuple = True return self.retrace_path(_a ) SCREAMING_SNAKE_CASE__ : Dict = self.get_successors(_a ) for node in successors: self.node_queue.append(_a ) if not self.reached: return [self.start.pos] return None def _a ( self , _a ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for action in delta: SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ : Optional[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_a , _a , self.target.pos_y , self.target.pos_x , _a ) ) return successors def _a ( self , _a ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = node SCREAMING_SNAKE_CASE__ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ : Optional[int] = current_node.parent path.reverse() return path class __a : '''simple docstring''' def __init__( self , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = BreadthFirstSearch(_a , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BreadthFirstSearch(_a , _a ) SCREAMING_SNAKE_CASE__ : List[str] = False def _a ( self ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE__ : str = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE__ : str = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE__ : List[str] = True return self.retrace_bidirectional_path( _a , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_bwd_node SCREAMING_SNAKE_CASE__ : Tuple = current_fwd_node SCREAMING_SNAKE_CASE__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(_a ), self.bwd_bfs: self.bwd_bfs.get_successors(_a ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_a ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _a ( self , _a , _a ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.fwd_bfs.retrace_path(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.bwd_bfs.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE__ : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a :Union[str, Any] = (0, 0) a :Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a :Dict = time.time() a :Any = BreadthFirstSearch(init, goal) a :str = bfs.search() a :Union[str, Any] = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) a :Union[str, Any] = time.time() a :int = BidirectionalBreadthFirstSearch(init, goal) a :int = bd_bfs.search() a :int = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
12
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any: # Format the message. if name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None else: SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase ) # Print and recurse (if needed). if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if msg is not None: print(__lowerCAmelCase ) for k in val.keys(): recursive_print(__lowerCAmelCase , val[k] , spaces + 2 ) elif isinstance(__lowerCAmelCase , torch.Tensor ): print(__lowerCAmelCase , """:""" , val.size() ) else: print(__lowerCAmelCase , """:""" , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE__ : Tuple = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase ) return param def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: # The converted output model. SCREAMING_SNAKE_CASE__ : List[str] = {} # old versions did not store training args SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE__ : List[str] = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE__ : Tuple = 0.0 # The model. SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE__ : Optional[int] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE__ : str = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE__ : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : List[str] = masked_bias SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE__ : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase ) # Store. No change of shape. SCREAMING_SNAKE_CASE__ : str = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE__ : Dict = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings # It should be done! return output_state_dict def _lowercase ( ) -> List[Any]: # Create the argument parser. SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new""" else: SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE__ : Any = """gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__lowerCAmelCase , __lowerCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE__ : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__ SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__lowerCAmelCase ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(__lowerCAmelCase ) # Store the state_dict to file. SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
12
1
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a :Optional[int] = logging.getLogger(__name__) class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a , _a , _a=None , _a=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.layer[current_layer](_a , _a , head_mask[current_layer] ) SCREAMING_SNAKE_CASE__ : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , UpperCamelCase_ , ) class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a ) -> Dict: """simple docstring""" super().__init__(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertEncoderWithPabee(_a ) self.init_weights() SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : str = 0 def _a ( self , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = threshold def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = patience def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.inference_layers_num / self.inference_instances_num SCREAMING_SNAKE_CASE__ : Optional[int] = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def _a ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=False , ) -> List[str]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ : Any = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) SCREAMING_SNAKE_CASE__ : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.ones(_a , device=_a ) if token_type_ids is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE__ : torch.Tensor = self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = encoder_hidden_states.size() SCREAMING_SNAKE_CASE__ : int = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = torch.ones(_a , device=_a ) SCREAMING_SNAKE_CASE__ : int = self.invert_attention_mask(_a ) else: SCREAMING_SNAKE_CASE__ : int = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_head_mask(_a , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ : List[str] = self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = embedding_output if self.training: SCREAMING_SNAKE_CASE__ : Any = [] for i in range(self.config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ : List[str] = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.pooler(_a ) SCREAMING_SNAKE_CASE__ : Dict = output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference SCREAMING_SNAKE_CASE__ : str = self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : Dict = self.pooler(encoder_outputs[0] ) SCREAMING_SNAKE_CASE__ : str = [output_layers[self.config.num_hidden_layers - 1](_a )] else: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : str = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 SCREAMING_SNAKE_CASE__ : Dict = self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.pooler(_a ) SCREAMING_SNAKE_CASE__ : Tuple = output_layers[i](_a ) if regression: SCREAMING_SNAKE_CASE__ : Tuple = logits.detach() if patient_result is not None: SCREAMING_SNAKE_CASE__ : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: SCREAMING_SNAKE_CASE__ : List[str] = 0 else: SCREAMING_SNAKE_CASE__ : List[Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = logits if patient_counter == self.patience: break SCREAMING_SNAKE_CASE__ : int = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , UpperCamelCase_ , ) class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) SCREAMING_SNAKE_CASE__ : str = config.num_labels SCREAMING_SNAKE_CASE__ : List[str] = BertModelWithPabee(_a ) SCREAMING_SNAKE_CASE__ : Any = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def _a ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) SCREAMING_SNAKE_CASE__ : List[str] = (logits[-1],) if labels is not None: SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Any = 0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Union[str, Any] = MSELoss() SCREAMING_SNAKE_CASE__ : Dict = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Dict = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : Tuple = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: SCREAMING_SNAKE_CASE__ : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 SCREAMING_SNAKE_CASE__ : List[Any] = (total_loss / total_weights,) + outputs return outputs
12
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read() SCREAMING_SNAKE_CASE__ : str = regexp.search(_a ) return match def _a ( self , _a ) -> Optional[Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a ) SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_a ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_a ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
12
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
12
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : '''simple docstring''' def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length SCREAMING_SNAKE_CASE__ : str = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = d_ff SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = decoder_layers def _a ( self ) -> Tuple: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ : str = model(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def _a ( self , _a , _a , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[str] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :Tuple = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = True _SCREAMING_SNAKE_CASE :List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests _SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9] def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0] SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): SCREAMING_SNAKE_CASE__ : List[str] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE__ : str = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _a ( self ) -> Dict: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a ) SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) ) SCREAMING_SNAKE_CASE__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
12
1
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) for i in range(length - 1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = i for k in range(i + 1 , __lowerCAmelCase ): if collection[k] < collection[least]: SCREAMING_SNAKE_CASE__ : Optional[int] = k if least != i: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = (collection[i], collection[least]) return collection if __name__ == "__main__": a :List[str] = input("Enter numbers separated by a comma:\n").strip() a :List[Any] = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
12
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) SCREAMING_SNAKE_CASE__ : List[Any] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ : int = dataset SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Optional[Any] = con SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ : int = num_proc SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ : Any = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas() SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _a ( self , _a , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
12
1
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a :str = get_logger(__name__) class __a (enum.Enum): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = """all_checks""" _SCREAMING_SNAKE_CASE :Union[str, Any] = """basic_checks""" _SCREAMING_SNAKE_CASE :List[str] = """no_checks""" class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE__ : str = """ for """ + verification_name if verification_name is not None else """""" if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' class __a (UpperCamelCase_): '''simple docstring''' def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : str = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info("""All the splits matched successfully.""" ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = True ) -> dict: if record_checksum: SCREAMING_SNAKE_CASE__ : Optional[int] = shaaaa() with open(__lowerCAmelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"""""" ): m.update(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = m.hexdigest() else: SCREAMING_SNAKE_CASE__ : Any = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def _lowercase ( __lowerCAmelCase ) -> List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
12
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : int = 1 while repunit: SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int: SCREAMING_SNAKE_CASE__ : Dict = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
12
1