code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase_ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Optional[str] = None ): _lowerCamelCase : List[str] = ( os.path.join(__A,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCamelCase : int = Extractor def lowerCamelCase_ ( self : List[str],__A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCamelCase : str = os.path.abspath(__A ) return os.path.join(self.extract_dir,hash_url_to_filename(__A ) ) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : bool ): return force_extract or ( not os.path.isfile(__A ) and not (os.path.isdir(__A ) and os.listdir(__A )) ) def lowerCamelCase_ ( self : Tuple,__A : str,__A : bool = False ): _lowerCamelCase : Tuple = self.extractor.infer_extractor_format(__A ) if not extractor_format: return input_path _lowerCamelCase : int = self._get_output_path(__A ) if self._do_extract(__A,__A ): self.extractor.extract(__A,__A,__A ) return output_path class UpperCAmelCase__ ( A ): @classmethod @abstractmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : int ): ... @staticmethod @abstractmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): ... class UpperCAmelCase__ ( A , A ): lowerCAmelCase_ = [] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): with open(__A,"rb" ) as f: return f.read(__A ) @classmethod def lowerCamelCase_ ( cls : int,__A : Union[Path, str],__A : bytes = b"" ): if not magic_number: _lowerCamelCase : int = max(len(__A ) for cls_magic_number in cls.magic_numbers ) try: _lowerCamelCase : Any = cls.read_magic_number(__A,__A ) except OSError: return False return any(magic_number.startswith(__A ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( A ): @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : Optional[int] ): return tarfile.is_tarfile(__A ) @staticmethod def lowerCamelCase_ ( __A : Optional[Any],__A : Dict ): def resolved(__A : str ) -> str: return os.path.realpath(os.path.abspath(__A ) ) def badpath(__A : str,__A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__A,__A ) ).startswith(__A ) def badlink(__A : int,__A : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCamelCase : Union[str, Any] = resolved(os.path.join(__A,os.path.dirname(info.name ) ) ) return badpath(info.linkname,base=__A ) _lowerCamelCase : Optional[Any] = resolved(__A ) for finfo in members: if badpath(finfo.name,__A ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = tarfile.open(__A ) tar_file.extractall(__A,members=TarExtractor.safemembers(__A,__A ) ) tar_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x1F\x8B'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with gzip.open(__A,"rb" ) as gzip_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],__A : bytes = b"" ): if super().is_extractable(__A,magic_number=__A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__A,"rb" ) as fp: _lowerCamelCase : Optional[Any] = _EndRecData(__A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCamelCase : List[Any] = fp.read(__A ) # CD is where we expect it to be if len(__A ) == sizeCentralDir: _lowerCamelCase : List[Any] = struct.unpack(__A,__A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) with zipfile.ZipFile(__A,"r" ) as zip_file: zip_file.extractall(__A ) zip_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with lzma.open(__A ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = rarfile.RarFile(__A ) rf.extractall(__A ) rf.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _lowerCamelCase : Optional[Any] = zstd.ZstdDecompressor() with open(__A,"rb" ) as ifh, open(__A,"wb" ) as ofh: dctx.copy_stream(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x42\x5A\x68'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with bza.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(__A,exist_ok=__A ) with pyazr.SevenZipFile(__A,"r" ) as archive: archive.extractall(__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x04\x22\x4D\x18'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase_ ( cls : Optional[Any] ): return max( len(__A ) for extractor in cls.extractors.values() if issubclass(__A,__A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): try: return MagicNumberBaseExtractor.read_magic_number(__A,magic_number_length=__A ) except OSError: return b"" @classmethod def lowerCamelCase_ ( cls : List[str],__A : Union[Path, str],__A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.",category=__A,) _lowerCamelCase : Optional[Any] = cls.infer_extractor_format(__A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase_ ( cls : Optional[int],__A : Union[Path, str] ): # <Added version="2.4.0"/> _lowerCamelCase : Optional[int] = cls._get_magic_number_max_length() _lowerCamelCase : Union[str, Any] = cls._read_magic_number(__A,__A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__A,magic_number=__A ): return extractor_format @classmethod def lowerCamelCase_ ( cls : List[Any],__A : Union[Path, str],__A : Union[Path, str],__A : Optional[str] = None,__A : Optional[BaseExtractor] = "deprecated",): os.makedirs(os.path.dirname(__A ),exist_ok=__A ) # Prevent parallel extractions _lowerCamelCase : Union[str, Any] = str(Path(__A ).with_suffix(".lock" ) ) with FileLock(__A ): shutil.rmtree(__A,ignore_errors=__A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__A,__A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.",category=__A,) _lowerCamelCase : Dict = extractor if extractor != "deprecated" else extractor_format else: _lowerCamelCase : str = cls.extractors[extractor_format] return extractor.extract(__A,__A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.",category=__A,) for extractor in cls.extractors.values(): if extractor.is_extractable(__A ): return extractor.extract(__A,__A )
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'perceiver' def __init__( self : Tuple,__A : Tuple=2_5_6,__A : Dict=1_2_8_0,__A : str=7_6_8,__A : int=1,__A : List[Any]=2_6,__A : Optional[int]=8,__A : str=8,__A : Tuple=None,__A : int=None,__A : int="kv",__A : Tuple=1,__A : str=1,__A : Union[str, Any]="gelu",__A : Optional[Any]=0.1,__A : Any=0.02,__A : List[Any]=1e-12,__A : Any=True,__A : Union[str, Any]=2_6_2,__A : Tuple=2_0_4_8,__A : Any=5_6,__A : Optional[int]=[3_6_8, 4_9_6],__A : Optional[Any]=1_6,__A : Optional[Any]=1_9_2_0,__A : Any=1_6,__A : Union[str, Any]=[1, 1_6, 2_2_4, 2_2_4],**__A : str,): super().__init__(**__A ) _lowerCamelCase : str = num_latents _lowerCamelCase : List[str] = d_latents _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : Tuple = num_blocks _lowerCamelCase : Union[str, Any] = num_self_attends_per_block _lowerCamelCase : Dict = num_self_attention_heads _lowerCamelCase : List[Any] = num_cross_attention_heads _lowerCamelCase : int = qk_channels _lowerCamelCase : Dict = v_channels _lowerCamelCase : Optional[int] = cross_attention_shape_for_attention _lowerCamelCase : str = self_attention_widening_factor _lowerCamelCase : List[str] = cross_attention_widening_factor _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : str = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : str = use_query_residual # masked language modeling attributes _lowerCamelCase : str = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings # image classification attributes _lowerCamelCase : Dict = image_size # flow attributes _lowerCamelCase : str = train_size # multimodal autoencoding attributes _lowerCamelCase : Any = num_frames _lowerCamelCase : Dict = audio_samples_per_frame _lowerCamelCase : Tuple = samples_per_patch _lowerCamelCase : int = output_shape class UpperCAmelCase__ ( A ): @property def lowerCamelCase_ ( self : List[Any] ): if self.task == "multiple-choice": _lowerCamelCase : str = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowerCamelCase_ ( self : Optional[Any] ): return 1e-4 def lowerCamelCase_ ( self : List[Any],__A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],__A : int = -1,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,__A : int = 3,__A : int = 4_0,__A : int = 4_0,): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(__A,__A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : Dict = compute_effective_axis_dimension( __A,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : str = preprocessor.num_special_tokens_to_add(__A ) _lowerCamelCase : Any = compute_effective_axis_dimension( __A,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : int = [" ".join(["a"] ) * seq_length] * batch_size _lowerCamelCase : int = dict(preprocessor(__A,return_tensors=__A ) ) _lowerCamelCase : int = inputs.pop("input_ids" ) return inputs elif isinstance(__A,__A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase : int = compute_effective_axis_dimension(__A,fixed_dimension=OnnxConfig.default_fixed_batch ) _lowerCamelCase : Tuple = self._generate_dummy_images(__A,__A,__A,__A ) _lowerCamelCase : Any = dict(preprocessor(images=__A,return_tensors=__A ) ) _lowerCamelCase : Optional[int] = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return False _lowerCamelCase : int = len(_lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Dict = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase_ : Any = [int(item.strip()) for item in user_input.split(',')] UpperCAmelCase_ : Optional[int] = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase_ : Union[str, Any] = '' if binary_search(sequence, target) else 'not ' print(f'''{target} was {not_str}found in {sequence}''')
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 100 , _lowerCAmelCase : float = 0.0_1 , _lowerCAmelCase : float = 1 , ): """simple docstring""" _lowerCamelCase : int = False _lowerCamelCase : Optional[int] = search_prob _lowerCamelCase : Dict = start_temperate _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : int = None while not search_end: _lowerCamelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCamelCase : Tuple = current_state scores.append(_lowerCAmelCase ) iterations += 1 _lowerCamelCase : str = None _lowerCamelCase : List[str] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCamelCase : Dict = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor _lowerCamelCase : Union[str, Any] = neighbors.pop(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCamelCase : Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCamelCase : str = picked_neighbor else: _lowerCamelCase : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCamelCase : str = picked_neighbor _lowerCamelCase : str = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCamelCase : Tuple = True else: _lowerCamelCase : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : List[Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" return (3 * x**2) - (6 * y) UpperCAmelCase_ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' ) UpperCAmelCase_ : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : str = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f'''{local_min.score()}''' )
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : str ): """simple docstring""" return [ord(_lowerCAmelCase ) - 96 for elem in plain] def A_ ( _lowerCAmelCase : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = encode(input("-> " ).strip().lower() ) print("Encoded: " , _lowerCAmelCase ) print("Decoded:" , decode(_lowerCAmelCase ) ) if __name__ == "__main__": main()
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" if len(_lowerCAmelCase ) < k or k < 0: raise ValueError("Invalid Input" ) _lowerCamelCase : Union[str, Any] = sum(array[:k] ) for i in range(len(_lowerCAmelCase ) - k ): _lowerCamelCase : Dict = current_sum - array[i] + array[i + k] _lowerCamelCase : Any = max(_lowerCAmelCase , _lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() UpperCAmelCase_ : str = [randint(-1000, 1000) for i in range(100)] UpperCAmelCase_ : str = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Optional[Any],*__A : Union[str, Any],**__A : Any ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead.",__A,) super().__init__(*__A,**__A )
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : int = {} _lowerCamelCase : Optional[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : Any = len(example["content"] ) / len(output["input_ids"] ) return output UpperCAmelCase_ : str = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ : Any = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : Any = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ : int = time.time() UpperCAmelCase_ : int = load_dataset(args.dataset_name, split='train') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : List[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : int = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" assert column_title.isupper() _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Union[str, Any] = len(_lowerCAmelCase ) - 1 _lowerCamelCase : List[Any] = 0 while index >= 0: _lowerCamelCase : List[str] = (ord(column_title[index] ) - 64) * pow(26 , _lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = None def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=0.9_9_9 , _lowerCAmelCase : Any="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase : Optional[Any] ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _lowerCamelCase : Tuple = [] for i in range(_lowerCAmelCase ): _lowerCamelCase : int = i / num_diffusion_timesteps _lowerCamelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class UpperCAmelCase__ ( A , A ): @register_to_config def __init__( self : Any,__A : int = 1_0_0_0,__A : str = "fixed_small_log",__A : bool = True,__A : Optional[float] = 1.0,__A : str = "epsilon",__A : str = "squaredcos_cap_v2",): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) _lowerCamelCase : Union[str, Any] = betas_for_alpha_bar(__A ) _lowerCamelCase : str = 1.0 - self.betas _lowerCamelCase : Any = torch.cumprod(self.alphas,dim=0 ) _lowerCamelCase : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _lowerCamelCase : Optional[Any] = 1.0 # setable values _lowerCamelCase : Optional[Any] = None _lowerCamelCase : str = torch.from_numpy(np.arange(0,__A )[::-1].copy() ) _lowerCamelCase : Optional[int] = variance_type def lowerCamelCase_ ( self : Union[str, Any],__A : torch.FloatTensor,__A : Optional[int] = None ): return sample def lowerCamelCase_ ( self : List[Any],__A : int,__A : Union[str, torch.device] = None ): _lowerCamelCase : Dict = num_inference_steps _lowerCamelCase : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowerCamelCase : Union[str, Any] = (np.arange(0,__A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _lowerCamelCase : List[str] = torch.from_numpy(__A ).to(__A ) def lowerCamelCase_ ( self : str,__A : Optional[Any],__A : str=None,__A : str=None,__A : Union[str, Any]=None ): if prev_timestep is None: _lowerCamelCase : Optional[int] = t - 1 _lowerCamelCase : str = self.alphas_cumprod[t] _lowerCamelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : int = 1 - alpha_prod_t _lowerCamelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Any = self.betas[t] else: _lowerCamelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCamelCase : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowerCamelCase : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowerCamelCase : Tuple = torch.log(torch.clamp(__A,min=1e-20 ) ) _lowerCamelCase : Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowerCamelCase : Optional[int] = variance.log() _lowerCamelCase : List[Any] = beta.log() _lowerCamelCase : Optional[Any] = (predicted_variance + 1) / 2 _lowerCamelCase : List[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self : int,__A : torch.FloatTensor,__A : int,__A : torch.FloatTensor,__A : Optional[int] = None,__A : Optional[Any]=None,__A : bool = True,): _lowerCamelCase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowerCamelCase , _lowerCamelCase : Optional[Any] = torch.split(__A,sample.shape[1],dim=1 ) else: _lowerCamelCase : int = None # 1. compute alphas, betas if prev_timestep is None: _lowerCamelCase : Optional[Any] = t - 1 _lowerCamelCase : str = self.alphas_cumprod[t] _lowerCamelCase : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowerCamelCase : Any = 1 - alpha_prod_t _lowerCamelCase : Optional[int] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowerCamelCase : Optional[Any] = self.betas[t] _lowerCamelCase : str = self.alphas[t] else: _lowerCamelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev _lowerCamelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCamelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCamelCase : str = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCamelCase : int = torch.clamp( __A,-self.config.clip_sample_range,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : Tuple = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowerCamelCase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCamelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowerCamelCase : List[Any] = 0 if t > 0: _lowerCamelCase : Tuple = randn_tensor( model_output.shape,dtype=model_output.dtype,generator=__A,device=model_output.device ) _lowerCamelCase : Optional[Any] = self._get_variance( __A,predicted_variance=__A,prev_timestep=__A,) if self.variance_type == "fixed_small_log": _lowerCamelCase : Union[str, Any] = variance elif self.variance_type == "learned_range": _lowerCamelCase : Any = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' " for the UnCLIPScheduler." ) _lowerCamelCase : Tuple = variance * variance_noise _lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__A,pred_original_sample=__A ) def lowerCamelCase_ ( self : Optional[Any],__A : torch.FloatTensor,__A : torch.FloatTensor,__A : torch.IntTensor,): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples _lowerCamelCase : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device,dtype=original_samples.dtype ) _lowerCamelCase : str = timesteps.to(original_samples.device ) _lowerCamelCase : str = alphas_cumprod[timesteps] ** 0.5 _lowerCamelCase : Dict = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : str = sqrt_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : List[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowerCamelCase : Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _lowerCamelCase : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _lowerCamelCase : Dict = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ) def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: _lowerCamelCase : Optional[Any] = ( "Wrong input data's dimensions... " F'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(_lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: _lowerCamelCase : Optional[Any] = ( "Wrong input data's shape... " F'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(_lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: _lowerCamelCase : Union[str, Any] = ( "Input data have different datatype... " F'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(_lowerCAmelCase ) _lowerCamelCase : str = [] for value in value_array: _lowerCamelCase : List[str] = euclidean(_lowerCAmelCase , dataset[0] ) _lowerCamelCase : List[str] = dataset[0].tolist() for dataset_value in dataset[1:]: _lowerCamelCase : Optional[int] = euclidean(_lowerCAmelCase , _lowerCAmelCase ) if dist > temp_dist: _lowerCamelCase : List[str] = temp_dist _lowerCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def A_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ): """simple docstring""" return np.dot(_lowerCAmelCase , _lowerCAmelCase ) / (norm(_lowerCAmelCase ) * norm(_lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( A ): def __init__( self : Optional[int],__A : Union[str, Any]=0.01,__A : str=1_0_0_0 ): _lowerCamelCase : Any = p_stop _lowerCamelCase : Tuple = max_length def __iter__( self : Tuple ): _lowerCamelCase : int = 0 _lowerCamelCase : str = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : List[Any] = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str,__A : List[str],__A : List[str],__A : Union[str, Any]=False,__A : Dict=True ): _lowerCamelCase : Tuple = [ BatchSamplerShard(__A,2,__A,split_batches=__A,even_batches=__A ) for i in range(2 ) ] _lowerCamelCase : Dict = [list(__A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__A ) for shard in batch_sampler_shards],[len(__A ) for e in expected] ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : Any ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCamelCase : int = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : int = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Any = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Any = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Tuple = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__A,__A ) _lowerCamelCase : Tuple = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(__A,__A ) def lowerCamelCase_ ( self : Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : int = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Any = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : List[Any] = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Tuple = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : List[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : int = [[], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A ) def lowerCamelCase_ ( self : Dict ): # Check the shards when the dataset is a round multiple of total batch size. _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : str = BatchSampler(range(2_4 ),batch_size=3,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : List[str] = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Tuple = BatchSampler(range(2_1 ),batch_size=3,drop_last=__A ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : List[str] = BatchSampler(range(2_0 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : Dict = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ),batch_size=3,drop_last=__A ) _lowerCamelCase : List[str] = [[], []] self.check_batch_sampler_shards(__A,__A,even_batches=__A ) def lowerCamelCase_ ( self : Tuple ): # Check the shards when the dataset is a round multiple of batch size. _lowerCamelCase : Any = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ),batch_size=4,drop_last=__A ) # Expected shouldn't change self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : List[Any] = BatchSampler(range(2_2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_1 ),batch_size=4,drop_last=__A ) _lowerCamelCase : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) # Check the shards when the dataset is very small. _lowerCamelCase : int = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__A,__A,split_batches=__A,even_batches=__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _lowerCamelCase : List[str] = [BatchSamplerShard(__A,2,__A,even_batches=__A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ),3 ) self.assertEqual(len(batch_sampler_shards[1] ),2 ) self.assertListEqual(list(batch_sampler_shards[0] ),[[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ),[[3, 4], [9, 1_0, 1_1]] ) def lowerCamelCase_ ( self : int,__A : List[str],__A : int,__A : List[str],__A : Optional[int]=False,__A : List[str]=2,__A : Optional[Any]=False ): random.seed(__A ) _lowerCamelCase : str = list(__A ) _lowerCamelCase : List[str] = [ IterableDatasetShard( __A,batch_size=__A,drop_last=__A,num_processes=__A,process_index=__A,split_batches=__A,) for i in range(__A ) ] _lowerCamelCase : Dict = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__A ) iterable_dataset_lists.append(list(__A ) ) _lowerCamelCase : Union[str, Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Any = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__A ),len(__A ) ) self.assertTrue(len(__A ) % shard_batch_size == 0 ) _lowerCamelCase : Optional[int] = [] for idx in range(0,len(__A ),__A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__A ) < len(__A ): reference += reference self.assertListEqual(__A,reference[: len(__A )] ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = 4_2 _lowerCamelCase : Optional[int] = RandomIterableDataset() self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) # Edge case with a very small dataset _lowerCamelCase : Tuple = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) self.check_iterable_dataset_shards(__A,__A,batch_size=4,drop_last=__A,split_batches=__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = BatchSampler(range(1_6 ),batch_size=4,drop_last=__A ) _lowerCamelCase : Tuple = SkipBatchSampler(__A,2 ) self.assertListEqual(list(__A ),[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = SkipDataLoader(list(range(1_6 ) ),batch_size=4,skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader],[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = DataLoader(list(range(1_6 ) ),batch_size=4 ) _lowerCamelCase : List[str] = skip_first_batches(__A,num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader],[[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = DataLoaderShard(list(range(1_6 ) ),batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) def lowerCamelCase_ ( self : Dict ): Accelerator() _lowerCamelCase : List[Any] = DataLoaderDispatcher(range(1_6 ),batch_size=4 ) for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__A ): self.assertEqual(dataloader.end_of_dataloader,idx == 3 )
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'decision_transformer' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str,__A : Any=1_7,__A : List[Any]=4,__A : int=1_2_8,__A : List[str]=4_0_9_6,__A : Tuple=True,__A : List[Any]=1,__A : Any=1_0_2_4,__A : Any=3,__A : Optional[Any]=1,__A : Optional[int]=None,__A : Tuple="relu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Optional[Any]=0.1,__A : List[str]=1e-5,__A : List[str]=0.02,__A : Tuple=True,__A : Dict=True,__A : Any=5_0_2_5_6,__A : List[Any]=5_0_2_5_6,__A : Optional[int]=False,__A : int=False,**__A : Tuple,): _lowerCamelCase : Optional[Any] = state_dim _lowerCamelCase : str = act_dim _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Any = max_ep_len _lowerCamelCase : Dict = action_tanh _lowerCamelCase : int = vocab_size _lowerCamelCase : List[Any] = n_positions _lowerCamelCase : int = n_layer _lowerCamelCase : Any = n_head _lowerCamelCase : Optional[Any] = n_inner _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : str = resid_pdrop _lowerCamelCase : str = embd_pdrop _lowerCamelCase : Any = attn_pdrop _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Union[str, Any] = scale_attn_weights _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : Optional[int] = scale_attn_by_inverse_layer_idx _lowerCamelCase : List[Any] = reorder_and_upcast_attn _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : int = eos_token_id super().__init__(bos_token_id=__A,eos_token_id=__A,**__A )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : str = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : List[Any] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase_ : str = logging.WARNING UpperCAmelCase_ : Dict = True def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def A_ ( ): """simple docstring""" return __name__.split("." )[0] def A_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A_ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : Optional[int] = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Optional[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : Tuple = False def A_ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : str = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : int = None def A_ ( ): """simple docstring""" return log_levels def A_ ( _lowerCAmelCase : Optional[str] = None ): """simple docstring""" if name is None: _lowerCamelCase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : Union[str, Any] = False def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : List[Any] = True def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : Dict = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase ) def A_ ( self : List[str] , *_lowerCAmelCase : int , **_lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase ) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Any = warning_advice @functools.lru_cache(_lowerCAmelCase ) def A_ ( self : Dict , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ): """simple docstring""" self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : int = warning_once class UpperCAmelCase__ : def __init__( self : Optional[Any],*__A : List[str],**__A : Union[str, Any] ): # pylint: disable=unused-argument _lowerCamelCase : Optional[Any] = args[0] if args else None def __iter__( self : str ): return iter(self._iterator ) def __getattr__( self : List[Any],__A : Union[str, Any] ): def empty_fn(*__A : Optional[Any],**__A : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ): return self def __exit__( self : Any,__A : List[Any],__A : Optional[int],__A : int ): return class UpperCAmelCase__ : def __call__( self : Optional[Any],*__A : Optional[Any],**__A : Union[str, Any] ): if _tqdm_active: return tqdm_lib.tqdm(*__A,**__A ) else: return EmptyTqdm(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Tuple,**__A : Optional[int] ): _lowerCamelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A,**__A ) def lowerCamelCase_ ( self : Optional[Any] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : str = _tqdm_cls() def A_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Union[str, Any] = True hf_hub_utils.enable_progress_bars() def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : List[Any] = False hf_hub_utils.disable_progress_bars()
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = BlenderbotSmallTokenizer lowerCAmelCase_ = False def lowerCamelCase_ ( self : List[Any] ): super().setUp() _lowerCamelCase : str = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] _lowerCamelCase : List[Any] = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : int = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] _lowerCamelCase : Optional[Any] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Optional[int] ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Any = "adapt act apte" _lowerCamelCase : List[str] = "adapt act apte" return input_text, output_text def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Any = "adapt act apte" _lowerCamelCase : Optional[Any] = ["adapt", "act", "ap@@", "te"] _lowerCamelCase : Any = tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Optional[int] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] _lowerCamelCase : Optional[Any] = "I am a small frog." _lowerCamelCase : Union[str, Any] = tok([src_text],padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : List[str] = tok.batch_decode(__A,skip_special_tokens=__A,clean_up_tokenization_spaces=__A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) _lowerCamelCase : Dict = "I am a small frog ." _lowerCamelCase : Any = "." _lowerCamelCase : Any = tok(__A )["input_ids"] _lowerCamelCase : Optional[Any] = tok(__A )["input_ids"] assert encoded[-1] == encoded_dot[0]
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ['prompt'] lowerCAmelCase_ = ['prompt', 'negative_prompt'] lowerCAmelCase_ = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowerCAmelCase_ = False @property def lowerCamelCase_ ( self : List[Any] ): return 3_2 @property def lowerCamelCase_ ( self : Union[str, Any] ): return 3_2 @property def lowerCamelCase_ ( self : Optional[int] ): return self.time_input_dim @property def lowerCamelCase_ ( self : Tuple ): return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : Optional[int] ): return 1_0_0 @property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=self.text_embedder_hidden_size,projection_dim=self.text_embedder_hidden_size,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) return CLIPTextModelWithProjection(__A ) @property def lowerCamelCase_ ( self : Any ): torch.manual_seed(0 ) _lowerCamelCase : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } _lowerCamelCase : Any = PriorTransformer(**__A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCamelCase : Optional[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size,image_size=2_2_4,projection_dim=self.text_embedder_hidden_size,intermediate_size=3_7,num_attention_heads=4,num_channels=3,num_hidden_layers=5,patch_size=1_4,) _lowerCamelCase : Any = CLIPVisionModelWithProjection(__A ) return model @property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = CLIPImageProcessor( crop_size=2_2_4,do_center_crop=__A,do_normalize=__A,do_resize=__A,image_mean=[0.48145466, 0.4578275, 0.40821073],image_std=[0.26862954, 0.26130258, 0.27577711],resample=3,size=2_2_4,) return image_processor def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[Any] = self.dummy_prior _lowerCamelCase : Any = self.dummy_image_encoder _lowerCamelCase : Any = self.dummy_text_encoder _lowerCamelCase : List[str] = self.dummy_tokenizer _lowerCamelCase : List[str] = self.dummy_image_processor _lowerCamelCase : Optional[Any] = UnCLIPScheduler( variance_type="fixed_small_log",prediction_type="sample",num_train_timesteps=1_0_0_0,clip_sample=__A,clip_sample_range=10.0,) _lowerCamelCase : Optional[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCamelCase_ ( self : int,__A : List[Any],__A : Tuple=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : Any = torch.manual_seed(__A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Tuple = "cpu" _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : int = self.pipeline_class(**__A ) _lowerCamelCase : str = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : int = pipe(**self.get_dummy_inputs(__A ) ) _lowerCamelCase : Any = output.image_embeds _lowerCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(__A ),return_dict=__A,)[0] _lowerCamelCase : Any = image[0, -1_0:] _lowerCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) _lowerCamelCase : str = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self : str ): _lowerCamelCase : Tuple = torch_device == "cpu" _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = False self._test_inference_batch_single_identical( test_max_difference=__A,relax_max_difference=__A,test_mean_pixel_difference=__A,) @skip_mps def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = torch_device == "cpu" _lowerCamelCase : Any = False self._test_attention_slicing_forward_pass( test_max_difference=__A,test_mean_pixel_difference=__A,)
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : List[str] = 3 class UpperCAmelCase__ ( A ): pass def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" for shard in shards: for i in range(_lowerCAmelCase ): yield {"i": i, "shard": shard} def A_ ( ): """simple docstring""" _lowerCamelCase : str = int(os.environ["RANK"] ) _lowerCamelCase : List[str] = int(os.environ["WORLD_SIZE"] ) _lowerCamelCase : Optional[Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCAmelCase ) parser.add_argument("--local_rank" , type=_lowerCAmelCase ) parser.add_argument("--num_workers" , type=_lowerCAmelCase , default=0 ) _lowerCamelCase : Optional[int] = parser.parse_args() _lowerCamelCase : Tuple = args.streaming _lowerCamelCase : Any = args.num_workers _lowerCamelCase : Tuple = {"shards": [F'shard_{shard_idx}' for shard_idx in range(_lowerCAmelCase )]} _lowerCamelCase : int = IterableDataset.from_generator(_lowerCAmelCase , gen_kwargs=_lowerCAmelCase ) if not streaming: _lowerCamelCase : List[str] = Dataset.from_list(list(_lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = split_dataset_by_node(_lowerCAmelCase , rank=_lowerCAmelCase , world_size=_lowerCAmelCase ) _lowerCamelCase : List[str] = torch.utils.data.DataLoader(_lowerCAmelCase , num_workers=_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD _lowerCamelCase : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _lowerCamelCase : Union[str, Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'mgp-str' def __init__( self : Union[str, Any],__A : Optional[int]=[3_2, 1_2_8],__A : Tuple=4,__A : Any=3,__A : int=2_7,__A : Union[str, Any]=3_8,__A : List[Any]=5_0_2_5_7,__A : List[Any]=3_0_5_2_2,__A : Optional[int]=7_6_8,__A : List[str]=1_2,__A : List[str]=1_2,__A : Optional[Any]=4.0,__A : List[Any]=True,__A : List[Any]=False,__A : Tuple=1e-5,__A : Any=0.0,__A : List[Any]=0.0,__A : List[Any]=0.0,__A : Optional[Any]=False,__A : List[Any]=0.02,**__A : Optional[Any],): super().__init__(**__A ) _lowerCamelCase : Any = image_size _lowerCamelCase : Optional[int] = patch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : List[Any] = max_token_length _lowerCamelCase : str = num_character_labels _lowerCamelCase : Dict = num_bpe_labels _lowerCamelCase : Optional[Any] = num_wordpiece_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : List[str] = mlp_ratio _lowerCamelCase : List[str] = distilled _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : str = drop_rate _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : Dict = attn_drop_rate _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : List[Any] = output_aa_attentions _lowerCamelCase : Tuple = initializer_range
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while b: _lowerCamelCase , _lowerCamelCase : List[str] = b, a % b return a def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_lowerCAmelCase , a % b ) def A_ ( ): """simple docstring""" print(F'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(F'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(F'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(F'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(F'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(F'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(F'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(F'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(F'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'codegen' lowerCAmelCase_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any,__A : Optional[int]=5_0_4_0_0,__A : Any=2_0_4_8,__A : str=2_0_4_8,__A : int=4_0_9_6,__A : Any=2_8,__A : str=1_6,__A : Optional[Any]=6_4,__A : str=None,__A : Optional[int]="gelu_new",__A : Optional[int]=0.0,__A : List[Any]=0.0,__A : str=0.0,__A : Union[str, Any]=1e-5,__A : Tuple=0.02,__A : str=True,__A : Any=5_0_2_5_6,__A : Optional[Any]=5_0_2_5_6,__A : int=False,**__A : Optional[int],): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Tuple = n_ctx _lowerCamelCase : int = n_positions _lowerCamelCase : int = n_embd _lowerCamelCase : List[str] = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : List[Any] = n_inner _lowerCamelCase : str = rotary_dim _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : Any = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Any = attn_pdrop _lowerCamelCase : Optional[int] = layer_norm_epsilon _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : List[str] = bos_token_id _lowerCamelCase : str = eos_token_id super().__init__( bos_token_id=__A,eos_token_id=__A,tie_word_embeddings=__A,**__A ) class UpperCAmelCase__ ( A ): def __init__( self : Any,__A : PretrainedConfig,__A : str = "default",__A : List[PatchingSpec] = None,__A : bool = False,): super().__init__(__A,task=__A,patching_specs=__A,use_past=__A ) if not getattr(self._config,"pad_token_id",__A ): # TODO: how to do that better? _lowerCamelCase : Any = 0 @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__A,direction="inputs" ) _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase_ ( self : List[str] ): return self._config.n_layer @property def lowerCamelCase_ ( self : List[str] ): return self._config.n_head def lowerCamelCase_ ( self : Optional[Any],__A : PreTrainedTokenizer,__A : int = -1,__A : int = -1,__A : bool = False,__A : Optional[TensorType] = None,): _lowerCamelCase : str = super(__A,self ).generate_dummy_inputs( __A,batch_size=__A,seq_length=__A,is_pair=__A,framework=__A ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : Optional[int] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase , _lowerCamelCase : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : List[Any] = seqlen + 2 _lowerCamelCase : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : Dict = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] _lowerCamelCase : Tuple = common_inputs["attention_mask"] if self.use_past: _lowerCamelCase : Optional[int] = ordered_inputs["attention_mask"].dtype _lowerCamelCase : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__A,__A,dtype=__A )],dim=1 ) return ordered_inputs @property def lowerCamelCase_ ( self : Optional[int] ): return 1_3
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__ ( A ): # to overwrite at feature extractactor specific tests lowerCAmelCase_ = None lowerCAmelCase_ = None @property def lowerCamelCase_ ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__A,"feature_size" ) ) self.assertTrue(hasattr(__A,"sampling_rate" ) ) self.assertTrue(hasattr(__A,"padding_value" ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : List[Any] = feat_extract.model_input_names[0] _lowerCamelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__A ) == len(__A ) for x, y in zip(__A,processed_features[input_name] ) ) ) _lowerCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__A ) _lowerCamelCase : Any = BatchFeature({input_name: speech_inputs},tensor_type="np" ) _lowerCamelCase : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCamelCase : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__A ) _lowerCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Union[str, Any] = feat_extract.model_input_names[0] _lowerCamelCase : int = BatchFeature({input_name: speech_inputs},tensor_type="pt" ) _lowerCamelCase : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCamelCase : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__A ) _lowerCamelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : str = feat_extract.model_input_names[0] _lowerCamelCase : int = BatchFeature({input_name: speech_inputs},tensor_type="tf" ) _lowerCamelCase : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCamelCase : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowerCamelCase_ ( self : int,__A : List[Any]=False ): def _inputs_have_equal_length(__A : Tuple ): _lowerCamelCase : Optional[int] = len(input[0] ) for input_slice in input[1:]: if len(__A ) != length: return False return True def _inputs_are_equal(__A : Union[str, Any],__A : int ): if len(__A ) != len(__A ): return False for input_slice_a, input_slice_a in zip(__A,__A ): if not np.allclose(np.asarray(__A ),np.asarray(__A ),atol=1e-3 ): return False return True _lowerCamelCase : str = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=__A ) _lowerCamelCase : List[str] = feat_extract.model_input_names[0] _lowerCamelCase : Optional[int] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Tuple = self.feat_extract_tester.seq_length_diff _lowerCamelCase : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff _lowerCamelCase : Optional[int] = self.feat_extract_tester.min_seq_length _lowerCamelCase : Dict = self.feat_extract_tester.batch_size _lowerCamelCase : Union[str, Any] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowerCamelCase : Tuple = feat_extract.pad(__A,padding=__A ) _lowerCamelCase : Dict = input_a[input_name] _lowerCamelCase : int = feat_extract.pad(__A,padding="longest" ) _lowerCamelCase : int = input_a[input_name] _lowerCamelCase : int = feat_extract.pad(__A,padding="max_length",max_length=len(speech_inputs[-1] ) ) _lowerCamelCase : Tuple = input_a[input_name] _lowerCamelCase : List[Any] = feat_extract.pad(__A,padding="longest",return_tensors="np" ) _lowerCamelCase : Any = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__A ): feat_extract.pad(__A,padding="max_length" )[input_name] _lowerCamelCase : Dict = feat_extract.pad( __A,padding="max_length",max_length=__A,return_tensors="np" ) _lowerCamelCase : Optional[Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__A ) ) self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertTrue(_inputs_are_equal(__A,__A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowerCamelCase : str = feat_extract.pad(__A,pad_to_multiple_of=1_0 ) _lowerCamelCase : Union[str, Any] = input_a[input_name] _lowerCamelCase : str = feat_extract.pad(__A,padding="longest",pad_to_multiple_of=1_0 ) _lowerCamelCase : Dict = input_a[input_name] _lowerCamelCase : Optional[Any] = feat_extract.pad( __A,padding="max_length",pad_to_multiple_of=1_0,max_length=__A ) _lowerCamelCase : Tuple = input_a[input_name] _lowerCamelCase : List[Any] = feat_extract.pad( __A,padding="max_length",pad_to_multiple_of=1_0,max_length=__A,return_tensors="np",) _lowerCamelCase : List[str] = input_a[input_name] self.assertTrue(all(len(__A ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__A,__A ) ) _lowerCamelCase : Any = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(__A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2],(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowerCamelCase : List[Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def lowerCamelCase_ ( self : int,__A : Dict=False ): def _inputs_have_equal_length(__A : int ): _lowerCamelCase : Tuple = len(input[0] ) for input_slice in input[1:]: if len(__A ) != length: return False return True def _inputs_are_equal(__A : Dict,__A : Optional[int] ): if len(__A ) != len(__A ): return False for input_slice_a, input_slice_a in zip(__A,__A ): if not np.allclose(np.asarray(__A ),np.asarray(__A ),atol=1e-3 ): return False return True _lowerCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__A ) _lowerCamelCase : List[Any] = feat_extract.model_input_names[0] _lowerCamelCase : List[str] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowerCamelCase : Union[str, Any] = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[0] ),truncation=__A ) _lowerCamelCase : List[Any] = input_a[input_name] _lowerCamelCase : List[str] = feat_extract.pad(__A,padding="max_length",max_length=len(speech_inputs[0] ) ) _lowerCamelCase : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertFalse(_inputs_have_equal_length(__A ) ) # truncate to smallest with np _lowerCamelCase : Dict = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[0] ),return_tensors="np",truncation=__A,) _lowerCamelCase : Optional[Any] = input_a[input_name] _lowerCamelCase : Union[str, Any] = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[0] ),return_tensors="np" ) _lowerCamelCase : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__A ) ) # truncate to middle _lowerCamelCase : List[Any] = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[1] ),truncation=__A,return_tensors="np",) _lowerCamelCase : Tuple = input_a[input_name] _lowerCamelCase : Union[str, Any] = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[1] ),truncation=__A ) _lowerCamelCase : str = input_a[input_name] _lowerCamelCase : List[str] = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[1] ),return_tensors="np" ) _lowerCamelCase : str = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertTrue(_inputs_are_equal(__A,__A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__A ): feat_extract.pad(__A,truncation=__A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__A ): feat_extract.pad(__A,padding="longest",truncation=__A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__A ): feat_extract.pad(__A,padding="longest",truncation=__A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__A ): feat_extract.pad(__A,padding="max_length",truncation=__A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowerCamelCase : Optional[int] = 1_2 _lowerCamelCase : Dict = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[0] ),pad_to_multiple_of=__A,truncation=__A,) _lowerCamelCase : str = input_a[input_name] _lowerCamelCase : Any = feat_extract.pad( __A,padding="max_length",max_length=len(speech_inputs[0] ),pad_to_multiple_of=__A,) _lowerCamelCase : int = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowerCamelCase : Union[str, Any] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowerCamelCase : Tuple = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__A ) ) self.assertFalse(_inputs_have_equal_length(__A ) ) def lowerCamelCase_ ( self : Any ): self._check_padding(numpify=__A ) def lowerCamelCase_ ( self : str ): self._check_padding(numpify=__A ) def lowerCamelCase_ ( self : Optional[Any] ): self._check_truncation(numpify=__A ) def lowerCamelCase_ ( self : Any ): self._check_truncation(numpify=__A ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common() _lowerCamelCase : Tuple = feat_extract.model_input_names[0] _lowerCamelCase : str = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : int = feat_extract.pad(__A,padding="longest",return_tensors="np" )[input_name] _lowerCamelCase : str = feat_extract.pad(__A,padding="longest",return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common() _lowerCamelCase : List[Any] = feat_extract.model_input_names[0] _lowerCamelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Optional[Any] = feat_extract.pad(__A,padding="longest",return_tensors="np" )[input_name] _lowerCamelCase : Tuple = feat_extract.pad(__A,padding="longest",return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = self.feat_extract_dict _lowerCamelCase : Optional[Any] = True _lowerCamelCase : str = self.feature_extraction_class(**__A ) _lowerCamelCase : int = self.feat_extract_tester.prepare_inputs_for_common() _lowerCamelCase : Optional[int] = [len(__A ) for x in speech_inputs] _lowerCamelCase : str = feat_extract.model_input_names[0] _lowerCamelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Dict = feat_extract.pad(__A,padding="longest",return_tensors="np" ) self.assertIn("attention_mask",__A ) self.assertListEqual(list(processed.attention_mask.shape ),list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(),__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = self.feat_extract_dict _lowerCamelCase : Any = True _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**__A ) _lowerCamelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() _lowerCamelCase : List[str] = [len(__A ) for x in speech_inputs] _lowerCamelCase : Optional[Any] = feat_extract.model_input_names[0] _lowerCamelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) _lowerCamelCase : Any = min(__A ) _lowerCamelCase : Any = feat_extract.pad( __A,padding="max_length",max_length=__A,truncation=__A,return_tensors="np" ) self.assertIn("attention_mask",__A ) self.assertListEqual( list(processed_pad.attention_mask.shape ),[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(),[max_length for x in speech_inputs] )
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : bool = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis _lowerCamelCase : Any = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] _lowerCamelCase : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check _lowerCamelCase : str = primes[:idx] break _lowerCamelCase , _lowerCamelCase : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _lowerCamelCase : int = False for r in range(_lowerCAmelCase ): _lowerCamelCase : Any = pow(_lowerCAmelCase , d * 2**r , _lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _lowerCamelCase : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A_ ( ): """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ : Dict = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ : Tuple = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(s_dict.keys() ) for key in keys: _lowerCamelCase : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCamelCase : Tuple = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(F'{key} -> {new_key}' ) _lowerCamelCase : str = s_dict.pop(_lowerCAmelCase ) return s_dict def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = emb.weight.shape _lowerCamelCase : Optional[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : List[str] = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) _lowerCamelCase : str = os.path.basename(_lowerCAmelCase ) _lowerCamelCase : int = url.split("/" )[-2] _lowerCamelCase : Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not os.path.isfile(_lowerCAmelCase ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(_lowerCAmelCase ): _lowerCamelCase : List[Any] = open(_lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(_lowerCAmelCase ) as source, open(_lowerCAmelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=_lowerCAmelCase , unit_divisor=1024 ) as loop: while True: _lowerCamelCase : List[Any] = source.read(8192 ) if not buffer: break output.write(_lowerCAmelCase ) loop.update(len(_lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = open(_lowerCAmelCase , "rb" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): """simple docstring""" if ".pt" not in checkpoint_path: _lowerCamelCase : Optional[int] = _download(_MODELS[checkpoint_path] ) else: _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : Union[str, Any] = original_checkpoint["dims"] _lowerCamelCase : Optional[int] = original_checkpoint["model_state_dict"] _lowerCamelCase : Any = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Union[str, Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] _lowerCamelCase : List[Any] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=_lowerCAmelCase , decoder_ffn_dim=_lowerCAmelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _lowerCamelCase : List[str] = WhisperForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Any = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F' but all the following weights are missing {missing}' ) if tie_embeds: _lowerCamelCase : Dict = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCamelCase : int = proj_out_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Any = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import sys import turtle def A_ ( _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] ): """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A_ ( _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : tuple[float, float] , _lowerCAmelCase : int , ): """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) UpperCAmelCase_ : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') UpperCAmelCase_ : Optional[int] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowerCAmelCase , int(b / 2 ) ) * actual_power(_lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(_lowerCAmelCase , int(b / 2 ) ) * actual_power(_lowerCAmelCase , int(b / 2 ) ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if b < 0: return 1 / actual_power(_lowerCAmelCase , _lowerCAmelCase ) return actual_power(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'detr' lowerCAmelCase_ = ['past_key_values'] lowerCAmelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[int],__A : Tuple=True,__A : List[Any]=None,__A : List[str]=3,__A : Any=1_0_0,__A : Union[str, Any]=6,__A : Union[str, Any]=2_0_4_8,__A : str=8,__A : Dict=6,__A : Tuple=2_0_4_8,__A : Optional[int]=8,__A : int=0.0,__A : Union[str, Any]=0.0,__A : Optional[Any]=True,__A : Union[str, Any]="relu",__A : str=2_5_6,__A : int=0.1,__A : List[str]=0.0,__A : Union[str, Any]=0.0,__A : int=0.02,__A : Union[str, Any]=1.0,__A : str=False,__A : int="sine",__A : List[str]="resnet50",__A : List[Any]=True,__A : Tuple=False,__A : Dict=1,__A : Optional[Any]=5,__A : Optional[int]=2,__A : List[str]=1,__A : int=1,__A : str=5,__A : List[Any]=2,__A : Union[str, Any]=0.1,**__A : Union[str, Any],): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : int = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__A,__A ): _lowerCamelCase : Union[str, Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Optional[int] = config_class.from_dict(__A ) # set timm attributes to None _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = None, None, None _lowerCamelCase : Tuple = use_timm_backbone _lowerCamelCase : Dict = backbone_config _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : Union[str, Any] = num_queries _lowerCamelCase : Optional[Any] = d_model _lowerCamelCase : Any = encoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : int = encoder_attention_heads _lowerCamelCase : Union[str, Any] = decoder_ffn_dim _lowerCamelCase : Dict = decoder_layers _lowerCamelCase : Dict = decoder_attention_heads _lowerCamelCase : Optional[Any] = dropout _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Union[str, Any] = activation_dropout _lowerCamelCase : List[Any] = activation_function _lowerCamelCase : str = init_std _lowerCamelCase : Dict = init_xavier_std _lowerCamelCase : Tuple = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : List[str] = auxiliary_loss _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Union[str, Any] = backbone _lowerCamelCase : str = use_pretrained_backbone _lowerCamelCase : Union[str, Any] = dilation # Hungarian matcher _lowerCamelCase : Any = class_cost _lowerCamelCase : int = bbox_cost _lowerCamelCase : Tuple = giou_cost # Loss coefficients _lowerCamelCase : Union[str, Any] = mask_loss_coefficient _lowerCamelCase : Tuple = dice_loss_coefficient _lowerCamelCase : str = bbox_loss_coefficient _lowerCamelCase : Dict = giou_loss_coefficient _lowerCamelCase : Any = eos_coefficient super().__init__(is_encoder_decoder=__A,**__A ) @property def lowerCamelCase_ ( self : Tuple ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self : str ): return self.d_model @classmethod def lowerCamelCase_ ( cls : str,__A : PretrainedConfig,**__A : Optional[Any] ): return cls(backbone_config=__A,**__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : List[str] = self.__class__.model_type return output class UpperCAmelCase__ ( A ): lowerCAmelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return 1e-5 @property def lowerCamelCase_ ( self : Optional[int] ): return 1_2
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): _lowerCamelCase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowerCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] _lowerCamelCase : List[str] = np.concatenate(_lowerCAmelCase , axis=0 ) _lowerCamelCase : Tuple = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0 _lowerCamelCase : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) _lowerCamelCase : List[str] = 2.0 * image - 1.0 _lowerCamelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): _lowerCamelCase : List[Any] = torch.cat(_lowerCAmelCase , dim=0 ) return image def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any]=0.9_9_9_5 ): """simple docstring""" if not isinstance(_lowerCAmelCase , np.ndarray ): _lowerCamelCase : Tuple = True _lowerCamelCase : Any = va.device _lowerCamelCase : Tuple = va.cpu().numpy() _lowerCamelCase : Tuple = va.cpu().numpy() _lowerCamelCase : List[Any] = np.sum(va * va / (np.linalg.norm(_lowerCAmelCase ) * np.linalg.norm(_lowerCAmelCase )) ) if np.abs(_lowerCAmelCase ) > DOT_THRESHOLD: _lowerCamelCase : List[str] = (1 - t) * va + t * va else: _lowerCamelCase : List[Any] = np.arccos(_lowerCAmelCase ) _lowerCamelCase : Tuple = np.sin(_lowerCAmelCase ) _lowerCamelCase : List[str] = theta_a * t _lowerCamelCase : List[Any] = np.sin(_lowerCAmelCase ) _lowerCamelCase : List[Any] = np.sin(theta_a - theta_t ) / sin_theta_a _lowerCamelCase : int = sin_theta_t / sin_theta_a _lowerCamelCase : List[Any] = sa * va + sa * va if inputs_are_torch: _lowerCamelCase : int = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) return va def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = F.normalize(_lowerCAmelCase , dim=-1 ) _lowerCamelCase : Union[str, Any] = F.normalize(_lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): """simple docstring""" for param in model.parameters(): _lowerCamelCase : Tuple = value class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : AutoencoderKL,__A : CLIPTextModel,__A : CLIPModel,__A : CLIPTokenizer,__A : UNetaDConditionModel,__A : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],__A : CLIPFeatureExtractor,__A : List[str]=None,__A : Dict=None,__A : int=None,): super().__init__() self.register_modules( vae=__A,text_encoder=__A,clip_model=__A,tokenizer=__A,unet=__A,scheduler=__A,feature_extractor=__A,coca_model=__A,coca_tokenizer=__A,coca_transform=__A,) _lowerCamelCase : Any = ( feature_extractor.size if isinstance(feature_extractor.size,__A ) else feature_extractor.size["shortest_edge"] ) _lowerCamelCase : str = transforms.Normalize(mean=feature_extractor.image_mean,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder,__A ) set_requires_grad(self.clip_model,__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCamelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__A ) def lowerCamelCase_ ( self : Optional[Any] ): self.enable_attention_slicing(__A ) def lowerCamelCase_ ( self : int ): set_requires_grad(self.vae,__A ) def lowerCamelCase_ ( self : Optional[int] ): set_requires_grad(self.vae,__A ) def lowerCamelCase_ ( self : Optional[Any] ): set_requires_grad(self.unet,__A ) def lowerCamelCase_ ( self : List[Any] ): set_requires_grad(self.unet,__A ) def lowerCamelCase_ ( self : Any,__A : Tuple,__A : Tuple,__A : List[str] ): # get the original timestep using init_timestep _lowerCamelCase : Union[str, Any] = min(int(num_inference_steps * strength ),__A ) _lowerCamelCase : int = max(num_inference_steps - init_timestep,0 ) _lowerCamelCase : Union[str, Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self : Optional[Any],__A : Tuple,__A : Optional[int],__A : Union[str, Any],__A : Dict,__A : List[Any],__A : Optional[Any]=None ): if not isinstance(__A,torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(__A )}' ) _lowerCamelCase : List[str] = image.to(device=__A,dtype=__A ) if isinstance(__A,__A ): _lowerCamelCase : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__A ) ] _lowerCamelCase : List[str] = torch.cat(__A,dim=0 ) else: _lowerCamelCase : Union[str, Any] = self.vae.encode(__A ).latent_dist.sample(__A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCamelCase : int = 0.18215 * init_latents _lowerCamelCase : int = init_latents.repeat_interleave(__A,dim=0 ) _lowerCamelCase : List[Any] = randn_tensor(init_latents.shape,generator=__A,device=__A,dtype=__A ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__A,__A,__A ) _lowerCamelCase : Union[str, Any] = init_latents return latents def lowerCamelCase_ ( self : Optional[int],__A : Optional[int] ): _lowerCamelCase : str = self.coca_transform(__A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _lowerCamelCase : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device,dtype=self.coca_model.dtype ) ) _lowerCamelCase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>","" ).rstrip(" .," ) def lowerCamelCase_ ( self : Any,__A : Tuple,__A : Tuple ): _lowerCamelCase : Optional[int] = self.feature_extractor.preprocess(__A ) _lowerCamelCase : Optional[Any] = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() _lowerCamelCase : Dict = self.clip_model.get_image_features(__A ) _lowerCamelCase : Any = image_embeddings_clip / image_embeddings_clip.norm(p=2,dim=-1,keepdim=__A ) _lowerCamelCase : List[str] = image_embeddings_clip.repeat_interleave(__A,dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCamelCase_ ( self : str,__A : List[str],__A : Union[str, Any],__A : List[Any],__A : Dict,__A : List[Any],__A : Union[str, Any],__A : Union[str, Any],): _lowerCamelCase : Dict = latents.detach().requires_grad_() _lowerCamelCase : Dict = self.scheduler.scale_model_input(__A,__A ) # predict the noise residual _lowerCamelCase : int = self.unet(__A,__A,encoder_hidden_states=__A ).sample if isinstance(self.scheduler,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _lowerCamelCase : List[str] = self.scheduler.alphas_cumprod[timestep] _lowerCamelCase : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCamelCase : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowerCamelCase : str = torch.sqrt(__A ) _lowerCamelCase : List[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler,__A ): _lowerCamelCase : List[str] = self.scheduler.sigmas[index] _lowerCamelCase : Optional[Any] = latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCamelCase : List[Any] = 1 / 0.18215 * sample _lowerCamelCase : Any = self.vae.decode(__A ).sample _lowerCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0,1 ) _lowerCamelCase : str = transforms.Resize(self.feature_extractor_size )(__A ) _lowerCamelCase : Optional[int] = self.normalize(__A ).to(latents.dtype ) _lowerCamelCase : Any = self.clip_model.get_image_features(__A ) _lowerCamelCase : Union[str, Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2,dim=-1,keepdim=__A ) _lowerCamelCase : Union[str, Any] = spherical_dist_loss(__A,__A ).mean() * clip_guidance_scale _lowerCamelCase : str = -torch.autograd.grad(__A,__A )[0] if isinstance(self.scheduler,__A ): _lowerCamelCase : List[str] = latents.detach() + grads * (sigma**2) _lowerCamelCase : Optional[Any] = noise_pred_original else: _lowerCamelCase : List[Any] = noise_pred_original - torch.sqrt(__A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int],__A : Union[torch.FloatTensor, PIL.Image.Image],__A : Union[torch.FloatTensor, PIL.Image.Image],__A : Optional[str] = None,__A : Optional[str] = None,__A : Optional[int] = 5_1_2,__A : Optional[int] = 5_1_2,__A : float = 0.6,__A : Optional[int] = 5_0,__A : Optional[float] = 7.5,__A : Optional[int] = 1,__A : float = 0.0,__A : Optional[float] = 1_0_0,__A : Optional[torch.Generator] = None,__A : Optional[str] = "pil",__A : bool = True,__A : float = 0.8,__A : float = 0.1,__A : float = 0.1,): if isinstance(__A,__A ) and len(__A ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(__A )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__A,torch.Generator ) and batch_size > 1: _lowerCamelCase : List[str] = [generator] + [None] * (batch_size - 1) _lowerCamelCase : Dict = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] _lowerCamelCase : str = [x[0] for x in coca_is_none if x[1]] _lowerCamelCase : List[Any] = ", ".join(__A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__A ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) _lowerCamelCase : List[str] = self.get_image_description(__A ) if style_prompt is None: if len(__A ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) _lowerCamelCase : List[str] = self.get_image_description(__A ) # get prompt text embeddings for content and style _lowerCamelCase : str = self.tokenizer( __A,padding="max_length",max_length=self.tokenizer.model_max_length,truncation=__A,return_tensors="pt",) _lowerCamelCase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _lowerCamelCase : Optional[int] = self.tokenizer( __A,padding="max_length",max_length=self.tokenizer.model_max_length,truncation=__A,return_tensors="pt",) _lowerCamelCase : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _lowerCamelCase : Optional[int] = slerp(__A,__A,__A ) # duplicate text embeddings for each generation per prompt _lowerCamelCase : Optional[int] = text_embeddings.repeat_interleave(__A,dim=0 ) # set timesteps _lowerCamelCase : List[str] = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _lowerCamelCase : Union[str, Any] = {} if accepts_offset: _lowerCamelCase : Dict = 1 self.scheduler.set_timesteps(__A,**__A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _lowerCamelCase , _lowerCamelCase : Any = self.get_timesteps(__A,__A,self.device ) _lowerCamelCase : Optional[int] = timesteps[:1].repeat(__A ) # Preprocess image _lowerCamelCase : int = preprocess(__A,__A,__A ) _lowerCamelCase : Optional[int] = self.prepare_latents( __A,__A,__A,text_embeddings.dtype,self.device,__A ) _lowerCamelCase : Tuple = preprocess(__A,__A,__A ) _lowerCamelCase : Optional[int] = self.prepare_latents( __A,__A,__A,text_embeddings.dtype,self.device,__A ) _lowerCamelCase : Tuple = slerp(__A,__A,__A ) if clip_guidance_scale > 0: _lowerCamelCase : Dict = self.get_clip_image_embeddings(__A,__A ) _lowerCamelCase : Dict = self.get_clip_image_embeddings(__A,__A ) _lowerCamelCase : Any = slerp( __A,__A,__A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCamelCase : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCamelCase : Union[str, Any] = content_text_input.input_ids.shape[-1] _lowerCamelCase : Tuple = self.tokenizer([""],padding="max_length",max_length=__A,return_tensors="pt" ) _lowerCamelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _lowerCamelCase : str = uncond_embeddings.repeat_interleave(__A,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCamelCase : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowerCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowerCamelCase : List[Any] = torch.randn(__A,generator=__A,device="cpu",dtype=__A ).to( self.device ) else: _lowerCamelCase : Any = torch.randn(__A,generator=__A,device=self.device,dtype=__A ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _lowerCamelCase : str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCamelCase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCamelCase : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCamelCase : Any = {} if accepts_eta: _lowerCamelCase : List[str] = eta # check if the scheduler accepts generator _lowerCamelCase : str = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _lowerCamelCase : str = generator with self.progress_bar(total=__A ): for i, t in enumerate(__A ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(__A,__A ) # predict the noise residual _lowerCamelCase : Optional[Any] = self.unet(__A,__A,encoder_hidden_states=__A ).sample # perform classifier free guidance if do_classifier_free_guidance: _lowerCamelCase , _lowerCamelCase : Any = noise_pred.chunk(2 ) _lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowerCamelCase : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _lowerCamelCase , _lowerCamelCase : Dict = self.cond_fn( __A,__A,__A,__A,__A,__A,__A,) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step(__A,__A,__A,**__A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowerCamelCase : List[Any] = 1 / 0.18215 * latents _lowerCamelCase : Dict = self.vae.decode(__A ).sample _lowerCamelCase : Optional[Any] = (image / 2 + 0.5).clamp(0,1 ) _lowerCamelCase : List[str] = image.cpu().permute(0,2,3,1 ).numpy() if output_type == "pil": _lowerCamelCase : List[str] = self.numpy_to_pil(__A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__A,nsfw_content_detected=__A )
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase_ : Dict = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : int = list(s_dict.keys() ) for key in keys: _lowerCamelCase : List[Any] = r".*/layers_(\d+)" _lowerCamelCase : int = key if re.match(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[Any] = re.sub(r"layers_(\d+)" , r"block/\1/layer" , _lowerCAmelCase ) _lowerCamelCase : str = r"(encoder|decoder)\/" if re.match(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Optional[int] = re.match(_lowerCAmelCase , _lowerCAmelCase ).groups() if groups[0] == "encoder": _lowerCamelCase : Tuple = re.sub(r"/mlp/" , r"/1/mlp/" , _lowerCAmelCase ) _lowerCamelCase : Any = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , _lowerCAmelCase ) elif groups[0] == "decoder": _lowerCamelCase : int = re.sub(r"/mlp/" , r"/2/mlp/" , _lowerCAmelCase ) _lowerCamelCase : int = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , _lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _lowerCamelCase : Optional[int] = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(F'{key} -> {new_key}' ) _lowerCamelCase : Any = s_dict.pop(_lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase : Dict = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase : Dict = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _lowerCamelCase : List[str] = s_dict[key].shape[0] _lowerCamelCase : Optional[Any] = s_dict[key] for idx in range(_lowerCAmelCase ): _lowerCamelCase : int = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_lowerCAmelCase ) return s_dict UpperCAmelCase_ : Any = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ): """simple docstring""" import regex as re with open(_lowerCAmelCase , "r" ) as f: _lowerCamelCase : int = f.read() _lowerCamelCase : Any = re.findall(r"(.*) = ([0-9.]*)" , _lowerCAmelCase ) _lowerCamelCase : str = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _lowerCamelCase : List[Any] = float(_lowerCAmelCase ) if "." in value else int(_lowerCAmelCase ) _lowerCamelCase : List[str] = re.findall(r"(.*activations) = \(\'(.*)\',\)" , _lowerCAmelCase )[0] _lowerCamelCase : Union[str, Any] = str(activation[1] ) _lowerCamelCase : Any = num_experts _lowerCamelCase : str = SwitchTransformersConfig(**_lowerCAmelCase ) return config def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]="./" , _lowerCAmelCase : Tuple=8 ): """simple docstring""" print(F'Loading flax weights from : {flax_checkpoint_path}' ) _lowerCamelCase : str = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) if gin_file is not None: _lowerCamelCase : List[Any] = convert_gin_to_config(_lowerCAmelCase , _lowerCAmelCase ) else: _lowerCamelCase : Dict = SwitchTransformersConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase : List[Any] = flax_params["target"] _lowerCamelCase : Tuple = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[Any] = rename_keys(_lowerCAmelCase ) _lowerCamelCase : int = unflatten_dict(_lowerCAmelCase , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') UpperCAmelCase_ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Optional[Any],*__A : str,**__A : Union[str, Any] ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead.",__A,) super().__init__(*__A,**__A )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' from typing import Any class UpperCAmelCase__ : def __init__( self : Any,__A : Any ): _lowerCamelCase : Optional[Any] = data _lowerCamelCase : List[str] = None def __repr__( self : int ): return f'Node({self.data})' class UpperCAmelCase__ : def __init__( self : Union[str, Any] ): _lowerCamelCase : str = None def __iter__( self : Dict ): _lowerCamelCase : int = self.head while node: yield node.data _lowerCamelCase : List[str] = node.next def __len__( self : Union[str, Any] ): return sum(1 for _ in self ) def __repr__( self : str ): return "->".join([str(__A ) for item in self] ) def __getitem__( self : List[str],__A : int ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Optional[Any],__A : int,__A : Any ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _lowerCamelCase : List[Any] = self.head for _ in range(__A ): _lowerCamelCase : str = current.next _lowerCamelCase : Optional[int] = data def lowerCamelCase_ ( self : Any,__A : Any ): self.insert_nth(len(self ),__A ) def lowerCamelCase_ ( self : str,__A : Any ): self.insert_nth(0,__A ) def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : Any ): if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _lowerCamelCase : List[Any] = Node(__A ) if self.head is None: _lowerCamelCase : Union[str, Any] = new_node elif index == 0: _lowerCamelCase : List[str] = self.head # link new_node to head _lowerCamelCase : str = new_node else: _lowerCamelCase : List[str] = self.head for _ in range(index - 1 ): _lowerCamelCase : Optional[int] = temp.next _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : List[Any] = new_node def lowerCamelCase_ ( self : str ): # print every node data print(self ) def lowerCamelCase_ ( self : Optional[int] ): return self.delete_nth(0 ) def lowerCamelCase_ ( self : Union[str, Any] ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowerCamelCase_ ( self : List[str],__A : int = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _lowerCamelCase : int = self.head # default first node if index == 0: _lowerCamelCase : int = self.head.next else: _lowerCamelCase : List[Any] = self.head for _ in range(index - 1 ): _lowerCamelCase : List[Any] = temp.next _lowerCamelCase : Optional[int] = temp.next _lowerCamelCase : Any = temp.next.next return delete_node.data def lowerCamelCase_ ( self : List[str] ): return self.head is None def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = self.head while current: # Store the current node's next node. _lowerCamelCase : Tuple = current.next # Make the current node's next point backwards _lowerCamelCase : Dict = prev # Make the previous node be the current node _lowerCamelCase : Dict = current # Make the current node the next node (to progress iteration) _lowerCamelCase : Optional[int] = next_node # Return prev in order to put the head at the end _lowerCamelCase : List[Any] = prev def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowerCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowerCAmelCase ) == i linked_list.insert_nth(_lowerCAmelCase , i + 1 ) assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowerCAmelCase ) == 9 assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _lowerCamelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_lowerCAmelCase ) == "->".join(str(_lowerCAmelCase ) for i in range(-8 , 1 ) ) def A_ ( ): """simple docstring""" _lowerCamelCase : int = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -1_9_2.5_5_5_5_5, "Hello, world!", 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _lowerCamelCase : Tuple = LinkedList() for i in test_input: linked_list.insert_tail(_lowerCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowerCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowerCamelCase : Dict = linked_list.delete_head() assert result == -9 assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowerCamelCase : int = linked_list.delete_tail() assert result == 1_2.2 assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowerCamelCase : Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowerCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(_lowerCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowerCAmelCase ) assert ( str(_lowerCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowerCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ): """simple docstring""" from doctest import testmod testmod() _lowerCamelCase : Dict = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(_lowerCAmelCase ) print("\nReading/changing Node data using indexing:" ) print(F'Element at Position 1: {linked_list[1]}' ) _lowerCamelCase : Union[str, Any] = input("Enter New Value: " ).strip() print("New list:" ) print(_lowerCAmelCase ) print(F'length of linked_list is : {len(_lowerCAmelCase )}' ) if __name__ == "__main__": main()
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' import pprint import requests UpperCAmelCase_ : Tuple = 'https://zenquotes.io/api' def A_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def A_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCAmelCase_ : Dict = random_quotes() pprint.pprint(response)
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : list ): """simple docstring""" if any(not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(_lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any=0 ): """simple docstring""" return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[column] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowerCAmelCase ): _lowerCamelCase : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : List[Any] = current_dis return min_dis def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=float("inf" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowerCAmelCase ): for j in range(max(0 , i - 6 ) , _lowerCAmelCase ): _lowerCamelCase : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _lowerCamelCase : List[str] = current_dis return min_dis def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowerCAmelCase , _lowerCAmelCase ) # recursion _lowerCamelCase : Any = points_counts // 2 _lowerCamelCase : Optional[Any] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[:mid] , _lowerCAmelCase ) _lowerCamelCase : Optional[int] = closest_pair_of_points_sqr( _lowerCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) _lowerCamelCase : int = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowerCAmelCase ) _lowerCamelCase : str = dis_between_closest_in_strip( _lowerCAmelCase , len(_lowerCAmelCase ) , _lowerCAmelCase ) return min(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = column_based_sort(_lowerCAmelCase , column=0 ) _lowerCamelCase : Dict = column_based_sort(_lowerCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ : str = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' from __future__ import annotations import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" if num <= 0: _lowerCamelCase : str = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [True] * (num + 1) _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : List[Any] = int(math.sqrt(_lowerCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCAmelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowerCAmelCase ): if sieve[i] is True: _lowerCamelCase : Any = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowerCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : def __init__( self : str,__A : Tuple,__A : int=2,__A : List[str]=3,__A : Dict=4,__A : str=2,__A : Tuple=7,__A : List[str]=True,__A : int=True,__A : List[Any]=True,__A : Tuple=True,__A : Optional[Any]=9_9,__A : Optional[int]=3_6,__A : str=3,__A : Tuple=4,__A : Tuple=3_7,__A : Any="gelu",__A : Any=0.1,__A : Any=0.1,__A : Optional[int]=5_1_2,__A : Optional[int]=1_6,__A : int=2,__A : str=0.02,__A : Optional[int]=6,__A : Dict=6,__A : Optional[Any]=3,__A : Any=4,__A : int=None,__A : List[Any]=1_0_0_0,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : str = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Any = text_seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Dict = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = coordinate_size _lowerCamelCase : int = shape_size _lowerCamelCase : Dict = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : List[Any] = scope _lowerCamelCase : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase : Dict = text_seq_length _lowerCamelCase : int = (image_size // patch_size) ** 2 + 1 _lowerCamelCase : Optional[Any] = self.text_seq_length + self.image_seq_length def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase : Optional[Any] = bbox[i, j, 3] _lowerCamelCase : Tuple = bbox[i, j, 1] _lowerCamelCase : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase : Union[str, Any] = bbox[i, j, 2] _lowerCamelCase : Optional[Any] = bbox[i, j, 0] _lowerCamelCase : Optional[int] = t _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : str = ids_tensor([self.batch_size, self.text_seq_length],self.type_vocab_size ) _lowerCamelCase : int = None _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.text_seq_length],self.num_labels ) _lowerCamelCase : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,coordinate_size=self.coordinate_size,shape_size=self.shape_size,input_size=self.image_size,patch_size=self.patch_size,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase_ ( self : Dict,__A : int,__A : str,__A : str,__A : List[Any],__A : List[Any],__A : Any,__A : Optional[Any],__A : List[Any] ): _lowerCamelCase : Union[str, Any] = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image _lowerCamelCase : Tuple = model(__A,pixel_values=__A ) _lowerCamelCase : int = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Optional[Any] = model(__A,bbox=__A,pixel_values=__A,token_type_ids=__A ) _lowerCamelCase : Any = model(__A,bbox=__A,pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase : str = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase : Tuple = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Tuple,__A : Optional[int],__A : Any,__A : Optional[Any],__A : Dict,__A : List[Any],__A : str,__A : List[str],__A : Union[str, Any] ): _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Union[str, Any] = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int,__A : int,__A : Optional[Any],__A : Optional[Any],__A : Optional[int],__A : Dict,__A : str,__A : Optional[int],__A : Optional[Any] ): _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : str = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase_ ( self : str,__A : int,__A : Tuple,__A : Tuple,__A : Dict,__A : Optional[Any],__A : Optional[int],__A : Union[str, Any],__A : List[Any] ): _lowerCamelCase : Optional[Any] = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model( __A,bbox=__A,pixel_values=__A,attention_mask=__A,token_type_ids=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : Tuple,__A : Optional[int],__A : Optional[Any],__A : Tuple ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = LayoutLMvaModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : str,__A : Dict=False ): _lowerCamelCase : List[Any] = copy.deepcopy(__A ) if model_class in get_values(__A ): _lowerCamelCase : Dict = { k: v.unsqueeze(1 ).expand(-1,self.model_tester.num_choices,-1 ).contiguous() if isinstance(__A,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): _lowerCamelCase : Optional[Any] = torch.ones(self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in get_values(__A ): _lowerCamelCase : Optional[int] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) _lowerCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in [ *get_values(__A ), ]: _lowerCamelCase : Any = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) elif model_class in [ *get_values(__A ), ]: _lowerCamelCase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length),dtype=torch.long,device=__A,) return inputs_dict def lowerCamelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def lowerCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[Any] ): return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=__A,return_tensors="pt" ).pixel_values.to(__A ) _lowerCamelCase : str = torch.tensor([[1, 2]] ) _lowerCamelCase : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase : Optional[int] = model( input_ids=input_ids.to(__A ),bbox=bbox.to(__A ),pixel_values=pixel_values.to(__A ),) # verify the logits _lowerCamelCase : List[str] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape,__A ) _lowerCamelCase : int = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3],__A,atol=1e-4 ) )
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase__ ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = StableUnCLIPPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase_ = False def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[str] = 3_2 _lowerCamelCase : Dict = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _lowerCamelCase : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=__A,projection_dim=__A,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) ) torch.manual_seed(0 ) _lowerCamelCase : int = PriorTransformer( num_attention_heads=2,attention_head_dim=1_2,embedding_dim=__A,num_layers=1,) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = DDPMScheduler( variance_type="fixed_small_log",prediction_type="sample",num_train_timesteps=1_0_0_0,clip_sample=__A,clip_sample_range=5.0,beta_schedule="squaredcos_cap_v2",) # regular denoising components torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=__A ) _lowerCamelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _lowerCamelCase : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=__A,projection_dim=3_2,intermediate_size=3_7,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,) ) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDConditionModel( sample_size=3_2,in_channels=4,out_channels=4,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),block_out_channels=(3_2, 6_4),attention_head_dim=(2, 4),class_embed_type="projection",projection_class_embeddings_input_dim=embedder_projection_dim * 2,cross_attention_dim=__A,layers_per_block=1,upcast_attention=__A,use_linear_projection=__A,) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = DDIMScheduler( beta_schedule="scaled_linear",beta_start=0.00085,beta_end=0.012,prediction_type="v_prediction",set_alpha_to_one=__A,steps_offset=1,) torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = AutoencoderKL() _lowerCamelCase : str = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def lowerCamelCase_ ( self : List[str],__A : Any,__A : List[str]=0 ): if str(__A ).startswith("mps" ): _lowerCamelCase : List[str] = torch.manual_seed(__A ) else: _lowerCamelCase : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) _lowerCamelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__A ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : str ): _lowerCamelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) _lowerCamelCase : List[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l",torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase : int = torch.Generator(device="cpu" ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe("anime turle",generator=__A,output_type="np" ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__A,__A ) def lowerCamelCase_ ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Dict = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l",torch_dtype=torch.floataa ) _lowerCamelCase : Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase : List[str] = pipe( "anime turtle",prior_num_inference_steps=2,num_inference_steps=2,output_type="np",) _lowerCamelCase : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'rwkv' lowerCAmelCase_ = {'max_position_embeddings': 'context_length'} def __init__( self : Optional[Any],__A : List[Any]=5_0_2_7_7,__A : Any=1_0_2_4,__A : Optional[int]=4_0_9_6,__A : int=3_2,__A : Optional[int]=None,__A : Optional[int]=None,__A : Tuple=1e-5,__A : Union[str, Any]=0,__A : Tuple=0,__A : Union[str, Any]=6,__A : int=False,__A : str=True,**__A : str,): _lowerCamelCase : str = vocab_size _lowerCamelCase : List[Any] = context_length _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size _lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : int = rescale_every _lowerCamelCase : str = use_cache _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : int = eos_token_id super().__init__( tie_word_embeddings=__A,bos_token_id=__A,eos_token_id=__A,**__A )
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase_ : int = logging.getLogger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Dict,__A : Union[str, Any],__A : Optional[Any],__A : str,__A : Optional[Any]=None ): super().__init__( __A,question_encoder_tokenizer=__A,generator_tokenizer=__A,index=__A,init_retrieval=__A,) _lowerCamelCase : Union[str, Any] = None def lowerCamelCase_ ( self : Optional[int],__A : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _lowerCamelCase : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCamelCase : int = str(distributed_port + 1 ) _lowerCamelCase : Any = dist.new_group(ranks=__A,backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase_ ( self : int ): return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase_ ( self : List[str],__A : int,__A : Dict,__A : Optional[Any]=torch.floataa ): _lowerCamelCase : Dict = torch.empty(__A,dtype=__A ) dist.scatter(__A,src=0,scatter_list=__A,group=self.process_group ) return target_tensor def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCamelCase : Optional[int] = next((addr for addr in addrs if addr.startswith("e" )),__A ) return ifname def lowerCamelCase_ ( self : Any,__A : np.ndarray,__A : int ): # single GPU training if not dist.is_initialized(): _lowerCamelCase , _lowerCamelCase : Dict = self._main_retrieve(__A,__A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__A ) # distributed training _lowerCamelCase : Optional[Any] = dist.get_world_size(group=self.process_group ) # gather logic _lowerCamelCase : Optional[int] = None if self._is_main(): _lowerCamelCase : Any = [torch.empty(question_hidden_states.shape,dtype=torch.floataa ) for _ in range(__A )] dist.gather(torch.tensor(__A ),dst=0,gather_list=__A,group=self.process_group ) # scatter logic _lowerCamelCase : List[Any] = question_hidden_states.shape[0] _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Dict = [] if self._is_main(): assert len(__A ) == world_size _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self._main_retrieve(torch.cat(__A ).numpy(),__A ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = torch.tensor(__A ), torch.tensor(__A ) _lowerCamelCase : Optional[int] = self._chunk_tensor(__A,__A ) _lowerCamelCase : Any = self._chunk_tensor(__A,__A ) _lowerCamelCase : Optional[int] = self._scattered(__A,[n_queries, n_docs],target_type=torch.intaa ) _lowerCamelCase : Optional[int] = self._scattered(__A,[n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__A )
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } UpperCAmelCase_ : Optional[Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } UpperCAmelCase_ : Optional[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Tuple = set() _lowerCamelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : Any = char _lowerCamelCase : str = set(_lowerCAmelCase ) return pairs class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str],__A : List[str],__A : Optional[Any],__A : Any="<s>",__A : Union[str, Any]="</s>",__A : Union[str, Any]="</s>",__A : Dict="<s>",__A : Tuple="<unk>",__A : Any="<pad>",__A : List[str]="<mask>",**__A : str,): super().__init__( bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,cls_token=__A,pad_token=__A,mask_token=__A,**__A,) _lowerCamelCase : str = vocab_file _lowerCamelCase : str = merges_file _lowerCamelCase : List[str] = {} _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Optional[int] = 3 self.add_from_file(__A ) _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(__A,encoding="utf-8" ) as merges_handle: _lowerCamelCase : Optional[int] = merges_handle.read().split("\n" )[:-1] _lowerCamelCase : Dict = [tuple(merge.split()[:-1] ) for merge in merges] _lowerCamelCase : Dict = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Optional[int] = {} def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Dict = [self.cls_token_id] _lowerCamelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Union[str, Any],__A : List[int],__A : Optional[List[int]] = None,__A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A,token_ids_a=__A,already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def lowerCamelCase_ ( self : int,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self : int ): return len(self.encoder ) def lowerCamelCase_ ( self : List[Any] ): return dict(self.encoder,**self.added_tokens_encoder ) def lowerCamelCase_ ( self : Any,__A : Optional[Any] ): if token in self.cache: return self.cache[token] _lowerCamelCase : Union[str, Any] = tuple(__A ) _lowerCamelCase : str = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _lowerCamelCase : Tuple = get_pairs(__A ) if not pairs: return token while True: _lowerCamelCase : int = min(__A,key=lambda __A : self.bpe_ranks.get(__A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase : Optional[Any] = bigram _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[str] = 0 while i < len(__A ): try: _lowerCamelCase : List[Any] = word.index(__A,__A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase : List[Any] = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase : Any = tuple(__A ) _lowerCamelCase : Any = new_word if len(__A ) == 1: break else: _lowerCamelCase : Dict = get_pairs(__A ) _lowerCamelCase : Tuple = "@@ ".join(__A ) _lowerCamelCase : Tuple = word[:-4] _lowerCamelCase : Optional[int] = word return word def lowerCamelCase_ ( self : str,__A : Optional[Any] ): _lowerCamelCase : int = [] _lowerCamelCase : Any = re.findall(r"\S+\n?",__A ) for token in words: split_tokens.extend(list(self.bpe(__A ).split(" " ) ) ) return split_tokens def lowerCamelCase_ ( self : str,__A : Union[str, Any] ): return self.encoder.get(__A,self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any] ): return self.decoder.get(__A,self.unk_token ) def lowerCamelCase_ ( self : Optional[int],__A : List[Any] ): _lowerCamelCase : Dict = " ".join(__A ).replace("@@ ","" ).strip() return out_string def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[str] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) if os.path.abspath(self.merges_file ) != os.path.abspath(__A ): copyfile(self.merges_file,__A ) return out_vocab_file, out_merge_file def lowerCamelCase_ ( self : Union[str, Any],__A : Optional[Any] ): if isinstance(__A,__A ): try: with open(__A,"r",encoding="utf-8" ) as fd: self.add_from_file(__A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return _lowerCamelCase : Optional[int] = f.readlines() for lineTmp in lines: _lowerCamelCase : List[str] = lineTmp.strip() _lowerCamelCase : int = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) _lowerCamelCase : Tuple = line[:idx] _lowerCamelCase : Tuple = len(self.encoder )
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' from math import loga def A_ ( _lowerCAmelCase : int ): """simple docstring""" if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'linear' lowerCAmelCase_ = 'cosine' lowerCAmelCase_ = 'cosine_with_restarts' lowerCAmelCase_ = 'polynomial' lowerCAmelCase_ = 'constant' lowerCAmelCase_ = 'constant_with_warmup' lowerCAmelCase_ = 'piecewise_constant' def A_ ( _lowerCAmelCase : Optimizer , _lowerCAmelCase : int = -1 ): """simple docstring""" return LambdaLR(_lowerCAmelCase , lambda _lowerCAmelCase : 1 , last_epoch=_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1.0 , _lowerCAmelCase ) ) return 1.0 return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optimizer , _lowerCAmelCase : str , _lowerCAmelCase : int = -1 ): """simple docstring""" _lowerCamelCase : List[str] = {} _lowerCamelCase : str = step_rules.split("," ) for rule_str in rule_list[:-1]: _lowerCamelCase , _lowerCamelCase : Any = rule_str.split(":" ) _lowerCamelCase : List[Any] = int(_lowerCAmelCase ) _lowerCamelCase : int = float(_lowerCAmelCase ) _lowerCamelCase : Any = value _lowerCamelCase : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): def rule_func(_lowerCAmelCase : int ) -> float: _lowerCamelCase : Tuple = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowerCamelCase : Union[str, Any] = create_rules_function(_lowerCAmelCase , _lowerCAmelCase ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , last_epoch=_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=-1 ): """simple docstring""" def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 0.5 , _lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(_lowerCAmelCase : Union[str, Any] ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optimizer , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = -1 ): """simple docstring""" def lr_lambda(_lowerCAmelCase : Optional[Any] ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) _lowerCamelCase : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=1E-7 , _lowerCAmelCase : Tuple=1.0 , _lowerCAmelCase : int=-1 ): """simple docstring""" _lowerCamelCase : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(_lowerCAmelCase : int ): if current_step < num_warmup_steps: return float(_lowerCAmelCase ) / float(max(1 , _lowerCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowerCamelCase : Any = lr_init - lr_end _lowerCamelCase : List[Any] = num_training_steps - num_warmup_steps _lowerCamelCase : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps _lowerCamelCase : Dict = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A_ ( _lowerCAmelCase : Union[str, SchedulerType] , _lowerCAmelCase : Optimizer , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 1 , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : int = -1 , ): """simple docstring""" _lowerCamelCase : Dict = SchedulerType(_lowerCAmelCase ) _lowerCamelCase : List[str] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCAmelCase , last_epoch=_lowerCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCAmelCase , step_rules=_lowerCAmelCase , last_epoch=_lowerCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , num_cycles=_lowerCAmelCase , last_epoch=_lowerCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , power=_lowerCAmelCase , last_epoch=_lowerCAmelCase , ) return schedule_func( _lowerCAmelCase , num_warmup_steps=_lowerCAmelCase , num_training_steps=_lowerCAmelCase , last_epoch=_lowerCAmelCase )
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ : Optional[Any] = logging.getLogger(__name__) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): """simple docstring""" if os.path.exists(_lowerCAmelCase ): if os.path.exists(os.path.join(_lowerCAmelCase , "config.json" ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , "config.json" ) ): os.remove(os.path.join(_lowerCAmelCase , "config.json" ) ) if os.path.exists(os.path.join(_lowerCAmelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(_lowerCAmelCase , "pytorch_model.bin" ) ) else: os.makedirs(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : Optional[Any] = 2 if unlogit: _lowerCamelCase : List[Any] = torch.pow(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : int = p * torch.log(_lowerCAmelCase ) _lowerCamelCase : List[Any] = 0 return -plogp.sum(dim=-1 ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" logger.info("lv, h >\t" + "\t".join(F'{x + 1}' for x in range(len(_lowerCAmelCase ) ) ) ) for row in range(len(_lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + "\t".join(F'{x:d}' for x in tensor[row].cpu().data ) ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : int=None , _lowerCAmelCase : str=False ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads _lowerCamelCase : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) _lowerCamelCase : Dict = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) if head_mask is None: _lowerCamelCase : Any = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _lowerCamelCase : Any = None _lowerCamelCase : Union[str, Any] = 0.0 _lowerCamelCase : str = 0.0 for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _lowerCamelCase : Union[str, Any] = tuple(t.to(args.device ) for t in inputs ) ((_lowerCamelCase) , ) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = entropy(attn.detach() , _lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _lowerCamelCase : Any = 2 _lowerCamelCase : int = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _lowerCamelCase : List[str] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(_lowerCAmelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(_lowerCAmelCase ) logger.info("Head ranked by importance scores" ) _lowerCamelCase : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _lowerCamelCase : int = torch.arange( head_importance.numel() , device=args.device ) _lowerCamelCase : Optional[int] = head_ranks.view_as(_lowerCAmelCase ) print_ad_tensor(_lowerCAmelCase ) return attn_entropy, head_importance, total_loss def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase ) _lowerCamelCase : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _lowerCAmelCase , original_score * args.masking_threshold ) _lowerCamelCase : Tuple = torch.ones_like(_lowerCAmelCase ) _lowerCamelCase : int = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _lowerCamelCase : Tuple = original_score while current_score >= original_score * args.masking_threshold: _lowerCamelCase : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _lowerCamelCase : Union[str, Any] = float("Inf" ) _lowerCamelCase : List[str] = head_importance.view(-1 ).sort()[1] if len(_lowerCAmelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _lowerCamelCase : List[Any] = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _lowerCamelCase : Tuple = new_head_mask.view(-1 ) _lowerCamelCase : Any = 0.0 _lowerCamelCase : Tuple = new_head_mask.view_as(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(_lowerCAmelCase ) # Compute metric and head importance again _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowerCamelCase : Any = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(_lowerCAmelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = datetime.now() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase ) _lowerCamelCase : Any = 1 / loss _lowerCamelCase : str = datetime.now() - before_time _lowerCamelCase : Optional[Any] = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : Union[str, Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = [ v, ] assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCAmelCase ) _lowerCamelCase : Dict = sum(p.numel() for p in model.parameters() ) _lowerCamelCase : Tuple = datetime.now() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = 1 / loss _lowerCamelCase : List[str] = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _lowerCAmelCase , _lowerCAmelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(_lowerCAmelCase , args.output_dir ) def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_lowerCAmelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_lowerCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_lowerCAmelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=_lowerCAmelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_lowerCAmelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=_lowerCAmelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=_lowerCAmelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_lowerCAmelCase , help="Batch size." ) parser.add_argument("--seed" , type=_lowerCAmelCase , default=42 ) parser.add_argument("--local_rank" , type=_lowerCAmelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=_lowerCAmelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_lowerCAmelCase , default="" , help="Can be used for distant debugging." ) _lowerCamelCase : Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _lowerCamelCase : Dict = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _lowerCamelCase : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _lowerCamelCase : str = torch.device("cuda" , args.local_rank ) _lowerCamelCase : int = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _lowerCamelCase : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _lowerCamelCase : List[str] = nn.parallel.DistributedDataParallel( _lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase ) elif args.n_gpu > 1: _lowerCamelCase : str = nn.DataParallel(_lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Prepare dataset _lowerCamelCase : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _lowerCamelCase : str = (torch.from_numpy(_lowerCAmelCase ),) _lowerCamelCase : Union[str, Any] = TensorDataset(*_lowerCAmelCase ) _lowerCamelCase : Any = RandomSampler(_lowerCAmelCase ) _lowerCamelCase : int = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _lowerCamelCase : List[Any] = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase__ : def __init__( self : Any,__A : int=None,__A : str=None ): # Input as list _lowerCamelCase : List[Any] = list(poly_a or [0] )[:] _lowerCamelCase : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase : Any = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase : Optional[int] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase : int = complex(mpmath.root(x=1,n=self.c_max_length,k=1 ) ) # The product _lowerCamelCase : Any = self.__multiply() def lowerCamelCase_ ( self : List[str],__A : List[Any] ): _lowerCamelCase : int = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(__A ) <= 1: return dft[0] # _lowerCamelCase : Optional[int] = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase : Union[str, Any] = [[] for i in range(__A )] _lowerCamelCase : List[str] = self.root**next_ncol # First half of next step _lowerCamelCase : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__A ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase : Dict = new_dft _lowerCamelCase : Dict = next_ncol // 2 return dft[0] def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = self.__dft("A" ) _lowerCamelCase : str = self.__dft("B" ) _lowerCamelCase : Dict = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase : Union[str, Any] = 2 while next_ncol <= self.c_max_length: _lowerCamelCase : Dict = [[] for i in range(__A )] _lowerCamelCase : Optional[Any] = self.root ** (next_ncol // 2) _lowerCamelCase : Optional[Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase : List[Any] = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase : Any = [round(x[0].real,8 ) + round(x[0].imag,8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Any ): _lowerCamelCase : Dict = "A = " + " + ".join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase : Any = "B = " + " + ".join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase : Optional[Any] = "A*B = " + " + ".join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Union[str, Any],__A : Optional[Any]=1_3,__A : Optional[Any]=3_2,__A : Union[str, Any]=3,__A : List[Any]=4,__A : List[str]=[1_0, 2_0, 3_0, 4_0],__A : Tuple=[2, 2, 3, 2],__A : int=True,__A : List[str]=True,__A : Dict=3_7,__A : Optional[int]="gelu",__A : Dict=1_0,__A : Optional[Any]=0.02,__A : Any=["stage2", "stage3", "stage4"],__A : List[Any]=3,__A : Any=None,): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Dict = image_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Tuple = num_stages _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : Dict = depths _lowerCamelCase : Dict = is_training _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : List[Any] = out_features _lowerCamelCase : int = num_labels _lowerCamelCase : Union[str, Any] = scope _lowerCamelCase : str = num_stages def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Dict ): return ConvNextConfig( num_channels=self.num_channels,num_stages=self.num_stages,hidden_sizes=self.hidden_sizes,depths=self.depths,is_training=self.is_training,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,out_features=self.out_features,) def lowerCamelCase_ ( self : List[str] ): return UperNetConfig( backbone_config=self.get_backbone_config(),hidden_size=5_1_2,pool_scales=[1, 2, 3, 6],use_auxiliary_head=__A,auxiliary_loss_weight=0.4,auxiliary_in_channels=4_0,auxiliary_channels=2_5_6,auxiliary_num_convs=1,auxiliary_concat_input=__A,loss_ignore_index=2_5_5,num_labels=self.num_labels,) def lowerCamelCase_ ( self : Optional[int],__A : List[Any],__A : str,__A : List[Any] ): _lowerCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[str] = model(__A ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = UperNetModelTester(self ) _lowerCamelCase : str = ConfigTester(self,config_class=__A,has_text_modality=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : str ): return def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__A ) _lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="UperNet does not have a base model" ) def lowerCamelCase_ ( self : Dict ): pass @unittest.skip(reason="UperNet does not have a base model" ) def lowerCamelCase_ ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCamelCase_ ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : int ): def check_hidden_states_output(__A : int,__A : List[str],__A : Optional[int] ): _lowerCamelCase : Any = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(__A ),expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[int] = True check_hidden_states_output(__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(__A,__A,__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = _config_zero_init(__A ) _lowerCamelCase : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(config=__A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(),[0.0, 1.0],msg=f'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip(reason="UperNet does not have tied weights" ) def lowerCamelCase_ ( self : Optional[Any] ): pass @slow def lowerCamelCase_ ( self : Any ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = UperNetForSemanticSegmentation.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) _lowerCamelCase : Any = Image.open(_lowerCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) _lowerCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__A ) _lowerCamelCase : Optional[int] = prepare_img() _lowerCamelCase : Dict = processor(images=__A,return_tensors="pt" ).to(__A ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__A ) _lowerCamelCase : Union[str, Any] = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Optional[Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],__A,atol=1e-4 ) ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : int = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) _lowerCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__A ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Optional[Any] = processor(images=__A,return_tensors="pt" ).to(__A ) with torch.no_grad(): _lowerCamelCase : Any = model(**__A ) _lowerCamelCase : str = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],__A,atol=1e-4 ) )
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Optional[Any] = BlipImageProcessor() _lowerCamelCase : Union[str, Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) _lowerCamelCase : List[str] = BlipaProcessor(__A,__A ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Union[str, Any],**__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname,**__A ).tokenizer def lowerCamelCase_ ( self : Tuple,**__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname,**__A ).image_processor def lowerCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : List[Any] = [np.random.randint(2_5_5,size=(3, 3_0, 4_0_0),dtype=np.uinta )] _lowerCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(__A,0,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer(),image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Dict = self.get_tokenizer(bos_token="(BOS)",eos_token="(EOS)" ) _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=__A,padding_value=1.0 ) _lowerCamelCase : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname,bos_token="(BOS)",eos_token="(EOS)",do_normalize=__A,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(),tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer,__A ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : List[Any] = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Optional[Any] = self.prepare_image_inputs() _lowerCamelCase : Tuple = image_processor(__A,return_tensors="np" ) _lowerCamelCase : int = processor(images=__A,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1e-2 ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Tuple = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Dict = "lower newer" _lowerCamelCase : Optional[Any] = processor(text=__A ) _lowerCamelCase : Any = tokenizer(__A,return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key],encoded_processor[key] ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : int = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Any = "lower newer" _lowerCamelCase : int = self.prepare_image_inputs() _lowerCamelCase : Any = processor(text=__A,images=__A ) self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Tuple = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Tuple = processor.batch_decode(__A ) _lowerCamelCase : Any = tokenizer.batch_decode(__A ) self.assertListEqual(__A,__A ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : str = BlipaProcessor(tokenizer=__A,image_processor=__A ) _lowerCamelCase : List[Any] = "lower newer" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = processor(text=__A,images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ),["pixel_values", "input_ids", "attention_mask"] )
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer UpperCAmelCase_ : Tuple = ['gpt2'] UpperCAmelCase_ : Optional[Any] = 'gpt2' if is_tf_available(): class UpperCAmelCase__ ( tf.Module ): def __init__( self : Any,__A : Dict ): super().__init__() _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : str = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Optional[Any] = TFGPTaLMHeadModel.from_config(__A ) @tf.function(input_signature=(tf.TensorSpec((None,),tf.string,name="text" ),) ) def lowerCamelCase_ ( self : List[Any],__A : Tuple ): _lowerCamelCase : int = self.tokenizer(__A ) _lowerCamelCase : str = tokenized["input_ids"].to_tensor() _lowerCamelCase : Tuple = tf.cast(input_ids_dense > 0,tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCamelCase : List[Any] = self.model(input_ids=__A,attention_mask=__A )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): super().setUp() _lowerCamelCase : Any = [GPTaTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCamelCase : int = [TFGPTaTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _lowerCamelCase : str = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] _lowerCamelCase : int = list(zip(self.test_sentences,self.test_sentences[::-1] ) ) def lowerCamelCase_ ( self : Optional[int] ): for tokenizer, tf_tokenizer in zip(self.tokenizers,self.tf_tokenizers ): for test_inputs in self.test_sentences: _lowerCamelCase : str = tokenizer([test_inputs],return_tensors="tf" ) _lowerCamelCase : int = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCamelCase : str = python_outputs[key].numpy() _lowerCamelCase : List[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__A,tf.intaa ) == tf_outputs_values ) ) @slow def lowerCamelCase_ ( self : int ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Optional[Any] = tf.function(__A ) for test_inputs in self.test_sentences: _lowerCamelCase : List[Any] = tf.constant(__A ) _lowerCamelCase : str = compiled_tokenizer(__A ) _lowerCamelCase : List[Any] = tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowerCamelCase_ ( self : Optional[Any] ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : int = ModelToSave(tokenizer=__A ) _lowerCamelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Union[str, Any] = model.serving(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCamelCase : Optional[int] = Path(__A ) / "saved.model" tf.saved_model.save(__A,__A,signatures={"serving_default": model.serving} ) _lowerCamelCase : Tuple = tf.saved_model.load(__A ) _lowerCamelCase : Optional[Any] = loaded_model.signatures["serving_default"](__A )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowerCamelCase_ ( self : Any ): for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : str = tf_tokenizer(__A ) # Build model with some sample inputs _lowerCamelCase : List[Any] = tf_tokenizer.get_config() _lowerCamelCase : Union[str, Any] = TFGPTaTokenizer.from_config(__A ) _lowerCamelCase : int = model_from_config(__A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowerCamelCase_ ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCamelCase : Any = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: _lowerCamelCase : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _lowerCamelCase : Optional[Any] = tf_tokenizer(__A,max_length=__A ) _lowerCamelCase : Optional[Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _lowerCamelCase : Any = UNetaDModel( block_out_channels=(3_2, 6_4),layers_per_block=2,sample_size=3_2,in_channels=3,out_channels=3,down_block_types=("DownBlock2D", "AttnDownBlock2D"),up_block_types=("AttnUpBlock2D", "UpBlock2D"),) return model def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = self.dummy_uncond_unet _lowerCamelCase : List[str] = KarrasVeScheduler() _lowerCamelCase : Union[str, Any] = KarrasVePipeline(unet=__A,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : str = torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = pipe(num_inference_steps=2,generator=__A,output_type="numpy" ).images _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : str = pipe(num_inference_steps=2,generator=__A,output_type="numpy",return_dict=__A )[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : int = "google/ncsnpp-celebahq-256" _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = KarrasVeScheduler() _lowerCamelCase : Dict = KarrasVePipeline(unet=__A,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = pipe(num_inference_steps=2_0,generator=__A,output_type="numpy" ).images _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _lowerCamelCase : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'wav2vec2' def __init__( self : Dict,__A : List[str]=3_2,__A : Union[str, Any]=7_6_8,__A : Optional[int]=1_2,__A : Any=1_2,__A : int=3_0_7_2,__A : Tuple="gelu",__A : str=0.1,__A : int=0.1,__A : Tuple=0.1,__A : Union[str, Any]=0.0,__A : Union[str, Any]=0.0,__A : List[str]=0.1,__A : Tuple=0.1,__A : int=0.02,__A : Optional[int]=1e-5,__A : Optional[int]="group",__A : Any="gelu",__A : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2),__A : int=(5, 2, 2, 2, 2, 2, 2),__A : List[str]=(1_0, 3, 3, 3, 3, 2, 2),__A : Dict=False,__A : Dict=1_2_8,__A : Tuple=1_6,__A : Optional[int]=False,__A : List[Any]=True,__A : Any=0.05,__A : str=1_0,__A : Optional[int]=2,__A : Optional[int]=0.0,__A : int=1_0,__A : Optional[Any]=0,__A : Optional[Any]=3_2_0,__A : Optional[int]=2,__A : str=0.1,__A : str=1_0_0,__A : Union[str, Any]=2_5_6,__A : str=2_5_6,__A : List[Any]=0.1,__A : Union[str, Any]="sum",__A : Tuple=False,__A : Optional[Any]=False,__A : Any=2_5_6,__A : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0),__A : List[Any]=(5, 3, 3, 1, 1),__A : List[str]=(1, 2, 3, 1, 1),__A : Optional[Any]=5_1_2,__A : Tuple=0,__A : int=1,__A : List[str]=2,__A : Tuple=False,__A : str=3,__A : Dict=2,__A : List[str]=3,__A : int=None,__A : Optional[Any]=None,**__A : Optional[Any],): super().__init__(**__A,pad_token_id=__A,bos_token_id=__A,eos_token_id=__A ) _lowerCamelCase : int = hidden_size _lowerCamelCase : List[Any] = feat_extract_norm _lowerCamelCase : Optional[Any] = feat_extract_activation _lowerCamelCase : List[str] = list(__A ) _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : int = list(__A ) _lowerCamelCase : str = conv_bias _lowerCamelCase : List[Any] = num_conv_pos_embeddings _lowerCamelCase : Any = num_conv_pos_embedding_groups _lowerCamelCase : Optional[int] = len(self.conv_dim ) _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Any = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Any = feat_proj_dropout _lowerCamelCase : Dict = final_dropout _lowerCamelCase : Optional[int] = layerdrop _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Dict = do_stable_layer_norm _lowerCamelCase : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : int = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[Any] = mask_time_min_masks _lowerCamelCase : List[Any] = mask_feature_prob _lowerCamelCase : Optional[Any] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : List[Any] = num_codevectors_per_group _lowerCamelCase : Tuple = num_codevector_groups _lowerCamelCase : int = contrastive_logits_temperature _lowerCamelCase : str = feat_quantizer_dropout _lowerCamelCase : List[str] = num_negatives _lowerCamelCase : Optional[Any] = codevector_dim _lowerCamelCase : Optional[int] = proj_codevector_dim _lowerCamelCase : int = diversity_loss_weight # ctc loss _lowerCamelCase : Any = ctc_loss_reduction _lowerCamelCase : int = ctc_zero_infinity # adapter _lowerCamelCase : Any = add_adapter _lowerCamelCase : Tuple = adapter_kernel_size _lowerCamelCase : Union[str, Any] = adapter_stride _lowerCamelCase : Dict = num_adapter_layers _lowerCamelCase : Optional[Any] = output_hidden_size or hidden_size _lowerCamelCase : int = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : int = list(__A ) _lowerCamelCase : Optional[Any] = list(__A ) _lowerCamelCase : List[Any] = list(__A ) _lowerCamelCase : str = xvector_output_dim @property def lowerCamelCase_ ( self : Optional[int] ): return functools.reduce(operator.mul,self.conv_stride,1 )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 600851475143 ): """simple docstring""" try: _lowerCamelCase : int = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _lowerCamelCase : Union[str, Any] = 2 _lowerCamelCase : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowerCamelCase : Union[str, Any] = i while n % i == 0: _lowerCamelCase : Optional[int] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : List[str] = 1.0_5457_1817E-34 # unit of ℏ : J * s UpperCAmelCase_ : Any = 3E8 # unit of c : m * s^-1 def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _lowerCamelCase : List[str] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCamelCase : Dict = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCamelCase : Union[str, Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'owlvit_text_model' def __init__( self : List[Any],__A : int=4_9_4_0_8,__A : int=5_1_2,__A : int=2_0_4_8,__A : str=1_2,__A : List[str]=8,__A : Optional[Any]=1_6,__A : Dict="quick_gelu",__A : Tuple=1e-5,__A : Optional[Any]=0.0,__A : Any=0.02,__A : Any=1.0,__A : str=0,__A : Dict=4_9_4_0_6,__A : str=4_9_4_0_7,**__A : Dict,): super().__init__(pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : Any = vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Any = hidden_act _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Any = initializer_factor @classmethod def lowerCamelCase_ ( cls : int,__A : Union[str, os.PathLike],**__A : Tuple ): cls._set_token_in_kwargs(__A ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = cls.get_config_dict(__A,**__A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _lowerCamelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A,**__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'owlvit_vision_model' def __init__( self : Dict,__A : Optional[Any]=7_6_8,__A : Any=3_0_7_2,__A : int=1_2,__A : Optional[int]=1_2,__A : Optional[int]=3,__A : List[Any]=7_6_8,__A : List[str]=3_2,__A : int="quick_gelu",__A : Dict=1e-5,__A : Optional[Any]=0.0,__A : str=0.02,__A : Union[str, Any]=1.0,**__A : int,): super().__init__(**__A ) _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[Any] = patch_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : Any = attention_dropout _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[Any] = initializer_factor @classmethod def lowerCamelCase_ ( cls : Dict,__A : Union[str, os.PathLike],**__A : Tuple ): cls._set_token_in_kwargs(__A ) _lowerCamelCase , _lowerCamelCase : int = cls.get_config_dict(__A,**__A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _lowerCamelCase : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A,**__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'owlvit' lowerCAmelCase_ = True def __init__( self : Tuple,__A : str=None,__A : Tuple=None,__A : str=5_1_2,__A : Union[str, Any]=2.6592,__A : List[Any]=True,**__A : str,): super().__init__(**__A ) if text_config is None: _lowerCamelCase : Any = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _lowerCamelCase : List[Any] = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _lowerCamelCase : Any = OwlViTTextConfig(**__A ) _lowerCamelCase : str = OwlViTVisionConfig(**__A ) _lowerCamelCase : Tuple = projection_dim _lowerCamelCase : Union[str, Any] = logit_scale_init_value _lowerCamelCase : int = return_dict _lowerCamelCase : Optional[int] = 1.0 @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[str, os.PathLike],**__A : int ): cls._set_token_in_kwargs(__A ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = cls.get_config_dict(__A,**__A ) if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__A,**__A ) @classmethod def lowerCamelCase_ ( cls : str,__A : Dict,__A : Dict,**__A : Any ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[str] = text_config _lowerCamelCase : str = vision_config return cls.from_dict(__A,**__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : int = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Optional[int] = self.text_config.to_dict() _lowerCamelCase : Optional[int] = self.vision_config.to_dict() _lowerCamelCase : Dict = self.__class__.model_type return output class UpperCAmelCase__ ( A ): @property def lowerCamelCase_ ( self : Union[str, Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowerCamelCase_ ( self : str ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowerCamelCase_ ( self : Union[str, Any] ): return 1e-4 def lowerCamelCase_ ( self : List[str],__A : "ProcessorMixin",__A : int = -1,__A : int = -1,__A : Optional["TensorType"] = None,): _lowerCamelCase : int = super().generate_dummy_inputs( processor.tokenizer,batch_size=__A,seq_length=__A,framework=__A ) _lowerCamelCase : List[Any] = super().generate_dummy_inputs( processor.image_processor,batch_size=__A,framework=__A ) return {**text_input_dict, **image_input_dict} @property def lowerCamelCase_ ( self : Optional[Any] ): return 1_4
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Path , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , _lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: _lowerCamelCase : Any = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: _lowerCamelCase : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _lowerCamelCase : List[str] = question_encoder_name_or_path _lowerCamelCase : Optional[Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. _lowerCamelCase : Union[str, Any] = RagConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCamelCase : Tuple = gen_config _lowerCamelCase : Any = question_encoder_config _lowerCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. _lowerCamelCase : str = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCAmelCase_ : Tuple = parser.parse_args() UpperCAmelCase_ : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * n _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : int = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCamelCase : Tuple = i * 2 while index < n: _lowerCamelCase : Dict = False _lowerCamelCase : Any = index + i _lowerCamelCase : int = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def A_ ( _lowerCAmelCase : int = 999966663333 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 _lowerCamelCase : Union[str, Any] = prime_sieve(_lowerCAmelCase ) _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Any = primes[prime_index] while (last_prime**2) <= limit: _lowerCamelCase : Optional[Any] = primes[prime_index + 1] _lowerCamelCase : int = last_prime**2 _lowerCamelCase : Optional[int] = next_prime**2 # Get numbers divisible by lps(current) _lowerCamelCase : int = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCamelCase : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCamelCase : List[Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCamelCase : Optional[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ),supervised_keys=__A,) def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Dict ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_dummy_examples()} )] def lowerCamelCase_ ( self : Any,__A : Any,__A : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class UpperCAmelCase__ ( datasets.BeamBasedBuilder ): def lowerCamelCase_ ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ),supervised_keys=__A,) def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : str ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN,gen_kwargs={"examples": get_test_nested_examples()} ) ] def lowerCamelCase_ ( self : Tuple,__A : str,__A : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def A_ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def A_ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class UpperCAmelCase__ ( A ): @require_beam def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Optional[Any] = DummyBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) self.assertDictEqual(dset["train"][0],get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : Union[str, Any] ): import apache_beam as beam _lowerCamelCase : str = beam.io.parquetio.WriteToParquet _lowerCamelCase : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Union[str, Any] = DummyBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: _lowerCamelCase : List[str] = partial(__A,num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __A,builder.name,"default","0.0.0",f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features,datasets.Features({"content": datasets.Value("string" )} ) ) _lowerCamelCase : str = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ),sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset @require_beam def lowerCamelCase_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : Dict = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions,builder.download_and_prepare ) @require_beam def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCamelCase : str = NestedBeamDataset(cache_dir=__A,beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A,builder.name,"default","0.0.0",f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features,datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) _lowerCamelCase : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows,__A ) self.assertEqual(dset["train"].info.splits["train"].num_examples,__A ) self.assertDictEqual(dset["train"][0],get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1],get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A,builder.name,"default","0.0.0","dataset_info.json" ) ) ) del dset
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = RobertaTokenizer lowerCAmelCase_ = RobertaTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {'cls_token': '<s>'} def lowerCamelCase_ ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCamelCase : List[Any] = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : Union[str, Any] = {"unk_token": "<unk>"} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : int = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Dict,**__A : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,**__A : Optional[int] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Tuple = "lower newer" _lowerCamelCase : Optional[int] = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = self.tokenizer_class(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : int = "lower newer" _lowerCamelCase : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : Dict = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A,__A ) _lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCamelCase : Optional[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!",add_special_tokens=__A ),[0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418",add_special_tokens=__A ),[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2],) @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = self.tokenizer_class.from_pretrained("roberta-base" ) _lowerCamelCase : List[str] = tokenizer.encode("sequence builders",add_special_tokens=__A ) _lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build",add_special_tokens=__A ) _lowerCamelCase : Optional[int] = tokenizer.encode( "sequence builders",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : List[str] = tokenizer.encode( "sequence builders","multi-sequence build",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A ) _lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__A,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : int = "Encode this sequence." _lowerCamelCase : Union[str, Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments _lowerCamelCase : Optional[Any] = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A,__A ) _lowerCamelCase : List[Any] = tokenizer.encode(__A,add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A,__A ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) _lowerCamelCase : Optional[Any] = tokenizer.encode(__A,add_special_tokens=__A ) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A,__A ) # Testing spaces after special tokens _lowerCamelCase : str = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__A,lstrip=__A,rstrip=__A )} ) # mask token has a left space _lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(__A ) _lowerCamelCase : str = "Encode <mask> sequence" _lowerCamelCase : Optional[int] = "Encode <mask>sequence" _lowerCamelCase : int = tokenizer.encode(__A ) _lowerCamelCase : Any = encoded.index(__A ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A,__A ) _lowerCamelCase : Any = tokenizer.encode(__A ) _lowerCamelCase : Dict = encoded.index(__A ) _lowerCamelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A,__A ) def lowerCamelCase_ ( self : int ): pass def lowerCamelCase_ ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : int = self.tokenizer_class.from_pretrained(__A,**__A ) _lowerCamelCase : int = "A, <mask> AllenNLP sentence." _lowerCamelCase : Tuple = tokenizer_r.encode_plus(__A,add_special_tokens=__A,return_token_type_ids=__A ) _lowerCamelCase : str = tokenizer_p.encode_plus(__A,add_special_tokens=__A,return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ),sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ),sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ),) _lowerCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) _lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"],[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"],[0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __A,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __A,["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowerCamelCase_ ( self : List[Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False],repeat=2 ): _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCamelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"],__A ) self.assertEqual(post_processor_state["add_prefix_space"],__A ) self.assertEqual(post_processor_state["trim_offsets"],__A ) def lowerCamelCase_ ( self : List[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCamelCase : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : List[Any] = f'{text_of_1_token} {text_of_1_token}' _lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ) + 1, len(__A ) + 1 + len(__A )),) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : int = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ) + 1, len(__A ) + 1 + len(__A )),) _lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : str = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ), len(__A ) + 1 + len(__A )),) _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : List[str] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(len(__A ), len(__A ) + 1 + len(__A )),) _lowerCamelCase : Optional[Any] = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )),) _lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : str = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )),) _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( __A,use_fast=__A,add_prefix_space=__A,trim_offsets=__A ) _lowerCamelCase : Optional[Any] = tokenizer_r(__A,return_offsets_mapping=__A,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0],(0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1],(1 + len(__A ), 1 + len(__A ) + 1 + len(__A )),)
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = input("Enter message: " ) _lowerCamelCase : List[str] = input("Enter key [alphanumeric]: " ) _lowerCamelCase : Optional[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _lowerCamelCase : Any = "encrypt" _lowerCamelCase : List[Any] = encrypt_message(_lowerCAmelCase , _lowerCAmelCase ) elif mode.lower().startswith("d" ): _lowerCamelCase : List[Any] = "decrypt" _lowerCamelCase : Any = decrypt_message(_lowerCAmelCase , _lowerCAmelCase ) print(F'\n{mode.title()}ed message:' ) print(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" return translate_message(_lowerCAmelCase , _lowerCAmelCase , "encrypt" ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" return translate_message(_lowerCAmelCase , _lowerCAmelCase , "decrypt" ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = [] _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = key.upper() for symbol in message: _lowerCamelCase : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCAmelCase ): _lowerCamelCase : Dict = 0 else: translated.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) if __name__ == "__main__": main()
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') UpperCAmelCase_ : Tuple = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field(default=A , metadata={'help': 'The input training data file (a text file).'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCamelCase_ ( self : List[Any] ): if self.train_file is not None: _lowerCamelCase : Optional[int] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCamelCase : str = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : List[Any] = "label" if "label" in features[0].keys() else "labels" _lowerCamelCase : Optional[int] = [feature.pop(__A ) for feature in features] _lowerCamelCase : Any = len(__A ) _lowerCamelCase : List[str] = len(features[0]["input_ids"] ) _lowerCamelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(__A )] for feature in features ] _lowerCamelCase : Union[str, Any] = list(chain(*__A ) ) _lowerCamelCase : List[Any] = self.tokenizer.pad( __A,padding=self.padding,max_length=self.max_length,pad_to_multiple_of=self.pad_to_multiple_of,return_tensors="pt",) # Un-flatten _lowerCamelCase : Optional[Any] = {k: v.view(__A,__A,-1 ) for k, v in batch.items()} # Add back labels _lowerCamelCase : List[str] = torch.tensor(__A,dtype=torch.intaa ) return batch def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , _lowerCAmelCase , _lowerCAmelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) datasets.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _lowerCamelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCamelCase : Optional[Any] = {} if data_args.train_file is not None: _lowerCamelCase : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: _lowerCamelCase : Dict = data_args.validation_file _lowerCamelCase : Any = data_args.train_file.split("." )[-1] _lowerCamelCase : Tuple = load_dataset( _lowerCAmelCase , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCamelCase : Union[str, Any] = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCamelCase : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCamelCase : str = [F'ending{i}' for i in range(4 )] _lowerCamelCase : List[str] = "sent1" _lowerCamelCase : Any = "sent2" if data_args.max_seq_length is None: _lowerCamelCase : Dict = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _lowerCamelCase : Optional[int] = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _lowerCamelCase : Dict = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowerCAmelCase : Dict ): _lowerCamelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _lowerCamelCase : List[str] = examples[question_header_name] _lowerCamelCase : Optional[int] = [ [F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(_lowerCAmelCase ) ] # Flatten out _lowerCamelCase : Any = list(chain(*_lowerCAmelCase ) ) _lowerCamelCase : Tuple = list(chain(*_lowerCAmelCase ) ) # Tokenize _lowerCamelCase : List[str] = tokenizer( _lowerCAmelCase , _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowerCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _lowerCamelCase : List[str] = raw_datasets["train"] if data_args.max_train_samples is not None: _lowerCamelCase : Optional[int] = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) _lowerCamelCase : Optional[Any] = train_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _lowerCamelCase : Tuple = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _lowerCamelCase : Union[str, Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: _lowerCamelCase : Optional[int] = min(len(_lowerCAmelCase ) , data_args.max_eval_samples ) _lowerCamelCase : Tuple = eval_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCamelCase : List[str] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowerCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowerCAmelCase : List[str] ): _lowerCamelCase , _lowerCamelCase : Dict = eval_predictions _lowerCamelCase : List[Any] = np.argmax(_lowerCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCamelCase : Dict = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , ) # Training if training_args.do_train: _lowerCamelCase : int = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : str = last_checkpoint _lowerCamelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCamelCase : List[Any] = train_result.metrics _lowerCamelCase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) _lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("train" , _lowerCAmelCase ) trainer.save_metrics("train" , _lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Tuple = trainer.evaluate() _lowerCamelCase : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) _lowerCamelCase : Tuple = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" main() if __name__ == "__main__": main()
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'upernet' def __init__( self : Any,__A : Optional[Any]=None,__A : Dict=5_1_2,__A : Optional[Any]=0.02,__A : List[Any]=[1, 2, 3, 6],__A : Dict=True,__A : str=0.4,__A : Union[str, Any]=3_8_4,__A : Optional[Any]=2_5_6,__A : Optional[int]=1,__A : Any=False,__A : Dict=2_5_5,**__A : Optional[Any],): super().__init__(**__A ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _lowerCamelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(__A,__A ): _lowerCamelCase : List[Any] = backbone_config.get("model_type" ) _lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Union[str, Any] = config_class.from_dict(__A ) _lowerCamelCase : List[Any] = backbone_config _lowerCamelCase : Any = hidden_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Dict = pool_scales _lowerCamelCase : Any = use_auxiliary_head _lowerCamelCase : Any = auxiliary_loss_weight _lowerCamelCase : str = auxiliary_in_channels _lowerCamelCase : str = auxiliary_channels _lowerCamelCase : Optional[int] = auxiliary_num_convs _lowerCamelCase : Dict = auxiliary_concat_input _lowerCamelCase : List[Any] = loss_ignore_index def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCamelCase : List[Any] = self.backbone_config.to_dict() _lowerCamelCase : Optional[int] = self.__class__.model_type return output
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' import math UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : List[str] = 7 UpperCAmelCase_ : int = BALLS_PER_COLOUR * NUM_COLOURS def A_ ( _lowerCAmelCase : int = 20 ): """simple docstring""" _lowerCamelCase : Optional[int] = math.comb(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCAmelCase ) _lowerCamelCase : Any = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(20))
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : Optional[int] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = 'gelu' def __init__( self : List[Any],__A : Optional[Any],__A : Tuple=1_3,__A : Any=7,__A : List[str]=True,__A : str=False,__A : int=9_9,__A : Any=3_2,__A : List[str]=5,__A : int=4,__A : int=3_7,__A : Dict=0.1,__A : str=0.1,__A : Union[str, Any]=2_0,__A : int=2,__A : str=1,__A : List[Any]=0,): _lowerCamelCase : str = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : int = use_labels _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Tuple = eos_token_id _lowerCamelCase : Optional[Any] = pad_token_id _lowerCamelCase : Tuple = bos_token_id def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ).clip(3,self.vocab_size ) _lowerCamelCase : Optional[int] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : Dict = np.concatenate([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : int = prepare_pegasus_inputs_dict(__A,__A,__A ) return config, inputs_dict def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : List[Any],__A : str ): _lowerCamelCase : Union[str, Any] = 2_0 _lowerCamelCase : Tuple = model_class_name(__A ) _lowerCamelCase : Optional[int] = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0],__A,__A ) _lowerCamelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length),dtype="i4" ) _lowerCamelCase : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : int = model.decode( decoder_input_ids[:, :-1],__A,decoder_attention_mask=__A,past_key_values=__A,decoder_position_ids=__A,) _lowerCamelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : List[str] = model.decode( decoder_input_ids[:, -1:],__A,decoder_attention_mask=__A,past_key_values=outputs_cache.past_key_values,decoder_position_ids=__A,) _lowerCamelCase : str = model.decode(__A,__A ) _lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def lowerCamelCase_ ( self : int,__A : str,__A : Dict,__A : Optional[Any] ): _lowerCamelCase : List[str] = 2_0 _lowerCamelCase : Tuple = model_class_name(__A ) _lowerCamelCase : Any = model.encode(inputs_dict["input_ids"] ) _lowerCamelCase , _lowerCamelCase : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCamelCase : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ],axis=-1,) _lowerCamelCase : str = model.init_cache(decoder_input_ids.shape[0],__A,__A ) _lowerCamelCase : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :],(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),) _lowerCamelCase : List[str] = model.decode( decoder_input_ids[:, :-1],__A,decoder_attention_mask=__A,past_key_values=__A,decoder_position_ids=__A,) _lowerCamelCase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]],dtype="i4" ) _lowerCamelCase : str = model.decode( decoder_input_ids[:, -1:],__A,past_key_values=outputs_cache.past_key_values,decoder_attention_mask=__A,decoder_position_ids=__A,) _lowerCamelCase : List[Any] = model.decode(__A,__A,decoder_attention_mask=__A ) _lowerCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3,msg=f'Max diff is {diff}' ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : Dict = np.not_equal(_lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCamelCase : Union[str, Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = FlaxPegasusModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self,config_class=__A ) def lowerCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : str ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__A,__A,__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__A,__A,__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : str = self._prepare_for_class(__A,__A ) _lowerCamelCase : List[str] = model_class(__A ) @jax.jit def encode_jitted(__A : Union[str, Any],__A : int=None,**__A : List[Any] ): return model.encode(input_ids=__A,attention_mask=__A ) with self.subTest("JIT Enabled" ): _lowerCamelCase : Dict = encode_jitted(**__A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : Any = encode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ),len(__A ) ) for jitted_output, output in zip(__A,__A ): self.assertEqual(jitted_output.shape,output.shape ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : List[Any] = model_class(__A ) _lowerCamelCase : int = model.encode(inputs_dict["input_ids"],inputs_dict["attention_mask"] ) _lowerCamelCase : Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__A : Tuple,__A : List[str],__A : Tuple ): return model.decode( decoder_input_ids=__A,decoder_attention_mask=__A,encoder_outputs=__A,) with self.subTest("JIT Enabled" ): _lowerCamelCase : Optional[int] = decode_jitted(**__A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _lowerCamelCase : Optional[Any] = decode_jitted(**__A ).to_tuple() self.assertEqual(len(__A ),len(__A ) ) for jitted_output, output in zip(__A,__A ): self.assertEqual(jitted_output.shape,output.shape ) @slow def lowerCamelCase_ ( self : List[str] ): for model_class_name in self.all_model_classes: _lowerCamelCase : Optional[int] = model_class_name.from_pretrained("google/pegasus-large",from_pt=__A ) _lowerCamelCase : Any = np.ones((1, 1) ) _lowerCamelCase : List[str] = model(__A ) self.assertIsNotNone(__A ) @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[str] = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : Dict = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _lowerCamelCase : List[str] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _lowerCamelCase : Optional[int] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _lowerCamelCase : List[Any] = tokenizer(__A,return_tensors="np",truncation=__A,max_length=5_1_2,padding=__A ) _lowerCamelCase : Tuple = model.generate(**__A,num_beams=2 ).sequences _lowerCamelCase : Dict = tokenizer.batch_decode(__A,skip_special_tokens=__A ) assert tgt_text == decoded
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[str] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Tuple = {"text": "string"} _lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features _lowerCamelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Any = TextDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = tmp_path / "cache" _lowerCamelCase : List[Any] = {"text": "string"} _lowerCamelCase : Dict = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): """simple docstring""" if issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Dict = text_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : int = [text_path] _lowerCamelCase : List[Any] = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Union[str, Any] = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=("train",) ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: _lowerCamelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : Dict = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Dict = TextDatasetReader({"train": text_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Optional[int] = features.copy() if features else default_expected_features _lowerCamelCase : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Tuple = TextDatasetReader({"train": text_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if split: _lowerCamelCase : Tuple = {split: text_path} else: _lowerCamelCase : List[str] = "train" _lowerCamelCase : List[str] = {"train": text_path, "test": text_path} _lowerCamelCase : str = tmp_path / "cache" _lowerCamelCase : int = {"text": "string"} _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) _lowerCamelCase : Any = sorted(string.lower() ) return len(_lowerCAmelCase ) == len(set(_lowerCAmelCase ) ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = input('Enter a string ').strip() UpperCAmelCase_ : List[Any] = is_isogram(input_str) print(f'''{input_str} is {'an' if isogram else 'not an'} isogram.''')
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase_ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=5 ): """simple docstring""" assert masked_input.count("<mask>" ) == 1 _lowerCamelCase : List[str] = torch.tensor(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 _lowerCamelCase : Optional[Any] = model(_lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple _lowerCamelCase : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCamelCase : List[Any] = logits[0, masked_index, :] _lowerCamelCase : List[str] = logits.softmax(dim=0 ) _lowerCamelCase , _lowerCamelCase : List[Any] = prob.topk(k=_lowerCAmelCase , dim=0 ) _lowerCamelCase : Union[str, Any] = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCAmelCase ) )] ) _lowerCamelCase : List[Any] = tokenizer.mask_token _lowerCamelCase : List[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): _lowerCamelCase : Tuple = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowerCAmelCase ) , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCAmelCase , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCAmelCase_ : str = CamembertTokenizer.from_pretrained('camembert-base') UpperCAmelCase_ : Optional[Any] = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() UpperCAmelCase_ : Optional[int] = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] ): """simple docstring""" return len(set(_lowerCAmelCase ) ) == len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Tuple ): if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split(),encoding="utf-8",check=__A,) assert hasattr(self,"env" ) def lowerCamelCase_ ( self : Optional[Any],__A : int ): _lowerCamelCase : Union[str, Any] = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings _lowerCamelCase : Tuple = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script,source_dir=self.env.test_path,role=self.env.role,image_uri=self.env.image_uri,base_job_name=__A,instance_count=__A,instance_type=self.instance_type,debugger_hook_config=__A,hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path},metric_definitions=self.env.metric_definitions,distribution=__A,py_version="py36",) def lowerCamelCase_ ( self : Dict,__A : Optional[Any] ): TrainingJobAnalytics(__A ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def lowerCamelCase_ ( self : Tuple,__A : Dict ): # create estimator _lowerCamelCase : Any = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds",9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json',"w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss},__A )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Any = "" for i in table: res += inp[i - 1] return res def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" return data[1:] + data[0] def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Tuple = "" for i in range(len(_lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = int("0b" + data[0] + data[-1] , 2 ) _lowerCamelCase : str = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = message[:4] _lowerCamelCase : Optional[Any] = message[4:] _lowerCamelCase : List[Any] = apply_table(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Any = xor(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Dict = apply_sbox(_lowerCAmelCase , temp[:4] ) # noqa: E741 _lowerCamelCase : List[Any] = apply_sbox(_lowerCAmelCase , temp[4:] ) _lowerCamelCase : Any = "0" * (2 - len(_lowerCAmelCase )) + l # noqa: E741 _lowerCamelCase : Union[str, Any] = "0" * (2 - len(_lowerCAmelCase )) + r _lowerCamelCase : str = apply_table(l + r , _lowerCAmelCase ) _lowerCamelCase : List[Any] = xor(_lowerCAmelCase , _lowerCAmelCase ) return temp + right if __name__ == "__main__": UpperCAmelCase_ : int = input('Enter 10 bit key: ') UpperCAmelCase_ : Union[str, Any] = input('Enter 8 bit message: ') UpperCAmelCase_ : Any = [6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase_ : List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase_ : List[Any] = [2, 4, 3, 1] UpperCAmelCase_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase_ : int = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase_ : Dict = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase_ : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase_ : Tuple = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase_ : Union[str, Any] = apply_table(key, paa_table) UpperCAmelCase_ : Tuple = temp[:5] UpperCAmelCase_ : List[str] = temp[5:] UpperCAmelCase_ : str = left_shift(left) UpperCAmelCase_ : int = left_shift(right) UpperCAmelCase_ : List[str] = apply_table(left + right, pa_table) UpperCAmelCase_ : int = left_shift(left) UpperCAmelCase_ : Any = left_shift(right) UpperCAmelCase_ : Dict = left_shift(left) UpperCAmelCase_ : Any = left_shift(right) UpperCAmelCase_ : List[str] = apply_table(left + right, pa_table) # encryption UpperCAmelCase_ : List[Any] = apply_table(message, IP) UpperCAmelCase_ : Any = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : List[Any] = temp[4:] + temp[:4] UpperCAmelCase_ : Dict = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : Any = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase_ : Optional[Any] = apply_table(CT, IP) UpperCAmelCase_ : Tuple = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : List[Any] = temp[4:] + temp[:4] UpperCAmelCase_ : List[str] = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ : List[str] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def A_ ( ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = 9, 14 # noqa: F841 _lowerCamelCase : List[str] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase : Optional[Any] = defaultdict(_lowerCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowerCamelCase : str = mst(_lowerCAmelCase ) _lowerCamelCase : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowerCamelCase : List[Any] = tuple(answer[:2] ) _lowerCamelCase : Dict = tuple(edge[::-1] ) assert edge in result or reverse in result
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor', 'feature_extractor'] lowerCAmelCase_ = 'TvltImageProcessor' lowerCAmelCase_ = 'TvltFeatureExtractor' def __init__( self : Any,__A : List[Any],__A : str ): super().__init__(image_processor=__A,feature_extractor=__A ) _lowerCamelCase : Dict = image_processor _lowerCamelCase : List[str] = feature_extractor def __call__( self : List[Any],__A : Optional[int]=None,__A : List[Any]=None,__A : List[str]=None,__A : int=None,__A : Tuple=False,__A : Dict=False,*__A : List[Any],**__A : Optional[Any],): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) _lowerCamelCase : List[Any] = None if images is not None: _lowerCamelCase : Optional[int] = self.image_processor(__A,mask_pixel=__A,*__A,**__A ) if images_mixed is not None: _lowerCamelCase : Dict = self.image_processor(__A,is_mixed=__A,*__A,**__A ) if audio is not None: _lowerCamelCase : Optional[int] = self.feature_extractor( __A,*__A,sampling_rate=__A,mask_audio=__A,**__A ) _lowerCamelCase : Dict = {} if audio is not None: output_dict.update(__A ) if images is not None: output_dict.update(__A ) if images_mixed_dict is not None: output_dict.update(__A ) return output_dict @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.image_processor.model_input_names _lowerCamelCase : Any = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Tuple = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Union[str, Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : List[str] = 16 _lowerCamelCase : Union[str, Any] = [5, 11, 17, 23] _lowerCamelCase : int = [256, 512, 1024, 1024] _lowerCamelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _lowerCamelCase : Dict = 768 _lowerCamelCase : List[Any] = [1, 1, 1, 0.5] _lowerCamelCase : Optional[int] = [256, 512, 768, 768] _lowerCamelCase : str = 150 _lowerCamelCase : List[Any] = 16 _lowerCamelCase : Optional[int] = (1, 384, 384) _lowerCamelCase : int = False _lowerCamelCase : Tuple = "project" if "ade" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[int] = [1, 1, 1, 0.5] _lowerCamelCase : Dict = 150 _lowerCamelCase : Dict = 16 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[int] = "ade20k-id2label.json" _lowerCamelCase : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : Any = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[Any] = [1, 150, 480, 480] return config, expected_shape def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCamelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _lowerCamelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _lowerCamelCase : str = name.replace("patch_embed" , "" ) if "pos_embed" in name: _lowerCamelCase : Optional[int] = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _lowerCamelCase : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _lowerCamelCase : Union[str, Any] = name.replace("proj" , "projection" ) if "blocks" in name: _lowerCamelCase : Dict = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowerCamelCase : List[str] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: _lowerCamelCase : Union[str, Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: _lowerCamelCase : Tuple = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _lowerCamelCase : Any = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _lowerCamelCase : Dict = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _lowerCamelCase : List[Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _lowerCamelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _lowerCamelCase : List[Any] = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _lowerCamelCase : int = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _lowerCamelCase : Union[str, Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCamelCase : List[str] = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _lowerCamelCase : Optional[Any] = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _lowerCamelCase : List[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _lowerCamelCase : Tuple = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _lowerCamelCase : Union[str, Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _lowerCamelCase : Optional[int] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCamelCase : List[str] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCamelCase : int = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCamelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCamelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCamelCase : Tuple = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _lowerCamelCase : List[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _lowerCamelCase : Any = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _lowerCamelCase : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _lowerCamelCase : Optional[int] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _lowerCamelCase : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _lowerCamelCase : Optional[int] = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _lowerCamelCase : List[Any] = name.replace("pretrained" , "dpt" ) if "bn" in name: _lowerCamelCase : Union[str, Any] = name.replace("bn" , "batch_norm" ) if "head" in name: _lowerCamelCase : List[Any] = name.replace("head" , "head.head" ) if "encoder.norm" in name: _lowerCamelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _lowerCamelCase : Union[str, Any] = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: _lowerCamelCase : int = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: _lowerCamelCase : Dict = name.replace(".." , "." ) if "stem.conv" in name: _lowerCamelCase : Optional[int] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: _lowerCamelCase : Optional[Any] = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: _lowerCamelCase : Optional[int] = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: _lowerCamelCase : Tuple = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: _lowerCamelCase : List[Any] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: _lowerCamelCase : List[str] = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: _lowerCamelCase : int = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Optional[int] = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) _lowerCamelCase : int = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Any = in_proj_weight[: config.hidden_size, :] _lowerCamelCase : int = in_proj_bias[: config.hidden_size] _lowerCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCamelCase : List[Any] = state_dict.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model _lowerCamelCase : Any = DPTForSemanticSegmentation(_lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image _lowerCamelCase : Dict = 480 if "ade" in checkpoint_url else 384 _lowerCamelCase : Union[str, Any] = DPTImageProcessor(size=_lowerCAmelCase ) _lowerCamelCase : str = prepare_img() _lowerCamelCase : Any = image_processor(_lowerCAmelCase , return_tensors="pt" ) # forward pass _lowerCamelCase : Dict = model(**_lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: _lowerCamelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') UpperCAmelCase_ : Tuple = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowerCAmelCase_ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'A csv or a json file containing the training data.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'A csv or a json file containing the validation data.'} ) lowerCAmelCase_ = field(default=A , metadata={'help': 'A csv or a json file containing the test data.'} ) def lowerCamelCase_ ( self : Union[str, Any] ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _lowerCamelCase : Union[str, Any] = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowerCamelCase : List[str] = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase_ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def A_ ( ): """simple docstring""" _lowerCamelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCamelCase : Any = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) datasets.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _lowerCamelCase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCamelCase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowerCamelCase : Dict = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowerCamelCase : Union[str, Any] = data_args.train_file.split("." )[-1] _lowerCamelCase : Union[str, Any] = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowerCamelCase : Tuple = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowerCamelCase : List[str] = load_dataset("json" , data_files=_lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowerCamelCase : Tuple = raw_datasets["train"].features["label"].names _lowerCamelCase : Any = len(_lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowerCamelCase : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowerCAmelCase , ) _lowerCamelCase : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowerCamelCase : Tuple = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCamelCase : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowerCamelCase : List[Any] = {"Refused": 0, "Entailed": 1} _lowerCamelCase : Union[str, Any] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _lowerCamelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowerCAmelCase : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_lowerCAmelCase : List[str] ): _lowerCamelCase : List[Any] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _lowerCamelCase : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowerCamelCase : List[str] = examples["statement"] _lowerCamelCase : List[str] = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _lowerCamelCase : List[str] = tokenizer(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _lowerCamelCase : Optional[Any] = raw_datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _lowerCamelCase : Any = raw_datasets["train"] if data_args.max_train_samples is not None: _lowerCamelCase : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _lowerCamelCase : str = raw_datasets["validation"] if data_args.max_eval_samples is not None: _lowerCamelCase : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _lowerCamelCase : Optional[int] = raw_datasets["test"] if data_args.max_predict_samples is not None: _lowerCamelCase : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowerCAmelCase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : EvalPrediction ): _lowerCamelCase : Optional[Any] = p.predictions[0] if isinstance(p.predictions , _lowerCAmelCase ) else p.predictions _lowerCamelCase : Any = np.argmax(_lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCamelCase : Optional[Any] = default_data_collator elif training_args.fpaa: _lowerCamelCase : List[Any] = DataCollatorWithPadding(_lowerCAmelCase , pad_to_multiple_of=8 ) else: _lowerCamelCase : Dict = None # Initialize our Trainer _lowerCamelCase : Dict = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCAmelCase , tokenizer=_lowerCAmelCase , data_collator=_lowerCAmelCase , ) # Training if training_args.do_train: _lowerCamelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : str = last_checkpoint _lowerCamelCase : List[str] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) _lowerCamelCase : Any = train_result.metrics _lowerCamelCase : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) _lowerCamelCase : List[Any] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _lowerCAmelCase ) trainer.save_metrics("train" , _lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Tuple = trainer.evaluate(eval_dataset=_lowerCAmelCase ) _lowerCamelCase : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCAmelCase ) _lowerCamelCase : Tuple = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowerCamelCase : Dict = predict_dataset.remove_columns("label" ) _lowerCamelCase : int = trainer.predict(_lowerCAmelCase , metric_key_prefix="predict" ).predictions _lowerCamelCase : Optional[int] = np.argmax(_lowerCAmelCase , axis=1 ) _lowerCamelCase : str = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(_lowerCAmelCase ): _lowerCamelCase : Optional[Any] = label_list[item] writer.write(F'{index}\t{item}\n' ) _lowerCamelCase : Union[str, Any] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**_lowerCAmelCase ) else: trainer.create_model_card(**_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" main() if __name__ == "__main__": main()
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = DebertaTokenizer lowerCAmelCase_ = True lowerCAmelCase_ = DebertaTokenizerFast def lowerCamelCase_ ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] _lowerCamelCase : str = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCamelCase : List[Any] = {"unk_token": "[UNK]"} _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Any = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : str,**__A : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Optional[Any] ): _lowerCamelCase : Optional[Any] = "lower newer" _lowerCamelCase : Any = "lower newer" return input_text, output_text def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Any = "lower newer" _lowerCamelCase : Optional[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] _lowerCamelCase : List[Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Dict = tokens + [tokenizer.unk_token] _lowerCamelCase : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : List[Any] = tokenizer("Hello","World" ) _lowerCamelCase : Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"],__A ) @slow def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) _lowerCamelCase : int = tokenizer.encode("sequence builders",add_special_tokens=__A ) _lowerCamelCase : int = tokenizer.encode("multi-sequence build",add_special_tokens=__A ) _lowerCamelCase : Any = tokenizer.encode( "sequence builders",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : Optional[int] = tokenizer.encode( "sequence builders","multi-sequence build",add_special_tokens=__A,add_prefix_space=__A ) _lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(__A ) _lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A,__A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[int] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCamelCase : List[str] = tokenizer_class.from_pretrained("microsoft/deberta-base" ) _lowerCamelCase : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] _lowerCamelCase : Dict = tokenizer(__A,padding=__A ) _lowerCamelCase : Optional[int] = [tokenizer.decode(__A,skip_special_tokens=__A ) for seq in encoding["input_ids"]] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCamelCase : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data,__A ) for expected, decoded in zip(__A,__A ): self.assertEqual(__A,__A )
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase__ ( A ): lowerCAmelCase_ = (DPMSolverSDEScheduler,) lowerCAmelCase_ = 10 def lowerCamelCase_ ( self : str,**__A : List[Any] ): _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**__A ) return config def lowerCamelCase_ ( self : List[str] ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__A ) def lowerCamelCase_ ( self : Union[str, Any] ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001],[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A,beta_end=__A ) def lowerCamelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def lowerCamelCase_ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : Optional[Any] = scheduler.scale_model_input(__A,__A ) _lowerCamelCase : Tuple = model(__A,__A ) _lowerCamelCase : Tuple = scheduler.step(__A,__A,__A ) _lowerCamelCase : List[str] = output.prev_sample _lowerCamelCase : List[Any] = torch.sum(torch.abs(__A ) ) _lowerCamelCase : str = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def lowerCamelCase_ ( self : int ): _lowerCamelCase : Any = self.scheduler_classes[0] _lowerCamelCase : Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCamelCase : Optional[int] = self.dummy_model() _lowerCamelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Tuple = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : str = scheduler.scale_model_input(__A,__A ) _lowerCamelCase : Dict = model(__A,__A ) _lowerCamelCase : Dict = scheduler.step(__A,__A,__A ) _lowerCamelCase : Optional[Any] = output.prev_sample _lowerCamelCase : Dict = torch.sum(torch.abs(__A ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps,device=__A ) _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCamelCase : Dict = scheduler.scale_model_input(__A,__A ) _lowerCamelCase : Dict = model(__A,__A ) _lowerCamelCase : int = scheduler.step(__A,__A,__A ) _lowerCamelCase : str = output.prev_sample _lowerCamelCase : int = torch.sum(torch.abs(__A ) ) _lowerCamelCase : str = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Dict = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__A,use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps,device=__A ) _lowerCamelCase : Any = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma _lowerCamelCase : Optional[Any] = sample.to(__A ) for t in scheduler.timesteps: _lowerCamelCase : str = scheduler.scale_model_input(__A,__A ) _lowerCamelCase : Tuple = model(__A,__A ) _lowerCamelCase : Union[str, Any] = scheduler.step(__A,__A,__A ) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__A ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' import numpy as np def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = int(np.ceil((x_end - xa) / h ) ) _lowerCamelCase : List[Any] = np.zeros((n + 1,) ) _lowerCamelCase : Any = ya _lowerCamelCase : List[str] = xa for k in range(_lowerCAmelCase ): _lowerCamelCase : Tuple = f(_lowerCAmelCase , y[k] ) _lowerCamelCase : Optional[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _lowerCamelCase : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _lowerCamelCase : Optional[int] = f(x + h , y[k] + h * ka ) _lowerCamelCase : Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCAmelCase_ : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): """simple docstring""" return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": _lowerCamelCase : Optional[Any] = pd.read_csv(_lowerCAmelCase , sep="\t" , header=_lowerCAmelCase ) for answer_list in data[1]: _lowerCamelCase : Union[str, Any] = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: _lowerCamelCase : str = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : List[Any] = [[reference] for reference in references] _lowerCamelCase : Union[str, Any] = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Dict = 1_0_0.0 * em / total _lowerCamelCase : Dict = 1_0_0.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : int = args.k _lowerCamelCase : Optional[Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Union[str, Any] = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] _lowerCamelCase : Optional[Any] = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = set(hypo.split("\t" )[:k] ) _lowerCamelCase : List[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCamelCase : List[Any] = 1_0_0.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" def strip_title(_lowerCAmelCase : List[Any] ): if title.startswith("\"" ): _lowerCamelCase : Dict = title[1:] if title.endswith("\"" ): _lowerCamelCase : List[str] = title[:-1] return title _lowerCamelCase : str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )["input_ids"].to(args.device ) _lowerCamelCase : Any = rag_model.rag.question_encoder(_lowerCAmelCase ) _lowerCamelCase : str = question_enc_outputs[0] _lowerCamelCase : List[str] = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCamelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCamelCase : str = [] for docs in all_docs: _lowerCamelCase : Union[str, Any] = [strip_title(_lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCAmelCase ) ) return provenance_strings def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = inputs_dict.input_ids.to(args.device ) _lowerCamelCase : Any = inputs_dict.attention_mask.to(args.device ) _lowerCamelCase : Dict = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCamelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Q: {} - A: {}".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def A_ ( ): """simple docstring""" _lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCamelCase : Union[str, Any] = parser.parse_args() _lowerCamelCase : Tuple = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} if args.model_type is None: _lowerCamelCase : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCamelCase : Any = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCamelCase : Dict = args.n_docs if args.index_name is not None: _lowerCamelCase : List[Any] = args.index_name if args.index_path is not None: _lowerCamelCase : Union[str, Any] = args.index_path else: _lowerCamelCase : Optional[Any] = BartForConditionalGeneration _lowerCamelCase : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCAmelCase ) _lowerCamelCase : str = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCamelCase : str = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCamelCase : List[Any] = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: _lowerCamelCase : str = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCamelCase : Optional[Any] = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: _lowerCamelCase : Optional[Any] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) + "\n" ) preds_file.flush() _lowerCamelCase : str = [] if len(_lowerCAmelCase ) > 0: _lowerCamelCase : Optional[int] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCAmelCase_ : Any = get_args() main(args)
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ : str = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any],__A : List[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"],model_result["ss"] ): _lowerCamelCase : int = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" _lowerCamelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : List[str] = PyTorchBenchmark(__A ) _lowerCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = "sgugger/tiny-distilbert-classification" _lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,only_pretrain_model=__A,) _lowerCamelCase : Optional[Any] = PyTorchBenchmark(__A ) _lowerCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : str = "sshleifer/tiny-gpt2" _lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,torchscript=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : int = PyTorchBenchmark(__A ) _lowerCamelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu","Cant do half precision" ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : Optional[Any] = "sshleifer/tiny-gpt2" _lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,fpaa=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Optional[Any] = PyTorchBenchmark(__A ) _lowerCamelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = "sshleifer/tiny-gpt2" _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(__A ) # set architectures equal to `None` _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Union[str, Any] = PyTorchBenchmark(__A,configs=[config] ) _lowerCamelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = "sshleifer/tiny-gpt2" _lowerCamelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : List[str] = PyTorchBenchmark(__A ) _lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu","Can't do half precision" ) def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = "sshleifer/tiny-gpt2" _lowerCamelCase : str = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],fpaa=__A,multi_process=__A,) _lowerCamelCase : int = PyTorchBenchmark(__A ) _lowerCamelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : List[str] = PyTorchBenchmark(__A,configs=[config] ) _lowerCamelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = "sshleifer/tinier_bart" _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Tuple = PyTorchBenchmark(__A,configs=[config] ) _lowerCamelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = "sshleifer/tiny-gpt2" _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : int = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Dict = PyTorchBenchmark(__A,configs=[config] ) _lowerCamelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : int = "sshleifer/tinier_bart" _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__A ) _lowerCamelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],multi_process=__A,) _lowerCamelCase : Dict = PyTorchBenchmark(__A,configs=[config] ) _lowerCamelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,save_to_csv=__A,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(__A,"inf_time.csv" ),train_memory_csv_file=os.path.join(__A,"train_mem.csv" ),inference_memory_csv_file=os.path.join(__A,"inf_mem.csv" ),train_time_csv_file=os.path.join(__A,"train_time.csv" ),env_info_csv_file=os.path.join(__A,"env.csv" ),multi_process=__A,) _lowerCamelCase : List[Any] = PyTorchBenchmark(__A ) benchmark.run() self.assertTrue(Path(os.path.join(__A,"inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__A,"env.csv" ) ).exists() ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__A : Union[str, Any] ): self.assertTrue(hasattr(__A,"sequential" ) ) self.assertTrue(hasattr(__A,"cumulative" ) ) self.assertTrue(hasattr(__A,"current" ) ) self.assertTrue(hasattr(__A,"total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID],training=__A,inference=__A,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(__A,"log.txt" ),log_print=__A,trace_memory_line_by_line=__A,multi_process=__A,) _lowerCamelCase : List[Any] = PyTorchBenchmark(__A ) _lowerCamelCase : List[str] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__A,"log.txt" ) ).exists() )
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : List[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } UpperCAmelCase_ : Dict = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } UpperCAmelCase_ : Tuple = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase_ : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase_ : int = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRContextEncoderTokenizer class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRQuestionEncoderTokenizer UpperCAmelCase_ : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) UpperCAmelCase_ : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) UpperCAmelCase_ : List[Any] = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A ) class UpperCAmelCase__ : def __call__( self : str,__A : Dict,__A : Optional[str] = None,__A : Optional[str] = None,__A : Union[bool, str] = False,__A : Union[bool, str] = False,__A : Optional[int] = None,__A : Optional[Union[str, TensorType]] = None,__A : Optional[bool] = None,**__A : Optional[int],): if titles is None and texts is None: return super().__call__( __A,padding=__A,truncation=__A,max_length=__A,return_tensors=__A,return_attention_mask=__A,**__A,) elif titles is None or texts is None: _lowerCamelCase : str = titles if texts is None else texts return super().__call__( __A,__A,padding=__A,truncation=__A,max_length=__A,return_tensors=__A,return_attention_mask=__A,**__A,) _lowerCamelCase : int = titles if not isinstance(__A,__A ) else [titles] _lowerCamelCase : List[Any] = texts if not isinstance(__A,__A ) else [texts] _lowerCamelCase : Tuple = len(__A ) _lowerCamelCase : str = questions if not isinstance(__A,__A ) else [questions] * n_passages assert len(__A ) == len( __A ), f'There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.' _lowerCamelCase : int = super().__call__(__A,__A,padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : int = super().__call__(__A,add_special_tokens=__A,padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : Optional[int] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A,__A ) ] } if return_attention_mask is not False: _lowerCamelCase : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCamelCase : int = attention_mask return self.pad(__A,padding=__A,max_length=__A,return_tensors=__A ) def lowerCamelCase_ ( self : Optional[int],__A : BatchEncoding,__A : DPRReaderOutput,__A : int = 1_6,__A : int = 6_4,__A : int = 4,): _lowerCamelCase : Optional[Any] = reader_input["input_ids"] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = reader_output[:3] _lowerCamelCase : str = len(__A ) _lowerCamelCase : List[str] = sorted(range(__A ),reverse=__A,key=relevance_logits.__getitem__ ) _lowerCamelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCamelCase : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCamelCase : str = sequence_ids.index(self.sep_token_id,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCamelCase : Optional[int] = sequence_ids.index(self.pad_token_id ) else: _lowerCamelCase : Optional[int] = len(__A ) _lowerCamelCase : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len],end_logits=end_logits[doc_id][passage_offset:sequence_len],max_answer_length=__A,top_spans=__A,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],relevance_score=relevance_logits[doc_id],doc_id=__A,start_index=__A,end_index=__A,text=self.decode(sequence_ids[start_index : end_index + 1] ),) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase_ ( self : List[str],__A : List[int],__A : List[int],__A : int,__A : int,): _lowerCamelCase : int = [] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCamelCase : List[str] = sorted(__A,key=lambda __A : x[1],reverse=__A ) _lowerCamelCase : List[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' _lowerCamelCase : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A ) class UpperCAmelCase__ ( A , A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = DPRReaderTokenizer
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Any,*__A : Any,**__A : int ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead.",__A,) super().__init__(*__A,**__A )
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : def __init__( self : Optional[int],__A : int,__A : Union[str, Any]=3,__A : Optional[Any]=3_2,__A : int=3,__A : Optional[int]=1_0,__A : str=[8, 1_6, 3_2, 6_4],__A : Optional[Any]=[1, 1, 2, 1],__A : Any=True,__A : str=True,__A : Union[str, Any]="relu",__A : List[Any]=3,__A : Union[str, Any]=None,__A : Union[str, Any]=["stage2", "stage3", "stage4"],__A : Tuple=[2, 3, 4],__A : Any=1,): _lowerCamelCase : Dict = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : List[str] = image_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : Optional[Any] = embeddings_size _lowerCamelCase : str = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : List[str] = is_training _lowerCamelCase : Dict = use_labels _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_labels _lowerCamelCase : str = scope _lowerCamelCase : Tuple = len(__A ) _lowerCamelCase : Optional[int] = out_features _lowerCamelCase : Any = out_indices _lowerCamelCase : Union[str, Any] = num_groups def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : Tuple = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size],self.num_labels ) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): return BitConfig( num_channels=self.num_channels,embeddings_size=self.embeddings_size,hidden_sizes=self.hidden_sizes,depths=self.depths,hidden_act=self.hidden_act,num_labels=self.num_labels,out_features=self.out_features,out_indices=self.out_indices,num_groups=self.num_groups,) def lowerCamelCase_ ( self : List[Any],__A : str,__A : List[str],__A : Tuple ): _lowerCamelCase : Dict = BitModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Tuple = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2),) def lowerCamelCase_ ( self : Optional[Any],__A : List[Any],__A : Dict,__A : Union[str, Any] ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : Any = BitForImageClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple,__A : List[str],__A : Union[str, Any],__A : Optional[Any] ): _lowerCamelCase : str = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ),len(config.out_features ) ) self.parent.assertListEqual(model.channels,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = BitBackbone(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Tuple = model(__A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ),1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ),[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ),1 ) self.parent.assertListEqual(model.channels,[config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = config_and_inputs _lowerCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase_ = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = BitModelTester(self ) _lowerCamelCase : int = ConfigTester(self,config_class=__A,has_text_modality=__A ) def lowerCamelCase_ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : int ): return @unittest.skip(reason="Bit does not output attentions" ) def lowerCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__A ) _lowerCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1],__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=__A ) for name, module in model.named_modules(): if isinstance(__A,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) self.assertTrue( torch.all(module.bias == 0 ),msg=f'Parameter {name} of model {model_class} seems not properly initialized',) def lowerCamelCase_ ( self : Dict ): def check_hidden_states_output(__A : Dict,__A : Union[str, Any],__A : Optional[Any] ): _lowerCamelCase : str = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__A ),expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : str = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase : Tuple = layer_type _lowerCamelCase : Tuple = True check_hidden_states_output(__A,__A,__A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Union[str, Any] = True check_hidden_states_output(__A,__A,__A ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCamelCase_ ( self : Optional[Any] ): pass def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCamelCase_ ( self : Any ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = BitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A_ ( ): """simple docstring""" _lowerCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Dict = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : int = image_processor(images=__A,return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**__A ) # verify the logits _lowerCamelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape,__A ) _lowerCamelCase : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3],__A,atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase_ = BitConfig lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Tuple = BitModelTester(self )
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import os import string import sys UpperCAmelCase_ : List[Any] = 1 << 8 UpperCAmelCase_ : int = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCAmelCase_ : List[Any] = KEYMAP['up'] UpperCAmelCase_ : int = KEYMAP['left'] if sys.platform == "win32": UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase_ : Dict = ord(str(i)) def A_ ( ): """simple docstring""" if os.name == "nt": import msvcrt _lowerCamelCase : List[str] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowerCAmelCase ) == 0: # Read the keystroke _lowerCamelCase : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_lowerCAmelCase ) if ord(_lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : str = chr(KEYMAP["esc"] ) except KeyError: _lowerCamelCase : Any = cha[1] else: _lowerCamelCase : Dict = ch.decode(_lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : Optional[Any] = sys.stdin.fileno() _lowerCamelCase : Dict = termios.tcgetattr(_lowerCAmelCase ) try: tty.setraw(_lowerCAmelCase ) _lowerCamelCase : List[str] = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowerCAmelCase , termios.TCSADRAIN , _lowerCAmelCase ) return ch def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = get_raw_chars() if ord(_lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowerCAmelCase ) == KEYMAP["esc"]: _lowerCamelCase : str = get_raw_chars() if ord(_lowerCAmelCase ) == KEYMAP["mod_int"]: _lowerCamelCase : Dict = get_raw_chars() if ord(_lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase__ ( A ): @require_torch def lowerCamelCase_ ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : Optional[int] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _lowerCamelCase : Optional[int] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _lowerCamelCase : List[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _lowerCamelCase : Optional[int] = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask",model=__A ) # baseline - just load from_pretrained with normal network _lowerCamelCase : Optional[int] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _lowerCamelCase : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : int = "1" _lowerCamelCase : Any = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[str] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : Any = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _lowerCamelCase : Union[str, Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _lowerCamelCase : Any = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _lowerCamelCase : Dict = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask",model=__A ) # baseline - just load from_pretrained with normal network _lowerCamelCase : Union[str, Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _lowerCamelCase : int = self.get_env() _lowerCamelCase : Optional[Any] = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _lowerCamelCase : List[str] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " _lowerCamelCase : int = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network _lowerCamelCase : Optional[int] = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _lowerCamelCase : Dict = self.get_env() _lowerCamelCase : Any = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) # next emulate no network _lowerCamelCase : str = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : List[Any] = "1" _lowerCamelCase : int = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = "\nfrom transformers import pipeline\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " _lowerCamelCase : str = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " _lowerCamelCase : Union[str, Any] = self.get_env() _lowerCamelCase : Any = "1" _lowerCamelCase : List[str] = [sys.executable, "-c", "\n".join([load, mock, run] )] _lowerCamelCase : Tuple = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,1,result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode",result.stderr.decode().replace("\n","" ),) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = "\nfrom transformers import AutoModel\n " _lowerCamelCase : List[Any] = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network _lowerCamelCase : Tuple = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _lowerCamelCase : Optional[Any] = self.get_env() _lowerCamelCase : Tuple = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _lowerCamelCase : str = "1" _lowerCamelCase : int = subprocess.run(__A,env=__A,check=__A,capture_output=__A ) self.assertEqual(result.returncode,0,result.stderr ) self.assertIn("success",result.stdout.decode() )
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' from math import factorial class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : int,__A : List[Any] ): _lowerCamelCase : Dict = real if isinstance(__A,__A ): _lowerCamelCase : str = [1] * rank else: _lowerCamelCase : Union[str, Any] = rank def __repr__( self : Union[str, Any] ): return ( f'{self.real}+' f'{"+".join(str(__A )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real,__A ) def __add__( self : int,__A : str ): if not isinstance(__A,__A ): return Dual(self.real + other,self.duals ) _lowerCamelCase : int = self.duals.copy() _lowerCamelCase : Tuple = other.duals.copy() if len(__A ) > len(__A ): o_dual.extend([1] * (len(__A ) - len(__A )) ) elif len(__A ) < len(__A ): s_dual.extend([1] * (len(__A ) - len(__A )) ) _lowerCamelCase : Tuple = [] for i in range(len(__A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real,__A ) lowerCAmelCase_ = __add__ def __sub__( self : Dict,__A : int ): return self + other * -1 def __mul__( self : int,__A : Optional[int] ): if not isinstance(__A,__A ): _lowerCamelCase : str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other,__A ) _lowerCamelCase : Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real,__A ) lowerCAmelCase_ = __mul__ def __truediv__( self : List[str],__A : List[Any] ): if not isinstance(__A,__A ): _lowerCamelCase : Optional[int] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other,__A ) raise ValueError def __floordiv__( self : List[str],__A : Any ): if not isinstance(__A,__A ): _lowerCamelCase : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other,__A ) raise ValueError def __pow__( self : Optional[Any],__A : Optional[Any] ): if n < 0 or isinstance(__A,__A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self _lowerCamelCase : int = self for _ in range(n - 1 ): x *= self return x def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Any ): """simple docstring""" if not callable(_lowerCAmelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(_lowerCAmelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("differentiate() requires an int as input for order" ) _lowerCamelCase : Optional[Any] = Dual(_lowerCAmelCase , 1 ) _lowerCamelCase : List[str] = func(_lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def A_ ( _lowerCAmelCase : Any ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ : Tuple = data_utils.TransfoXLTokenizer UpperCAmelCase_ : Any = data_utils.TransfoXLCorpus UpperCAmelCase_ : Union[str, Any] = data_utils UpperCAmelCase_ : int = data_utils def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase , "rb" ) as fp: _lowerCamelCase : List[Any] = pickle.load(_lowerCAmelCase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowerCamelCase : Union[str, Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) _lowerCamelCase : Any = corpus.vocab.__dict__ torch.save(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , _lowerCAmelCase ) _lowerCamelCase : Tuple = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowerCamelCase : Union[str, Any] = os.path.abspath(_lowerCAmelCase ) _lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowerCamelCase : List[Any] = TransfoXLConfig() else: _lowerCamelCase : List[str] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) _lowerCamelCase : List[str] = load_tf_weights_in_transfo_xl(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) UpperCAmelCase_ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig UpperCAmelCase_ : Tuple = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'tapas' def __init__( self : str,__A : Tuple=3_0_5_2_2,__A : Any=7_6_8,__A : Dict=1_2,__A : Optional[int]=1_2,__A : List[Any]=3_0_7_2,__A : Any="gelu",__A : List[str]=0.1,__A : List[str]=0.1,__A : Union[str, Any]=1_0_2_4,__A : List[Any]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0],__A : str=0.02,__A : Dict=1e-12,__A : Dict=0,__A : str=10.0,__A : Dict=0,__A : Optional[Any]=1.0,__A : List[str]=None,__A : Optional[int]=1.0,__A : Optional[Any]=False,__A : Any=None,__A : List[str]=1.0,__A : Dict=1.0,__A : List[str]=False,__A : int=False,__A : List[Any]="ratio",__A : Optional[int]=None,__A : List[str]=None,__A : Union[str, Any]=6_4,__A : str=3_2,__A : List[str]=False,__A : int=True,__A : Dict=False,__A : str=False,__A : Optional[Any]=True,__A : str=False,__A : str=None,__A : Optional[Any]=None,**__A : Any,): super().__init__(pad_token_id=__A,**__A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Any = intermediate_size _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_sizes _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Tuple = layer_norm_eps # Fine-tuning task hyperparameters _lowerCamelCase : Optional[int] = positive_label_weight _lowerCamelCase : Dict = num_aggregation_labels _lowerCamelCase : str = aggregation_loss_weight _lowerCamelCase : List[str] = use_answer_as_supervision _lowerCamelCase : Optional[int] = answer_loss_importance _lowerCamelCase : Union[str, Any] = use_normalized_answer_loss _lowerCamelCase : str = huber_loss_delta _lowerCamelCase : int = temperature _lowerCamelCase : str = aggregation_temperature _lowerCamelCase : Optional[int] = use_gumbel_for_cells _lowerCamelCase : Dict = use_gumbel_for_aggregation _lowerCamelCase : int = average_approximation_function _lowerCamelCase : str = cell_selection_preference _lowerCamelCase : Tuple = answer_loss_cutoff _lowerCamelCase : Tuple = max_num_rows _lowerCamelCase : Any = max_num_columns _lowerCamelCase : Optional[Any] = average_logits_per_cell _lowerCamelCase : Union[str, Any] = select_one_column _lowerCamelCase : List[Any] = allow_empty_column_selection _lowerCamelCase : Optional[int] = init_cell_selection_weights_to_zero _lowerCamelCase : Dict = reset_position_index_per_cell _lowerCamelCase : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters _lowerCamelCase : str = aggregation_labels _lowerCamelCase : Optional[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels,__A ): _lowerCamelCase : Tuple = {int(__A ): v for k, v in aggregation_labels.items()}
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = JukeboxTokenizer lowerCAmelCase_ = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCamelCase_ ( self : Optional[Any] ): import torch _lowerCamelCase : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) _lowerCamelCase : Optional[int] = tokenizer(**self.metas )["input_ids"] # fmt: off _lowerCamelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0],EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1],EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2],EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): import torch _lowerCamelCase : Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) _lowerCamelCase : List[str] = tokenizer(**self.metas )["input_ids"] # fmt: off _lowerCamelCase : int = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0],EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1],EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2],EXPECTED_OUTPUT[2] ) )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1