code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A (__magic_name__ , unittest.TestCase ): snake_case :Any = ShapEPipeline snake_case :Tuple = ["prompt"] snake_case :Dict = ["prompt"] snake_case :Tuple = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case :Any = False @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return 32 @property def _snake_case ( self ): return self.time_input_dim * 4 @property def _snake_case ( self ): return 8 @property def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __UpperCAmelCase : int = PriorTransformer(**UpperCamelCase_ ) return model @property def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __UpperCAmelCase : Optional[Any] = ShapERenderer(**UpperCamelCase_ ) return model def _snake_case ( self ): __UpperCAmelCase : Any = self.dummy_prior __UpperCAmelCase : Tuple = self.dummy_text_encoder __UpperCAmelCase : List[Any] = self.dummy_tokenizer __UpperCAmelCase : Dict = self.dummy_renderer __UpperCAmelCase : Optional[Any] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __UpperCAmelCase : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : List[str] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[int] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __UpperCAmelCase : Any = output.images[0] __UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __UpperCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ): __UpperCAmelCase : int = torch_device == "cpu" __UpperCAmelCase : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = self.pipeline_class(**UpperCamelCase_ ) __UpperCAmelCase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __UpperCAmelCase : Dict = batch_size * [inputs[key]] __UpperCAmelCase : Any = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A (unittest.TestCase ): def _snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) __UpperCAmelCase : Tuple = ShapEPipeline.from_pretrained("openai/shap-e" ) __UpperCAmelCase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe( "a shark" , generator=UpperCamelCase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _a : Optional[int] = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Any = "vision-encoder-decoder" snake_case :List[str] = True def __init__( self , **UpperCamelCase_ ): super().__init__(**UpperCamelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) __UpperCAmelCase : List[Any] = kwargs.pop("encoder" ) __UpperCAmelCase : int = encoder_config.pop("model_type" ) __UpperCAmelCase : str = kwargs.pop("decoder" ) __UpperCAmelCase : Tuple = decoder_config.pop("model_type" ) __UpperCAmelCase : Optional[int] = AutoConfig.for_model(UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[str] = AutoConfig.for_model(UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = True @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.encoder.to_dict() __UpperCAmelCase : str = self.decoder.to_dict() __UpperCAmelCase : int = self.__class__.model_type return output class __A (__magic_name__ ): snake_case :str = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ): return 1E-4 @property def _snake_case ( self ): return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class __A (__magic_name__ ): @property def _snake_case ( self ): __UpperCAmelCase : int = OrderedDict() __UpperCAmelCase : Tuple = {0: "batch", 1: "past_decoder_sequence + sequence"} __UpperCAmelCase : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} __UpperCAmelCase : Dict = {0: "batch", 1: "encoder_sequence"} return common_inputs def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ): import torch __UpperCAmelCase : Optional[int] = OrderedDict() __UpperCAmelCase : Any = super().generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) __UpperCAmelCase : List[str] = dummy_input["input_ids"].shape __UpperCAmelCase : int = (batch, encoder_sequence, self._config.encoder_hidden_size) __UpperCAmelCase : int = dummy_input.pop("input_ids" ) __UpperCAmelCase : Optional[int] = dummy_input.pop("attention_mask" ) __UpperCAmelCase : Tuple = torch.zeros(UpperCamelCase_ ) return common_inputs class __A (__magic_name__ ): @property def _snake_case ( self ): pass def _snake_case ( self , UpperCamelCase_ ): return VisionEncoderDecoderEncoderOnnxConfig(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = "default" ): __UpperCAmelCase : str = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCamelCase_ , UpperCamelCase_ )
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : List[Any] = logging.getLogger(__name__) @dataclass class __A : snake_case :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case :bool = field(default=__magic_name__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __A : snake_case :str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case :int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) __UpperCAmelCase : List[str] = import_module("tasks" ) try: __UpperCAmelCase : Optional[int] = getattr(lowerCamelCase__ , model_args.task_type ) __UpperCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCAmelCase : Any = token_classification_task.get_labels(data_args.labels ) __UpperCAmelCase : Dict[int, str] = dict(enumerate(lowerCamelCase__ ) ) __UpperCAmelCase : Any = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCAmelCase : Union[str, Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCAmelCase : Tuple = ( TokenClassificationDataset( token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCAmelCase : int = ( TokenClassificationDataset( token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCamelCase__ , lowerCamelCase__ ) -> Tuple[List[int], List[int]]: __UpperCAmelCase : Tuple = np.argmax(lowerCamelCase__ , axis=2 ) __UpperCAmelCase : str = preds.shape __UpperCAmelCase : List[Any] = [[] for _ in range(lowerCamelCase__ )] __UpperCAmelCase : Union[str, Any] = [[] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCamelCase__ ) -> Dict: __UpperCAmelCase : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCamelCase__ , lowerCamelCase__ ), "precision": precision_score(lowerCamelCase__ , lowerCamelCase__ ), "recall": recall_score(lowerCamelCase__ , lowerCamelCase__ ), "f1": fa_score(lowerCamelCase__ , lowerCamelCase__ ), } # Data collator __UpperCAmelCase : Dict = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCAmelCase : List[str] = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : Tuple = trainer.evaluate() __UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCamelCase__ ) # Predict if training_args.do_predict: __UpperCAmelCase : List[Any] = TokenClassificationDataset( token_classification_task=lowerCamelCase__ , data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , labels=lowerCamelCase__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCAmelCase : List[Any] = trainer.predict(lowerCamelCase__ ) __UpperCAmelCase : int = align_predictions(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions __UpperCAmelCase : Any = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return results def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A (__magic_name__ ): snake_case :Optional[int] = ["image_processor", "tokenizer"] snake_case :str = "AutoImageProcessor" snake_case :Optional[Any] = "AutoTokenizer" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : int = self.image_processor def __call__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __UpperCAmelCase : str = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __UpperCAmelCase : int = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None and images is not None: __UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def _snake_case ( self ): return ["input_ids", "attention_mask", "pixel_values"]
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _a : Dict = logging.get_logger(__name__) # TODO: upload to AWS _a : Optional[Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Optional[int] = "retribert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=8 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=True , UpperCamelCase_=1_28 , UpperCamelCase_=0 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = share_encoders __UpperCAmelCase : Tuple = projection_dim
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _a : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _a : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _a : List[str] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _a : Optional[Any] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _a : List[str] = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __A : snake_case :int = BlenderbotConfig snake_case :int = {} snake_case :Dict = "gelu" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : Union[str, Any] = pad_token_id __UpperCAmelCase : Union[str, Any] = bos_token_id def _snake_case ( self ): __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = TFBlenderbotModel(config=UpperCamelCase_ ).get_decoder() __UpperCAmelCase : Union[str, Any] = inputs_dict["input_ids"] __UpperCAmelCase : Dict = input_ids[:1, :] __UpperCAmelCase : int = inputs_dict["attention_mask"][:1, :] __UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] __UpperCAmelCase : Union[str, Any] = 1 # first forward pass __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCAmelCase : str = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCAmelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: __UpperCAmelCase : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () snake_case :str = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () snake_case :Optional[int] = ( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) snake_case :Tuple = True snake_case :Any = False snake_case :Any = False def _snake_case ( self ): __UpperCAmelCase : Optional[int] = TFBlenderbotModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_tokenizers @require_tf class __A (unittest.TestCase ): snake_case :Union[str, Any] = ["My friends are cool but they eat too many carbs."] snake_case :Tuple = "facebook/blenderbot-400M-distill" @cached_property def _snake_case ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _snake_case ( self ): __UpperCAmelCase : List[str] = self.tokenizer(self.src_text , return_tensors="tf" ) __UpperCAmelCase : List[str] = self.model.generate( model_inputs.input_ids , ) __UpperCAmelCase : int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :Union[str, Any] = "efficientnet" def __init__( self , UpperCamelCase_ = 3 , UpperCamelCase_ = 6_00 , UpperCamelCase_ = 2.0 , UpperCamelCase_ = 3.1 , UpperCamelCase_ = 8 , UpperCamelCase_ = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase_ = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase_ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase_ = [] , UpperCamelCase_ = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase_ = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase_ = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase_ = 0.2_5 , UpperCamelCase_ = "swish" , UpperCamelCase_ = 25_60 , UpperCamelCase_ = "mean" , UpperCamelCase_ = 0.0_2 , UpperCamelCase_ = 0.0_0_1 , UpperCamelCase_ = 0.9_9 , UpperCamelCase_ = 0.5 , UpperCamelCase_ = 0.2 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : List[Any] = width_coefficient __UpperCAmelCase : Any = depth_coefficient __UpperCAmelCase : Optional[Any] = depth_divisor __UpperCAmelCase : Any = kernel_sizes __UpperCAmelCase : str = in_channels __UpperCAmelCase : Optional[Any] = out_channels __UpperCAmelCase : List[str] = depthwise_padding __UpperCAmelCase : List[str] = strides __UpperCAmelCase : Dict = num_block_repeats __UpperCAmelCase : Optional[int] = expand_ratios __UpperCAmelCase : Optional[int] = squeeze_expansion_ratio __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Any = hidden_dim __UpperCAmelCase : List[Any] = pooling_type __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : List[Any] = batch_norm_eps __UpperCAmelCase : List[str] = batch_norm_momentum __UpperCAmelCase : Optional[Any] = dropout_rate __UpperCAmelCase : Optional[Any] = drop_connect_rate __UpperCAmelCase : str = sum(UpperCamelCase_ ) * 4 class __A (__magic_name__ ): snake_case :List[str] = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ): return 1E-5
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' from __future__ import annotations _a : Optional[Any] = 8.9_88e9 # units = N * m^s * C^-2 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> dict[str, float]: """simple docstring""" __UpperCAmelCase : Optional[int] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: __UpperCAmelCase : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __UpperCAmelCase : List[str] = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __UpperCAmelCase : str = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __UpperCAmelCase : Union[str, Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCamelCase__ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a : Any = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : Any = logging.getLogger(__name__) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __A : snake_case :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case :Optional[str] = field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __A : snake_case :str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) snake_case :str = field(metadata={"help": "Should contain the data files for the task."} ) snake_case :int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case :bool = field( default=__magic_name__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) try: __UpperCAmelCase : Tuple = processors[data_args.task_name]() __UpperCAmelCase : str = processor.get_labels() __UpperCAmelCase : str = len(lowerCamelCase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCAmelCase : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase__ ) -> Dict: __UpperCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase__ , p.label_ids )} # Data collator __UpperCAmelCase : Optional[Any] = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCAmelCase : Dict = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : int = trainer.evaluate() __UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCamelCase__ ) return results def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _a : Dict = datasets.utils.logging.get_logger(__name__) class __A (folder_based_builder.FolderBasedBuilderConfig ): snake_case :bool = None snake_case :bool = None class __A (folder_based_builder.FolderBasedBuilder ): snake_case :Dict = datasets.Audio() snake_case :List[str] = "audio" snake_case :List[str] = AudioFolderConfig snake_case :List[str] # definition at the bottom of the script snake_case :Optional[Any] = AudioClassification(audio_column="audio" , label_column="label" ) _a : Tuple = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _a : Tuple = AUDIO_EXTENSIONS
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :int = (DDIMParallelScheduler,) snake_case :Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Dict = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "clip_sample": True, } config.update(**UpperCamelCase_ ) return config def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : int = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = 10, 0.0 __UpperCAmelCase : List[Any] = self.dummy_model() __UpperCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for t in scheduler.timesteps: __UpperCAmelCase : Tuple = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _snake_case ( self ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase : List[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def _snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def _snake_case ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase_ ) def _snake_case ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ ) def _snake_case ( self ): self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def _snake_case ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase_ ) def _snake_case ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ ) def _snake_case ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.scheduler_classes[0] __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.0_2 ) ) < 1E-5 def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : int = 10, 0.0 scheduler.set_timesteps(UpperCamelCase_ ) __UpperCAmelCase : Any = self.dummy_model() __UpperCAmelCase : str = self.dummy_sample_deter __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter + 0.1 __UpperCAmelCase : List[str] = self.dummy_sample_deter - 0.1 __UpperCAmelCase : str = samplea.shape[0] __UpperCAmelCase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __UpperCAmelCase : List[Any] = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) __UpperCAmelCase : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __UpperCAmelCase : Tuple = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ ) __UpperCAmelCase : int = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : str = self.full_loop() __UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' from __future__ import annotations from typing import Any def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 __UpperCAmelCase : Optional[Any] = {"+", "-", "*", "/"} __UpperCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: __UpperCAmelCase : Optional[int] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' from __future__ import annotations import math _a : List[Any] = "2020.9.26" _a : int = "xcodz-dot, cclaus, dhruvmanila" def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float]: """simple docstring""" if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in locals().values() ): __UpperCAmelCase : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : List[str] = ((x * distance) / (z + distance)) * scale __UpperCAmelCase : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Axis must be a str" ) __UpperCAmelCase : int = locals() del input_variables["axis"] if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in input_variables.values() ): __UpperCAmelCase : int = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": __UpperCAmelCase : Any = x * math.cos(lowerCamelCase__ ) - y * math.sin(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = y * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ ) __UpperCAmelCase : List[Any] = z elif axis == "x": __UpperCAmelCase : Union[str, Any] = y * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = z * math.cos(lowerCamelCase__ ) + y * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Dict = x elif axis == "y": __UpperCAmelCase : Optional[int] = x * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = z * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ ) __UpperCAmelCase : Tuple = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from __future__ import annotations _a : Tuple = 1.60_21e-19 # units = C def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=2 , UpperCamelCase_=99 , UpperCamelCase_=0 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_="last" , UpperCamelCase_=None , UpperCamelCase_=None , ): __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Any = use_input_lengths __UpperCAmelCase : Optional[Any] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Union[str, Any] = gelu_activation __UpperCAmelCase : Tuple = sinusoidal_embeddings __UpperCAmelCase : str = causal __UpperCAmelCase : Union[str, Any] = asm __UpperCAmelCase : Optional[int] = n_langs __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = n_special __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Union[str, Any] = num_choices __UpperCAmelCase : Union[str, Any] = summary_type __UpperCAmelCase : Dict = use_proj __UpperCAmelCase : Dict = scope def _snake_case ( self ): __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_lengths: __UpperCAmelCase : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase : str = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) __UpperCAmelCase : int = model(UpperCamelCase_ , langs=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : List[str] = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase_ ) __UpperCAmelCase : Dict = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Tuple = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Dict = model(UpperCamelCase_ ) __UpperCAmelCase : str = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) __UpperCAmelCase : Dict = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) (__UpperCAmelCase ) : str = result_with_labels.to_tuple() __UpperCAmelCase : List[Any] = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) (__UpperCAmelCase ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase_ ) __UpperCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : Optional[Any] = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = self.num_choices __UpperCAmelCase : Dict = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Dict = config_and_inputs __UpperCAmelCase : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Tuple = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case :Optional[Any] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): __UpperCAmelCase : Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) __UpperCAmelCase : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def _snake_case ( self ): __UpperCAmelCase : Optional[int] = FlaubertModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def _snake_case ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def _snake_case ( self ): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = model_class(config=UpperCamelCase_ ) __UpperCAmelCase : Dict = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.jit.trace( UpperCamelCase_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , "traced_model.pt" ) ) __UpperCAmelCase : Dict = torch.jit.load(os.path.join(UpperCamelCase_ , "traced_model.pt" ) , map_location=UpperCamelCase_ ) loaded(inputs_dict["input_ids"].to(UpperCamelCase_ ) , inputs_dict["attention_mask"].to(UpperCamelCase_ ) ) @require_torch class __A (unittest.TestCase ): @slow def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __UpperCAmelCase : int = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCAmelCase : Any = model(UpperCamelCase_ )[0] __UpperCAmelCase : List[Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase_ ) __UpperCAmelCase : int = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
700
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _a : str = datasets.load_iris() _a : List[Any] = np.array(data["data"]) _a : Optional[Any] = np.array(data["target"]) _a : Dict = data["target_names"] _a , _a , _a , _a : Any = train_test_split(X, y) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ) -> int: """simple docstring""" __UpperCAmelCase : List[Any] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified __UpperCAmelCase : int = [] for data_point in data: __UpperCAmelCase : Optional[Any] = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase : Union[str, Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase : Dict = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
10
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _a : List[Any] = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ ) -> List[int]: """simple docstring""" if isinstance(lowerCamelCase__ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase : List[Any] = tf.shape(lowerCamelCase__ ) if tensor.shape == tf.TensorShape(lowerCamelCase__ ): return dynamic __UpperCAmelCase : List[str] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase__ )] def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=lowerCamelCase__ , name=lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1e-5 , lowerCamelCase__=-1 ) -> str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized __UpperCAmelCase : Tuple = tf.nn.moments(lowerCamelCase__ , axes=[axis] , keepdims=lowerCamelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase : Dict = [1] * inputs.shape.rank __UpperCAmelCase : Any = shape_list(lowerCamelCase__ )[axis] __UpperCAmelCase : Tuple = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : str = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase : List[str] = tf.nn.batch_normalization( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , offset=lowerCamelCase__ , scale=lowerCamelCase__ , variance_epsilon=lowerCamelCase__ , ) return outputs def _lowercase ( lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=-1 ) -> str: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase : List[Any] = tf.shape(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ ) -> tf.Tensor: """simple docstring""" if not isinstance(lowerCamelCase__ , tf.Tensor ): __UpperCAmelCase : Optional[Any] = tf.convert_to_tensor(lowerCamelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase : Any = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase : Dict = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( lowerCamelCase__ , tf.cast(lowerCamelCase__ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase__ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase : List[Any] = [x for x in data if len(lowerCamelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) __UpperCAmelCase : Any = np.asarray(lowerCamelCase__ ) __UpperCAmelCase : str = 1 __UpperCAmelCase : Tuple = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase : Tuple = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase__ ): __UpperCAmelCase : Tuple = chunk_data else: __UpperCAmelCase : int = data def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" if name in group.attrs: __UpperCAmelCase : Optional[int] = [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs[name]] else: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def _lowercase ( lowerCamelCase__ ) -> List[Any]: """simple docstring""" def _expand_single_ad_tensor(lowerCamelCase__ ): if isinstance(lowerCamelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase__ )
701
'''simple docstring''' class __A : def __init__( self , UpperCamelCase_ ): __UpperCAmelCase : Any = set_counts __UpperCAmelCase : int = max(UpperCamelCase_ ) __UpperCAmelCase : List[str] = len(UpperCamelCase_ ) __UpperCAmelCase : Any = [1] * num_sets __UpperCAmelCase : Any = list(range(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.get_parent(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : List[Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __UpperCAmelCase : Union[str, Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Dict = src_parent __UpperCAmelCase : Dict = self.set_counts[src_parent] __UpperCAmelCase : Dict = max(self.max_set , UpperCamelCase_ ) return True def _snake_case ( self , UpperCamelCase_ ): if self.parents[disj_set] == disj_set: return disj_set __UpperCAmelCase : str = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
10
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __A (__magic_name__ , unittest.TestCase ): snake_case :Optional[Any] = DebertaVaTokenizer snake_case :Dict = DebertaVaTokenizerFast snake_case :str = True snake_case :List[str] = True def _snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = "this is a test" __UpperCAmelCase : Tuple = "this is a test" return input_text, output_text def _snake_case ( self ): __UpperCAmelCase : Tuple = "<pad>" __UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(UpperCamelCase_ ) , 3_00_01 ) def _snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def _snake_case ( self ): # fmt: off __UpperCAmelCase : List[str] = " \tHeLLo!how \n Are yoU? " __UpperCAmelCase : Tuple = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on __UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) __UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) __UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _snake_case ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _snake_case ( self ): pass def _snake_case ( self ): # fmt: off __UpperCAmelCase : List[Any] = "I was born in 92000, and this is falsé." __UpperCAmelCase : Optional[int] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = DebertaVaTokenizerFast(UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # fmt: off __UpperCAmelCase : List[str] = "I was born in 92000, and this is falsé." __UpperCAmelCase : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCAmelCase : str = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # fmt: off __UpperCAmelCase : Optional[int] = "I was born in 92000, and this is falsé." __UpperCAmelCase : str = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __UpperCAmelCase : List[str] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # fmt: off __UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé." __UpperCAmelCase : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on __UpperCAmelCase : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : int = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): # fmt: off __UpperCAmelCase : Optional[int] = " \tHeLLo!how \n Are yoU? " __UpperCAmelCase : int = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on __UpperCAmelCase : int = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Tuple = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() __UpperCAmelCase : Union[str, Any] = "I was born in 92000, and this is falsé." __UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() __UpperCAmelCase : int = tokenizer.encode(UpperCamelCase_ ) __UpperCAmelCase : Any = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : str = "This is a test" __UpperCAmelCase : List[Any] = [13, 1, 43_98, 25, 21, 12_89] __UpperCAmelCase : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"] __UpperCAmelCase : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] __UpperCAmelCase : int = DebertaVaTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __UpperCAmelCase : List[Any] = DebertaVaTokenizerFast(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __UpperCAmelCase : Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : str = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : str = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # fmt: off __UpperCAmelCase : Dict = "I was born in 92000, and this is falsé." __UpperCAmelCase : Dict = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] __UpperCAmelCase : Dict = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] __UpperCAmelCase : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on __UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[str] = DebertaVaTokenizer(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = tokenizer.encode("sequence builders" ) __UpperCAmelCase : int = tokenizer.encode("multi-sequence build" ) __UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase_ , ) @slow def _snake_case ( self ): # fmt: off __UpperCAmelCase : int = {"input_ids": [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
702
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : Dict = (boundary[1] - boundary[0]) / steps __UpperCAmelCase : Tuple = boundary[0] __UpperCAmelCase : List[str] = boundary[1] __UpperCAmelCase : List[Any] = make_points(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : int = 0.0 y += (h / 2.0) * f(lowerCamelCase__ ) for i in x_i: # print(i) y += h * f(lowerCamelCase__ ) y += (h / 2.0) * f(lowerCamelCase__ ) return y def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = a + h while x < (b - h): yield x __UpperCAmelCase : List[str] = x + h def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: # enter your function here """simple docstring""" __UpperCAmelCase : str = (x - 0) * (x - 0) return y def _lowercase ( ) -> int: """simple docstring""" __UpperCAmelCase : Tuple = 0.0 # Lower bound of integration __UpperCAmelCase : Union[str, Any] = 1.0 # Upper bound of integration __UpperCAmelCase : Union[str, Any] = 10.0 # define number of steps or resolution __UpperCAmelCase : Dict = [a, b] # define boundary of integration __UpperCAmelCase : Optional[int] = method_a(lowerCamelCase__ , lowerCamelCase__ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
704
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : Tuple = "▁" _a : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _a : Tuple = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _a : Optional[Any] = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class __A (__magic_name__ ): snake_case :Union[str, Any] = VOCAB_FILES_NAMES snake_case :Any = PRETRAINED_VOCAB_FILES_MAP snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset __UpperCAmelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): __UpperCAmelCase : List[str] = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Dict = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _snake_case ( self ): __UpperCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Optional[int] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
10
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
705
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A (unittest.TestCase ): def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Tuple = 2_50 __UpperCAmelCase : str = ids_tensor((batch_size, length) , UpperCamelCase_ ) __UpperCAmelCase : Any = torch.ones((batch_size, length) , device=UpperCamelCase_ , dtype=torch.float ) / length return input_ids, scores def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) __UpperCAmelCase : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : int = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : int = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : Union[str, Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _snake_case ( self ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self._get_tensors(5 ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) __UpperCAmelCase : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase_ , UpperCamelCase_ ) ) def _snake_case ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase_ ) , 1 )
10
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A (__magic_name__ ): snake_case :Dict = (PNDMScheduler,) snake_case :List[Any] = (("num_inference_steps", 50),) def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : int = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**UpperCamelCase_ ) return config def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : Any = dict(self.forward_default_kwargs ) __UpperCAmelCase : Dict = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : str = self.dummy_sample __UpperCAmelCase : Optional[Any] = 0.1 * sample __UpperCAmelCase : Any = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : List[Any] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : int = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals __UpperCAmelCase : Any = dummy_past_residuals[:] __UpperCAmelCase : Any = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Dict = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : List[str] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self ): pass def _snake_case ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): __UpperCAmelCase : str = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) __UpperCAmelCase : int = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[int] = self.get_scheduler_config() __UpperCAmelCase : Optional[int] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase : Optional[int] = dummy_past_residuals[:] __UpperCAmelCase : str = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : str = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase : Any = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : List[str] = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _snake_case ( self , **UpperCamelCase_ ): __UpperCAmelCase : Dict = self.scheduler_classes[0] __UpperCAmelCase : Optional[int] = self.get_scheduler_config(**UpperCamelCase_ ) __UpperCAmelCase : Dict = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = 10 __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): __UpperCAmelCase : str = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __UpperCAmelCase : Any = model(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[Any] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _snake_case ( self ): __UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) __UpperCAmelCase : Optional[int] = kwargs.pop("num_inference_steps" , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase : str = self.get_scheduler_config() __UpperCAmelCase : Tuple = scheduler_class(**UpperCamelCase_ ) __UpperCAmelCase : Any = self.dummy_sample __UpperCAmelCase : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , "set_timesteps" ): __UpperCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __UpperCAmelCase : Optional[Any] = dummy_past_residuals[:] __UpperCAmelCase : Dict = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase : Optional[int] = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample __UpperCAmelCase : Union[str, Any] = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : str = self.get_scheduler_config(steps_offset=1 ) __UpperCAmelCase : List[str] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def _snake_case ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _snake_case ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_ ) def _snake_case ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ ) def _snake_case ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __UpperCAmelCase : Dict = 27 for scheduler_class in self.scheduler_classes: __UpperCAmelCase : Optional[Any] = self.dummy_sample __UpperCAmelCase : int = 0.1 * sample __UpperCAmelCase : Dict = self.get_scheduler_config() __UpperCAmelCase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __UpperCAmelCase : int = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample def _snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.scheduler_classes[0] __UpperCAmelCase : List[str] = self.get_scheduler_config() __UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _snake_case ( self ): __UpperCAmelCase : Any = self.full_loop() __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def _snake_case ( self ): __UpperCAmelCase : List[Any] = self.full_loop(prediction_type="v_prediction" ) __UpperCAmelCase : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : str = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def _snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 __UpperCAmelCase : Dict = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.0_1 ) __UpperCAmelCase : Optional[int] = torch.sum(torch.abs(UpperCamelCase_ ) ) __UpperCAmelCase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
706
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
10
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : str = logging.get_logger(__name__) class __A (__magic_name__ ): snake_case :Optional[Any] = ["pixel_values"] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : List[str] = size if size is not None else {"shortest_edge": 2_56} __UpperCAmelCase : int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __UpperCAmelCase : str = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Dict = resample __UpperCAmelCase : str = do_center_crop __UpperCAmelCase : Union[str, Any] = crop_size __UpperCAmelCase : List[str] = do_rescale __UpperCAmelCase : List[Any] = rescale_factor __UpperCAmelCase : List[Any] = do_normalize __UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BICUBIC , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __UpperCAmelCase : Optional[int] = get_resize_output_image_size(UpperCamelCase_ , size=size["shortest_edge"] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : List[str] = get_size_dict(UpperCamelCase_ ) return center_crop(UpperCamelCase_ , size=(size["height"], size["width"]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): __UpperCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Union[str, Any] = size if size is not None else self.size __UpperCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __UpperCAmelCase : Tuple = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : List[Any] = get_size_dict(UpperCamelCase_ ) __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCAmelCase : List[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __UpperCAmelCase : Tuple = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __UpperCAmelCase : Optional[int] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __UpperCAmelCase : Optional[Any] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __UpperCAmelCase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __UpperCAmelCase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
707
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart _a : Tuple = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } _a : List[Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def _lowercase ( ) -> List[Any]: """simple docstring""" __UpperCAmelCase : Dict = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : Dict = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[Any] = char return pairs class __A (__magic_name__ ): snake_case :Optional[int] = VOCAB_FILES_NAMES snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="replace" , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : str = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __UpperCAmelCase : Optional[int] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __UpperCAmelCase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) with open(UpperCamelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCamelCase_ ) __UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Any = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Dict = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ): return len(self.encoder ) def _snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , UpperCamelCase_ ): if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __UpperCAmelCase : str = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : List[Any] = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCamelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : str = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCamelCase_ ) __UpperCAmelCase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __UpperCAmelCase : int = get_pairs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = " ".join(UpperCamelCase_ ) __UpperCAmelCase : Dict = word return word def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] for token in re.findall(self.pat , UpperCamelCase_ ): __UpperCAmelCase : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , UpperCamelCase_ ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , UpperCamelCase_ ): return self.decoder.get(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = "".join(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + "\n" ) __UpperCAmelCase : str = 0 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : str = token_index writer.write(" ".join(UpperCamelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False , **UpperCamelCase_ ): __UpperCAmelCase : List[str] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase_ ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = " " + text return (text, kwargs)
10
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __A (unittest.TestCase , __magic_name__ ): def _snake_case ( self ): __UpperCAmelCase : str = load_tool("text-classification" ) self.tool.setup() __UpperCAmelCase : Any = load_tool("text-classification" , remote=UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : str = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" ) def _snake_case ( self ): __UpperCAmelCase : Any = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(UpperCamelCase_ , "positive" )
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : int = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __A (__magic_name__ ): snake_case :Optional[int] = "speech_to_text_2" snake_case :List[Any] = ["past_key_values"] snake_case :str = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase_=1_00_00 , UpperCamelCase_=6 , UpperCamelCase_=20_48 , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=2_56 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=10_24 , **UpperCamelCase_ , ): __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : List[str] = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : Dict = dropout __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Dict = activation_function __UpperCAmelCase : Tuple = init_std __UpperCAmelCase : Any = decoder_layerdrop __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = decoder_layers __UpperCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCAmelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
10
0
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _lowercase ( *lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__=True , lowerCamelCase__=2 ) -> Any: """simple docstring""" from .. import __version__ __UpperCAmelCase : Optional[Any] = take_from __UpperCAmelCase : Any = () if not isinstance(args[0] , lowerCamelCase__ ): __UpperCAmelCase : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase__ ).base_version ) >= version.parse(lowerCamelCase__ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) __UpperCAmelCase : List[Any] = None if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase__ ),) __UpperCAmelCase : List[Any] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowerCamelCase__ , lowerCamelCase__ ): values += (getattr(lowerCamelCase__ , lowerCamelCase__ ),) __UpperCAmelCase : Any = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __UpperCAmelCase : Optional[int] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __UpperCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , lowerCamelCase__ , stacklevel=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) > 0: __UpperCAmelCase : str = inspect.getouterframes(inspect.currentframe() )[1] __UpperCAmelCase : Union[str, Any] = call_frame.filename __UpperCAmelCase : List[str] = call_frame.lineno __UpperCAmelCase : Dict = call_frame.function __UpperCAmelCase : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowerCamelCase__ ) == 0: return elif len(lowerCamelCase__ ) == 1: return values[0] return values
709
'''simple docstring''' def _lowercase ( lowerCamelCase__ = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Optional[Any] = (n * (n + 1) // 2) ** 2 __UpperCAmelCase : Any = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
10
0
def _lowercase ( ) -> int: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(lowerCamelCase__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
710
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __UpperCAmelCase : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__ ) ) return round(lowerCamelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowercase ( lowerCamelCase__ ) -> Any: """simple docstring""" random.seed(lowerCamelCase__ ) np.random.seed(lowerCamelCase__ ) torch.manual_seed(lowerCamelCase__ ) torch.cuda.manual_seed_all(lowerCamelCase__ ) # ^^ safe to call this function even if cuda is not available class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_ = 0.9_9_9_9 , UpperCamelCase_ = 0.0 , UpperCamelCase_ = 0 , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = 2 / 3 , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): if isinstance(UpperCamelCase_ , torch.nn.Module ): __UpperCAmelCase : int = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) __UpperCAmelCase : Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __UpperCAmelCase : str = True if kwargs.get("max_value" , UpperCamelCase_ ) is not None: __UpperCAmelCase : Dict = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value" , UpperCamelCase_ ) is not None: __UpperCAmelCase : Union[str, Any] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) __UpperCAmelCase : int = kwargs["min_value"] __UpperCAmelCase : Union[str, Any] = list(UpperCamelCase_ ) __UpperCAmelCase : str = [p.clone().detach() for p in parameters] if kwargs.get("device" , UpperCamelCase_ ) is not None: __UpperCAmelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) self.to(device=kwargs["device"] ) __UpperCAmelCase : int = None __UpperCAmelCase : int = decay __UpperCAmelCase : Any = min_decay __UpperCAmelCase : Any = update_after_step __UpperCAmelCase : int = use_ema_warmup __UpperCAmelCase : Dict = inv_gamma __UpperCAmelCase : Any = power __UpperCAmelCase : int = 0 __UpperCAmelCase : Dict = None # set in `step()` __UpperCAmelCase : List[str] = model_cls __UpperCAmelCase : Optional[int] = model_config @classmethod def _snake_case ( cls , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : int = model_cls.load_config(UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ ) __UpperCAmelCase : str = model_cls.from_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = cls(model.parameters() , model_cls=UpperCamelCase_ , model_config=model.config ) ema_model.load_state_dict(UpperCamelCase_ ) return ema_model def _snake_case ( self , UpperCamelCase_ ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) __UpperCAmelCase : int = self.model_cls.from_config(self.model_config ) __UpperCAmelCase : Any = self.state_dict() state_dict.pop("shadow_params" , UpperCamelCase_ ) model.register_to_config(**UpperCamelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __UpperCAmelCase : Optional[int] = 1 - (1 + step / self.inv_gamma) ** -self.power else: __UpperCAmelCase : Any = (1 + step) / (10 + step) __UpperCAmelCase : Any = min(UpperCamelCase_ , self.decay ) # make sure decay is not smaller than min_decay __UpperCAmelCase : int = max(UpperCamelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def _snake_case ( self , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , torch.nn.Module ): __UpperCAmelCase : Optional[Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , UpperCamelCase_ , standard_warn=UpperCamelCase_ , ) __UpperCAmelCase : Tuple = parameters.parameters() __UpperCAmelCase : Optional[int] = list(UpperCamelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __UpperCAmelCase : Optional[Any] = self.get_decay(self.optimization_step ) __UpperCAmelCase : int = decay __UpperCAmelCase : int = 1 - decay __UpperCAmelCase : Dict = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __UpperCAmelCase : Dict = deepspeed.zero.GatheredParameters(UpperCamelCase_ , modifier_rank=UpperCamelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = list(UpperCamelCase_ ) for s_param, param in zip(self.shadow_params , UpperCamelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def _snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None ): __UpperCAmelCase : str = [ p.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if p.is_floating_point() else p.to(device=UpperCamelCase_ ) for p in self.shadow_params ] def _snake_case ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = [param.detach().cpu().clone() for param in parameters] def _snake_case ( self , UpperCamelCase_ ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , UpperCamelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. __UpperCAmelCase : str = None def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Tuple = copy.deepcopy(UpperCamelCase_ ) __UpperCAmelCase : Tuple = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) __UpperCAmelCase : Dict = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , UpperCamelCase_ ): raise ValueError("Invalid min_decay" ) __UpperCAmelCase : Optional[Any] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , UpperCamelCase_ ): raise ValueError("Invalid optimization_step" ) __UpperCAmelCase : List[str] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , UpperCamelCase_ ): raise ValueError("Invalid update_after_step" ) __UpperCAmelCase : Dict = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , UpperCamelCase_ ): raise ValueError("Invalid use_ema_warmup" ) __UpperCAmelCase : Any = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) __UpperCAmelCase : Any = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) __UpperCAmelCase : str = state_dict.get("shadow_params" , UpperCamelCase_ ) if shadow_params is not None: __UpperCAmelCase : Union[str, Any] = shadow_params if not isinstance(self.shadow_params , UpperCamelCase_ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(UpperCamelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
'''simple docstring''' import os import platform import sys _a : List[str] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
712
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __A (__magic_name__ ): snake_case :Any = "cvt" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=[7, 3, 3] , UpperCamelCase_=[4, 2, 2] , UpperCamelCase_=[2, 1, 1] , UpperCamelCase_=[64, 1_92, 3_84] , UpperCamelCase_=[1, 3, 6] , UpperCamelCase_=[1, 2, 10] , UpperCamelCase_=[4.0, 4.0, 4.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.0] , UpperCamelCase_=[0.0, 0.0, 0.1] , UpperCamelCase_=[True, True, True] , UpperCamelCase_=[False, False, True] , UpperCamelCase_=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase_=[3, 3, 3] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[2, 2, 2] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=[1, 1, 1] , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[str] = patch_stride __UpperCAmelCase : Tuple = patch_padding __UpperCAmelCase : int = embed_dim __UpperCAmelCase : str = num_heads __UpperCAmelCase : Any = depth __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[str] = attention_drop_rate __UpperCAmelCase : Dict = drop_rate __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Optional[int] = cls_token __UpperCAmelCase : Optional[Any] = qkv_projection_method __UpperCAmelCase : Tuple = kernel_qkv __UpperCAmelCase : Optional[Any] = padding_kv __UpperCAmelCase : Optional[int] = stride_kv __UpperCAmelCase : Any = padding_q __UpperCAmelCase : List[Any] = stride_q __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps
10
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a : List[Any] = "__DUMMY_TRANSFORMERS_USER__" _a : str = "Dummy User" _a : str = "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" _a : Optional[Any] = "https://hub-ci.huggingface.co" _a : List[str] = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" _a : List[Any] = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" _a : List[str] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCamelCase__ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: """simple docstring""" HfFolder.save_token(lowerCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _lowercase ( ) -> Union[str, Any]: """simple docstring""" return HfApi(endpoint=lowerCamelCase__ ) @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ ) -> Tuple: """simple docstring""" __UpperCAmelCase : int = HfFolder.get_token() HfFolder.save_token(lowerCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCamelCase__ ) @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" def _cleanup_repo(lowerCamelCase__ ): hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _lowercase ( lowerCamelCase__ ) -> Optional[int]: """simple docstring""" @contextmanager def _temporary_repo(lowerCamelCase__ ): try: yield repo_id finally: cleanup_repo(lowerCamelCase__ ) return _temporary_repo @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" __UpperCAmelCase : List[str] = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __UpperCAmelCase : str = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : str = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: """simple docstring""" return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __UpperCAmelCase : List[str] = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" , private=lowerCamelCase__ ) hf_api.upload_file( token=lowerCamelCase__ , path_or_fileobj=str(lowerCamelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCamelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCamelCase__ , token=lowerCamelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" return hf_private_dataset_repo_zipped_img_data_
713
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> list[float]: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = coefficient_matrix.shape __UpperCAmelCase , __UpperCAmelCase : Any = constant_matrix.shape if rowsa != colsa: __UpperCAmelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if colsa != 1: __UpperCAmelCase : Optional[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowerCamelCase__ ) if rowsa != rowsa: __UpperCAmelCase : Optional[int] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != rowsa: __UpperCAmelCase : List[str] = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(lowerCamelCase__ )} and {rowsa}""" ) raise ValueError(lowerCamelCase__ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = table.shape strictly_diagonally_dominant(lowerCamelCase__ ) # Iterates the whole matrix for given number of times for _ in range(lowerCamelCase__ ): __UpperCAmelCase : int = [] for row in range(lowerCamelCase__ ): __UpperCAmelCase : List[str] = 0 for col in range(lowerCamelCase__ ): if col == row: __UpperCAmelCase : int = table[row][col] elif col == cols - 1: __UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCAmelCase : List[Any] = (temp + val) / denom new_val.append(lowerCamelCase__ ) __UpperCAmelCase : str = new_val return [float(lowerCamelCase__ ) for i in new_val] def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[int] = table.shape __UpperCAmelCase : str = True for i in range(0 , lowerCamelCase__ ): __UpperCAmelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : int = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : Any = prime_factors(lowerCamelCase__ ) if is_square_free(lowerCamelCase__ ): return -1 if len(lowerCamelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _a : Optional[Any] = logging.get_logger(__name__) class __A (__magic_name__ ): def __init__( self , **UpperCamelCase_ ): requires_backends(self , ["bs4"] ) super().__init__(**UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCAmelCase : Tuple = parent.find_all(child.name , recursive=UpperCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ , 1 ) if s is child ) ) __UpperCAmelCase : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = BeautifulSoup(UpperCamelCase_ , "html.parser" ) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Any = [] for element in html_code.descendants: if type(UpperCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCAmelCase : Dict = html.unescape(UpperCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase_ ) __UpperCAmelCase : int = self.xpath_soup(UpperCamelCase_ ) stringaxtag_seq.append(UpperCamelCase_ ) stringaxsubs_seq.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = "" for tagname, subs in zip(UpperCamelCase_ , UpperCamelCase_ ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = False # Check that strings has a valid type if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = True elif isinstance(UpperCamelCase_ , (list, tuple) ): if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"""but is of type {type(UpperCamelCase_ )}.""" ) __UpperCAmelCase : Any = bool(isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase_ )) ) if not is_batched: __UpperCAmelCase : Any = [html_strings] # Get nodes + xpaths __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [] for html_string in html_strings: __UpperCAmelCase : Union[str, Any] = self.get_three_from_single(UpperCamelCase_ ) nodes.append(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = [] for node, tag_list, sub_list in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = self.construct_xpath(UpperCamelCase_ , UpperCamelCase_ ) xpath_strings.append(UpperCamelCase_ ) xpaths.append(UpperCamelCase_ ) # return as Dict __UpperCAmelCase : int = {"nodes": nodes, "xpaths": xpaths} __UpperCAmelCase : Tuple = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) return encoded_inputs
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" for param in module.parameters(): __UpperCAmelCase : List[Any] = False def _lowercase ( ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase : List[str] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = plt.imshow(lowerCamelCase__ ) fig.axes.get_xaxis().set_visible(lowerCamelCase__ ) fig.axes.get_yaxis().set_visible(lowerCamelCase__ ) plt.show() def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : Optional[int] = datetime.now() __UpperCAmelCase : int = current_time.strftime("%H:%M:%S" ) return timestamp
716
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Any = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Union[str, Any] = "ibert" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=False , UpperCamelCase_="none" , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : List[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : Any = position_embedding_type __UpperCAmelCase : Tuple = quant_mode __UpperCAmelCase : Union[str, Any] = force_dequant class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
10
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _a : Union[str, Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } _a : Dict = { "Salesforce/codegen-350M-mono": 2048, } class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :str = PRETRAINED_VOCAB_FILES_MAP snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Tuple = ["input_ids", "attention_mask"] snake_case :Dict = CodeGenTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_="<|endoftext|>" , UpperCamelCase_=False , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("add_bos_token" , UpperCamelCase_ ): __UpperCAmelCase : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: __UpperCAmelCase : str = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) __UpperCAmelCase : Optional[int] = add_prefix_space __UpperCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = add_prefix_space def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , *UpperCamelCase_ , **UpperCamelCase_ ): __UpperCAmelCase : Any = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ): __UpperCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: __UpperCAmelCase : Union[str, Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): def find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 __UpperCAmelCase : List[str] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCAmelCase : Optional[Any] = list(re.finditer("^print" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : List[Any] = completion[: prints[1].start()] __UpperCAmelCase : Tuple = list(re.finditer("^def" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: __UpperCAmelCase : Union[str, Any] = completion[: defs[1].start()] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Dict = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
717
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowercase ( ) -> Dict: """simple docstring""" __UpperCAmelCase : str = HfArgumentParser(lowerCamelCase__ ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] __UpperCAmelCase : Any = TensorFlowBenchmark(args=lowerCamelCase__ ) try: __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __UpperCAmelCase : str = "Arg --no_{0} is no longer used, please use --no-{0} instead." __UpperCAmelCase : Tuple = " ".join(str(lowerCamelCase__ ).split(" " )[:-1] ) __UpperCAmelCase : Any = "" __UpperCAmelCase : List[Any] = eval(str(lowerCamelCase__ ).split(" " )[-1] ) __UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __UpperCAmelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(lowerCamelCase__ ) raise ValueError(lowerCamelCase__ ) benchmark.run() if __name__ == "__main__": main()
10
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = "▁" _a : Dict = {"vocab_file": "sentencepiece.bpe.model"} _a : str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _a : Tuple = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _a : str = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __A (__magic_name__ ): snake_case :Optional[Any] = VOCAB_FILES_NAMES snake_case :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case :Dict = ["input_ids", "attention_mask"] snake_case :List[int] = [] snake_case :List[int] = [] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_=False , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase : Any = legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __UpperCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : str = 1 __UpperCAmelCase : Union[str, Any] = len(self.sp_model ) __UpperCAmelCase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase : Any = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else "eng_Latn" __UpperCAmelCase : Optional[int] = self.lang_code_to_id[self._src_lang] __UpperCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): __UpperCAmelCase : int = self.__dict__.copy() __UpperCAmelCase : str = None __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Dict = {} __UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = [1] * len(self.prefix_tokens ) __UpperCAmelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __UpperCAmelCase : Union[str, Any] = src_lang __UpperCAmelCase : str = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = tgt_lang_id return inputs def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , UpperCamelCase_ ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Union[str, Any] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , UpperCamelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: __UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = "eng_Latn" , UpperCamelCase_ = None , UpperCamelCase_ = "fra_Latn" , **UpperCamelCase_ , ): __UpperCAmelCase : Tuple = src_lang __UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : Dict = [self.cur_lang_code] __UpperCAmelCase : Any = [self.eos_token_id] def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.lang_code_to_id[lang] if self.legacy_behaviour: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : Tuple = [self.cur_lang_code] __UpperCAmelCase : Any = [self.eos_token_id]
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowercase ( lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __A (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Union[str, Any] = StableDiffusionLatentUpscalePipeline snake_case :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } snake_case :List[str] = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} snake_case :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case :Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case :Any = frozenset([] ) snake_case :Optional[int] = True @property def _snake_case ( self ): __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = (16, 16) __UpperCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image def _snake_case ( self ): torch.manual_seed(0 ) __UpperCAmelCase : List[str] = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=UpperCamelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=UpperCamelCase_ , only_cross_attention=UpperCamelCase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) __UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) __UpperCAmelCase : Optional[int] = EulerDiscreteScheduler(prediction_type="sample" ) __UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) __UpperCAmelCase : List[str] = CLIPTextModel(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : Union[str, Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith("mps" ): __UpperCAmelCase : str = torch.manual_seed(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __UpperCAmelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ): __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Any = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : int = pipe(**UpperCamelCase_ ).images __UpperCAmelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __UpperCAmelCase : Tuple = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __UpperCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def _snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _snake_case ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _snake_case ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _snake_case ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _snake_case ( self ): __UpperCAmelCase : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCamelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.get_dummy_inputs(UpperCamelCase_ ) __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __UpperCAmelCase : Optional[int] = getattr(UpperCamelCase_ , scheduler_enum.name ) __UpperCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) __UpperCAmelCase : Optional[int] = pipe(**UpperCamelCase_ )[0] outputs.append(UpperCamelCase_ ) assert check_same_shape(UpperCamelCase_ ) @require_torch_gpu @slow class __A (unittest.TestCase ): def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): __UpperCAmelCase : Optional[int] = torch.manual_seed(33 ) __UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[int] = "a photo of an astronaut high resolution, unreal engine, ultra realistic" __UpperCAmelCase : Any = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , output_type="latent" ).images __UpperCAmelCase : int = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _snake_case ( self ): __UpperCAmelCase : List[Any] = torch.manual_seed(33 ) __UpperCAmelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) __UpperCAmelCase : Optional[Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" __UpperCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) __UpperCAmelCase : Dict = upscaler( prompt=UpperCamelCase_ , image=UpperCamelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCamelCase_ , output_type="np" , ).images[0] __UpperCAmelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5E-2
10
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Tuple = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :Union[str, Any] = "codegen" snake_case :List[str] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase_=5_04_00 , UpperCamelCase_=20_48 , UpperCamelCase_=20_48 , UpperCamelCase_=40_96 , UpperCamelCase_=28 , UpperCamelCase_=16 , UpperCamelCase_=64 , UpperCamelCase_=None , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0_2 , UpperCamelCase_=True , UpperCamelCase_=5_02_56 , UpperCamelCase_=5_02_56 , UpperCamelCase_=False , **UpperCamelCase_ , ): __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : str = n_ctx __UpperCAmelCase : Optional[int] = n_positions __UpperCAmelCase : Dict = n_embd __UpperCAmelCase : Tuple = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : List[str] = n_inner __UpperCAmelCase : Union[str, Any] = rotary_dim __UpperCAmelCase : Union[str, Any] = activation_function __UpperCAmelCase : List[Any] = resid_pdrop __UpperCAmelCase : str = embd_pdrop __UpperCAmelCase : Optional[int] = attn_pdrop __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = use_cache __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Any = eos_token_id super().__init__( bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = "default" , UpperCamelCase_ = None , UpperCamelCase_ = False , ): super().__init__(UpperCamelCase_ , task=UpperCamelCase_ , patching_specs=UpperCamelCase_ , use_past=UpperCamelCase_ ) if not getattr(self._config , "pad_token_id" , UpperCamelCase_ ): # TODO: how to do that better? __UpperCAmelCase : Tuple = 0 @property def _snake_case ( self ): __UpperCAmelCase : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction="inputs" ) __UpperCAmelCase : List[str] = {0: "batch", 1: "past_sequence + sequence"} else: __UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = -1 , UpperCamelCase_ = -1 , UpperCamelCase_ = False , UpperCamelCase_ = None , ): __UpperCAmelCase : Optional[int] = super(UpperCamelCase_ , self ).generate_dummy_inputs( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) # We need to order the input in the way they appears in the forward() __UpperCAmelCase : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCAmelCase : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCAmelCase : Any = seqlen + 2 __UpperCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCAmelCase : List[str] = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers ) ] __UpperCAmelCase : str = common_inputs["attention_mask"] if self.use_past: __UpperCAmelCase : Any = ordered_inputs["attention_mask"].dtype __UpperCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import os def _lowercase ( lowerCamelCase__ = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: __UpperCAmelCase : str = in_file.read() __UpperCAmelCase : Union[str, Any] = [[int(lowerCamelCase__ ) for cell in row.split("," )] for row in data.strip().splitlines()] __UpperCAmelCase : Any = [[0 for cell in row] for row in grid] __UpperCAmelCase : List[str] = len(grid[0] ) __UpperCAmelCase : Any = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] __UpperCAmelCase : str = grid[0][0] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : int = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Optional[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): __UpperCAmelCase : Any = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
720
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __A : snake_case :int snake_case :Node | None = None snake_case :Node | None = None def _lowercase ( ) -> Node | None: """simple docstring""" __UpperCAmelCase : Optional[Any] = Node(1 ) __UpperCAmelCase : Union[str, Any] = Node(2 ) __UpperCAmelCase : Optional[int] = Node(3 ) __UpperCAmelCase : Optional[int] = Node(4 ) __UpperCAmelCase : List[Any] = Node(5 ) return tree def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowercase ( lowerCamelCase__ ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowercase ( lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : int = deque([root] ) while process_queue: __UpperCAmelCase : int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> Sequence[Node | None]: """simple docstring""" __UpperCAmelCase : list[Any] = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase__ , lowerCamelCase__ ) return output def _lowercase ( lowerCamelCase__ ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : str = 0 __UpperCAmelCase : Tuple = height(lowerCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase__ , lowerCamelCase__ ) ) __UpperCAmelCase : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase__ , lowerCamelCase__ ) ) __UpperCAmelCase : Optional[int] = 0 return output def _lowercase ( ) -> None: # Main function for testing. """simple docstring""" __UpperCAmelCase : int = make_tree() print(f"""In-order Traversal: {inorder(lowerCamelCase__ )}""" ) print(f"""Pre-order Traversal: {preorder(lowerCamelCase__ )}""" ) print(f"""Post-order Traversal: {postorder(lowerCamelCase__ )}""" , "\n" ) print(f"""Height of Tree: {height(lowerCamelCase__ )}""" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowerCamelCase__ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowerCamelCase__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowerCamelCase__ , level=lowerCamelCase__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowerCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number | (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number & ~(1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return number ^ (1 << position) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
10
0
'''simple docstring''' import copy import re class UpperCAmelCase__ : lowerCAmelCase_ = 'hp' lowerCAmelCase_ = {} lowerCAmelCase_ = None @classmethod def lowerCamelCase_ ( cls : Any,__A : Tuple,__A : Dict ): _lowerCamelCase : Optional[Any] = prefix _lowerCamelCase : int = defaults cls.build_naming_info() @staticmethod def lowerCamelCase_ ( __A : List[str],__A : Tuple ): if len(__A ) == 0: return "" _lowerCamelCase : Any = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1,len(__A ) + 1 ): _lowerCamelCase : List[str] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowerCamelCase : Optional[int] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__A : Tuple ): _lowerCamelCase : Dict = "" while integer != 0: _lowerCamelCase : Optional[int] = chr(ord("A" ) + integer % 1_0 ) + s integer //= 1_0 return s _lowerCamelCase : Any = 0 while True: _lowerCamelCase : Optional[int] = word + "#" + int_to_alphabetic(__A ) if sword in info["reverse_short_word"]: continue else: _lowerCamelCase : Dict = sword break _lowerCamelCase : Dict = short_word _lowerCamelCase : List[Any] = word return short_word @staticmethod def lowerCamelCase_ ( __A : str,__A : List[str] ): _lowerCamelCase : Tuple = param_name.split("_" ) _lowerCamelCase : List[Any] = [TrialShortNamer.shortname_for_word(__A,__A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowerCamelCase : List[str] = ["", "_"] for separator in separators: _lowerCamelCase : int = separator.join(__A ) if shortname not in info["reverse_short_param"]: _lowerCamelCase : List[Any] = shortname _lowerCamelCase : Any = param_name return shortname return param_name @staticmethod def lowerCamelCase_ ( __A : Tuple,__A : Dict ): _lowerCamelCase : Optional[int] = TrialShortNamer.shortname_for_key(__A,__A ) _lowerCamelCase : Dict = short_name _lowerCamelCase : List[Any] = param_name @classmethod def lowerCamelCase_ ( cls : Union[str, Any] ): if cls.NAMING_INFO is not None: return _lowerCamelCase : Dict = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } _lowerCamelCase : List[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__A,__A ) _lowerCamelCase : Dict = info @classmethod def lowerCamelCase_ ( cls : List[str],__A : Any ): cls.build_naming_info() assert cls.PREFIX is not None _lowerCamelCase : str = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowerCamelCase : Tuple = cls.NAMING_INFO["short_param"][k] if isinstance(__A,__A ): _lowerCamelCase : List[Any] = 1 if v else 0 _lowerCamelCase : Any = "" if isinstance(__A,(int, float) ) else "-" _lowerCamelCase : int = f'{key}{sep}{v}' name.append(__A ) return "_".join(__A ) @classmethod def lowerCamelCase_ ( cls : Tuple,__A : Optional[Any] ): _lowerCamelCase : int = repr[len(cls.PREFIX ) + 1 :] if repr == "": _lowerCamelCase : int = [] else: _lowerCamelCase : List[str] = repr.split("_" ) _lowerCamelCase : Union[str, Any] = {} for value in values: if "-" in value: _lowerCamelCase , _lowerCamelCase : Optional[Any] = value.split("-" ) else: _lowerCamelCase : Optional[int] = re.sub("[0-9.]","",__A ) _lowerCamelCase : Optional[Any] = float(re.sub("[^0-9.]","",__A ) ) _lowerCamelCase : Tuple = cls.NAMING_INFO["reverse_short_param"][p_k] _lowerCamelCase : Any = p_v for k in cls.DEFAULTS: if k not in parameters: _lowerCamelCase : Any = cls.DEFAULTS[k] return parameters
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase_ : Tuple = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class UpperCAmelCase__ : def __init__( self : List[str],__A : int = 1_4 ): if group not in primes: raise ValueError("Unsupported Group" ) _lowerCamelCase : Union[str, Any] = primes[group]["prime"] _lowerCamelCase : Tuple = primes[group]["generator"] _lowerCamelCase : Any = int(hexlify(urandom(3_2 ) ),base=1_6 ) def lowerCamelCase_ ( self : str ): return hex(self.__private_key )[2:] def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[int] = pow(self.generator,self.__private_key,self.prime ) return hex(__A )[2:] def lowerCamelCase_ ( self : List[str],__A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__A,(self.prime - 1) // 2,self.prime ) == 1 ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Optional[int] = int(__A,base=1_6 ) if not self.is_valid_public_key(__A ): raise ValueError("Invalid public key" ) _lowerCamelCase : Tuple = pow(__A,self.__private_key,self.prime ) return shaaaa(str(__A ).encode() ).hexdigest() @staticmethod def lowerCamelCase_ ( __A : int,__A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__A,(prime - 1) // 2,__A ) == 1 ) @staticmethod def lowerCamelCase_ ( __A : str,__A : str,__A : int = 1_4 ): _lowerCamelCase : Optional[Any] = int(__A,base=1_6 ) _lowerCamelCase : Dict = int(__A,base=1_6 ) _lowerCamelCase : str = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(__A,__A ): raise ValueError("Invalid public key" ) _lowerCamelCase : Dict = pow(__A,__A,__A ) return shaaaa(str(__A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCAmelCase__ ( nn.Module ): def __init__( self : str ): super().__init__() _lowerCamelCase : Union[str, Any] = nn.Linear(3,4 ) _lowerCamelCase : Optional[Any] = nn.BatchNormad(4 ) _lowerCamelCase : Dict = nn.Linear(4,5 ) def lowerCamelCase_ ( self : int,__A : Optional[Any] ): return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Optional[Any],__A : List[str],*__A : List[Any],**__A : str ): return (args[0] + 1,) + args[1:], kwargs class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Tuple,__A : int,__A : Union[str, Any] ): return output + 1 class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = ModelForTest() _lowerCamelCase : int = ModelHook() add_hook_to_module(__A,__A ) self.assertEqual(test_model._hf_hook,__A ) self.assertTrue(hasattr(__A,"_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__,"forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ),["x"] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A,"_hf_hook" ) ) self.assertFalse(hasattr(__A,"_old_forward" ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = ModelForTest() _lowerCamelCase : Any = ModelHook() add_hook_to_module(__A,__A ) add_hook_to_module(__A,__A,append=__A ) self.assertEqual(isinstance(test_model._hf_hook,__A ),__A ) self.assertEqual(len(test_model._hf_hook.hooks ),2 ) self.assertTrue(hasattr(__A,"_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__,"forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ),["x"] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A,"_hf_hook" ) ) self.assertFalse(hasattr(__A,"_old_forward" ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : int = ModelForTest() _lowerCamelCase : Tuple = torch.randn(2,3 ) _lowerCamelCase : Union[str, Any] = test_model(x + 1 ) _lowerCamelCase : int = test_model(x + 2 ) _lowerCamelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : str = test_model(__A ) self.assertTrue(torch.allclose(__A,__A,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCamelCase : List[str] = PreForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : List[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A,__A,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCamelCase : Any = SequentialHook(PreForwardHook(),PreForwardHook() ) add_hook_to_module(__A,__A ) _lowerCamelCase : Any = test_model(__A ) assert torch.allclose(__A,__A,atol=1e-5 ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = ModelForTest() _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : Optional[Any] = test_model(__A ) _lowerCamelCase : List[Any] = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : str = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1,atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCamelCase : int = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : Any = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1,atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCamelCase : Union[str, Any] = SequentialHook(PostForwardHook(),PostForwardHook() ) add_hook_to_module(__A,__A ) _lowerCamelCase : Tuple = test_model(__A ) assert torch.allclose(__A,output + 2,atol=1e-5 ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = ModelForTest() _lowerCamelCase : List[Any] = torch.randn(2,3 ) _lowerCamelCase : Union[str, Any] = test_model(__A ) _lowerCamelCase : Optional[int] = PostForwardHook() add_hook_to_module(__A,__A ) _lowerCamelCase : Optional[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A,output + 1 ) ) self.assertTrue(outputa.requires_grad ) _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = test_model(__A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _lowerCamelCase : Optional[Any] = torch.randn(2,3 ) _lowerCamelCase : Dict = model(__A ) self.assertEqual(output.device,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__A,AlignDevicesHook(io_same_device=__A ) ) _lowerCamelCase : str = torch.randn(2,3 ).to(0 ) _lowerCamelCase : Any = model(__A ) self.assertEqual(output.device,torch.device(0 ) ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Optional[Any] = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Dict = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : int = torch.randn(2,3 ) _lowerCamelCase : Optional[int] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload _lowerCamelCase : Union[str, Any] = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm,AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara,AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : Dict = torch.randn(2,3 ) _lowerCamelCase : List[Any] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Union[str, Any] = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(__A,execution_device=__A,offload=__A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Optional[int] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : Any = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(__A,execution_device=__A,offload=__A,offload_buffers=__A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : Optional[int] = torch.randn(2,3 ) _lowerCamelCase : int = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # This will move each submodule on different devices _lowerCamelCase : Tuple = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( __A,execution_device=__A,offload=__A,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCamelCase : Dict = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device,__A ) _lowerCamelCase : Optional[Any] = torch.randn(2,3 ) _lowerCamelCase : List[Any] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( __A,execution_device=__A,offload=__A,weights_map=model.state_dict(),offload_buffers=__A,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device,torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device,torch.device("meta" ) ) _lowerCamelCase : List[Any] = torch.randn(2,3 ) _lowerCamelCase : Optional[int] = model(__A ) self.assertEqual(output.device,__A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device,torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device,torch.device("cpu" ) )
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : List[Any],*__A : List[Any],**__A : int ): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead.",__A,) super().__init__(*__A,**__A )
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = CTRLTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] _lowerCamelCase : List[str] = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Union[str, Any] = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] _lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : Dict = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Any,**__A : Optional[int] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : str,__A : Any ): _lowerCamelCase : int = "adapt react readapt apt" _lowerCamelCase : List[Any] = "adapt react readapt apt" return input_text, output_text def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = CTRLTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : str = "adapt react readapt apt" _lowerCamelCase : List[str] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() _lowerCamelCase : Dict = tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : Optional[int] = tokens + [tokenizer.unk_token] _lowerCamelCase : Union[str, Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A )
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : Tuple,*__A : int,**__A : Tuple ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any],*__A : Tuple,**__A : Optional[int] ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : List[str],*__A : Optional[int],**__A : Union[str, Any] ): requires_backends(cls,["torch", "transformers", "onnx"] ) class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any],*__A : Optional[Any],**__A : Any ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : int,*__A : Optional[int],**__A : Optional[int] ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : int,*__A : List[str],**__A : List[str] ): requires_backends(cls,["torch", "transformers", "onnx"] ) class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : int,*__A : Any,**__A : Optional[int] ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : int,*__A : Optional[int],**__A : List[Any] ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : List[str],*__A : Tuple,**__A : str ): requires_backends(cls,["torch", "transformers", "onnx"] ) class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : str,*__A : Any,**__A : Optional[Any] ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : Tuple,**__A : Dict ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any],*__A : List[str],**__A : Optional[int] ): requires_backends(cls,["torch", "transformers", "onnx"] ) class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any],*__A : str,**__A : Dict ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any],*__A : Dict,**__A : str ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : List[str],*__A : int,**__A : Optional[int] ): requires_backends(cls,["torch", "transformers", "onnx"] ) class UpperCAmelCase__ ( metaclass=A ): lowerCAmelCase_ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int],*__A : Union[str, Any],**__A : int ): requires_backends(self,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any],*__A : List[Any],**__A : Dict ): requires_backends(cls,["torch", "transformers", "onnx"] ) @classmethod def lowerCamelCase_ ( cls : List[str],*__A : str,**__A : int ): requires_backends(cls,["torch", "transformers", "onnx"] )
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : def __init__( self : List[Any],__A : int,__A : List[str]=1_3,__A : Any=7,__A : Dict=True,__A : Dict=True,__A : int=True,__A : Optional[Any]=True,__A : Dict=9_9,__A : List[str]=1_6,__A : Dict=3_6,__A : List[Any]=6,__A : Optional[int]=6,__A : str=6,__A : Any=3_7,__A : List[str]="gelu",__A : Union[str, Any]=0.1,__A : Union[str, Any]=0.1,__A : Optional[Any]=5_1_2,__A : int=1_6,__A : List[str]=2,__A : List[Any]=0.02,__A : Optional[int]=3,__A : str=4,__A : Dict=None,): _lowerCamelCase : Tuple = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : int = use_input_mask _lowerCamelCase : List[Any] = use_token_type_ids _lowerCamelCase : Dict = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = embedding_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_hidden_groups _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[str] = num_labels _lowerCamelCase : List[Any] = num_choices _lowerCamelCase : Any = scope def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_input_mask: _lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Tuple = None _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Optional[int] ): return AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,num_hidden_groups=self.num_hidden_groups,) def lowerCamelCase_ ( self : Any,__A : Tuple,__A : List[str],__A : Union[str, Any],__A : int,__A : Union[str, Any],__A : Tuple,__A : Optional[Any] ): _lowerCamelCase : Optional[Any] = AlbertModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : List[Any] = model(__A,token_type_ids=__A ) _lowerCamelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : str,__A : str,__A : str,__A : int,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple ): _lowerCamelCase : Optional[Any] = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Optional[Any] = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,sentence_order_label=__A,) self.parent.assertEqual(result.prediction_logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape,(self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : Optional[Any],__A : List[str],__A : Union[str, Any],__A : str,__A : Optional[Any],__A : str,__A : Optional[int],__A : Dict ): _lowerCamelCase : Tuple = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : int = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any,__A : Any,__A : Tuple,__A : Optional[Any],__A : Any,__A : Optional[Any],__A : Tuple,__A : Optional[Any] ): _lowerCamelCase : Optional[int] = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model( __A,attention_mask=__A,token_type_ids=__A,start_positions=__A,end_positions=__A,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str],__A : Union[str, Any],__A : int,__A : Dict,__A : Tuple,__A : Union[str, Any],__A : List[Any],__A : str ): _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : List[Any] = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() _lowerCamelCase : Dict = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : str,__A : str,__A : Union[str, Any],__A : Optional[int],__A : Tuple,__A : Tuple,__A : List[str],__A : Optional[int] ): _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : Dict = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : List[Any] = model(__A,attention_mask=__A,token_type_ids=__A,labels=__A ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Dict,__A : Union[str, Any],__A : List[str],__A : Tuple,__A : Dict,__A : Optional[int],__A : Dict,__A : Optional[int] ): _lowerCamelCase : Any = self.num_choices _lowerCamelCase : str = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() _lowerCamelCase : Any = model( __A,attention_mask=__A,token_type_ids=__A,labels=__A,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : str = config_and_inputs _lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True def lowerCamelCase_ ( self : Any,__A : List[Any],__A : List[str],__A : Tuple=False ): _lowerCamelCase : int = super()._prepare_for_class(__A,__A,return_labels=__A ) if return_labels: if model_class in get_values(__A ): _lowerCamelCase : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length),dtype=torch.long,device=__A ) _lowerCamelCase : List[Any] = torch.zeros( self.model_tester.batch_size,dtype=torch.long,device=__A ) return inputs_dict def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Dict = AlbertModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : int ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(*__A ) @slow def lowerCamelCase_ ( self : Optional[int] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = AlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Optional[int] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : Dict = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ : Any = logging.get_logger(__name__) # General docstring UpperCAmelCase_ : str = 'RegNetConfig' # Base docstring UpperCAmelCase_ : Tuple = 'facebook/regnet-y-040' UpperCAmelCase_ : Optional[int] = [1, 1088, 7, 7] # Image classification docstring UpperCAmelCase_ : Dict = 'facebook/regnet-y-040' UpperCAmelCase_ : Tuple = 'tabby, tabby cat' UpperCAmelCase_ : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any,__A : int,__A : int = 3,__A : int = 1,__A : int = 1,__A : Optional[str] = "relu",**__A : str,): super().__init__(**__A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCamelCase : Optional[int] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCamelCase : str = tf.keras.layers.ConvaD( filters=__A,kernel_size=__A,strides=__A,padding="VALID",groups=__A,use_bias=__A,name="convolution",) _lowerCamelCase : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5,momentum=0.9,name="normalization" ) _lowerCamelCase : Tuple = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase_ ( self : Any,__A : Optional[int] ): _lowerCamelCase : int = self.convolution(self.padding(__A ) ) _lowerCamelCase : List[str] = self.normalization(__A ) _lowerCamelCase : Union[str, Any] = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Tuple,__A : RegNetConfig,**__A : List[Any] ): super().__init__(**__A ) _lowerCamelCase : Tuple = config.num_channels _lowerCamelCase : int = TFRegNetConvLayer( out_channels=config.embedding_size,kernel_size=3,stride=2,activation=config.hidden_act,name="embedder",) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : List[str] = shape_list(__A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCamelCase : str = tf.transpose(__A,perm=(0, 2, 3, 1) ) _lowerCamelCase : Optional[int] = self.embedder(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : int,__A : int = 2,**__A : List[str] ): super().__init__(**__A ) _lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=__A,kernel_size=1,strides=__A,use_bias=__A,name="convolution" ) _lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1e-5,momentum=0.9,name="normalization" ) def lowerCamelCase_ ( self : str,__A : tf.Tensor,__A : bool = False ): return self.normalization(self.convolution(__A ),training=__A ) class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : int,__A : int,**__A : Optional[Any] ): super().__init__(**__A ) _lowerCamelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A,name="pooler" ) _lowerCamelCase : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__A,kernel_size=1,activation="relu",name="attention.0" ), tf.keras.layers.ConvaD(filters=__A,kernel_size=1,activation="sigmoid",name="attention.2" ), ] def lowerCamelCase_ ( self : Optional[int],__A : int ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowerCamelCase : Union[str, Any] = self.pooler(__A ) for layer_module in self.attention: _lowerCamelCase : List[Any] = layer_module(__A ) _lowerCamelCase : List[str] = hidden_state * pooled return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any,__A : RegNetConfig,__A : int,__A : int,__A : int = 1,**__A : str ): super().__init__(**__A ) _lowerCamelCase : Dict = in_channels != out_channels or stride != 1 _lowerCamelCase : Dict = max(1,out_channels // config.groups_width ) _lowerCamelCase : Any = ( TFRegNetShortCut(__A,stride=__A,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear",name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(__A,kernel_size=1,activation=config.hidden_act,name="layer.0" ), TFRegNetConvLayer( __A,stride=__A,groups=__A,activation=config.hidden_act,name="layer.1" ), TFRegNetConvLayer(__A,kernel_size=1,activation=__A,name="layer.2" ), ] _lowerCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : Tuple,__A : Optional[int] ): _lowerCamelCase : List[str] = hidden_state for layer_module in self.layers: _lowerCamelCase : int = layer_module(__A ) _lowerCamelCase : int = self.shortcut(__A ) hidden_state += residual _lowerCamelCase : int = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any],__A : RegNetConfig,__A : int,__A : int,__A : int = 1,**__A : List[str] ): super().__init__(**__A ) _lowerCamelCase : str = in_channels != out_channels or stride != 1 _lowerCamelCase : str = max(1,out_channels // config.groups_width ) _lowerCamelCase : Optional[Any] = ( TFRegNetShortCut(__A,stride=__A,name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear",name="shortcut" ) ) _lowerCamelCase : Dict = [ TFRegNetConvLayer(__A,kernel_size=1,activation=config.hidden_act,name="layer.0" ), TFRegNetConvLayer( __A,stride=__A,groups=__A,activation=config.hidden_act,name="layer.1" ), TFRegNetSELayer(__A,reduced_channels=int(round(in_channels / 4 ) ),name="layer.2" ), TFRegNetConvLayer(__A,kernel_size=1,activation=__A,name="layer.3" ), ] _lowerCamelCase : Any = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self : str,__A : str ): _lowerCamelCase : Any = hidden_state for layer_module in self.layers: _lowerCamelCase : Optional[int] = layer_module(__A ) _lowerCamelCase : Optional[Any] = self.shortcut(__A ) hidden_state += residual _lowerCamelCase : Optional[int] = self.activation(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str,__A : RegNetConfig,__A : int,__A : int,__A : int = 2,__A : int = 2,**__A : Dict ): super().__init__(**__A ) _lowerCamelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer _lowerCamelCase : int = [ # downsampling is done in the first layer with stride of 2 layer(__A,__A,__A,stride=__A,name="layers.0" ), *[layer(__A,__A,__A,name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase_ ( self : Dict,__A : Dict ): for layer_module in self.layers: _lowerCamelCase : str = layer_module(__A ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : str,__A : RegNetConfig,**__A : Union[str, Any] ): super().__init__(**__A ) _lowerCamelCase : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __A,config.embedding_size,config.hidden_sizes[0],stride=2 if config.downsample_in_first_stage else 1,depth=config.depths[0],name="stages.0",) ) _lowerCamelCase : str = zip(config.hidden_sizes,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__A,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__A,__A,__A,depth=__A,name=f'stages.{i+1}' ) ) def lowerCamelCase_ ( self : Optional[int],__A : tf.Tensor,__A : bool = False,__A : bool = True ): _lowerCamelCase : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCamelCase : str = hidden_states + (hidden_state,) _lowerCamelCase : List[Any] = stage_module(__A ) if output_hidden_states: _lowerCamelCase : List[str] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__A,hidden_states=__A ) @keras_serializable class UpperCAmelCase__ ( tf.keras.layers.Layer ): lowerCAmelCase_ = RegNetConfig def __init__( self : Dict,__A : List[str],**__A : Union[str, Any] ): super().__init__(**__A ) _lowerCamelCase : List[Any] = config _lowerCamelCase : str = TFRegNetEmbeddings(__A,name="embedder" ) _lowerCamelCase : str = TFRegNetEncoder(__A,name="encoder" ) _lowerCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__A,name="pooler" ) @unpack_inputs def lowerCamelCase_ ( self : Union[str, Any],__A : tf.Tensor,__A : Optional[bool] = None,__A : Optional[bool] = None,__A : bool = False,): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Union[str, Any] = self.embedder(__A,training=__A ) _lowerCamelCase : Any = self.encoder( __A,output_hidden_states=__A,return_dict=__A,training=__A ) _lowerCamelCase : Union[str, Any] = encoder_outputs[0] _lowerCamelCase : str = self.pooler(__A ) # Change to NCHW output format have uniformity in the modules _lowerCamelCase : Optional[Any] = tf.transpose(__A,perm=(0, 3, 1, 2) ) _lowerCamelCase : str = tf.transpose(__A,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCamelCase : Tuple = tuple([tf.transpose(__A,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__A,pooler_output=__A,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = 'regnet' lowerCAmelCase_ = 'pixel_values' @property def lowerCamelCase_ ( self : List[str] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4),dtype=tf.floataa )} UpperCAmelCase_ : str = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCAmelCase_ : int = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , A , ) class UpperCAmelCase__ ( A ): def __init__( self : Optional[Any],__A : RegNetConfig,*__A : int,**__A : Optional[Any] ): super().__init__(__A,*__A,**__A ) _lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(__A,name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC,output_type=__A,config_class=_CONFIG_FOR_DOC,modality="vision",expected_output=_EXPECTED_OUTPUT_SHAPE,) def lowerCamelCase_ ( self : str,__A : tf.Tensor,__A : Optional[bool] = None,__A : Optional[bool] = None,__A : Optional[int]=False,): _lowerCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : str = self.regnet( pixel_values=__A,output_hidden_states=__A,return_dict=__A,training=__A,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state,pooler_output=outputs.pooler_output,hidden_states=outputs.hidden_states,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , A , ) class UpperCAmelCase__ ( A , A ): def __init__( self : Union[str, Any],__A : RegNetConfig,*__A : Optional[int],**__A : Tuple ): super().__init__(__A,*__A,**__A ) _lowerCamelCase : List[Any] = config.num_labels _lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(__A,name="regnet" ) # classification head _lowerCamelCase : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels,name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT,output_type=__A,config_class=_CONFIG_FOR_DOC,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,) def lowerCamelCase_ ( self : Optional[Any],__A : tf.Tensor = None,__A : tf.Tensor = None,__A : bool = None,__A : bool = None,__A : Union[str, Any]=False,): _lowerCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Tuple = self.regnet( __A,output_hidden_states=__A,return_dict=__A,training=__A ) _lowerCamelCase : Optional[int] = outputs.pooler_output if return_dict else outputs[1] _lowerCamelCase : int = self.classifier[0](__A ) _lowerCamelCase : Optional[int] = self.classifier[1](__A ) _lowerCamelCase : List[str] = None if labels is None else self.hf_compute_loss(labels=__A,logits=__A ) if not return_dict: _lowerCamelCase : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__A,logits=__A,hidden_states=outputs.hidden_states )
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' from importlib import import_module from .logging import get_logger UpperCAmelCase_ : int = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : List[str],__A : Optional[Any],__A : Optional[Any]=None ): _lowerCamelCase : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self,__A,getattr(__A,__A ) ) _lowerCamelCase : List[str] = module._original_module if isinstance(__A,_PatchedModuleObj ) else module class UpperCAmelCase__ : lowerCAmelCase_ = [] def __init__( self : Any,__A : int,__A : str,__A : List[str],__A : Optional[Any]=None ): _lowerCamelCase : Union[str, Any] = obj _lowerCamelCase : List[Any] = target _lowerCamelCase : Any = new _lowerCamelCase : Optional[int] = target.split("." )[0] _lowerCamelCase : List[Any] = {} _lowerCamelCase : Any = attrs or [] def __enter__( self : Optional[Any] ): *_lowerCamelCase , _lowerCamelCase : Tuple = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__A ) ): try: _lowerCamelCase : List[Any] = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _lowerCamelCase : str = getattr(self.obj,__A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__A,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): _lowerCamelCase : Optional[int] = obj_attr # patch at top level setattr(self.obj,__A,_PatchedModuleObj(__A,attrs=self.attrs ) ) _lowerCamelCase : Dict = getattr(self.obj,__A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__A,__A,_PatchedModuleObj(getattr(__A,__A,__A ),attrs=self.attrs ) ) _lowerCamelCase : Tuple = getattr(__A,__A ) # finally set the target attribute setattr(__A,__A,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _lowerCamelCase : List[Any] = getattr(import_module(".".join(__A ) ),__A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj,__A ) is attr_value: _lowerCamelCase : int = getattr(self.obj,__A ) setattr(self.obj,__A,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _lowerCamelCase : Any = globals()["__builtins__"][target_attr] setattr(self.obj,__A,self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Dict,*__A : int ): for attr in list(self.original ): setattr(self.obj,__A,self.original.pop(__A ) ) def lowerCamelCase_ ( self : Optional[int] ): self.__enter__() self._active_patches.append(self ) def lowerCamelCase_ ( self : int ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if isinstance(_lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase__ : def lowerCamelCase_ ( self : Tuple,__A : Union[str, Any],__A : Tuple ): pass def lowerCamelCase_ ( self : List[Any] ): pass def lowerCamelCase_ ( self : Optional[int] ): pass def lowerCamelCase_ ( self : str,__A : Tuple,__A : str,__A : Union[str, Any],__A : Any,__A : Union[str, Any]=None,**__A : Union[str, Any] ): _lowerCamelCase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(__A,__A ) _lowerCamelCase : Optional[int] = TFVisionTextDualEncoderModel(__A ) _lowerCamelCase : Union[str, Any] = model(input_ids=__A,pixel_values=__A,attention_mask=__A ) self.assertEqual(output["text_embeds"].shape,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape,(pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Tuple,__A : List[Any],__A : List[str],__A : Union[str, Any]=None,**__A : List[Any] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = self.get_vision_text_model(__A,__A ) _lowerCamelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__A,text_model=__A ) _lowerCamelCase : Any = model(input_ids=__A,pixel_values=__A,attention_mask=__A ) self.assertEqual(output["text_embeds"].shape,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : Dict,__A : Optional[Any],__A : int,__A : Optional[int]=None,**__A : int ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.get_vision_text_model(__A,__A ) _lowerCamelCase : Dict = {"vision_model": vision_model, "text_model": text_model} _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__A ) _lowerCamelCase : List[str] = model(input_ids=__A,pixel_values=__A,attention_mask=__A ) self.assertEqual(output["text_embeds"].shape,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase_ ( self : List[Any],__A : List[str],__A : List[Any],__A : Optional[int],__A : Dict,__A : Optional[int]=None,**__A : Tuple ): _lowerCamelCase , _lowerCamelCase : List[str] = self.get_vision_text_model(__A,__A ) _lowerCamelCase : List[Any] = TFVisionTextDualEncoderModel(vision_model=__A,text_model=__A ) _lowerCamelCase : Optional[int] = model(input_ids=__A,pixel_values=__A,attention_mask=__A ) _lowerCamelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) _lowerCamelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(__A ) _lowerCamelCase : Any = model(input_ids=__A,pixel_values=__A,attention_mask=__A ) _lowerCamelCase : Optional[int] = after_output[0].numpy() _lowerCamelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A,1e-5 ) def lowerCamelCase_ ( self : Tuple,__A : Optional[Any],__A : List[str],__A : str,__A : Dict,__A : int=None,**__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : int = self.get_vision_text_model(__A,__A ) _lowerCamelCase : Any = TFVisionTextDualEncoderModel(vision_model=__A,text_model=__A ) _lowerCamelCase : str = model( input_ids=__A,pixel_values=__A,attention_mask=__A,output_attentions=__A ) _lowerCamelCase : Any = output.vision_model_output.attentions self.assertEqual(len(__A ),vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Any = to_atuple(vision_model.config.image_size ) _lowerCamelCase : Any = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:],(vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : List[Any] = output.text_model_output.attentions self.assertEqual(len(__A ),text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:],(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),) def lowerCamelCase_ ( self : int,__A : np.ndarray,__A : np.ndarray,__A : float ): _lowerCamelCase : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(__A,__A,f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__A ) def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__A ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**__A ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__A ) @slow def lowerCamelCase_ ( self : int ): _lowerCamelCase , _lowerCamelCase : Any = self.get_pretrained_model_and_inputs() _lowerCamelCase : Tuple = model_a(**__A ) _lowerCamelCase : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__A ) _lowerCamelCase : int = TFVisionTextDualEncoderModel.from_pretrained(__A ) _lowerCamelCase : List[str] = model_a(**__A ) _lowerCamelCase : Any = after_outputs[0].numpy() _lowerCamelCase : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A,1e-5 ) @require_tf class UpperCAmelCase__ ( A , unittest.TestCase ): def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit","hf-internal-testing/tiny-random-bert" ) _lowerCamelCase : List[str] = 1_3 _lowerCamelCase : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : Optional[Any] = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) _lowerCamelCase : Tuple = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCamelCase_ ( self : Optional[Any],__A : List[str],__A : Optional[Any] ): _lowerCamelCase : List[Any] = TFViTModel(__A,name="vision_model" ) _lowerCamelCase : str = TFBertModel(__A,name="text_model" ) return vision_model, text_model def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Dict = TFViTModelTester(self ) _lowerCamelCase : int = TFBertModelTester(self ) _lowerCamelCase : Tuple = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = vision_config_and_inputs ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase__ ( A , unittest.TestCase ): def lowerCamelCase_ ( self : Any ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCamelCase : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf","hf-internal-testing/tiny-random-roberta" ) _lowerCamelCase : int = 1_3 _lowerCamelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : Optional[int] = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) _lowerCamelCase : Optional[int] = random_attention_mask([batch_size, 4] ) _lowerCamelCase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCamelCase_ ( self : Dict,__A : Optional[Any],__A : str,__A : Tuple,__A : Optional[Any],__A : str=None,**__A : List[str] ): _lowerCamelCase , _lowerCamelCase : Dict = self.get_vision_text_model(__A,__A ) _lowerCamelCase : int = TFVisionTextDualEncoderModel(vision_model=__A,text_model=__A ) _lowerCamelCase : List[Any] = model( input_ids=__A,pixel_values=__A,attention_mask=__A,output_attentions=__A ) _lowerCamelCase : int = output.vision_model_output.attentions self.assertEqual(len(__A ),vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : Union[str, Any] = to_atuple(vision_model.config.image_size ) _lowerCamelCase : Tuple = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:],(vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : Any = output.text_model_output.attentions self.assertEqual(len(__A ),text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:],(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),) def lowerCamelCase_ ( self : int,__A : List[str],__A : Any ): _lowerCamelCase : Union[str, Any] = TFDeiTModel(__A,name="vision_model" ) _lowerCamelCase : str = TFRobertaModel(__A,name="text_model" ) return vision_model, text_model def lowerCamelCase_ ( self : int ): _lowerCamelCase : Tuple = TFDeiTModelTester(self ) _lowerCamelCase : Union[str, Any] = TFRobertaModelTester(self ) _lowerCamelCase : str = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = vision_config_and_inputs ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase__ ( A , unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf","hf-internal-testing/tiny-random-bert" ) _lowerCamelCase : List[Any] = 1_3 _lowerCamelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCamelCase : List[str] = ids_tensor([batch_size, 4],model.text_model.config.vocab_size ) _lowerCamelCase : List[Any] = random_attention_mask([batch_size, 4] ) _lowerCamelCase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCamelCase_ ( self : Optional[Any],__A : List[Any],__A : List[str] ): _lowerCamelCase : Tuple = TFCLIPVisionModel(__A,name="vision_model" ) _lowerCamelCase : int = TFBertModel(__A,name="text_model" ) return vision_model, text_model def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = TFCLIPVisionModelTester(self ) _lowerCamelCase : Dict = TFBertModelTester(self ) _lowerCamelCase : List[str] = clip_model_tester.prepare_config_and_inputs() _lowerCamelCase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase : Optional[Any] = vision_config_and_inputs ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian",logit_scale_init_value=1.0,from_pt=__A ) _lowerCamelCase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCamelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCamelCase : str = processor( text=["una foto di un gatto", "una foto di un cane"],images=__A,padding=__A,return_tensors="np" ) _lowerCamelCase : int = model(**__A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),) _lowerCamelCase : Dict = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy(),__A,atol=1e-3 ) )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase__ : def __init__( self : Tuple,__A : Any ): _lowerCamelCase : Any = str(id_ ) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = {} # {vertex:distance} def __lt__( self : int,__A : List[Any] ): return self.key < other.key def __repr__( self : List[str] ): return self.id def lowerCamelCase_ ( self : List[str],__A : Optional[int] ): self.neighbors.append(__A ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int],__A : int ): _lowerCamelCase : Optional[Any] = weight def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ): """simple docstring""" _lowerCamelCase : str = [] for u in graph: _lowerCamelCase : Any = math.inf _lowerCamelCase : List[str] = None _lowerCamelCase : Tuple = 0 _lowerCamelCase : Tuple = graph[:] while q: _lowerCamelCase : List[str] = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCamelCase : int = u _lowerCamelCase : Optional[Any] = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A_ ( _lowerCAmelCase : list , _lowerCAmelCase : Vertex ): """simple docstring""" for u in graph: _lowerCamelCase : Any = math.inf _lowerCamelCase : Tuple = None _lowerCamelCase : int = 0 _lowerCamelCase : Dict = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: _lowerCamelCase : Dict = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCamelCase : List[Any] = u _lowerCamelCase : List[str] = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'bert-generation' def __init__( self : Optional[int],__A : List[Any]=5_0_3_5_8,__A : str=1_0_2_4,__A : Union[str, Any]=2_4,__A : Optional[Any]=1_6,__A : List[Any]=4_0_9_6,__A : Dict="gelu",__A : Optional[int]=0.1,__A : Union[str, Any]=0.1,__A : int=5_1_2,__A : str=0.02,__A : Dict=1e-12,__A : Optional[Any]=0,__A : Tuple=2,__A : Optional[Any]=1,__A : Union[str, Any]="absolute",__A : Union[str, Any]=True,**__A : int,): super().__init__(pad_token_id=__A,bos_token_id=__A,eos_token_id=__A,**__A ) _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : str = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Any = position_embedding_type _lowerCamelCase : List[Any] = use_cache
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : list ): """simple docstring""" for i in range(len(_lowerCAmelCase ) - 1 , 0 , -1 ): _lowerCamelCase : Tuple = False for j in range(_lowerCAmelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _lowerCamelCase , _lowerCamelCase : Dict = unsorted[j - 1], unsorted[j] _lowerCamelCase : str = True for j in range(_lowerCAmelCase ): if unsorted[j] > unsorted[j + 1]: _lowerCamelCase , _lowerCamelCase : Dict = unsorted[j + 1], unsorted[j] _lowerCamelCase : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : List[Any] = [int(item) for item in user_input.split(',')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'timm_backbone' def __init__( self : Tuple,__A : int=None,__A : int=3,__A : List[Any]=True,__A : Optional[int]=True,__A : List[Any]=None,**__A : int,): super().__init__(**__A ) _lowerCamelCase : Optional[int] = backbone _lowerCamelCase : Any = num_channels _lowerCamelCase : Tuple = features_only _lowerCamelCase : Optional[Any] = use_pretrained_backbone _lowerCamelCase : Optional[int] = True _lowerCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' import requests def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Tuple = {"Content-Type": "application/json"} _lowerCamelCase : Optional[Any] = requests.post(_lowerCAmelCase , json={"text": message_body} , headers=_lowerCAmelCase ) if response.status_code != 200: _lowerCamelCase : str = ( "Request to slack returned an error " F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase_ : Any = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = jnp.floataa lowerCAmelCase_ = True def lowerCamelCase_ ( self : Any ): super().setup() _lowerCamelCase : str = nn.Dense(5,dtype=self.dtype ) def __call__( self : Optional[int],*__A : Optional[int],**__A : Union[str, Any] ): _lowerCamelCase : Optional[int] = super().__call__(*__A,**__A ) _lowerCamelCase : int = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = FlaxBigBirdForNaturalQuestionsModule def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ): """simple docstring""" def cross_entropy(_lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=None ): _lowerCamelCase : Optional[int] = logits.shape[-1] _lowerCamelCase : Optional[Any] = (labels[..., None] == jnp.arange(_lowerCAmelCase )[None]).astype("f4" ) _lowerCamelCase : str = jax.nn.log_softmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase : int = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase : List[Any] = reduction(_lowerCAmelCase ) return loss _lowerCamelCase : int = partial(_lowerCAmelCase , reduction=jnp.mean ) _lowerCamelCase : List[Any] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[int] = cross_entropy(_lowerCAmelCase , _lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = "google/bigbird-roberta-base" lowerCAmelCase_ = 3000 lowerCAmelCase_ = 10500 lowerCAmelCase_ = 128 lowerCAmelCase_ = 3 lowerCAmelCase_ = 1 lowerCAmelCase_ = 5 # tx_args lowerCAmelCase_ = 3E-5 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = 20000 lowerCAmelCase_ = 0.0_0_9_5 lowerCAmelCase_ = "bigbird-roberta-natural-questions" lowerCAmelCase_ = "training-expt" lowerCAmelCase_ = "data/nq-training.jsonl" lowerCAmelCase_ = "data/nq-validation.jsonl" def lowerCamelCase_ ( self : Optional[int] ): os.makedirs(self.base_dir,exist_ok=__A ) _lowerCamelCase : Union[str, Any] = os.path.join(self.base_dir,self.save_dir ) _lowerCamelCase : Any = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 4096 # no dynamic padding on TPUs def __call__( self : Union[str, Any],__A : List[str] ): _lowerCamelCase : Dict = self.collate_fn(__A ) _lowerCamelCase : int = jax.tree_util.tree_map(__A,__A ) return batch def lowerCamelCase_ ( self : List[Any],__A : Optional[Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.fetch_inputs(features["input_ids"] ) _lowerCamelCase : Dict = { "input_ids": jnp.array(__A,dtype=jnp.intaa ), "attention_mask": jnp.array(__A,dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"],dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"],dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"],dtype=jnp.intaa ), } return batch def lowerCamelCase_ ( self : Union[str, Any],__A : list ): _lowerCamelCase : str = [self._fetch_inputs(__A ) for ids in input_ids] return zip(*__A ) def lowerCamelCase_ ( self : Tuple,__A : list ): _lowerCamelCase : str = [1 for _ in range(len(__A ) )] while len(__A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=None ): """simple docstring""" if seed is not None: _lowerCamelCase : Union[str, Any] = dataset.shuffle(seed=_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) // batch_size ): _lowerCamelCase : Any = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_lowerCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): """simple docstring""" def loss_fn(_lowerCAmelCase : str ): _lowerCamelCase : List[Any] = model_inputs.pop("start_labels" ) _lowerCamelCase : Union[str, Any] = model_inputs.pop("end_labels" ) _lowerCamelCase : Optional[int] = model_inputs.pop("pooled_labels" ) _lowerCamelCase : List[str] = state.apply_fn(**_lowerCAmelCase , params=_lowerCAmelCase , dropout_rng=_lowerCAmelCase , train=_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = outputs return state.loss_fn( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) _lowerCamelCase , _lowerCamelCase : List[Any] = jax.random.split(_lowerCAmelCase ) _lowerCamelCase : Tuple = jax.value_and_grad(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : int = grad_fn(state.params ) _lowerCamelCase : Optional[Any] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) _lowerCamelCase : Union[str, Any] = jax.lax.pmean(_lowerCAmelCase , "batch" ) _lowerCamelCase : Union[str, Any] = state.apply_gradients(grads=_lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def A_ ( _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = model_inputs.pop("start_labels" ) _lowerCamelCase : Any = model_inputs.pop("end_labels" ) _lowerCamelCase : Any = model_inputs.pop("pooled_labels" ) _lowerCamelCase : Optional[int] = state.apply_fn(**_lowerCAmelCase , params=state.params , train=_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = outputs _lowerCamelCase : List[str] = state.loss_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): lowerCAmelCase_ = struct.field(pytree_node=A ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : int,__A : List[str],__A : Tuple=None ): _lowerCamelCase : Optional[Any] = model.params _lowerCamelCase : List[Any] = TrainState.create( apply_fn=model.__call__,params=__A,tx=__A,loss_fn=__A,) if ckpt_dir is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = restore_checkpoint(__A,__A ) _lowerCamelCase : List[str] = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } _lowerCamelCase , _lowerCamelCase : Any = build_tx(**__A ) _lowerCamelCase : int = train_state.TrainState( step=__A,apply_fn=model.__call__,params=__A,tx=__A,opt_state=__A,) _lowerCamelCase : int = args _lowerCamelCase : str = data_collator _lowerCamelCase : Tuple = lr _lowerCamelCase : Tuple = params _lowerCamelCase : Tuple = jax_utils.replicate(__A ) return state def lowerCamelCase_ ( self : List[Any],__A : int,__A : Dict,__A : Optional[Any] ): _lowerCamelCase : str = self.args _lowerCamelCase : Union[str, Any] = len(__A ) // args.batch_size _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[int] = jax.random.split(__A,jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase : List[str] = jnp.array(0,dtype=jnp.floataa ) _lowerCamelCase : Any = get_batched_dataset(__A,args.batch_size,seed=__A ) _lowerCamelCase : Union[str, Any] = 0 for batch in tqdm(__A,total=__A,desc=f'Running EPOCH-{epoch}' ): _lowerCamelCase : Optional[Any] = self.data_collator(__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.train_step_fn(__A,__A,**__A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase : Dict = jax_utils.unreplicate(state.step ) _lowerCamelCase : Optional[Any] = running_loss.item() / i _lowerCamelCase : Tuple = self.scheduler_fn(state_step - 1 ) _lowerCamelCase : Any = self.evaluate(__A,__A ) _lowerCamelCase : str = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__A ) ) self.logger.log(__A,commit=__A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}',state=__A ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : Tuple ): _lowerCamelCase : List[Any] = get_batched_dataset(__A,self.args.batch_size ) _lowerCamelCase : str = len(__A ) // self.args.batch_size _lowerCamelCase : Optional[Any] = jnp.array(0,dtype=jnp.floataa ) _lowerCamelCase : Dict = 0 for batch in tqdm(__A,total=__A,desc="Evaluating ... " ): _lowerCamelCase : str = self.data_collator(__A ) _lowerCamelCase : Dict = self.val_step_fn(__A,**__A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : Union[str, Any] ): _lowerCamelCase : Any = jax_utils.unreplicate(__A ) print(f'SAVING CHECKPOINT IN {save_dir}',end=" ... " ) self.model_save_fn(__A,params=state.params ) with open(os.path.join(__A,"opt_state.msgpack" ),"wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(__A,"args.joblib" ) ) joblib.dump(self.data_collator,os.path.join(__A,"data_collator.joblib" ) ) with open(os.path.join(__A,"training_state.json" ),"w" ) as f: json.dump({"step": state.step.item()},__A ) print("DONE" ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): """simple docstring""" print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=" ... " ) with open(os.path.join(_lowerCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: _lowerCamelCase : str = from_bytes(state.params , f.read() ) with open(os.path.join(_lowerCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: _lowerCamelCase : List[Any] = from_bytes(state.opt_state , f.read() ) _lowerCamelCase : Optional[int] = joblib.load(os.path.join(_lowerCAmelCase , "args.joblib" ) ) _lowerCamelCase : List[Any] = joblib.load(os.path.join(_lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(_lowerCAmelCase , "training_state.json" ) , "r" ) as f: _lowerCamelCase : str = json.load(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[str] = num_train_steps - warmup_steps _lowerCamelCase : Dict = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=_lowerCAmelCase , transition_steps=_lowerCAmelCase ) _lowerCamelCase : Dict = optax.linear_schedule(init_value=_lowerCAmelCase , end_value=1E-7 , transition_steps=_lowerCAmelCase ) _lowerCamelCase : List[Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ): """simple docstring""" def weight_decay_mask(_lowerCAmelCase : List[Any] ): _lowerCamelCase : Tuple = traverse_util.flatten_dict(_lowerCAmelCase ) _lowerCamelCase : Tuple = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(_lowerCAmelCase ) _lowerCamelCase : int = scheduler_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = optax.adamw(learning_rate=_lowerCAmelCase , weight_decay=_lowerCAmelCase , mask=_lowerCAmelCase ) return tx, lr
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : lowerCAmelCase_ = PegasusConfig lowerCAmelCase_ = {} lowerCAmelCase_ = 'gelu' def __init__( self : str,__A : Tuple,__A : Optional[Any]=1_3,__A : Tuple=7,__A : List[str]=True,__A : Any=False,__A : Tuple=9_9,__A : List[Any]=3_2,__A : Union[str, Any]=2,__A : Dict=4,__A : int=3_7,__A : Optional[Any]=0.1,__A : Optional[Any]=0.1,__A : Optional[int]=4_0,__A : List[str]=2,__A : List[str]=1,__A : List[Any]=0,): _lowerCamelCase : Any = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Any = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : List[str] = eos_token_id _lowerCamelCase : List[str] = pad_token_id _lowerCamelCase : Union[str, Any] = bos_token_id def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1],self.vocab_size ) _lowerCamelCase : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ),1 ) _lowerCamelCase : Any = tf.concat([input_ids, eos_tensor],axis=1 ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Tuple = self.config_cls( vocab_size=self.vocab_size,d_model=self.hidden_size,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,eos_token_ids=[2],bos_token_id=self.bos_token_id,pad_token_id=self.pad_token_id,decoder_start_token_id=self.pad_token_id,**self.config_updates,) _lowerCamelCase : str = prepare_pegasus_inputs_dict(__A,__A,__A ) return config, inputs_dict def lowerCamelCase_ ( self : Optional[Any],__A : int,__A : int ): _lowerCamelCase : Any = TFPegasusModel(config=__A ).get_decoder() _lowerCamelCase : List[str] = inputs_dict["input_ids"] _lowerCamelCase : str = input_ids[:1, :] _lowerCamelCase : Any = inputs_dict["attention_mask"][:1, :] _lowerCamelCase : Tuple = inputs_dict["head_mask"] _lowerCamelCase : Optional[int] = 1 # first forward pass _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A,head_mask=__A,use_cache=__A ) _lowerCamelCase , _lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : int = ids_tensor((self.batch_size, 3),config.vocab_size ) _lowerCamelCase : int = tf.cast(ids_tensor((self.batch_size, 3),2 ),tf.inta ) # append to next input_ids and _lowerCamelCase : List[str] = tf.concat([input_ids, next_tokens],axis=-1 ) _lowerCamelCase : List[str] = tf.concat([attention_mask, next_attn_mask],axis=-1 ) _lowerCamelCase : Dict = model(__A,attention_mask=__A )[0] _lowerCamelCase : List[str] = model(__A,attention_mask=__A,past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1],output_from_past.shape[1] ) # select random slice _lowerCamelCase : Optional[int] = int(ids_tensor((1,),output_from_past.shape[-1] ) ) _lowerCamelCase : Dict = output_from_no_past[:, -3:, random_slice_idx] _lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A,__A,rtol=1e-3 ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , ): """simple docstring""" if attention_mask is None: _lowerCamelCase : List[str] = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCamelCase : Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCAmelCase_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = TFPegasusModelTester(self ) _lowerCamelCase : Tuple = ConfigTester(self,config_class=__A ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCAmelCase_ = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCAmelCase_ = 'google/pegasus-xsum' @cached_property def lowerCamelCase_ ( self : Union[str, Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase_ ( self : List[Any],**__A : Dict ): _lowerCamelCase : Union[str, Any] = self.translate_src_text(**__A ) assert self.expected_text == generated_words def lowerCamelCase_ ( self : str,**__A : Dict ): _lowerCamelCase : Dict = self.tokenizer(self.src_text,**__A,padding=__A,return_tensors="tf" ) _lowerCamelCase : Any = self.model.generate( model_inputs.input_ids,attention_mask=model_inputs.attention_mask,num_beams=2,use_cache=__A,) _lowerCamelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy(),skip_special_tokens=__A ) return generated_words @slow def lowerCamelCase_ ( self : int ): self._assert_generated_batch_equal_expected()
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCAmelCase_ : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) UpperCAmelCase_ : int = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) UpperCAmelCase_ : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) UpperCAmelCase_ : Optional[int] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) UpperCAmelCase_ : List[Any] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) UpperCAmelCase_ : Optional[Any] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) UpperCAmelCase_ : Optional[int] = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def A_ ( ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = randrange(len(_lowerCAmelCase ) ), randrange(len(_lowerCAmelCase ) ) _lowerCamelCase : List[str] = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] _lowerCamelCase , _lowerCamelCase : List[str] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def A_ ( _lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(_lowerCAmelCase )) @pytest.mark.parametrize("hand, expected" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" assert PokerHand(_lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ): """simple docstring""" assert PokerHand(_lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : str = PokerHand(_lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int ): """simple docstring""" assert PokerHand(_lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): """simple docstring""" assert PokerHand(_lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): """simple docstring""" assert PokerHand(_lowerCAmelCase ).compare_with(PokerHand(_lowerCAmelCase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): """simple docstring""" assert PokerHand(_lowerCAmelCase ).compare_with(PokerHand(_lowerCAmelCase ) ) == expected def A_ ( ): """simple docstring""" _lowerCamelCase : Tuple = [PokerHand(_lowerCAmelCase ) for hand in SORTED_HANDS] _lowerCamelCase : int = poker_hands.copy() shuffle(_lowerCAmelCase ) _lowerCamelCase : List[str] = chain(sorted(_lowerCAmelCase ) ) for index, hand in enumerate(_lowerCAmelCase ): assert hand == poker_hands[index] def A_ ( ): """simple docstring""" _lowerCamelCase : str = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = PokerHand("2C 4S AS 3D 5C" ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def A_ ( ): """simple docstring""" _lowerCamelCase : Dict = 0 _lowerCamelCase : Union[str, Any] = os.path.abspath(os.path.dirname(_lowerCAmelCase ) ) _lowerCamelCase : Dict = os.path.join(_lowerCAmelCase , "poker_hands.txt" ) with open(_lowerCAmelCase ) as file_hand: for line in file_hand: _lowerCamelCase : Tuple = line[:14].strip() _lowerCamelCase : List[Any] = line[15:].strip() _lowerCamelCase , _lowerCamelCase : str = PokerHand(_lowerCAmelCase ), PokerHand(_lowerCAmelCase ) _lowerCamelCase : int = player.compare_with(_lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : int ): _lowerCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode _lowerCamelCase : Optional[int] = False def lowerCamelCase_ ( self : str,__A : list[str] ): for word in words: self.insert(__A ) def lowerCamelCase_ ( self : Tuple,__A : str ): _lowerCamelCase : List[Any] = self for char in word: if char not in curr.nodes: _lowerCamelCase : Tuple = TrieNode() _lowerCamelCase : Any = curr.nodes[char] _lowerCamelCase : List[str] = True def lowerCamelCase_ ( self : Any,__A : str ): _lowerCamelCase : Dict = self for char in word: if char not in curr.nodes: return False _lowerCamelCase : Optional[int] = curr.nodes[char] return curr.is_leaf def lowerCamelCase_ ( self : Any,__A : str ): def _delete(__A : TrieNode,__A : str,__A : int ) -> bool: if index == len(__A ): # If word does not exist if not curr.is_leaf: return False _lowerCamelCase : int = False return len(curr.nodes ) == 0 _lowerCamelCase : Dict = word[index] _lowerCamelCase : Optional[Any] = curr.nodes.get(__A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _lowerCamelCase : List[Any] = _delete(__A,__A,index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self,__A,0 ) def A_ ( _lowerCAmelCase : TrieNode , _lowerCAmelCase : str ): """simple docstring""" if node.is_leaf: print(_lowerCAmelCase , end=" " ) for key, value in node.nodes.items(): print_words(_lowerCAmelCase , word + key ) def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "banana bananas bandana band apple all beast".split() _lowerCamelCase : str = TrieNode() root.insert_many(_lowerCAmelCase ) # print_words(root, "") assert all(root.find(_lowerCAmelCase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool ): """simple docstring""" print(str(_lowerCAmelCase ) , "works!" if passes else "doesn't work :(" ) def A_ ( ): """simple docstring""" assert test_trie() def A_ ( ): """simple docstring""" print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A_ ( _lowerCAmelCase : int = 8 ): """simple docstring""" _lowerCamelCase : str = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" i -= len(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = i // 3 _lowerCamelCase : str = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCamelCase : Optional[Any] = ( chars_incl + random(_lowerCAmelCase , quotient + remainder ) + random(_lowerCAmelCase , _lowerCAmelCase ) + random(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = list(_lowerCAmelCase ) shuffle(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) # random is a generalised function for letters, characters and numbers def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" return "".join(secrets.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): """simple docstring""" pass # Put your code here... def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : int = 8 ): """simple docstring""" if len(_lowerCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False _lowerCamelCase : List[Any] = any(char in ascii_uppercase for char in password ) _lowerCamelCase : str = any(char in ascii_lowercase for char in password ) _lowerCamelCase : Any = any(char in digits for char in password ) _lowerCamelCase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A_ ( ): """simple docstring""" _lowerCamelCase : str = int(input("Please indicate the max length of your password: " ).strip() ) _lowerCamelCase : Any = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_lowerCAmelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(_lowerCAmelCase , _lowerCAmelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : int,__A : list[int] ): _lowerCamelCase : Any = len(__A ) _lowerCamelCase : List[Any] = [0] * len_array if len_array > 0: _lowerCamelCase : Tuple = array[0] for i in range(1,__A ): _lowerCamelCase : Any = self.prefix_sum[i - 1] + array[i] def lowerCamelCase_ ( self : str,__A : int,__A : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCamelCase_ ( self : Union[str, Any],__A : int ): _lowerCamelCase : List[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) UpperCAmelCase_ : Dict = parser.parse_args() UpperCAmelCase_ : Tuple = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase_ : Union[str, Any] = CLIPImageProcessor() UpperCAmelCase_ : Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') UpperCAmelCase_ : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['image_processor'] lowerCAmelCase_ = 'SamImageProcessor' def __init__( self : Any,__A : Optional[int] ): super().__init__(__A ) _lowerCamelCase : Union[str, Any] = self.image_processor _lowerCamelCase : Optional[int] = -1_0 _lowerCamelCase : List[str] = self.image_processor.size["longest_edge"] def __call__( self : Any,__A : Tuple=None,__A : Any=None,__A : Optional[Any]=None,__A : Dict=None,__A : Optional[Union[str, TensorType]] = None,**__A : str,): _lowerCamelCase : str = self.image_processor( __A,return_tensors=__A,**__A,) # pop arguments that are not used in the foward but used nevertheless _lowerCamelCase : List[Any] = encoding_image_processor["original_sizes"] if hasattr(__A,"numpy" ): # Checks if Torch or TF tensor _lowerCamelCase : Dict = original_sizes.numpy() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=__A,input_labels=__A,input_boxes=__A,) _lowerCamelCase : Union[str, Any] = self._normalize_and_convert( __A,__A,input_points=__A,input_labels=__A,input_boxes=__A,return_tensors=__A,) return encoding_image_processor def lowerCamelCase_ ( self : List[str],__A : List[str],__A : Union[str, Any],__A : List[str]=None,__A : int=None,__A : Any=None,__A : int="pt",): if input_points is not None: if len(__A ) != len(__A ): _lowerCamelCase : Tuple = [ self._normalize_coordinates(self.target_size,__A,original_sizes[0] ) for point in input_points ] else: _lowerCamelCase : Dict = [ self._normalize_coordinates(self.target_size,__A,__A ) for point, original_size in zip(__A,__A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _lowerCamelCase , _lowerCamelCase : Dict = self._pad_points_and_labels(__A,__A ) _lowerCamelCase : Optional[int] = np.array(__A ) if input_labels is not None: _lowerCamelCase : List[Any] = np.array(__A ) if input_boxes is not None: if len(__A ) != len(__A ): _lowerCamelCase : Optional[Any] = [ self._normalize_coordinates(self.target_size,__A,original_sizes[0],is_bounding_box=__A ) for box in input_boxes ] else: _lowerCamelCase : List[str] = [ self._normalize_coordinates(self.target_size,__A,__A,is_bounding_box=__A ) for box, original_size in zip(__A,__A ) ] _lowerCamelCase : Dict = np.array(__A ) if input_boxes is not None: if return_tensors == "pt": _lowerCamelCase : str = torch.from_numpy(__A ) # boxes batch size of 1 by default _lowerCamelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _lowerCamelCase : str = tf.convert_to_tensor(__A ) # boxes batch size of 1 by default _lowerCamelCase : Optional[Any] = tf.expand_dims(__A,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _lowerCamelCase : Dict = torch.from_numpy(__A ) # point batch size of 1 by default _lowerCamelCase : int = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _lowerCamelCase : Any = tf.convert_to_tensor(__A ) # point batch size of 1 by default _lowerCamelCase : Any = tf.expand_dims(__A,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _lowerCamelCase : Optional[int] = torch.from_numpy(__A ) # point batch size of 1 by default _lowerCamelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _lowerCamelCase : Dict = tf.convert_to_tensor(__A ) # point batch size of 1 by default _lowerCamelCase : Tuple = tf.expand_dims(__A,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def lowerCamelCase_ ( self : List[str],__A : Dict,__A : str ): _lowerCamelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _lowerCamelCase : Dict = [] for i, point in enumerate(__A ): if point.shape[0] != expected_nb_points: _lowerCamelCase : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) _lowerCamelCase : Dict = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__A ) _lowerCamelCase : Tuple = processed_input_points return input_points, input_labels def lowerCamelCase_ ( self : int,__A : int,__A : np.ndarray,__A : Union[str, Any],__A : Optional[int]=False ): _lowerCamelCase , _lowerCamelCase : List[str] = original_size _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processor._get_preprocess_shape(__A,longest_edge=__A ) _lowerCamelCase : str = deepcopy(__A ).astype(__A ) if is_bounding_box: _lowerCamelCase : Dict = coords.reshape(-1,2,2 ) _lowerCamelCase : int = coords[..., 0] * (new_w / old_w) _lowerCamelCase : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _lowerCamelCase : List[Any] = coords.reshape(-1,4 ) return coords def lowerCamelCase_ ( self : List[str],__A : str=None,__A : Tuple=None,__A : List[Any]=None,): if input_points is not None: if hasattr(__A,"numpy" ): # Checks for TF or Torch tensor _lowerCamelCase : Optional[int] = input_points.numpy().tolist() if not isinstance(__A,__A ) or not isinstance(input_points[0],__A ): raise ValueError("Input points must be a list of list of floating points." ) _lowerCamelCase : str = [np.array(__A ) for input_point in input_points] else: _lowerCamelCase : List[str] = None if input_labels is not None: if hasattr(__A,"numpy" ): _lowerCamelCase : Any = input_labels.numpy().tolist() if not isinstance(__A,__A ) or not isinstance(input_labels[0],__A ): raise ValueError("Input labels must be a list of list integers." ) _lowerCamelCase : str = [np.array(__A ) for label in input_labels] else: _lowerCamelCase : int = None if input_boxes is not None: if hasattr(__A,"numpy" ): _lowerCamelCase : str = input_boxes.numpy().tolist() if ( not isinstance(__A,__A ) or not isinstance(input_boxes[0],__A ) or not isinstance(input_boxes[0][0],__A ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _lowerCamelCase : str = [np.array(__A ).astype(np.floataa ) for box in input_boxes] else: _lowerCamelCase : str = None return input_points, input_labels, input_boxes @property def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(__A ) ) def lowerCamelCase_ ( self : List[str],*__A : int,**__A : Union[str, Any] ): return self.image_processor.post_process_masks(*__A,**__A )
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any],__A : List[str],__A : List[str]=7,__A : Union[str, Any]=3,__A : Union[str, Any]=1_8,__A : int=3_0,__A : Dict=4_0_0,__A : Union[str, Any]=True,__A : List[Any]=None,__A : Any=True,__A : Any=[0.5, 0.5, 0.5],__A : str=[0.5, 0.5, 0.5],): _lowerCamelCase : Any = size if size is not None else {"height": 1_8, "width": 1_8} _lowerCamelCase : List[Any] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : List[Any] = image_size _lowerCamelCase : int = min_resolution _lowerCamelCase : str = max_resolution _lowerCamelCase : Dict = do_resize _lowerCamelCase : str = size _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : Dict = image_mean _lowerCamelCase : int = image_std def lowerCamelCase_ ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = DPTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = DPTImageProcessingTester(self ) @property def lowerCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A,"image_mean" ) ) self.assertTrue(hasattr(__A,"image_std" ) ) self.assertTrue(hasattr(__A,"do_normalize" ) ) self.assertTrue(hasattr(__A,"do_resize" ) ) self.assertTrue(hasattr(__A,"size" ) ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"height": 1_8, "width": 1_8} ) _lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict,size=4_2 ) self.assertEqual(image_processor.size,{"height": 4_2, "width": 4_2} ) def lowerCamelCase_ ( self : List[Any] ): # Initialize image_processing _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A,Image.Image ) # Test not batched input _lowerCamelCase : str = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : Optional[int] = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) def lowerCamelCase_ ( self : Dict ): # Initialize image_processing _lowerCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A,np.ndarray ) # Test not batched input _lowerCamelCase : str = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : str = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) def lowerCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : int = prepare_image_inputs(self.image_processor_tester,equal_resolution=__A,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A,torch.Tensor ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0],return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),) # Test batched _lowerCamelCase : int = image_processing(__A,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ),)
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str = " " ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = 0 for index, char in enumerate(_lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) _lowerCamelCase : List[Any] = index + 1 elif index + 1 == len(_lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCAmelCase_ : Union[str, Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'maskformer' lowerCAmelCase_ = {'hidden_size': 'mask_feature_size'} lowerCAmelCase_ = ['resnet', 'swin'] lowerCAmelCase_ = ['detr'] def __init__( self : str,__A : int = 2_5_6,__A : int = 2_5_6,__A : float = 0.1,__A : bool = False,__A : Optional[Dict] = None,__A : Optional[Dict] = None,__A : float = 0.02,__A : float = 1.0,__A : float = 1.0,__A : float = 1.0,__A : float = 20.0,__A : Optional[bool] = None,**__A : List[str],): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCamelCase : int = SwinConfig( image_size=3_8_4,in_channels=3,patch_size=4,embed_dim=1_2_8,depths=[2, 2, 1_8, 2],num_heads=[4, 8, 1_6, 3_2],window_size=1_2,drop_path_rate=0.3,out_features=["stage1", "stage2", "stage3", "stage4"],) if isinstance(__A,__A ): _lowerCamelCase : Optional[Any] = backbone_config.pop("model_type" ) _lowerCamelCase : str = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Union[str, Any] = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' f'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCamelCase : Optional[Any] = DetrConfig() else: # verify that the decoder is supported _lowerCamelCase : Dict = ( decoder_config.pop("model_type" ) if isinstance(__A,__A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'Transformer Decoder {decoder_type} not supported, please use one of' f' {",".join(self.decoders_supported )}' ) if isinstance(__A,__A ): _lowerCamelCase : str = CONFIG_MAPPING[decoder_type] _lowerCamelCase : List[str] = config_class.from_dict(__A ) _lowerCamelCase : Tuple = backbone_config _lowerCamelCase : str = decoder_config # main feature dimension for the model _lowerCamelCase : Dict = fpn_feature_size _lowerCamelCase : Any = mask_feature_size # initializer _lowerCamelCase : Optional[int] = init_std _lowerCamelCase : str = init_xavier_std # Hungarian matcher && loss _lowerCamelCase : Optional[int] = cross_entropy_weight _lowerCamelCase : Union[str, Any] = dice_weight _lowerCamelCase : Optional[Any] = mask_weight _lowerCamelCase : Any = use_auxiliary_loss _lowerCamelCase : List[Any] = no_object_weight _lowerCamelCase : List[Any] = output_auxiliary_logits _lowerCamelCase : int = self.decoder_config.encoder_attention_heads _lowerCamelCase : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**__A ) @classmethod def lowerCamelCase_ ( cls : Any,__A : PretrainedConfig,__A : PretrainedConfig,**__A : Optional[int] ): return cls( backbone_config=__A,decoder_config=__A,**__A,) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Any = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Dict = self.backbone_config.to_dict() _lowerCamelCase : Union[str, Any] = self.decoder_config.to_dict() _lowerCamelCase : Tuple = self.__class__.model_type return output
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase_ : str = { '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(_lowerCAmelCase ) , version.parse(_lowerCAmelCase ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = F'\n{hint}' if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" , _lowerCAmelCase ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = requirement, None, None else: _lowerCamelCase : Optional[int] = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , _lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" F' got {requirement}' ) _lowerCamelCase , _lowerCamelCase : Tuple = match[0] _lowerCamelCase : Union[str, Any] = want_full.split("," ) # there could be multiple requirements _lowerCamelCase : List[str] = {} for w in want_range: _lowerCamelCase : int = re.findall(r"^([\s!=<>]{1,2})(.+)" , _lowerCAmelCase ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," F' but got {requirement}' ) _lowerCamelCase , _lowerCamelCase : Any = match[0] _lowerCamelCase : Union[str, Any] = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": _lowerCamelCase : Union[str, Any] = ".".join([str(_lowerCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return # check if any version is installed try: _lowerCamelCase : Dict = importlib.metadata.version(_lowerCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Dict = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(_lowerCAmelCase , _lowerCAmelCase )
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : List[str],__A : Union[str, Any]=1_3,__A : str=7,__A : List[Any]=6,__A : Optional[Any]=1_7,__A : Tuple=2_3,__A : int=1_1,__A : Optional[int]=True,): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : List[Any] = act_dim _lowerCamelCase : Dict = state_dim _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : int = is_training def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCamelCase : Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCamelCase : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, self.seq_length),vocab_size=1_0_0_0 ) _lowerCamelCase : Dict = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCamelCase : Optional[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase_ ( self : int ): return DecisionTransformerConfig( batch_size=self.batch_size,seq_length=self.seq_length,act_dim=self.act_dim,state_dim=self.state_dim,hidden_size=self.hidden_size,max_length=self.max_length,) def lowerCamelCase_ ( self : int,__A : List[str],__A : Union[str, Any],__A : Dict,__A : Any,__A : List[str],__A : Any,__A : str,): _lowerCamelCase : Optional[int] = DecisionTransformerModel(config=__A ) model.to(__A ) model.eval() _lowerCamelCase : Any = model(__A,__A,__A,__A,__A,__A ) self.parent.assertEqual(result.state_preds.shape,states.shape ) self.parent.assertEqual(result.action_preds.shape,actions.shape ) self.parent.assertEqual(result.return_preds.shape,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : List[str] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A , A , A , unittest.TestCase ): lowerCAmelCase_ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase_ = () lowerCAmelCase_ = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): _lowerCamelCase : Union[str, Any] = DecisionTransformerModelTester(self ) _lowerCamelCase : List[Any] = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def lowerCamelCase_ ( self : Optional[Any] ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = DecisionTransformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__A ) _lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Tuple = [*signature.parameters.keys()] _lowerCamelCase : List[str] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__A )],__A ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : str ): _lowerCamelCase : str = 2 # number of steps of autoregressive prediction we will perform _lowerCamelCase : Tuple = 1_0 # defined by the RL environment, may be normalized _lowerCamelCase : List[str] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _lowerCamelCase : str = model.to(__A ) _lowerCamelCase : Optional[Any] = model.config torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = torch.randn(1,1,config.state_dim ).to(device=__A,dtype=torch.floataa ) # env.reset() _lowerCamelCase : List[Any] = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]],device=__A ) _lowerCamelCase : Dict = torch.tensor(__A,device=__A,dtype=torch.floataa ).reshape(1,1,1 ) _lowerCamelCase : int = state _lowerCamelCase : int = torch.zeros(1,0,config.act_dim,device=__A,dtype=torch.floataa ) _lowerCamelCase : List[Any] = torch.zeros(1,0,device=__A,dtype=torch.floataa ) _lowerCamelCase : int = torch.tensor(0,device=__A,dtype=torch.long ).reshape(1,1 ) for step in range(__A ): _lowerCamelCase : Any = torch.cat([actions, torch.zeros(1,1,config.act_dim,device=__A )],dim=1 ) _lowerCamelCase : Any = torch.cat([rewards, torch.zeros(1,1,device=__A )],dim=1 ) _lowerCamelCase : Optional[int] = torch.ones(1,states.shape[1] ).to(dtype=torch.long,device=states.device ) with torch.no_grad(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = model( states=__A,actions=__A,rewards=__A,returns_to_go=__A,timesteps=__A,attention_mask=__A,return_dict=__A,) self.assertEqual(action_pred.shape,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1],expected_outputs[step],atol=1e-4 ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = ( # env.step(action) torch.randn(1,1,config.state_dim ).to(device=__A,dtype=torch.floataa ), 1.0, False, {}, ) _lowerCamelCase : int = action_pred[0, -1] _lowerCamelCase : List[Any] = torch.cat([states, state],dim=1 ) _lowerCamelCase : Dict = returns_to_go[0, -1] - reward _lowerCamelCase : Any = torch.cat([returns_to_go, pred_return.reshape(1,1,1 )],dim=1 ) _lowerCamelCase : Dict = torch.cat( [timesteps, torch.ones((1, 1),device=__A,dtype=torch.long ) * (step + 1)],dim=1 )
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set("123456789" ) def A_ ( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): _lowerCamelCase : int = 100002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): _lowerCamelCase : str = 1002003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase_ : Union[str, Any] = True except (ImportError, AttributeError): UpperCAmelCase_ : Optional[Any] = object def A_ ( *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ): """simple docstring""" pass UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Tuple = logging.get_logger('transformers-cli/serving') def A_ ( _lowerCAmelCase : Namespace ): """simple docstring""" _lowerCamelCase : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCAmelCase , args.host , args.port , args.workers ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): @staticmethod def lowerCamelCase_ ( __A : ArgumentParser ): _lowerCamelCase : int = parser.add_parser( "serve",help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task",type=__A,choices=get_supported_tasks(),help="The task to run the pipeline on",) serve_parser.add_argument("--host",type=__A,default="localhost",help="Interface the server will listen on." ) serve_parser.add_argument("--port",type=__A,default=8_8_8_8,help="Port the serving will listen to." ) serve_parser.add_argument("--workers",type=__A,default=1,help="Number of http workers" ) serve_parser.add_argument("--model",type=__A,help="Model's name or path to stored model." ) serve_parser.add_argument("--config",type=__A,help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer",type=__A,help="Tokenizer name to use." ) serve_parser.add_argument( "--device",type=__A,default=-1,help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",) serve_parser.set_defaults(func=__A ) def __init__( self : List[Any],__A : Pipeline,__A : str,__A : int,__A : int ): _lowerCamelCase : Tuple = pipeline _lowerCamelCase : str = host _lowerCamelCase : List[str] = port _lowerCamelCase : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f'Serving model over {host}:{port}' ) _lowerCamelCase : Optional[int] = FastAPI( routes=[ APIRoute( "/",self.model_info,response_model=__A,response_class=__A,methods=["GET"],), APIRoute( "/tokenize",self.tokenize,response_model=__A,response_class=__A,methods=["POST"],), APIRoute( "/detokenize",self.detokenize,response_model=__A,response_class=__A,methods=["POST"],), APIRoute( "/forward",self.forward,response_model=__A,response_class=__A,methods=["POST"],), ],timeout=6_0_0,) def lowerCamelCase_ ( self : str ): run(self._app,host=self.host,port=self.port,workers=self.workers ) def lowerCamelCase_ ( self : Dict ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCamelCase_ ( self : Tuple,__A : str = Body(__A,embed=__A ),__A : bool = Body(__A,embed=__A ) ): try: _lowerCamelCase : Tuple = self._pipeline.tokenizer.tokenize(__A ) if return_ids: _lowerCamelCase : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A,tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=5_0_0,detail={"model": "", "error": str(__A )} ) def lowerCamelCase_ ( self : List[Any],__A : List[int] = Body(__A,embed=__A ),__A : bool = Body(__A,embed=__A ),__A : bool = Body(__A,embed=__A ),): try: _lowerCamelCase : List[str] = self._pipeline.tokenizer.decode(__A,__A,__A ) return ServeDeTokenizeResult(model="",text=__A ) except Exception as e: raise HTTPException(status_code=5_0_0,detail={"model": "", "error": str(__A )} ) async def lowerCamelCase_ ( self : Tuple,__A : Dict=Body(__A,embed=__A ) ): # Check we don't have empty string if len(__A ) == 0: return ServeForwardResult(output=[],attention=[] ) try: # Forward through the model _lowerCamelCase : Tuple = self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(5_0_0,{"error": str(__A )} )
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int = 4000000 ): """simple docstring""" _lowerCamelCase : List[str] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = b, a + b return sum(_lowerCAmelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' import os import numpy import onnx def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = a.name _lowerCamelCase : Optional[int] = b.name _lowerCamelCase : Optional[int] = "" _lowerCamelCase : int = "" _lowerCamelCase : List[str] = a == b _lowerCamelCase : Tuple = name_a _lowerCamelCase : int = name_b return res def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[str] = list(model.graph.initializer ) _lowerCamelCase : Dict = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowerCamelCase : Optional[Any] = inits[i].name _lowerCamelCase : Any = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = os.path.dirname(_lowerCAmelCase ) _lowerCamelCase : str = os.path.basename(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Optional[Any] = list(model.graph.initializer ) _lowerCamelCase : str = set() _lowerCamelCase : int = {} _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[Any] = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inits[j].data_type _lowerCamelCase : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , _lowerCAmelCase ) total_reduced_size += mem_size _lowerCamelCase : Union[str, Any] = inits[i].name _lowerCamelCase : Optional[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: _lowerCamelCase : Any = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB" ) _lowerCamelCase : Dict = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Tuple = "optimized_" + model_file_name _lowerCamelCase : int = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' from __future__ import annotations class UpperCAmelCase__ : def __init__( self : Union[str, Any],__A : str,__A : str ): _lowerCamelCase , _lowerCamelCase : List[str] = text, pattern _lowerCamelCase , _lowerCamelCase : Any = len(__A ), len(__A ) def lowerCamelCase_ ( self : Any,__A : str ): for i in range(self.patLen - 1,-1,-1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase_ ( self : Tuple,__A : int ): for i in range(self.patLen - 1,-1,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase_ ( self : Dict ): # searches pattern in text and returns index positions _lowerCamelCase : List[str] = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCamelCase : int = self.mismatch_in_text(__A ) if mismatch_index == -1: positions.append(__A ) else: _lowerCamelCase : List[str] = self.match_in_pattern(self.text[mismatch_index] ) _lowerCamelCase : List[str] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCAmelCase_ : int = 'ABAABA' UpperCAmelCase_ : List[str] = 'AB' UpperCAmelCase_ : Tuple = BoyerMooreSearch(text, pattern) UpperCAmelCase_ : List[str] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A_ ( _lowerCAmelCase : str = "laptop" ): """simple docstring""" _lowerCamelCase : Dict = F'https://www.amazon.in/laptop/s?k={product}' _lowerCamelCase : Tuple = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCamelCase : int = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCamelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCamelCase : Dict = item.ha.text _lowerCamelCase : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCamelCase : Optional[int] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCamelCase : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCamelCase : Optional[Any] = "Not available" try: _lowerCamelCase : Dict = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCamelCase : Union[str, Any] = "" try: _lowerCamelCase : Union[str, Any] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCamelCase : List[str] = float("nan" ) except AttributeError: pass _lowerCamelCase : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCamelCase : List[str] = " " _lowerCamelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCAmelCase_ : str = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'yolos' def __init__( self : str,__A : Optional[Any]=7_6_8,__A : int=1_2,__A : Any=1_2,__A : Union[str, Any]=3_0_7_2,__A : List[Any]="gelu",__A : Dict=0.0,__A : str=0.0,__A : str=0.02,__A : int=1e-12,__A : Union[str, Any]=[5_1_2, 8_6_4],__A : Any=1_6,__A : str=3,__A : Optional[int]=True,__A : str=1_0_0,__A : Tuple=True,__A : Optional[int]=False,__A : str=1,__A : Union[str, Any]=5,__A : str=2,__A : Dict=5,__A : Optional[Any]=2,__A : List[Any]=0.1,**__A : Tuple,): super().__init__(**__A ) _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Dict = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : List[str] = qkv_bias _lowerCamelCase : Optional[int] = num_detection_tokens _lowerCamelCase : Tuple = use_mid_position_embeddings _lowerCamelCase : List[str] = auxiliary_loss # Hungarian matcher _lowerCamelCase : List[Any] = class_cost _lowerCamelCase : List[str] = bbox_cost _lowerCamelCase : str = giou_cost # Loss coefficients _lowerCamelCase : Optional[int] = bbox_loss_coefficient _lowerCamelCase : List[str] = giou_loss_coefficient _lowerCamelCase : Tuple = eos_coefficient class UpperCAmelCase__ ( A ): lowerCAmelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase_ ( self : str ): return 1e-4 @property def lowerCamelCase_ ( self : Dict ): return 1_2
11
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'vocab_file': 'spiece.model'} UpperCAmelCase_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } UpperCAmelCase_ : str = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Dict,__A : List[str],__A : Any=False,__A : Tuple=False,__A : Dict=False,__A : str=None,__A : List[str]=None,__A : Any=None,__A : str=None,__A : Optional[Dict[str, Any]] = None,**__A : str,): _lowerCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCamelCase : Union[str, Any] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCamelCase : Tuple = "<|endoftext|>" if eos_token is None else eos_token _lowerCamelCase : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCamelCase : Union[str, Any] = unk_token if pad_token is None else pad_token _lowerCamelCase : str = eos_token if bos_token is None else bos_token else: _lowerCamelCase : List[str] = "<pad>" if pad_token is None else pad_token _lowerCamelCase : str = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,pad_token=__A,sp_model_kwargs=self.sp_model_kwargs,**__A,) _lowerCamelCase : Union[str, Any] = do_lower_case _lowerCamelCase : List[Any] = remove_space _lowerCamelCase : str = keep_accents _lowerCamelCase : List[Any] = vocab_file _lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) # Used for whitespace normalization in input texts # fmt : off _lowerCamelCase : Union[str, Any] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCamelCase : int = re.compile( f'[{"".join(map(__A,list(range(0,9 ) ) + list(range(1_1,3_2 ) ) + list(range(1_2_7,1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self : Dict ): _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None return state def __setstate__( self : Tuple,__A : int ): _lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self,"sp_model_kwargs" ): _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self : int ): return len(self.sp_model ) def lowerCamelCase_ ( self : Dict,__A : str ): _lowerCamelCase : Union[str, Any] = self.non_printing_characters_re.sub("",__A ) # Normalize whitespaces _lowerCamelCase : Optional[Any] = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCamelCase : Optional[Any] = unicodedata.normalize("NFC",__A ) return text def lowerCamelCase_ ( self : Union[str, Any],__A : str,**__A : Optional[int] ): _lowerCamelCase : str = self.preprocess_text(__A ) return self.sp_model.encode(__A,out_type=__A ) def lowerCamelCase_ ( self : int,__A : str ): return self.sp_model.PieceToId(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): return self.sp_model.IdToPiece(__A ) @staticmethod def lowerCamelCase_ ( __A : str ): return out_string def lowerCamelCase_ ( self : str,__A : List[str] ): _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = "" _lowerCamelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(__A ) _lowerCamelCase : str = False out_string += self.sp_model.decode(__A ) return out_string def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self : Optional[Any],__A : str,__A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : List[Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__A ) elif not os.path.isfile(self.vocab_file ): with open(__A,"wb" ) as fi: _lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def lowerCamelCase_ ( self : Optional[int],__A : Union[str, List[str]],__A : Union[str, bool] = False ): if isinstance(__A,__A ): _lowerCamelCase : List[Any] = self.preprocess_text(__A ) _lowerCamelCase : Optional[Any] = self.sp_model.encode(__A ) else: _lowerCamelCase : List[str] = [self.preprocess_text(__A ) for t in text] _lowerCamelCase : int = self.sp_model.encode(__A ) if return_tensors is True or return_tensors == "pt": _lowerCamelCase : str = torch.tensor(__A ) return token_ids def lowerCamelCase_ ( self : List[Any],__A : Union[int, List[int]] ): return self.sp_model.decode(__A ) def lowerCamelCase_ ( self : Optional[int],__A : "Conversation" ): _lowerCamelCase : Any = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] _lowerCamelCase : Tuple = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(__A ) + f'{self.bos_token}Bot:' ) return self.encode(text=__A )
11
1
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( _lowerCAmelCase : float = 0.1 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowerCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : str = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Iterable[int] ): _lowerCamelCase : Node | None = None for i in sorted(__A,reverse=__A ): _lowerCamelCase : Dict = Node(__A,self.head ) def __iter__( self : str ): _lowerCamelCase : Dict = self.head while node: yield node.data _lowerCamelCase : Optional[Any] = node.next_node def __len__( self : str ): return sum(1 for _ in self ) def __str__( self : str ): return " -> ".join([str(__A ) for node in self] ) def A_ ( _lowerCAmelCase : SortedLinkedList , _lowerCAmelCase : SortedLinkedList ): """simple docstring""" return SortedLinkedList(list(_lowerCAmelCase ) + list(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Any = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['DeiTFeatureExtractor'] UpperCAmelCase_ : Any = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCAmelCase_ : Tuple = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" while a != 0: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = b % a, a return b def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if gcd(_lowerCAmelCase , _lowerCAmelCase ) != 1: _lowerCamelCase : List[Any] = F'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = 1, 0, a _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = 0, 1, m while va != 0: _lowerCamelCase : str = ua // va _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
11
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Union[str, Any],__A : Optional[int]=1_3,__A : Optional[Any]=7,__A : int=True,__A : Any=True,__A : Dict=True,__A : List[Any]=True,__A : Optional[Any]=9_9,__A : List[str]=3_2,__A : int=5,__A : str=4,__A : int=3_7,__A : Optional[Any]="gelu",__A : Union[str, Any]=0.1,__A : str=0.1,__A : Any=5_1_2,__A : Any=1_6,__A : Optional[int]=2,__A : int=0.02,__A : Optional[int]=4,): _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : str = use_attention_mask _lowerCamelCase : str = use_token_type_ids _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Any = None if self.use_token_type_ids: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = FlaxAlbertModelTester(self ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained("albert-base-v2" ) _lowerCamelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _lowerCamelCase : int = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A )[0] _lowerCamelCase : Dict = (1, 1_1, 7_6_8) self.assertEqual(output.shape,__A ) _lowerCamelCase : Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4],__A,atol=1e-4 ) )
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: _lowerCamelCase : Tuple = [int(_lowerCAmelCase ) for i in num_string] _lowerCamelCase : Optional[Any] = 1 for i in range(0 , len(_lowerCAmelCase ) ): total *= numbers[i] _lowerCamelCase : Optional[Any] = str(_lowerCAmelCase ) steps += 1 return steps def A_ ( _lowerCAmelCase : int ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : List[Any] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: _lowerCamelCase : Any = [int(_lowerCAmelCase ) for i in num_string] _lowerCamelCase : List[str] = 0 for i in range(0 , len(_lowerCAmelCase ) ): total += numbers[i] _lowerCamelCase : List[str] = str(_lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
11
'''simple docstring''' from math import sqrt def A_ ( _lowerCAmelCase : int = 1000000 ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : int = 0 _lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCAmelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCAmelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCAmelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCAmelCase , default=0 , help="cuda_id." , ) _lowerCamelCase : Union[str, Any] = parser.parse_args() return args def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not len(_lowerCAmelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) _lowerCamelCase , _lowerCamelCase : Tuple = imgs[0].size _lowerCamelCase : List[str] = Image.new("RGB" , size=(cols * w, rows * h) ) _lowerCamelCase , _lowerCamelCase : List[Any] = grid.size for i, img in enumerate(_lowerCAmelCase ): grid.paste(_lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="robotic cat with wings" , _lowerCAmelCase : int=7.5 , _lowerCAmelCase : Optional[Any]=50 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Dict=42 , ): """simple docstring""" _lowerCamelCase : Optional[int] = torch.Generator(pipeline.device ).manual_seed(_lowerCAmelCase ) _lowerCamelCase : List[Any] = pipeline( _lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , ).images _lowerCamelCase : List[str] = int(math.sqrt(_lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = image_grid(_lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCAmelCase_ : Any = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') UpperCAmelCase_ : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') UpperCAmelCase_ : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') UpperCAmelCase_ : Tuple = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') UpperCAmelCase_ : Optional[int] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase_ : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): UpperCAmelCase_ : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: UpperCAmelCase_ : Optional[int] = unet.to(torch.device('cuda', args.cuda_id)) UpperCAmelCase_ : Any = pipeline.to(unet.device) UpperCAmelCase_, UpperCAmelCase_ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) UpperCAmelCase_ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
11
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _lowerCamelCase : Tuple = False if num < 0: _lowerCamelCase : List[Any] = True _lowerCamelCase : int = -num _lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
11
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-bert' UpperCAmelCase_ : List[Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') UpperCAmelCase_ : str = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Tuple = cached_file(__A,__A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__A,__A ) ) ) with open(os.path.join(__A,"refs","main" ) ) as f: _lowerCamelCase : Tuple = f.read() self.assertEqual(__A,os.path.join(__A,"snapshots",__A,__A ) ) self.assertTrue(os.path.isfile(__A ) ) # File is cached at the same place the second time. _lowerCamelCase : Tuple = cached_file(__A,__A ) self.assertEqual(__A,__A ) # Using a specific revision to test the full commit hash. _lowerCamelCase : List[str] = cached_file(__A,__A,revision="9b8c223" ) self.assertEqual(__A,os.path.join(__A,"snapshots",__A,__A ) ) def lowerCamelCase_ ( self : List[str] ): with self.assertRaisesRegex(__A,"is not a valid model identifier" ): _lowerCamelCase : Optional[int] = cached_file("tiny-random-bert",__A ) with self.assertRaisesRegex(__A,"is not a valid git identifier" ): _lowerCamelCase : Union[str, Any] = cached_file(__A,__A,revision="aaaa" ) with self.assertRaisesRegex(__A,"does not appear to have a file named" ): _lowerCamelCase : Tuple = cached_file(__A,"conf" ) def lowerCamelCase_ ( self : Dict ): with self.assertRaisesRegex(__A,"does not appear to have a file named" ): _lowerCamelCase : List[Any] = cached_file(__A,"conf" ) with open(os.path.join(__A,"refs","main" ) ) as f: _lowerCamelCase : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(__A,".no_exist",__A,"conf" ) ) ) _lowerCamelCase : Dict = cached_file(__A,"conf",_raise_exceptions_for_missing_entries=__A ) self.assertIsNone(__A ) _lowerCamelCase : List[str] = cached_file(__A,"conf",local_files_only=__A,_raise_exceptions_for_missing_entries=__A ) self.assertIsNone(__A ) _lowerCamelCase : Optional[Any] = mock.Mock() _lowerCamelCase : List[Any] = 5_0_0 _lowerCamelCase : List[Any] = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : Union[str, Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request",return_value=__A ) as mock_head: _lowerCamelCase : int = cached_file(__A,"conf",_raise_exceptions_for_connection_errors=__A ) self.assertIsNone(__A ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self : Tuple ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",__A ) ) def lowerCamelCase_ ( self : Tuple ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__A,"is not a valid model identifier" ): get_file_from_repo("bert-base-case",__A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__A,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased",__A,revision="ahaha" ) _lowerCamelCase : Tuple = get_file_from_repo("bert-base-cased",__A ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : Any = json.loads(open(__A,"r" ).read() ) self.assertEqual(config["hidden_size"],7_6_8 ) def lowerCamelCase_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : str = Path(__A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(__A,"a.txt" ),str(__A ) ) self.assertIsNone(get_file_from_repo(__A,"b.txt" ) )
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Dict = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : int = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Optional[int] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase_ : str = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase_ : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase_ : int = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase_ : str = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase_ : Tuple = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModel) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ : int = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ : Any = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ : Any = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Dict = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class UpperCAmelCase__ ( _BaseAutoModelClass ): lowerCAmelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
11
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCAmelCase_ : Tuple = get_logger() UpperCAmelCase_ : Optional[dict] = None class UpperCAmelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Tuple,__A : Optional[Any]=None,__A : Optional[Any]=None,**__A : Optional[int] ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A,__A ): raise ValueError( f'Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) _lowerCamelCase : List[str] = device if isinstance(__A,__A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCamelCase : Tuple = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) _lowerCamelCase : Optional[int] = str(jax.devices()[0] ) _lowerCamelCase : Tuple = jnp_array_kwargs @staticmethod def lowerCamelCase_ ( ): import jax return {str(__A ): device for device in jax.devices()} def lowerCamelCase_ ( self : Union[str, Any],__A : str ): import jax import jax.numpy as jnp if isinstance(__A,__A ) and column: if all( isinstance(__A,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A,axis=0 ) return column def lowerCamelCase_ ( self : Dict,__A : Dict ): import jax import jax.numpy as jnp if isinstance(__A,(str, bytes, type(__A )) ): return value elif isinstance(__A,(np.character, np.ndarray) ) and np.issubdtype(value.dtype,np.character ): return value.tolist() _lowerCamelCase : List[Any] = {} if isinstance(__A,(np.number, np.ndarray) ) and np.issubdtype(value.dtype,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCamelCase : Union[str, Any] = {"dtype": jnp.intaa} else: _lowerCamelCase : Optional[Any] = {"dtype": jnp.intaa} elif isinstance(__A,(np.number, np.ndarray) ) and np.issubdtype(value.dtype,np.floating ): _lowerCamelCase : List[Any] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : int = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCamelCase : str = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A,**{**default_dtype, **self.jnp_array_kwargs} ) def lowerCamelCase_ ( self : Tuple,__A : Optional[int] ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A,"__array__" ) and not isinstance(__A,jax.Array ): _lowerCamelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A,(list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def lowerCamelCase_ ( self : Tuple,__A : dict ): return map_nested(self._recursive_tensorize,__A,map_list=__A ) def lowerCamelCase_ ( self : Union[str, Any],__A : pa.Table ): _lowerCamelCase : Dict = self.numpy_arrow_extractor().extract_row(__A ) _lowerCamelCase : str = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def lowerCamelCase_ ( self : Any,__A : pa.Table ): _lowerCamelCase : Optional[int] = self.numpy_arrow_extractor().extract_column(__A ) _lowerCamelCase : Dict = self.python_features_decoder.decode_column(__A,pa_table.column_names[0] ) _lowerCamelCase : Optional[Any] = self.recursive_tensorize(__A ) _lowerCamelCase : Tuple = self._consolidate(__A ) return column def lowerCamelCase_ ( self : Optional[int],__A : pa.Table ): _lowerCamelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(__A ) _lowerCamelCase : Dict = self.python_features_decoder.decode_batch(__A ) _lowerCamelCase : int = self.recursive_tensorize(__A ) for column_name in batch: _lowerCamelCase : Optional[int] = self._consolidate(batch[column_name] ) return batch
11
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Union[str, Any],__A : Dict,__A : List[str]=1_3,__A : Any=7,__A : str=True,__A : Optional[int]=True,__A : Optional[Any]=True,__A : Any=True,__A : List[str]=9_9,__A : str=3_2,__A : List[str]=5,__A : Optional[Any]=4,__A : Any=3_7,__A : Optional[Any]="gelu",__A : List[Any]=0.1,__A : Any=0.1,__A : Dict=5_1_2,__A : Tuple=1_6,__A : Tuple=2,__A : List[Any]=0.02,__A : Any=4,): _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : Union[str, Any] = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Union[str, Any] = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : List[Any] = num_choices def lowerCamelCase_ ( self : int ): _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[str] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Optional[int] = RobertaConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : int = True _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = True lowerCAmelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : List[str] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained("roberta-base",from_pt=__A ) _lowerCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A )
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] ): """simple docstring""" if not nums: return 0 _lowerCamelCase : List[Any] = nums[0] _lowerCamelCase : Tuple = 0 for num in nums[1:]: _lowerCamelCase , _lowerCamelCase : Optional[int] = ( max_excluding + num, max(_lowerCAmelCase , _lowerCAmelCase ), ) return max(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase__ : def __init__( self : Optional[int],__A : Optional[Any],__A : Any=1_3,__A : int=7,__A : Any=True,__A : Optional[Any]=True,__A : Any=True,__A : Any=True,__A : Tuple=9_9,__A : Optional[int]=3_2,__A : Any=2,__A : str=4,__A : Optional[Any]=3_7,__A : int="gelu",__A : List[str]=0.1,__A : List[Any]=0.1,__A : str=5_1_2,__A : str=1_6,__A : Any=2,__A : int=0.02,__A : Union[str, Any]=3,__A : Tuple=4,__A : str=None,__A : str=0,): _lowerCamelCase : Dict = parent _lowerCamelCase : str = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Optional[Any] = use_input_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Any = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : List[Any] = scope _lowerCamelCase : Optional[int] = projection_dim def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Dict = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) _lowerCamelCase : Tuple = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size],self.type_sequence_label_size ) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size],self.num_choices ) _lowerCamelCase : Tuple = BertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=__A,initializer_range=self.initializer_range,) _lowerCamelCase : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : List[str],__A : Any,__A : int,__A : Any,__A : Dict,__A : int,__A : Tuple,__A : Union[str, Any] ): _lowerCamelCase : Tuple = TFDPRContextEncoder(config=__A ) _lowerCamelCase : Any = model(__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Dict = model(__A,token_type_ids=__A ) _lowerCamelCase : Any = model(__A ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self : Dict,__A : Union[str, Any],__A : List[str],__A : Any,__A : Optional[Any],__A : Any,__A : str,__A : Tuple ): _lowerCamelCase : Any = TFDPRQuestionEncoder(config=__A ) _lowerCamelCase : Optional[Any] = model(__A,attention_mask=__A,token_type_ids=__A ) _lowerCamelCase : Tuple = model(__A,token_type_ids=__A ) _lowerCamelCase : List[Any] = model(__A ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self : int,__A : Optional[Any],__A : Tuple,__A : Optional[Any],__A : Optional[Any],__A : Any,__A : Optional[Any],__A : Any ): _lowerCamelCase : Optional[int] = TFDPRReader(config=__A ) _lowerCamelCase : int = model(__A,attention_mask=__A ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape,(self.batch_size,) ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[int] = config_and_inputs _lowerCamelCase : Optional[Any] = {"input_ids": input_ids} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase_ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Dict = TFDPRModelTester(self ) _lowerCamelCase : Any = ConfigTester(self,config_class=__A,hidden_size=3_7 ) def lowerCamelCase_ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__A ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__A ) @slow def lowerCamelCase_ ( self : Any ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = TFDPRQuestionEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = TFDPRReader.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): _lowerCamelCase : int = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _lowerCamelCase : Optional[int] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] _lowerCamelCase : Optional[Any] = model(__A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowerCamelCase : Tuple = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy(),expected_slice.numpy(),atol=1e-4 ) )
11
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
11
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase_ : Tuple = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase__ : def __init__( self : Tuple,__A : List[str],__A : Dict=1_6,__A : Tuple=1_3,__A : Any=7,__A : Tuple=1_4,__A : Optional[Any]=1_0,__A : int=1_9,__A : int=5,__A : Union[str, Any]=4,__A : Optional[int]=True,__A : List[Any]=1_6,__A : Optional[Any]=2,__A : Optional[int]=4,__A : Union[str, Any]=4,__A : List[Any]="gelu",__A : Union[str, Any]=0.1,__A : Any=0.1,__A : List[str]=[1, 2, 3, 4, 5],__A : Tuple=2_5,__A : List[Any]=5,): _lowerCamelCase : Optional[int] = d_model _lowerCamelCase : List[str] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = prediction_length _lowerCamelCase : Optional[Any] = context_length _lowerCamelCase : Tuple = cardinality _lowerCamelCase : Any = num_time_features _lowerCamelCase : str = lags_sequence _lowerCamelCase : List[Any] = embedding_dimension _lowerCamelCase : Any = is_training _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = context_length _lowerCamelCase : Union[str, Any] = prediction_length + label_length _lowerCamelCase : str = label_length _lowerCamelCase : List[Any] = moving_average _lowerCamelCase : Optional[Any] = autocorrelation_factor def lowerCamelCase_ ( self : Tuple ): return AutoformerConfig( d_model=self.d_model,encoder_layers=self.num_hidden_layers,decoder_layers=self.num_hidden_layers,encoder_attention_heads=self.num_attention_heads,decoder_attention_heads=self.num_attention_heads,encoder_ffn_dim=self.intermediate_size,decoder_ffn_dim=self.intermediate_size,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,prediction_length=self.prediction_length,context_length=self.context_length,label_length=self.label_length,lags_sequence=self.lags_sequence,num_time_features=self.num_time_features,num_static_categorical_features=1,cardinality=[self.cardinality],embedding_dimension=[self.embedding_dimension],moving_average=self.moving_average,) def lowerCamelCase_ ( self : Optional[Any],__A : int ): _lowerCamelCase : List[str] = config.context_length + max(config.lags_sequence ) _lowerCamelCase : str = ids_tensor([self.batch_size, 1],config.cardinality[0] ) _lowerCamelCase : Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowerCamelCase : int = floats_tensor([self.batch_size, _past_length] ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowerCamelCase : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowerCamelCase : List[str] = floats_tensor([self.batch_size, config.prediction_length] ) _lowerCamelCase : Optional[int] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowerCamelCase_ ( self : str ): _lowerCamelCase : Union[str, Any] = self.get_config() _lowerCamelCase : Union[str, Any] = self.prepare_autoformer_inputs_dict(__A ) return config, inputs_dict def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self : str,__A : Any,__A : Union[str, Any] ): _lowerCamelCase : Any = AutoformerModel(config=__A ).to(__A ).eval() _lowerCamelCase : Optional[Any] = model(**__A ) _lowerCamelCase : Optional[Any] = outputs.encoder_last_hidden_state _lowerCamelCase : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] = model.get_encoder() encoder.save_pretrained(__A ) _lowerCamelCase : List[Any] = AutoformerEncoder.from_pretrained(__A ).to(__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = model.create_network_inputs(**__A ) _lowerCamelCase , _lowerCamelCase : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowerCamelCase : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]),dim=-1,) _lowerCamelCase : Tuple = encoder(inputs_embeds=__A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _lowerCamelCase : List[str] = ( torch.mean(transformer_inputs[:, : config.context_length, ...],dim=1 ) .unsqueeze(1 ) .repeat(1,config.prediction_length,1 ) ) _lowerCamelCase : Union[str, Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]],device=enc_input.device,) _lowerCamelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros),dim=1 ), feature[:, config.context_length - config.label_length :, ...], ),dim=-1,) _lowerCamelCase : Tuple = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean),dim=1 ), feature[:, config.context_length - config.label_length :, ...], ),dim=-1,) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : int = model.get_decoder() decoder.save_pretrained(__A ) _lowerCamelCase : Optional[Any] = AutoformerDecoder.from_pretrained(__A ).to(__A ) _lowerCamelCase : List[Any] = decoder( trend=__A,inputs_embeds=__A,encoder_hidden_states=__A,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase__ ( A , A , unittest.TestCase ): lowerCAmelCase_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase_ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase_ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = AutoformerModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self,config_class=__A,has_text_modality=__A ) def lowerCamelCase_ ( self : int ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) _lowerCamelCase , _lowerCamelCase : str = model_class.from_pretrained(__A,output_loading_info=__A ) self.assertEqual(info["missing_keys"],[] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowerCamelCase_ ( self : List[str] ): pass def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = inspect.signature(getattr(__A,"forward" ) ) # The main input is the name of the argument after `self` _lowerCamelCase : int = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name,__A ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(__A ) _lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : str = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__A )],__A ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = getattr(self.model_tester,"seq_length",__A ) _lowerCamelCase : List[str] = getattr(self.model_tester,"decoder_seq_length",__A ) _lowerCamelCase : List[str] = getattr(self.model_tester,"encoder_seq_length",__A ) _lowerCamelCase : Dict = getattr(self.model_tester,"d_model",__A ) _lowerCamelCase : List[str] = getattr(self.model_tester,"num_attention_heads",__A ) _lowerCamelCase : Optional[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True _lowerCamelCase : Any = False _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ),self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : List[Any] = True _lowerCamelCase : Any = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(__A,__A ) ) _lowerCamelCase : int = outputs.encoder_attentions self.assertEqual(len(__A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads, encoder_seq_length, dim],) _lowerCamelCase : str = len(__A ) _lowerCamelCase : Optional[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__A,__A ) # decoder attentions _lowerCamelCase : Optional[Any] = outputs.decoder_attentions self.assertIsInstance(__A,(list, tuple) ) self.assertEqual(len(__A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads, decoder_seq_length, dim],) # cross attentions _lowerCamelCase : int = outputs.cross_attentions self.assertIsInstance(__A,(list, tuple) ) self.assertEqual(len(__A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads, decoder_seq_length, dim],) # Check attention is always last and order is fine _lowerCamelCase : Dict = True _lowerCamelCase : Union[str, Any] = True _lowerCamelCase : List[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(__A,__A ) ) self.assertEqual(out_len + 2,len(__A ) ) _lowerCamelCase : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ),self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads, encoder_seq_length, dim],) @is_flaky() def lowerCamelCase_ ( self : Optional[int] ): super().test_retain_grad_hidden_states_attentions() def A_ ( _lowerCAmelCase : List[str]="train-batch.pt" ): """simple docstring""" _lowerCamelCase : Dict = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=_lowerCAmelCase , repo_type="dataset" ) _lowerCamelCase : Optional[int] = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) return batch @require_torch @slow class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Dict = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__A ) _lowerCamelCase : Tuple = prepare_batch() with torch.no_grad(): _lowerCamelCase : List[Any] = model( past_values=batch["past_values"],past_time_features=batch["past_time_features"],past_observed_mask=batch["past_observed_mask"],static_categorical_features=batch["static_categorical_features"],future_values=batch["future_values"],future_time_features=batch["future_time_features"],)[0] _lowerCamelCase : List[Any] = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : List[str] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]],device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3],__A,atol=__A ) ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__A ) _lowerCamelCase : Dict = prepare_batch("val-batch.pt" ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model( past_values=batch["past_values"],past_time_features=batch["past_time_features"],past_observed_mask=batch["past_observed_mask"],static_categorical_features=batch["static_categorical_features"],).encoder_last_hidden_state _lowerCamelCase : Optional[int] = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape,__A ) _lowerCamelCase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]],device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3],__A,atol=__A ) ) def lowerCamelCase_ ( self : Dict ): _lowerCamelCase : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__A ) _lowerCamelCase : Any = prepare_batch("val-batch.pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model.generate( static_categorical_features=batch["static_categorical_features"],past_time_features=batch["past_time_features"],past_values=batch["past_values"],future_time_features=batch["future_time_features"],past_observed_mask=batch["past_observed_mask"],) _lowerCamelCase : Optional[Any] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape,__A ) _lowerCamelCase : Any = torch.tensor([3130.6763, 4056.5293, 7053.0786],device=__A ) _lowerCamelCase : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:],__A,rtol=1e-1 ) )
11
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = torch.load(_lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): _lowerCamelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights _lowerCamelCase : Optional[Any] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCamelCase : Optional[Any] = sd.pop(_lowerCAmelCase ) _lowerCamelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCamelCase : Optional[Any] = sd[key] # We split QKV in separate Q,K,V _lowerCamelCase : int = key.replace(".qkv_proj." , ".q_proj." ) _lowerCamelCase : List[Any] = key.replace(".qkv_proj." , ".k_proj." ) _lowerCamelCase : Dict = key.replace(".qkv_proj." , ".v_proj." ) _lowerCamelCase : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) _lowerCamelCase : str = q _lowerCamelCase : Dict = k _lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: _lowerCamelCase : str = OPTConfig.from_pretrained(_lowerCAmelCase ) else: _lowerCamelCase : Any = OPTConfig() _lowerCamelCase : Optional[int] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCAmelCase_ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Tuple = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ['YolosFeatureExtractor'] UpperCAmelCase_ : int = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if "img_encoder.pos_embed" in name: _lowerCamelCase : List[str] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: _lowerCamelCase : Dict = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: _lowerCamelCase : Optional[int] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: _lowerCamelCase : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: _lowerCamelCase : List[Any] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: _lowerCamelCase : str = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: _lowerCamelCase : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: _lowerCamelCase : Optional[int] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: _lowerCamelCase : Dict = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: _lowerCamelCase : List[str] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: _lowerCamelCase : Optional[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: _lowerCamelCase : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: _lowerCamelCase : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowerCamelCase : Optional[int] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowerCamelCase : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowerCamelCase : Tuple = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: _lowerCamelCase : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: _lowerCamelCase : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: _lowerCamelCase : int = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: _lowerCamelCase : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: _lowerCamelCase : Optional[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: _lowerCamelCase : str = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCamelCase : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Any = key.split("." ) _lowerCamelCase , _lowerCamelCase : List[str] = int(key_split[2] ), int(key_split[4] ) _lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : int = val[dim : dim * 2, :] _lowerCamelCase : str = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : str = val[dim : dim * 2] _lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _lowerCamelCase : Optional[Any] = key.split("." ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Tuple = config.text_config.hidden_size if "weight" in key: _lowerCamelCase : List[Any] = val[:dim, :] _lowerCamelCase : str = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[int] = val[-dim:, :] else: _lowerCamelCase : str = val[:dim] _lowerCamelCase : Optional[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[int] = val[-dim:] else: _lowerCamelCase : int = rename_key(_lowerCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _lowerCamelCase : Any = val.squeeze_() else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str="groupvit-gcc-yfcc" , _lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : List[str] = GroupViTConfig() _lowerCamelCase : Union[str, Any] = GroupViTModel(_lowerCAmelCase ).eval() _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location="cpu" )["model"] _lowerCamelCase : Union[str, Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Tuple = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_lowerCAmelCase ) == 0) # verify result _lowerCamelCase : List[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = processor(text=["a photo of a cat", "a photo of a dog"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) with torch.no_grad(): _lowerCamelCase : List[str] = model(**_lowerCAmelCase ) if model_name == "groupvit-gcc-yfcc": _lowerCamelCase : List[Any] = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": _lowerCamelCase : Optional[Any] = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _lowerCAmelCase , atol=1E-3 ) processor.save_pretrained(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print("Successfully saved processor and model to" , _lowerCAmelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase , organization="nielsr" ) model.push_to_hub(_lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
11
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'umt5' lowerCAmelCase_ = ['past_key_values'] def __init__( self : int,__A : List[Any]=2_5_0_1_1_2,__A : Optional[int]=5_1_2,__A : Tuple=6_4,__A : Optional[int]=1_0_2_4,__A : Optional[Any]=8,__A : Tuple=None,__A : int=6,__A : List[str]=3_2,__A : List[Any]=1_2_8,__A : Union[str, Any]=0.1,__A : Optional[int]=1e-6,__A : List[Any]=1.0,__A : Dict="gated-gelu",__A : List[Any]=True,__A : Dict=True,__A : List[Any]="T5Tokenizer",__A : int=True,__A : Optional[Any]=0,__A : Any=1,__A : Optional[Any]=0,**__A : Tuple,): super().__init__( is_encoder_decoder=__A,tokenizer_class=__A,tie_word_embeddings=__A,pad_token_id=__A,eos_token_id=__A,decoder_start_token_id=__A,**__A,) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Tuple = d_model _lowerCamelCase : Any = d_kv _lowerCamelCase : Dict = d_ff _lowerCamelCase : Optional[int] = num_layers _lowerCamelCase : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase : List[Any] = num_heads _lowerCamelCase : Optional[int] = relative_attention_num_buckets _lowerCamelCase : Tuple = relative_attention_max_distance _lowerCamelCase : List[str] = dropout_rate _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : Optional[int] = initializer_factor _lowerCamelCase : Optional[int] = feed_forward_proj _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : int = self.feed_forward_proj.split("-" ) _lowerCamelCase : Optional[int] = act_info[-1] _lowerCamelCase : List[Any] = act_info[0] == "gated" if len(__A ) > 1 and act_info[0] != "gated" or len(__A ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": _lowerCamelCase : str = "gelu_new" @property def lowerCamelCase_ ( self : int ): return self.d_model @property def lowerCamelCase_ ( self : int ): return self.num_heads @property def lowerCamelCase_ ( self : Optional[int] ): return self.num_layers class UpperCAmelCase__ ( A ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : List[str] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _lowerCamelCase : Optional[Any] = "past_encoder_sequence + sequence" _lowerCamelCase : Union[str, Any] = {0: "batch"} _lowerCamelCase : List[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "decoder_sequence"} _lowerCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A,direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCamelCase_ ( self : str ): return 1_3 @property def lowerCamelCase_ ( self : int ): return 5e-4
11
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
'''simple docstring''' import math def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : float = 1 / 12345 ): """simple docstring""" _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = 3 while True: _lowerCamelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): _lowerCamelCase : Any = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
11
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any],__A : int,__A : int ): _lowerCamelCase : Dict = jnp.ones((batch_size, length) ) / length return scores def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = None _lowerCamelCase : Any = 2_0 _lowerCamelCase : Optional[int] = self._get_uniform_logits(batch_size=2,length=__A ) # tweak scores to not be uniform anymore _lowerCamelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCamelCase : str = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCamelCase : Union[str, Any] = jax.nn.softmax(__A,axis=-1 ) _lowerCamelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCamelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__A,scores.copy(),cur_len=__A ),axis=-1 ) _lowerCamelCase : int = jax.nn.softmax(temp_dist_warper_smoother(__A,scores.copy(),cur_len=__A ),axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :],warped_prob_sharp[0, :],atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :],warped_prob_smooth[0, :],atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(),warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(),warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(),warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(),warped_prob_smooth[1, :].min() ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = 1_0 _lowerCamelCase : List[Any] = 2 # create ramp distribution _lowerCamelCase : int = np.broadcast_to(np.arange(__A )[None, :],(batch_size, vocab_size) ).copy() _lowerCamelCase : str = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCamelCase : List[str] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : Dict = top_k_warp(__A,__A,cur_len=__A ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(),7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(),2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCamelCase : List[Any] = 5 _lowerCamelCase : List[str] = FlaxTopKLogitsWarper(top_k=1,filter_value=0.0,min_tokens_to_keep=3 ) _lowerCamelCase : str = np.broadcast_to(np.arange(__A )[None, :],(batch_size, length) ).copy() _lowerCamelCase : str = top_k_warp_safety_check(__A,__A,cur_len=__A ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(),[2, 2] ) def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : List[Any] = None _lowerCamelCase : int = 1_0 _lowerCamelCase : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCamelCase : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _lowerCamelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) _lowerCamelCase : List[Any] = np.exp(top_p_warp(__A,__A,cur_len=__A ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCamelCase : Optional[int] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # check edge cases with negative and extreme logits _lowerCamelCase : int = np.broadcast_to(np.arange(__A )[None, :],(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCamelCase : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.9,min_tokens_to_keep=2,filter_value=0.0 ) _lowerCamelCase : Optional[Any] = top_p_warp(__A,__A,cur_len=__A ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(),[3, 2] ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Union[str, Any] = 2_0 _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Any = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) # check that min length is applied at length 5 _lowerCamelCase : Dict = ids_tensor((batch_size, 2_0),vocab_size=2_0 ) _lowerCamelCase : int = 5 _lowerCamelCase : List[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = min_dist_processor(__A,__A,cur_len=__A ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(),4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _lowerCamelCase : List[str] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Any = 1_5 _lowerCamelCase : List[str] = min_dist_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : Union[str, Any] ): _lowerCamelCase : List[Any] = 2_0 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : Any = 0 _lowerCamelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) # check that all scores are -inf except the bos_token_id score _lowerCamelCase : str = ids_tensor((batch_size, 1),vocab_size=2_0 ) _lowerCamelCase : List[str] = 1 _lowerCamelCase : Union[str, Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = logits_processor(__A,__A,cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(),4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Dict = logits_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : Any ): _lowerCamelCase : str = 2_0 _lowerCamelCase : List[str] = 4 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Any = 5 _lowerCamelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCamelCase : Optional[Any] = ids_tensor((batch_size, 4),vocab_size=2_0 ) _lowerCamelCase : Any = 4 _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Tuple = logits_processor(__A,__A,cur_len=__A ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(),4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCamelCase : Tuple = 3 _lowerCamelCase : Optional[int] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Any = logits_processor(__A,__A,cur_len=__A ) self.assertFalse(jnp.isinf(__A ).any() ) def lowerCamelCase_ ( self : int ): _lowerCamelCase : List[str] = 4 _lowerCamelCase : Any = 1_0 _lowerCamelCase : int = 1_5 _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : str = 1_5 # dummy input_ids and scores _lowerCamelCase : Tuple = ids_tensor((batch_size, sequence_length),__A ) _lowerCamelCase : Tuple = input_ids.copy() _lowerCamelCase : Dict = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors _lowerCamelCase : List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) _lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) _lowerCamelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) _lowerCamelCase : Tuple = 1_0 # no processor list _lowerCamelCase : str = temp_dist_warp(__A,__A,cur_len=__A ) _lowerCamelCase : List[Any] = top_k_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Any = top_p_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Tuple = min_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Optional[int] = bos_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Union[str, Any] = eos_dist_proc(__A,__A,cur_len=__A ) # with processor list _lowerCamelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase : List[Any] = processor(__A,__A,cur_len=__A ) # scores should be equal self.assertTrue(jnp.allclose(__A,__A,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(),input_ids_comp.tolist() ) def lowerCamelCase_ ( self : Optional[int] ): _lowerCamelCase : Dict = 4 _lowerCamelCase : List[str] = 1_0 _lowerCamelCase : Any = 1_5 _lowerCamelCase : Dict = 2 _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Any = 1_5 # dummy input_ids and scores _lowerCamelCase : Optional[int] = ids_tensor((batch_size, sequence_length),__A ) _lowerCamelCase : Tuple = input_ids.copy() _lowerCamelCase : Optional[Any] = self._get_uniform_logits(__A,__A ) _lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors _lowerCamelCase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) _lowerCamelCase : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0,eos_token_id=__A ) _lowerCamelCase : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__A ) _lowerCamelCase : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=__A,eos_token_id=__A ) _lowerCamelCase : List[str] = 1_0 # no processor list def run_no_processor_list(__A : Tuple,__A : str,__A : List[Any] ): _lowerCamelCase : str = temp_dist_warp(__A,__A,cur_len=__A ) _lowerCamelCase : List[str] = top_k_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Any = top_p_warp(__A,__A,cur_len=__A ) _lowerCamelCase : Dict = min_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : Dict = bos_dist_proc(__A,__A,cur_len=__A ) _lowerCamelCase : int = eos_dist_proc(__A,__A,cur_len=__A ) return scores # with processor list def run_processor_list(__A : str,__A : int,__A : int ): _lowerCamelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase : List[str] = processor(__A,__A,cur_len=__A ) return scores _lowerCamelCase : str = jax.jit(__A ) _lowerCamelCase : Optional[Any] = jax.jit(__A ) _lowerCamelCase : Optional[Any] = jitted_run_no_processor_list(__A,__A,__A ) _lowerCamelCase : Any = jitted_run_processor_list(__A,__A,__A ) # scores should be equal self.assertTrue(jnp.allclose(__A,__A,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(),input_ids_comp.tolist() )
11
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase_ : str = random.Random() if is_torch_available(): import torch def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=None ): """simple docstring""" if rng is None: _lowerCamelCase : List[str] = global_rng _lowerCamelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int],__A : Tuple,__A : List[str]=7,__A : Any=4_0_0,__A : Tuple=2_0_0_0,__A : Union[str, Any]=1,__A : Union[str, Any]=0.0,__A : Union[str, Any]=1_6_0_0_0,__A : int=True,__A : Optional[int]=True,): _lowerCamelCase : List[str] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Dict = min_seq_length _lowerCamelCase : Optional[int] = max_seq_length _lowerCamelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : str = feature_size _lowerCamelCase : List[str] = padding_value _lowerCamelCase : List[str] = sampling_rate _lowerCamelCase : Optional[Any] = return_attention_mask _lowerCamelCase : Any = do_normalize def lowerCamelCase_ ( self : Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self : Any,__A : str=False,__A : Any=False ): def _flatten(__A : Union[str, Any] ): return list(itertools.chain(*__A ) ) if equal_length: _lowerCamelCase : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCamelCase : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: _lowerCamelCase : Optional[int] = [np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = ASTFeatureExtractor def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : List[str] = ASTFeatureExtractionTester(self ) def lowerCamelCase_ ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] _lowerCamelCase : str = [np.asarray(__A ) for speech_input in speech_inputs] # Test not batched input _lowerCamelCase : Any = feat_extract(speech_inputs[0],return_tensors="np" ).input_values _lowerCamelCase : List[Any] = feat_extract(np_speech_inputs[0],return_tensors="np" ).input_values self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test batched _lowerCamelCase : Dict = feat_extract(__A,padding=__A,return_tensors="np" ).input_values _lowerCamelCase : str = feat_extract(__A,padding=__A,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase : Dict = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCamelCase : int = np.asarray(__A ) _lowerCamelCase : Dict = feat_extract(__A,return_tensors="np" ).input_values _lowerCamelCase : Optional[int] = feat_extract(__A,return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__A,__A ): self.assertTrue(np.allclose(__A,__A,atol=1e-3 ) ) @require_torch def lowerCamelCase_ ( self : int ): import torch _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase : List[str] = np.random.rand(1_0_0 ).astype(np.floataa ) _lowerCamelCase : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : int = feature_extractor.pad([{"input_values": inputs}],return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCamelCase : Tuple = feature_extractor.pad([{"input_values": inputs}],return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase_ ( self : Optional[int],__A : Optional[int] ): from datasets import load_dataset _lowerCamelCase : Optional[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy","clean",split="validation" ) # automatic decoding with librispeech _lowerCamelCase : List[Any] = ds.sort("id" ).select(range(__A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase_ ( self : List[str] ): # fmt: off _lowerCamelCase : Optional[int] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _lowerCamelCase : Any = self._load_datasamples(1 ) _lowerCamelCase : int = ASTFeatureExtractor() _lowerCamelCase : str = feature_extractor(__A,return_tensors="pt" ).input_values self.assertEquals(input_values.shape,(1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0],__A,atol=1e-4 ) )
11
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : List[str] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } UpperCAmelCase_ : List[Any] = {'facebook/blenderbot-3B': 128} class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = BlenderbotTokenizer def __init__( self : Dict,__A : Optional[Any]=None,__A : List[str]=None,__A : Optional[Any]=None,__A : List[Any]="replace",__A : List[Any]="<s>",__A : str="</s>",__A : List[str]="</s>",__A : List[Any]="<s>",__A : Union[str, Any]="<unk>",__A : Optional[Any]="<pad>",__A : Dict="<mask>",__A : Any=False,__A : Tuple=True,**__A : Dict,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Optional[Any] = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Optional[Any] = pre_tok_class(**__A ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : List[Any] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : Optional[int] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : int = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Dict = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Union[str, Any] = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : Optional[Any],__A : List[Any] ): _lowerCamelCase : Any = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : List[str] = value def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : List[str] ): _lowerCamelCase : int = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,*__A : Union[str, Any],**__A : List[Any] ): _lowerCamelCase : Optional[int] = kwargs.get("is_split_into_words",__A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : Optional[int],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : "Conversation" ): _lowerCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__A ) _lowerCamelCase : List[Any] = " ".join(__A ) _lowerCamelCase : List[str] = self.encode(__A ) if len(__A ) > self.model_max_length: _lowerCamelCase : Tuple = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowerCamelCase , _lowerCamelCase : List[Any] = array[indexa], array[indexa] def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[int] = int(length / 2 ) for i in range(_lowerCAmelCase , low + middle ): comp_and_swap(_lowerCAmelCase , _lowerCAmelCase , i + middle , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) bitonic_merge(_lowerCAmelCase , low + middle , _lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" if length > 1: _lowerCamelCase : Optional[Any] = int(length / 2 ) bitonic_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 1 ) bitonic_sort(_lowerCAmelCase , low + middle , _lowerCAmelCase , 0 ) bitonic_merge(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
11
'''simple docstring''' def A_ ( _lowerCAmelCase : float ): """simple docstring""" return 10 - x * x def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ): """simple docstring""" if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) >= 0: raise ValueError("Wrong space!" ) _lowerCamelCase : List[str] = a while (b - a) >= 0.0_1: # Find middle point _lowerCamelCase : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(_lowerCAmelCase ) == 0.0: break # Decide the side to repeat the steps if equation(_lowerCAmelCase ) * equation(_lowerCAmelCase ) < 0: _lowerCamelCase : Union[str, Any] = c else: _lowerCamelCase : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
11
1
'''simple docstring''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = credit_card_number _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Optional[Any] = len(_lowerCAmelCase ) - 2 for i in range(_lowerCAmelCase , -1 , -2 ): # double the value of every second digit _lowerCamelCase : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _lowerCamelCase : Optional[int] = cc_number[:i] + str(_lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Any = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(_lowerCAmelCase ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(_lowerCAmelCase ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(_lowerCAmelCase ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
11
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
1
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCAmelCase : list , _lowerCAmelCase : int | None = None , _lowerCAmelCase : int | None = None ): """simple docstring""" if start is None: _lowerCamelCase : Optional[int] = 0 if end is None: _lowerCamelCase : List[str] = len(_lowerCAmelCase ) - 1 if start >= end: return _lowerCamelCase : List[str] = (start + end) // 2 slowsort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) slowsort(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) if sequence[end] < sequence[mid]: _lowerCamelCase , _lowerCamelCase : str = sequence[mid], sequence[end] slowsort(_lowerCAmelCase , _lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' import requests UpperCAmelCase_ : Optional[Any] = 'YOUR API KEY' def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str = giphy_api_key ): """simple docstring""" _lowerCamelCase : Optional[Any] = "+".join(query.split() ) _lowerCamelCase : Union[str, Any] = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' _lowerCamelCase : Union[str, Any] = requests.get(_lowerCAmelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
11
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : List[Any] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ : str = '▁' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = AlbertTokenizer def __init__( self : Dict,__A : str=None,__A : Union[str, Any]=None,__A : Union[str, Any]=True,__A : int=True,__A : List[Any]=False,__A : Any="[CLS]",__A : List[str]="[SEP]",__A : Tuple="<unk>",__A : Dict="[SEP]",__A : Dict="<pad>",__A : List[str]="[CLS]",__A : Any="[MASK]",**__A : Tuple,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCamelCase : Union[str, Any] = ( AddedToken(__A,lstrip=__A,rstrip=__A,normalized=__A ) if isinstance(__A,__A ) else mask_token ) super().__init__( __A,tokenizer_file=__A,do_lower_case=__A,remove_space=__A,keep_accents=__A,bos_token=__A,eos_token=__A,unk_token=__A,sep_token=__A,pad_token=__A,cls_token=__A,mask_token=__A,**__A,) _lowerCamelCase : Dict = do_lower_case _lowerCamelCase : List[str] = remove_space _lowerCamelCase : Any = keep_accents _lowerCamelCase : Tuple = vocab_file _lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : List[Any] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str,__A : str,__A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCamelCase : Union[str, Any] = os.path.join( __A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file,__A ) return (out_vocab_file,)
11
1