content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import binascii
def int_to_bytes(i: int):
"""
Convert an integer to a byte(s)
Args:
i: Integer to convert
Returns:
bytes
"""
width = i.bit_length()
width += 8 - ((width % 8) or 8)
fmt = '%%0%dx' % (width // 4)
return b"\x00" if i == 0 else binascii.unhexlify(fmt % i)
|
be4bc40913fa0c61f117a1f4ec7b10402e413b6e
| 45,833 |
def path_decoder(url):
"""Grab the last component of a url as the path."""
components = url.split('/')
if components[-1]:
return components[-1]
else:
return components[-2]
|
d35112082facb7c378201cac44557c0628ba4563
| 45,835 |
def get_dir(path):
"""
Returns the directory of a file, or simply the original path if the path is a directory (has no extension)
:param Path path:
:return: Path
"""
extension = path.suffix
if extension == '':
return path
else:
return path.parent
|
ce40de2223de46be91ca28fba01c4153679a693c
| 45,837 |
def insert_output_start_stop_indicators(src):
"""
Insert identifier strings so that output can be segregated from input.
Parameters
----------
src : str
String containing input and output lines.
Returns
-------
str
String with output demarked.
"""
lines = src.split('\n')
print_producing = [
'print(',
'.setup(',
'.run_model(',
'.run_driver(',
'.check_partials(',
'.check_totals(',
'.list_inputs(',
'.list_outputs(',
'.list_problem_vars(',
]
newlines = []
input_block_number = 0
in_try = False
in_continuation = False
head_indent = ''
for line in lines:
newlines.append(line)
# Check if we are concluding a continuation line.
if in_continuation:
line = line.rstrip()
if not (line.endswith(',') or line.endswith('\\') or line.endswith('(')):
newlines.append('%sprint(">>>>>%d")' % (head_indent, input_block_number))
input_block_number += 1
in_continuation = False
# Don't print if we are in a try block.
if in_try:
if 'except' in line:
in_try = False
continue
if 'try:' in line:
in_try = True
continue
# Searching for 'print(' is a little ambiguous.
if 'set_solver_print(' in line:
continue
for item in print_producing:
if item in line:
indent = ' ' * (len(line) - len(line.lstrip()))
# Line continuations are a litle tricky.
line = line.rstrip()
if line.endswith(',') or line.endswith('\\') or line.endswith('('):
in_continuation = True
head_indent = indent
break
newlines.append('%sprint(">>>>>%d")' % (indent, input_block_number))
input_block_number += 1
break
return '\n'.join(newlines)
|
162724502e581901629bae764a235ca0f71e0c61
| 45,839 |
def get_images(directory):
"""
Gets all PNG, JPG, GIF, and BMP format files at path
:param Path directory: location to search for image files
"""
files = []
patterns = ('*.png', '*.jpg', '*.gif', '*.bmp')
for pattern in patterns:
files.extend(directory.glob(pattern))
return files
|
e6c599814d5d31de5a64e502d88f40996d49888f
| 45,841 |
def prepare_table_rows(rows):
"""Given a list of lists, make sure they are prepared to be formatted into a table
by making sure each row has the same number of columns and stringifying all values."""
rows = [list(map(str, r)) for r in rows]
max_cols = max(list(map(len, rows)))
for row in rows:
pad = max_cols - len(row)
for _ in range(pad):
row.append('')
return rows
|
8f4730d08400a88234e9ac0137d58d255e1fbddb
| 45,842 |
import re
def replace_all(src_string, regex, replacement):
"""
Replace each occurrence of regular expression match in
the first string with the replacement string and return the
replaced string. A 'regex' string with null value is considered as
no change. A 'replacement' string with null value is consider as an empty string.
"""
if not regex:
return src_string
if not replacement:
replacement = ""
return re.sub(regex, replacement, src_string)
|
410e6c8f333e9776daad08c9bbbd39831640d350
| 45,844 |
def parse_kid(line, kid):
""" parses a "@ ale01.cha 1;4.28" line into name/month ("ale", 16) """
tmp = line.split('\t')
if len(tmp) < 3 or not (".cha" in tmp[1] or ".txt" in tmp[1]):
return kid
else:
date = tmp[2].split(';')
return (tmp[1][:3], int(date[0]) * 12 + int(date[1].split('.')[0]))
|
3fe1af7f741cb27eb36159ed211049e6e14f67c2
| 45,845 |
import re
def make_filename(url):
"""
Extracts domain from a url and append '.html'
:param url: string
return <domain>.html string
"""
rx = re.compile(r'^https?:\/\/(?:www.)?([^\/]+)\/?')
m = rx.search(url)
if m:
return m[1] + '.html'
else:
print(f'Can not get domain from {url}')
exit(0)
|
12ce1ec1acb77c2147a361f563c051edf6f73e83
| 45,848 |
import ast
def _log_function(item):
"""
Handler function for log message types.
:param item: ast object being inspected for certain properties
:type item: :class:`~ast.AST`
:return: Returns the descriptor and arg offset of the item.
:rtype: tuple (str, int)
"""
level_arg = item.args[0]
if isinstance(level_arg, ast.Str):
level = level_arg.s.lower()
else:
any_call_or_name_elements = any(
isinstance(element, (ast.Call, ast.Name))
for element in ast.walk(level_arg)
)
if any_call_or_name_elements:
level = "(dynamic)"
else:
level = ', '.join(
element.s.lower()
for element in ast.walk(level_arg)
if isinstance(element, ast.Str)
)
integer_arg_offset = 1
return level, integer_arg_offset
|
cd7f798b5e28d1835d270e8d2b64b73faef4f853
| 45,850 |
def obtainLigandIndexes(trajectory, ligand):
"""
Extract the indexes for the ligand in the trajectory
:param trajectory: mdtraj trajectory
:param ligand: name of the ligand
:return: list of the atom indexes of the heavy atoms of the ligand
"""
residueIndexes = []
for residue in trajectory.topology.residues:
if residue.name == ligand:
for atom in residue.atoms:
if "H" not in atom.name:
residueIndexes.append(atom.index)
return residueIndexes
|
aa3f7f14afdff21e0e7b56ae69294e48e82d9a36
| 45,858 |
def swir_exp_time(int_delay: int, int_hold: int) -> float:
"""
Parameters
----------
int_delay : int
parameters int_delay from the instrument_settings
int_hold : int
parameters int_holt from the instrument_settings
Returns
-------
float
exact (SWIR) pixel exposure time
"""
return 1.25e-6 * (65540 - int_delay + int_hold)
|
9022f18bec5aecb35e8992f7cd0cbfe9a3cb84a2
| 45,864 |
def get_dot_product(first_vector, second_vector):
""" (dict, dict) -> dict
The function takes two dictionaries representing vectors as input.
It returns the dot product between the two vectors.
>>> v1 = {'a' : 3, 'b': 2}
>>> v2 = {'a': 2, 'c': 1, 'b': 2}
>>> get_dot_product(v1, v2)
10
>>> v3 = {'a' : 5, 'b': 3, 'c' : 3}
>>> v4 = {'d': 1}
>>> get_dot_product(v3, v4)
0
>>> v5 = {}
>>> v6 = {}
>>> get_dot_product(v5, v6)
0
>>> v7 = {'a' : 2, 'b' : -2, 'c' : -4}
>>> v8 = {'a' : 1, 'b' : 3, 'c' : 2}
>>> get_dot_product(v7, v8)
-12
"""
# initialize dot product variable
dot_product = 0
# compute product for values whose key is in both vectors
for key in first_vector:
if key in second_vector:
# add product to the sum
product = first_vector[key] * second_vector[key]
dot_product += product
# return sum of products (dot product)
return dot_product
|
52898081b331484c4dd8d964ad29334e8db96a6f
| 45,866 |
from typing import Iterable
from typing import Any
def format_like_tuple(
values: Iterable[Any],
) -> str:
"""
Formats iterable into tuple-like format
that is readable for human being.
:param values: values to be formatted
"""
return ", ".join((repr(value) for value in values))
|
f05e0edafd21a62fd2e7c010a9f2b9720256b3db
| 45,868 |
def parse_pct(value):
"""
Parse percentage
"""
return float(value)/100
|
30694babef99a5a40a1f0037cfccced98bc153d1
| 45,869 |
def files_data_generation(candidates, namesmeasures):
"""Select all possible files that are related with the given measures."""
selected = []
for name in namesmeasures:
sele_name = []
for i in range(len(candidates)):
if name in candidates[i]:
sele_name.append(candidates[i])
selected.append(sele_name)
return selected
|
85c42a84c7f2405575bef546210c7fc88022bcce
| 45,870 |
def insert_init(shots, predist=100, dxmax=200, xcol='pos_x', initpoints=1):
"""
Insert initialization frames into scan list, to mitigate hysteresis and beam tilt streaking when scanning along x.
Works by inserting a single frame each time the x coordinate decreases (beam moves left) or increases by more
than dxmax (beam moves too quickly). The initialization frame is taken to the left of the position after the jump by
predist pixels. Its crystal_id and frame columns are set to -1.
:param shots: initial scan list. Note: if you want to have multiple frames, you should always first run set_frames
:param predist: distance of the initialization shot from the actual image along x
:param dxmax: maximum allowed jump size (in pixels) to the right.
:param xcol: name of x position column
:param initpoints: number of initialization points added
:return: scan list with inserted additional points
"""
def add_init(sh1):
initline = sh1.iloc[:initpoints, :].copy()
initline['crystal_id'] = -1
initline['frame'] = -1
if predist is not None:
initline[xcol] = initline[xcol] - predist
else:
initline[xcol] = 0
return initline.append(sh1)
dx = shots[xcol].diff()
grps = shots.groupby(by=((dx < 0) | (dx > dxmax)).astype(int).cumsum())
return grps.apply(add_init).reset_index(drop=True)
|
029f1431890940b8f4345cfb400a64ca24d3611e
| 45,871 |
def UsersInvolvedInAmendments(amendments):
"""Return a set of all user IDs mentioned in the given Amendments."""
user_id_set = set()
for amendment in amendments:
user_id_set.update(amendment.added_user_ids)
user_id_set.update(amendment.removed_user_ids)
return user_id_set
|
e9543bcbd678758fc9f03bf35b3e0429d1202544
| 45,880 |
def create_list_of(class_, objects):
"""Return a list of model objects of class `class_` from list of object
metadata `objects`"""
return [class_.from_metadata(obj) for obj in objects]
|
abb91c36fd2faeb8bbb1cd785d417757f75352bd
| 45,884 |
def has_min_length(entities, length):
"""Check if a term has the min required length."""
return entities.apply(lambda x: len(x) > length - 1)
|
7406b1d0d2a776b12ac89b624669d739a4831ffa
| 45,888 |
import pwd
def username_from_uid(uid: int) -> str:
"""Convert a UID to a username."""
try:
username = pwd.getpwuid(uid).pw_name.replace(".", "__")
except KeyError:
username = f"__unknown_uid_{uid}__"
return username
|
ae400888f3c89f8b26c413138c42b430285fe6f9
| 45,891 |
from typing import List
import re
import click
def check_descriptors(ctx, param, value: List[str]) -> List[str]:
"""
Check format of each MeSH descriptor passed as command line argument. Raise
exception if any has incorrect format.
:param ctx: required for click callback feature
:param param: required for click callback feature
:param value: tuple of MeSH descriptors as written on command line
:return: value if all descriptors are correctly formatted
"""
for des in value:
if not re.fullmatch(r'D(\d{6}|\d{9})', des):
raise click.BadParameter(
'Descriptor %s incorrect, should be D followed by 6 or 9 digits'
% des, param_hint='MeSH DESCRIPTORS')
return value
|
f2c1d25fe793c7f8d3dabdd72a30bb4be27a8dd6
| 45,897 |
def short(s):
"""return the first part of the string s up to a number."""
result = []
for d in list(s):
if d.isdigit():
break
else:
result.append(d)
return ''.join(result)
|
467123994284838ed3d6bc4fde99cc4ef54e3645
| 45,898 |
def _AddFirmwareIdTag(image, id_name='RO_FRID'):
"""Returns firmware ID in '#NAME' format if available."""
if not image.has_section(id_name):
return ''
id_stripped = image.get_section(id_name).decode('utf-8').strip(chr(0))
if id_stripped:
return '#%s' % id_stripped
return ''
|
e070a445b9250208366a7eb43612f8d8650534d1
| 45,902 |
def compile_drop_materialized_view(element, compiler, **kw):
"""
Formats and returns the drop statement for materialized views.
"""
text = "DROP MATERIALIZED VIEW {if_exists}{name}{cascade}"
if_exists = "IF EXISTS " if element.if_exists else ""
cascade = " CASCADE" if element.cascade else ""
return text.format(if_exists=if_exists, name=element.name, cascade=cascade)
|
1bedf4115edeaf33e96c7ff57b29e8809d8489c8
| 45,903 |
import re
def get_header_line(headr, proprty):
"""
:param headr: the header of the RINEX-file
:param proprty: string-like property to search for (e.g. 'delta-utc')
:return: the string of the ``headr`` containing ``property``
"""
pattern = re.compile(proprty, re.IGNORECASE)
for d in headr:
if pattern.search(d):
return d
|
7c0a98156a4dda2ea24190c7516e488b3c162b5d
| 45,904 |
def get_file_type(file_name):
"""
returns file type of given file name as string. For example, for a pdf file "pdf" will be returned
"""
for char in file_name: # checking if given path instead of file
if char == "/" or char == "\\":
return "ERROR IN FUNCTION 3: FILE PATH GIVEN INSTEAD OF FILE NAME"
for i in range(len(file_name)):
j = len(file_name) - 1 - i
if file_name[j] == ".":
return file_name[j + 1:]
return "ERROR: NO ENDING GIVEN TO FILE IN FUNCTION 3"
|
7ae544794a07b69710c6784ca389fa82a751ea66
| 45,907 |
def get_player_moves(game: tuple, player: int):
"""
Returns the sequence of moves of the given player
"""
moves = []
for i in range(player, len(game) - 1, 2):
moves.append((game[i], game[i + 1]))
return moves
|
492327399ae39c8a3378730903dab422d2c3d7f5
| 45,916 |
def floyd_warshall(graph):
"""
All Pairs Shortest Path problem.
The problem is to find shortest distances between every
pair of vertices in a given edge weighted directed Graph
"""
n = len(graph[0])
dist = [ [0]*n for i in range(n) ]
# Initialize the solution matrix same as input graph matrix
for i in range(n):
for j in range(n):
dist[i][j] = graph[i][j]
for k in range(n):
for i in range(n):
for j in range(n):
if dist[i][k] + dist[k][j] < dist[i][j]:
dist[i][j] = dist[i][k] + dist[k][j]
return dist
|
1b9ea3058fa791f89e4b3f60b10df6a7e22b1ea0
| 45,924 |
import math
def discretize_state(state):
"""Discretizes continuous state space to discrete state space with 14 physical values
Args:
state: current continuous state space
Returns:
discretized state space
"""
# discretize observation space
# https://github.com/openai/gym/wiki/BipedalWalker-v2
obs_state_bounds = [
(0, math.pi), # hull_angle
(-2, 2), # hull_angular_velocity
(-1, 1), # vel_x
(-1, 1), # vel_y
(0, math.pi), # hip_joint_1_angle
(-2, 2), # hip_joint_1_speed
(0, math.pi), # knee_joint_1_angle
(-2, 2), # knee_joint_1_speed
(0, 1), # leg_1_ground_contact_flag
(0, math.pi), # hip_joint_2_angle
(-2, 2), # hip_joint_2_speed
(0, math.pi), # knee_joint_2_angle
(-2, 2), # knee_joint_2_speed
(0, 1), # leg_2_ground_contact_flag
]
# create an empty obs_discrete_state array to store converted discrete state array
obs_discrete_state = []
for i in range(len(state)):
converted_i = int(
(state[i] - obs_state_bounds[i][0])
/ (obs_state_bounds[i][1] - obs_state_bounds[i][0])
* 19 # 19 is arbitrary integer
)
obs_discrete_state.append(converted_i)
ds = tuple(
obs_discrete_state
) # convert collected discrete state array into tuple to maintain same shape
return ds
|
547dc5176a2d6ad0708279295f1abba76b1cc642
| 45,928 |
def distance(x1, y1, x2, y2):
"""
This calculates the distance between (x1, y1) and (x2, y2)
"""
return ((x1 - y1) ** 2 + (x2 - y2) ** 2) ** 0.5
|
da73bc44cc69e01d41a32a1779cd50ea777f6fd3
| 45,941 |
def prep_prony_ANSYS(df_prony, prony, E_0 = None):
"""
Prepare ANSYS Prony series parameters for further processing.
The ANSYS curve fitting routine for viscoelastic materials only stores
the Prony series parameters ('tau_i', 'alpha_i') in the material card file.
To calculate the master curve from the Prony series parameters the
instantenous modulus and frequency range are required and added to the
dataframe of the ANSYS Prony series parameters.
Parameters
----------
df_prony : pandas.DataFrame
Contains the ANSYS Prony series parameter.
prony : dict
Contains the Python Prony series parameter
E_0 : float, default = None
Instantaneous storage modulus; for either tensile (E_0) or shear (G_0)
loading. If E_0 is not provided the instantaneous storage modulus
identified during the Python curve fitting process will be used to
create the master curve with the ANSYS Prony series parameters.
Returns
-------
prony_ANSYS : dict
Contains the ANSYS Prony series parameter in the same format as the
Python implementation provides (see 'prony' Parameter above).
"""
m = prony['modul']
if E_0 == None:
E_0 = prony['E_0'] #use same estimate as Python curve fitting
f_min = prony['f_min'] #use same frequency range as Python curve fitting
f_max = prony['f_max']
prony_ANSYS = {'E_0': E_0, 'df_terms':df_prony, 'f_min':f_min,
'f_max':f_max, 'label':'ANSYS', 'modul' : m}
return prony_ANSYS
|
ab2f86e9d42ea78c7849d9db877892d22e47666e
| 45,946 |
def grouper(n, L):
"""Group a flat list into a list of tuples of size n."""
# src: http://stackoverflow.com/questions/1624883/alternative-way-to-split-a-list-into-groups-of-n
return list(zip(*[L[i::n] for i in range(n)]))
|
c052a4e98c90a36ff2afd811d49bd8ad9da8830b
| 45,947 |
def _cargo_home_path(repository_ctx):
"""Define a path within the repository to use in place of `CARGO_HOME`
Args:
repository_ctx (repository_ctx): The rules context object
Returns:
path: The path to a directory to use as `CARGO_HOME`
"""
return repository_ctx.path(".cargo_home")
|
1961fc9a13128340d57b942ebb2bbc6b12ed6eea
| 45,952 |
def get_subset(options, dataset, class_a, class_b):
"""
Returns a subset of the dataset that only contains the
classes (class_a) and (class_b)
"""
x_train, y_train = dataset
train_idx = (y_train == class_a) ^ (y_train == class_b)
subset_train_x = x_train[train_idx]
subset_train_y = y_train[train_idx]
# relabel to +/-1
subset_train_y[subset_train_y == class_a] = -1
subset_train_y[subset_train_y == class_b] = 1
return subset_train_x, subset_train_y
|
0081af880de54aded079edb46207ba46f94e0ea4
| 45,955 |
import requests
from bs4 import BeautifulSoup
def page_soup(url):
"""
Make BeautifulSoup of page
Args:
url:``str``
url of page
Returns:
BeautifulSoup of page:``soup``
"""
r = requests.get(url)
if r.status_code == 200:
soup = BeautifulSoup(r.content, "lxml")
return soup
else:
raise Exception("Please check website. Error code {}.".format(r.status_code))
|
3ebbc59055b6034371f06455cb182d7b81eaca64
| 45,956 |
def largest_odd_times(L):
""" Assumes L is a non-empty list of ints
Returns the largest element of L that occurs an odd number
of times in L. If no such element exists, returns None """
l = L.copy()
l.sort()
l.reverse()
for x in l:
if l.count(x) % 2:
return x
return None
|
280d071bebeec911efbcbbae2eb28090e2e7870e
| 45,960 |
import json
def read_json(filename):
"""Read json file and return contents as dict."""
with open(filename) as f:
return json.load(f)
|
f8e5bf4cc76de18099a3736e96141ac849aca050
| 45,967 |
def matchingByName (theDictionary, firstLetter):
"""Identifies students a name starting with firstLetter.
Assumes student names are capitalized.
:param dict[str, str] theDictionary:
key: locker number / value: student name or "open"
:param str firstLetter:
The target letter by which to identify students. Currently does
not check for only a single letter.
:return:
The students with name starting with firstLetter
:rtype: list[str]
"""
studentsByName = []
firstLetter = firstLetter.upper()
for key in theDictionary:
if theDictionary[key][0] == firstLetter:
studentsByName.append(theDictionary[key])
return studentsByName
|
8d492d93b58b7c4e7c2f8030fda9d01bd73d7352
| 45,973 |
from typing import List
from typing import Dict
from typing import Any
def build_params_dict(tags: List[str], attribute_type: List[str]) -> Dict[str, Any]:
"""
Creates a dictionary in the format required by MISP to be used as a query.
Args:
tags: List of tags to filter by
attribute_type: List of types to filter by
Returns: Dictionary used as a search query for MISP
"""
params: Dict[str, Any] = {
'returnFormat': 'json',
'type': {
'OR': attribute_type if attribute_type else [],
},
'tags': {
'OR': tags if tags else [],
},
}
return params
|
0da2569aca037587a904c775330a684cef9d6f22
| 45,975 |
def compute_area(boxes):
"""
Computes the area of all the boxes.
Returns:
np.array: a vector with areas of each box.
"""
area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
return area
|
5cd1ca945d8ffcbf989d1a8d65e952b99366968e
| 45,976 |
def matrix_scalar(m, sc):
""" Matrix multiplication by a scalar value (iterative algorithm).
The running time of the iterative matrix multiplication algorithm is :math:`O(n^{2})`.
:param m: input matrix
:type m: list, tuple
:param sc: scalar value
:type sc: int, float
:return: resultant matrix
:rtype: list
"""
mm = [[0.0 for _ in range(len(m[0]))] for _ in range(len(m))]
for i in range(len(m)):
for j in range(len(m[0])):
mm[i][j] = float(m[i][j] * sc)
return mm
|
71bd6d1cfaaeb959623e3836ab48ccf7543aaaba
| 45,978 |
from pathlib import Path
def get_probes_path(params, split):
"""Return path to directory where probe sentences are stored."""
directory = Path(params.path_to_probes)
path_p = f'propositions_{split}.json'
return directory / path_p
|
80f7b6a98d6a714177f0ba8f1ee7105d499201fc
| 45,979 |
def parse_line_number(line_str):
"""
In a line of the format "<line_num>: <text>"or "<line_num> <text>"
this grabs line_num.
>>> parse_line_number('5: def parse_line_number(line_str):')
'5'
>>> parse_line_number('43 line = view.line(s)')
'43'
>>> parse_line_number('136: line_num = parse_line_number(line_str)')
'136'
"""
parts = line_str.split()
line_num = parts[0].strip().replace(':', '')
return line_num
|
1c25916ee3baae164e28f7ca37642901787a92fe
| 45,984 |
def get_stft_shape(sample_rate, snippet_length, time_steps):
""" Gets the shape for the Short-Time Fourier Transform matrix corresponding to a sample_rate, snippet_length, and time_steps
:param sample_rate: the sample rate of the time signal in Hz
:param snippet_length: the length of the signal in seconds
:param time_steps: the number of time steps that the signal should be split into
:returns: the shape of the matrix with dim time steps times number of frequencies
:rtype: tuple(int, int)
"""
sample_length = snippet_length * sample_rate
n_fft = (time_steps - 1) * 2
win_length = int(n_fft/4)
return (time_steps, int(sample_length/win_length + 1))
|
baf8b0bff872716c2f227b7174f2b46e16652fac
| 45,986 |
import cmath
def op_phase(x):
"""Returns the phase of a complex number."""
if isinstance(x, list):
return [op_phase(a) for a in x]
else:
return cmath.phase(x)
|
e1a3b37c91bd4726ce0f14c9b9eb0fd007a4e0d2
| 45,990 |
from typing import get_origin
from typing import Union
from typing import get_args
def is_optional_type(type_annotation) -> bool:
""" Determines if a type is Optional[XXX]
:param type_annotation: A type annotation, e.g Optional[float] or float
:return: Whether the type annotation is an optional
"""
if get_origin(type_annotation) is Union:
args = get_args(type_annotation)
return len(args) == 2 and type(None) in args # pylint:disable=unidiomatic-typecheck
return False
|
2ef9fb8a536dbe489c2039a95ae1f8f185515d61
| 45,994 |
def leiaint(msg):
"""
--> Função que faz a validação da entrada de dados do tipo inteiro (int)
:param msg: Mensagem para entrada de dados do usuário
:return: retorna o valor digitado, caso este tenha sido um número inteiro
:print: Escreve uma mensagem de erro na tela, caso o valor digitado não seja do tipo inteiro
"""
while True:
n = str(input(msg)).strip()
if n.replace('-', '').isnumeric():
return int(n)
else:
print(f'\033[0;31mErro! Digite um número inteiro válido.\033[m')
|
29b96b26055d965e987bf1e39a96b1924751f56c
| 45,996 |
def convert_format(ori_list: list) -> dict:
"""
设输入列表长度为n
时间复杂度 O(n) 遍历两次list,
1. 构建辅助字典, 实现通过子节点查找父节点时间复杂度为O(1); 初始化子节点
2. 不断将子节点追加到父节点
空间复杂度: 需要构建辅助节点dict, 和返回结果dict, 空间复杂度是 O(n)
"""
tree = {"root": {}}
revert_dict = dict()
for n in ori_list:
# 构造反向键值字典
revert_dict[n["name"]] = n.get("parent")
# 初始化子节点
tree[n["name"]] = {}
for ele in ori_list:
name = ele["name"]
parent = revert_dict.get(name) or "root"
# 子节点追加到父节点
tree[parent].update({name: tree.get(name)})
return tree["root"]
|
02deadf4c1e6ceaabfabf93fd09d49e1e4e87ddd
| 45,997 |
import inspect
def get_fn_parameters(fn):
""" return the number of input parameters of the fn , None on error"""
param_len = len(inspect.getfullargspec(fn).args)
if inspect.ismethod(fn):
param_len -= 1
return param_len
|
cf90737655367422a96929d1f935aea4db620a41
| 45,998 |
def parse_accept(headers):
#-------------------------
"""
Parse an Accept header and return a dictionary with
mime-type as an item key and 'q' parameter as the value.
"""
return { k[0].strip(): float(k[1].strip()[2:])
if (len(k) > 1 and k[1].strip().startswith('q=')) else 1
for k in [ a.split(';', 1)
for a in headers.get('Accept', '*/*').split(',') ] }
|
43e2698695f3484d47284cb8e0d1e278b33b322d
| 46,006 |
def get_x_y_set(mt, type="test"):
"""Gets data set from ModelTuning object
Parameters
----------
mt : ModelTuning object
ModelTuning object used
type : str, default="test"
specifies which set to return ('train'/'test'/'val')
Returns
----------
X_data, y_data : ndarray
"""
if type == "val":
return mt.get_validation_set()
if type == "train":
return mt.get_train_set()
if type == "test":
return mt.get_test_set()
|
6a423e93d85e4f18057550b6d3de3d3fe3c80766
| 46,008 |
from itertools import tee
def nwise(iterable, n=2):
"""
Adapted from more_itertools
s, 2 -> (s0,s1), (s1,s2), (s2, s3), ..."
s, 3 -> (s0,s1,2), (s1,s2,s3), (s2,s3,s4), ..."
"""
parts = tee(iterable, n)
to_zip = []
while(parts):
to_zip.append(parts[0])
parts = parts[1:]
for p in parts:
next(p, None)
return zip(*to_zip)
|
1b73f4a565243b5aeeea4ac85ba5e6f0f83864ee
| 46,010 |
def read_mesh_off(path, scale=1.0):
"""
Reads a *.off mesh file
:param path: path to the *.off mesh file
:return: tuple of list of vertices and list of faces
"""
with open(path) as f:
assert (f.readline().split()[0] == 'OFF'), 'Not OFF file'
nv, nf, ne = [int(x) for x in f.readline().split()]
verts = [tuple(scale * float(v) for v in f.readline().split()) for _ in range(nv)]
faces = [tuple(map(int, f.readline().split()[1:])) for _ in range(nf)]
return verts, faces
|
e65a78cc457dd251c8e604b24096776b54cae33c
| 46,012 |
def mean(li):
"""
Calculate mean of a list.
>>> mean([0.5,2.0,3.5])
2.0
>>> mean([])
"""
if li:
return sum(li) / len(li)
return None
|
249d71615f0b671e6ad0e9be127d5eedacee0a64
| 46,014 |
import re
def fixup_generated_snippets(content):
"""
Adjust the expanded code snippets that were generated
by mdsnippets, to improve rendering by Sphinx
"""
# Remove lines like: <!-- snippet: verify_exception_message_example -->
content = re.sub(
r"<!-- snippet: .* -->\n",
r"", content)
# Remove lines like: <a id='snippet-verify_exception_message_example'/></a>
content = re.sub(
r"<a id='snippet-.*'/></a>\n",
r"", content)
# Remove 'snippet source' links from all code snippets
content = re.sub(
r"<sup><a href='([^']+)' title='Snippet source file'>snippet source</a> ",
r"(See [snippet source](\1))", content)
# Remove 'anchor' links from all code snippets
content = re.sub(
r"\| <a href='#snippet-[^']+' title='Start of snippet'>anchor</a></sup>",
'', content)
content = content.replace('<!-- endsnippet -->\n', '')
return content
|
81c58f83058c1eb91d6846e026b9e2c7a757189b
| 46,016 |
def order_cols_by_nunique(df, cols):
"""
Reorder columns in cols according to number of unique values in the df.
This can be used to have a cleaner grouped (multi-level) x-axis where
the level with the least unique values is at the bottom.
Note: alternatively you could remove cols that have only 1 unique value
:param df: pandas DataFrame
:param cols: list of columns to reorder
:return:
"""
unique_count = df[cols].nunique().sort_values()
re_ordered_cols = list(unique_count.index.values)
return re_ordered_cols
|
ccc6b4208182add8f43ea7cfdeb5bad048ddf26e
| 46,018 |
def southOf(x, y, xy0, xy1):
"""
Returns 1 for point south/east of the line that passes through xy0-xy1, 0 otherwise.
"""
x0 = xy0[0]; y0 = xy0[1]; x1 = xy1[0]; y1 = xy1[1]
dx = x1 - x0; dy = y1 - y0
Y = (x-x0)*dy - (y-y0)*dx
Y[Y>=0] = 1; Y[Y<=0] = 0
return Y
|
cd7d903b60eec70f580bccc6f8dcd9a05734f161
| 46,019 |
def get_action_value(mdp, state_values, state, action, gamma):
""" Computes Q(s,a) as in formula above """
return sum(
prob * (mdp.get_reward(state, action, state_dash) + gamma * state_values[state_dash])
for state_dash, prob in mdp.get_next_states(state, action).items()
)
|
082fe8b979e6ceaca218db5de5084c9040fbe34c
| 46,028 |
def ParseSubversionPropertyValues(props):
"""Parse the given property value which comes from [auto-props] section and
returns a list whose element is a (svn_prop_key, svn_prop_value) pair.
See the following doctest for example.
>>> ParseSubversionPropertyValues('svn:eol-style=LF')
[('svn:eol-style', 'LF')]
>>> ParseSubversionPropertyValues('svn:mime-type=image/jpeg')
[('svn:mime-type', 'image/jpeg')]
>>> ParseSubversionPropertyValues('svn:eol-style=LF;svn:executable')
[('svn:eol-style', 'LF'), ('svn:executable', '*')]
"""
key_value_pairs = []
for prop in props.split(";"):
key_value = prop.split("=")
assert len(key_value) <= 2
if len(key_value) == 1:
# If value is not given, use '*' as a Subversion's convention.
key_value_pairs.append((key_value[0], "*"))
else:
key_value_pairs.append((key_value[0], key_value[1]))
return key_value_pairs
|
9874d2a308f66ec4dc4aa14292370977685c6e5e
| 46,033 |
import math
def distance(coordinate_tuple):
"""Intake a coordinate tuple, return the distance between points"""
x1 = coordinate_tuple[0]
y1 = coordinate_tuple[1]
x2 = coordinate_tuple[2]
y2 = coordinate_tuple[3]
dist = math.sqrt((x2-x1)**2 + (y2-y1)**2)
return dist
|
f93e505aa267c0d4011f7e94e8a0996478c75058
| 46,035 |
def find_duplicates(l: list) -> set:
"""
Return the duplicates in a list.
The function relies on
https://stackoverflow.com/questions/9835762/find-and-list-duplicates-in-a-list .
Parameters
----------
l : list
Name
Returns
-------
set
Duplicated values
>>> find_duplicates([1,2,3])
set()
>>> find_duplicates([1,2,1])
{1}
"""
return set([x for x in l if l.count(x) > 1])
|
f5c3ce0949996865935182028b7782c13eb0998a
| 46,038 |
import html
def unescape(text):
"""Replace HTML entities and character references."""
return html.unescape(text)
|
075821e15ee6a8bd9a924c5db20f0596de64ad1b
| 46,042 |
def _parse_line(line):
"""Parse poolq Quality file lines."""
if not line == "\n":
parsed_line = line.strip("\n").split("\t")
if not parsed_line[0].startswith("Read counts"):
return parsed_line
|
56cf059dd75e329303054f683bc6b360641ae6e5
| 46,052 |
def hub_balance(m, i, j, co, t):
"""Calculate commodity balance in an edge {i,j} from/to hubs. """
balance = 0
for h in m.hub:
if (h, co) in m.r_in_dict:
balance -= m.Epsilon_hub[i,j,h,t] * m.r_in_dict[(h, co)] # m.r_in = 1 by definition
if (h, co) in m.r_out_dict:
balance += m.Epsilon_hub[i,j,h,t] * m.r_out_dict[(h, co)]
return balance
|
239ba38223661a3dcbb3b9fa8bf793b6e32156c1
| 46,053 |
def isCSERelative(uri : str) -> bool:
""" Check whether a URI is CSE-Relative. """
return uri is not None and uri[0] != '/'
|
98cfc2e74e7cb5e1561dec2e40e8076f6eb966e4
| 46,062 |
from typing import Dict
from typing import Any
def build_validation(validator) -> Dict[str, Any]:
"""Builds and returns a fake validator response object."""
if validator == "sql":
metadata = {"sql": "SELECT user_id FROM users"}
elif validator == "content":
metadata = {
"field_name": "view_a.dimension_a",
"content_type": "dashboard",
"space": "Shared",
}
elif validator == "assert":
metadata = {"test_name": "test_should_pass"}
else:
metadata = {}
return {
"validator": validator,
"status": "failed",
"tested": [
dict(model="ecommerce", explore="orders", passed=True),
dict(model="ecommerce", explore="sessions", passed=True),
dict(model="ecommerce", explore="users", passed=False),
],
"errors": [
dict(
model="ecommerce",
explore="users",
message="An error occurred",
metadata=metadata,
)
],
}
|
a344d97b2f80486a0c826099bc47fe4bdd60989a
| 46,064 |
def combine_channel_number(major: int, minor: int) -> str:
"""Create a combined channel number from its major and minor."""
if minor == 65535:
return str(major)
return "%d-%d" % (major, minor)
|
7eee6911546e62b25db05a3c099de75c382e7081
| 46,065 |
import torch
def batch_log_matvecmul(A, b):
"""For each 'matrix' and 'vector' pair in the batch, do matrix-vector
multiplication in the log domain, i.e., logsumexp instead of add,
add instead of multiply.
Arguments
---------
A : torch.Tensor (batch, dim1, dim2)
Tensor
b : torch.Tensor (batch, dim1)
Tensor.
Outputs
-------
x : torch.Tensor (batch, dim1)
Example
-------
>>> A = torch.tensor([[[ 0., 0.],
... [ -1e5, 0.]]])
>>> b = torch.tensor([[0., 0.,]])
>>> x = batch_log_matvecmul(A, b)
>>> x
tensor([[0.6931, 0.0000]])
>>>
>>> # non-log domain equivalent without batching functionality
>>> A_ = torch.tensor([[1., 1.],
... [0., 1.]])
>>> b_ = torch.tensor([1., 1.,])
>>> x_ = torch.matmul(A_, b_)
>>> x_
tensor([2., 1.])
"""
b = b.unsqueeze(1)
x = torch.logsumexp(A + b, dim=2)
return x
|
116d6f5713c2bc7dc6b39fb784ee4f6f6c5ba852
| 46,066 |
def _do_overlap(rect_1,
rect_2):
"""
Determines whether the two rectangles have overlap.
Args:
rect_1: Tuple :code:`(lat_min, lon_min, lat_max, lon_max) describing
a rectangular tile.
rect_2: Tuple :code:`(lat_min, lon_min, lat_max, lon_max) describing
a rectangular tile.
Returns:
True if the two rectangles overlap.
"""
lat_min_1, lon_min_1, lat_max_1, lon_max_1 = rect_1
lat_min_2, lon_min_2, lat_max_2, lon_max_2 = rect_2
lat_min = max(lat_min_1, lat_min_2)
lon_min = max(lon_min_1, lon_min_2)
lat_max = min(lat_max_1, lat_max_2)
lon_max = min(lon_max_1, lon_max_2)
return (lat_min < lat_max) and (lon_min < lon_max)
|
74379617ceca1bce4237acdbd9800ba1583e781e
| 46,068 |
def symbol(data):
"""
Get the feature symbol.
"""
return data["marker_symbol"]
|
2efca500e061818e62405e58107d6d6883950761
| 46,071 |
import hashlib
def uuid_hash(uuid):
"""Return SHA1 hash as hex digest of an uuid.
Requirement from VAC team : You should apply SHA1 hashing over the data as
a text. More specifically you should have the text data as a UTF8 encoded
string then convert the string to byte array and digest it into a SHA1
hash. The resulting SHA1 hash must be converted to text by displaying each
byte of the hashcode as a HEX char (first byte displayed leftmost in the
output). The hash must be lowercase.
No checks are made to determine if the input uuid is valid or not. Dashes
in the uuid are ignored while computing the hash.
:param str uuid: uuid to be hashed
:returns: SHA1 hash as hex digest of the provided uuid.
"""
uuid_no_dash = uuid.replace('-', '')
m = hashlib.sha1()
m.update(bytes(uuid_no_dash, 'utf-8'))
return m.hexdigest()
|
eb26bfa75cf2d694218adc9782181532c50fb13f
| 46,072 |
import pytz
from datetime import datetime
def determine_current_datetime(**args) -> tuple:
"""
Return args['today_date'] as a timezone aware python datetime object
"""
tz = pytz.timezone('America/Vancouver')
args['today_date'] = datetime.now(tz)
return True, args
|
cd31a44133955da015f9fce2794d89dc4351ca6e
| 46,073 |
def get_node_flow(flow_net, node):
"""
Returns the sum of the flow into minus the sum of the flow out from the
node.
In a maximum flow network, this function returns 0 for all nodes except
for the source (wich returns -max_flow) and drain (wich returns max_flow).
"""
flow = 0
n = len(flow_net)
for i in range(n):
flow += flow_net[i][node]
flow -= flow_net[node][i]
return flow
|
c58518dff13658b15c4b2adebe2f4c4efe2a914e
| 46,075 |
import random
def normalRandomInt(max_val, spread, skew=0):
"""Returns a random integer from a normal distribution whose parameters may be
tweaked by setting max_val, spread and skew. The value is clipped to
the range [0, max_val].
Args:
max_val {number} A positive number. All returned values will be less than
this.
spread {float} Should be a value between 0 and 1. The standard deviation of
the normal distribution will be set to this value times max_val.
skew {float} Should be value between -1 and 1. The mean of the normal
distribution will be set to max_val * 0.5 * (1 + skew).
Returns:
{int} A random integer in the range [0, max_val].
"""
mu = max_val * 0.5 * (1.0 + skew)
sigma = max_val*spread
x = int(random.normalvariate(mu, sigma))
# Ensure the value is in the range [0, max_val]
return max(0, min(x, max_val))
|
4bbe790dc86a0308700d10a65179288f0d3c2674
| 46,082 |
def get_dot(dic, key, default=None):
""" Similar to dict.get(), but key is given with dot (eg. foo.bar) and
result is evaluated in generous way. That is, get_dot(dic, 'foo.bar.vaz')
will return dic['foo']['bar'] if both dic['foo'] and dic['foo']['baz'] exists,
but return default if any of them does not exists.
"""
keys = key.split('.')
res = dic
for k in keys:
if not isinstance(res, dict):
return default
elif k in res:
res = res[k]
else:
return default
return res
|
cc764debf77b6982733226ec5547e26e2394cd89
| 46,083 |
import json
def load_json(json_path = "folder_tree.json"):
"""
Loads in memory a structured dictionary saved with `create_json`
:param json_path: Path of JSON file with the dictionary
:type json_path: str
:return: Loaded JSON file
:rtype: dict
"""
with open(json_path, "r") as json_file:
files_index = json.load(json_file)
# Check number of users loaded
return files_index
|
c8c6f683c1622e340a479904b625b14f37ab5525
| 46,084 |
def band_sample(sample):
"""
Fixture which returns a bands sample file.
"""
return sample('silicon_bands.hdf5')
|
fa9ebb5e180ef1e2c67adb7d2ead4a8c21d1f815
| 46,090 |
def fmtf(format):
"""
Returns a function that formats strings.
>>> f = fmtf("%.2f")
>>> f(0.5)
'0.50'
"""
return lambda x: format % x
|
9e8d1960aca7bbe69b72cd61c6374f88e0ff5e7b
| 46,098 |
def distance_to_greater_value(arr: list, allow_equal: bool) -> list:
"""Creates array where each value indicates distance from arr[i] to a value in arr greater than arr[i].
In order to avoid counting multiple maximums in a given subarray we count the distance to a strictly greater value
in one direction and a greater or equal value in the opposite.
For each value arr[i] we search for a value that is greater (or equal), if found we store its distance from i,
otherwise we store the length of the array.
:param arr: Array from which to determine sum of subarray maximums.
:param allow_equal: Bool. If True, the index of values equal or greater than arr[i] are stored.
:return:
"""
next_greater_value = [0] * len(arr)
stack = []
for idx, num in enumerate(arr):
if len(stack) == 0:
stack.append(idx)
elif num < arr[stack[-1]] or (allow_equal and num == arr[stack[-1]]):
stack.append(idx)
else:
while len(stack) > 0 and ((allow_equal and num > arr[stack[-1]]) or
(not allow_equal and num >= arr[stack[-1]])):
idx2 = stack.pop()
next_greater_value[idx2] = idx
stack.append(idx)
while len(stack) > 0:
idx2 = stack.pop()
next_greater_value[idx2] = len(arr)
return next_greater_value
|
bd08e7f34783c8ea221b03184e3533778be354ea
| 46,101 |
from typing import List
from pathlib import Path
def glob_file_from_dirs(dirs: List[str], pattern: str) -> List[str]:
"""Return a list of all items matching `pattern` in multiple `dirs`."""
return [next(Path(d).glob(pattern)).as_posix() for d in dirs]
|
c8815e2a39e2722d45fcab4b81d6c81b53566b18
| 46,102 |
def _get_default_route(version, subnet):
"""Get a default route for a network
:param version: IP version as an int, either '4' or '6'
:param subnet: Neutron subnet
"""
if subnet.get('gateway') and subnet['gateway'].get('address'):
gateway = subnet['gateway']['address']
else:
return []
if version == 4:
return [{
'network': '0.0.0.0',
'netmask': '0.0.0.0',
'gateway': gateway
}]
elif version == 6:
return [{
'network': '::',
'netmask': '::',
'gateway': gateway
}]
|
f039b70bf24ffcac1f31a6ffb9de570606fb55dd
| 46,103 |
def contents(filename):
"""The contents of FILENAME, or the empty string if the file does not
exist or is unreadable."""
try:
with open(filename) as inp:
return inp.read()
except:
return ''
|
043d154ed2ef01536b9c9bc0ad88a6de596a39d1
| 46,105 |
def getMenuLabel(menuPar):
"""
Return menuPar's currently selected menu item's label
"""
try:
return menuPar.menuLabels[menuPar.menuIndex]
except IndexError:
raise
except:
raise TypeError("getMenuLabel: invalid menu par " + repr(menuPar))
|
162c2e6158696c9f306012fa1cba16e5d3af62ea
| 46,110 |
def valid_attribute(view, pos):
"""attribute in valid scope"""
if view.match_selector(pos, "source.python comment"):
return False
# match f-string
if view.match_selector(pos, "source.python meta.interpolation.python"):
return True
# match common string
if view.match_selector(pos, "source.python meta.string"):
return False
return True
|
cbac18bb63e2a0304f91ef45d394778b4f9fab0d
| 46,122 |
import requests
import time
def get_with_retry(uri, max_retry=5):
"""Wrapper for requests.get() to retry
Args:
uri (str): URI to request
max_retry (int): number of retries to make
Returns:
the requests response
"""
r = requests.get(uri)
k = 0
while r.status_code != 200:
if k == max_retry:
print(f"{uri} failed.")
break
time.sleep(1)
r = requests.get(uri)
k += 1
return r
|
1351e138b02e409434c5058f033a53a742ba0204
| 46,128 |
def _check_solve_output(out, err):
"""
Verify from shell output that the Radia solve completed satisfactorily.
Will print any output from the shell.
:param out: (bytes) STDOUT piped from shell
:param err: (bytes) STDERR piped from shell
:return: (bool) True if STDERR is empty. False if STDERR is non-empty.
"""
if err:
print("Error occurred during Radia solve procedure:")
print(out.decode())
print(err.decode())
return False
else:
print("Solve finished")
print(out.decode())
return True
|
56fc1d5ffd5d361a4f4090703393dbb19ce11c23
| 46,130 |
def devices_to_string(devices):
"""
Format device list to string
:param devices: list of devices
:type devices: int or str or list
:return: string of device list
:rtype: str
"""
if isinstance(devices, str):
return devices
if isinstance(devices, int):
devices = [devices]
return ', '.join(['cuda:{}'.format(d) for d in devices])
|
3b9879f7726fc3b42cda4e656689ff584dbc6719
| 46,132 |
def dict_encode(dict, encoding='cp1251'):
"""Encode dict values to encoding (default: cp1251)."""
encoded_dict = {}
for key in dict:
encoded_dict[key] = dict[key].encode(encoding)
return encoded_dict
|
adfc1f9217ff48d20d44df5af4220f58e73419f4
| 46,134 |
def convert_pyr_coeffs_to_pyr(pyr_coeffs):
"""this function takes a 'new pyramid' and returns the coefficients as a list
this is to enable backwards compatibility
Parameters
----------
pyr_coeffs : `dict`
The `pyr_coeffs` attribute of a `pyramid`.
Returns
-------
coeffs : `list`
list of `np.array`, which contains the pyramid coefficients in each band, in order from
bottom of the pyramid to top (going through the orientations in order)
highpass : `np.array` or None
either the residual highpass from the pyramid or, if that doesn't exist, None
lowpass : `np.array` or None
either the residual lowpass from the pyramid or, if that doesn't exist, None
"""
highpass = pyr_coeffs.pop('residual_highpass', None)
lowpass = pyr_coeffs.pop('residual_lowpass', None)
coeffs = [i[1] for i in sorted(pyr_coeffs.items(), key=lambda x: x[0])]
return coeffs, highpass, lowpass
|
6b7ab3c4a6a85d05b7628cd7d31c46a62e549afc
| 46,135 |
import torch
def relative_time_to_absolute(batch, relative_lens, rate):
"""Converts SpeechBrain style relative length to the absolute duration.
Operates on batch level.
Arguments
---------
batch : torch.tensor
Sequences to determine the duration for.
relative_lens : torch.tensor
The relative length of each sequence in batch. The longest sequence in
the batch needs to have relative length 1.0.
rate : float
The rate at which sequence elements occur in real-world time. Sample
rate, if batch is raw wavs (recommended) or 1/frame_shift if batch is
features. This has to have 1/s as the unit.
Returns
------:
torch.tensor
Duration of each sequence in seconds.
Example
-------
>>> batch = torch.ones(2, 16000)
>>> relative_lens = torch.tensor([3./4., 1.0])
>>> rate = 16000
>>> print(relative_time_to_absolute(batch, relative_lens, rate))
tensor([0.7500, 1.0000])
"""
max_len = batch.shape[1]
durations = torch.round(relative_lens * max_len) / rate
return durations
|
88caf837d49dd46d14106e0df6011f22415cb73b
| 46,140 |
def multiply(x, y):
"""Multiplies two numbers. Equivalent to a * b but curried"""
return x * y
|
21ddc96142998879669d30f6c03abba22dc0ba08
| 46,143 |
from typing import List
def find_dup(numbers: List) -> int:
"""
Solution: Iterate through the list and store items in a set. When an item is found that already exists in the set
return that item.
Complexity:
Time: O(n) - Iterate through our list once
Space: O(n) - We could potentially store each item found
"""
numbers_seen = set()
for num in numbers:
if num in numbers_seen:
return num
numbers_seen.add(num)
raise Exception("No duplicate found")
|
94620fc5ceb565b417bcf1f0de6f6d7af23968ed
| 46,144 |
def conjugate(x: complex) -> complex:
"""
Returns the conjugate of a complex number
"""
return x.real - x.imag * 1j
|
6cacee436e7ca74d586364a4f578b745c08768d2
| 46,146 |
import math
def radians(degrees):
"""
Converts degrees to radians, which is used in math functions.
"""
return math.pi / 180.0 * degrees
|
9925b4f10b097ddad384c7ed34668a6127296bff
| 46,147 |
def to_lower_camel(s: str) -> str:
"""
Convert a snake-case string into lower camel case.
"""
parts = s.split("_")
return parts[0] + "".join([p.title() for p in parts[1:]])
|
d937d70a9a1914079a377edd2d8d3e3d0a78bcb5
| 46,148 |
import logging
def _setup_text_logger(name, stream, level):
"""Setup a text logger."""
res = logging.getLogger(name)
handler = logging.StreamHandler(stream)
handler.setFormatter(logging.Formatter(fmt="%(message)s"))
res.addHandler(handler)
res.setLevel(level)
return res
|
54373e2c7d5e9337a6dd7ed321eefd6fd2d55f96
| 46,150 |
import yaml
def fetch_mapping(filepath: str) -> dict:
"""Returns a dictionary from a YML file"""
with open(filepath, "r") as stream:
map = yaml.safe_load(stream)
return map
|
8a228d6474e0d474eb7a441f068adc711926b433
| 46,152 |
def upcase(val: str) -> str:
"""Make all characters in a string upper case."""
return val.upper()
|
f96247fa0b46daca4bc35420d8b218c2ee22f25a
| 46,154 |
from typing import Union
from pathlib import Path
import wave
def empty_wav(wav_path: Union[Path, str]) -> bool:
"""Check if a wav contains data"""
with wave.open(str(wav_path), 'rb') as wav_f:
return wav_f.getnframes() == 0
|
7ae5fa1a01138314ace682c636001b087aa61818
| 46,156 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.