signature
stringlengths
29
44.1k
implementation
stringlengths
0
85.2k
def send_raw_email ( self , raw_message , source = None , destinations = None ) : """Sends an email message , with header and content specified by the client . The SendRawEmail action is useful for sending multipart MIME emails , with attachments or inline content . The raw text of the message must comply with Internet email standards ; otherwise , the message cannot be sent . : type source : string : param source : The sender ' s email address . Amazon ' s docs say : If you specify the Source parameter , then bounce notifications and complaints will be sent to this email address . This takes precedence over any Return - Path header that you might include in the raw text of the message . : type raw _ message : string : param raw _ message : The raw text of the message . The client is responsible for ensuring the following : - Message must contain a header and a body , separated by a blank line . - All required header fields must be present . - Each part of a multipart MIME message must be formatted properly . - MIME content types must be among those supported by Amazon SES . Refer to the Amazon SES Developer Guide for more details . - Content must be base64 - encoded , if MIME requires it . : type destinations : list of strings or string : param destinations : A list of destinations for the message ."""
params = { 'RawMessage.Data' : base64 . b64encode ( raw_message ) , } if source : params [ 'Source' ] = source if destinations : self . _build_list_params ( params , destinations , 'Destinations.member' ) return self . _make_request ( 'SendRawEmail' , params )
def witness_tx ( tx_ins , tx_outs , tx_witnesses , ** kwargs ) : '''Construct a fully - signed segwit transaction Args : tx _ ins list ( TxIn instances ) : list of transaction inputs tx _ outs list ( TxOut instances ) : list of transaction outputs tx _ witnesses list ( TxWitness instances ) : list of transaction witnsses * * kwargs : version ( int ) : transaction version number locktime ( hex ) : transaction locktime Returns : ( Tx instance ) : signed transaction with witnesses'''
# Parse legacy scripts AND witness scripts for OP _ CLTV deser = [ script_ser . deserialize ( tx_in . redeem_script ) for tx_in in tx_ins if tx_in is not None ] for w in tx_witnesses : try : deser . append ( script_ser . deserialize ( w . stack [ - 1 ] . item ) ) except ( NotImplementedError , ValueError ) : pass version = max ( [ guess_version ( d ) for d in deser ] ) if 'lock_time' in kwargs : lock_time = kwargs [ 'lock_time' ] else : lock_time = max ( [ guess_locktime ( d ) for d in deser ] ) return tb . make_tx ( version = version , tx_ins = tx_ins , tx_outs = tx_outs , lock_time = lock_time , tx_witnesses = tx_witnesses )
def t_octalValue ( t ) : r'[ + - ] ? 0[0-9 ] +'
# We must match [ 0-9 ] , and then check the validity of the octal number . # If we match [ 0-7 ] , the invalid octal number " 08 " would match # ' decimalValue ' 0 and ' decimalValue ' 8. if re . search ( r'[8-9]' , t . value ) is not None : msg = _format ( "Invalid octal number {0!A}" , t . value ) t . lexer . last_msg = msg t . type = 'error' # Setting error causes the value to be automatically skipped else : t . value = int ( t . value , 8 ) return t
def subdomains_init ( blockstack_opts , working_dir , atlas_state ) : """Set up subdomain state Returns a SubdomainIndex object that has been successfully connected to Atlas"""
if not is_subdomains_enabled ( blockstack_opts ) : return None subdomain_state = SubdomainIndex ( blockstack_opts [ 'subdomaindb_path' ] , blockstack_opts = blockstack_opts ) atlas_node_add_callback ( atlas_state , 'store_zonefile' , subdomain_state . enqueue_zonefile ) return subdomain_state
def get_under_hollow ( self ) : """Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not"""
C0 = self . B [ - 1 : ] * ( 3 , 3 , 1 ) ads_pos = C0 . positions [ 4 ] C = self . get_subsurface_layer ( ) * ( 3 , 3 , 1 ) ret = 'FCC' if np . any ( [ np . linalg . norm ( ads_pos [ : 2 ] - ele . position [ : 2 ] ) < 0.5 * cradii [ ele . number ] for ele in C ] ) : ret = 'HCP' return ret
def get_error ( self , error ) : """A helper function , gets standard information from the error ."""
error_type = type ( error ) if error . error_type == ET_CLIENT : error_type_name = 'Client' else : error_type_name = 'Server' return { 'type' : error_type_name , 'name' : error_type . __name__ , 'prefix' : getattr ( error_type , '__module__' , '' ) , 'message' : unicode ( error ) , 'params' : error . args , }
def dumps ( self ) : """Return path command representation ."""
ret_str = self . path_type if self . options is not None : ret_str += self . options . dumps ( ) return ret_str
def on_connect ( self , connection ) : "Called when the stream connects"
self . _stream = connection . _reader self . _buffer = SocketBuffer ( self . _stream , self . _read_size ) if connection . decode_responses : self . encoding = connection . encoding
def cat_colors ( N : int = 1 , * , hue : str = None , luminosity : str = None , bgvalue : int = None , loop : bool = False , seed : str = "cat" ) -> Union [ List [ Any ] , colors . LinearSegmentedColormap ] : """Return a colormap suitable for N categorical values , optimized to be both aesthetically pleasing and perceptually distinct . Args : NThe number of colors requested . hueControls the hue of the generated color . You can pass a string representing a color name : " red " , " orange " , " yellow " , " green " , " blue " , " purple " , " pink " and " monochrome " are currently supported . If you pass a hexidecimal color string such as " # 00FFFF " , its hue value will be used to generate colors . luminosityControls the luminosity of the generated color : " bright " , " light " or " dark " . bgvalueIf not None , then the corresponding index color will be set to light gray loopIf True , loop the color alphabet instead of generating random colors seedIf not None , use as the random seed ( default : " cat " ) Returns : A set of colors in the requested format , either a list of values or a matplotlib LinearSegmentedColormap ( when format = " cmap " ) If N < = 25 and hue and luminosity are both None , a subset of the optimally perceptually distinct " color alphabet " is returned . Else , a pleasing set of random colors is returned . Colors are designed to be displayed on a white background ."""
c : List [ str ] = [ ] if N <= 25 and hue is None and luminosity is None : c = _color_alphabet [ : N ] elif not loop : c = RandomColor ( seed = seed ) . generate ( count = N , hue = hue , luminosity = luminosity , format_ = "hex" ) else : n = N while n > 0 : c += _color_alphabet [ : n ] n -= 25 if bgvalue is not None : c [ bgvalue ] = "#aaaaaa" return colors . LinearSegmentedColormap . from_list ( "" , c , N )
def ParseContactRow ( self , parser_mediator , query , row , ** unused_kwargs ) : """Parses a contact row from the database . Args : parser _ mediator ( ParserMediator ) : mediates interactions between parsers and other components , such as storage and dfvfs . query ( str ) : query that created the row . row ( sqlite3 . Row ) : row resulting from query ."""
query_hash = hash ( query ) event_data = TangoAndroidContactEventData ( ) first_name = self . _GetRowValue ( query_hash , row , 'first_name' ) try : decoded_text = base64_decode ( first_name ) event_data . first_name = codecs . decode ( decoded_text , 'utf-8' ) except ValueError : event_data . first_name = first_name parser_mediator . ProduceExtractionWarning ( 'unable to parse first name: {0:s}' . format ( first_name ) ) last_name = self . _GetRowValue ( query_hash , row , 'last_name' ) try : decoded_text = base64_decode ( last_name ) event_data . last_name = codecs . decode ( decoded_text , 'utf-8' ) except ValueError : event_data . last_name = last_name parser_mediator . ProduceExtractionWarning ( 'unable to parse last name: {0:s}' . format ( last_name ) ) event_data . birthday = self . _GetRowValue ( query_hash , row , 'birthday' ) event_data . gender = self . _GetRowValue ( query_hash , row , 'gender' ) status = self . _GetRowValue ( query_hash , row , 'status' ) try : decoded_text = base64_decode ( status ) event_data . status = codecs . decode ( decoded_text , 'utf-8' ) except ValueError : event_data . status = status parser_mediator . ProduceExtractionWarning ( 'unable to parse status: {0:s}' . format ( status ) ) event_data . distance = self . _GetRowValue ( query_hash , row , 'distance' ) is_friend = self . _GetRowValue ( query_hash , row , 'friend' ) event_data . is_friend = False if is_friend : event_data . is_friend = True event_data . friend_request_type = self . _GetRowValue ( query_hash , row , 'friend_request_type' ) friend_request_message = self . _GetRowValue ( query_hash , row , 'friend_request_message' ) try : decoded_text = base64_decode ( friend_request_message ) event_data . friend_request_message = codecs . decode ( decoded_text , 'utf-8' ) except ValueError : event_data . friend_request_message = friend_request_message parser_mediator . ProduceExtractionWarning ( 'unable to parse status: {0:s}' . format ( friend_request_message ) ) timestamp = self . _GetRowValue ( query_hash , row , 'last_active_time' ) if timestamp : date_time = dfdatetime_java_time . JavaTime ( timestamp = timestamp ) event = time_events . DateTimeValuesEvent ( date_time , definitions . TIME_DESCRIPTION_LAST_ACTIVE ) parser_mediator . ProduceEventWithEventData ( event , event_data ) timestamp = self . _GetRowValue ( query_hash , row , 'last_access_time' ) if timestamp : date_time = dfdatetime_java_time . JavaTime ( timestamp = timestamp ) event = time_events . DateTimeValuesEvent ( date_time , definitions . TIME_DESCRIPTION_LAST_ACCESS ) parser_mediator . ProduceEventWithEventData ( event , event_data ) timestamp = self . _GetRowValue ( query_hash , row , 'friend_request_time' ) if timestamp : date_time = dfdatetime_java_time . JavaTime ( timestamp = timestamp ) event = time_events . DateTimeValuesEvent ( date_time , definitions . TIME_DESCRIPTION_SENT ) parser_mediator . ProduceEventWithEventData ( event , event_data )
def aes_ecb_decrypt ( self , key_handle , ciphertext ) : """AES ECB decrypt using a key handle . @ warning : Please be aware of the known limitations of AES ECB mode before using it ! @ param key _ handle : Key handle to use for AES ECB decryption @ param ciphertext : Data to decrypt @ type key _ handle : integer or string @ type ciphertext : string @ returns : Plaintext @ rtype : string @ see : L { pyhsm . aes _ ecb _ cmd . YHSM _ Cmd _ AES _ ECB _ Decrypt }"""
return pyhsm . aes_ecb_cmd . YHSM_Cmd_AES_ECB_Decrypt ( self . stick , key_handle , ciphertext ) . execute ( )
def absent ( name , protocol = None , service_address = None ) : '''Ensure the LVS service is absent . name The name of the LVS service protocol The service protocol service _ address The LVS service address'''
ret = { 'name' : name , 'changes' : { } , 'result' : True , 'comment' : '' } # check if service exists and remove it service_check = __salt__ [ 'lvs.check_service' ] ( protocol = protocol , service_address = service_address ) if service_check is True : if __opts__ [ 'test' ] : ret [ 'result' ] = None ret [ 'comment' ] = 'LVS Service {0} is present and needs to be removed' . format ( name ) return ret service_delete = __salt__ [ 'lvs.delete_service' ] ( protocol = protocol , service_address = service_address ) if service_delete is True : ret [ 'comment' ] = 'LVS Service {0} has been removed' . format ( name ) ret [ 'changes' ] [ name ] = 'Absent' return ret else : ret [ 'comment' ] = 'LVS Service {0} removed failed({1})' . format ( name , service_delete ) ret [ 'result' ] = False return ret else : ret [ 'comment' ] = 'LVS Service {0} is not present, so it cannot be removed' . format ( name ) return ret
def summary_engine ( ** kwargs ) : """engine to extract summary data"""
logger . debug ( "summary_engine" ) # farms = kwargs [ " farms " ] farms = [ ] experiments = kwargs [ "experiments" ] for experiment in experiments : if experiment . selected_summaries is None : selected_summaries = [ "discharge_capacity" , "charge_capacity" , "coulombic_efficiency" , "cumulated_coulombic_efficiency" , "ir_discharge" , "ir_charge" , "end_voltage_discharge" , "end_voltage_charge" , ] else : selected_summaries = experiment . selected_summaries farm = helper . join_summaries ( experiment . summary_frames , selected_summaries ) farms . append ( farm ) barn = "batch_dir" return farms , barn
def _GetPropertyValue ( self , parser_mediator , properties , property_name ) : """Retrieves a property value . Args : parser _ mediator ( ParserMediator ) : mediates interactions between parsers and other components , such as storage and dfvfs . properties ( dict [ str , object ] ) : properties . property _ name ( str ) : name of the property . Returns : str : property value ."""
property_value = properties . get ( property_name , None ) if isinstance ( property_value , py2to3 . BYTES_TYPE ) : try : # TODO : get encoding form XML metadata . property_value = property_value . decode ( 'utf-8' ) except UnicodeDecodeError : parser_mediator . ProduceExtractionWarning ( 'unable to decode property: {0:s}' . format ( property_name ) ) return property_value
def _ancestors ( collection ) : """Get the ancestors of the collection ."""
for index , c in enumerate ( collection . path_to_root ( ) ) : if index > 0 and c . dbquery is not None : raise StopIteration yield c . name raise StopIteration
def is_nested_subset ( superset_list , subset_list ) : """This function checks if a nested list is a subset of another nested list . Examples : > > > is _ nested _ subset ( [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ] , [ [ 12 , 18 , 23 , 25 , 45 ] , [ 7 , 11 , 19 , 24 , 28 ] , [ 1 , 5 , 8 , 18 , 15 , 16 ] ] ) False > > > is _ nested _ subset ( [ [ 2 , 3 , 1 ] , [ 4 , 5 ] , [ 6 , 8 ] ] , [ [ 4 , 5 ] , [ 6 , 8 ] ] ) True > > > is _ nested _ subset ( [ [ ' a ' , ' b ' ] , [ ' e ' ] , [ ' c ' , ' d ' ] ] , [ [ ' g ' ] ] ) False Args : superset _ list , list : The list to check if subset _ list is part of . subset _ list , list : List for checking presence in superset _ list . Returns : bool : True if subset _ list is a subset of the superset _ list , else False ."""
presence = all ( item in superset_list for item in subset_list ) return presence
def _repack_archive ( archive1 , archive2 , verbosity = 0 , interactive = True ) : """Repackage an archive to a different format ."""
format1 , compression1 = get_archive_format ( archive1 ) format2 , compression2 = get_archive_format ( archive2 ) if format1 == format2 and compression1 == compression2 : # same format and compression allows to copy the file util . link_or_copy ( archive1 , archive2 , verbosity = verbosity ) return tmpdir = util . tmpdir ( ) try : kwargs = dict ( verbosity = verbosity , outdir = tmpdir ) same_format = ( format1 == format2 and compression1 and compression2 ) if same_format : # only decompress since the format is the same kwargs [ 'format' ] = compression1 path = _extract_archive ( archive1 , ** kwargs ) archive = os . path . abspath ( archive2 ) files = tuple ( os . listdir ( path ) ) olddir = os . getcwd ( ) os . chdir ( path ) try : kwargs = dict ( verbosity = verbosity , interactive = interactive ) if same_format : # only compress since the format is the same kwargs [ 'format' ] = compression2 _create_archive ( archive , files , ** kwargs ) finally : os . chdir ( olddir ) finally : shutil . rmtree ( tmpdir , onerror = rmtree_log_error )
def update_product ( AcceptLanguage = None , Id = None , Name = None , Owner = None , Description = None , Distributor = None , SupportDescription = None , SupportEmail = None , SupportUrl = None , AddTags = None , RemoveTags = None ) : """Updates an existing product . See also : AWS API Documentation : example : response = client . update _ product ( AcceptLanguage = ' string ' , Id = ' string ' , Name = ' string ' , Owner = ' string ' , Description = ' string ' , Distributor = ' string ' , SupportDescription = ' string ' , SupportEmail = ' string ' , SupportUrl = ' string ' , AddTags = [ ' Key ' : ' string ' , ' Value ' : ' string ' RemoveTags = [ ' string ' , : type AcceptLanguage : string : param AcceptLanguage : The language code to use for this operation . Supported language codes are as follows : ' en ' ( English ) ' jp ' ( Japanese ) ' zh ' ( Chinese ) If no code is specified , ' en ' is used as the default . : type Id : string : param Id : [ REQUIRED ] The identifier of the product for the update request . : type Name : string : param Name : The updated product name . : type Owner : string : param Owner : The updated owner of the product . : type Description : string : param Description : The updated text description of the product . : type Distributor : string : param Distributor : The updated distributor of the product . : type SupportDescription : string : param SupportDescription : The updated support description for the product . : type SupportEmail : string : param SupportEmail : The updated support email for the product . : type SupportUrl : string : param SupportUrl : The updated support URL for the product . : type AddTags : list : param AddTags : Tags to add to the existing list of tags associated with the product . ( dict ) - - Key / value pairs to associate with this provisioning . These tags are entirely discretionary and are propagated to the resources created in the provisioning . Key ( string ) - - [ REQUIRED ] The ProvisioningArtifactParameter . TagKey parameter from DescribeProvisioningParameters . Value ( string ) - - [ REQUIRED ] The esired value for this key . : type RemoveTags : list : param RemoveTags : Tags to remove from the existing list of tags associated with the product . ( string ) - - : rtype : dict : return : { ' ProductViewDetail ' : { ' ProductViewSummary ' : { ' Id ' : ' string ' , ' ProductId ' : ' string ' , ' Name ' : ' string ' , ' Owner ' : ' string ' , ' ShortDescription ' : ' string ' , ' Type ' : ' CLOUD _ FORMATION _ TEMPLATE ' , ' Distributor ' : ' string ' , ' HasDefaultPath ' : True | False , ' SupportEmail ' : ' string ' , ' SupportDescription ' : ' string ' , ' SupportUrl ' : ' string ' ' Status ' : ' AVAILABLE ' | ' CREATING ' | ' FAILED ' , ' ProductARN ' : ' string ' , ' CreatedTime ' : datetime ( 2015 , 1 , 1) ' Tags ' : [ ' Key ' : ' string ' , ' Value ' : ' string '"""
pass
def _set_scroll_area ( self , force = False ) : """Args : force ( bool ) : Set the scroll area even if no change in height and position is detected Sets the scroll window based on the counter positions"""
# Save scroll offset for resizing oldOffset = self . scroll_offset self . scroll_offset = newOffset = max ( self . counters . values ( ) ) + 1 if not self . enabled : return # Set exit handling only once if not self . process_exit : atexit . register ( self . _at_exit ) if not self . no_resize and RESIZE_SUPPORTED : signal . signal ( signal . SIGWINCH , self . _resize_handler ) self . process_exit = True if self . set_scroll : term = self . term newHeight = term . height scrollPosition = max ( 0 , newHeight - newOffset ) if force or newOffset > oldOffset or newHeight != self . height : self . height = newHeight # Add line feeds so we don ' t overwrite existing output if newOffset - oldOffset > 0 : term . move_to ( 0 , max ( 0 , newHeight - oldOffset ) ) self . stream . write ( '\n' * ( newOffset - oldOffset ) ) # Reset scroll area self . term . change_scroll ( scrollPosition ) # Always reset position term . move_to ( 0 , scrollPosition ) if self . companion_term : self . companion_term . move_to ( 0 , scrollPosition )
def get_pushes ( self , project , ** params ) : """Gets pushes from project , filtered by parameters By default this method will just return the latest 10 pushes ( if they exist ) : param project : project ( repository name ) to query data for : param params : keyword arguments to filter results"""
return self . _get_json_list ( self . PUSH_ENDPOINT , project , ** params )
def render_thread ( self ) : """A render loop that pulls observations off the queue to render ."""
obs = True while obs : # Send something falsy through the queue to shut down . obs = self . _obs_queue . get ( ) if obs : for alert in obs . observation . alerts : self . _alerts [ sc_pb . Alert . Name ( alert ) ] = time . time ( ) for err in obs . action_errors : if err . result != sc_err . Success : self . _alerts [ sc_err . ActionResult . Name ( err . result ) ] = time . time ( ) self . prepare_actions ( obs ) if self . _obs_queue . empty ( ) : # Only render the latest observation so we keep up with the game . self . render_obs ( obs ) if self . _video_writer : self . _video_writer . add ( np . transpose ( pygame . surfarray . pixels3d ( self . _window ) , axes = ( 1 , 0 , 2 ) ) ) self . _obs_queue . task_done ( )
def get_host_system_failfast ( self , name , verbose = False , host_system_term = 'HS' ) : """Get a HostSystem object fail fast if the object isn ' t a valid reference"""
if verbose : print ( "Finding HostSystem named %s..." % name ) hs = self . get_host_system ( name ) if hs is None : print ( "Error: %s '%s' does not exist" % ( host_system_term , name ) ) sys . exit ( 1 ) if verbose : print ( "Found HostSystem: {0} Name: {1}" % ( hs , hs . name ) ) return hs
def backfill_unk_emb ( self , E , filled_words ) : """Backfills an embedding matrix with the embedding for the unknown token . : param E : original embedding matrix of dimensions ` ( vocab _ size , emb _ dim ) ` . : param filled _ words : these words will not be backfilled with unk . NOTE : this function is for internal use ."""
unk_emb = E [ self [ self . _unk ] ] for i , word in enumerate ( self ) : if word not in filled_words : E [ i ] = unk_emb
def factor_hatch ( field_name , patterns , factors , start = 0 , end = None ) : '''Create a ` ` DataSpec ` ` dict that applies a client - side ` ` CategoricalPatternMapper ` ` transformation to a ` ` ColumnDataSource ` ` column . Args : field _ name ( str ) : a field name to configure ` ` DataSpec ` ` with patterns ( seq [ string ] ) : a list of hatch patterns to use to map to factors ( seq ) : a sequences of categorical factors corresponding to the palette start ( int , optional ) : a start slice index to apply when the column data has factors with multiple levels . ( default : 0) end ( int , optional ) : an end slice index to apply when the column data has factors with multiple levels . ( default : None ) Returns : dict Added in version 1.1.1'''
return field ( field_name , CategoricalPatternMapper ( patterns = patterns , factors = factors , start = start , end = end ) )
def get_instance ( self , payload ) : """Build an instance of YesterdayInstance : param dict payload : Payload response from the API : returns : twilio . rest . api . v2010 . account . usage . record . yesterday . YesterdayInstance : rtype : twilio . rest . api . v2010 . account . usage . record . yesterday . YesterdayInstance"""
return YesterdayInstance ( self . _version , payload , account_sid = self . _solution [ 'account_sid' ] , )
def atlasdb_format_query ( query , values ) : """Turn a query into a string for printing . Useful for debugging ."""
return "" . join ( [ "%s %s" % ( frag , "'%s'" % val if type ( val ) in [ str , unicode ] else val ) for ( frag , val ) in zip ( query . split ( "?" ) , values + ( "" , ) ) ] )
def _metaclass_lookup_attribute ( self , name , context ) : """Search the given name in the implicit and the explicit metaclass ."""
attrs = set ( ) implicit_meta = self . implicit_metaclass ( ) metaclass = self . metaclass ( ) for cls in { implicit_meta , metaclass } : if cls and cls != self and isinstance ( cls , ClassDef ) : cls_attributes = self . _get_attribute_from_metaclass ( cls , name , context ) attrs . update ( set ( cls_attributes ) ) return attrs
def file_name ( self , file_name ) : """Updates the file _ name . Args : file _ name :"""
if not self . can_update ( ) : self . _tcex . handle_error ( 910 , [ self . type ] ) self . _data [ 'fileName' ] = file_name request = { 'fileName' : file_name } return self . tc_requests . update ( self . api_type , self . api_sub_type , self . unique_id , request )
def assign_complex_to_samples ( items ) : """Assign complex inputs like variants and align outputs to samples . Handles list inputs to record conversion where we have inputs from multiple locations and need to ensure they are properly assigned to samples in many environments . The unpleasant approach here is to use standard file naming to match with samples so this can work in environments where we don ' t download / stream the input files ( for space / time savings ) ."""
extract_fns = { ( "variants" , "samples" ) : _get_vcf_samples , ( "align_bam" , ) : _get_bam_samples } complex = { k : { } for k in extract_fns . keys ( ) } for data in items : for k in complex : v = tz . get_in ( k , data ) if v is not None : for s in extract_fns [ k ] ( v , items ) : if s : complex [ k ] [ s ] = v out = [ ] for data in items : for k in complex : newv = tz . get_in ( [ k , dd . get_sample_name ( data ) ] , complex ) if newv : data = tz . update_in ( data , k , lambda x : newv ) out . append ( data ) return out
def sg_ctc ( tensor , opt ) : r"""Computes the CTC ( Connectionist Temporal Classification ) Loss between ` tensor ` and ` target ` . Args : tensor : A 3 - D ` float Tensor ` . opt : target : A ` Tensor ` with the same length in the first dimension as the ` tensor ` . Labels . ( Dense tensor ) name : A ` string ` . A name to display in the tensor board web UI . Returns : A 1 - D ` Tensor ` with the same length in the first dimension of the ` tensor ` . For example , tensor = [ [ [ 2 . , - 1 . , 3 . ] , [ 3 . , 1 . , - 2 . ] ] , [ [ 1 . , - 1 . , 2 . ] , [ 3 . , 1 . , - 2 . ] ] ] target = [ [ 2 . , 1 . ] , [ 2 . , 3 . ] ] tensor . sg _ ctc ( target = target ) = > [ 4.45940781 2.43091154]"""
assert opt . target is not None , 'target is mandatory.' # default sequence length shape = tf . shape ( tensor ) opt += tf . sg_opt ( seq_len = tf . ones ( ( shape [ 0 ] , ) , dtype = tf . sg_intx ) * shape [ 1 ] , merge = True ) # ctc loss out = tf . nn . ctc_loss ( opt . target . sg_to_sparse ( ) , tensor , opt . seq_len , ctc_merge_repeated = opt . merge , time_major = False ) out = tf . identity ( out , 'ctc' ) # add summary tf . sg_summary_loss ( out , name = opt . name ) return out
def generate_VD_junction_transfer_matrices ( self ) : """Compute the transfer matrices for the VD junction . Sets the attributes Tvd , Svd , Dvd , lTvd , and lDvd ."""
nt2num = { 'A' : 0 , 'C' : 1 , 'G' : 2 , 'T' : 3 } # Compute Tvd Tvd = { } for aa in self . codons_dict . keys ( ) : current_Tvd = np . zeros ( ( 4 , 4 ) ) for init_nt in 'ACGT' : for codon in self . codons_dict [ aa ] : current_Tvd [ nt2num [ codon [ 2 ] ] , nt2num [ init_nt ] ] += self . Rvd [ nt2num [ codon [ 2 ] ] , nt2num [ codon [ 1 ] ] ] * self . Rvd [ nt2num [ codon [ 1 ] ] , nt2num [ codon [ 0 ] ] ] * self . Rvd [ nt2num [ codon [ 0 ] ] , nt2num [ init_nt ] ] Tvd [ aa ] = current_Tvd # Compute Svd Svd = { } for aa in self . codons_dict . keys ( ) : current_Svd = np . zeros ( ( 4 , 4 ) ) for ins_nt in 'ACGT' : if any ( [ codon . startswith ( ins_nt ) for codon in self . codons_dict [ aa ] ] ) : current_Svd [ nt2num [ ins_nt ] , : ] = self . Rvd [ nt2num [ ins_nt ] , : ] Svd [ aa ] = current_Svd # Compute Dvd Dvd = { } for aa in self . codons_dict . keys ( ) : current_Dvd = np . zeros ( ( 4 , 4 ) ) for init_nt in 'ACGT' : for codon in self . codons_dict [ aa ] : current_Dvd [ nt2num [ codon [ 2 ] ] , nt2num [ init_nt ] ] += self . Rvd [ nt2num [ codon [ 1 ] ] , nt2num [ codon [ 0 ] ] ] * self . Rvd [ nt2num [ codon [ 0 ] ] , nt2num [ init_nt ] ] Dvd [ aa ] = current_Dvd # Compute lTvd lTvd = { } for aa in self . codons_dict . keys ( ) : current_lTvd = np . zeros ( ( 4 , 4 ) ) for codon in self . codons_dict [ aa ] : current_lTvd [ nt2num [ codon [ 2 ] ] , nt2num [ codon [ 0 ] ] ] += self . Rvd [ nt2num [ codon [ 2 ] ] , nt2num [ codon [ 1 ] ] ] * self . first_nt_bias_insVD [ nt2num [ codon [ 1 ] ] ] lTvd [ aa ] = current_lTvd # Compute lDvd lDvd = { } for aa in self . codons_dict . keys ( ) : current_lDvd = np . zeros ( ( 4 , 4 ) ) for codon in self . codons_dict [ aa ] : current_lDvd [ nt2num [ codon [ 2 ] ] , nt2num [ codon [ 0 ] ] ] += self . first_nt_bias_insVD [ nt2num [ codon [ 1 ] ] ] lDvd [ aa ] = current_lDvd # Set the attributes self . Tvd = Tvd self . Svd = Svd self . Dvd = Dvd self . lTvd = lTvd self . lDvd = lDvd
def increase ( self , infile ) : '''Increase : ไปปๆ„ใฎ็ฎ‡ๆ‰€ใฎใƒใ‚™ใ‚คใƒˆๅˆ—ใจ ใใ‚Œใ‚ˆใ‚Šๅคงใใชใ‚ตใ‚คใ‚นใ‚™ใฎไปปๆ„ใฎใƒใ‚™ใ‚คใƒˆๅˆ—ใจๅ…ฅใ‚Œๆ›ใˆใ‚‹'''
gf = infile [ 31 : ] index = gf . index ( random . choice ( gf ) ) index_len = len ( gf [ index ] ) large_size_index = random . choice ( [ gf . index ( g ) for g in gf if len ( g ) > index_len ] ) gf [ index ] , gf [ large_size_index ] = gf [ large_size_index ] , gf [ index ] return infile [ : 31 ] + gf
def first_n_items ( array , n_desired ) : """Returns the first n _ desired items of an array"""
# Unfortunately , we can ' t just do array . flat [ : n _ desired ] here because it # might not be a numpy . ndarray . Moreover , access to elements of the array # could be very expensive ( e . g . if it ' s only available over DAP ) , so go out # of our way to get them in a single call to _ _ getitem _ _ using only slices . if n_desired < 1 : raise ValueError ( 'must request at least one item' ) if array . size == 0 : # work around for https : / / github . com / numpy / numpy / issues / 5195 return [ ] if n_desired < array . size : indexer = _get_indexer_at_least_n_items ( array . shape , n_desired , from_end = False ) array = array [ indexer ] return np . asarray ( array ) . flat [ : n_desired ]
def read ( self ) : """Reads the cache file as pickle file ."""
def warn ( msg , elapsed_time , current_time ) : desc = self . _cache_id_desc ( ) self . _warnings ( "{0} {1}: {2}s < {3}s" , msg , desc , elapsed_time , current_time ) file_time = get_time ( ) out = self . _out if out is None : if self . verbose : self . _warnings ( "reading {0} from disk" , self . _cache_id_desc ( ) ) with open ( self . _cache_file , 'rb' ) as f_in : out = None while True : t_out = f_in . read ( CHUNK_SIZE ) if not len ( t_out ) : break if out is not None : out += t_out else : out = t_out self . _out = out ( cache_id_obj , elapsed_time , res ) = self . _read ( out ) self . ensure_cache_id ( cache_id_obj ) real_time = get_time ( ) - file_time if elapsed_time is not None and real_time > elapsed_time : warn ( "reading cache from disk takes longer than computing!" , elapsed_time , real_time ) elif self . _start_time is not None and elapsed_time is not None : current_time = get_time ( ) - self . _start_time if elapsed_time < current_time : warn ( "reading cache takes longer than computing!" , elapsed_time , current_time ) self . _last_access = get_time ( ) return res
def register_extension ( self , group , name , extension ) : """Register an extension . Args : group ( str ) : The type of the extension name ( str ) : A name for the extension extension ( str or class ) : If this is a string , then it will be interpreted as a path to import and load . Otherwise it will be treated as the extension object itself ."""
if isinstance ( extension , str ) : name , extension = self . load_extension ( extension ) [ 0 ] if group not in self . _registered_extensions : self . _registered_extensions [ group ] = [ ] self . _registered_extensions [ group ] . append ( ( name , extension ) )
def spline ( x , y , n , yp1 , ypn , y2 ) : '''/ * CALCULATE 2ND DERIVATIVES OF CUBIC SPLINE INTERP FUNCTION * ADAPTED FROM NUMERICAL RECIPES BY PRESS ET AL * X , Y : ARRAYS OF TABULATED FUNCTION IN ASCENDING ORDER BY X * N : SIZE OF ARRAYS X , Y * YP1 , YPN : SPECIFIED DERIVATIVES AT X [ 0 ] AND X [ N - 1 ] ; VALUES * > = 1E30 SIGNAL SIGNAL SECOND DERIVATIVE ZERO * Y2 : OUTPUT ARRAY OF SECOND DERIVATIVES'''
u = [ 0.0 ] * n # I think this is the same as malloc # no need for the out of memory if ( yp1 > 0.99E30 ) : # pragma : no cover y2 [ 0 ] = 0 u [ 0 ] = 0 else : y2 [ 0 ] = - 0.5 u [ 0 ] = ( 3.0 / ( x [ 1 ] - x [ 0 ] ) ) * ( ( y [ 1 ] - y [ 0 ] ) / ( x [ 1 ] - x [ 0 ] ) - yp1 ) for i in range ( 1 , n - 1 ) : sig = ( x [ i ] - x [ i - 1 ] ) / ( x [ i + 1 ] - x [ i - 1 ] ) p = sig * y2 [ i - 1 ] + 2.0 y2 [ i ] = ( sig - 1.0 ) / p u [ i ] = ( 6.0 * ( ( y [ i + 1 ] - y [ i ] ) / ( x [ i + 1 ] - x [ i ] ) - ( y [ i ] - y [ i - 1 ] ) / ( x [ i ] - x [ i - 1 ] ) ) / ( x [ i + 1 ] - x [ i - 1 ] ) - sig * u [ i - 1 ] ) / p ; if ( ypn > 0.99E30 ) : # pragma : no cover qn = 0 ; un = 0 else : qn = 0.5 un = ( 3.0 / ( x [ n - 1 ] - x [ n - 2 ] ) ) * ( ypn - ( y [ n - 1 ] - y [ n - 2 ] ) / ( x [ n - 1 ] - x [ n - 2 ] ) ) ; y2 [ n - 1 ] = ( un - qn * u [ n - 2 ] ) / ( qn * y2 [ n - 2 ] + 1.0 ) ; # it uses a for loop here , but its not something python can do ( I dont think ) k = n - 2 while ( k >= 0 ) : y2 [ k ] = y2 [ k ] * y2 [ k + 1 ] + u [ k ] k -= 1 # This for loop might work # for k in range ( n - 2 , - 1 , - 1 ) : # y2 [ k ] = y2 [ k ] * y2 [ k + 1 ] + u [ k ] # no need to free u here return
def setonce ( decorator ) : """A descriptor modifier which allows _ _ set _ _ to be called at most once ."""
def decorate ( fn , * args , ** kwargs ) : parent = decorator ( fn , * args , ** kwargs ) # doc = _ add _ msg ( getattr ( parent , ' _ _ doc _ _ ' , None ) , ' * @ setonce * ' ) doc = getattr ( parent , '__doc__' , None ) assert hasattr ( parent , "__set__" ) # don ' t use for non - data descriptors ! return _setonce ( fn . __name__ , parent , doc ) return decorate
def add_hostname_cn_ip ( self , addresses ) : """Add an address to the SAN list for the hostname request : param addr : [ ] List of address to be added"""
for addr in addresses : if addr not in self . hostname_entry [ 'addresses' ] : self . hostname_entry [ 'addresses' ] . append ( addr )
def plot_ic_hist ( ic , ax = None ) : """Plots Spearman Rank Information Coefficient histogram for a given factor . Parameters ic : pd . DataFrame DataFrame indexed by date , with IC for each forward return . ax : matplotlib . Axes , optional Axes upon which to plot . Returns ax : matplotlib . Axes The axes that were plotted on ."""
ic = ic . copy ( ) num_plots = len ( ic . columns ) v_spaces = ( ( num_plots - 1 ) // 3 ) + 1 if ax is None : f , ax = plt . subplots ( v_spaces , 3 , figsize = ( 18 , v_spaces * 6 ) ) ax = ax . flatten ( ) for a , ( period_num , ic ) in zip ( ax , ic . iteritems ( ) ) : sns . distplot ( ic . replace ( np . nan , 0. ) , norm_hist = True , ax = a ) a . set ( title = "%s Period IC" % period_num , xlabel = 'IC' ) a . set_xlim ( [ - 1 , 1 ] ) a . text ( .05 , .95 , "Mean %.3f \n Std. %.3f" % ( ic . mean ( ) , ic . std ( ) ) , fontsize = 16 , bbox = { 'facecolor' : 'white' , 'alpha' : 1 , 'pad' : 5 } , transform = a . transAxes , verticalalignment = 'top' ) a . axvline ( ic . mean ( ) , color = 'w' , linestyle = 'dashed' , linewidth = 2 ) if num_plots < len ( ax ) : ax [ - 1 ] . set_visible ( False ) return ax
def submit ( self , q , context = None , task_name = "casjobs" , estimate = 30 ) : """Submit a job to CasJobs . # # Arguments * ` q ` ( str ) : The SQL query . # # Keyword Arguments * ` context ` ( str ) : Casjobs context used for this query . * ` task _ name ` ( str ) : The task name . * ` estimate ` ( int ) : Estimate of the time this job will take ( in minutes ) . # # Returns * ` job _ id ` ( int ) : The submission ID ."""
if not context : context = self . context params = { "qry" : q , "context" : context , "taskname" : task_name , "estimate" : estimate } r = self . _send_request ( "SubmitJob" , params = params ) job_id = int ( self . _parse_single ( r . text , "long" ) ) return job_id
def _scale_mesh ( self , scale ) : """TODO : add documentation"""
pos_ks = [ 'vertices' , 'centers' ] # TODO : scale velocities ? ? ? # handle scale self . update_columns_dict ( { k : self [ k ] * scale for k in pos_ks } ) self . update_columns ( areas = self . areas * ( scale ** 2 ) ) self . _volume *= scale ** 3 if self . _area is not None : # self . _ area is None for wd meshes self . _area += scale ** 2
def decorate ( cls , app , * args , run_middleware = False , with_context = False , ** kwargs ) : """This is a decorator that can be used to apply this plugin to a specific route / view on your app , rather than the whole app . : param app : : type app : Sanic | Blueprint : param args : : type args : tuple ( Any ) : param run _ middleware : : type run _ middleware : bool : param with _ context : : type with _ context : bool : param kwargs : : param kwargs : dict ( Any ) : return : the decorated route / view : rtype : fn"""
from spf . framework import SanicPluginsFramework spf = SanicPluginsFramework ( app ) # get the singleton from the app try : assoc = spf . register_plugin ( cls , skip_reg = True ) except ValueError as e : # this is normal , if this plugin has been registered previously assert e . args and len ( e . args ) > 1 assoc = e . args [ 1 ] ( plugin , reg ) = assoc inst = spf . get_plugin ( plugin ) # plugin may not actually be registered # registered might be True , False or None at this point regd = True if inst else None if regd is True : # middleware will be run on this route anyway , because the plugin # is registered on the app . Turn it off on the route - level . run_middleware = False req_middleware = deque ( ) resp_middleware = deque ( ) if run_middleware : for i , m in enumerate ( plugin . _middlewares ) : attach_to = m . kwargs . pop ( 'attach_to' , 'request' ) priority = m . kwargs . pop ( 'priority' , 5 ) with_context = m . kwargs . pop ( 'with_context' , False ) mw_handle_fn = m . middleware if attach_to == 'response' : relative = m . kwargs . pop ( 'relative' , 'post' ) if relative == "pre" : mw = ( 0 , 0 - priority , 0 - i , mw_handle_fn , with_context , m . args , m . kwargs ) else : # relative = " post " mw = ( 1 , 0 - priority , 0 - i , mw_handle_fn , with_context , m . args , m . kwargs ) resp_middleware . append ( mw ) else : # attach _ to = " request " relative = m . kwargs . pop ( 'relative' , 'pre' ) if relative == "post" : mw = ( 1 , priority , i , mw_handle_fn , with_context , m . args , m . kwargs ) else : # relative = " pre " mw = ( 0 , priority , i , mw_handle_fn , with_context , m . args , m . kwargs ) req_middleware . append ( mw ) req_middleware = tuple ( sorted ( req_middleware ) ) resp_middleware = tuple ( sorted ( resp_middleware ) ) def _decorator ( f ) : nonlocal spf , plugin , regd , run_middleware , with_context nonlocal req_middleware , resp_middleware , args , kwargs async def wrapper ( request , * a , ** kw ) : nonlocal spf , plugin , regd , run_middleware , with_context nonlocal req_middleware , resp_middleware , f , args , kwargs # the plugin was not registered on the app , it might be now if regd is None : _inst = spf . get_plugin ( plugin ) regd = _inst is not None context = plugin . get_context_from_spf ( spf ) if run_middleware and not regd and len ( req_middleware ) > 0 : for ( _a , _p , _i , handler , with_context , args , kwargs ) in req_middleware : if with_context : resp = handler ( request , * args , context = context , ** kwargs ) else : resp = handler ( request , * args , ** kwargs ) if isawaitable ( resp ) : resp = await resp if resp : return response = await plugin . route_wrapper ( f , request , context , a , kw , * args , with_context = with_context , ** kwargs ) if isawaitable ( response ) : response = await response if run_middleware and not regd and len ( resp_middleware ) > 0 : for ( _a , _p , _i , handler , with_context , args , kwargs ) in resp_middleware : if with_context : _resp = handler ( request , response , * args , context = context , ** kwargs ) else : _resp = handler ( request , response , * args , ** kwargs ) if isawaitable ( _resp ) : _resp = await _resp if _resp : response = _resp break return response return update_wrapper ( wrapper , f ) return _decorator
def password_attributes_character_restriction_upper ( self , ** kwargs ) : """Auto Generated Code"""
config = ET . Element ( "config" ) password_attributes = ET . SubElement ( config , "password-attributes" , xmlns = "urn:brocade.com:mgmt:brocade-aaa" ) character_restriction = ET . SubElement ( password_attributes , "character-restriction" ) upper = ET . SubElement ( character_restriction , "upper" ) upper . text = kwargs . pop ( 'upper' ) callback = kwargs . pop ( 'callback' , self . _callback ) return callback ( config )
def load_parcellation_coords ( parcellation_name ) : """Loads coordinates of included parcellations . Parameters parcellation _ name : str options : ' gordon2014_333 ' , ' power2012_264 ' , ' shen2013_278 ' . Returns parc : array parcellation cordinates"""
path = tenetopath [ 0 ] + '/data/parcellation/' + parcellation_name + '.csv' parc = np . loadtxt ( path , skiprows = 1 , delimiter = ',' , usecols = [ 1 , 2 , 3 ] ) return parc
def reconstruct_url ( self , path_info = None , query_string = None , relative = False ) : """Reconstructs the request URL using the algorithm provided by PEP3333"""
environ = self . environ if relative : url = '' else : url = environ [ 'wsgi.url_scheme' ] + '://' if environ . get ( 'HTTP_HOST' ) : url += environ [ 'HTTP_HOST' ] else : url += environ [ 'SERVER_NAME' ] if environ [ 'wsgi.url_scheme' ] == 'https' : if environ [ 'SERVER_PORT' ] != '443' : url += ':' + environ [ 'SERVER_PORT' ] else : if environ [ 'SERVER_PORT' ] != '80' : url += ':' + environ [ 'SERVER_PORT' ] url += quote ( environ . get ( 'SCRIPT_NAME' , '' ) ) if path_info is None : url += quote ( environ . get ( 'PATH_INFO' , '' ) ) else : url += path_info if query_string is None : if environ . get ( 'QUERY_STRING' ) : url += '?' + environ [ 'QUERY_STRING' ] else : if query_string : if isinstance ( query_string , str ) : url += '?' + query_string else : url += '?' + encode_query_string ( query_string ) return url
def from_urlpath ( cls , path , app = None ) : '''Alternative constructor which accepts a path as taken from URL and uses the given app or the current app config to get the real path . If class has attribute ` generic ` set to True , ` directory _ class ` or ` file _ class ` will be used as type . : param path : relative path as from URL : param app : optional , flask application : return : file object pointing to path : rtype : File'''
app = app or current_app base = app . config [ 'directory_base' ] path = urlpath_to_abspath ( path , base ) if not cls . generic : kls = cls elif os . path . isdir ( path ) : kls = cls . directory_class else : kls = cls . file_class return kls ( path = path , app = app )
def find_logs ( self , user_name , first_date , start_time , last_date , end_time , action , functionality , parameter , pagination ) : """Search all logs , filtering by the given parameters . : param user _ name : Filter by user _ name : param first _ date : Sets initial date for begin of the filter : param start _ time : Sets initial time : param last _ date : Sets final date : param end _ time : Sets final time and ends the filter . That defines the searching gap : param action : Filter by action ( Create , Update or Delete ) : param functionality : Filter by class : param parameter : Filter by parameter : param pagination : Class with all data needed to paginate : return : Following dictionary : { ' eventlog ' : { ' id _ usuario ' : < id _ user > , ' hora _ evento ' : < hora _ evento > , ' acao ' : < acao > , ' funcionalidade ' : < funcionalidade > , ' parametro _ anterior ' : < parametro _ anterior > , ' parametro _ atual ' : < parametro _ atual > } ' total ' : { < total _ registros > } } : raise InvalidParameterError : Some parameter was invalid . : raise DataBaseError : Networkapi failed to access the database . : raise XMLError : Networkapi failed to generate the XML response ."""
if not isinstance ( pagination , Pagination ) : raise InvalidParameterError ( u"Invalid parameter: pagination must be a class of type 'Pagination'." ) eventlog_map = dict ( ) eventlog_map [ "start_record" ] = pagination . start_record eventlog_map [ "end_record" ] = pagination . end_record eventlog_map [ "asorting_cols" ] = pagination . asorting_cols eventlog_map [ "searchable_columns" ] = pagination . searchable_columns eventlog_map [ "custom_search" ] = pagination . custom_search eventlog_map [ "usuario" ] = user_name eventlog_map [ "data_inicial" ] = first_date eventlog_map [ "hora_inicial" ] = start_time eventlog_map [ "data_final" ] = last_date eventlog_map [ "hora_final" ] = end_time eventlog_map [ "acao" ] = action eventlog_map [ "funcionalidade" ] = functionality eventlog_map [ "parametro" ] = parameter url = "eventlog/find/" code , xml = self . submit ( { 'eventlog' : eventlog_map } , 'POST' , url ) key = "eventlog" return get_list_map ( self . response ( code , xml , key ) , key )
def open_file ( loc ) : """Handle . gz , . tar . gz or unzipped files"""
loc = ensure_path ( loc ) if tarfile . is_tarfile ( str ( loc ) ) : return tarfile . open ( str ( loc ) , "r:gz" ) elif loc . parts [ - 1 ] . endswith ( "gz" ) : return ( line . decode ( "utf8" ) for line in gzip . open ( str ( loc ) , "r" ) ) elif loc . parts [ - 1 ] . endswith ( "zip" ) : zip_file = zipfile . ZipFile ( str ( loc ) ) names = zip_file . namelist ( ) file_ = zip_file . open ( names [ 0 ] ) return ( line . decode ( "utf8" ) for line in file_ ) else : return loc . open ( "r" , encoding = "utf8" )
def get_subdomain_DID_info ( fqn , db_path = None , zonefiles_dir = None ) : """Get a subdomain ' s DID info . Return None if not found"""
opts = get_blockstack_opts ( ) if not is_subdomains_enabled ( opts ) : log . warn ( "Subdomain support is disabled" ) return None if db_path is None : db_path = opts [ 'subdomaindb_path' ] if zonefiles_dir is None : zonefiles_dir = opts [ 'zonefiles' ] db = SubdomainDB ( db_path , zonefiles_dir ) try : subrec = db . get_subdomain_entry ( fqn ) except SubdomainNotFound : log . warn ( "No such subdomain: {}" . format ( fqn ) ) return None try : return db . get_subdomain_DID_info ( fqn ) except SubdomainNotFound : return None
def setWidth ( self , personID , width ) : """setWidth ( string , double ) - > None Sets the width in m for this person ."""
self . _connection . _sendDoubleCmd ( tc . CMD_SET_PERSON_VARIABLE , tc . VAR_WIDTH , personID , width )
def add_arrow ( self , x1 , y1 , x2 , y2 , ** kws ) : """add arrow to plot"""
self . panel . add_arrow ( x1 , y1 , x2 , y2 , ** kws )
def register ( cls ) : """Register variable handling in YAML"""
if not cls . IS_LOADED : cls . IS_LOADED = True yaml . add_constructor ( '!param' , Parameter . parameter_constructor , Loader = yaml . SafeLoader ) yaml . add_constructor ( '!env' , EnvironmentVariable . parameter_constructor , Loader = yaml . SafeLoader )
def configure_sbi ( ) : """Configure an SBI using POSTed configuration ."""
# Need an ID for the subarray - guessing I just get # the list of inactive subarrays and use the first inactive_list = SubarrayList ( ) . inactive request_data = request . data LOG . debug ( 'request is of type %s' , type ( request_data ) ) try : sbi = Subarray ( inactive_list [ 0 ] ) sbi . activate ( ) sbi . configure_sbi ( request_data ) except jsonschema . exceptions . ValidationError as error : LOG . error ( 'Error configuring SBI: %s' , error ) return dict ( path = error . absolute_path . __str__ ( ) , schema_path = error . schema_path . __str__ ( ) , message = error . message ) return dict ( status = "Accepted SBI: {}" . format ( sbi . id ) )
def refresh_items ( self ) : """Refresh the items of the pattern . This method destroys the old items and creates and initializes the new items . It is overridden to NOT insert the children to the parent . The Fragment adapter handles this ."""
items = [ ] if self . condition : for nodes , key , f_locals in self . pattern_nodes : with new_scope ( key , f_locals ) : for node in nodes : child = node ( None ) if isinstance ( child , list ) : items . extend ( child ) else : items . append ( child ) for old in self . items : if not old . is_destroyed : old . destroy ( ) # : Insert items into THIS node , NOT the PARENT # if len ( items ) > 0: # self . parent . insert _ children ( self , items ) self . items = items
def setEditorData ( self , editor , index ) : """Updates the editor with the model data . : param editor | < QtGui . QWidget > index | < QtGui . QModelIndex >"""
data = unwrapVariant ( index . data ( ) ) editor . setCurrentIndex ( editor . findText ( data ) )
def for_attempt ( self , attempt ) : """: meth : ` for _ attempt ` returns the duration for a specific attempt . This is useful if you have a large number of independent backoffs , but don ' t want to use unnecessary memory storing the backoff parameters per backoff . The first attempt should be 0. : meth : ` for _ attempt ` is thread - safe if non - zero values for : attr : ` factor ` , : attr : ` max _ ms ` , and : attr : ` min _ ms ` are set before any calls to : meth : ` for _ attempt ` are made . : param attempt : the attempt you want to return duration for : type attempt : float : return : duration in seconds : rtype : float"""
dur = float ( self . min_ms * pow ( self . factor , attempt ) ) if self . jitter : dur = random . random ( ) * ( dur - self . min_ms ) + self . min_ms if dur > self . max_ms : return to_seconds ( self . max_ms ) return to_seconds ( dur )
def calcAspectRatioFromCorners ( corners , in_plane = False ) : '''simple and better alg . than below in _ plane - > whether object has no tilt , but only rotation and translation'''
q = corners l0 = [ q [ 0 , 0 ] , q [ 0 , 1 ] , q [ 1 , 0 ] , q [ 1 , 1 ] ] l1 = [ q [ 0 , 0 ] , q [ 0 , 1 ] , q [ - 1 , 0 ] , q [ - 1 , 1 ] ] l2 = [ q [ 2 , 0 ] , q [ 2 , 1 ] , q [ 3 , 0 ] , q [ 3 , 1 ] ] l3 = [ q [ 2 , 0 ] , q [ 2 , 1 ] , q [ 1 , 0 ] , q [ 1 , 1 ] ] a1 = line . length ( l0 ) / line . length ( l1 ) a2 = line . length ( l2 ) / line . length ( l3 ) if in_plane : # take aspect ration from more rectangular corner if ( abs ( 0.5 * np . pi - abs ( line . angle2 ( l0 , l1 ) ) ) < abs ( 0.5 * np . pi - abs ( line . angle2 ( l2 , l3 ) ) ) ) : return a1 else : return a2 return 0.5 * ( a1 + a2 )
def get_nearest_edges ( G , X , Y , method = None , dist = 0.0001 ) : """Return the graph edges nearest to a list of points . Pass in points as separate vectors of X and Y coordinates . The ' kdtree ' method is by far the fastest with large data sets , but only finds approximate nearest edges if working in unprojected coordinates like lat - lng ( it precisely finds the nearest edge if working in projected coordinates ) . The ' balltree ' method is second fastest with large data sets , but it is precise if working in unprojected coordinates like lat - lng . Parameters G : networkx multidigraph X : list - like The vector of longitudes or x ' s for which we will find the nearest edge in the graph . For projected graphs , use the projected coordinates , usually in meters . Y : list - like The vector of latitudes or y ' s for which we will find the nearest edge in the graph . For projected graphs , use the projected coordinates , usually in meters . method : str { None , ' kdtree ' , ' balltree ' } Which method to use for finding nearest edge to each point . If None , we manually find each edge one at a time using osmnx . utils . get _ nearest _ edge . If ' kdtree ' we use scipy . spatial . cKDTree for very fast euclidean search . Recommended for projected graphs . If ' balltree ' , we use sklearn . neighbors . BallTree for fast haversine search . Recommended for unprojected graphs . dist : float spacing length along edges . Units are the same as the geom ; Degrees for unprojected geometries and meters for projected geometries . The smaller the value , the more points are created . Returns ne : ndarray array of nearest edges represented by their startpoint and endpoint ids , u and v , the OSM ids of the nodes . Info The method creates equally distanced points along the edges of the network . Then , these points are used in a kdTree or BallTree search to identify which is nearest . Note that this method will not give the exact perpendicular point along the edge , but the smaller the * dist * parameter , the closer the solution will be . Code is adapted from an answer by JHuw from this original question : https : / / gis . stackexchange . com / questions / 222315 / geopandas - find - nearest - point - in - other - dataframe"""
start_time = time . time ( ) if method is None : # calculate nearest edge one at a time for each point ne = [ get_nearest_edge ( G , ( x , y ) ) for x , y in zip ( X , Y ) ] ne = [ ( u , v ) for _ , u , v in ne ] elif method == 'kdtree' : # check if we were able to import scipy . spatial . cKDTree successfully if not cKDTree : raise ImportError ( 'The scipy package must be installed to use this optional feature.' ) # transform graph into DataFrame edges = graph_to_gdfs ( G , nodes = False , fill_edge_geometry = True ) # transform edges into evenly spaced points edges [ 'points' ] = edges . apply ( lambda x : redistribute_vertices ( x . geometry , dist ) , axis = 1 ) # develop edges data for each created points extended = edges [ 'points' ] . apply ( [ pd . Series ] ) . stack ( ) . reset_index ( level = 1 , drop = True ) . join ( edges ) . reset_index ( ) # Prepare btree arrays nbdata = np . array ( list ( zip ( extended [ 'Series' ] . apply ( lambda x : x . x ) , extended [ 'Series' ] . apply ( lambda x : x . y ) ) ) ) # build a k - d tree for euclidean nearest node search btree = cKDTree ( data = nbdata , compact_nodes = True , balanced_tree = True ) # query the tree for nearest node to each point points = np . array ( [ X , Y ] ) . T dist , idx = btree . query ( points , k = 1 ) # Returns ids of closest point eidx = extended . loc [ idx , 'index' ] ne = edges . loc [ eidx , [ 'u' , 'v' ] ] elif method == 'balltree' : # check if we were able to import sklearn . neighbors . BallTree successfully if not BallTree : raise ImportError ( 'The scikit-learn package must be installed to use this optional feature.' ) # transform graph into DataFrame edges = graph_to_gdfs ( G , nodes = False , fill_edge_geometry = True ) # transform edges into evenly spaced points edges [ 'points' ] = edges . apply ( lambda x : redistribute_vertices ( x . geometry , dist ) , axis = 1 ) # develop edges data for each created points extended = edges [ 'points' ] . apply ( [ pd . Series ] ) . stack ( ) . reset_index ( level = 1 , drop = True ) . join ( edges ) . reset_index ( ) # haversine requires data in form of [ lat , lng ] and inputs / outputs in units of radians nodes = pd . DataFrame ( { 'x' : extended [ 'Series' ] . apply ( lambda x : x . x ) , 'y' : extended [ 'Series' ] . apply ( lambda x : x . y ) } ) nodes_rad = np . deg2rad ( nodes [ [ 'y' , 'x' ] ] . values . astype ( np . float ) ) points = np . array ( [ Y , X ] ) . T points_rad = np . deg2rad ( points ) # build a ball tree for haversine nearest node search tree = BallTree ( nodes_rad , metric = 'haversine' ) # query the tree for nearest node to each point idx = tree . query ( points_rad , k = 1 , return_distance = False ) eidx = extended . loc [ idx [ : , 0 ] , 'index' ] ne = edges . loc [ eidx , [ 'u' , 'v' ] ] else : raise ValueError ( 'You must pass a valid method name, or None.' ) log ( 'Found nearest edges to {:,} points in {:,.2f} seconds' . format ( len ( X ) , time . time ( ) - start_time ) ) return np . array ( ne )
def list_nodes_full ( mask = 'mask[id, hostname, primaryIpAddress, \ primaryBackendIpAddress, processorPhysicalCoreAmount, memoryCount]' , call = None ) : '''Return a list of the VMs that are on the provider'''
if call == 'action' : raise SaltCloudSystemExit ( 'The list_nodes_full function must be called with -f or --function.' ) ret = { } conn = get_conn ( service = 'SoftLayer_Account' ) response = conn . getHardware ( mask = mask ) for node in response : ret [ node [ 'hostname' ] ] = node __utils__ [ 'cloud.cache_node_list' ] ( ret , __active_provider_name__ . split ( ':' ) [ 0 ] , __opts__ ) return ret
def _get_indexes_in_altered_table ( self , diff ) : """: param diff : The table diff : type diff : orator . dbal . table _ diff . TableDiff : rtype : dict"""
indexes = diff . from_table . get_indexes ( ) column_names = self . _get_column_names_in_altered_table ( diff ) for key , index in OrderedDict ( [ ( k , v ) for k , v in indexes . items ( ) ] ) . items ( ) : for old_index_name , renamed_index in diff . renamed_indexes . items ( ) : if key . lower ( ) == old_index_name . lower ( ) : del indexes [ key ] changed = False index_columns = [ ] for column_name in index . get_columns ( ) : normalized_column_name = column_name . lower ( ) if normalized_column_name not in column_names : del indexes [ key ] break else : index_columns . append ( column_names [ normalized_column_name ] ) if column_name != column_names [ normalized_column_name ] : changed = True if changed : indexes [ key ] = Index ( index . get_name ( ) , index_columns , index . is_unique ( ) , index . is_primary ( ) , index . get_flags ( ) , ) for index in diff . removed_indexes . values ( ) : index_name = index . get_name ( ) . lower ( ) if index_name and index_name in indexes : del indexes [ index_name ] changed_indexes = ( list ( diff . changed_indexes . values ( ) ) + list ( diff . added_indexes . values ( ) ) + list ( diff . renamed_indexes . values ( ) ) ) for index in changed_indexes : index_name = index . get_name ( ) . lower ( ) if index_name : indexes [ index_name ] = index else : indexes [ len ( indexes ) ] = index return indexes
def has_child ( cls , child_type , query ) : '''http : / / www . elasticsearch . org / guide / reference / query - dsl / has - child - query . html The has _ child query accepts a query and the child type to run against , and results in parent documents that have child docs matching the query . > child _ query = ElasticQuery ( ) . term ( tag = ' something ' ) > query = ElasticQuery ( ) . has _ Child ( ' blog _ tag ' , child _ query )'''
instance = cls ( has_child = { 'type' : child_type , 'query' : query } ) return instance
def stream_directory ( directory , recursive = False , patterns = '**' , chunk_size = default_chunk_size ) : """Gets a buffered generator for streaming directories . Returns a buffered generator which encodes a directory as : mimetype : ` multipart / form - data ` with the corresponding headers . Parameters directory : str The filepath of the directory to stream recursive : bool Stream all content within the directory recursively ? patterns : str | list Single * glob * pattern or list of * glob * patterns and compiled regular expressions to match the names of the filepaths to keep chunk _ size : int Maximum size of each stream chunk"""
stream = DirectoryStream ( directory , recursive = recursive , patterns = patterns , chunk_size = chunk_size ) return stream . body ( ) , stream . headers
def data_filler_company ( self , number_of_rows , cursor , conn ) : '''creates and fills the table with company data'''
companies_data = [ ] try : for i in range ( 0 , number_of_rows ) : companies_data . append ( ( rnd_id_generator ( self ) , self . faker . company ( ) , self . faker . date ( pattern = "%Y-%m-%d" ) , self . faker . company_email ( ) , self . faker . safe_email ( ) , self . faker . city ( ) ) ) companies_payload = ( "INSERT INTO company " "(id, name, sdate, email, domain, city) " "VALUES (%s, %s, %s, %s, %s, %s)" ) cursor . executemany ( companies_payload , companies_data ) conn . commit ( ) logger . warning ( 'companies Commits are successful after write job!' , extra = extra_information ) except Exception as e : logger . error ( e , extra = extra_information )
def print_at ( self , text , x , y , colour = 7 , attr = 0 , bg = 0 , transparent = False ) : """Print the text at the specified location using the specified colour and attributes . : param text : The ( single line ) text to be printed . : param x : The column ( x coord ) for the start of the text . : param y : The line ( y coord ) for the start of the text . : param colour : The colour of the text to be displayed . : param attr : The cell attribute of the text to be displayed . : param bg : The background colour of the text to be displayed . : param transparent : Whether to print spaces or not , thus giving a transparent effect . The colours and attributes are the COLOUR _ xxx and A _ yyy constants defined in the Screen class ."""
# Convert to the logically visible window that our double - buffer provides y -= self . _start_line # Trim text to the buffer vertically . Don ' t trim horizontally as we don ' t know whether any # of these characters are dual - width yet . Handle it on the fly below . . . if y < 0 or y >= self . _buffer_height or x > self . width : return if len ( text ) > 0 : j = 0 for i , c in enumerate ( text ) : # Handle under - run and overrun of double - width glyphs now . # Note that wcwidth uses significant resources , so only call when we have a # unicode aware application . The rest of the time assume ASCII . width = wcwidth ( c ) if self . _unicode_aware and ord ( c ) >= 256 else 1 if x + i + j < 0 : x += ( width - 1 ) continue if x + i + j + width > self . width : return # Now handle the update . if c != " " or not transparent : # Fix up orphaned double - width glyphs that we ' ve just bisected . if x + i + j - 1 >= 0 and self . _buffer . get ( x + i + j - 1 , y ) [ 4 ] == 2 : self . _buffer . set ( x + i + j - 1 , y , ( ord ( "x" ) , 0 , 0 , 0 , 1 ) ) self . _buffer . set ( x + i + j , y , ( ord ( c ) , colour , attr , bg , width ) ) if width == 2 : j += 1 if x + i + j < self . width : self . _buffer . set ( x + i + j , y , ( ord ( c ) , colour , attr , bg , 0 ) ) # Now fix up any glyphs we may have bisected the other way . if x + i + j + 1 < self . width and self . _buffer . get ( x + i + j + 1 , y ) [ 4 ] == 0 : self . _buffer . set ( x + i + j + 1 , y , ( ord ( "x" ) , 0 , 0 , 0 , 1 ) )
def request_sensor_sampling_clear ( self , req ) : """Set all sampling strategies for this client to none . Returns success : { ' ok ' , ' fail ' } Whether sending the list of devices succeeded . Examples ? sensor - sampling - clear ! sensor - sampling - clear ok"""
f = Future ( ) @ gen . coroutine def _clear_strategies ( ) : self . clear_strategies ( req . client_connection ) raise gen . Return ( ( 'ok' , ) ) self . ioloop . add_callback ( lambda : chain_future ( _clear_strategies ( ) , f ) ) return f
def train_position_scales ( self , layout , layers ) : """Compute ranges for the x and y scales"""
_layout = layout . layout panel_scales_x = layout . panel_scales_x panel_scales_y = layout . panel_scales_y # loop over each layer , training x and y scales in turn for layer in layers : data = layer . data match_id = match ( data [ 'PANEL' ] , _layout [ 'PANEL' ] ) if panel_scales_x : x_vars = list ( set ( panel_scales_x [ 0 ] . aesthetics ) & set ( data . columns ) ) # the scale index for each data point SCALE_X = _layout [ 'SCALE_X' ] . iloc [ match_id ] . tolist ( ) panel_scales_x . train ( data , x_vars , SCALE_X ) if panel_scales_y : y_vars = list ( set ( panel_scales_y [ 0 ] . aesthetics ) & set ( data . columns ) ) # the scale index for each data point SCALE_Y = _layout [ 'SCALE_Y' ] . iloc [ match_id ] . tolist ( ) panel_scales_y . train ( data , y_vars , SCALE_Y ) return self
def run ( self ) : """Start the consumer"""
if self . profile_file : LOGGER . info ( 'Profiling to %s' , self . profile_file ) profile . runctx ( 'self._run()' , globals ( ) , locals ( ) , self . profile_file ) else : self . _run ( ) LOGGER . debug ( 'Exiting %s (%i, %i)' , self . name , os . getpid ( ) , os . getppid ( ) )
def handleError ( self , test , err ) : """Baseclass override . Called when a test raises an exception . If the test isn ' t going to be rerun again , then report the error to the nose test result . : param test : The test that has raised an error : type test : : class : ` nose . case . Test ` : param err : Information about the test failure ( from sys . exc _ info ( ) ) : type err : ` tuple ` of ` class ` , : class : ` Exception ` , ` traceback ` : return : True , if the test will be rerun ; False , if nose should handle it . : rtype : ` bool `"""
# pylint : disable = invalid - name want_error = self . _handle_test_error_or_failure ( test , err ) if not want_error and id ( test ) in self . _tests_that_reran : self . _nose_result . addError ( test , err ) return want_error or None
def maybe_start_recording ( tokens , index ) : """Return a new _ InlineRSTRecorder when its time to record ."""
if tokens [ index ] . type == TokenType . BeginInlineRST : return _InlineRSTRecorder ( index )
def get_filters_values ( self ) : """Get different filters values as dicts ."""
# DATASETS - - # badges self . _DST_BADGES = requests . get ( self . base_url + "datasets/badges/" ) . json ( ) # licences self . _DST_LICENSES = { l . get ( "id" ) : l . get ( "title" ) for l in requests . get ( self . base_url + "datasets/licenses" ) . json ( ) } # frequencies self . _DST_FREQUENCIES = { f . get ( "id" ) : f . get ( "label" ) for f in requests . get ( self . base_url + "datasets/frequencies" ) . json ( ) } # ORGANIZATIONS - - # badges self . _ORG_BADGES = requests . get ( self . base_url + "organizations/badges/" ) . json ( ) # # licences # self . _ DST _ LICENSES = { l . get ( " id " ) : l . get ( " title " ) # for l in requests . get ( self . base _ url + " datasets / licenses " ) . json ( ) } # # frequencies # self . _ DST _ FREQUENCIES = { f . get ( " id " ) : f . get ( " label " ) # for f in requests . get ( self . base _ url + " datasets / frequencies " ) . json ( ) } # SPATIAL - - # granularities self . _GRANULARITIES = { g . get ( "id" ) : g . get ( "name" ) for g in requests . get ( self . base_url + "spatial/granularities" ) . json ( ) } # levels self . _LEVELS = { g . get ( "id" ) : g . get ( "name" ) for g in requests . get ( self . base_url + "spatial/levels" ) . json ( ) } # MISC - - # facets self . _FACETS = ( "all" , "badge" , "featured" , "format" , "geozone" , "granularity" , "license" , "owner" , "organization" , "reuses" , "tag" , "temporal_coverage" , ) # reuses self . _REUSES = ( "none" , "few" , "quite" , "many" )
def post_collection ( self , session , data , api_type ) : """Create a new Resource . : param session : SQLAlchemy session : param data : Request JSON Data : param params : Keyword arguments"""
model = self . _fetch_model ( api_type ) self . _check_json_data ( data ) orm_desc_keys = model . __mapper__ . all_orm_descriptors . keys ( ) if 'type' not in data [ 'data' ] . keys ( ) : raise MissingTypeError ( ) if data [ 'data' ] [ 'type' ] != model . __jsonapi_type__ : raise InvalidTypeForEndpointError ( model . __jsonapi_type__ , data [ 'data' ] [ 'type' ] ) resource = model ( ) check_permission ( resource , None , Permissions . CREATE ) data [ 'data' ] . setdefault ( 'relationships' , { } ) data [ 'data' ] . setdefault ( 'attributes' , { } ) data_keys = set ( map ( ( lambda x : resource . __jsonapi_map_to_py__ . get ( x , MissingKey ( x ) ) ) , data [ 'data' ] . get ( 'relationships' , { } ) . keys ( ) ) ) model_keys = set ( resource . __mapper__ . relationships . keys ( ) ) if not data_keys <= model_keys : data_keys = set ( [ key . elem if isinstance ( key , MissingKey ) else key for key in data_keys ] ) # pragma : no cover raise BadRequestError ( '{} not relationships for {}' . format ( ', ' . join ( [ repr ( key ) for key in list ( data_keys - model_keys ) ] ) , model . __jsonapi_type__ ) ) attrs_to_ignore = { '__mapper__' , 'id' } setters = [ ] try : if 'id' in data [ 'data' ] . keys ( ) : resource . id = data [ 'data' ] [ 'id' ] for key , relationship in resource . __mapper__ . relationships . items ( ) : attrs_to_ignore |= set ( relationship . local_columns ) | { key } api_key = resource . __jsonapi_map_to_api__ [ key ] if 'relationships' not in data [ 'data' ] . keys ( ) or api_key not in data [ 'data' ] [ 'relationships' ] . keys ( ) : continue data_rel = data [ 'data' ] [ 'relationships' ] [ api_key ] if 'data' not in data_rel . keys ( ) : raise BadRequestError ( 'Missing data key in relationship {}' . format ( key ) ) data_rel = data_rel [ 'data' ] remote_side = relationship . back_populates if relationship . direction == MANYTOONE : setter = get_rel_desc ( resource , key , RelationshipActions . SET ) if data_rel is None : setters . append ( [ setter , None ] ) else : if not isinstance ( data_rel , dict ) : raise BadRequestError ( '{} must be a hash' . format ( key ) ) if not { 'type' , 'id' } == set ( data_rel . keys ( ) ) : raise BadRequestError ( '{} must have type and id keys' . format ( key ) ) to_relate = self . _fetch_resource ( session , data_rel [ 'type' ] , data_rel [ 'id' ] , Permissions . EDIT ) rem = to_relate . __mapper__ . relationships [ remote_side ] if rem . direction == MANYTOONE : check_permission ( to_relate , remote_side , Permissions . EDIT ) else : check_permission ( to_relate , remote_side , Permissions . CREATE ) setters . append ( [ setter , to_relate ] ) else : setter = get_rel_desc ( resource , key , RelationshipActions . APPEND ) if not isinstance ( data_rel , list ) : raise BadRequestError ( '{} must be an array' . format ( key ) ) for item in data_rel : if 'type' not in item . keys ( ) or 'id' not in item . keys ( ) : raise BadRequestError ( '{} must have type and id keys' . format ( key ) ) # pragma : no cover to_relate = self . _fetch_resource ( session , item [ 'type' ] , item [ 'id' ] , Permissions . EDIT ) rem = to_relate . __mapper__ . relationships [ remote_side ] if rem . direction == MANYTOONE : check_permission ( to_relate , remote_side , Permissions . EDIT ) else : check_permission ( to_relate , remote_side , Permissions . CREATE ) setters . append ( [ setter , to_relate ] ) data_keys = set ( map ( ( lambda x : resource . __jsonapi_map_to_py__ . get ( x , None ) ) , data [ 'data' ] . get ( 'attributes' , { } ) . keys ( ) ) ) model_keys = set ( orm_desc_keys ) - attrs_to_ignore if not data_keys <= model_keys : raise BadRequestError ( '{} not attributes for {}' . format ( ', ' . join ( list ( data_keys - model_keys ) ) , model . __jsonapi_type__ ) ) with session . no_autoflush : for setter , value in setters : setter ( resource , value ) for key in data_keys : api_key = resource . __jsonapi_map_to_api__ [ key ] setter = get_attr_desc ( resource , key , AttributeActions . SET ) setter ( resource , data [ 'data' ] [ 'attributes' ] [ api_key ] ) session . add ( resource ) session . commit ( ) except IntegrityError as e : session . rollback ( ) raise ValidationError ( str ( e . orig ) ) except AssertionError as e : # pragma : no cover session . rollback ( ) raise ValidationError ( e . msg ) except TypeError as e : session . rollback ( ) raise ValidationError ( 'Incompatible data type' ) session . refresh ( resource ) response = self . get_resource ( session , { } , model . __jsonapi_type__ , resource . id ) response . status_code = 201 return response
def create_environment ( home_dir , site_packages = False , clear = False , unzip_setuptools = False , prompt = None , search_dirs = None , download = False , no_setuptools = False , no_pip = False , no_wheel = False , symlink = True ) : """Creates a new environment in ` ` home _ dir ` ` . If ` ` site _ packages ` ` is true , then the global ` ` site - packages / ` ` directory will be on the path . If ` ` clear ` ` is true ( default False ) then the environment will first be cleared ."""
home_dir , lib_dir , inc_dir , bin_dir = path_locations ( home_dir ) py_executable = os . path . abspath ( install_python ( home_dir , lib_dir , inc_dir , bin_dir , site_packages = site_packages , clear = clear , symlink = symlink ) ) install_distutils ( home_dir ) to_install = [ ] if not no_setuptools : to_install . append ( 'setuptools' ) if not no_pip : to_install . append ( 'pip' ) if not no_wheel : to_install . append ( 'wheel' ) if to_install : install_wheel ( to_install , py_executable , search_dirs , download = download , ) install_activate ( home_dir , bin_dir , prompt ) install_python_config ( home_dir , bin_dir , prompt )
def plots_html_page ( query_module ) : """Generate analysis output as html page Args : query _ module ( module ) : module to use for querying data for the desired model / pipeline variant , e . g . leonardo . standard . queries"""
# page template template = jenv . get_template ( "analysis.html" ) # container for template context context = dict ( extended = config . EXTENDED ) # a database client / session to run queries in cl = client . get_client ( ) session = cl . create_session ( ) # general styling seaborn . set_style ( 'whitegrid' ) # plot : painting area by decade , with linear regression decade_df = query_module . decade_query ( ) pix_size = pixels_to_inches ( ( 600 , 400 ) ) ax = seaborn . lmplot ( x = 'decade' , y = 'area' , data = decade_df , size = pix_size [ 1 ] , aspect = pix_size [ 0 ] / pix_size [ 1 ] , scatter_kws = { "s" : 30 , "alpha" : 0.3 } ) ax . set ( xlabel = 'Decade' , ylabel = 'Area, m^2' ) context [ 'area_by_decade_svg' ] = fig_to_svg ( plt . gcf ( ) ) plt . close ( 'all' ) # plot : painting area by gender , with logistic regression if config . EXTENDED : gender_df = query_module . gender_query ( ) pix_size = pixels_to_inches ( ( 600 , 400 ) ) g = seaborn . FacetGrid ( gender_df , hue = "gender" , margin_titles = True , size = pix_size [ 1 ] , aspect = pix_size [ 0 ] / pix_size [ 1 ] ) bins = np . linspace ( 0 , 5 , 30 ) g . map ( plt . hist , "area" , bins = bins , lw = 0 , alpha = 0.5 , normed = True ) g . axes [ 0 , 0 ] . set_xlabel ( 'Area, m^2' ) g . axes [ 0 , 0 ] . set_ylabel ( 'Percentage of paintings' ) context [ 'area_by_gender_svg' ] = fig_to_svg ( plt . gcf ( ) ) plt . close ( 'all' ) # render template out_file = path . join ( out_dir , "analysis.html" ) html_content = template . render ( ** context ) with open ( out_file , 'w' ) as f : f . write ( html_content ) # done , clean up plt . close ( 'all' ) session . close ( )
def backend_from_fobj ( f ) : """Determine backend module object from a file object ."""
if magic is None : warn ( "magic lib is not installed; assuming mime type %r" % ( DEFAULT_MIME ) ) return backend_from_mime ( DEFAULT_MIME ) else : offset = f . tell ( ) try : f . seek ( 0 ) chunk = f . read ( MAGIC_BUFFER_SIZE ) mime = magic . from_buffer ( chunk , mime = True ) return backend_from_mime ( mime ) finally : f . seek ( offset )
def send_many ( self , outputs_array , fee = None , change_addr = None , id = None , endpoint = None ) : """Args : outputs _ array : ( dict ) array , the data structure of each element in the array is as follows : { " asset " : < asset > , " value " : < value > , " address " : < address > } asset : ( str ) asset identifier ( for NEO : ' c56f33fc6ecfcd0c225c4ab356fee59390af8560be0e930faebe74a6daff7c9b ' , for GAS : ' 602c79718b16e442de58778e148d0b1084e3b2dffd5de6b7b16cee7969282de7 ' ) value : ( int / decimal ) transfer amount address : ( str ) destination address fee : ( decimal , optional ) Paying the handling fee helps elevate the priority of the network to process the transfer . It defaults to 0 , and can be set to a minimum of 0.000001 . The low priority threshold is 0.001. change _ addr : ( str , optional ) Change address , default is the first standard address in the wallet . id : ( int , optional ) id to use for response tracking endpoint : ( RPCEndpoint , optional ) endpoint to specify to use"""
params = [ outputs_array ] if fee : params . append ( fee ) if fee and change_addr : params . append ( change_addr ) elif not fee and change_addr : params . append ( 0 ) params . append ( change_addr ) return self . _call_endpoint ( SEND_MANY , params = params , id = id , endpoint = endpoint )
def console_get_char_foreground ( con : tcod . console . Console , x : int , y : int ) -> Color : """Return the foreground color at the x , y of this console . . . deprecated : : 8.4 Array access performs significantly faster than using this function . See : any : ` Console . fg ` ."""
return Color . _new_from_cdata ( lib . TCOD_console_get_char_foreground ( _console ( con ) , x , y ) )
def _already_resized_on_flickr ( self , fn , pid , _megapixels ) : """Checks if image file ( fn ) with photo _ id ( pid ) has already been resized on flickr . If so , returns True"""
logger . debug ( "%s - resize requested" % ( fn ) ) # Get width / height from flickr width_flickr , height_flickr = self . _getphoto_originalsize ( pid ) # Now compute what image will be if we resize it new_width , new_height = pusher_utils . resize_compute_width_height ( fn , _megapixels ) if width_flickr == new_width and height_flickr == new_height : return True # Also return true if image couldn ' t be resized elif not new_width : return True return False
def _loglr ( self ) : r"""Computes the log likelihood ratio Returns float The value of the log likelihood ratio ."""
# calculate < d - h | d - h > = < h | h > - 2 < h | d > + < d | d > up to a constant p = self . current_params . copy ( ) p . update ( self . static_params ) if self . time is None : self . time = p [ 'tc' ] shloglr = hhloglr = 0 for ifo in self . sh : fp , fc = self . det [ ifo ] . antenna_pattern ( p [ 'ra' ] , p [ 'dec' ] , p [ 'polarization' ] , self . time ) dt = self . det [ ifo ] . time_delay_from_earth_center ( p [ 'ra' ] , p [ 'dec' ] , self . time ) ip = numpy . cos ( p [ 'inclination' ] ) ic = 0.5 * ( 1.0 + ip * ip ) htf = ( fp * ip + 1.0j * fc * ic ) / p [ 'distance' ] sh = self . sh [ ifo ] . at_time ( p [ 'tc' ] + dt ) * htf shloglr += sh hhloglr += self . hh [ ifo ] * abs ( htf ) ** 2.0 vloglr = numpy . log ( scipy . special . i0e ( abs ( shloglr ) ) ) vloglr += abs ( shloglr ) + hhloglr return float ( vloglr )
def inform_hook_client_factory ( self , host , port , * args , ** kwargs ) : """Return an instance of : class : ` _ InformHookDeviceClient ` or similar Provided to ease testing . Dynamically overriding this method after instantiation but before start ( ) is called allows for deep brain surgery . See : class : ` katcp . fake _ clients . TBD `"""
return _InformHookDeviceClient ( host , port , * args , ** kwargs )
def make_path ( phase ) -> str : """Create the path to the folder at which the metadata and optimizer pickle should be saved"""
return "{}/{}{}{}" . format ( conf . instance . output_path , phase . phase_path , phase . phase_name , phase . phase_tag )
def schedule_function ( queue_name , function_name , * args , ** kwargs ) : """Schedule a function named ` function _ name ` to be run by workers on the queue ` queue _ name ` with * args and * * kwargs as specified by that function ."""
body = create_request_body ( function_name , * args , ** kwargs ) if getattr ( settings , 'BEANSTALK_DISPATCH_EXECUTE_SYNCHRONOUSLY' , False ) : execute_function ( json . loads ( body ) ) else : connection = boto . connect_sqs ( settings . BEANSTALK_DISPATCH_SQS_KEY , settings . BEANSTALK_DISPATCH_SQS_SECRET ) queue = connection . get_queue ( queue_name ) if not queue : queue = connection . create_queue ( queue_name ) message = boto . sqs . message . Message ( ) message . set_body ( body ) queue . write ( message )
def tags ( self ) : "Iterate over all tags yielding ( name , function )"
for bucket in self : for k , v in self [ bucket ] . items ( ) : yield k , v
def update ( self ) : """Monolithic update method . This method calls the following methods with the dynamic loss scaling . 1 . solver . zerograd 2 . feed data 3 . loss . forward 4 . loss . backward 5 . comm . all _ reduce ( if it is specified ) 6 . solver . update"""
# Initialize gradients . self . solver . zero_grad ( ) # Forward and backward for _ in range ( self . accum_grad ) : # feed data self . data_feeder ( ) # forward self . loss . forward ( clear_no_need_grad = self . clear_buffer ) # backward with scale self . loss . backward ( self . scale , clear_buffer = self . clear_buffer ) # AllReduce if self . comm and len ( self . grads ) != 0 : self . comm . all_reduce ( self . grads , division = False , inplace = False ) # Check Inf / NaN in grads if self . solver . check_inf_or_nan_grad ( ) : self . scale /= self . scaling_factor self . _counter = 0 # Recursively call udpate function until no inf nor nan . self . _recursive_count += 1 if self . _recursive_count > self . _max_recursive_count : self . _recursive_count = 0 return # skip return self . update ( ) self . _recursive_count = 0 # Rescale grads self . solver . scale_grad ( 1. / self . scale ) # Do some gradient clipping , etc . if self . weight_decay is not None : self . solver . weight_decay ( self . weight_decay ) # Update self . solver . update ( ) if self . _counter > self . N : self . scale *= self . scaling_factor self . _counter = 0 self . _counter += 1
def processStoredSms ( self , unreadOnly = False ) : """Process all SMS messages currently stored on the device / SIM card . Reads all ( or just unread ) received SMS messages currently stored on the device / SIM card , initiates " SMS received " events for them , and removes them from the SIM card . This is useful if SMS messages were received during a period that python - gsmmodem was not running but the modem was powered on . : param unreadOnly : If True , only process unread SMS messages : type unreadOnly : boolean"""
states = [ Sms . STATUS_RECEIVED_UNREAD ] if not unreadOnly : states . insert ( 0 , Sms . STATUS_RECEIVED_READ ) for msgStatus in states : messages = self . listStoredSms ( status = msgStatus , delete = True ) for sms in messages : self . smsReceivedCallback ( sms )
def validate ( self , pA , pB ) : """Validate that the two properties may be linked . @ param pA : Endpoint ( A ) to link . @ type pA : L { Endpoint } @ param pB : Endpoint ( B ) to link . @ type pB : L { Endpoint } @ return : self @ rtype : L { Link }"""
if pA in pB . links or pB in pA . links : raise Exception ( 'Already linked' ) dA = pA . domains ( ) dB = pB . domains ( ) for d in dA : if d in dB : raise Exception ( 'Duplicate domain "%s" found' % d ) for d in dB : if d in dA : raise Exception ( 'Duplicate domain "%s" found' % d ) kA = pA . keys ( ) kB = pB . keys ( ) for k in kA : if k in kB : raise Exception ( 'Duplicate key %s found' % k ) for k in kB : if k in kA : raise Exception ( 'Duplicate key %s found' % k ) return self
def kdeconf ( kde , conf = 0.683 , xmin = None , xmax = None , npts = 500 , shortest = True , conftol = 0.001 , return_max = False ) : """Returns desired confidence interval for provided KDE object"""
if xmin is None : xmin = kde . dataset . min ( ) if xmax is None : xmax = kde . dataset . max ( ) x = np . linspace ( xmin , xmax , npts ) return conf_interval ( x , kde ( x ) , shortest = shortest , conf = conf , conftol = conftol , return_max = return_max )
def _set_traffic_state ( self , v , load = False ) : """Setter method for traffic _ state , mapped from YANG variable / traffic _ state ( container ) If this variable is read - only ( config : false ) in the source YANG file , then _ set _ traffic _ state is considered as a private method . Backends looking to populate this variable should do so via calling thisObj . _ set _ traffic _ state ( ) directly . YANG Description : IS - IS packet counts"""
if hasattr ( v , "_utype" ) : v = v . _utype ( v ) try : t = YANGDynClass ( v , base = traffic_state . traffic_state , is_container = 'container' , presence = False , yang_name = "traffic-state" , rest_name = "traffic-state" , parent = self , path_helper = self . _path_helper , extmethods = self . _extmethods , register_paths = True , extensions = { u'tailf-common' : { u'callpoint' : u'isis-traffic' , u'cli-suppress-show-path' : None } } , namespace = 'urn:brocade.com:mgmt:brocade-isis-operational' , defining_module = 'brocade-isis-operational' , yang_type = 'container' , is_config = True ) except ( TypeError , ValueError ) : raise ValueError ( { 'error-string' : """traffic_state must be of a type compatible with container""" , 'defined-type' : "container" , 'generated-type' : """YANGDynClass(base=traffic_state.traffic_state, is_container='container', presence=False, yang_name="traffic-state", rest_name="traffic-state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'isis-traffic', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-isis-operational', defining_module='brocade-isis-operational', yang_type='container', is_config=True)""" , } ) self . __traffic_state = t if hasattr ( self , '_set' ) : self . _set ( )
def interp_like ( self , other , method = 'linear' , assume_sorted = False , kwargs = { } ) : """Interpolate this object onto the coordinates of another object , filling the out of range values with NaN . Parameters other : Dataset or DataArray Object with an ' indexes ' attribute giving a mapping from dimension names to an 1d array - like , which provides coordinates upon which to index the variables in this dataset . method : string , optional . { ' linear ' , ' nearest ' } for multidimensional array , { ' linear ' , ' nearest ' , ' zero ' , ' slinear ' , ' quadratic ' , ' cubic ' } for 1 - dimensional array . ' linear ' is used by default . assume _ sorted : boolean , optional If False , values of coordinates that are interpolated over can be in any order and they are sorted first . If True , interpolated coordinates are assumed to be an array of monotonically increasing values . kwargs : dictionary , optional Additional keyword passed to scipy ' s interpolator . Returns interpolated : xr . Dataset Another dataset by interpolating this dataset ' s data along the coordinates of the other object . Notes scipy is required . If the dataset has object - type coordinates , reindex is used for these coordinates instead of the interpolation . See Also Dataset . interp Dataset . reindex _ like"""
coords = alignment . reindex_like_indexers ( self , other ) numeric_coords = OrderedDict ( ) object_coords = OrderedDict ( ) for k , v in coords . items ( ) : if v . dtype . kind in 'uifcMm' : numeric_coords [ k ] = v else : object_coords [ k ] = v ds = self if object_coords : # We do not support interpolation along object coordinate . # reindex instead . ds = self . reindex ( object_coords ) return ds . interp ( numeric_coords , method , assume_sorted , kwargs )
def add ( self , path ) : """Add the given path to the decided place in sys . path"""
# sys . path always has absolute paths . path = os . path . abspath ( path ) # It must exist . if not os . path . exists ( path ) : return # It must not already be in sys . path . if path in sys . path : return if self . index is not None : sys . path . insert ( self . index , path ) self . index += 1 else : sys . path . append ( path )
def reset ( self , data , size ) : """Set new contents for frame"""
return lib . zframe_reset ( self . _as_parameter_ , data , size )
def PushSection ( self , name , pre_formatters ) : """Given a section name , push it on the top of the stack . Returns : The new section , or None if there is no such section ."""
if name == '@' : value = self . stack [ - 1 ] . context else : value = self . stack [ - 1 ] . context . get ( name ) # Apply pre - formatters for i , ( f , args , formatter_type ) in enumerate ( pre_formatters ) : if formatter_type == ENHANCED_FUNC : value = f ( value , self , args ) elif formatter_type == SIMPLE_FUNC : value = f ( value ) else : assert False , 'Invalid formatter type %r' % formatter_type self . stack . append ( _Frame ( value ) ) return value
def get_role_secret_id ( self , role_name , secret_id , mount_point = 'approle' ) : """POST / auth / < mount _ point > / role / < role name > / secret - id / lookup : param role _ name : : type role _ name : : param secret _ id : : type secret _ id : : param mount _ point : : type mount _ point : : return : : rtype :"""
url = '/v1/auth/{0}/role/{1}/secret-id/lookup' . format ( mount_point , role_name ) params = { 'secret_id' : secret_id } return self . _adapter . post ( url , json = params ) . json ( )
def __fade_in ( self ) : """Starts the Widget fade in ."""
self . __timer . stop ( ) self . __vector = self . __fade_speed self . __timer . start ( )
def proxy_set ( self , value ) : """A helper to easily call the proxy _ setter of the field"""
setter = getattr ( self , self . proxy_setter ) if isinstance ( value , ( list , tuple , set ) ) : result = setter ( * value ) elif isinstance ( value , dict ) : result = setter ( ** value ) else : result = setter ( value ) return result
def query_item ( name , query_string , order = 'Rank' ) : '''Query a type of record for one or more items . Requires a valid query string . See https : / / rally1 . rallydev . com / slm / doc / webservice / introduction . jsp for information on query syntax . CLI Example : . . code - block : : bash salt myminion rallydev . query _ < item name > < query string > [ < order > ] salt myminion rallydev . query _ task ' ( Name contains github ) ' salt myminion rallydev . query _ task ' ( Name contains reactor ) ' Rank'''
status , result = _query ( action = name , args = { 'query' : query_string , 'order' : order } ) return result
def update_campaign_list ( self , ** kwargs ) : # noqa : E501 """List all campaigns # noqa : E501 Get update campaigns for devices specified by a filter . # noqa : E501 This method makes a synchronous HTTP request by default . To make an asynchronous HTTP request , please pass asynchronous = True > > > thread = api . update _ campaign _ list ( asynchronous = True ) > > > result = thread . get ( ) : param asynchronous bool : param int limit : How many update campaigns to retrieve : param str order : The order of the records . Acceptable values : ASC , DESC . Default : ASC : param str after : The ID of the the item after which to retrieve the next page : param str include : A comma - separated list of data fields to return . Currently supported : total _ count : param str filter : URL - encoded query string parameter to filter returned data ` ? filter = { URL - encoded query string } ` # # # # # Filterable fields : The below table lists all the fields that can be filtered on with certain filters : < table > < thead > < tr > < th > Field < / th > < th > = / _ _ eq / _ _ neq < / th > < th > _ _ in / _ _ nin < / th > < th > _ _ lte / _ _ gte < / th > < tr > < thead > < tbody > < tr > < td > created _ at < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < tr > < td > description < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > device _ filter < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > etag < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < tr > < td > finished < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < tr > < td > id < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > name < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > root _ manifest _ id < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > started _ at < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < tr > < td > state < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > & nbsp ; < / td > < / tr > < tr > < td > updated _ at < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < tr > < td > when < / td > < td > โœ“ < / td > < td > โœ“ < / td > < td > โœ“ < / td > < / tr > < / tbody > < / table > & nbsp ; The query string is made up of key - value pairs separated by ampersands . For example , this query : ` key1 _ _ eq = value1 & key2 _ _ eq = value2 & key3 _ _ eq = value3 ` would be URL - encoded as : ` ? filter = key1 _ _ eq % 3Dvalue1%26key2 _ _ eq % 3Dvalue2%26key3 _ _ eq % 3Dvalue3 ` * * Filtering by campaign properties * * ` state _ _ eq = [ draft | scheduled | devicefectch | devicecopy | publishing | deploying | deployed | manifestremoved | expired ] ` ` root _ manifest _ id _ _ eq = 43217771234242e594ddb433816c498a ` * * Filtering on date - time fields * * Date - time fields should be specified in UTC RFC3339 format , ` YYYY - MM - DDThh : mm : ss . msZ ` . There are three permitted variations : * UTC RFC3339 with milliseconds . Example : ` 2016-11-30T16:25:12.1234Z ` * UTC RFC3339 without milliseconds . Example : ` 2016-11-30T16:25:12Z ` * UTC RFC3339 shortened without milliseconds and punctuation . Example : ` 20161130T162512Z ` Date - time filtering supports three operators : * equality by appending ` _ _ eq ` to the field name * greater than or equal to by appending ` _ _ gte ` to the field name * less than or equal to by appending ` _ _ lte ` to the field name ` { field name } [ | _ _ eq | _ _ lte | _ _ gte ] = { UTC RFC3339 date - time } ` Time ranges may be specified by including both the ` _ _ gte ` and ` _ _ lte ` forms in the filter . For example : ` created _ at _ _ gte = 2016-11-30T16:25:12.1234Z & created _ at _ _ lte = 2016-12-30T00:00:00Z ` * * Filtering on multiple fields * * ` state _ _ eq = deployed & created _ at _ _ gte = 2016-11-30T16:25:12.1234Z & created _ at _ _ lte = 2016-12-30T00:00:00Z ` * * Filtering with filter operators * * String field filtering supports the following operators : * equality : ` _ _ eq ` * non - equality : ` _ _ neq ` * in : ` _ _ in ` * not in : ` _ _ nin ` For ` _ _ in ` and ` _ _ nin ` filters list of parameters must be comma - separated : ` name _ _ in = fw - image1 , fw - image2 ` : return : UpdateCampaignPage If the method is called asynchronously , returns the request thread ."""
kwargs [ '_return_http_data_only' ] = True if kwargs . get ( 'asynchronous' ) : return self . update_campaign_list_with_http_info ( ** kwargs ) # noqa : E501 else : ( data ) = self . update_campaign_list_with_http_info ( ** kwargs ) # noqa : E501 return data
def fmt_margin ( text , margin = None , margin_left = None , margin_right = None , margin_char = ' ' ) : """Surround given text with given margin characters ."""
if margin_left is None : margin_left = margin if margin_right is None : margin_right = margin if margin_left is not None : text = '{}{}' . format ( str ( margin_char ) [ 0 ] * int ( margin_left ) , text ) if margin_right is not None : text = '{}{}' . format ( text , str ( margin_char ) [ 0 ] * int ( margin_right ) ) return text
def check_script ( vouts ) : """Looks into the vouts list of a transaction and returns the ` ` op _ return ` ` if one exists . Args ; vouts ( list ) : List of outputs of a transaction . Returns : str : String representation of the ` ` op _ return ` ` . Raises : Exception : If no ` ` vout ` ` having a supported verb ( : attr : ` supported _ actions ` ) is found ."""
for vout in [ v for v in vouts [ : : - 1 ] if v [ 'hex' ] . startswith ( '6a' ) ] : verb = BlockchainSpider . decode_op_return ( vout [ 'hex' ] ) action = Spoolverb . from_verb ( verb ) . action if action in Spoolverb . supported_actions : return verb raise Exception ( "Invalid ascribe transaction" )
def bcrypt_set_password ( self , raw_password ) : """Sets the user ' s password to * raw _ password * , hashed with bcrypt ."""
if not is_enabled ( ) or raw_password is None : _set_password ( self , raw_password ) else : salt = bcrypt . gensalt ( get_rounds ( ) ) self . password = 'bc$' + bcrypt . hashpw ( smart_str ( raw_password ) , salt )
def distinct ( self , fieldname , key = None ) : """Returns the unique values seen at ` fieldname ` ."""
return tuple ( unique_everseen ( self [ fieldname ] , key = key ) )