signature
stringlengths
29
44.1k
implementation
stringlengths
0
85.2k
def navigate ( self , name , * args ) : """Navigate to a route * @ param { String } name Route name * @ param { * } arg A single argument to pass to the route handler"""
if name not in self . routes : raise Exception ( 'invalid route name \'%s\'' % name ) elif callable ( self . routes [ name ] ) : return self . routes [ name ] ( self , * args ) raise Exception ( 'route %s not callable' , name )
def up_ec2 ( connection , region , instance_id , wait_for_ssh_available = True , log = False , timeout = 600 ) : """boots an existing ec2 _ instance"""
# boot the ec2 instance instance = connection . start_instances ( instance_ids = instance_id ) [ 0 ] instance . update ( ) while instance . state != "running" and timeout > 1 : log_yellow ( "Instance state: %s" % instance . state ) if log : log_yellow ( "Instance state: %s" % instance . state ) sleep ( 10 ) timeout = timeout - 10 instance . update ( ) # and make sure we don ' t return until the instance is fully up if wait_for_ssh_available : wait_for_ssh ( instance . ip_address )
def main ( ) : """This is a Toil pipeline used to perform alignment of fastqs ."""
# Define Parser object and add to Toil if mock_mode ( ) : usage_msg = 'You have the TOIL_SCRIPTS_MOCK_MODE environment variable set, so this pipeline ' 'will run in mock mode. To disable mock mode, set TOIL_SCRIPTS_MOCK_MODE=0' else : usage_msg = None parser = argparse . ArgumentParser ( usage = usage_msg ) subparsers = parser . add_subparsers ( dest = 'command' ) subparsers . add_parser ( 'generate-config' , help = 'Generates an editable config in the current working directory.' ) subparsers . add_parser ( 'generate-manifest' , help = 'Generates an editable manifest in the current working directory.' ) subparsers . add_parser ( 'generate' , help = 'Generates a config and manifest in the current working directory.' ) # Run subparser parser_run = subparsers . add_parser ( 'run' , help = 'Runs the ADAM/GATK pipeline' ) default_config = 'adam-gatk-mock.config' if mock_mode ( ) else 'adam-gatk.config' default_manifest = 'adam-gatk-mock-manifest.csv' if mock_mode ( ) else 'adam-gatk-manifest.csv' parser_run . add_argument ( '--config' , default = default_config , type = str , help = 'Path to the (filled in) config file, generated with "generate-config".' ) parser_run . add_argument ( '--manifest' , default = default_manifest , type = str , help = 'Path to the (filled in) manifest file, generated with "generate-manifest". ' '\nDefault value: "%(default)s".' ) Job . Runner . addToilOptions ( parser_run ) args = parser . parse_args ( ) cwd = os . getcwd ( ) if args . command == 'generate-config' or args . command == 'generate' : generate_file ( os . path . join ( cwd , default_config ) , generate_config ) if args . command == 'generate-manifest' or args . command == 'generate' : generate_file ( os . path . join ( cwd , default_manifest ) , generate_manifest ) # Pipeline execution elif args . command == 'run' : require ( os . path . exists ( args . config ) , '{} not found. Please run ' 'generate-config' . format ( args . config ) ) if not hasattr ( args , 'sample' ) : require ( os . path . exists ( args . manifest ) , '{} not found and no samples provided. Please ' 'run "generate-manifest"' . format ( args . manifest ) ) # Parse config parsed_config = { x . replace ( '-' , '_' ) : y for x , y in yaml . load ( open ( args . config ) . read ( ) ) . iteritems ( ) } inputs = argparse . Namespace ( ** parsed_config ) # Parse manifest file uuid_list = [ ] with open ( args . manifest ) as f_manifest : for line in f_manifest : if not line . isspace ( ) and not line . startswith ( '#' ) : uuid_list . append ( line . strip ( ) ) inputs . sort = False if not inputs . dir_suffix : inputs . dir_suffix = '' if not inputs . s3_bucket : inputs . s3_bucket = '' if inputs . master_ip and inputs . num_nodes : raise ValueError ( "Exactly one of master_ip (%s) and num_nodes (%d) must be provided." % ( inputs . master_ip , inputs . num_nodes ) ) if not hasattr ( inputs , 'master_ip' ) and inputs . num_nodes <= 1 : raise ValueError ( 'num_nodes allocates one Spark/HDFS master and n-1 workers, and thus must be greater ' 'than 1. %d was passed.' % inputs . num_nodes ) if ( inputs . pipeline_to_run != "adam" and inputs . pipeline_to_run != "gatk" and inputs . pipeline_to_run != "both" ) : raise ValueError ( "pipeline_to_run must be either 'adam', 'gatk', or 'both'. %s was passed." % inputs . pipeline_to_run ) Job . Runner . startToil ( Job . wrapJobFn ( sample_loop , uuid_list , inputs ) , args )
def get_cardinality ( self , node = None ) : """Returns the cardinality of the node . Throws an error if the CPD for the queried node hasn ' t been added to the network . Parameters node : Any hashable python object ( optional ) . The node whose cardinality we want . If node is not specified returns a dictionary with the given variable as keys and their respective cardinality as values . Returns int or dict : If node is specified returns the cardinality of the node . If node is not specified returns a dictionary with the given variable as keys and their respective cardinality as values . Examples > > > from pgmpy . models import BayesianModel > > > from pgmpy . factors . discrete import TabularCPD > > > student = BayesianModel ( [ ( ' diff ' , ' grade ' ) , ( ' intel ' , ' grade ' ) ] ) > > > cpd _ diff = TabularCPD ( ' diff ' , 2 , [ [ 0.6,0.4 ] ] ) ; > > > cpd _ intel = TabularCPD ( ' intel ' , 2 , [ [ 0.7,0.3 ] ] ) ; > > > cpd _ grade = TabularCPD ( ' grade ' , 2 , [ [ 0.1 , 0.9 , 0.2 , 0.7 ] , . . . [ 0.9 , 0.1 , 0.8 , 0.3 ] ] , . . . [ ' intel ' , ' diff ' ] , [ 2 , 2 ] ) > > > student . add _ cpds ( cpd _ diff , cpd _ intel , cpd _ grade ) > > > student . get _ cardinality ( ) defaultdict ( int , { ' diff ' : 2 , ' grade ' : 2 , ' intel ' : 2 } ) > > > student . get _ cardinality ( ' intel ' )"""
if node : return self . get_cpds ( node ) . cardinality [ 0 ] else : cardinalities = defaultdict ( int ) for cpd in self . cpds : cardinalities [ cpd . variable ] = cpd . cardinality [ 0 ] return cardinalities
def getLinkedAnalyses ( self ) : """Lookup linked Analyses : returns : sorted list of ANs , where the latest AN comes first"""
# Fetch the linked Analyses UIDs refs = get_backreferences ( self , "AnalysisAttachment" ) # fetch the objects by UID and handle nonexisting UIDs gracefully ans = map ( lambda uid : api . get_object_by_uid ( uid , None ) , refs ) # filter out None values ( nonexisting UIDs ) ans = filter ( None , ans ) # sort by physical path , so that attachments coming from an AR with a # higher " - Rn " suffix get sorted correctly . # N . B . the created date is the same , hence we can not use it return sorted ( ans , key = api . get_path , reverse = True )
def center_land ( world ) : """Translate the map horizontally and vertically to put as much ocean as possible at the borders . It operates on elevation and plates map"""
y_sums = world . layers [ 'elevation' ] . data . sum ( 1 ) # 1 = = sum along x - axis y_with_min_sum = y_sums . argmin ( ) if get_verbose ( ) : print ( "geo.center_land: height complete" ) x_sums = world . layers [ 'elevation' ] . data . sum ( 0 ) # 0 = = sum along y - axis x_with_min_sum = x_sums . argmin ( ) if get_verbose ( ) : print ( "geo.center_land: width complete" ) latshift = 0 world . layers [ 'elevation' ] . data = numpy . roll ( numpy . roll ( world . layers [ 'elevation' ] . data , - y_with_min_sum + latshift , axis = 0 ) , - x_with_min_sum , axis = 1 ) world . layers [ 'plates' ] . data = numpy . roll ( numpy . roll ( world . layers [ 'plates' ] . data , - y_with_min_sum + latshift , axis = 0 ) , - x_with_min_sum , axis = 1 ) if get_verbose ( ) : print ( "geo.center_land: width complete" )
def _get_token ( ) : '''Get an auth token'''
username = __opts__ . get ( 'rallydev' , { } ) . get ( 'username' , None ) password = __opts__ . get ( 'rallydev' , { } ) . get ( 'password' , None ) path = 'https://rally1.rallydev.com/slm/webservice/v2.0/security/authorize' result = salt . utils . http . query ( path , decode = True , decode_type = 'json' , text = True , status = True , username = username , password = password , cookies = True , persist_session = True , opts = __opts__ , ) if 'dict' not in result : return None return result [ 'dict' ] [ 'OperationResult' ] [ 'SecurityToken' ]
def get_docargs ( self , args = None , prt = None ) : """Pare down docopt . Return a minimal dictionary and a set containing runtime arg values ."""
# docargs = self . objdoc . get _ docargs ( args , exp _ letters = set ( [ ' o ' , ' t ' , ' p ' , ' c ' ] ) ) docargs = self . objdoc . get_docargs ( args , prt ) self . _chk_docopts ( docargs ) return docargs
def clean_query_Dict ( cls , query_Dict ) : """removes NoneTypes from the dict"""
return { k : v for k , v in query_Dict . items ( ) if v }
def set_data ( self , index , data ) : """Set the complete data for a single line strip . Parameters index : int The index of the line strip to be replaced . data : array - like The data to assign to the selected line strip ."""
self . _pos_tex [ index , : ] = data self . update ( )
def remove_user_from_group ( self , username , groupname ) : """Remove a user from a group . : param username : The user to remove from the group . : param groupname : The group that the user will be removed from ."""
url = self . _options [ 'server' ] + '/rest/api/latest/group/user' x = { 'groupname' : groupname , 'username' : username } self . _session . delete ( url , params = x ) return True
def assign_issue ( issue_key , assignee , server = None , username = None , password = None ) : '''Assign the issue to an existing user . Return ` ` True ` ` when the issue has been properly assigned . issue _ key The JIRA ID of the ticket to manipulate . assignee The name of the user to assign the ticket to . CLI Example : salt ' * ' jira . assign _ issue NET - 123 example _ user'''
jira_ = _get_jira ( server = server , username = username , password = password ) assigned = jira_ . assign_issue ( issue_key , assignee ) return assigned
def _compute_bgid ( self , bg = None ) : """Return a unique identifier for the background data"""
if bg is None : bg = self . _bgdata if isinstance ( bg , qpimage . QPImage ) : # Single QPImage if "identifier" in bg : return bg [ "identifier" ] else : data = [ bg . amp , bg . pha ] for key in sorted ( list ( bg . meta . keys ( ) ) ) : val = bg . meta [ key ] data . append ( "{}={}" . format ( key , val ) ) return hash_obj ( data ) elif ( isinstance ( bg , list ) and isinstance ( bg [ 0 ] , qpimage . QPImage ) ) : # List of QPImage data = [ ] for bgii in bg : data . append ( self . _compute_bgid ( bgii ) ) return hash_obj ( data ) elif ( isinstance ( bg , SeriesData ) and ( len ( bg ) == 1 or len ( bg ) == len ( self ) ) ) : # DataSet return bg . identifier else : raise ValueError ( "Unknown background data type: {}" . format ( bg ) )
def get_combined_size ( tiles ) : """Calculate combined size of tiles ."""
# TODO : Refactor calculating layout to avoid repetition . columns , rows = calc_columns_rows ( len ( tiles ) ) tile_size = tiles [ 0 ] . image . size return ( tile_size [ 0 ] * columns , tile_size [ 1 ] * rows )
def calculate_mrcas ( self , c1 : ClassId , c2 : ClassId ) -> Set [ ClassId ] : """Calculate the MRCA for a class pair"""
G = self . G # reflexive ancestors ancs1 = self . _ancestors ( c1 ) | { c1 } ancs2 = self . _ancestors ( c2 ) | { c2 } common_ancestors = ancs1 & ancs2 redundant = set ( ) for a in common_ancestors : redundant = redundant | nx . ancestors ( G , a ) return common_ancestors - redundant
def get_mean_and_stddevs ( self , sites , rup , dists , imt , stddev_types ) : """See : meth : ` superclass method < . base . GroundShakingIntensityModel . get _ mean _ and _ stddevs > ` for spec of input and result values ."""
# extracting dictionary of coefficients specific to required # intensity measure type . C = self . COEFFS [ imt ] imean = self . _get_mean ( C , rup , dists , sites ) if imt . name in "SA PGA" : # Convert units to g , # but only for PGA and SA ( not PGV ) : mean = np . log ( ( 10.0 ** ( imean - 2.0 ) ) / g ) else : # PGV : mean = np . log ( 10.0 ** imean ) istddevs = self . _get_stddevs ( C , stddev_types , len ( sites . vs30 ) ) stddevs = np . log ( 10.0 ** np . array ( istddevs ) ) return mean + self . adjustment_factor , stddevs
def get_metric ( self , timestamp ) : """Get a metric including all current time series . Get a : class : ` opencensus . metrics . export . metric . Metric ` with one : class : ` opencensus . metrics . export . time _ series . TimeSeries ` for each set of label values with a recorded measurement . Each ` TimeSeries ` has a single point that represents the last recorded value . : type timestamp : : class : ` datetime . datetime ` : param timestamp : Recording time to report , usually the current time . : rtype : : class : ` opencensus . metrics . export . metric . Metric ` or None : return : A converted metric for all current measurements ."""
if not self . points : return None with self . _points_lock : ts_list = get_timeseries_list ( self . points , timestamp ) return metric . Metric ( self . descriptor , ts_list )
def r_get_numbers ( matchgroup , num ) : """A helper function which can be used similarly to fscanf ( fid , ' % f ' , num ) to extract num arguments from the regex iterator"""
res = [ ] for i in range ( num ) : res . append ( float ( matchgroup . next ( ) . group ( ) ) ) return np . array ( res )
def _initialize_context ( self , trace_header ) : """Create a facade segment based on environment variables set by AWS Lambda and initialize storage for subsegments ."""
sampled = None if not global_sdk_config . sdk_enabled ( ) : # Force subsequent subsegments to be disabled and turned into DummySegments . sampled = False elif trace_header . sampled == 0 : sampled = False elif trace_header . sampled == 1 : sampled = True segment = FacadeSegment ( name = 'facade' , traceid = trace_header . root , entityid = trace_header . parent , sampled = sampled , ) setattr ( self . _local , 'segment' , segment ) setattr ( self . _local , 'entities' , [ ] )
def multiply_adjacent_elements ( input_list ) : """This function multiplies neighbouring elements in a given list . Args : input _ list : The list whose consecutive elements are to be multiplied . Returns : A list of the products of neighbouring elements in the input list . Examples : > > > multiply _ adjacent _ elements ( [ 1 , 1 , 3 , 4 , 4 , 5 , 6 , 7 ] ) [1 , 3 , 12 , 16 , 20 , 30 , 42] > > > multiply _ adjacent _ elements ( [ 4 , 5 , 8 , 9 , 6 , 10 ] ) [20 , 40 , 72 , 54 , 60] > > > multiply _ adjacent _ elements ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] ) [2 , 6 , 12 , 20 , 30 , 42 , 56 , 72 , 90]"""
product_list = [ input_list [ i ] * input_list [ i + 1 ] for i in range ( len ( input_list ) - 1 ) ] return product_list
def parse_link ( self , node ) : """Parses < Link > @ param node : Node containing the < Link > element @ type node : xml . etree . Element"""
if 'name' in node . lattrib : name = node . lattrib [ 'name' ] else : self . raise_error ( '<Link> must specify a name' ) if 'type' in node . lattrib : type_ = node . lattrib [ 'type' ] else : self . raise_error ( "Link '{0}' must specify a type" , name ) description = node . lattrib . get ( 'description' , '' ) self . current_component_type . add_link ( Link ( name , type_ , description ) )
def get_wallet_height ( self , id = None , endpoint = None ) : """Get the current wallet index height . Args : id : ( int , optional ) id to use for response tracking endpoint : ( RPCEndpoint , optional ) endpoint to specify to use Returns : json object of the result or the error encountered in the RPC call"""
return self . _call_endpoint ( GET_WALLET_HEIGHT , id = id , endpoint = endpoint )
def voronoi_partition ( G , outline ) : """For 2D - embedded graph ` G ` , within the boundary given by the shapely polygon ` outline ` , returns ` G ` with the Voronoi cell region as an additional node attribute ."""
# following line from vresutils . graph caused a bug # G = polygon _ subgraph ( G , outline , copy = False ) points = list ( vresutils . graph . get_node_attributes ( G , 'pos' ) . values ( ) ) regions = vresutils . graph . voronoi_partition_pts ( points , outline , no_multipolygons = True ) nx . set_node_attributes ( G , 'region' , dict ( zip ( G . nodes ( ) , regions ) ) ) return G
def add_to_manifest ( self , manifest ) : """Add useful details to the manifest about this service so that it can be used in an application . : param manifest : An predix . admin . app . Manifest object instance that manages reading / writing manifest config for a cloud foundry app ."""
# Add this service to list of services manifest . add_service ( self . service . name ) # Add environment variables manifest . add_env_var ( self . __module__ + '.uri' , self . service . settings . data [ 'url' ] ) manifest . add_env_var ( self . __module__ + '.zone_id' , self . get_predix_zone_id ( ) ) manifest . write_manifest ( )
def set_address ( self , host , port ) : """Add host and port attributes"""
self . host = host self . port = port
def _req_fix ( self , line ) : """Fix slacky and salix requirements because many dependencies splitting with " , " and others with " | " """
deps = [ ] for dep in line [ 18 : ] . strip ( ) . split ( "," ) : dep = dep . split ( "|" ) if self . repo == "slacky" : if len ( dep ) > 1 : for d in dep : deps . append ( d . split ( ) [ 0 ] ) dep = "" . join ( dep ) deps . append ( dep . split ( ) [ 0 ] ) else : if len ( dep ) > 1 : for d in dep : deps . append ( d ) deps . append ( dep [ 0 ] ) return deps
def fetch_file ( dataset_name , url , dataset_dir , dataset_prefix = None , default_paths = None , filetype = None , resume = True , overwrite = False , md5sum = None , username = None , password = None , retry = 0 , verbose = 1 , temp_downloads = None ) : """Load requested file , downloading it if needed or requested . : param str url : contains the url of the file to be downloaded . : param str dataset _ dir : path of the data directory . Used for data storage in the specified location . : param bool resume : if true , try to resume partially downloaded files : param overwrite : if bool true and file already exists , delete it . : param str md5sum : MD5 sum of the file . Checked if download of the file is required : param str username : username used for basic HTTP authentication : param str password : password used for basic HTTP authentication : param int verbose : verbosity level ( 0 means no message ) . : returns : absolute path of downloaded file : rtype : str . . note : : If , for any reason , the download procedure fails , all downloaded files are removed ."""
final_path , cached = _get_dataset ( dataset_name , dataset_prefix = dataset_prefix , data_dir = dataset_dir , default_paths = default_paths , verbose = verbose ) if cached and not overwrite : return final_path data_dir = final_path . parent if temp_downloads is None : temp_downloads = NIWORKFLOWS_CACHE_DIR / 'downloads' temp_downloads = Path ( temp_downloads ) temp_downloads . mkdir ( parents = True , exist_ok = True ) # Determine filename using URL parse = urlparse ( url ) file_name = op . basename ( parse . path ) if file_name == '' : file_name = _md5_hash ( parse . path ) if filetype is not None : file_name += filetype temp_full_path = temp_downloads / file_name temp_part_path = temp_full_path . with_name ( file_name + '.part' ) if overwrite : shutil . rmtree ( str ( dataset_dir ) , ignore_errors = True ) if temp_full_path . exists ( ) : temp_full_path . unlink ( ) t_0 = time . time ( ) local_file = None initial_size = 0 # Download data request = Request ( url ) request . add_header ( 'Connection' , 'Keep-Alive' ) if username is not None and password is not None : if not url . startswith ( 'https' ) : raise ValueError ( 'Authentication was requested on a non secured URL ({0!s}).' 'Request has been blocked for security reasons.' . format ( url ) ) # Note : HTTPBasicAuthHandler is not fitted here because it relies # on the fact that the server will return a 401 error with proper # www - authentication header , which is not the case of most # servers . encoded_auth = base64 . b64encode ( ( username + ':' + password ) . encode ( ) ) request . add_header ( b'Authorization' , b'Basic ' + encoded_auth ) if verbose > 0 : displayed_url = url . split ( '?' ) [ 0 ] if verbose == 1 else url NIWORKFLOWS_LOG . info ( 'Downloading data from %s ...' , displayed_url ) if resume and temp_part_path . exists ( ) : # Download has been interrupted , we try to resume it . local_file_size = temp_part_path . stat ( ) . st_size # If the file exists , then only download the remainder request . add_header ( "Range" , "bytes={}-" . format ( local_file_size ) ) try : data = urlopen ( request ) content_range = data . info ( ) . get ( 'Content-Range' ) if ( content_range is None or not content_range . startswith ( 'bytes {}-' . format ( local_file_size ) ) ) : raise IOError ( 'Server does not support resuming' ) except Exception : # A wide number of errors can be raised here . HTTPError , # URLError . . . I prefer to catch them all and rerun without # resuming . if verbose > 0 : NIWORKFLOWS_LOG . warn ( 'Resuming failed, try to download the whole file.' ) return fetch_file ( dataset_name , url , dataset_dir , resume = False , overwrite = overwrite , md5sum = md5sum , username = username , password = password , verbose = verbose ) initial_size = local_file_size mode = 'ab' else : try : data = urlopen ( request ) except ( HTTPError , URLError ) : if retry < MAX_RETRIES : if verbose > 0 : NIWORKFLOWS_LOG . warn ( 'Download failed, retrying (attempt %d)' , retry + 1 ) time . sleep ( 5 ) return fetch_file ( dataset_name , url , dataset_dir , resume = False , overwrite = overwrite , md5sum = md5sum , username = username , password = password , verbose = verbose , retry = retry + 1 ) else : raise mode = 'wb' with temp_part_path . open ( mode ) as local_file : _chunk_read_ ( data , local_file , report_hook = ( verbose > 0 ) , initial_size = initial_size , verbose = verbose ) temp_part_path . replace ( temp_full_path ) delta_t = time . time ( ) - t_0 if verbose > 0 : # Complete the reporting hook sys . stderr . write ( ' ...done. ({0:.0f} seconds, {1:.0f} min)\n' . format ( delta_t , delta_t // 60 ) ) if md5sum is not None : if _md5_sum_file ( temp_full_path ) != md5sum : raise ValueError ( "File {!s} checksum verification has failed." " Dataset fetching aborted." . format ( temp_full_path ) ) if filetype is None : fname , filetype = op . splitext ( temp_full_path . name ) if filetype == '.gz' : fname , ext = op . splitext ( fname ) filetype = ext + filetype if filetype . startswith ( '.' ) : filetype = filetype [ 1 : ] if filetype . startswith ( 'tar' ) : args = 'xf' if not filetype . endswith ( 'gz' ) else 'xzf' sp . check_call ( [ 'tar' , args , str ( temp_full_path ) ] , cwd = data_dir ) temp_full_path . unlink ( ) return final_path if filetype == 'zip' : import zipfile sys . stderr . write ( 'Unzipping package (%s) to data path (%s)...' % ( temp_full_path , data_dir ) ) with zipfile . ZipFile ( str ( temp_full_path ) , 'r' ) as zip_ref : zip_ref . extractall ( data_dir ) sys . stderr . write ( 'done.\n' ) return final_path return final_path
def reindex ( self , indexers = None , method = None , tolerance = None , copy = True , ** indexers_kwargs ) : """Conform this object onto a new set of indexes , filling in missing values with NaN . Parameters indexers : dict , optional Dictionary with keys given by dimension names and values given by arrays of coordinates tick labels . Any mis - matched coordinate values will be filled in with NaN , and any mis - matched dimension names will simply be ignored . One of indexers or indexers _ kwargs must be provided . copy : bool , optional If ` ` copy = True ` ` , data in the return value is always copied . If ` ` copy = False ` ` and reindexing is unnecessary , or can be performed with only slice operations , then the output may share memory with the input . In either case , a new xarray object is always returned . method : { None , ' nearest ' , ' pad ' / ' ffill ' , ' backfill ' / ' bfill ' } , optional Method to use for filling index values in ` ` indexers ` ` not found on this data array : * None ( default ) : don ' t fill gaps * pad / ffill : propagate last valid index value forward * backfill / bfill : propagate next valid index value backward * nearest : use nearest valid index value ( requires pandas > = 0.16) tolerance : optional Maximum distance between original and new labels for inexact matches . The values of the index at the matching locations must satisfy the equation ` ` abs ( index [ indexer ] - target ) < = tolerance ` ` . * * indexers _ kwarg : { dim : indexer , . . . } , optional The keyword arguments form of ` ` indexers ` ` . One of indexers or indexers _ kwargs must be provided . Returns reindexed : DataArray Another dataset array , with this array ' s data but replaced coordinates . See Also DataArray . reindex _ like align"""
indexers = either_dict_or_kwargs ( indexers , indexers_kwargs , 'reindex' ) ds = self . _to_temp_dataset ( ) . reindex ( indexers = indexers , method = method , tolerance = tolerance , copy = copy ) return self . _from_temp_dataset ( ds )
def getHostsFromFile ( filename ) : """Parse a file to return a list of hosts ."""
valid_hostname = r"^[^ /\t=\n]+" workers = r"\d+" hostname_re = re . compile ( valid_hostname ) worker_re = re . compile ( workers ) hosts = [ ] with open ( filename ) as f : for line in f : # check to see if it is a SLURM grouping instead of a # regular list of hosts if re . search ( '[\[\]]' , line ) : hosts = hosts + parseSLURM ( line . strip ( ) ) else : host = hostname_re . search ( line . strip ( ) ) if host : hostname = host . group ( ) n = worker_re . search ( line [ host . end ( ) : ] ) if n : n = n . group ( ) else : # Automatically assign based on CPU count n = 0 hosts . append ( ( hostname , int ( n ) ) ) return hosts
def connect_edges ( graph ) : """Given a Graph element containing abstract edges compute edge segments directly connecting the source and target nodes . This operation just uses internal HoloViews operations and will be a lot slower than the pandas equivalent ."""
paths = [ ] for start , end in graph . array ( graph . kdims ) : start_ds = graph . nodes [ : , : , start ] end_ds = graph . nodes [ : , : , end ] if not len ( start_ds ) or not len ( end_ds ) : raise ValueError ( 'Could not find node positions for all edges' ) start = start_ds . array ( start_ds . kdims [ : 2 ] ) end = end_ds . array ( end_ds . kdims [ : 2 ] ) paths . append ( np . array ( [ start [ 0 ] , end [ 0 ] ] ) ) return paths
def worker_task ( work_item , config ) : """The celery task which performs a single mutation and runs a test suite . This runs ` cosmic - ray worker ` in a subprocess and returns the results , passing ` config ` to it via stdin . Args : work _ item : A dict describing a WorkItem . config : The configuration to use for the test execution . Returns : An updated WorkItem"""
global _workspace _ensure_workspace ( config ) result = worker ( work_item . module_path , config . python_version , work_item . operator_name , work_item . occurrence , config . test_command , config . timeout ) return work_item . job_id , result
def cover ( ctx , html = False ) : '''Run tests suite with coverage'''
header ( 'Run tests suite with coverage' ) cmd = 'pytest --cov udata --cov-report term' if html : cmd = ' ' . join ( ( cmd , '--cov-report html:reports/python/cover' ) ) with ctx . cd ( ROOT ) : ctx . run ( cmd , pty = True )
def extract_file_from_zip ( bytes_io , expected_file ) : """Extracts a file from a bytes _ io zip . Returns bytes"""
zipf = zipfile . ZipFile ( bytes_io ) return zipf . read ( expected_file )
def cap ( self ) : """" Caps " the construction of the pipeline , signifying that no more inputs and outputs are expected to be added and therefore the input and output nodes can be created along with the provenance ."""
to_cap = ( self . _inputnodes , self . _outputnodes , self . _prov ) if to_cap == ( None , None , None ) : self . _inputnodes = { f : self . _make_inputnode ( f ) for f in self . input_frequencies } self . _outputnodes = { f : self . _make_outputnode ( f ) for f in self . output_frequencies } self . _prov = self . _gen_prov ( ) elif None in to_cap : raise ArcanaError ( "If one of _inputnodes, _outputnodes or _prov is not None then" " they all should be in {}" . format ( self ) )
def vqa_recurrent_self_attention_base ( ) : """VQA attention baseline hparams ."""
hparams = universal_transformer . universal_transformer_base ( ) hparams . batch_size = 1024 hparams . use_fixed_batch_size = True hparams . weight_decay = 0. hparams . clip_grad_norm = 0. # use default initializer # hparams . initializer = " xavier " hparams . learning_rate_schedule = ( "constant*linear_warmup*rsqrt_normalized_decay" ) hparams . learning_rate_warmup_steps = 8000 hparams . learning_rate_constant = 7e-4 hparams . learning_rate_decay_rate = 0.5 hparams . learning_rate_decay_steps = 50000 # hparams . dropout = 0.5 hparams . summarize_grads = True hparams . summarize_vars = True # not used hparams hparams . label_smoothing = 0.1 hparams . multiply_embedding_mode = "sqrt_depth" # add new hparams # use raw image as input hparams . add_hparam ( "image_input_type" , "feature" ) hparams . add_hparam ( "image_model_fn" , "resnet_v1_152" ) hparams . add_hparam ( "resize_side" , 512 ) hparams . add_hparam ( "height" , 448 ) hparams . add_hparam ( "width" , 448 ) hparams . add_hparam ( "distort" , True ) hparams . add_hparam ( "train_resnet" , False ) # question hidden size # hparams . hidden _ size = 512 # hparams . filter _ size = 1024 # hparams . num _ hidden _ layers = 4 # self attention parts # hparams . norm _ type = " layer " # hparams . layer _ preprocess _ sequence = " n " # hparams . layer _ postprocess _ sequence = " da " # hparams . layer _ prepostprocess _ dropout = 0.1 # hparams . attention _ dropout = 0.1 # hparams . relu _ dropout = 0.1 # hparams . add _ hparam ( " pos " , " timing " ) # hparams . add _ hparam ( " num _ encoder _ layers " , 0) # hparams . add _ hparam ( " num _ decoder _ layers " , 0) # hparams . add _ hparam ( " num _ heads " , 8) # hparams . add _ hparam ( " attention _ key _ channels " , 0) # hparams . add _ hparam ( " attention _ value _ channels " , 0) # hparams . add _ hparam ( " self _ attention _ type " , " dot _ product " ) # iterative part hparams . transformer_ffn_type = "fc" return hparams
def write_languages ( f , l ) : """Write language information ."""
f . write ( "Languages = {%s" % os . linesep ) for lang in sorted ( l ) : f . write ( " %r: %r,%s" % ( lang , l [ lang ] , os . linesep ) ) f . write ( "}%s" % os . linesep )
def _parse ( jsonOutput ) : '''Parses JSON response from Tika REST API server : param jsonOutput : JSON output from Tika Server : return : a dictionary having ' metadata ' and ' content ' values'''
parsed = { } if not jsonOutput : return parsed parsed [ "status" ] = jsonOutput [ 0 ] if jsonOutput [ 1 ] == None or jsonOutput [ 1 ] == "" : return parsed realJson = json . loads ( jsonOutput [ 1 ] ) content = "" for js in realJson : if "X-TIKA:content" in js : content += js [ "X-TIKA:content" ] if content == "" : content = None parsed [ "content" ] = content parsed [ "metadata" ] = { } for js in realJson : for n in js : if n != "X-TIKA:content" : if n in parsed [ "metadata" ] : if not isinstance ( parsed [ "metadata" ] [ n ] , list ) : parsed [ "metadata" ] [ n ] = [ parsed [ "metadata" ] [ n ] ] parsed [ "metadata" ] [ n ] . append ( js [ n ] ) else : parsed [ "metadata" ] [ n ] = js [ n ] return parsed
def list_nodes_select ( call = None ) : '''Return a list of the VMs that are on the provider , with select fields'''
if call == 'action' : raise SaltCloudSystemExit ( 'The list_nodes_select function must be called ' 'with -f or --function.' ) selection = __opts__ . get ( 'query.selection' ) if not selection : raise SaltCloudSystemExit ( 'query.selection not found in /etc/salt/cloud' ) # TODO : somewhat doubt the implementation of cloud . list _ nodes _ select return salt . utils . cloud . list_nodes_select ( list_nodes_full ( ) , selection , call , )
def full_value ( self ) : """Returns the full value with the path also ( ie , name = value ( path ) ) : returns : String"""
s = self . name_value ( ) s += self . path_value ( ) s += "\n\n" return s
def store_array_elements ( self , array , start_idx , data ) : """Stores either a single element or a range of elements in the array . : param array : Reference to the array . : param start _ idx : Starting index for the store . : param data : Either a single value or a list of values ."""
# we process data as a list of elements # = > if there is only a single element , wrap it in a list data = data if isinstance ( data , list ) else [ data ] # concretize start index concrete_start_idxes = self . concretize_store_idx ( start_idx ) if len ( concrete_start_idxes ) == 1 : # only one start index # = > concrete store concrete_start_idx = concrete_start_idxes [ 0 ] for i , value in enumerate ( data ) : self . _store_array_element_on_heap ( array = array , idx = concrete_start_idx + i , value = value , value_type = array . element_type ) # if the index was symbolic before concretization , this # constraint it to concrete start idx self . state . solver . add ( concrete_start_idx == start_idx ) else : # multiple start indexes # = > symbolic store start_idx_options = [ ] for concrete_start_idx in concrete_start_idxes : start_idx_options . append ( concrete_start_idx == start_idx ) # we store elements condtioned with the start index : # = > if concrete _ start _ idx = = start _ idx # then store the value # else keep the current value for i , value in enumerate ( data ) : self . _store_array_element_on_heap ( array = array , idx = concrete_start_idx + i , value = value , value_type = array . element_type , store_condition = start_idx_options [ - 1 ] ) # constraint start _ idx , s . t . it evals to one of the concretized indexes constraint_on_start_idx = self . state . solver . Or ( * start_idx_options ) self . state . add_constraints ( constraint_on_start_idx )
def get_editor_buffer_for_location ( self , location ) : """Return the ` EditorBuffer ` for this location . When this file was not yet loaded , return None"""
for eb in self . editor_buffers : if eb . location == location : return eb
def parse_resource_extended ( self , session , resource_name ) : """Parse a resource string to get extended interface information . Corresponds to viParseRsrcEx function of the VISA library . : param session : Resource Manager session ( should always be the Default Resource Manager for VISA returned from open _ default _ resource _ manager ( ) ) . : param resource _ name : Unique symbolic name of a resource . : return : Resource information , return value of the library call . : rtype : : class : ` pyvisa . highlevel . ResourceInfo ` , : class : ` pyvisa . constants . StatusCode `"""
try : parsed = rname . parse_resource_name ( resource_name ) return ( ResourceInfo ( parsed . interface_type_const , parsed . board , parsed . resource_class , str ( parsed ) , None ) , constants . StatusCode . success ) except ValueError : return 0 , constants . StatusCode . error_invalid_resource_name
def select_gist ( self , allow_none = False ) : """Given the requested filename , it selects the proper gist ; if more than one gist is found with the given filename , user is asked to choose . : allow _ none : ( bool ) for ` getgist ` it should raise error if no gist is found , but setting this argument to True avoid this error , which is useful when ` putgist ` is calling this method : return : ( dict ) selected gist"""
# pick up all macthing gists matches = list ( ) for gist in self . get_gists ( ) : for gist_file in gist . get ( "files" ) : if self . filename == gist_file . get ( "filename" ) : matches . append ( gist ) # abort if no match is found if not matches : if allow_none : return None else : msg = "No file named `{}` found in {}'s gists" self . oops ( msg . format ( self . file_path , self . user ) ) if not self . is_authenticated : self . warn ( "To access private gists set the GETGIST_TOKEN" ) self . warn ( "(see `getgist --help` for details)" ) return False # return if there ' s is only one match if len ( matches ) == 1 or self . assume_yes : return matches . pop ( 0 ) return self . _ask_which_gist ( matches )
def calculate_column_sum ( matrix , column_index ) : """This function computes the sum of a given column in a given 2D list ( matrix ) . For example , Given matrix = [ [ 1 , 2 , 3 , 2 ] , [ 4 , 5 , 6 , 2 ] , [ 7 , 8 , 9 , 5 ] ] , calculate _ column _ sum ( matrix , 0 ) will give 12, calculate _ column _ sum ( matrix , 1 ) will give 15, calculate _ column _ sum ( matrix , 3 ) will give 9. : param matrix : A 2D list of integers : param column _ index : Index of the column whose sum needs to be computed : return : Sum of all the elements in the specified column of the 2D list"""
column_total = sum ( row [ column_index ] for row in matrix ) return column_total
def revise_sql ( query , id_column , output_table , max_date_column , min_date_column , date_column , date , source_id_column = None ) : """Given an expensive query that aggregates temporal data , Revise the results to censor before a particular date"""
if source_id_column is None : source_id_column = id_column if hasattr ( id_column , '__iter__' ) : id_column = str . join ( ', ' , id_column ) if hasattr ( source_id_column , '__iter__' ) : source_id_column = str . join ( ', ' , source_id_column ) sql_vars = dict ( query = query , id_column = id_column , output_table = output_table , max_date_column = max_date_column , min_date_column = min_date_column , date_column = date_column , date = date , source_id_column = source_id_column ) sql_vars [ 'ids_query' ] = """ SELECT {id_column} FROM {output_table} WHERE {max_date_column} >= '{date}' AND {min_date_column} < '{date}'""" . format ( ** sql_vars ) sql_vars [ 'revised_query' ] = query . replace ( '1=1' , "(({source_id_column}) in (select * from ids_query) and {date_column} < '{date}')" . format ( ** sql_vars ) ) new_query = """ with ids_query as ({ids_query}) select * from ({revised_query}) t """ . format ( ** sql_vars ) return new_query
def snmp_server_group_group_auth_mode ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) snmp_server = ET . SubElement ( config , "snmp-server" , xmlns = "urn:brocade.com:mgmt:brocade-snmp" ) group = ET . SubElement ( snmp_server , "group" ) group_name_key = ET . SubElement ( group , "group-name" ) group_name_key . text = kwargs . pop ( 'group_name' ) group_version_key = ET . SubElement ( group , "group-version" ) group_version_key . text = kwargs . pop ( 'group_version' ) group_auth_mode = ET . SubElement ( group , "group-auth-mode" ) group_auth_mode . text = kwargs . pop ( 'group_auth_mode' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def com_google_fonts_check_metadata_valid_name_values ( style , font_metadata , font_familynames , typographic_familynames ) : """METADATA . pb font . name field contains font name in right format ?"""
from fontbakery . constants import RIBBI_STYLE_NAMES if style in RIBBI_STYLE_NAMES : familynames = font_familynames else : familynames = typographic_familynames failed = False for font_familyname in familynames : if font_familyname not in font_metadata . name : failed = True yield FAIL , ( "METADATA.pb font.name field (\"{}\")" " does not match correct font name format (\"{}\")." "" ) . format ( font_metadata . name , font_familyname ) if not failed : yield PASS , ( "METADATA.pb font.name field contains" " font name in right format." )
def convertShape ( shapeString ) : """Convert xml shape string into float tuples . This method converts the 2d or 3d shape string from SUMO ' s xml file into a list containing 3d float - tuples . Non existant z coordinates default to zero . If shapeString is empty , an empty list will be returned ."""
cshape = [ ] for pointString in shapeString . split ( ) : p = [ float ( e ) for e in pointString . split ( "," ) ] if len ( p ) == 2 : cshape . append ( ( p [ 0 ] , p [ 1 ] , 0. ) ) elif len ( p ) == 3 : cshape . append ( tuple ( p ) ) else : raise ValueError ( 'Invalid shape point "%s", should be either 2d or 3d' % pointString ) return cshape
def create_node ( ctx , path ) : """Create node for given relative path . : param ctx : BuildContext object . : param path : Relative path relative to top directory . : return : Created Node ."""
# Ensure given context object is BuildContext object _ensure_build_context ( ctx ) # Get top directory ' s relative path relative to ` wscript ` directory top_dir_relpath = os . path . relpath ( # Top directory ' s absolute path ctx . top_dir , # ` wscript ` directory ' s absolute path ctx . run_dir , ) # Convert given relative path to be relative to ` wscript ` directory node_path = os . path . join ( top_dir_relpath , path ) # Create node using the relative path relative to ` wscript ` directory node = ctx . path . make_node ( node_path ) # Return the created node return node
def raises ( self , expected_exception ) : """Ensures preceding predicates ( specifically , : meth : ` called _ with ( ) ` ) result in * expected _ exception * being raised ."""
return unittest_case . assertRaises ( expected_exception , self . _orig_subject , * self . _args , ** self . _kwargs )
def validate ( self , sig = None ) : '''Check if file matches its signature'''
if sig is not None : sig_mtime , sig_size , sig_md5 = sig else : try : with open ( self . sig_file ( ) ) as sig : sig_mtime , sig_size , sig_md5 = sig . read ( ) . strip ( ) . split ( ) except : return False if not self . exists ( ) : if ( self + '.zapped' ) . is_file ( ) : with open ( self + '.zapped' ) as sig : line = sig . readline ( ) return sig_md5 == line . strip ( ) . rsplit ( '\t' , 3 ) [ - 1 ] else : return False if sig_mtime == os . path . getmtime ( self ) and sig_size == os . path . getsize ( self ) : return True return fileMD5 ( self ) == sig_md5
def _convert_rename ( self , fc ) : """Convert a FileRenameCommand into a new FileCommand . : return : None if the rename is being ignored , otherwise a new FileCommand based on the whether the old and new paths are inside or outside of the interesting locations ."""
old = fc . old_path new = fc . new_path keep_old = self . _path_to_be_kept ( old ) keep_new = self . _path_to_be_kept ( new ) if keep_old and keep_new : fc . old_path = self . _adjust_for_new_root ( old ) fc . new_path = self . _adjust_for_new_root ( new ) return fc elif keep_old : # The file has been renamed to a non - interesting location . # Delete it ! old = self . _adjust_for_new_root ( old ) return commands . FileDeleteCommand ( old ) elif keep_new : # The file has been renamed into an interesting location # We really ought to add it but we don ' t currently buffer # the contents of all previous files and probably never want # to . Maybe fast - import - info needs to be extended to # remember all renames and a config file can be passed # into here ala fast - import ? self . warning ( "cannot turn rename of %s into an add of %s yet" % ( old , new ) ) return None
def create_mssql_pymssql ( username , password , host , port , database , ** kwargs ) : # pragma : no cover """create an engine connected to a mssql database using pymssql ."""
return create_engine ( _create_mssql_pymssql ( username , password , host , port , database ) , ** kwargs )
def set_next_week_day ( val , week_day , iso = False ) : """Set week day . New date will be greater or equal than input date . : param val : datetime or date : type val : datetime . datetime | datetime . date : param week _ day : Week day to set : type week _ day : int : param iso : week _ day in ISO format , or not : type iso : bool : return : datetime . datetime | datetime . date"""
return _set_week_day ( val , week_day , val . isoweekday ( ) if iso else val . weekday ( ) , sign = 1 )
def execute_streaming_sql ( self , session , sql , transaction = None , params = None , param_types = None , resume_token = None , query_mode = None , partition_token = None , seqno = None , retry = google . api_core . gapic_v1 . method . DEFAULT , timeout = google . api_core . gapic_v1 . method . DEFAULT , metadata = None , ) : """Like ` ` ExecuteSql ` ` , except returns the result set as a stream . Unlike ` ` ExecuteSql ` ` , there is no limit on the size of the returned result set . However , no individual row in the result set can exceed 100 MiB , and no column value can exceed 10 MiB . Example : > > > from google . cloud import spanner _ v1 > > > client = spanner _ v1 . SpannerClient ( ) > > > session = client . session _ path ( ' [ PROJECT ] ' , ' [ INSTANCE ] ' , ' [ DATABASE ] ' , ' [ SESSION ] ' ) > > > # TODO : Initialize ` sql ` : > > > sql = ' ' > > > for element in client . execute _ streaming _ sql ( session , sql ) : . . . # process element . . . pass Args : session ( str ) : Required . The session in which the SQL query should be performed . sql ( str ) : Required . The SQL string . transaction ( Union [ dict , ~ google . cloud . spanner _ v1 . types . TransactionSelector ] ) : The transaction to use . If none is provided , the default is a temporary read - only transaction with strong concurrency . The transaction to use . For queries , if none is provided , the default is a temporary read - only transaction with strong concurrency . Standard DML statements require a ReadWrite transaction . Single - use transactions are not supported ( to avoid replay ) . The caller must either supply an existing transaction ID or begin a new transaction . Partitioned DML requires an existing PartitionedDml transaction ID . If a dict is provided , it must be of the same form as the protobuf message : class : ` ~ google . cloud . spanner _ v1 . types . TransactionSelector ` params ( Union [ dict , ~ google . cloud . spanner _ v1 . types . Struct ] ) : The SQL string can contain parameter placeholders . A parameter placeholder consists of ` ` ' @ ' ` ` followed by the parameter name . Parameter names consist of any combination of letters , numbers , and underscores . Parameters can appear anywhere that a literal value is expected . The same parameter name can be used more than once , for example : ` ` " WHERE id > @ msg _ id AND id < @ msg _ id + 100 " ` ` It is an error to execute an SQL statement with unbound parameters . Parameter values are specified using ` ` params ` ` , which is a JSON object whose keys are parameter names , and whose values are the corresponding parameter values . If a dict is provided , it must be of the same form as the protobuf message : class : ` ~ google . cloud . spanner _ v1 . types . Struct ` param _ types ( dict [ str - > Union [ dict , ~ google . cloud . spanner _ v1 . types . Type ] ] ) : It is not always possible for Cloud Spanner to infer the right SQL type from a JSON value . For example , values of type ` ` BYTES ` ` and values of type ` ` STRING ` ` both appear in ` ` params ` ` as JSON strings . In these cases , ` ` param _ types ` ` can be used to specify the exact SQL type for some or all of the SQL statement parameters . See the definition of ` ` Type ` ` for more information about SQL types . If a dict is provided , it must be of the same form as the protobuf message : class : ` ~ google . cloud . spanner _ v1 . types . Type ` resume _ token ( bytes ) : If this request is resuming a previously interrupted SQL statement execution , ` ` resume _ token ` ` should be copied from the last ` ` PartialResultSet ` ` yielded before the interruption . Doing this enables the new SQL statement execution to resume where the last one left off . The rest of the request parameters must exactly match the request that yielded this token . query _ mode ( ~ google . cloud . spanner _ v1 . types . QueryMode ) : Used to control the amount of debugging information returned in ` ` ResultSetStats ` ` . If ` ` partition _ token ` ` is set , ` ` query _ mode ` ` can only be set to ` ` QueryMode . NORMAL ` ` . partition _ token ( bytes ) : If present , results will be restricted to the specified partition previously created using PartitionQuery ( ) . There must be an exact match for the values of fields common to this message and the PartitionQueryRequest message used to create this partition \ _ token . seqno ( long ) : A per - transaction sequence number used to identify this request . This makes each request idempotent such that if the request is received multiple times , at most one will succeed . The sequence number must be monotonically increasing within the transaction . If a request arrives for the first time with an out - of - order sequence number , the transaction may be aborted . Replays of previously handled requests will yield the same response as the first execution . Required for DML statements . Ignored for queries . retry ( Optional [ google . api _ core . retry . Retry ] ) : A retry object used to retry requests . If ` ` None ` ` is specified , requests will not be retried . timeout ( Optional [ float ] ) : The amount of time , in seconds , to wait for the request to complete . Note that if ` ` retry ` ` is specified , the timeout applies to each individual attempt . metadata ( Optional [ Sequence [ Tuple [ str , str ] ] ] ) : Additional metadata that is provided to the method . Returns : Iterable [ ~ google . cloud . spanner _ v1 . types . PartialResultSet ] . Raises : google . api _ core . exceptions . GoogleAPICallError : If the request failed for any reason . google . api _ core . exceptions . RetryError : If the request failed due to a retryable error and retry attempts failed . ValueError : If the parameters are invalid ."""
# Wrap the transport method to add retry and timeout logic . if "execute_streaming_sql" not in self . _inner_api_calls : self . _inner_api_calls [ "execute_streaming_sql" ] = google . api_core . gapic_v1 . method . wrap_method ( self . transport . execute_streaming_sql , default_retry = self . _method_configs [ "ExecuteStreamingSql" ] . retry , default_timeout = self . _method_configs [ "ExecuteStreamingSql" ] . timeout , client_info = self . _client_info , ) request = spanner_pb2 . ExecuteSqlRequest ( session = session , sql = sql , transaction = transaction , params = params , param_types = param_types , resume_token = resume_token , query_mode = query_mode , partition_token = partition_token , seqno = seqno , ) if metadata is None : metadata = [ ] metadata = list ( metadata ) try : routing_header = [ ( "session" , session ) ] except AttributeError : pass else : routing_metadata = google . api_core . gapic_v1 . routing_header . to_grpc_metadata ( routing_header ) metadata . append ( routing_metadata ) return self . _inner_api_calls [ "execute_streaming_sql" ] ( request , retry = retry , timeout = timeout , metadata = metadata )
def _thread_init ( cls ) : """Ensure thread local is initialized ."""
if not hasattr ( cls . _local , '_in_order_futures' ) : cls . _local . _in_order_futures = set ( ) cls . _local . _activated = False
def segmentlistdict_from_short_string ( s , boundtype = int ) : """Parse a string representation of a set of named segmentlists into a segmentlistdict object . The string encoding is that generated by segmentlistdict _ to _ short _ string ( ) . The optional boundtype argument will be passed to from _ range _ strings ( ) when parsing the segmentlist objects from the string . Example : > > > segmentlistdict _ from _ short _ string ( " H1 = 0:10,35,100 : / L1 = 5:15,45:60 " ) { ' H1 ' : [ segment ( 0 , 10 ) , segment ( 35 , 35 ) , segment ( 100 , infinity ) ] , ' L1 ' : [ segment ( 5 , 15 ) , segment ( 45 , 60 ) ] } This function , and its inverse segmentlistdict _ to _ short _ string ( ) , are intended to be used to allow small segmentlistdict objects to be encoded in command line options and config files . For large segmentlistdict objects or when multiple sets of segmentlists are required , the LIGO Light Weight XML encoding available through the pycbc _ glue . ligolw library should be used ."""
d = segments . segmentlistdict ( ) for token in s . strip ( ) . split ( "/" ) : key , ranges = token . strip ( ) . split ( "=" ) d [ key . strip ( ) ] = from_range_strings ( ranges . strip ( ) . split ( "," ) , boundtype = boundtype ) return d
def fit ( self , X ) : """Apply KMeans Clustering X : dataset with feature vectors"""
self . centers_ , self . labels_ , self . sse_arr_ , self . n_iter_ = _kmeans ( X , self . n_clusters , self . max_iter , self . n_trials , self . tol )
def get_scope_by_name ( self , scope_name ) : """GetScopeByName . [ Preview API ] : param str scope _ name : : rtype : : class : ` < IdentityScope > < azure . devops . v5_0 . identity . models . IdentityScope > `"""
query_parameters = { } if scope_name is not None : query_parameters [ 'scopeName' ] = self . _serialize . query ( 'scope_name' , scope_name , 'str' ) response = self . _send ( http_method = 'GET' , location_id = '4e11e2bf-1e79-4eb5-8f34-a6337bd0de38' , version = '5.0-preview.2' , query_parameters = query_parameters ) return self . _deserialize ( 'IdentityScope' , response )
def getChain ( self ) : "returns a list of keys representing the chain of documents"
l = [ ] h = self . head while h : l . append ( h . _key ) h = h . nextDoc return l
def asDictionary ( self ) : """returns the object as a dictionary"""
template = { "type" : "esriPMS" , "url" : self . _url , "imageData" : self . _imageDate , "contentType" : self . _contentType , "width" : self . _width , "height" : self . _height , "angle" : self . _angle , "xoffset" : self . _xoffset , "yoffset" : self . _yoffset , "xscale" : self . _xscale , "yscale" : self . _yscale , "outline" : self . _outline } return template
def annotate_proto ( self , text , annotators = None ) : """Return a Document protocol buffer from the CoreNLP server , containing annotations of the text . : param ( str ) text : text to be annotated : param ( list [ str ] ) annotators : a list of annotator names : return ( CoreNLP _ pb2 . Document ) : a Document protocol buffer"""
properties = { 'annotators' : ',' . join ( annotators or self . default_annotators ) , 'outputFormat' : 'serialized' , 'serializer' : 'edu.stanford.nlp.pipeline.ProtobufAnnotationSerializer' } r = self . _request ( text , properties ) buffer = r . content # bytes size , pos = _DecodeVarint ( buffer , 0 ) buffer = buffer [ pos : ( pos + size ) ] doc = CoreNLP_pb2 . Document ( ) doc . ParseFromString ( buffer ) return doc
def new_connection ( self , remote_ip , remote_port ) : """This method is called when a new SMTP session is opened . [ PUBLIC API ]"""
self . state . set_state ( 'new' ) self . _message = Message ( Peer ( remote_ip , remote_port ) ) decision , response_sent = self . is_allowed ( 'accept_new_connection' , self . _message . peer ) if decision : if not response_sent : self . handle_input ( 'greet' ) self . _set_size_restrictions ( ) else : if not response_sent : self . reply ( 554 , 'SMTP service not available' ) self . close_connection ( )
def wait_until_exit ( self ) : """Wait until thread exit Used for testing purpose only"""
if self . _timeout is None : raise Exception ( "Thread will never exit. Use stop or specify timeout when starting it!" ) self . _thread . join ( ) self . stop ( )
def mark_dmag_rec ( s , ind , data ) : """Edits demagnetization data to mark " bad " points with measurement _ flag"""
datablock = [ ] for rec in data : if rec [ 'er_specimen_name' ] == s : meths = rec [ 'magic_method_codes' ] . split ( ':' ) if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths : datablock . append ( rec ) dmagrec = datablock [ ind ] for k in range ( len ( data ) ) : meths = data [ k ] [ 'magic_method_codes' ] . split ( ':' ) if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths : if data [ k ] [ 'er_specimen_name' ] == s : if data [ k ] [ 'treatment_temp' ] == dmagrec [ 'treatment_temp' ] and data [ k ] [ 'treatment_ac_field' ] == dmagrec [ 'treatment_ac_field' ] : if data [ k ] [ 'measurement_dec' ] == dmagrec [ 'measurement_dec' ] and data [ k ] [ 'measurement_inc' ] == dmagrec [ 'measurement_inc' ] and data [ k ] [ 'measurement_magn_moment' ] == dmagrec [ 'measurement_magn_moment' ] : if data [ k ] [ 'measurement_flag' ] == 'g' : flag = 'b' else : flag = 'g' data [ k ] [ 'measurement_flag' ] = flag break return data
def get_command ( self , ctx , cmd_name ) : """gets the subcommands under the service name Parameters ctx : Context the context object passed into the method cmd _ name : str the service name Returns EventTypeSubCommand : returns subcommand if successful , None if not ."""
if cmd_name not in self . all_cmds : return None return EventTypeSubCommand ( self . events_lib , cmd_name , self . all_cmds [ cmd_name ] )
def on_lstSubcategories_itemSelectionChanged ( self ) : """Update subcategory description label . . . note : : This is an automatic Qt slot executed when the subcategory selection changes ."""
self . clear_further_steps ( ) # Set widgets subcategory = self . selected_subcategory ( ) # Exit if no selection if not subcategory : return # Set description label self . lblDescribeSubcategory . setText ( subcategory [ 'description' ] ) icon_path = get_image_path ( subcategory ) self . lblIconSubcategory . setPixmap ( QPixmap ( icon_path ) ) # Enable the next button self . parent . pbnNext . setEnabled ( True )
def indexes ( self , recurse = True ) : """Returns the list of indexes that are associated with this schema . : return [ < orb . Index > , . . ]"""
output = self . __indexes . copy ( ) if recurse and self . inherits ( ) : schema = orb . system . schema ( self . inherits ( ) ) if not schema : raise orb . errors . ModelNotFound ( schema = self . inherits ( ) ) else : output . update ( schema . indexes ( recurse = recurse ) ) return output
def fem ( ab , off , angle , zsrc , zrec , lsrc , lrec , depth , freq , etaH , etaV , zetaH , zetaV , xdirect , isfullspace , ht , htarg , use_ne_eval , msrc , mrec , loop_freq , loop_off , conv = True ) : r"""Return the electromagnetic frequency - domain response . This function is called from one of the above modelling routines . No input - check is carried out here . See the main description of : mod : ` model ` for information regarding input and output parameters . This function can be directly used if you are sure the provided input is in the correct format . This is useful for inversion routines and similar , as it can speed - up the calculation by omitting input - checks ."""
# Preallocate array fEM = np . zeros ( ( freq . size , off . size ) , dtype = complex ) # Initialize kernel count # ( how many times the wavenumber - domain kernel was calld ) kcount = 0 # If < ab > = 36 ( or 63 ) , fEM - field is zero if ab in [ 36 , ] : return fEM , kcount , conv # Get full - space - solution if xdirect = True and model is a full - space or # if src and rec are in the same layer . if xdirect and ( isfullspace or lsrc == lrec ) : fEM += kernel . fullspace ( off , angle , zsrc , zrec , etaH [ : , lrec ] , etaV [ : , lrec ] , zetaH [ : , lrec ] , zetaV [ : , lrec ] , ab , msrc , mrec ) # If ` xdirect = None ` we set it here to True , so it is NOT calculated in # the wavenumber domain . ( Only reflected fields are returned . ) if xdirect is None : xdir = True else : xdir = xdirect # Get angle dependent factors factAng = kernel . angle_factor ( angle , ab , msrc , mrec ) # Compute required lambdas for given hankel - filter - base # This should be in utils , but this is a backwards - incompatible change . # Move this to utils for version 2.0. if ht == 'fht' : # htarg [ 0 ] = filter ; htarg [ 1 ] = pts _ per _ dec lambd , int_pts = transform . get_spline_values ( htarg [ 0 ] , off , htarg [ 1 ] ) if not loop_off : htarg = ( htarg [ 0 ] , htarg [ 1 ] , lambd , int_pts ) # If not full - space with xdirect calculate fEM - field if not isfullspace * xdir : calc = getattr ( transform , ht ) if loop_freq : for i in range ( freq . size ) : out = calc ( zsrc , zrec , lsrc , lrec , off , factAng , depth , ab , etaH [ None , i , : ] , etaV [ None , i , : ] , zetaH [ None , i , : ] , zetaV [ None , i , : ] , xdir , htarg , use_ne_eval , msrc , mrec ) fEM [ None , i , : ] += out [ 0 ] kcount += out [ 1 ] conv *= out [ 2 ] elif loop_off : for i in range ( off . size ) : # See comments above where it says " ht = = ' fht ' " . # Get pre - calculated lambd , int _ pts for this offset if ht == 'fht' : htarg = ( htarg [ 0 ] , htarg [ 1 ] , lambd [ None , i , : ] , int_pts [ i ] ) out = calc ( zsrc , zrec , lsrc , lrec , off [ None , i ] , factAng [ None , i ] , depth , ab , etaH , etaV , zetaH , zetaV , xdir , htarg , use_ne_eval , msrc , mrec ) fEM [ : , None , i ] += out [ 0 ] kcount += out [ 1 ] conv *= out [ 2 ] else : out = calc ( zsrc , zrec , lsrc , lrec , off , factAng , depth , ab , etaH , etaV , zetaH , zetaV , xdir , htarg , use_ne_eval , msrc , mrec ) fEM += out [ 0 ] kcount += out [ 1 ] conv *= out [ 2 ] return fEM , kcount , conv
def subtract ( self , other = None , ** kwargs ) : """Elements are subtracted from an * iterable * or from another * mapping * ( or counter ) . Like : func : ` dict . update ` but subtracts counts instead of replacing them ."""
if other is not None : if self . _same_redis ( other , RedisCollection ) : self . _update_helper ( other , operator . sub , use_redis = True ) elif hasattr ( other , 'keys' ) : self . _update_helper ( other , operator . sub ) else : self . _update_helper ( collections . Counter ( other ) , operator . sub ) if kwargs : self . _update_helper ( kwargs , operator . sub )
def update_dataset ( self , dataStr , flatten = False ) : '''update class with a data structure . : keyword flatten : use this to automatically flatten variables ( squeeze dimensions )'''
# Load keys and dimensions dataDim = dataStr . pop ( '_dimensions' , { } ) attrStr = dataStr . pop ( '_attributes' , { } ) ndims = dataDim . pop ( '_ndims' , 0 ) dimensions = [ dataDim . keys ( ) , dataDim . values ( ) ] keys = dataStr . keys ( ) if len ( keys ) == 0 : self . warning ( 2 , 'No data loaded' ) return self . message ( 2 , 'Loaded variables : ' + str ( keys ) ) # Check what is the current variable type isStructure = True if isinstance ( dataStr [ keys [ 0 ] ] , dict ) else False # datalen = [ np . size ( dataStr [ key ] ) for key in keys ] datalen = [ list ( np . shape ( dataStr [ key ] [ 'data' ] ) [ : : - 1 ] ) for key in keys ] if isStructure else [ list ( np . shape ( dataStr [ key ] ) [ : : - 1 ] ) for key in keys ] # Shape is inverted wrt to order of dimensions to be consistent with check _ variable if isStructure : varDim = [ list ( dataStr [ key ] [ '_dimensions' ] ) [ 1 : ] for key in keys ] ind = [ where_list ( vDim , dimensions [ 0 ] ) for vDim in varDim ] # Dimensions indices from actual variables ' dimensions # Check dimension lengths # dimOk = np . array ( [ enum [ 1 ] [ 0 ] = = dimensions [ 1 ] [ ind [ enum [ 0 ] ] [ 0 ] ] for enum in enumerate ( datalen ) ] ) dimOk = [ any ( [ enum [ 1 ] [ ii ] == dimensions [ 1 ] [ jj ] for ii , jj in enumerate ( ind [ enum [ 0 ] ] ) ] ) for enum in enumerate ( datalen ) ] if any ( [ not d for d in dimOk ] ) : notOk = np . where ( ~ np . array ( dimOk ) ) [ 0 ] print datalen self . Error ( 'Problem with {0} variables : {1}' . format ( len ( notOk ) , ',' . join ( np . array ( dataStr . keys ( ) ) [ notOk ] ) ) ) else : ind = [ where_list ( dlen , dimensions [ 1 ] ) for dlen in datalen ] # Dimensions indices from variable length if ( np . array ( ind ) . sum ( ) == - 1 ) != 0 : self . Error ( 'At least one variable have not been properly defined' ) dimname = [ np . array ( dimensions [ 0 ] ) [ i ] . tolist ( ) for i in ind ] # Get correspondance between data structure dimensions and variables curDim , nself = self . get_currentDim ( ) createDim = np . array ( [ np . array ( [ w == - 1 for w in where_list ( j , curDim [ 0 ] ) ] ) for i , j in enumerate ( dimname ) ] ) createDim = np . squeeze ( createDim ) # curInd = atools . where _ list ( dimname _ reduced , curDim [ 0 ] ) # Get correspondance between data structure dimensions and object dimensions # createDim = ( np . array ( curInd ) = = - 1 ) # Get dimensions to be created toCreate = np . array ( [ not self . __dict__ . has_key ( key ) for key in keys ] ) updateDim = [ ] self . message ( 2 , 'Updating object with ' + str ( [ '{0}({1}:{2})' . format ( i [ 0 ] , i [ 1 ] , i [ 2 ] ) for i in zip ( * ( keys , dimname , datalen ) ) ] ) ) # Update variables available in files for enum in enumerate ( keys ) : ind = enum [ 0 ] key = enum [ 1 ] # Load variable # var = dataStr . get ( key ) dum = dataStr . get ( key ) . pop ( 'data' ) if isStructure else copy . deepcopy ( dataStr . get ( key ) ) if flatten : if isinstance ( dum , dict ) : dum [ 'data' ] = dum [ 'data' ] . flatten ( ) else : dum = dum . flatten ( ) if not isStructure : dum = { '_dimensions' : dum . _dimensions if hasattr ( dum , '_dimensions' ) else { } , '_attributes' : dum . _attributes if hasattr ( dum , '_attributes' ) else { } , 'data' : dum } else : dumStr = dataStr . get ( key ) dumStr . update ( { 'data' : dum } ) dum = dumStr dumDim = dimStr ( dimname [ ind ] , datalen [ ind ] ) # if dataStr [ key ] . has _ key ( ' _ attributes ' ) : # dum . update ( dataStr [ key ] [ ' _ attributes ' ] ) # if isinstance ( dum , np . ma . masked _ array ) : # # Get associated dimensions # datalen = datalen [ ind ] # [ len ( dataStr [ key ] ) for key in keys ] # ind = atools . where _ list ( [ datalen ] , dimensions [ 1 ] ) [ 0] # if ( ind = = - 1 ) : self . Error ( ' Dimensions of current variable ( ' + key + ' ) have not been properly defined ' ) # dimname = dimensions [ # Initialize variable if required # if toCreate : # updateDim . append ( self . create _ Variable ( key , dum , dimensions = { dimname [ ind ] : datalen [ ind ] } , toCreate = toCreate [ ind ] , createDim = createDim [ ind ] ) ) updateDim . append ( self . create_Variable ( key , dum , dimensions = dumDim , toCreate = toCreate [ ind ] , createDim = createDim [ ind ] ) ) # Extend missing variables # missing _ _ keys = list ( set ( self . par _ list ) . difference ( keys ) ) # for enum in enumerate ( missing _ _ keys ) : # ind = enum [ 0] # key = enum [ 1] # updateDim . append ( self . create _ Variable ( key , np . ma . repeat ( self . dist _ to _ coast _ leuliette . fill _ value ) , dimensions = dumDim , toCreate = False , createDim = False ) ) # Final sequence zipped_upd = zip ( * ( np . hstack ( dimname ) [ ~ np . hstack ( createDim ) ] , np . hstack ( datalen ) [ ~ np . hstack ( createDim ) ] ) ) updateDim_List = np . array ( list ( set ( tuple ( i ) for i in np . array ( zipped_upd , dtype = '|S16' ) . tolist ( ) ) ) ) # 2D unique # updateDim _ List = np . unique ( np . array ( zipped _ upd , dtype = ' | S16 ' ) ) # [ str ( i ) for i in datalen ] # if updateDim _ List . size > 0 : updateDim _ List . resize ( ( 2 , updateDim _ List . size / 2 ) ) # updateDim _ List = np . unique ( zip ( * ( np . array ( dimname ) [ ~ createDim ] , np . array ( datalen ) [ ~ createDim ] ) ) ) # [ str ( i ) for i in datalen ] zipped_dims = zip ( * ( np . hstack ( dimname ) [ np . hstack ( createDim ) ] , np . hstack ( datalen ) [ np . hstack ( createDim ) ] ) ) createDim_list = np . array ( list ( set ( tuple ( i ) for i in np . array ( zipped_dims , dtype = '|S16' ) . tolist ( ) ) ) ) # 2D unique # clist , inv = np . unique ( np . array ( zipped _ dims , dtype = ' | S16 ' ) , return _ inverse = True ) # RQ : THIS WILL FAIL IF NUMBERS HAVE MORE THAN 16 DIGITS # [ str ( i ) for i in datalen ] # if createDim _ list . size > 0 : createDim _ list . resize ( ( 2 , createDim _ list . size / 2 ) ) # createDim _ list = np . unique ( zip ( * ( np . array ( dimname ) [ createDim ] , np . array ( datalen ) [ createDim ] ) ) ) # [ str ( i ) for i in datalen ] for dname , dim in createDim_list : self . create_Dim ( dname , np . int ( dim ) ) for dname , dim in updateDim_List : self . update_Dim ( dname , np . int ( dim ) )
def parse_bowtie2_logs ( self , f ) : """Warning : This function may make you want to stab yourself . Parse logs from bowtie2 . These miss several key bits of information such as input files , so we try to look for logs from other wrapper tools that may have logged this info . If not found , we default to using the filename . Note that concatenated logs only parse if we have the command printed in there . The bowtie log uses the same strings mulitple times in different contexts to mean different things , making parsing very messy . Handle with care . Example single - end output from bowtie2: Time loading reference : 00:00:08 Time loading forward index : 00:00:16 Time loading mirror index : 00:00:09 [ samopen ] SAM header is present : 25 sequences . Multiseed full - index search : 00:58:04 38377305 reads ; of these : 38377305 ( 100.00 % ) were unpaired ; of these : 2525577 ( 6.58 % ) aligned 0 times 27593593 ( 71.90 % ) aligned exactly 1 time 8258135 ( 21.52 % ) aligned > 1 times 93.42 % overall alignment rate Time searching : 00:58:37 Overall time : 00:58:37 Example paired - end output from bowtie2: Time loading reference : 00:01:07 Time loading forward index : 00:00:26 Time loading mirror index : 00:00:09 Multiseed full - index search : 01:32:55 15066949 reads ; of these : 15066949 ( 100.00 % ) were paired ; of these : 516325 ( 3.43 % ) aligned concordantly 0 times 11294617 ( 74.96 % ) aligned concordantly exactly 1 time 3256007 ( 21.61 % ) aligned concordantly > 1 times 516325 pairs aligned concordantly 0 times ; of these : 26692 ( 5.17 % ) aligned discordantly 1 time 489633 pairs aligned 0 times concordantly or discordantly ; of these : 979266 mates make up the pairs ; of these : 592900 ( 60.55 % ) aligned 0 times 209206 ( 21.36 % ) aligned exactly 1 time 177160 ( 18.09 % ) aligned > 1 times 98.03 % overall alignment rate Time searching : 01:34:37 Overall time : 01:34:37"""
# Regexes regexes = { 'unpaired' : { 'unpaired_aligned_none' : r"(\d+) \([\d\.]+%\) aligned 0 times" , 'unpaired_aligned_one' : r"(\d+) \([\d\.]+%\) aligned exactly 1 time" , 'unpaired_aligned_multi' : r"(\d+) \([\d\.]+%\) aligned >1 times" } , 'paired' : { 'paired_aligned_none' : r"(\d+) \([\d\.]+%\) aligned concordantly 0 times" , 'paired_aligned_one' : r"(\d+) \([\d\.]+%\) aligned concordantly exactly 1 time" , 'paired_aligned_multi' : r"(\d+) \([\d\.]+%\) aligned concordantly >1 times" , 'paired_aligned_discord_one' : r"(\d+) \([\d\.]+%\) aligned discordantly 1 time" , 'paired_aligned_discord_multi' : r"(\d+) \([\d\.]+%\) aligned discordantly >1 times" , 'paired_aligned_mate_one' : r"(\d+) \([\d\.]+%\) aligned exactly 1 time" , 'paired_aligned_mate_multi' : r"(\d+) \([\d\.]+%\) aligned >1 times" , 'paired_aligned_mate_none' : r"(\d+) \([\d\.]+%\) aligned 0 times" } } # Go through log file line by line s_name = f [ 's_name' ] parsed_data = { } for l in f [ 'f' ] : # Attempt in vain to find original bowtie2 command , logged by another program btcmd = re . search ( r"bowtie2 .+ -[1U] ([^\s,]+)" , l ) if btcmd : s_name = self . clean_s_name ( btcmd . group ( 1 ) , f [ 'root' ] ) log . debug ( "Found a bowtie2 command, updating sample name to '{}'" . format ( s_name ) ) # Total reads total = re . search ( r"(\d+) reads; of these:" , l ) if total : parsed_data [ 'total_reads' ] = int ( total . group ( 1 ) ) # Single end reads unpaired = re . search ( r"(\d+) \([\d\.]+%\) were unpaired; of these:" , l ) if unpaired : parsed_data [ 'unpaired_total' ] = int ( unpaired . group ( 1 ) ) self . num_se += 1 # Do nested loop whilst we have this level of indentation l = f [ 'f' ] . readline ( ) while l . startswith ( ' ' ) : for k , r in regexes [ 'unpaired' ] . items ( ) : match = re . search ( r , l ) if match : parsed_data [ k ] = int ( match . group ( 1 ) ) l = f [ 'f' ] . readline ( ) # Paired end reads paired = re . search ( r"(\d+) \([\d\.]+%\) were paired; of these:" , l ) if paired : parsed_data [ 'paired_total' ] = int ( paired . group ( 1 ) ) self . num_pe += 1 # Do nested loop whilst we have this level of indentation l = f [ 'f' ] . readline ( ) while l . startswith ( ' ' ) : for k , r in regexes [ 'paired' ] . items ( ) : match = re . search ( r , l ) if match : parsed_data [ k ] = int ( match . group ( 1 ) ) l = f [ 'f' ] . readline ( ) # Overall alignment rate overall = re . search ( r"([\d\.]+)% overall alignment rate" , l ) if overall : parsed_data [ 'overall_alignment_rate' ] = float ( overall . group ( 1 ) ) # End of log section # Save half ' pairs ' of mate counts m_keys = [ 'paired_aligned_mate_multi' , 'paired_aligned_mate_none' , 'paired_aligned_mate_one' ] for k in m_keys : if k in parsed_data : parsed_data [ '{}_halved' . format ( k ) ] = float ( parsed_data [ k ] ) / 2.0 # Save parsed data if s_name in self . bowtie2_data : log . debug ( "Duplicate sample name found! Overwriting: {}" . format ( s_name ) ) self . add_data_source ( f , s_name ) self . bowtie2_data [ s_name ] = parsed_data # Reset in case we find more in this log file s_name = f [ 's_name' ] parsed_data = { }
def _report_self ( self ) : """Reports the crawler uuid to redis"""
if self . redis_connected : self . logger . debug ( "Reporting self to redis" ) try : key = "stats:rest:self:{m}:{u}" . format ( m = socket . gethostname ( ) , u = self . my_uuid ) self . redis_conn . set ( key , self . get_time ( ) ) self . redis_conn . expire ( key , self . settings [ 'HEARTBEAT_TIMEOUT' ] ) except ConnectionError : self . logger . error ( "Lost connection to Redis" ) self . _spawn_redis_connection_thread ( ) else : self . logger . warn ( "Cannot report self to redis, not connected" )
def accumulate_from_superclasses ( cls , propname ) : '''Traverse the class hierarchy and accumulate the special sets of names ` ` MetaHasProps ` ` stores on classes : Args : name ( str ) : name of the special attribute to collect . Typically meaningful values are : ` ` _ _ container _ props _ _ ` ` , ` ` _ _ properties _ _ ` ` , ` ` _ _ properties _ with _ refs _ _ ` `'''
cachename = "__cached_all" + propname # we MUST use cls . _ _ dict _ _ NOT hasattr ( ) . hasattr ( ) would also look at base # classes , and the cache must be separate for each class if cachename not in cls . __dict__ : s = set ( ) for c in inspect . getmro ( cls ) : if issubclass ( c , HasProps ) and hasattr ( c , propname ) : base = getattr ( c , propname ) s . update ( base ) setattr ( cls , cachename , s ) return cls . __dict__ [ cachename ]
def replaceelement ( oldelem , newelem ) : '''Given a parent element , replace oldelem with newelem .'''
parent = oldelem . getparent ( ) if parent is not None : size = len ( parent . getchildren ( ) ) for x in range ( 0 , size ) : if parent . getchildren ( ) [ x ] == oldelem : parent . remove ( oldelem ) parent . insert ( x , newelem )
def token_name ( tokens , expected ) : """Match a token name ( type ) ."""
try : token = next ( iter ( tokens ) ) except StopIteration : return if token and token . name == expected : return TokenMatch ( None , token . value , ( token , ) )
def run ( self , allow_interactive = True ) : """Enter the native GUI event loop . Parameters allow _ interactive : bool Is the application allowed to handle interactive mode for console terminals ? By default , typing ` ` python - i main . py ` ` results in an interactive shell that also regularly calls the VisPy event loop . In this specific case , the run ( ) function will terminate immediately and rely on the interpreter ' s input loop to be run after script execution ."""
if allow_interactive and self . is_interactive ( ) : inputhook . set_interactive ( enabled = True , app = self ) else : return self . _backend . _vispy_run ( )
def logout_callback ( ) : """Route called by the OpenID provider when user logs out . Clear the cookies here ."""
resp = make_response ( 'Logging Out' ) resp . set_cookie ( 'sub' , 'null' , expires = 0 ) resp . set_cookie ( 'session_id' , 'null' , expires = 0 ) return resp
def fix_docs ( cls ) : """copies docstrings of derived attributes ( methods , properties , attrs ) from parent classes ."""
import inspect public_undocumented_members = { name : func for name , func in inspect . getmembers ( cls ) if not name . startswith ( '_' ) and func . __doc__ is None } for name , func in public_undocumented_members . items ( ) : for parent in cls . __mro__ [ 1 : ] : parfunc = getattr ( parent , name , None ) if parfunc and getattr ( parfunc , '__doc__' , None ) : if isinstance ( func , property ) : # copy property , since its doc attribute is read - only new_prop = property ( fget = func . fget , fset = func . fset , fdel = func . fdel , doc = parfunc . __doc__ ) setattr ( cls , name , new_prop ) else : if hasattr ( func , '__func__' ) : # handle instancemethods func . __func__ . __doc__ = parfunc . __doc__ else : func . __doc__ = parfunc . __doc__ break return cls
def withNamedBits ( cls , ** values ) : """Creates a subclass with discreet named bits constraint . Reduce fully duplicate enumerations along the way ."""
enums = set ( cls . namedValues . items ( ) ) enums . update ( values . items ( ) ) class X ( cls ) : namedValues = namedval . NamedValues ( * enums ) X . __name__ = cls . __name__ return X
def set_level ( self , position , channel = None ) : """Seek a specific value by specifying a float ( ) from 0.0 to 1.0."""
try : position = float ( position ) except Exception as err : LOG . debug ( "HelperLevel.set_level: Exception %s" % ( err , ) ) return False self . writeNodeData ( "LEVEL" , position , channel )
def expose_finish ( self , * args ) : """Finish drawing process"""
# Obtain a reference to the OpenGL drawable # and rendering context . gldrawable = self . get_gl_drawable ( ) # glcontext = self . get _ gl _ context ( ) if not gldrawable : return # Put the buffer on the screen ! if gldrawable . is_double_buffered ( ) : gldrawable . swap_buffers ( ) else : glFlush ( ) # OpenGL end gldrawable . gl_end ( )
def LDRSH ( self , params ) : """LDRSH Ra , [ Rb , Rc ] Load a half word from memory , sign extend , and put into Ra Ra , Rb , and Rc must be low registers"""
# TODO LDRSH cant use immediates Ra , Rb , Rc = self . get_three_parameters ( self . THREE_PARAMETER_WITH_BRACKETS , params ) self . check_arguments ( low_registers = ( Ra , Rb , Rc ) ) def LDRSH_func ( ) : # TODO does memory read up ? if ( self . register [ Rb ] + self . register [ Rc ] ) % 2 != 0 : raise iarm . exceptions . HardFault ( "Memory access not half word aligned\nR{}: {}\nR{}: {}" . format ( Rb , self . register [ Rb ] , Rc , self . register [ Rc ] ) ) self . register [ Ra ] = 0 for i in range ( 2 ) : self . register [ Ra ] |= ( self . memory [ self . register [ Rb ] + self . register [ Rc ] + i ] << ( 8 * i ) ) if self . register [ Ra ] & ( 1 << 15 ) : self . register [ Ra ] |= ( 0xFFFF << 16 ) return LDRSH_func
def remove_config_to_machine_group ( self , project_name , config_name , group_name ) : """remove a logtail config to a machine group Unsuccessful opertaion will cause an LogException . : type project _ name : string : param project _ name : the Project name : type config _ name : string : param config _ name : the logtail config name to apply : type group _ name : string : param group _ name : the machine group name : return : RemoveConfigToMachineGroupResponse : raise : LogException"""
headers = { } params = { } resource = "/machinegroups/" + group_name + "/configs/" + config_name ( resp , header ) = self . _send ( "DELETE" , project_name , None , resource , params , headers ) return RemoveConfigToMachineGroupResponse ( header , resp )
def register_model_resource ( self , resource : ModelResource ) : """Method to manually register a : class : ` ModelResource ` with APISpec . : param resource :"""
model_name = resource . Meta . model . __name__ self . spec . add_tag ( { 'name' : model_name , 'description' : resource . Meta . model . __doc__ , } ) for method in resource . methods ( ) : key = f'{resource.__name__}.{method}' if key not in unchained . controller_bundle . controller_endpoints : continue docs = { } http_method = method if method == CREATE : http_method = 'post' docs [ http_method ] = dict ( parameters = [ { 'in' : __location_map__ [ 'json' ] , 'required' : True , 'schema' : resource . Meta . serializer_create , } ] , responses = { '201' : dict ( description = getattr ( resource , CREATE ) . __doc__ , schema = resource . Meta . serializer_create ) , } , ) elif method == DELETE : docs [ http_method ] = dict ( parameters = [ ] , responses = { '204' : dict ( description = getattr ( resource , DELETE ) . __doc__ ) , } , ) elif method == GET : docs [ http_method ] = dict ( parameters = [ ] , responses = { '200' : dict ( description = getattr ( resource , GET ) . __doc__ , schema = resource . Meta . serializer ) , } , ) elif method == LIST : http_method = 'get' docs [ http_method ] = dict ( parameters = [ ] , responses = { '200' : dict ( description = getattr ( resource , LIST ) . __doc__ , schema = resource . Meta . serializer_many ) , } , ) elif method == PATCH : docs [ http_method ] = dict ( parameters = [ { 'in' : __location_map__ [ 'json' ] , 'required' : False , 'schema' : resource . Meta . serializer , } ] , responses = { '200' : dict ( description = getattr ( resource , PATCH ) . __doc__ , schema = resource . Meta . serializer ) , } , ) elif method == PUT : docs [ http_method ] = dict ( parameters = [ { 'in' : __location_map__ [ 'json' ] , 'required' : True , 'schema' : resource . Meta . serializer , } ] , responses = { '200' : dict ( description = getattr ( resource , PUT ) . __doc__ , schema = resource . Meta . serializer ) , } , ) docs [ http_method ] [ 'tags' ] = [ model_name ] display_name = title_case ( model_name ) if method == LIST : display_name = pluralize ( display_name ) docs [ http_method ] [ 'summary' ] = f'{http_method.upper()} {display_name}' routes = unchained . controller_bundle . controller_endpoints [ key ] for route in routes : for rule in self . app . url_map . iter_rules ( route . endpoint ) : self . spec . add_path ( app = self . app , rule = rule , operations = docs , view = route . view_func )
def _cache_index ( self , dbname , collection , index , cache_for ) : """Add an index to the index cache for ensure _ index operations ."""
now = datetime . datetime . utcnow ( ) expire = datetime . timedelta ( seconds = cache_for ) + now with self . __index_cache_lock : if dbname not in self . __index_cache : self . __index_cache [ dbname ] = { } self . __index_cache [ dbname ] [ collection ] = { } self . __index_cache [ dbname ] [ collection ] [ index ] = expire elif collection not in self . __index_cache [ dbname ] : self . __index_cache [ dbname ] [ collection ] = { } self . __index_cache [ dbname ] [ collection ] [ index ] = expire else : self . __index_cache [ dbname ] [ collection ] [ index ] = expire
def _get_description ( self , args : Tuple , kwargs : Dict [ str , Any ] ) -> Dict [ str , Any ] : """Return the dictionary to be sent to the queue ."""
return { 'id' : uuid1 ( ) . hex , 'args' : args , 'kwargs' : kwargs , 'module' : self . _module_name , 'function' : self . f . __name__ , 'sender_hostname' : socket . gethostname ( ) , 'sender_pid' : os . getpid ( ) , 'sender_cmd' : ' ' . join ( sys . argv ) , 'sender_timestamp' : datetime . utcnow ( ) . isoformat ( ) [ : 19 ] , }
def clearCache ( ) : """Clears any cached data we have stored about specific engine versions"""
if os . path . exists ( CachedDataManager . _cacheDir ( ) ) == True : shutil . rmtree ( CachedDataManager . _cacheDir ( ) )
def software_fibonacci ( n ) : """a normal old python function to return the Nth fibonacci number ."""
a , b = 0 , 1 for i in range ( n ) : a , b = b , a + b return a
def phi_inv ( p ) : """phi _ inv : inverse of gaussian ( normal ) CDF Source : Handbook of Mathematical Functions Dover Books on Mathematics Milton Abramowitz and Irene A . Stegun ( Editors ) Formula 26.2.23."""
if p < 0.5 : t = math . sqrt ( - 2.0 * math . log ( p ) ) return ( ( 0.010328 * t + 0.802853 ) * t + 2.515517 ) / ( ( ( 0.001308 * t + 0.189269 ) * t + 1.432788 ) * t + 1.0 ) - t else : t = math . sqrt ( - 2.0 * math . log ( 1.0 - p ) ) return t - ( ( 0.010328 * t + 0.802853 ) * t + 2.515517 ) / ( ( ( 0.001308 * t + 0.189269 ) * t + 1.432788 ) * t + 1.0 )
def set_weekly ( self , interval , * , days_of_week , first_day_of_week , ** kwargs ) : """Set to repeat every week on specified days for every x no . of days : param int interval : no . of days to repeat at : param str first _ day _ of _ week : starting day for a week : param list [ str ] days _ of _ week : list of days of the week to repeat : keyword date start : Start date of repetition ( kwargs ) : keyword date end : End date of repetition ( kwargs ) : keyword int occurrences : no of occurrences ( kwargs )"""
self . set_daily ( interval , ** kwargs ) self . __days_of_week = set ( days_of_week ) self . __first_day_of_week = first_day_of_week
def set_session_token ( self , session_token ) : """Sets session token and new login time . : param str session _ token : Session token from request ."""
self . session_token = session_token self . _login_time = datetime . datetime . now ( )
def end_timing ( self ) : """Ends timing of an execution block , calculates elapsed time and updates the associated counter ."""
if self . _callback != None : elapsed = time . perf_counter ( ) * 1000 - self . _start self . _callback . end_timing ( self . _counter , elapsed )
def get_path ( self ) : '''获取选择的路径 , 如果没有选择 , 就返回根目录'''
model , tree_iter = self . selection . get_selected ( ) if not tree_iter : return '/' else : return model [ tree_iter ] [ PATH_COL ]
def summary_reporter ( self ) : """Parse individual MOB Recon reports into a summary report"""
logging . info ( 'Creating MOB-recon summary report' ) with open ( os . path . join ( self . reportpath , 'mob_recon_summary.csv' ) , 'w' ) as summary : data = 'Strain,Location,Contig,Incompatibility,IncompatibilityAccession,RelaxaseType,' 'MashNearestNeighbor,MashNeighborDistance\n' for sample in self . metadata : # Initialise a dictionary to store results for the COWBAT final report sample [ self . analysistype ] . pipelineresults = dict ( ) for primarykey , results in sample [ self . analysistype ] . report_dict . items ( ) : # Only process results if they are not calculated to be chromosomal if results [ 'cluster_id' ] != 'chromosome' : data += ',' . join ( str ( result ) . replace ( ',' , ';' ) if str ( result ) != 'nan' else 'ND' for result in [ sample . name , results [ 'cluster_id' ] , results [ 'contig_id' ] . split ( '|' ) [ 1 ] , results [ 'rep_type' ] , results [ 'rep_type_accession' ] , results [ 'relaxase_type' ] , results [ 'mash_nearest_neighbor' ] , results [ 'mash_neighbor_distance' ] ] ) data += '\n' # Add the calculated incompatibility to the pipeline results for use in the final COWBAT report sample [ self . analysistype ] . pipelineresults [ results [ 'cluster_id' ] ] = ';' . join ( str ( result ) . replace ( ',' , ';' ) if str ( result ) != 'nan' else 'ND' for result in [ results [ 'rep_type' ] ] ) summary . write ( data )
def create ( window , root ) : """Create a notification object . Args : window ( : py : class : ` BrowserWindow ` ) : Window object this region appears in . root ( : py : class : ` ~ selenium . webdriver . remote . webelement . WebElement ` ) : WebDriver element object that serves as the root for the notification . Returns : : py : class : ` BaseNotification ` : Firefox notification ."""
notifications = { } _id = root . get_property ( "id" ) from foxpuppet . windows . browser . notifications import addons notifications . update ( addons . NOTIFICATIONS ) return notifications . get ( _id , BaseNotification ) ( window , root )
def _warn ( self , problem , kind = BrotherQLRasterError ) : """Logs the warning message ` problem ` or raises a ` BrotherQLRasterError ` exception ( changeable via ` kind ` ) if ` self . exception _ on _ warning ` is set to True . : raises BrotherQLRasterError : Or other exception set via the ` kind ` keyword argument ."""
if self . exception_on_warning : raise kind ( problem ) else : logger . warning ( problem )
def presence_handler ( type_ , from_ ) : """Register the decorated function as presence stanza handler . : param type _ : Presence type to listen for : type type _ : : class : ` ~ . PresenceType ` : param from _ : Sender JIDs to listen for : type from _ : : class : ` aioxmpp . JID ` or : data : ` None ` : raise TypeError : if the decorated object is a coroutine function . . seealso : : : meth : ` ~ . StanzaStream . register _ presence _ callback ` for more details on the ` type _ ` and ` from _ ` arguments . . versionchanged : : 0.9 This is now based on : class : ` aioxmpp . dispatcher . SimplePresenceDispatcher ` ."""
def decorator ( f ) : if asyncio . iscoroutinefunction ( f ) : raise TypeError ( "presence_handler must not be a coroutine function" ) aioxmpp . service . add_handler_spec ( f , aioxmpp . service . HandlerSpec ( ( _apply_presence_handler , ( type_ , from_ ) ) , require_deps = ( SimplePresenceDispatcher , ) ) ) return f return decorator
def _validate_arguments ( self ) : """method to sanitize model parameters Parameters None Returns None"""
if self . _has_terms ( ) : [ term . _validate_arguments ( ) for term in self . _terms ] else : super ( TensorTerm , self ) . _validate_arguments ( ) return self
def p_InDecrement ( p ) : '''InDecrement : INDECREMENT Expression | Expression INDECREMENT'''
from . helper import isString if isString ( p [ 1 ] ) : p [ 0 ] = InDecrement ( p [ 1 ] , p [ 2 ] , False ) else : p [ 0 ] = InDecrement ( p [ 2 ] , p [ 1 ] , True )