signature
stringlengths 29
44.1k
| implementation
stringlengths 0
85.2k
|
---|---|
def anglesep_meeus ( lon0 : float , lat0 : float , lon1 : float , lat1 : float , deg : bool = True ) -> float :
"""Parameters
lon0 : float or numpy . ndarray of float
longitude of first point
lat0 : float or numpy . ndarray of float
latitude of first point
lon1 : float or numpy . ndarray of float
longitude of second point
lat1 : float or numpy . ndarray of float
latitude of second point
deg : bool , optional
degrees input / output ( False : radians in / out )
Returns
sep _ rad : float or numpy . ndarray of float
angular separation
Meeus p . 109
from " Astronomical Algorithms " by Jean Meeus Ch . 16 p . 111 ( 16.5)
gives angular distance in degrees between two rightAscension , Declination
points in the sky . Neglecting atmospheric effects , of course .
Meeus haversine method is stable all the way to exactly 0 deg .
either the arrays must be the same size , or one of them must be a scalar"""
|
if deg :
lon0 = radians ( lon0 )
lat0 = radians ( lat0 )
lon1 = radians ( lon1 )
lat1 = radians ( lat1 )
sep_rad = 2 * arcsin ( sqrt ( haversine ( lat0 - lat1 ) + cos ( lat0 ) * cos ( lat1 ) * haversine ( lon0 - lon1 ) ) )
if deg :
return degrees ( sep_rad )
else :
return sep_rad
|
def create ( self , name , ** params ) :
"""Creates a new entity in this collection .
This function makes either one or two roundtrips to the
server , depending on the type of entities in this
collection , plus at most two more if
the ` ` autologin ` ` field of : func : ` connect ` is set to ` ` True ` ` .
: param name : The name of the entity to create .
: type name : ` ` string ` `
: param namespace : A namespace , as created by the : func : ` splunklib . binding . namespace `
function ( optional ) . You can also set ` ` owner ` ` , ` ` app ` ` , and
` ` sharing ` ` in ` ` params ` ` .
: type namespace : A : class : ` splunklib . data . Record ` object with keys ` ` owner ` ` , ` ` app ` ` ,
and ` ` sharing ` ` .
: param params : Additional entity - specific arguments ( optional ) .
: type params : ` ` dict ` `
: return : The new entity .
: rtype : A subclass of : class : ` Entity ` , chosen by : meth : ` Collection . self . item ` .
* * Example * * : :
import splunklib . client as client
s = client . connect ( . . . )
applications = s . apps
new _ app = applications . create ( " my _ fake _ app " )"""
|
if not isinstance ( name , basestring ) :
raise InvalidNameException ( "%s is not a valid name for an entity." % name )
if 'namespace' in params :
namespace = params . pop ( 'namespace' )
params [ 'owner' ] = namespace . owner
params [ 'app' ] = namespace . app
params [ 'sharing' ] = namespace . sharing
response = self . post ( name = name , ** params )
atom = _load_atom ( response , XNAME_ENTRY )
if atom is None : # This endpoint doesn ' t return the content of the new
# item . We have to go fetch it ourselves .
return self [ name ]
else :
entry = atom . entry
state = _parse_atom_entry ( entry )
entity = self . item ( self . service , self . _entity_path ( state ) , state = state )
return entity
|
def versatile_options ( ) :
"""return list of options that can be changed at any time ( not
only be initialized ) , however the list might not be entirely up
to date .
The string ' # v ' in the default value indicates a ' versatile '
option that can be changed any time ."""
|
return tuple ( sorted ( i [ 0 ] for i in list ( CMAOptions . defaults ( ) . items ( ) ) if i [ 1 ] . find ( ' #v ' ) > 0 ) )
|
def get_binding ( self , schema , data ) :
"""For a given schema , get a binding mediator providing links to the
RDF terms matching that schema ."""
|
schema = self . parent . get_schema ( schema )
return Binding ( schema , self . parent . resolver , data = data )
|
def getValue ( self ) :
"""Returns PromisedRequirement value"""
|
func = dill . loads ( self . _func )
return func ( * self . _args )
|
def random_line_data ( chars_per_line = 80 ) :
"""Function to create a line of a random string
Args :
chars _ per _ line : An integer that says how many characters to return
Returns :
A String"""
|
return '' . join ( __random . choice ( __string . ascii_letters ) for x in range ( chars_per_line ) )
|
def remove_all ( self , locator ) :
"""Removes all component references that match the specified locator .
: param locator : a locator to remove reference by .
: return : a list , containing all removed references ."""
|
components = [ ]
if locator == None :
return components
self . _lock . acquire ( )
try :
for reference in reversed ( self . _references ) :
if reference . match ( locator ) :
self . _references . remove ( reference )
components . append ( reference . get_component ( ) )
finally :
self . _lock . release ( )
return components
|
def getMonitorByName ( self , monitorFriendlyName ) :
"""Returns monitor status and alltimeuptimeratio for a MonitorFriendlyName ."""
|
url = self . baseUrl
url += "getMonitors?apiKey=%s" % self . apiKey
url += "&noJsonCallback=1&format=json"
success , response = self . requestApi ( url )
if success :
monitors = response . get ( 'monitors' ) . get ( 'monitor' )
for i in range ( len ( monitors ) ) :
monitor = monitors [ i ]
if monitor . get ( 'friendlyname' ) == monitorFriendlyName :
status = monitor . get ( 'status' )
alltimeuptimeratio = monitor . get ( 'alltimeuptimeratio' )
return status , alltimeuptimeratio
return None , None
|
def run_subprocess ( command , return_code = False , ** kwargs ) :
"""Run command using subprocess . Popen
Run command and wait for command to complete . If the return code was zero
then return , otherwise raise CalledProcessError .
By default , this will also add stdout = and stderr = subproces . PIPE
to the call to Popen to suppress printing to the terminal .
Parameters
command : list of str
Command to run as subprocess ( see subprocess . Popen documentation ) .
return _ code : bool
If True , the returncode will be returned , and no error checking
will be performed ( so this function should always return without
error ) .
* * kwargs : dict
Additional kwargs to pass to ` ` subprocess . Popen ` ` .
Returns
stdout : str
Stdout returned by the process .
stderr : str
Stderr returned by the process .
code : int
The command exit code . Only returned if ` ` return _ code ` ` is True ."""
|
# code adapted with permission from mne - python
use_kwargs = dict ( stderr = subprocess . PIPE , stdout = subprocess . PIPE )
use_kwargs . update ( kwargs )
p = subprocess . Popen ( command , ** use_kwargs )
output = p . communicate ( )
# communicate ( ) may return bytes , str , or None depending on the kwargs
# passed to Popen ( ) . Convert all to unicode str :
output = [ '' if s is None else s for s in output ]
output = [ s . decode ( 'utf-8' ) if isinstance ( s , bytes ) else s for s in output ]
output = tuple ( output )
if not return_code and p . returncode :
print ( output [ 0 ] )
print ( output [ 1 ] )
err_fun = subprocess . CalledProcessError . __init__
if 'output' in inspect . getargspec ( err_fun ) . args :
raise subprocess . CalledProcessError ( p . returncode , command , output )
else :
raise subprocess . CalledProcessError ( p . returncode , command )
if return_code :
output = output + ( p . returncode , )
return output
|
def script ( container , script_path , fail_nonzero = False , upload_dir = False , ** kwargs ) :
"""Runs a script inside a container , which is created with all its dependencies . The container is removed after it
has been run , whereas the dependencies are not destroyed . The output is printed to the console .
: param container : Container configuration name .
: param script _ path : Local path to the script file .
: param fail _ nonzero : Fail if the script returns with a nonzero exit code .
: param upload _ dir : Upload the entire parent directory of the script file to the remote .
: param kwargs : Additional keyword arguments to the run _ script action ."""
|
full_script_path = os . path . abspath ( script_path )
prefix , name = os . path . split ( full_script_path )
with temp_dir ( ) as remote_tmp :
if upload_dir :
prefix_path , prefix_name = os . path . split ( prefix )
remote_script = posixpath . join ( remote_tmp , prefix_name , name )
put ( prefix , remote_tmp , mirror_local_mode = True )
else :
remote_script = posixpath . join ( remote_tmp , name )
put ( script_path , remote_script , mirror_local_mode = True )
results = [ output . result for output in container_fabric ( ) . run_script ( container , script_path = remote_script , ** kwargs ) if o . action_type == ContainerUtilAction . SCRIPT ]
for res in results :
puts ( "Exit code: {0}" . format ( res [ 'exit_code' ] ) )
if res [ 'exit_code' ] == 0 or not fail_nonzero :
puts ( res [ 'log' ] )
else :
error ( res [ 'log' ] )
|
def match_replace_binary ( cls , ops , kwargs ) :
"""Similar to func : ` match _ replace ` , but for arbitrary length operations ,
such that each two pairs of subsequent operands are matched pairwise .
> > > A = wc ( " A " )
> > > class FilterDupes ( Operation ) :
. . . _ binary _ rules = {
. . . ' filter _ dupes ' : ( pattern _ head ( A , A ) , lambda A : A ) }
. . . simplifications = [ match _ replace _ binary , assoc ]
. . . _ neutral _ element = 0
> > > FilterDupes . create ( 1,2,3,4 ) # No duplicates
FilterDupes ( 1 , 2 , 3 , 4)
> > > FilterDupes . create ( 1,2,2,3,4 ) # Some duplicates
FilterDupes ( 1 , 2 , 3 , 4)
Note that this only works for * subsequent * duplicate entries :
> > > FilterDupes . create ( 1,2,3,2,4 ) # No * subsequent * duplicates
FilterDupes ( 1 , 2 , 3 , 2 , 4)
Any operation that uses binary reduction must be associative and define a
neutral element . The binary rules must be compatible with associativity ,
i . e . there is no specific order in which the rules are applied to pairs of
operands ."""
|
assert assoc in cls . simplifications , ( cls . __name__ + " must be associative to use match_replace_binary" )
assert hasattr ( cls , '_neutral_element' ) , ( cls . __name__ + " must define a neutral element to use " "match_replace_binary" )
fops = _match_replace_binary ( cls , list ( ops ) )
if len ( fops ) == 1 :
return fops [ 0 ]
elif len ( fops ) == 0 :
return cls . _neutral_element
else :
return fops , kwargs
|
def snap ( self , instruction ) :
"""Returns a new MayaDT object modified by the given instruction .
Powered by snaptime . See https : / / github . com / zartstrom / snaptime
for a complete documentation about the snaptime instructions ."""
|
return self . from_datetime ( snaptime . snap ( self . datetime ( ) , instruction ) )
|
def read ( self , size = None ) :
"""Return the next size number of bytes from the stream .
If size is not defined , return all bytes of the stream
up to EOF ."""
|
if size is None :
t = [ ]
while True :
buf = self . _read ( self . bufsize )
if not buf :
break
t . append ( buf )
buf = "" . join ( t )
else :
buf = self . _read ( size )
self . pos += len ( buf )
return buf
|
def get_slo_url ( self ) :
"""Gets the SLO URL .
: returns : An URL , the SLO endpoint of the IdP
: rtype : string"""
|
url = None
idp_data = self . __settings . get_idp_data ( )
if 'singleLogoutService' in idp_data . keys ( ) and 'url' in idp_data [ 'singleLogoutService' ] :
url = idp_data [ 'singleLogoutService' ] [ 'url' ]
return url
|
def SetValue ( self , Channel , Parameter , Buffer ) :
"""Returns a descriptive text of a given TPCANStatus error
code , in any desired language
Remarks :
Parameters can be present or not according with the kind
of Hardware ( PCAN Channel ) being used . If a parameter is not available ,
a PCAN _ ERROR _ ILLPARAMTYPE error will be returned .
Parameters :
Channel : A TPCANHandle representing a PCAN Channel
Parameter : The TPCANParameter parameter to set
Buffer : Buffer with the value to be set
BufferLength : Size in bytes of the buffer
Returns :
A TPCANStatus error code"""
|
try :
if Parameter == PCAN_LOG_LOCATION or Parameter == PCAN_LOG_TEXT or Parameter == PCAN_TRACE_LOCATION :
mybuffer = create_string_buffer ( 256 )
else :
mybuffer = c_int ( 0 )
mybuffer . value = Buffer
res = self . __m_dllBasic . CAN_SetValue ( Channel , Parameter , byref ( mybuffer ) , sizeof ( mybuffer ) )
return TPCANStatus ( res )
except :
logger . error ( "Exception on PCANBasic.SetValue" )
raise
|
def _is_visible ( cls , property_name ) :
"""private method to check visible object property to be visible"""
|
if isinstance ( property_name , list ) :
return [ cls . _is_visible ( p ) for p in property_name ]
if property_name . startswith ( '__' ) and property_name . endswith ( '__' ) :
return False
return property_name . startswith ( cls . STARTS_WITH ) and property_name . endswith ( cls . ENDS_WITH )
|
def status ( self , migration_rqst_id = "" , block_name = "" , dataset = "" , user = "" ) :
"""Interface to query status of a migration request
In this preference order of input parameters :
migration _ rqst _ id , block , dataset , user
( if multi parameters are provided , only the precedence order is followed )"""
|
try :
return self . dbsMigrate . listMigrationRequests ( migration_rqst_id , block_name , dataset , user )
except dbsException as de :
dbsExceptionHandler ( de . eCode , de . message , self . logger . exception , de . serverError )
except Exception as ex :
sError = "DBSMigrateModle/status. %s\n Exception trace: \n %s." % ( ex , traceback . format_exc ( ) )
if hasattr ( ex , 'status' ) and ex . status == 400 :
dbsExceptionHandler ( 'dbsException-invalid-input2' , str ( ex ) , self . logger . exception , sError )
else :
dbsExceptionHandler ( 'dbsException-server-error' , str ( ex ) , self . logger . exception , sError )
|
def node_label_absent ( name , node , ** kwargs ) :
'''Ensures that the named label is absent from the node .
name
The name of the label
node
The name of the node'''
|
ret = { 'name' : name , 'changes' : { } , 'result' : False , 'comment' : '' }
labels = __salt__ [ 'kubernetes.node_labels' ] ( node , ** kwargs )
if name not in labels :
ret [ 'result' ] = True if not __opts__ [ 'test' ] else None
ret [ 'comment' ] = 'The label does not exist'
return ret
if __opts__ [ 'test' ] :
ret [ 'comment' ] = 'The label is going to be deleted'
ret [ 'result' ] = None
return ret
__salt__ [ 'kubernetes.node_remove_label' ] ( node_name = node , label_name = name , ** kwargs )
ret [ 'result' ] = True
ret [ 'changes' ] = { 'kubernetes.node_label' : { 'new' : 'absent' , 'old' : 'present' } }
ret [ 'comment' ] = 'Label removed from node'
return ret
|
def windspeed ( self , t ) :
"""Return the wind speed list at time ` t `"""
|
ws = [ 0 ] * self . n
for i in range ( self . n ) :
q = ceil ( t / self . dt [ i ] )
q_prev = 0 if q == 0 else q - 1
r = t % self . dt [ i ]
r = 0 if abs ( r ) < 1e-6 else r
if r == 0 :
ws [ i ] = self . speed [ i ] [ q ]
else :
t1 = self . time [ i ] [ q_prev ]
s1 = self . speed [ i ] [ q_prev ]
s2 = self . speed [ i ] [ q ]
ws [ i ] = s1 + ( t - t1 ) * ( s2 - s1 ) / self . dt [ i ]
return matrix ( ws )
|
def index ( request , template_name = "tagging_ext/index.html" , min_size = 0 , limit = 10 ) :
"""min _ size : Smallest size count accepted for a tag
order _ by : asc or desc by count
limit : maximum number of tags to display
TODO : convert the hand - written query to an ORM call . Right now I know
this works with Sqlite3 and PostGreSQL ."""
|
query = """
SELECT tag_item.tag_id as tag_id, COUNT(tag_item.tag_id) as counter
FROM tagging_taggeditem as tag_item
GROUP BY tag_id
HAVING COUNT(tag_item.tag_id) > %s
ORDER BY counter desc
LIMIT %s
"""
cursor = connection . cursor ( )
cursor . execute ( query , [ min_size , limit ] )
results = [ ]
for row in cursor . fetchall ( ) :
try :
tag = Tag . objects . get ( id = row [ 0 ] )
except ObjectDoesNotExist :
continue
if ' ' in tag . name :
continue
record = dict ( tag = tag , count = row [ 1 ] )
results . append ( record )
dictionary = { 'tags' : results }
return render_to_response ( template_name , dictionary , context_instance = RequestContext ( request ) )
|
def make_list ( args ) :
"""Generates . lst file .
Parameters
args : object that contains all the arguments"""
|
image_list = list_image ( args . root , args . recursive , args . exts )
image_list = list ( image_list )
if args . shuffle is True :
random . seed ( 100 )
random . shuffle ( image_list )
N = len ( image_list )
chunk_size = ( N + args . chunks - 1 ) // args . chunks
for i in range ( args . chunks ) :
chunk = image_list [ i * chunk_size : ( i + 1 ) * chunk_size ]
if args . chunks > 1 :
str_chunk = '_%d' % i
else :
str_chunk = ''
sep = int ( chunk_size * args . train_ratio )
sep_test = int ( chunk_size * args . test_ratio )
if args . train_ratio == 1.0 :
write_list ( args . prefix + str_chunk + '.lst' , chunk )
else :
if args . test_ratio :
write_list ( args . prefix + str_chunk + '_test.lst' , chunk [ : sep_test ] )
if args . train_ratio + args . test_ratio < 1.0 :
write_list ( args . prefix + str_chunk + '_val.lst' , chunk [ sep_test + sep : ] )
write_list ( args . prefix + str_chunk + '_train.lst' , chunk [ sep_test : sep_test + sep ] )
|
def reshape_line_plot ( df , x , y ) :
"""Reshape data from long form to " line plot form " .
Line plot form has x value as the index with one column for each line .
Each column has data points as values and all metadata as column headers ."""
|
idx = list ( df . columns . drop ( y ) )
if df . duplicated ( idx ) . any ( ) :
warnings . warn ( 'Duplicated index found.' )
df = df . drop_duplicates ( idx , keep = 'last' )
df = df . set_index ( idx ) [ y ] . unstack ( x ) . T
return df
|
def computePWCorrelations ( spikeTrains , removeAutoCorr ) :
"""Computes pairwise correlations from spikeTrains
@ param spikeTrains ( array ) spike trains obtained from the activation of cells in the TM
the array dimensions are : numCells x timeSteps
@ param removeAutoCorr ( boolean ) if true , auto - correlations are removed by substracting
the diagonal of the correlation matrix
@ return corrMatrix ( array ) numCells x numCells matrix containing the Pearson correlation
coefficient of spike trains of cell i and cell j
@ return numNegPCC ( int ) number of negative pairwise correlations ( PCC ( i , j ) < 0)"""
|
numCells = np . shape ( spikeTrains ) [ 0 ]
corrMatrix = np . zeros ( ( numCells , numCells ) )
numNegPCC = 0
for i in range ( numCells ) :
for j in range ( numCells ) :
if i == j and removeAutoCorr == True :
continue
if not all ( spikeTrains [ i , : ] == 0 ) and not all ( spikeTrains [ j , : ] == 0 ) :
corrMatrix [ i , j ] = np . corrcoef ( spikeTrains [ i , : ] , spikeTrains [ j , : ] ) [ 0 , 1 ]
if corrMatrix [ i , j ] < 0 :
numNegPCC += 1
return ( corrMatrix , numNegPCC )
|
def cli ( env , identifier ) :
"""Cancel a dedicated host server immediately"""
|
mgr = SoftLayer . DedicatedHostManager ( env . client )
host_id = helpers . resolve_id ( mgr . resolve_ids , identifier , 'dedicated host' )
if not ( env . skip_confirmations or formatting . no_going_back ( host_id ) ) :
raise exceptions . CLIAbort ( 'Aborted' )
mgr . cancel_host ( host_id )
click . secho ( 'Dedicated Host %s was cancelled' % host_id , fg = 'green' )
|
def ggplot2_style ( ax ) :
"""Styles an axes to appear like ggplot2
Must be called after all plot and axis manipulation operations have been
carried out ( needs to know final tick spacing )"""
|
# set the style of the major and minor grid lines , filled blocks
ax . grid ( True , 'major' , color = 'w' , linestyle = '-' , linewidth = 1.4 )
ax . grid ( True , 'minor' , color = '0.92' , linestyle = '-' , linewidth = 0.7 )
ax . patch . set_facecolor ( '0.85' )
ax . set_axisbelow ( True )
# set minor tick spacing to 1/2 of the major ticks
ax . xaxis . set_minor_locator ( MultipleLocator ( ( plt . xticks ( ) [ 0 ] [ 1 ] - plt . xticks ( ) [ 0 ] [ 0 ] ) / 2.0 ) )
ax . yaxis . set_minor_locator ( MultipleLocator ( ( plt . yticks ( ) [ 0 ] [ 1 ] - plt . yticks ( ) [ 0 ] [ 0 ] ) / 2.0 ) )
# remove axis border
for child in ax . get_children ( ) :
if isinstance ( child , mpl . spines . Spine ) :
child . set_alpha ( 0 )
# restyle the tick lines
for line in ax . get_xticklines ( ) + ax . get_yticklines ( ) :
line . set_markersize ( 5 )
line . set_color ( "gray" )
line . set_markeredgewidth ( 1.4 )
# remove the minor tick lines
for line in ax . xaxis . get_ticklines ( minor = True ) + ax . yaxis . get_ticklines ( minor = True ) :
line . set_markersize ( 0 )
# only show bottom left ticks , pointing out of axis
mpl . rcParams [ 'xtick.direction' ] = 'out'
mpl . rcParams [ 'ytick.direction' ] = 'out'
ax . xaxis . set_ticks_position ( 'bottom' )
ax . yaxis . set_ticks_position ( 'left' )
if ax . legend_ <> None :
lg = ax . legend_
lg . get_frame ( ) . set_linewidth ( 0 )
lg . get_frame ( ) . set_alpha ( 0.5 )
|
def accelerated_dtw ( x , y , dist , warp = 1 ) :
"""Computes Dynamic Time Warping ( DTW ) of two sequences in a faster way .
Instead of iterating through each element and calculating each distance ,
this uses the cdist function from scipy ( https : / / docs . scipy . org / doc / scipy / reference / generated / scipy . spatial . distance . cdist . html )
: param array x : N1 * M array
: param array y : N2 * M array
: param string or func dist : distance parameter for cdist . When string is given , cdist uses optimized functions for the distance metrics .
If a string is passed , the distance function can be ' braycurtis ' , ' canberra ' , ' chebyshev ' , ' cityblock ' , ' correlation ' , ' cosine ' , ' dice ' , ' euclidean ' , ' hamming ' , ' jaccard ' , ' kulsinski ' , ' mahalanobis ' , ' matching ' , ' minkowski ' , ' rogerstanimoto ' , ' russellrao ' , ' seuclidean ' , ' sokalmichener ' , ' sokalsneath ' , ' sqeuclidean ' , ' wminkowski ' , ' yule ' .
: param int warp : how many shifts are computed .
Returns the minimum distance , the cost matrix , the accumulated cost matrix , and the wrap path ."""
|
assert len ( x )
assert len ( y )
if ndim ( x ) == 1 :
x = x . reshape ( - 1 , 1 )
if ndim ( y ) == 1 :
y = y . reshape ( - 1 , 1 )
r , c = len ( x ) , len ( y )
D0 = zeros ( ( r + 1 , c + 1 ) )
D0 [ 0 , 1 : ] = inf
D0 [ 1 : , 0 ] = inf
D1 = D0 [ 1 : , 1 : ]
D0 [ 1 : , 1 : ] = cdist ( x , y , dist )
C = D1 . copy ( )
for i in range ( r ) :
for j in range ( c ) :
min_list = [ D0 [ i , j ] ]
for k in range ( 1 , warp + 1 ) :
min_list += [ D0 [ min ( i + k , r ) , j ] , D0 [ i , min ( j + k , c ) ] ]
D1 [ i , j ] += min ( min_list )
if len ( x ) == 1 :
path = zeros ( len ( y ) ) , range ( len ( y ) )
elif len ( y ) == 1 :
path = range ( len ( x ) ) , zeros ( len ( x ) )
else :
path = _traceback ( D0 )
return D1 [ - 1 , - 1 ] / sum ( D1 . shape ) , C , D1 , path
|
def annotate_bed ( self , bt , name , col_name , complete = None , df_col = None , ) :
"""Annotate the input bed file using one of the annotation beds .
Parameters
bt : pybedtools . BedTool
BedTool for either one of the anchors , the loops ,
or the loop inners .
name : str
The key for the annoation bed file in annot _ beds .
col _ name : str
Used to name the columns that will be made .
complete : bool
If True , this method will check whether the features in the
annotation bed are completely contained by the features in the input
bed .
df _ col : str
If the name for bt isn ' t the index of self . df , this specifies
which column of self . df contains the names for bt . For instance ,
if bt is the anchor1 BedTool , the df _ col = ' anchor11 ' ."""
|
import numpy as np
import pandas as pd
has_name_col = len ( self . annot_beds [ name ] [ 0 ] . fields ) > 3
print ( 'one' )
if complete :
res = bt . intersect ( self . annot_beds [ name ] , sorted = True , wo = True , F = 1 )
else :
res = bt . intersect ( self . annot_beds [ name ] , sorted = True , wo = True )
print ( 'two' )
try :
df = res . to_dataframe ( names = range ( len ( res [ 0 ] . fields ) ) )
ind = df [ 3 ] . values
if df_col is None :
self . df [ col_name ] = False
self . df . ix [ set ( ind ) , col_name ] = True
else :
tdf = pd . DataFrame ( True , index = ind , columns = [ col_name ] )
self . df = self . df . merge ( tdf , left_on = df_col , right_index = True , how = 'outer' )
self . df [ col_name ] = self . df [ col_name ] . fillna ( False )
# self . df . ix [ self . df [ col _ name ] . isnull ( ) , col _ name ] = False
print ( 'a' )
if has_name_col :
vals = df [ 7 ] . values
else :
vals = list ( df [ 4 ] . astype ( str ) + ':' + df [ 5 ] . astype ( str ) + '-' + df [ 6 ] . astype ( str ) )
print ( 'b' )
df . index = vals
gb = df . groupby ( 3 )
t = pd . Series ( gb . groups )
print ( 'c' )
t = pd . DataFrame ( t . apply ( lambda x : set ( x ) ) )
print ( 'd' )
t . columns = [ '{}_features' . format ( col_name ) ]
self . df = self . df . merge ( t , left_on = df_col , right_index = True , how = 'outer' )
print ( 'e' )
except IndexError :
pass
|
def new_feed ( self , name : str , layer_shape : tuple ) :
"""Creates a feed layer . This is usually the first layer in the network .
: param name : name of the layer
: return :"""
|
feed_data = tf . placeholder ( tf . float32 , layer_shape , 'input' )
self . __network . add_layer ( name , layer_output = feed_data )
|
def table ( self , datatype = None ) :
"Deprecated method to convert any Element to a Table ."
|
if config . future_deprecations :
self . param . warning ( "The table method is deprecated and should no " "longer be used. Instead cast the %s to a " "a Table directly." % type ( self ) . __name__ )
if datatype and not isinstance ( datatype , list ) :
datatype = [ datatype ]
from . . element import Table
return Table ( self , ** ( dict ( datatype = datatype ) if datatype else { } ) )
|
def hasColumn ( self , column , recurse = True , flags = 0 ) :
"""Returns whether or not this column exists within the list of columns
for this schema .
: return < bool >"""
|
return column in self . columns ( recurse = recurse , flags = flags )
|
def transform_velocity_array ( array , pos_array , vel , euler , rotation_vel = ( 0 , 0 , 0 ) ) :
"""Transform any Nx3 velocity vector array by adding the center - of - mass ' vel ' ,
accounting for solid - body rotation , and applying an euler transformation .
: parameter array array : numpy array of Nx3 velocity vectors in the original
( star ) coordinate frame
: parameter array pos _ array : positions of the elements with respect to the
original ( star ) coordinate frame . Must be the same shape as ' array ' .
: parameter array vel : numpy array with length 3 giving cartesian velocity
offsets in the new ( system ) coordinate frame
: parameter array euler : euler angles ( etheta , elongan , eincl ) in radians
: parameter array rotation _ vel : vector of the rotation velocity of the star
in the original ( star ) coordinate frame
: return : new velocity array with same shape as ' array '"""
|
trans_matrix = euler_trans_matrix ( * euler )
# v _ { rot , i } = omega x r _ i with omega = rotation _ vel
rotation_component = np . cross ( rotation_vel , pos_array , axisb = 1 )
orbital_component = np . asarray ( vel )
if isinstance ( array , ComputedColumn ) :
array = array . for_computations
new_vel = np . dot ( np . asarray ( array ) + rotation_component , trans_matrix . T ) + orbital_component
return new_vel
|
def list_presubscriptions ( self , ** kwargs ) :
"""Get a list of pre - subscription data
: returns : a list of ` Presubscription ` objects
: rtype : list of mbed _ cloud . presubscription . Presubscription"""
|
api = self . _get_api ( mds . SubscriptionsApi )
resp = api . get_pre_subscriptions ( ** kwargs )
return [ Presubscription ( p ) for p in resp ]
|
def update ( self , path , node ) :
'''Update the dict with a new color using a ' path ' through the dict . You can either pass an existing path e . g .
' Scaffold . mutations ' to override a color or part of the hierarchy or you can add a new leaf node or dict .'''
|
assert ( type ( path ) == type ( self . name ) )
assert ( type ( node ) == type ( self . name ) or type ( node ) == type ( predefined ) )
d = self . color_scheme
tokens = path . split ( '.' )
for t in tokens [ : - 1 ] :
d = d . get ( t )
if d == None :
raise Exception ( "Path '%s' not found." )
d [ tokens [ - 1 ] ] = node
|
def from_dict ( data , ctx ) :
"""Instantiate a new UnitsAvailable from a dict ( generally from loading a
JSON response ) . The data used to instantiate the UnitsAvailable is a
shallow copy of the dict passed in , with any complex child types
instantiated appropriately ."""
|
data = data . copy ( )
if data . get ( 'default' ) is not None :
data [ 'default' ] = ctx . order . UnitsAvailableDetails . from_dict ( data [ 'default' ] , ctx )
if data . get ( 'reduceFirst' ) is not None :
data [ 'reduceFirst' ] = ctx . order . UnitsAvailableDetails . from_dict ( data [ 'reduceFirst' ] , ctx )
if data . get ( 'reduceOnly' ) is not None :
data [ 'reduceOnly' ] = ctx . order . UnitsAvailableDetails . from_dict ( data [ 'reduceOnly' ] , ctx )
if data . get ( 'openOnly' ) is not None :
data [ 'openOnly' ] = ctx . order . UnitsAvailableDetails . from_dict ( data [ 'openOnly' ] , ctx )
return UnitsAvailable ( ** data )
|
def _updateConstructorAndMembers ( self ) :
"""We overwrite constructor and accessors every time because the constructor might have to consume all
members even if their decorator is below the " synthesizeConstructor " decorator and it also might need to update
the getters and setters because the naming convention has changed ."""
|
syntheticMetaData = self . _syntheticMetaData ( )
constructor = self . _constructorFactory . makeConstructor ( syntheticMetaData . originalConstructor ( ) , syntheticMetaData . syntheticMemberList ( ) , syntheticMetaData . doesConsumeArguments ( ) )
self . _class . __init__ = constructor
for syntheticMember in syntheticMetaData . syntheticMemberList ( ) :
syntheticMember . apply ( self . _class , syntheticMetaData . originalMemberNameList ( ) , syntheticMetaData . namingConvention ( ) )
if syntheticMetaData . hasEqualityGeneration ( ) :
eq = self . _comparisonFactory . makeEqualFunction ( syntheticMetaData . originalEqualFunction ( ) , syntheticMetaData . syntheticMemberList ( ) )
ne = self . _comparisonFactory . makeNotEqualFunction ( syntheticMetaData . originalNotEqualFunction ( ) , syntheticMetaData . syntheticMemberList ( ) )
hashFunc = self . _comparisonFactory . makeHashFunction ( syntheticMetaData . originalHashFunction ( ) , syntheticMetaData . syntheticMemberList ( ) )
self . _class . __eq__ = eq
self . _class . __ne__ = ne
self . _class . __hash__ = hashFunc
|
def two_lorentzian ( freq , freq0_1 , freq0_2 , area1 , area2 , hwhm1 , hwhm2 , phase1 , phase2 , offset , drift ) :
"""A two - Lorentzian model .
This is simply the sum of two lorentzian functions in some part of the
spectrum . Each individual Lorentzian has its own peak frequency , area , hwhm
and phase , but they share common offset and drift parameters ."""
|
return ( lorentzian ( freq , freq0_1 , area1 , hwhm1 , phase1 , offset , drift ) + lorentzian ( freq , freq0_2 , area2 , hwhm2 , phase2 , offset , drift ) )
|
def _extract_methods ( self ) :
"""Obtains the methods used in the service ."""
|
service = self . _service
all_urls = set ( )
urls_with_options = set ( )
if not service . http :
return
for rule in service . http . rules :
http_method , url = _detect_pattern_option ( rule )
if not url or not http_method or not rule . selector :
_logger . error ( u'invalid HTTP binding encountered' )
continue
# Obtain the method info
method_info = self . _get_or_create_method_info ( rule . selector )
if rule . body :
method_info . body_field_path = rule . body
if not self . _register ( http_method , url , method_info ) :
continue
# detected an invalid url
all_urls . add ( url )
if http_method == self . _OPTIONS :
urls_with_options . add ( url )
self . _add_cors_options_selectors ( all_urls - urls_with_options )
self . _update_usage ( )
self . _update_system_parameters ( )
|
async def on_isupport_excepts ( self , value ) :
"""Server allows ban exceptions ."""
|
if not value :
value = BAN_EXCEPT_MODE
self . _channel_modes . add ( value )
self . _channel_modes_behaviour [ rfc1459 . protocol . BEHAVIOUR_LIST ] . add ( value )
|
def execution_time ( self , value ) :
"""Force the execution _ time to always be a datetime
: param value :
: return :"""
|
if value :
self . _execution_time = parse ( value ) if isinstance ( value , type_check ) else value
|
def read ( self , ** keys ) :
"""read a data from an ascii table HDU
By default , all rows are read . Send rows = to select subsets of the
data . Table data are read into a recarray for multiple columns ,
plain array for a single column .
parameters
columns : list / array
An optional set of columns to read from table HDUs . Can be string
or number . If a sequence , a recarray is always returned . If a
scalar , an ordinary array is returned .
rows : list / array , optional
An optional list of rows to read from table HDUS . Default is to
read all .
vstorage : string , optional
Over - ride the default method to store variable length columns . Can
be ' fixed ' or ' object ' . See docs on fitsio . FITS for details .
lower : bool , optional
If True , force all columns names to lower case in output . Will over
ride the lower = keyword from construction .
upper : bool , optional
If True , force all columns names to upper case in output . Will over
ride the lower = keyword from construction ."""
|
rows = keys . get ( 'rows' , None )
columns = keys . get ( 'columns' , None )
# if columns is None , returns all . Guaranteed to be unique and sorted
colnums = self . _extract_colnums ( columns )
if isinstance ( colnums , int ) : # scalar sent , don ' t read as a recarray
return self . read_column ( columns , ** keys )
rows = self . _extract_rows ( rows )
if rows is None :
nrows = self . _info [ 'nrows' ]
else :
nrows = rows . size
# if rows is None still returns None , and is correctly interpreted
# by the reader to mean all
rows = self . _extract_rows ( rows )
# this is the full dtype for all columns
dtype , offsets , isvar = self . get_rec_dtype ( colnums = colnums , ** keys )
array = numpy . zeros ( nrows , dtype = dtype )
# note reading into existing data
wnotvar , = numpy . where ( isvar == False )
# noqa
if wnotvar . size > 0 :
for i in wnotvar :
colnum = colnums [ i ]
name = array . dtype . names [ i ]
a = array [ name ] . copy ( )
self . _FITS . read_column ( self . _ext + 1 , colnum + 1 , a , rows )
array [ name ] = a
del a
array = self . _maybe_decode_fits_ascii_strings_to_unicode_py3 ( array )
wvar , = numpy . where ( isvar == True )
# noqa
if wvar . size > 0 :
for i in wvar :
colnum = colnums [ i ]
name = array . dtype . names [ i ]
dlist = self . _FITS . read_var_column_as_list ( self . _ext + 1 , colnum + 1 , rows )
if ( isinstance ( dlist [ 0 ] , str ) or ( IS_PY3 and isinstance ( dlist [ 0 ] , bytes ) ) ) :
is_string = True
else :
is_string = False
if array [ name ] . dtype . descr [ 0 ] [ 1 ] [ 1 ] == 'O' : # storing in object array
# get references to each , no copy made
for irow , item in enumerate ( dlist ) :
if IS_PY3 and isinstance ( item , bytes ) :
item = item . decode ( 'ascii' )
array [ name ] [ irow ] = item
else :
for irow , item in enumerate ( dlist ) :
if IS_PY3 and isinstance ( item , bytes ) :
item = item . decode ( 'ascii' )
if is_string :
array [ name ] [ irow ] = item
else :
ncopy = len ( item )
array [ name ] [ irow ] [ 0 : ncopy ] = item [ : ]
lower = keys . get ( 'lower' , False )
upper = keys . get ( 'upper' , False )
if self . lower or lower :
_names_to_lower_if_recarray ( array )
elif self . upper or upper :
_names_to_upper_if_recarray ( array )
self . _maybe_trim_strings ( array , ** keys )
return array
|
def run ( self ) :
"""Run install main logic ."""
|
try :
if not self . _is_rpm_all_lib_include_files_installed ( ) :
self . _make_lib_file_symbolic_links ( )
self . _copy_each_include_files_to_include_dir ( )
self . _make_dep_lib_file_sym_links_and_copy_include_files ( )
self . setup_py . add_patchs_to_build_without_pkg_config ( self . rpm . lib_dir , self . rpm . include_dir )
self . setup_py . apply_and_save ( )
self . _build_and_install ( )
except InstallError as e :
if not self . _is_rpm_all_lib_include_files_installed ( ) :
org_message = str ( e )
message = '''
Install failed without rpm-devel package by below reason.
Can you install the RPM package, and run this installer again?
'''
message += org_message
raise InstallError ( message )
else :
raise e
|
def split_data ( X , y , ratio = ( 0.8 , 0.1 , 0.1 ) ) :
"""Splits data into a training , validation , and test set .
Args :
X : text data
y : data labels
ratio : the ratio for splitting . Default : ( 0.8 , 0.1 , 0.1)
Returns :
split data : X _ train , X _ val , X _ test , y _ train , y _ val , y _ test"""
|
assert ( sum ( ratio ) == 1 and len ( ratio ) == 3 )
X_train , X_rest , y_train , y_rest = train_test_split ( X , y , train_size = ratio [ 0 ] )
X_val , X_test , y_val , y_test = train_test_split ( X_rest , y_rest , train_size = ratio [ 1 ] )
return X_train , X_val , X_test , y_train , y_val , y_test
|
def ReadClientFullInfo ( self , client_id ) :
"""Reads full client information for a single client .
Args :
client _ id : A GRR client id string , e . g . " C . ea3b2b71840d6fa7 " .
Returns :
A ` ClientFullInfo ` instance for given client .
Raises :
UnknownClientError : if no client with such id was found ."""
|
result = self . MultiReadClientFullInfo ( [ client_id ] )
try :
return result [ client_id ]
except KeyError :
raise UnknownClientError ( client_id )
|
def _makeKey ( self , usern ) :
"""Make a new , probably unique key . This key will be sent in an email to
the user and is used to access the password change form ."""
|
return unicode ( hashlib . md5 ( str ( ( usern , time . time ( ) , random . random ( ) ) ) ) . hexdigest ( ) )
|
def TR ( self , ** kwargs ) : # pragma : no cover
"""NAME :
TR
PURPOSE :
Calculate the radial period for a power - law rotation curve
INPUT :
scipy . integrate . quadrature keywords
OUTPUT :
T _ R ( R , vT , vT ) * vc / ro + estimate of the error
HISTORY :
2010-12-01 - Written - Bovy ( NYU )"""
|
if hasattr ( self , '_TR' ) :
return self . _TR
( rperi , rap ) = self . calcRapRperi ( ** kwargs )
if nu . fabs ( rap - rperi ) / rap < 10. ** - 4. : # Rough limit
self . _TR = 2. * m . pi / epifreq ( self . _pot , self . _R , use_physical = False )
return self . _TR
Rmean = m . exp ( ( m . log ( rperi ) + m . log ( rap ) ) / 2. )
EL = self . calcEL ( ** kwargs )
E , L = EL
TR = 0.
if Rmean > rperi :
TR += integrate . quadrature ( _TRAxiIntegrandSmall , 0. , m . sqrt ( Rmean - rperi ) , args = ( E , L , self . _pot , rperi ) , ** kwargs ) [ 0 ]
if Rmean < rap :
TR += integrate . quadrature ( _TRAxiIntegrandLarge , 0. , m . sqrt ( rap - Rmean ) , args = ( E , L , self . _pot , rap ) , ** kwargs ) [ 0 ]
self . _TR = 2. * TR
return self . _TR
|
def write ( self , data ) :
'''Write method used by internal tarfile instance to output data .
This method blocks tarfile execution once internal buffer is full .
As this method is blocking , it is used inside the same thread of
: meth : ` fill ` .
: param data : bytes to write to internal buffer
: type data : bytes
: returns : number of bytes written
: rtype : int'''
|
self . _add . wait ( )
self . _data += data
if len ( self . _data ) > self . _want :
self . _add . clear ( )
self . _result . set ( )
return len ( data )
|
def add_forward_workflow ( self , dag , sections , satisfies = None ) :
'''Add a forward - workflow , return number of nodes added'''
|
dag . new_forward_workflow ( )
if 'DAG' in env . config [ 'SOS_DEBUG' ] or 'ALL' in env . config [ 'SOS_DEBUG' ] :
env . log_to_file ( 'DAG' , f'Adding mini-workflow with {len(sections)} sections' )
default_input : sos_targets = sos_targets ( [ ] )
for idx , section in enumerate ( sections ) :
res = analyze_section ( section , default_input = default_input )
environ_vars = res [ 'environ_vars' ]
signature_vars = res [ 'signature_vars' ]
changed_vars = res [ 'changed_vars' ]
# parameters , if used in the step , should be considered environmental
environ_vars |= env . parameter_vars & signature_vars
# add shared to targets
if res [ 'changed_vars' ] :
if 'provides' in section . options :
if isinstance ( section . options [ 'provides' ] , str ) :
section . options . set ( 'provides' , [ section . options [ 'provides' ] ] )
else :
section . options . set ( 'provides' , [ ] )
section . options . set ( 'provides' , section . options [ 'provides' ] + [ sos_variable ( var ) for var in changed_vars ] )
context = { '__signature_vars__' : signature_vars , '__environ_vars__' : environ_vars , '__changed_vars__' : changed_vars , '__dynamic_depends__' : res [ 'dynamic_depends' ] , '__dynamic_input__' : res [ 'dynamic_input' ] }
# for nested workflow , the input is specified by sos _ run , not None .
if idx == 0 :
context [ '__step_output__' ] = env . sos_dict [ '__step_output__' ]
# can be the only step
if idx == len ( sections ) - 1 and satisfies is not None :
res [ 'step_output' ] . extend ( satisfies )
dag . add_step ( section . uuid , section . step_name ( ) , idx , res [ 'step_input' ] , res [ 'step_depends' ] , res [ 'step_output' ] , context = context )
default_input = res [ 'step_output' ]
return len ( sections )
|
def _find ( expr , sub , start = 0 , end = None ) :
"""Return lowest indexes in each strings in the sequence or scalar
where the substring is fully contained between [ start : end ] . Return - 1 on failure .
Equivalent to standard str . find ( ) .
: param expr :
: param sub : substring being searched
: param start : left edge index
: param end : right edge index
: return : sequence or scalar"""
|
return _string_op ( expr , Find , output_type = types . int64 , _sub = sub , _start = start , _end = end )
|
def add_send_last_message ( self , connection , send_last_message ) :
"""Adds a send _ last _ message function to the Dispatcher ' s
dictionary of functions indexed by connection .
Args :
connection ( str ) : A locally unique identifier
provided by the receiver of messages .
send _ last _ message ( fn ) : The method that should be called
by the dispatcher to respond to messages which
arrive via connection , when the connection should be closed
after the message has been sent ."""
|
self . _send_last_message [ connection ] = send_last_message
LOGGER . debug ( "Added send_last_message function " "for connection %s" , connection )
|
def possible_public_pairs_for_signature ( self , value , signature , y_parity = None ) :
""": param : value : an integer value
: param : signature : an ` ` ( r , s ) ` ` pair of integers representing an ecdsa signature of ` ` value ` `
: param : y _ parity : ( optional ) for a given value and signature , there are either two points
that sign it , or none if the signature is invalid . One of the points has an even y
value , the other an odd . If this parameter is set , only points whose y value matches
this value will be returned in the list .
: return : a list of : class : ` Point < pycoin . ecdsa . Point . Point > ` objects p where each p is
a possible public key for which ` ` signature ` ` correctly signs the given ` ` value ` ` .
If something goes wrong , this list will be empty ."""
|
r , s = signature
try :
points = self . points_for_x ( r )
except ValueError :
return [ ]
if y_parity is not None :
if y_parity & 1 :
points = points [ 1 : ]
else :
points = points [ : 1 ]
inv_r = self . inverse ( r )
s_over_r = s * inv_r
minus_E_over_r = - ( inv_r * value ) * self
try :
return [ s_over_r * p + minus_E_over_r for p in points ]
except ValueError :
return [ ]
|
def _error_dm ( self , m , dm , s ) :
"""Error function .
Once self . goal has been defined , compute the error
of input using the generalized forward model ."""
|
pred = self . fmodel . predict_given_context ( np . hstack ( ( m , dm ) ) , s , range ( len ( s ) ) )
err_v = pred - self . goal
error = sum ( e * e for e in err_v )
return error
|
def get_start_time_str ( self ) :
""": return :
| attr _ start _ datetime | as | str | formatted with
| attr _ start _ time _ format | .
Return | NaT | if the invalid value or the invalid format .
: rtype : str
: Sample Code :
. . code : : python
from datetimerange import DateTimeRange
time _ range = DateTimeRange ( " 2015-03-22T10:00:00 + 0900 " , " 2015-03-22T10:10:00 + 0900 " )
print ( time _ range . get _ start _ time _ str ( ) )
time _ range . start _ time _ format = " % Y / % m / % d % H : % M : % S "
print ( time _ range . get _ start _ time _ str ( ) )
: Output :
. . parsed - literal : :
2015-03-22T10:00:00 + 0900
2015/03/22 10:00:00"""
|
try :
return self . start_datetime . strftime ( self . start_time_format )
except AttributeError :
return self . NOT_A_TIME_STR
|
def linspace2 ( a , b , n , dtype = None ) :
"""similar to numpy . linspace but excluding the boundaries
this is the normal numpy . linspace :
> > > print linspace ( 0,1,5)
[ 0 . 0.25 0.5 0.75 1 . ]
and this gives excludes the boundaries :
> > > print linspace2(0,1,5)
[ 0.1 0.3 0.5 0.7 0.9]"""
|
a = linspace ( a , b , n + 1 , dtype = dtype ) [ : - 1 ]
if len ( a ) > 1 :
diff01 = ( ( a [ 1 ] - a [ 0 ] ) / 2 ) . astype ( a . dtype )
a += diff01
return a
|
def listdict_to_listlist_and_matrix ( sparse ) :
"""Transforms the adjacency list representation of a graph
of type listdict into the listlist + weight matrix representation
: param sparse : graph in listdict representation
: returns : couple with listlist representation , and weight matrix
: complexity : linear"""
|
V = range ( len ( sparse ) )
graph = [ [ ] for _ in V ]
weight = [ [ None for v in V ] for u in V ]
for u in V :
for v in sparse [ u ] :
graph [ u ] . append ( v )
weight [ u ] [ v ] = sparse [ u ] [ v ]
return graph , weight
|
def return_file_objects ( connection , container , prefix = 'database' ) :
"""Given connecton and container find database dumps"""
|
options = [ ]
meta_data = objectstore . get_full_container_list ( connection , container , prefix = 'database' )
env = ENV . upper ( )
for o_info in meta_data :
expected_file = f'database.{ENV}'
if o_info [ 'name' ] . startswith ( expected_file ) :
dt = dateparser . parse ( o_info [ 'last_modified' ] )
now = datetime . datetime . now ( )
delta = now - dt
LOG . debug ( 'AGE: %d %s' , delta . days , expected_file )
options . append ( ( dt , o_info ) )
options . sort ( )
return options
|
def on_add_vrf_conf ( self , evt ) :
"""Event handler for new VrfConf .
Creates a VrfTable to store routing information related to new Vrf .
Also arranges for related paths to be imported to this VrfTable ."""
|
vrf_conf = evt . value
route_family = vrf_conf . route_family
assert route_family in vrfs . SUPPORTED_VRF_RF
# Create VRF table with given configuration .
vrf_table = self . _table_manager . create_and_link_vrf_table ( vrf_conf )
# Attach VrfConf change listeners .
vrf_conf . add_listener ( ConfWithStats . UPDATE_STATS_LOG_ENABLED_EVT , self . on_stats_config_change )
vrf_conf . add_listener ( ConfWithStats . UPDATE_STATS_TIME_EVT , self . on_stats_config_change )
vrf_conf . add_listener ( VrfConf . VRF_CHG_EVT , self . on_chg_vrf_conf )
# Import paths from VPN table that match this VRF / VPN .
self . _table_manager . import_all_vpn_paths_to_vrf ( vrf_table )
# Update local RT NLRIs
self . _rt_manager . update_local_rt_nlris ( )
self . _signal_bus . vrf_added ( vrf_conf )
|
def zip_offset ( * iterables , offsets , longest = False , fillvalue = None ) :
"""` ` zip ` ` the input * iterables * together , but offset the ` i ` - th iterable
by the ` i ` - th item in * offsets * .
> > > list ( zip _ offset ( ' 0123 ' , ' abcdef ' , offsets = ( 0 , 1 ) ) )
[ ( ' 0 ' , ' b ' ) , ( ' 1 ' , ' c ' ) , ( ' 2 ' , ' d ' ) , ( ' 3 ' , ' e ' ) ]
This can be used as a lightweight alternative to SciPy or pandas to analyze
data sets in which some series have a lead or lag relationship .
By default , the sequence will end when the shortest iterable is exhausted .
To continue until the longest iterable is exhausted , set * longest * to
` ` True ` ` .
> > > list ( zip _ offset ( ' 0123 ' , ' abcdef ' , offsets = ( 0 , 1 ) , longest = True ) )
[ ( ' 0 ' , ' b ' ) , ( ' 1 ' , ' c ' ) , ( ' 2 ' , ' d ' ) , ( ' 3 ' , ' e ' ) , ( None , ' f ' ) ]
By default , ` ` None ` ` will be used to replace offsets beyond the end of the
sequence . Specify * fillvalue * to use some other value ."""
|
if len ( iterables ) != len ( offsets ) :
raise ValueError ( "Number of iterables and offsets didn't match" )
staggered = [ ]
for it , n in zip ( iterables , offsets ) :
if n < 0 :
staggered . append ( chain ( repeat ( fillvalue , - n ) , it ) )
elif n > 0 :
staggered . append ( islice ( it , n , None ) )
else :
staggered . append ( it )
if longest :
return zip_longest ( * staggered , fillvalue = fillvalue )
return zip ( * staggered )
|
def seek ( self , pos = 0 ) :
"""Set the stream ' s file pointer to pos . Negative seeking
is forbidden ."""
|
if pos - self . pos >= 0 :
blocks , remainder = divmod ( pos - self . pos , self . bufsize )
for i in range ( blocks ) :
self . read ( self . bufsize )
self . read ( remainder )
else :
raise StreamError ( "seeking backwards is not allowed" )
return self . pos
|
def insert_column ( self , data_array , ckey = 'temp' , index = None ) :
"""This will insert / overwrite a new column and fill it with the data from the
the supplied array .
Parameters
data _ array
Data ; can be a list , but will be converted to numpy array
ckey
Name of the column ; if an integer is supplied , uses self . ckeys [ ckey ]
index
Where to insert this column . None = > append to end ."""
|
# if it ' s an integer , use the ckey from the list
if type ( ckey ) in [ int , int ] :
ckey = self . ckeys [ ckey ]
# append / overwrite the column value
self . columns [ ckey ] = _n . array ( data_array )
if not ckey in self . ckeys :
if index is None :
self . ckeys . append ( ckey )
else :
self . ckeys . insert ( index , ckey )
return self
|
def list_conversions ( api_key , api_secret , video_key , ** kwargs ) :
"""Function which retrieves a list of a video object ' s conversions .
: param api _ key : < string > JWPlatform api - key
: param api _ secret : < string > JWPlatform shared - secret
: param video _ key : < string > Video ' s object ID . Can be found within JWPlayer Dashboard .
: param kwargs : Arguments conforming to standards found @ https : / / developer . jwplayer . com / jw - platform / reference / v1 / methods / videos / conversions / list . html
: return : < dict > Dict which represents the JSON response ."""
|
jwplatform_client = jwplatform . Client ( api_key , api_secret )
logging . info ( "Querying for video conversions." )
try :
response = jwplatform_client . videos . conversions . list ( video_key = video_key , ** kwargs )
except jwplatform . errors . JWPlatformError as e :
logging . error ( "Encountered an error querying for video conversions.\n{}" . format ( e ) )
sys . exit ( e . message )
return response
|
def get_tdata ( t_format , files ) :
"""Get the time information from file names
Parameters
t _ format : str
The string that can be used to get the time information in the files .
Any numeric datetime format string ( e . g . % Y , % m , % H ) can be used , but
not non - numeric strings like % b , etc . See [ 1 ] _ for the datetime format
strings
files : list of str
The that contain the time informations
Returns
pandas . Index
The time coordinate
list of str
The file names as they are sorten in the returned index
References
. . [ 1 ] https : / / docs . python . org / 2 / library / datetime . html"""
|
def median ( arr ) :
return arr . min ( ) + ( arr . max ( ) - arr . min ( ) ) / 2
import re
from pandas import Index
t_pattern = t_format
for fmt , patt in t_patterns . items ( ) :
t_pattern = t_pattern . replace ( fmt , patt )
t_pattern = re . compile ( t_pattern )
time = list ( range ( len ( files ) ) )
for i , f in enumerate ( files ) :
time [ i ] = median ( np . array ( list ( map ( lambda s : np . datetime64 ( dt . datetime . strptime ( s , t_format ) ) , t_pattern . findall ( f ) ) ) ) )
ind = np . argsort ( time )
# sort according to time
files = np . array ( files ) [ ind ]
time = np . array ( time ) [ ind ]
return to_datetime ( Index ( time , name = 'time' ) ) , files
|
def get_sigma_mu_adjustment ( self , C , imt , rup , dists ) :
"""Returns the sigma mu adjustment factor"""
|
if imt . name in "PGA PGV" : # PGA and PGV are 2D arrays of dimension [ nmags , ndists ]
sigma_mu = getattr ( self , imt . name . lower ( ) )
if rup . mag <= self . mags [ 0 ] :
sigma_mu_m = sigma_mu [ 0 , : ]
elif rup . mag >= self . mags [ - 1 ] :
sigma_mu_m = sigma_mu [ - 1 , : ]
else :
intpl1 = interp1d ( self . mags , sigma_mu , axis = 0 )
sigma_mu_m = intpl1 ( rup . mag )
# Linear interpolation with distance
intpl2 = interp1d ( self . dists , sigma_mu_m , bounds_error = False , fill_value = ( sigma_mu_m [ 0 ] , sigma_mu_m [ - 1 ] ) )
return intpl2 ( dists . rjb )
# In the case of SA the array is of dimension [ nmags , ndists , nperiods ]
# Get values for given magnitude
if rup . mag <= self . mags [ 0 ] :
sigma_mu_m = self . s_a [ 0 , : , : ]
elif rup . mag >= self . mags [ - 1 ] :
sigma_mu_m = self . s_a [ - 1 , : , : ]
else :
intpl1 = interp1d ( self . mags , self . s_a , axis = 0 )
sigma_mu_m = intpl1 ( rup . mag )
# Get values for period - N . B . ln T , linear sigma mu interpolation
if imt . period <= self . periods [ 0 ] :
sigma_mu_t = sigma_mu_m [ : , 0 ]
elif imt . period >= self . periods [ - 1 ] :
sigma_mu_t = sigma_mu_m [ : , - 1 ]
else :
intpl2 = interp1d ( np . log ( self . periods ) , sigma_mu_m , axis = 1 )
sigma_mu_t = intpl2 ( np . log ( imt . period ) )
intpl3 = interp1d ( self . dists , sigma_mu_t , bounds_error = False , fill_value = ( sigma_mu_t [ 0 ] , sigma_mu_t [ - 1 ] ) )
return intpl3 ( dists . rjb )
|
def get ( self , path ) :
"""get renders the notebook template if a name is given , or
redirects to the ' / files / ' handler if the name is not given ."""
|
path = path . strip ( '/' )
self . log . info ( 'Appmode get: %s' , path )
# Abort if the app path is not below configured trusted _ path .
if not path . startswith ( self . trusted_path ) :
self . log . warn ( 'Appmode refused to launch %s outside trusted path %s.' , path , self . trusted_path )
raise web . HTTPError ( 401 , 'Notebook is not within trusted Appmode path.' )
cm = self . contents_manager
# will raise 404 on not found
try :
model = cm . get ( path , content = False )
except web . HTTPError as e :
if e . status_code == 404 and 'files' in path . split ( '/' ) : # 404 , but ' / files / ' in URL , let FilesRedirect take care of it
return FilesRedirectHandler . redirect_to_files ( self , path )
else :
raise
if model [ 'type' ] != 'notebook' : # not a notebook , redirect to files
return FilesRedirectHandler . redirect_to_files ( self , path )
# fix back button navigation
self . add_header ( "Cache-Control" , "cache-control: private, max-age=0, no-cache, no-store" )
# gather template parameters
tmp_path = self . mk_tmp_copy ( path )
tmp_name = tmp_path . rsplit ( '/' , 1 ) [ - 1 ]
render_kwargs = { 'notebook_path' : tmp_path , 'notebook_name' : tmp_name , 'kill_kernel' : False , 'mathjax_url' : self . mathjax_url , 'mathjax_config' : self . mathjax_config , 'show_edit_button' : self . show_edit_button , 'show_other_buttons' : self . show_other_buttons , }
# template parameters changed over time
if hasattr ( orig_handler , "get_custom_frontend_exporters" ) :
get_cfw = orig_handler . get_custom_frontend_exporters
render_kwargs [ 'get_custom_frontend_exporters' ] = get_cfw
# Ok let ' s roll . . . .
self . write ( self . render_template ( 'appmode.html' , ** render_kwargs ) )
|
def delete_asset ( self ) :
"""Delete asset from the release .
: rtype : bool"""
|
headers , data = self . _requester . requestJsonAndCheck ( "DELETE" , self . url )
return True
|
def load_js ( js_url = None , version = '5.2.0' ) :
"""Load Dropzone ' s js resources with given version .
. . versionadded : : 1.4.4
: param js _ url : The JS url for Dropzone . js .
: param version : The version of Dropzone . js ."""
|
js_filename = 'dropzone.min.js'
serve_local = current_app . config [ 'DROPZONE_SERVE_LOCAL' ]
if serve_local :
js = '<script src="%s"></script>\n' % url_for ( 'dropzone.static' , filename = js_filename )
else :
js = '<script src="https://cdn.jsdelivr.net/npm/dropzone@%s/dist/%s"></script>\n' % ( version , js_filename )
if js_url :
js = '<script src="%s"></script>\n' % js_url
return Markup ( js )
|
def step_next ( self ) :
"""Go to the next step ."""
|
window_start = around ( self . parent . value ( 'window_start' ) + self . parent . value ( 'window_length' ) / self . parent . value ( 'window_step' ) , 2 )
self . parent . overview . update_position ( window_start )
|
def new ( cls , username , password = None , email = None , first_name = "" , last_name = "" , login_method = None , role = "MEMBER" ) :
"""Create a new user
: param username : str
: param password : str
: param email : str
: param first _ name : str
: param last _ name : str
: param login _ method : str
: param role : str
: return : AuthUser"""
|
data = { "first_name" : first_name , "last_name" : last_name , "email" : email }
if not password :
password = utils . generate_random_string ( )
username = username . strip ( ) . lower ( )
if "@" in username and not email :
if not utils . is_email_valid ( username ) :
exceptions . AuthError ( _ ( "Invalid username" ) )
data [ "email" ] = username
elif email :
if not utils . is_email_valid ( email ) :
exceptions . AuthError ( _ ( "Invalid username" ) )
if not utils . is_username_valid ( username ) :
exceptions . AuthError ( _ ( "Invalid username" ) )
if not utils . is_password_valid ( password ) :
raise exceptions . AuthError ( _ ( "Password is invalid" ) )
if cls . get_by_username ( username ) :
raise exceptions . AuthError ( _ ( "Username exists already" ) )
_email = data . get ( "email" )
if _email :
if cls . get_by_email ( _email ) :
raise exceptions . AuthError ( _ ( "Email address exists already" ) )
role = AuthUserRole . get_by_name ( role or "MEMBER" )
if not role :
raise exceptions . AuthError ( _ ( "Invalid user role" ) )
data . update ( { "username" : username , "password_hash" : cls . encrypt_password ( password ) , "email_verified" : False , "login_method" : login_method , "role" : role , "status" : cls . STATUS_ACTIVE } )
user = cls . create ( ** data )
user . reset_secret_key ( )
return user
|
def readPrefs_dms_tools_format ( f ) :
"""Reads the amino - acid preferences written by ` dms _ tools v1 < http : / / jbloomlab . github . io / dms _ tools / > ` _ .
This is an exact copy of the same code from
` dms _ tools . file _ io . ReadPreferences ` . It is copied because
` dms _ tools v1 < http : / / jbloomlab . github . io / dms _ tools / > ` _ is currently
only compatible with ` python2 ` , and we needed something that also works
with ` python3 ` .
* f * is the name of an existing file or a readable file - like object .
It should be in the format written by
` dms _ tools v1 < http : / / jbloomlab . github . io / dms _ tools / > ` _ .
The return value is the tuple : * ( sites , wts , pi _ means , pi _ 95credint , h ) *
where * sites * , * wts * , * pi _ means * , and * pi _ 95credint * will all
have the same values used to write the file with * WritePreferences * ,
and * h * is a dictionary with * h [ r ] * giving the site entropy ( log base
2 ) for each * r * in * sites * ."""
|
charmatch = re . compile ( '^PI_([A-z\*\-]+)$' )
if isinstance ( f , str ) :
f = open ( f )
lines = f . readlines ( )
f . close ( )
else :
lines = f . readlines ( )
characters = [ ]
sites = [ ]
wts = { }
pi_means = { }
pi_95credint = { }
h = { }
for line in lines :
if line . isspace ( ) :
continue
elif line [ 0 ] == '#' and not characters :
entries = line [ 1 : ] . strip ( ) . split ( )
if len ( entries ) < 4 :
raise ValueError ( "Insufficient entries in header:\n%s" % line )
if not ( entries [ 0 ] in [ 'POSITION' , 'SITE' ] and entries [ 1 ] [ : 2 ] == 'WT' and entries [ 2 ] == 'SITE_ENTROPY' ) :
raise ValueError ( "Not the correct first three header columns:\n%s" % line )
i = 3
while i < len ( entries ) and charmatch . search ( entries [ i ] ) :
characters . append ( charmatch . search ( entries [ i ] ) . group ( 1 ) )
i += 1
if i == len ( entries ) :
pi_95credint = None
linelength = len ( characters ) + 3
else :
if not len ( entries ) - i == len ( characters ) :
raise ValueError ( "Header line does not have valid credible interval format:\n%s" % line )
if not all ( [ entries [ i + j ] == 'PI_%s_95' % characters [ j ] for j in range ( len ( characters ) ) ] ) :
raise ValueError ( "mean and credible interval character mismatch in header:\n%s" % line )
linelength = 2 * len ( characters ) + 3
elif line [ 0 ] == '#' :
continue
elif not characters :
raise ValueError ( "Found data lines before encountering a valid header" )
else :
entries = line . strip ( ) . split ( )
if len ( entries ) != linelength :
raise ValueError ( "Line does not have expected %d entries:\n%s" % ( linelength , line ) )
r = entries [ 0 ]
assert r not in sites , "Duplicate site of %s" % r
sites . append ( r )
wts [ r ] = entries [ 1 ]
assert entries [ 1 ] in characters or entries [ 1 ] == '?' , "Character %s is not one of the valid ones in header. Valid possibilities: %s" % ( entries [ 1 ] , ', ' . join ( characters ) )
h [ r ] = float ( entries [ 2 ] )
pi_means [ r ] = dict ( [ ( x , float ( entries [ 3 + i ] ) ) for ( i , x ) in enumerate ( characters ) ] )
if pi_95credint != None :
pi_95credint [ r ] = dict ( [ ( x , ( float ( entries [ 3 + len ( characters ) + i ] . split ( ',' ) [ 0 ] ) , float ( entries [ 3 + len ( characters ) + i ] . split ( ',' ) [ 1 ] ) ) ) for ( i , x ) in enumerate ( characters ) ] )
return ( sites , wts , pi_means , pi_95credint , h )
|
def get_generator ( tweet ) :
"""Get information about the application that generated the Tweet
Args :
tweet ( Tweet ) : A Tweet object ( or a dictionary )
Returns :
dict : keys are ' link ' and ' name ' , the web link and the name
of the application
Example :
> > > from tweet _ parser . getter _ methods . tweet _ generator import get _ generator
> > > original _ format _ dict = {
. . . " created _ at " : " Wed May 24 20:17:19 + 0000 2017 " ,
. . . " source " : ' < a href = " http : / / twitter . com " rel = " nofollow " > Twitter Web Client < / a > '
> > > get _ generator ( original _ format _ dict )
{ ' link ' : ' http : / / twitter . com ' , ' name ' : ' Twitter Web Client ' }
> > > activity _ streams _ format _ dict = {
. . . " postedTime " : " 2017-05-24T20:17:19.000Z " ,
. . . " generator " :
. . . { " link " : " http : / / twitter . com " ,
. . . " displayName " : " Twitter Web Client " }
> > > get _ generator ( activity _ streams _ format _ dict )
{ ' link ' : ' http : / / twitter . com ' , ' name ' : ' Twitter Web Client ' }"""
|
if is_original_format ( tweet ) :
if sys . version_info [ 0 ] == 3 and sys . version_info [ 1 ] >= 4 :
parser = GeneratorHTMLParser ( convert_charrefs = True )
else :
parser = GeneratorHTMLParser ( )
parser . feed ( tweet [ "source" ] )
return { "link" : parser . generator_link , "name" : parser . generator_name }
else :
return { "link" : tweet [ "generator" ] [ "link" ] , "name" : tweet [ "generator" ] [ "displayName" ] }
|
def uhash ( self , val ) :
"""Calculate hash from unicode value and return hex value as unicode"""
|
if not isinstance ( val , string_types ) :
raise _TypeError ( "val" , "str" , val )
return codecs . encode ( self . hash ( val . encode ( "utf-8" ) ) , "hex_codec" ) . decode ( "utf-8" )
|
def round_to_x_digits ( number , digits ) :
"""Returns ' number ' rounded to ' digits ' digits ."""
|
return round ( number * math . pow ( 10 , digits ) ) / math . pow ( 10 , digits )
|
def all_origins ( m ) :
'''Generate all unique statement origins in the given model'''
|
seen = set ( )
for link in m . match ( ) :
origin = link [ ORIGIN ]
if origin not in seen :
seen . add ( origin )
yield origin
|
def override ( func ) :
"""THIS DECORATOR WILL PUT ALL PARAMETERS INTO THE ` kwargs ` PARAMETER AND
THEN PUT ALL ` kwargs ` PARAMETERS INTO THE FUNCTION PARAMETERS . THIS HAS
THE BENEFIT OF HAVING ALL PARAMETERS IN ONE PLACE ( kwargs ) , PLUS ALL
PARAMETERS ARE EXPLICIT FOR CLARITY .
OF COURSE , THIS MEANS PARAMETER ASSIGNMENT MAY NOT BE UNIQUE : VALUES CAN
COME FROM EXPLICIT CALL PARAMETERS , OR FROM THE kwargs PARAMETER . IN
THESE CASES , PARAMETER VALUES ARE CHOSEN IN THE FOLLOWING ORDER :
1 ) EXPLICT CALL PARAMETERS
2 ) PARAMETERS FOUND IN kwargs
3 ) DEFAULT VALUES ASSIGNED IN FUNCTION DEFINITION"""
|
func_name = get_function_name ( func )
params = get_function_arguments ( func )
if not get_function_defaults ( func ) :
defaults = { }
else :
defaults = { k : v for k , v in zip ( reversed ( params ) , reversed ( get_function_defaults ( func ) ) ) }
def raise_error ( e , packed ) :
err = text_type ( e )
e = Except . wrap ( e )
if err . startswith ( func_name ) and ( "takes at least" in err or "required positional argument" in err ) :
missing = [ p for p in params if str ( p ) not in packed ]
given = [ p for p in params if str ( p ) in packed ]
if not missing :
raise e
else :
get_logger ( ) . error ( "Problem calling {{func_name}}: Expecting parameter {{missing}}, given {{given}}" , func_name = func_name , missing = missing , given = given , stack_depth = 2 , cause = e )
raise e
if "kwargs" not in params : # WE ASSUME WE ARE ONLY ADDING A kwargs PARAMETER TO SOME REGULAR METHOD
def wo_kwargs ( * args , ** kwargs ) :
settings = kwargs . get ( "kwargs" )
ordered_params = dict ( zip ( params , args ) )
packed = params_pack ( params , ordered_params , kwargs , settings , defaults )
try :
return func ( ** packed )
except TypeError as e :
raise_error ( e , packed )
return wo_kwargs
elif func_name in ( "__init__" , "__new__" ) :
def w_constructor ( * args , ** kwargs ) :
if "kwargs" in kwargs :
packed = params_pack ( params , dict_zip ( params [ 1 : ] , args [ 1 : ] ) , kwargs , kwargs [ "kwargs" ] , defaults )
elif len ( args ) == 2 and len ( kwargs ) == 0 and is_data ( args [ 1 ] ) : # ASSUME SECOND UNNAMED PARAM IS kwargs
packed = params_pack ( params , args [ 1 ] , defaults )
else : # DO NOT INCLUDE self IN kwargs
packed = params_pack ( params , dict_zip ( params [ 1 : ] , args [ 1 : ] ) , kwargs , defaults )
try :
return func ( args [ 0 ] , ** packed )
except TypeError as e :
packed [ 'self' ] = args [ 0 ]
# DO NOT SAY IS MISSING
raise_error ( e , packed )
return w_constructor
elif params [ 0 ] == "self" :
def w_bound_method ( * args , ** kwargs ) :
if len ( args ) == 2 and len ( kwargs ) == 0 and is_data ( args [ 1 ] ) : # ASSUME SECOND UNNAMED PARAM IS kwargs
packed = params_pack ( params , args [ 1 ] , defaults )
elif "kwargs" in kwargs and is_data ( kwargs [ "kwargs" ] ) : # PUT args INTO kwargs
packed = params_pack ( params , kwargs , dict_zip ( params [ 1 : ] , args [ 1 : ] ) , kwargs [ "kwargs" ] , defaults )
else :
packed = params_pack ( params , kwargs , dict_zip ( params [ 1 : ] , args [ 1 : ] ) , defaults )
try :
return func ( args [ 0 ] , ** packed )
except TypeError as e :
raise_error ( e , packed )
return w_bound_method
else :
def w_kwargs ( * args , ** kwargs ) :
if len ( args ) == 1 and len ( kwargs ) == 0 and is_data ( args [ 0 ] ) : # ASSUME SINGLE PARAMETER IS kwargs
packed = params_pack ( params , args [ 0 ] , defaults )
elif "kwargs" in kwargs and is_data ( kwargs [ "kwargs" ] ) : # PUT args INTO kwargs
packed = params_pack ( params , kwargs , dict_zip ( params , args ) , kwargs [ "kwargs" ] , defaults )
else : # PULL kwargs OUT INTO PARAMS
packed = params_pack ( params , kwargs , dict_zip ( params , args ) , defaults )
try :
return func ( ** packed )
except TypeError as e :
raise_error ( e , packed )
return w_kwargs
|
def delete_topics ( self , topics , timeout_ms = None ) :
"""Delete topics from the cluster .
: param topics : A list of topic name strings .
: param timeout _ ms : Milliseconds to wait for topics to be deleted
before the broker returns .
: return : Appropriate version of DeleteTopicsResponse class ."""
|
version = self . _matching_api_version ( DeleteTopicsRequest )
timeout_ms = self . _validate_timeout ( timeout_ms )
if version <= 1 :
request = DeleteTopicsRequest [ version ] ( topics = topics , timeout = timeout_ms )
response = self . _send_request_to_controller ( request )
else :
raise NotImplementedError ( "Support for DeleteTopics v{} has not yet been added to KafkaAdminClient." . format ( version ) )
return response
|
def set_weather_from_metar ( metar : typing . Union [ Metar . Metar , str ] , in_file : typing . Union [ str , Path ] , out_file : typing . Union [ str , Path ] = None ) -> typing . Tuple [ typing . Union [ str , None ] , typing . Union [ str , None ] ] :
"""Applies the weather from a METAR object to a MIZ file
Args :
metar : metar object
in _ file : path to MIZ file
out _ file : path to output MIZ file ( will default to in _ file )
Returns : tuple of error , success"""
|
error , metar = custom_metar . CustomMetar . get_metar ( metar )
if error :
return error , None
if metar :
LOGGER . debug ( 'METAR: %s' , metar . code )
in_file = elib . path . ensure_file ( in_file )
if out_file is None :
out_file = in_file
else :
out_file = elib . path . ensure_file ( out_file , must_exist = False )
LOGGER . debug ( 'applying metar: %s -> %s' , in_file , out_file )
try :
LOGGER . debug ( 'building MissionWeather' )
_mission_weather = mission_weather . MissionWeather ( metar )
with Miz ( str ( in_file ) ) as miz :
_mission_weather . apply_to_miz ( miz )
miz . zip ( str ( out_file ) )
return None , f'successfully applied METAR to {in_file}'
except ValueError :
error = f'Unable to apply METAR string to the mission.\n' f'This is most likely due to a freak value, this feature is still experimental.\n' f'I will fix it ASAP !'
return error , None
|
def property_as_list ( self , property_name ) :
"""property ( ) but encapsulates it in a list , if it ' s a
single - element property ."""
|
try :
res = self . _a_tags [ property_name ]
except KeyError :
return [ ]
if type ( res ) == list :
return res
else :
return [ res ]
|
def from_arrays ( cls , arrays , sortorder = None , names = None ) :
"""Convert arrays to MultiIndex .
Parameters
arrays : list / sequence of array - likes
Each array - like gives one level ' s value for each data point .
len ( arrays ) is the number of levels .
sortorder : int or None
Level of sortedness ( must be lexicographically sorted by that
level ) .
names : list / sequence of str , optional
Names for the levels in the index .
Returns
index : MultiIndex
See Also
MultiIndex . from _ tuples : Convert list of tuples to MultiIndex .
MultiIndex . from _ product : Make a MultiIndex from cartesian product
of iterables .
MultiIndex . from _ frame : Make a MultiIndex from a DataFrame .
Examples
> > > arrays = [ [ 1 , 1 , 2 , 2 ] , [ ' red ' , ' blue ' , ' red ' , ' blue ' ] ]
> > > pd . MultiIndex . from _ arrays ( arrays , names = ( ' number ' , ' color ' ) )
MultiIndex ( levels = [ [ 1 , 2 ] , [ ' blue ' , ' red ' ] ] ,
codes = [ [ 0 , 0 , 1 , 1 ] , [ 1 , 0 , 1 , 0 ] ] ,
names = [ ' number ' , ' color ' ] )"""
|
error_msg = "Input must be a list / sequence of array-likes."
if not is_list_like ( arrays ) :
raise TypeError ( error_msg )
elif is_iterator ( arrays ) :
arrays = list ( arrays )
# Check if elements of array are list - like
for array in arrays :
if not is_list_like ( array ) :
raise TypeError ( error_msg )
# Check if lengths of all arrays are equal or not ,
# raise ValueError , if not
for i in range ( 1 , len ( arrays ) ) :
if len ( arrays [ i ] ) != len ( arrays [ i - 1 ] ) :
raise ValueError ( 'all arrays must be same length' )
from pandas . core . arrays . categorical import _factorize_from_iterables
codes , levels = _factorize_from_iterables ( arrays )
if names is None :
names = [ getattr ( arr , "name" , None ) for arr in arrays ]
return MultiIndex ( levels = levels , codes = codes , sortorder = sortorder , names = names , verify_integrity = False )
|
def power_method_opnorm ( op , xstart = None , maxiter = 100 , rtol = 1e-05 , atol = 1e-08 , callback = None ) :
r"""Estimate the operator norm with the power method .
Parameters
op : ` Operator `
Operator whose norm is to be estimated . If its ` Operator . range `
range does not coincide with its ` Operator . domain ` , an
` Operator . adjoint ` must be defined ( which implies that the
operator must be linear ) .
xstart : ` ` op . domain ` ` ` element - like ` , optional
Starting point of the iteration . By default an ` Operator . domain `
element containing noise is used .
maxiter : positive int , optional
Number of iterations to perform . If the domain and range of ` ` op ` `
do not match , it needs to be an even number . If ` ` None ` ` is given ,
iterate until convergence .
rtol : float , optional
Relative tolerance parameter ( see Notes ) .
atol : float , optional
Absolute tolerance parameter ( see Notes ) .
callback : callable , optional
Function called with the current iterate in each iteration .
Returns
est _ opnorm : float
The estimated operator norm of ` ` op ` ` .
Examples
Verify that the identity operator has norm close to 1:
> > > space = odl . uniform _ discr ( 0 , 1 , 5)
> > > id = odl . IdentityOperator ( space )
> > > estimation = power _ method _ opnorm ( id )
> > > round ( estimation , ndigits = 3)
1.0
Notes
The operator norm : math : ` | | A | | ` is defined by as the smallest number
such that
. . math : :
| | A ( x ) | | \ leq | | A | | | | x | |
for all : math : ` x ` in the domain of : math : ` A ` .
The operator is evaluated until ` ` maxiter ` ` operator calls or until the
relative error is small enough . The error measure is given by
` ` abs ( a - b ) < = ( atol + rtol * abs ( b ) ) ` ` ,
where ` ` a ` ` and ` ` b ` ` are consecutive iterates ."""
|
if maxiter is None :
maxiter = np . iinfo ( int ) . max
maxiter , maxiter_in = int ( maxiter ) , maxiter
if maxiter <= 0 :
raise ValueError ( '`maxiter` must be positive, got {}' '' . format ( maxiter_in ) )
if op . domain == op . range :
use_normal = False
ncalls = maxiter
else : # Do the power iteration for A * A ; the norm of A * A ( x _ N ) is then
# an estimate of the square of the operator norm
# We do only half the number of iterations compared to the usual
# case to have the same number of operator evaluations .
use_normal = True
ncalls = maxiter // 2
if ncalls * 2 != maxiter :
raise ValueError ( '``maxiter`` must be an even number for ' 'non-self-adjoint operator, got {}' '' . format ( maxiter_in ) )
# Make sure starting point is ok or select initial guess
if xstart is None :
x = noise_element ( op . domain )
else : # copy to ensure xstart is not modified
x = op . domain . element ( xstart ) . copy ( )
# Take first iteration step to normalize input
x_norm = x . norm ( )
if x_norm == 0 :
raise ValueError ( '``xstart`` must be nonzero' )
x /= x_norm
# utility to calculate opnorm from xnorm
def calc_opnorm ( x_norm ) :
if use_normal :
return np . sqrt ( x_norm )
else :
return x_norm
# initial guess of opnorm
opnorm = calc_opnorm ( x_norm )
# temporary to improve performance
tmp = op . range . element ( )
# Use the power method to estimate opnorm
for i in range ( ncalls ) :
if use_normal :
op ( x , out = tmp )
op . adjoint ( tmp , out = x )
else :
op ( x , out = tmp )
x , tmp = tmp , x
# Calculate x norm and verify it is valid
x_norm = x . norm ( )
if x_norm == 0 :
raise ValueError ( 'reached ``x=0`` after {} iterations' . format ( i ) )
if not np . isfinite ( x_norm ) :
raise ValueError ( 'reached nonfinite ``x={}`` after {} iterations' '' . format ( x , i ) )
# Calculate opnorm
opnorm , opnorm_old = calc_opnorm ( x_norm ) , opnorm
# If the breaking condition holds , stop . Else rescale and go on .
if np . isclose ( opnorm , opnorm_old , rtol , atol ) :
break
else :
x /= x_norm
if callback is not None :
callback ( x )
return opnorm
|
def handle_input ( self , input_hdr ) :
"""This method tries to ensure that the input data has the correct dimensions .
INPUTS :
input _ hdr ( no default ) Header from which data shape is to be extracted ."""
|
input_slice = input_hdr [ 'NAXIS' ] * [ 0 ]
for i in range ( input_hdr [ 'NAXIS' ] ) :
if input_hdr [ 'CTYPE%d' % ( i + 1 ) ] . startswith ( "RA" ) :
input_slice [ - 1 ] = slice ( None )
if input_hdr [ 'CTYPE%d' % ( i + 1 ) ] . startswith ( "DEC" ) :
input_slice [ - 2 ] = slice ( None )
return input_slice
|
def _remote_folder ( dirpath , remotes , syn ) :
"""Retrieve the remote folder for files , creating if necessary ."""
|
if dirpath in remotes :
return remotes [ dirpath ] , remotes
else :
parent_dir , cur_dir = os . path . split ( dirpath )
parent_folder , remotes = _remote_folder ( parent_dir , remotes , syn )
s_cur_dir = syn . store ( synapseclient . Folder ( cur_dir , parent = parent_folder ) )
remotes [ dirpath ] = s_cur_dir . id
return s_cur_dir . id , remotes
|
def feed_appdata ( self , data , offset = 0 ) :
"""Feed plaintext data into the pipe .
Return an ( ssldata , offset ) tuple . The ssldata element is a list of
buffers containing record level data that needs to be sent to the
remote SSL instance . The offset is the number of plaintext bytes that
were processed , which may be less than the length of data .
NOTE : In case of short writes , this call MUST be retried with the SAME
buffer passed into the * data * argument ( i . e . the ` ` id ( ) ` ` must be the
same ) . This is an OpenSSL requirement . A further particularity is that
a short write will always have offset = = 0 , because the _ ssl module
does not enable partial writes . And even though the offset is zero ,
there will still be encrypted data in ssldata ."""
|
if self . _state == self . S_UNWRAPPED : # pass through data in unwrapped mode
return ( [ data [ offset : ] ] if offset < len ( data ) else [ ] , len ( data ) )
ssldata = [ ]
view = memoryview ( data )
while True :
self . _need_ssldata = False
try :
if offset < len ( view ) :
offset += self . _sslobj . write ( view [ offset : ] )
except ssl . SSLError as e : # It is not allowed to call write ( ) after unwrap ( ) until the
# close _ notify is acknowledged . We return the condition to the
# caller as a short write .
if sslcompat . get_reason ( e ) == 'PROTOCOL_IS_SHUTDOWN' :
e . errno = ssl . SSL_ERROR_WANT_READ
if e . errno not in ( ssl . SSL_ERROR_WANT_READ , ssl . SSL_ERROR_WANT_WRITE , ssl . SSL_ERROR_SYSCALL ) :
raise
self . _need_ssldata = e . errno == ssl . SSL_ERROR_WANT_READ
# See if there ' s any record level data back for us .
if self . _outgoing . pending :
ssldata . append ( self . _outgoing . read ( ) )
if offset == len ( view ) or self . _need_ssldata :
break
return ( ssldata , offset )
|
def argsort ( self , axis = - 1 , kind = 'quicksort' , order = None ) :
"""Returns the indices that would sort an array .
. . note : :
This method wraps ` numpy . argsort ` . This documentation is
modified from that of ` numpy . argsort ` .
Perform an indirect sort along the given axis using the algorithm
specified by the ` kind ` keyword . It returns an array of indices of the
same shape as the original array that index data along the given axis
in sorted order .
* * Parameters * *
* * axis * * : int or None , optional
Axis along which to sort . The default is - 1 ( the last
axis ) . If ` None ` , the flattened array is used .
* * kind * * : { ' quicksort ' , ' mergesort ' , ' heapsort ' } , optional
Sorting algorithm .
* * order * * : list , optional
This argument specifies which fields to compare first ,
second , etc . Not all fields need be specified .
* * Returns * *
* * index _ array * * : ndarray , int
Array of indices that sort the tabarray along the
specified axis . In other words , ` ` a [ index _ array ] ` `
yields a sorted ` a ` .
* * See Also * *
sort : Describes sorting algorithms used .
lexsort : Indirect stable sort with multiple keys .
ndarray . sort : Inplace sort .
* * Notes * *
See ` numpy . sort ` for notes on the different sorting
algorithms .
* * Examples * *
Sorting with keys :
> > > x = tabarray ( [ ( 1 , 0 ) , ( 0 , 1 ) ] , dtype = [ ( ' x ' , ' < i4 ' ) , ( ' y ' , ' < i4 ' ) ] )
tabarray ( [ ( 1 , 0 ) , ( 0 , 1 ) ] ,
dtype = [ ( ' x ' , ' < i4 ' ) , ( ' y ' , ' < i4 ' ) ] )
> > > x . argsort ( order = ( ' x ' , ' y ' ) )
array ( [ 1 , 0 ] )
> > > x . argsort ( order = ( ' y ' , ' x ' ) )
array ( [ 0 , 1 ] )"""
|
index_array = np . core . fromnumeric . _wrapit ( self , 'argsort' , axis , kind , order )
index_array = index_array . view ( np . ndarray )
return index_array
|
def delete_all ( self ) :
'''Delete all books from the index'''
|
def delete_action_gen ( ) :
scanner = scan ( self . es , index = self . index_name , query = { 'query' : { 'match_all' : { } } } )
for v in scanner :
yield { '_op_type' : 'delete' , '_index' : self . index_name , '_type' : v [ '_type' ] , '_id' : v [ '_id' ] , }
bulk ( self . es , delete_action_gen ( ) )
|
def find_id ( self , element_id ) :
"""Find a single element with the given ID .
Parameters
element _ id : str
ID of the element to find
Returns
found element"""
|
element = _transform . FigureElement . find_id ( self , element_id )
return Element ( element . root )
|
def level_i18n_name ( self ) :
"""In use within templates for dynamic translations ."""
|
for level , name in spatial_granularities :
if self . level == level :
return name
return self . level_name
|
def tauc_from_mass ( mass_g ) :
"""Estimate the convective turnover time from mass , using the method described
in Cook + ( 2014ApJ . . . 785 . . . 10C ) .
mass _ g - UCD mass in grams .
Returns : the convective turnover timescale in seconds .
Masses larger than 1.3 Msun are out of range and yield NaN . If the mass is
< 0.1 Msun , the turnover time is fixed at 70 days .
The Cook method was inspired by the description in McLean +
(2012ApJ . . . 746 . . . 23M ) . It is a hybrid of the method described in Reiners &
Basri ( 2010ApJ . . . 710 . . 924R ) and the data shown in Kiraga & Stepien
(2007AcA . . . . 57 . . 149K ) . However , this version imposes the 70 - day cutoff in
terms of mass , not spectral type , so that it is entirely defined in terms
of a single quantity .
There are discontinuities between the different break points ! Any future
use should tweak the coefficients to make everything smooth ."""
|
m = mass_g / cgs . msun
return np . piecewise ( m , [ m < 1.3 , m < 0.82 , m < 0.65 , m < 0.1 ] , [ lambda x : 61.7 - 44.7 * x , 25. , lambda x : 86.9 - 94.3 * x , 70. , np . nan ] ) * 86400.
|
def action_display ( self ) :
'''The action text , with any hyperlinked related entities .'''
|
action = self [ 'action' ]
annotations = [ ]
abbr = self . bill [ settings . LEVEL_FIELD ]
if 'related_entities' in self :
for entity in self [ 'related_entities' ] :
name = entity [ 'name' ]
_id = entity [ 'id' ]
# If the importer couldn ' t ID the entity ,
# skip .
if _id is None :
continue
url = mongoid_2_url ( abbr , _id )
link = '<a href="%s">%s</a>' % ( url , name )
if name in action :
action = action . replace ( entity [ 'name' ] , link )
else :
annotations . append ( link )
if annotations :
action += ' (%s)' % ', ' . join ( annotations )
return action
|
def export_to_dicts ( table , * args , ** kwargs ) :
"""Export a ` rows . Table ` to a list of dicts"""
|
field_names = table . field_names
return [ { key : getattr ( row , key ) for key in field_names } for row in table ]
|
def _index_range ( self , version , symbol , date_range = None , ** kwargs ) :
"""Given a version , read the segment _ index and return the chunks associated
with the date _ range . As the segment index is ( id - > last datetime )
we need to take care in choosing the correct chunks ."""
|
if date_range and 'segment_index' in version : # index is read - only but it ' s never written to
index = np . frombuffer ( decompress ( version [ 'segment_index' ] ) , dtype = INDEX_DTYPE )
dtcol = self . _datetime64_index ( index )
if dtcol and len ( index ) :
dts = index [ dtcol ]
start , end = _start_end ( date_range , dts )
if start > dts [ - 1 ] :
return - 1 , - 1
idxstart = min ( np . searchsorted ( dts , start ) , len ( dts ) - 1 )
idxend = min ( np . searchsorted ( dts , end , side = 'right' ) , len ( dts ) - 1 )
return int ( index [ 'index' ] [ idxstart ] ) , int ( index [ 'index' ] [ idxend ] + 1 )
return super ( PandasStore , self ) . _index_range ( version , symbol , ** kwargs )
|
def _determine_filtered_package_names ( self ) :
"""Return a list of package names to be filtered base on the configuration
file ."""
|
# This plugin only processes packages , if the line in the packages
# configuration contains a PEP440 specifier it will be processed by the
# blacklist release filter . So we need to remove any packages that
# are not applicable for this plugin .
filtered_packages = set ( )
try :
lines = self . configuration [ "blacklist" ] [ "packages" ]
package_lines = lines . split ( "\n" )
except KeyError :
package_lines = [ ]
for package_line in package_lines :
package_line = package_line . strip ( )
if not package_line or package_line . startswith ( "#" ) :
continue
package_requirement = Requirement ( package_line )
if package_requirement . specifier :
continue
if package_requirement . name != package_line :
logger . debug ( "Package line %r does not requirement name %r" , package_line , package_requirement . name , )
continue
filtered_packages . add ( package_line )
logger . debug ( "Project blacklist is %r" , list ( filtered_packages ) )
return list ( filtered_packages )
|
def from_api ( cls , api ) :
"""create an application description for the todo app ,
that based on the api can use either tha api or the ux for interaction"""
|
ux = TodoUX ( api )
from . pseudorpc import PseudoRpc
rpc = PseudoRpc ( api )
return cls ( { ViaAPI : api , ViaUX : ux , ViaRPC : rpc } )
|
def formatted ( self ) :
"""str : The IBAN formatted in blocks of 4 digits ."""
|
return ' ' . join ( self . compact [ i : i + 4 ] for i in range ( 0 , len ( self . compact ) , 4 ) )
|
def normalize_value ( text ) :
"""This removes newlines and multiple spaces from a string ."""
|
result = text . replace ( '\n' , ' ' )
result = re . subn ( '[ ]{2,}' , ' ' , result ) [ 0 ]
return result
|
def get_name_locations ( self , name ) :
"""Return a list of ` ` ( resource , lineno ) ` ` tuples"""
|
result = [ ]
for module in self . names :
if name in self . names [ module ] :
try :
pymodule = self . project . get_module ( module )
if name in pymodule :
pyname = pymodule [ name ]
module , lineno = pyname . get_definition_location ( )
if module is not None :
resource = module . get_module ( ) . get_resource ( )
if resource is not None and lineno is not None :
result . append ( ( resource , lineno ) )
except exceptions . ModuleNotFoundError :
pass
return result
|
def K_gate_valve_Crane ( D1 , D2 , angle , fd = None ) :
r'''Returns loss coefficient for a gate valve of types wedge disc , double
disc , or plug type , as shown in [ 1 ] _ .
If β = 1 and θ = 0:
. . math : :
K = K _ 1 = K _ 2 = 8f _ d
If β < 1 and θ < = 45 ° :
. . math : :
K _ 2 = \ frac { K + \ sin \ frac { \ theta } { 2 } \ left [ 0.8(1 - \ beta ^ 2)
+ 2.6(1 - \ beta ^ 2 ) ^ 2 \ right ] } { \ beta ^ 4}
If β < 1 and θ > 45 ° :
. . math : :
K _ 2 = \ frac { K + 0.5 \ sqrt { \ sin \ frac { \ theta } { 2 } } ( 1 - \ beta ^ 2)
+ ( 1 - \ beta ^ 2 ) ^ 2 } { \ beta ^ 4}
Parameters
D1 : float
Diameter of the valve seat bore ( must be smaller or equal to ` D2 ` ) , [ m ]
D2 : float
Diameter of the pipe attached to the valve , [ m ]
angle : float
Angle formed by the reducer in the valve , [ degrees ]
fd : float , optional
Darcy friction factor calculated for the actual pipe flow in clean
steel ( roughness = 0.0018 inch ) in the fully developed turbulent
region ; do not specify this to use the original Crane friction factor !
Returns
K : float
Loss coefficient with respect to the pipe inside diameter [ - ]
Notes
This method is not valid in the laminar regime and the pressure drop will
be underestimated in those conditions [ 2 ] _ .
Examples
Example 7-4 in [ 1 ] _ ; a 150 by 100 mm class 600 steel gate valve , conically
tapered ports , length 550 mm , back of sear ring ~ 150 mm . The valve is
connected to 146 mm schedule 80 pipe . The angle can be calculated to be
13 degrees . The valve is specified to be operating in turbulent conditions .
> > > K _ gate _ valve _ Crane ( D1 = . 1 , D2 = . 146 , angle = 13.115)
1.1466029421844073
The calculated result is lower than their value of 1.22 ; the difference is
due to Crane ' s generous intermediate rounding . A later , Imperial edition of
Crane rounds differently - and comes up with K = 1.06.
References
. . [ 1 ] Crane Co . Flow of Fluids Through Valves , Fittings , and Pipe . Crane ,
2009.
. . [ 2 ] Harvey Wilson . " Pressure Drop in Pipe Fittings and Valves |
Equivalent Length and Resistance Coefficient . " Katmar Software . Accessed
July 28 , 2017 . http : / / www . katmarsoftware . com / articles / pipe - fitting - pressure - drop . htm .'''
|
angle = radians ( angle )
beta = D1 / D2
if fd is None :
fd = ft_Crane ( D2 )
K1 = 8.0 * fd
# This does not refer to upstream loss per se
if beta == 1 or angle == 0 :
return K1
# upstream and down
else :
beta2 = beta * beta
one_m_beta2 = 1.0 - beta2
if angle <= 0.7853981633974483 :
K = ( K1 + sin ( 0.5 * angle ) * ( 0.8 * one_m_beta2 + 2.6 * one_m_beta2 * one_m_beta2 ) ) / ( beta2 * beta2 )
else :
K = ( K1 + 0.5 * ( sin ( 0.5 * angle ) ) ** 0.5 * one_m_beta2 + one_m_beta2 * one_m_beta2 ) / ( beta2 * beta2 )
return K
|
def update_from_dict ( self , keywords ) :
"""Update metadata value from a keywords dictionary .
: param keywords :
: return :"""
|
super ( ImpactLayerMetadata , self ) . update_from_dict ( keywords )
if 'if_provenance' in list ( keywords . keys ( ) ) :
if_provenance = keywords [ 'if_provenance' ]
for provenance_step in if_provenance :
self . provenance . append_provenance_step ( provenance_step )
|
def call_method ( self , method , * args ) :
"""Call a JSON - RPC method and wait for its result .
The * method * is called with positional arguments * args * .
On success , the ` ` result ` ` field from the JSON - RPC response is
returned . On error , a : class : ` JsonRpcError ` is raised , which you can
use to access the ` ` error ` ` field of the JSON - RPC response ."""
|
message = self . _version . create_request ( method , args )
msgid = message [ 'id' ]
try :
with switch_back ( self . _timeout ) as switcher :
self . _method_calls [ msgid ] = switcher
self . send_message ( message )
args , _ = self . _hub . switch ( )
finally :
self . _method_calls . pop ( msgid , None )
response = args [ 0 ]
assert response [ 'id' ] == msgid
error = response . get ( 'error' )
if error is not None :
raise JsonRpcError ( 'error response calling "{}"' . format ( method ) , error )
return response [ 'result' ]
|
def GlobForPaths ( self , paths , pathtype = "OS" , root_path = None , process_non_regular_files = False , collect_ext_attrs = False ) :
"""Starts the Glob .
This is the main entry point for this flow mixin .
First we convert the pattern into regex components , and then we
interpolate each component . Finally , we generate a cartesian product of all
combinations .
Args :
paths : A list of GlobExpression instances .
pathtype : The pathtype to use for creating pathspecs .
root _ path : A pathspec where to start searching from .
process _ non _ regular _ files : Work with all kinds of files - not only with
regular ones .
collect _ ext _ attrs : Whether to gather information about file extended
attributes ."""
|
patterns = [ ]
if not paths : # Nothing to do .
return
self . state . pathtype = pathtype
self . state . root_path = root_path
self . state . process_non_regular_files = process_non_regular_files
self . state . collect_ext_attrs = collect_ext_attrs
# Transform the patterns by substitution of client attributes . When the
# client has multiple values for an attribute , this generates multiple
# copies of the pattern , one for each variation . e . g . :
# / home / % % Usernames % % / * - > [ / home / user1 / * , / home / user2 / * ]
for path in paths :
patterns . extend ( path . Interpolate ( knowledge_base = self . client_knowledge_base ) )
# Sort the patterns so that if there are files whose paths conflict with
# directory paths , the files get handled after the conflicting directories
# have been added to the component tree .
patterns . sort ( key = len , reverse = True )
# Expand each glob pattern into a list of components . A component is either
# a wildcard or a literal component .
# e . g . / usr / lib / * . exe - > [ ' / usr / lib ' , ' . * . exe ' ]
# We build a tree for each component such that duplicated components are
# merged . We do not need to reissue the same client requests for the same
# components . For example , the patterns :
# ' / home / % % Usernames % % * ' - > { ' / home / ' : {
# ' syslog . * \ \ Z ( ? ms ) ' : { } , ' test . * \ \ Z ( ? ms ) ' : { } } }
# Note : The component tree contains serialized pathspecs in dicts .
for pattern in patterns : # The root node .
curr_node = self . state . component_tree
components = self . ConvertGlobIntoPathComponents ( pattern )
for i , curr_component in enumerate ( components ) :
is_last_component = i == len ( components ) - 1
next_node = curr_node . get ( curr_component . SerializeToString ( ) , { } )
if is_last_component and next_node : # There is a conflicting directory already existing in the tree .
# Replace the directory node with a node representing this file .
curr_node [ curr_component . SerializeToString ( ) ] = { }
else :
curr_node = curr_node . setdefault ( curr_component . SerializeToString ( ) , { } )
root_path = next ( iterkeys ( self . state . component_tree ) )
self . CallStateInline ( messages = [ None ] , next_state = "ProcessEntry" , request_data = dict ( component_path = [ root_path ] ) )
|
def main ( ) :
"""Return 0 on success ."""
|
args = parse_args ( )
if not args . files :
return 0
with enable_sphinx_if_possible ( ) :
status = 0
pool = multiprocessing . Pool ( multiprocessing . cpu_count ( ) )
try :
if len ( args . files ) > 1 :
results = pool . map ( _check_file , [ ( name , args ) for name in args . files ] )
else : # This is for the case where we read from standard in .
results = [ _check_file ( ( args . files [ 0 ] , args ) ) ]
for ( filename , errors ) in results :
for error in errors :
line_number = error [ 0 ]
message = error [ 1 ]
if not re . match ( r'\([A-Z]+/[0-9]+\)' , message ) :
message = '(ERROR/3) ' + message
output_message ( '{}:{}: {}' . format ( filename , line_number , message ) )
status = 1
except ( IOError , UnicodeError ) as exception :
output_message ( exception )
status = 1
return status
|
def get_symbol_returns_from_yahoo ( symbol , start = None , end = None ) :
"""Wrapper for pandas . io . data . get _ data _ yahoo ( ) .
Retrieves prices for symbol from yahoo and computes returns
based on adjusted closing prices .
Parameters
symbol : str
Symbol name to load , e . g . ' SPY '
start : pandas . Timestamp compatible , optional
Start date of time period to retrieve
end : pandas . Timestamp compatible , optional
End date of time period to retrieve
Returns
pandas . DataFrame
Returns of symbol in requested period ."""
|
try :
px = web . get_data_yahoo ( symbol , start = start , end = end )
px [ 'date' ] = pd . to_datetime ( px [ 'date' ] )
px . set_index ( 'date' , drop = False , inplace = True )
rets = px [ [ 'adjclose' ] ] . pct_change ( ) . dropna ( )
except Exception as e :
warnings . warn ( 'Yahoo Finance read failed: {}, falling back to Google' . format ( e ) , UserWarning )
px = web . get_data_google ( symbol , start = start , end = end )
rets = px [ [ 'Close' ] ] . pct_change ( ) . dropna ( )
rets . index = rets . index . tz_localize ( "UTC" )
rets . columns = [ symbol ]
return rets
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.