content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def encode_pos(i, j):
"""Encodes a pair (i, j) as a scalar position on the board."""
return 3 * i + j
|
583d2e8370edc5801760f1c59c0c3aadad61876f
| 45,512 |
def pct_to_value(data, d_pct):
"""
Function takes dictionary with base value, and dictionary with percentage and converts percentage to value.
"""
if not data or not d_pct:
return data
out_map = {}
for _k in data:
if _k not in d_pct:
continue
out_map[_k] = (float(data[_k])/100.0) * float(d_pct[_k])
return out_map
|
3c5b1f75f484b1f767bc3acf6cce5bac4b136608
| 45,523 |
def is_image_file(s):
"""Checks to see if the string starts with 'img:'"""
return s.startswith('img:')
|
68081021527dbff9d2da7235c9bf454d54a7fd68
| 45,531 |
def pureDependency(dependency:str) -> str:
"""
Get the name of package
Parameters
----------
dependency : str
package
Returns
-------
str
a name of package without the version
>>> pureDependency('package==1.2.3')
'package'
"""
dependency = dependency.split("==")[0]
dependency = dependency.split(">")[0]
dependency = dependency.split("<")[0]
dependency = dependency.split("~=")[0]
dependency = dependency.split("=")[0]
return dependency
|
1891c0291b84e10ff35369c0cc740eaa6ab9d4ff
| 45,534 |
import torch
def get_random_tensor(size, dtype, use_cuda):
"""Returns a random tensor of given type and size
Args:
size (int): Tensor size (number of elements)
dtype (:obj:`torch.dtype`): One of `torch.float16` and `torch.flaot32`
use_cuda (bool): Return CUDA tensor
Returns:
"""
tensor = torch.rand(size).to(dtype=dtype)
if use_cuda:
tensor = tensor.cuda()
return tensor
|
da17a8e33b9ccf9a5bf9bcc86104a1577a8f38a9
| 45,540 |
import torch
def sub2ind(shape, rows, cols):
"""
A PyTorch implementation of MATLAB's "sub2ind" function
Parameters
----------
shape : torch.Size | list | tuple
shape of the 2D matrix
rows : torch.Tensor
(n,) row subscripts
cols : torch.Tensor
(n,) column subscripts
Returns
-------
index : torch.Tensor
(n,) linear indices
"""
# checks
assert isinstance(shape, tuple) or isinstance(shape, list)
assert isinstance(rows, torch.Tensor) and len(rows.shape) == 1
assert isinstance(cols, torch.Tensor) and len(cols.shape) == 1
assert len(rows) == len(cols)
assert torch.all(rows < shape[0]) and torch.all(cols < shape[1])
if not len(shape) == 2:
raise NotImplementedError('only implemented for 2D case.')
# compute inds
ind_mat = torch.arange(shape[0]*shape[1]).view(shape)
index = ind_mat[rows.long(), cols.long()]
return index
|
8b89b58824b1c80327082afb74b4486816345d62
| 45,542 |
def check_overlap(bbox1, bbox2):
"""
Checks if 2 boxes are overlapping. Also works for 2D tuples.
Args:
bbox1: [x1, y1, x2, y2] or [z1, z2]
bbox2: [x1, y1, x2, y2] or [z1, z2]
Returns:
bool
"""
if bbox1[0] > bbox2[2] or bbox2[0] > bbox1[2]:
return False
if len(bbox1) > 2:
if bbox1[1] > bbox2[3] or bbox2[1] > bbox1[3]:
return False
return True
|
2f39989661d421327b4a82da6e9b2fa4ae550575
| 45,547 |
def _parse_force_block(lines):
"""
Parse the block of total forces from the OUTCAR file
:param lines: A list of lines containing lines including the TOTAL-FORCE block
:returns: A tuple of position and forces
"""
forces = []
positions = []
istart = len(lines)
for idx, line in enumerate(lines):
if 'TOTAL-FORCE (eV/Angst)' in line:
istart = idx
elif idx > istart + 1:
if not line.startswith(' -----'): # Still in the block
values = list(map(float, line.split()))
positions.append(values[:3])
forces.append(values[3:])
else:
# Reached the end of the block
break
return positions, forces
|
37d9e488097749d4617364e23b296acee1d9bca5
| 45,548 |
import ast
def filter_block(node_list):
"""
Remove no-op code (``pass``), or any code after
an unconditional jump (``return``, ``break``, ``continue``, ``raise``).
"""
if len(node_list) == 1:
return node_list
new_list = []
for node in node_list:
if type(node) == ast.Pass:
continue
new_list.append(node)
if type(node) in (ast.Return, ast.Break, ast.Continue, ast.Raise):
break
if len(new_list) == len(node_list):
return node_list
else:
return new_list
|
b88d3e4966e162d3e23e56e622ff47c63165b7e6
| 45,551 |
def getownattr(cls, attrib_name):
"""
Return the value of `cls.<attrib_name>` if it is defined in the class (and not inherited).
If the attribute is not present or is inherited, an `AttributeError` is raised.
>>> class A(object):
... a = 1
>>>
>>> class B(A):
... pass
>>>
>>> getownattr(A, 'a')
1
>>> getownattr(A, 'unknown')
Traceback (most recent call last):
...
AttributeError: type object 'A' has no attribute 'unknown'
>>> getownattr(B, 'a')
Traceback (most recent call last):
...
AttributeError: type object 'B' has no directly defined attribute 'a'
"""
attr = getattr(cls, attrib_name)
for base_cls in cls.__mro__[1:]:
a = getattr(base_cls, attrib_name, None)
if attr is a:
raise AttributeError("type object %r has no directly defined attribute %r" % (cls.__name__, attrib_name))
return attr
|
b59acbba4f75492fe52562443b7ca679691e7e10
| 45,552 |
def _raw_to_int(raw_data):
"""Converting list of raw hex values as strings to integers."""
return [int(x, 16) for x in raw_data]
|
e8ae4784e142bcfa3ba8d7b013871986a1b5173a
| 45,553 |
from pathlib import Path
import json
def load_json(filepath: Path) -> dict:
"""load json file and return dict.
Args:
filepath (Path): filepath to json file.
Returns:
dict: dict loaded from json file.
"""
with open(filepath, "r") as f:
obj = json.load(f)
return obj
|
5cc66b27a6335e29a540b98b3f29ed79cbbb7777
| 45,555 |
def bdev_rbd_register_cluster(client, name, user=None, config_param=None, config_file=None, key_file=None):
"""Create a Rados Cluster object of the Ceph RBD backend.
Args:
name: name of Rados Cluster
user: Ceph user name (optional)
config_param: map of config keys to values (optional)
config_file: file path of Ceph configuration file (optional)
key_file: file path of Ceph key file (optional)
Returns:
Name of registered Rados Cluster object.
"""
params = {'name': name}
if user is not None:
params['user_id'] = user
if config_param is not None:
params['config_param'] = config_param
if config_file is not None:
params['config_file'] = config_file
if key_file is not None:
params['key_file'] = key_file
return client.call('bdev_rbd_register_cluster', params)
|
82c43cb070298bd983c9bf74cccfff6ddfeddd31
| 45,557 |
import torch
def str_dtype_to_torch_dtype(dtype: str) -> torch.dtype:
"""Converts a string representation of a dtype to the corresponding
PyTorch dtype."""
if dtype == "int32":
return torch.int32
elif dtype == "int64":
return torch.int64
elif dtype == "float32":
return torch.float32
elif dtype == "float64":
return torch.float64
else:
raise ValueError(f"Unsupported dtype: {dtype}")
|
ddf64bb7fba63ff0395e08a199fa431cd8750972
| 45,558 |
def SAMflags(x):
"""
Explains a SAM flag.
:param x: flag
:returns: complete SAM flag explanaition
"""
flags=[]
if x & 1:
l="1: Read paired"
else:
l="0: Read unpaired"
flags.append(l)
if x & 2 :
l="1: Read mapped in proper pair"
else:
l="0: Read not mapped in proper pair"
flags.append(l)
if x & 4 :
l="1: Read unmapped"
else:
l="0: Read mapped"
flags.append(l)
if x & 8 :
l="1: Mate unmapped"
else:
l="0: Mate mapped"
flags.append(l)
if x & 16 :
l="1: Read reverse strand"
else:
l="0: Read direct strand"
flags.append(l)
if x & 32 :
l="1: Mate reverse strand"
else:
l="0: Mate direct strand"
flags.append(l)
if x & 64 :
l="1: First in pair"
else:
l="0: Second in pair"
flags.append(l)
if x & 128 :
l="1: Second in pair"
else:
l="0: First in pair"
flags.append(l)
if x & 256 :
l="1: Not primary alignment"
else:
l="0: Primary alignment"
flags.append(l)
if x & 512 :
l="1: Read fails platform/vendor quality checks"
else:
l="0: Read passes platform/vendor quality checks"
flags.append(l)
if x & 1024 :
l="1: Read is PCR or optical duplicate"
else:
l="0: Read is not PCR or optical duplicate"
flags.append(l)
if x & 2048 :
l="1: Supplementary alignment"
else:
l="0: Not supplementary alignment"
flags.append(l)
return flags
|
e3d2c1942eac66acd4735cd4590a1905351cbc24
| 45,559 |
def bytes_xor(byte_seq1, byte_seq2):
"""
(bytes, bytes) -> (bytes)
Do bit level XOR or two byte arrays.
:param byte_seq1: byte sequence (bytes).
:param byte_seq2: byte sequence (bytes).
:return: XOR of the byte bytes sequences (bytes).
"""
assert len(byte_seq1) == len(byte_seq2), "Bytes must be of the same length."
parts = []
for byte_seq1, byte_seq2 in zip(byte_seq1, byte_seq2):
parts.append(bytes([byte_seq1 ^ byte_seq2]))
return b''.join(parts)
|
539ca3707c6c07fbd64691a4b317d0d6eb8acef4
| 45,561 |
def dBm2W(W):
"""Converts an arbitrary power `W` in dBm to W."""
return 10 ** ((W - 3) / 10)
|
278f43aac26f5e38ef9ab4e73acb6496dedcb0f7
| 45,566 |
import json
def json_of_response(res):
"""Decode json from response"""
return json.loads(res.data.decode('utf8'))
|
8c53a8a283994cf8b16e9d759d6fcdaa35731b04
| 45,570 |
def get_frame(epoch, step_size, frame_number):
"""
Crop an epoch based on a frame number
Args:
epoch: mne.epochs.Epochs
Epoch to crop
steps_size: int
Number of time frames per step
frame_number: int
Current frame number
Returns:
mne.epochs.Epochs:
Cropped epochs for the given frame
"""
times = epoch.times
max_index = len(times)-1
tmax = (frame_number+1)*step_size
# make sure we don't go outside the possible range
if(tmax > max_index):
tmax = max_index
return epoch.copy().crop(
times[frame_number*step_size],
times[tmax],
include_tmax=True
)
|
23c3b730eaf4ac369ff91e2a16f92fc18f4209a5
| 45,571 |
def full_request_url(base, text, wildcards={}):
"""
Build a full request URL from the API URL and endpoint.
Any URL parameters will be replaced with the value set in the environment variables.
"""
for key in wildcards.keys():
text = text.replace(key, str(wildcards[key]))
return str(base) + str(text)
|
217d921666a0cfa9ddd3fad09469085425398182
| 45,573 |
def collides_with_existing_words(word, line, column, direction, grid):
""" Returns whether the given word collides with an existing one.
"""
for k, letter in enumerate(list(word)):
if direction == "E":
# Collisions
if grid[line][column+k] != 0 and grid[line][column+k] != letter:
return True
if direction == "S":
# Collisions
if grid[line+k][column] != 0 and grid[line+k][column] != letter:
return True
return False
|
0e8863f725e29b81d9123f29be343cc55f339840
| 45,574 |
import hmac
import hashlib
def HMAC_MD5(key, data):
"""
@summary: classic HMAC algorithm with MD5 sum
@param key: {str} key
@param data: {str} data
"""
return hmac.new(key, data, hashlib.md5).digest()
|
601595073554175e21caac49dc160357ac976e8e
| 45,579 |
def _verify_classifiers(classifiers, valid_classifiers):
"""Check classifiers against a set of known classifiers"""
invalid = classifiers - valid_classifiers
return ["Unrecognised classifier: {!r}".format(c)
for c in sorted(invalid)]
|
64259f25b769361ddafcb83e63845de0d052c88c
| 45,580 |
def extract_csv_row(filename: str, row: int) -> str:
"""Extracts a selected line from the csv file.
Args:
filename:
A path to the file.
row:
The row number to extract.
Returns:
The row from the csv file as a string.
"""
with open(filename, 'r') as file:
extracted = file.readlines()[row - 1:row][0].strip('\n')
return extracted
|
19f72a462e676675c192f3611d3bb46a8aecc887
| 45,582 |
import re
def GetMakeFileVars(makefile_path):
"""Extracts variable definitions from the given make file.
Args:
makefile_path: Path to the make file.
Returns:
A dictionary mapping variable names to their assigned value.
"""
result = {}
pattern = re.compile(r'^\s*([^:#=\s]+)\s*:=\s*(.*?[^\\])$', re.MULTILINE + re.DOTALL)
stream = open(makefile_path, 'r')
content = stream.read()
for match in pattern.finditer(content):
result[match.group(1)] = match.group(2)
stream.close()
return result
|
7869801b18a4e4aa1cdc3e5d30219ed449e897ac
| 45,587 |
import random
def ranf(x1, x2):
"""
return random float between x1 and x2
:param float x1:
:param float x2:
:return float:
"""
return random.uniform(x1, x2)
|
6b17e1e5ff3293a8ad4b5027caf9db954bbfb6da
| 45,589 |
import re
def _search(value):
"""
Maps to `re.search` (match anywhere in `v`).
"""
return lambda v: re.search(value, v)
|
9d03811520c32d1aa7ab8fde8b913d8ad59456af
| 45,590 |
def read_predictions(pred_file):
"""
Read a predictions file with format:
SEQUENCE1 pred1 err1
SEQUENCE2 pred2 err2
... ...
return a dictionary mapping sequence to prediction
"""
out_dict = {}
with open(pred_file) as lines:
for l in lines:
if l.strip() == "" or l[0] == "#":
continue
col = l.split()
key = col[0]
pred = float(col[1])
err = float(col[2])
out_dict[key] = (pred,err)
return out_dict
|
5081027deff7c05d4abe23d757a5156d92f355ff
| 45,594 |
def backends_mapping(custom_backend, httpbin_original, httpbin_new):
"""
Creates custom backends with paths "/orig", "/new,
using deployed httpbin_original and httpbin_new as
the upstream APIs
"""
return {
"/orig": custom_backend("backend-orig", httpbin_original),
"/new": custom_backend("backend-new", httpbin_new)}
|
16ccc00a449081eb0418ac5a1d193f04caa1407a
| 45,596 |
import inspect
def bold_title(text: str) -> str:
"""
Create bold title in exam header
:return: latex code
"""
return inspect.cleandoc(rf"""
\begin{{center}}
\textbf {{ {{\Large {text} }} }}
\end{{center}}
""")
|
73f29514761c55e97a0edd5d54dc01f2c76108c4
| 45,604 |
def calculate_damage(attacker, defender):
"""Calculate and return effective power of attacker against defender.
args:
attacker: [side, units, hit_points, weaknesses, immunities,
damage, damage_type, initiative]
defender: [side, units, hit_points, weaknesses, immunities,
damage, damage_type, initiative]
Return:
group_damage: effective power modified by weaknesses/immunities
"""
group_damage = attacker[1] * attacker[5]
damage_type = attacker[6]
if damage_type in defender[3]:
group_damage *= 2
elif damage_type in defender[4]:
group_damage = 0
return group_damage
|
093e3a95ce4db864f4c4e9526e2b16378d407b7e
| 45,605 |
import re
def Tagcleaner(text):
"""
Remove "<>" tags from text
and return cleaned text
"""
# import re
cleanr = re.compile('<.*?>')
text_clean = re.sub(cleanr, '', text)
return text_clean
|
fa563b8ca252fd3bf65351ac67ed6549f996a833
| 45,607 |
def get_category_info_from_anno(anno_file, with_background=True):
"""
Get class id to category id map and category id
to category name map from annotation file.
Args:
anno_file (str): annotation file path
with_background (bool, default True):
whether load background as class 0.
"""
cats = []
with open(anno_file) as f:
for line in f.readlines():
cats.append(line.strip())
if cats[0] != 'background' and with_background:
cats.insert(0, 'background')
if cats[0] == 'background' and not with_background:
cats = cats[1:]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
|
1fa8a5c8c3af52b8a2a65e8494e20a27d2c79101
| 45,611 |
def get_magmom_string(structure):
"""
Based on a POSCAR, returns the string required for the MAGMOM
setting in the INCAR. Initializes transition metals with 6.0
bohr magneton and all others with 0.5.
Args:
structure (Structure): Pymatgen Structure object
Returns:
string with INCAR setting for MAGMOM according to mat2d
database calculations
"""
magmoms, considered = [], []
for s in structure.sites:
if s.specie not in considered:
amount = int(structure.composition[s.specie])
if s.specie.is_transition_metal:
magmoms.append('{}*6.0'.format(amount))
else:
magmoms.append('{}*0.5'.format(amount))
considered.append(s.specie)
return ' '.join(magmoms)
|
e9ae02d20c34cfade463374b83fedfee86838155
| 45,613 |
def longest_row_number(array):
"""Find the length of the longest row in the array
:param list in_array: a list of arrays
"""
if len(array) > 0:
# map runs len() against each member of the array
return max(map(len, array))
else:
return 0
|
515a357bdb5d180fa48fb3accd0f47fe6f22d8d3
| 45,621 |
def _check_func_names(selected, feature_funcs_names):
""" Checks if the names of selected feature functions match the available
feature functions.
Parameters
----------
selected : list of str
Names of the selected feature functions.
feature_funcs_names : dict-keys or list
Names of available feature functions.
Returns
-------
valid_func_names : list of str
"""
valid_func_names = list()
for f in selected:
if f in feature_funcs_names:
valid_func_names.append(f)
else:
raise ValueError('The given alias (%s) is not valid. The valid '
'aliases for feature functions are: %s.' %
(f, feature_funcs_names))
if not valid_func_names:
raise ValueError('No valid feature function names given.')
else:
return valid_func_names
|
b8f036dad2b777142de3c98cd3928d6d22fa52cb
| 45,625 |
def list_to_str(a_list,
delimiter = "\t",
newline = True):
"""
=================================================================================================
list_to_str(a_list, delimiter, newline)
Given a list, the delimiter (default '\t'), and whether to add a trailing newline
character, take a list and convert the list into a string where each element is
separated by the chosen delimiter.
=================================================================================================
Arguments:
a_list -> A list
delimiter -> A string to separate the elements of the list in a string
newline -> A boolean that determines whether to add a newline character to the output string
=================================================================================================
Returns: A string containing the elements of a_list, separated by delimtmer, with or without
a newline character
=================================================================================================
Example:
a = [1,2,3]
print(list_to_str(a))
-> '1\t2\t3\n'
=================================================================================================
"""
# Make sure the user inputs the proper typed objects.
# newline argument needs to be a boolean
assert newline in [True, False], "newline argument must be a boolean"
# a_list argument needs to be an iterable, specifically a list/tuple
assert type(a_list) in [list, tuple], "The argument 'a_list' should be a list or a tuple."
# These are the delimiter characters that I am currently able to work with
#assert delimiter in [':', '|', ';', '-', '\\',
# '/', ',', '\t', '\n', "",
# " vs "], f"The delimiter provided is not an accepted delimiter."
# Initialize the new string with the first element of the list.
# This avoids having to slice the strings later
newstr = f"{a_list[0]}"
# If the list only has one element and the user elects to use
# a trailing newline character
if len(a_list) == 1 and newline:
# Then simply return the newstr variable with an added
# newline character
return f"{newstr}\n"
# If the list has only one element and the user does not elect to
# use a trailing newline character
elif len(a_list) == 1 and not newline:
# Then simply return the newstr variable
return f"{newstr}"
# If the list has more then one element, then loop over all elements
# (excluding the first one since that is already in the string)
for i in range(1,len(a_list)):
# and add those new elements to the newstring with the given
# delimiter separating the elements.
newstr = f"{newstr}{delimiter}{a_list[i]}"
# If the user elects to use a trailing newline character
if newline:
# Then add the trailing newline character and return the string
return f"{newstr}\n"
# If the user does not elect to use a trailing newline character
else:
# Then simply return the newstr variable
return newstr
|
827275cc7a0207578158be7d5d5aefd18028992d
| 45,626 |
def getScalarsType(colouringOptions):
"""
Return scalars type based on colouring options
"""
# scalar type
if colouringOptions.colourBy == "Species" or colouringOptions.colourBy == "Solid colour":
scalarType = 0
elif colouringOptions.colourBy == "Height":
scalarType = 1
elif colouringOptions.colourBy == "Charge":
scalarType = 4
else:
scalarType = 5
return scalarType
|
35c2dfaab09f5a4ddee0321605d05575ccca95f0
| 45,628 |
def remove_keys(dct, keys=[]):
"""Remove keys from a dict."""
return {key: val for key, val in dct.items() if key not in keys}
|
7ccab472f303350c5a2a6b07d62dffc74affdf0b
| 45,632 |
def add_percentile(df, fig):
"""Adds percebtile lines to an existing graphic based on the dataframe
Parameters
----------
df (Dataframe): Dataframe with the data to generate the percentiles
fig (Figure): original figure
Returns
-------
fig: figure with the trendline included
"""
percentile = df.quantile([0.5, 0.85, 0.95])
for key in percentile.keys():
position = percentile[key]
label = f"{int(key*100)}%"
fig = fig.add_shape(
type="line",
yref="paper",
x0=position,
y0=0,
x1=position,
y1=0.95,
line_dash="dash",
)
fig = fig.add_annotation(
x=position, yref="paper", y=1, showarrow=False, text=label
)
return fig
|
dddf08632b22697528cc20befae275a5dab7ba2f
| 45,634 |
import itertools
def proportion_with_neighbours(block_list):
"""
Calculate the percentage of positive windows that have positive neighbours
:param list block_list: list of positive windows.
:returns: Percentage positive windows with positive neighbours.
"""
no_with_neighbours = 0
for key, group in itertools.groupby(block_list):
group = list(group)
if key and len(group) > 1:
no_with_neighbours += len(group)
try:
return float(no_with_neighbours) / sum(block_list)
except ZeroDivisionError:
return 0.
|
de314f13a234a90dcb4698666943a2a6619e9318
| 45,640 |
from re import match
from re import split
def _list_of_countries(value):
"""
Parses a comma or semicolon delimited list of ISO 3166-1 alpha-2 codes,
discarding those which don't match our expected format. We also allow a
special pseudo-country code "iso".
Returns a list of lower-case, stripped country codes (plus "iso").
"""
countries = []
candidates = split('[,;]', value)
for candidate in candidates:
# should have an ISO 3166-1 alpha-2 code, so should be 2 ASCII
# latin characters.
candidate = candidate.strip().lower()
if candidate == 'iso' or match('[a-z][a-z]', candidate):
countries.append(candidate)
return countries
|
e5bb98b1f4b60aa2ccf6105eaec03b6e686a9c47
| 45,643 |
def getDate(timestamp):
"""
Extracts the date from a timestamp.
:param timestamp: The timestamp from which the date should be obtained. \t
:type timestamp: string \n
:returns: The date info of the timestamp. \t
:rtype: string \n
"""
return timestamp.split('T')[0]
|
8b612541dc17d76e0b17d9c774597a740f969b98
| 45,645 |
def get_xy(df, y, mask, vars):
"""Returns specified X and y with reset indices."""
X = df.loc[mask, vars].reset_index(drop=True)
y = df.loc[mask, y].reset_index(drop=True)
return X, y
|
7ca6021453b628f017570e279968397110109f97
| 45,649 |
def num(r):
"""
Convert from Z3 to python float values.
"""
return float(r.numerator_as_long()) / float(r.denominator_as_long())
|
dbb41e4d490bb6495fa1e3440472b72614a47075
| 45,658 |
def expand_skipgrams_word_list(wlist, qsize, output, sep='~'):
"""Expands a list of words into a list of skipgrams. It uses `sep` to join words
:param wlist: List of words computed by :py:func:`microtc.textmodel.get_word_list`.
:type wlist: list
:param qsize: (qsize, skip) qsize is the q-gram size and skip is the number of words ahead.
:type qsize: tuple
:param output: output
:type output: list
:param sep: String used to join the words
:type sep: str
:returns: output
:rtype: list
Example:
>>> from microtc.textmodel import expand_skipgrams_word_list
>>> wlist = ["Good", "morning", "Mexico"]
>>> expand_skipgrams_word_list(wlist, (2, 1), list())
['Good~Mexico']
"""
n = len(wlist)
qsize, skip = qsize
for start in range(n - (qsize + (qsize - 1) * skip) + 1):
if qsize == 2:
t = wlist[start] + sep + wlist[start+1+skip]
else:
t = sep.join([wlist[start + i * (1+skip)] for i in range(qsize)])
output.append(t)
return output
|
8a4402b47d0a644f0a3f99df92e6071c1597ea6d
| 45,661 |
def create_system_dict(df):
"""
Reads a pandas dataFrame and creates a dictionary where the keys are the site ids and the values are a the list of
systems for each site.
:param df: pandas dataFrame with site and system information a `site` and a `system` column.
:return: dictionary with systems associated to each site.
"""
site_list = df['site'].unique().tolist()
ss_dict = {}
for site in site_list:
systems_in_site = df[df['site'] == site]['system'].values.tolist()
ss_dict[site] = systems_in_site
return site_list, ss_dict
|
843336cd4dfdb4dbc7580ae2c815724f0270bf10
| 45,663 |
def get_port_mtu(duthost, interface):
"""
Get MTU of port from interface name
Args:
duthost: DUT host object
interface: Full interface name
Returns: MTU
"""
out = ''
if '.' in interface:
out = duthost.show_and_parse("show subinterface status {}".format(interface))
return out[0]['mtu']
out = duthost.show_and_parse("show interface status {}".format(interface))
return out[0]['mtu']
|
f0b3cb81a16cb37b2e407d17876cd3e88b19b427
| 45,664 |
def binding_energy(proton_seq, affinities):
"""Calculate binding energy from proton affinities
Parameters
----------
proton_seq : ndarray
protonation state of residues
affinities : ndarray
proton affinities for residues
Returns
-------
binding energy : float
Binding energy in Joules
"""
return affinities[proton_seq.nonzero()[0]].sum()
|
23201ae7bca072f3b1d971e7e15ad4fd485eda79
| 45,666 |
def clean(s):
""" Remove white spaces from <s>. """
return s.strip(' \t\n\r\f\v')
|
65e16099090d4af8ab289ddd8e12321305fc70d0
| 45,669 |
from typing import Callable
def extract_name(callable: Callable) -> str:
""" Given a callable that could be either a class or a function, retrieve
its name at runtime for subsequent use
Args:
callable (Callable): Callable whose name is to be extracted
Return:
Name of callable (str)
"""
try:
return callable.__name__
except:
return type(callable).__class__.__name__
|
7b4a04856abd2601b26cf0623ac961bc86c9790c
| 45,670 |
def get_contributors(raw):
"""
Extract contributors.
Only contributors tagged as belonging
to any of the valid roles will be extracted.
@param raw: json object of a Libris edition
@type raw: dictionary
"""
valid_roles = ["author", "editor",
"translator", "illustrator"]
agents = {"author": [], "editor": [],
"translator": [], "illustrator": []}
contribution = raw["mainEntity"]["instanceOf"].get("contribution")
for agent in contribution:
raw_role = agent.get("role")
if not raw_role:
ag_role = "author"
else:
ag_role = agent["role"][0]["@id"].split("/")[-1]
if ag_role in valid_roles:
ag_id = agent["agent"].get("@id") or ""
ag_first = agent["agent"].get("givenName") or ""
ag_last = agent["agent"].get("familyName") or ""
ag_full = "{} {}".format(ag_first, ag_last)
agents[ag_role].append({"name": ag_full, "id": ag_id})
return agents
|
18e8b3737643e825b7e94a75603883086f5a37d1
| 45,672 |
def add_main_cat(df):
""" Takes a df and adds a column with the main category
input:
df (pd.DataFrame): dataframe to add column to, must contain "cat_id"
returns:
df (pd.DataFrame): dataframe with extracted main cat
"""
df["main_cat"] = df["cat_id"].astype(str).str.slice(0, 2)
return df
|
213e3c068adfba336c9610c208f46057ecf8b7ee
| 45,680 |
from typing import Sequence
def is_palindrome(sequence: Sequence) -> bool:
""" Returns whether a sequence is a palindrome """
return sequence[0:len(sequence) // 2] == sequence[-1:(len(sequence) - 1) // 2:-1]
|
cf60fa4198d29514f255ed5597187d9ece928626
| 45,681 |
def pytest_report_header(config):
"""Print a message in case the plugin is activated."""
if config.option.dependencies:
return 'Only tests affected by the changed files are being run.'
|
f1169bcc8747e4f64d4d607e7eef6199928f186b
| 45,684 |
def lower_first_char(string):
"""De-capitalize the first letter of a string.
Args:
string (str): The input string.
Returns:
str: The de-capitalized string.
.. note::
This function is not the exact opposite of the capitalize function of the
standard library. For example, capitalize('abC') returns Abc rather than AbC.
"""
if not string: # Added to handle case where s == None
return
else:
return string[0].lower() + string[1:]
|
053b23379ed504268c94194ff54e62b7bb112bfe
| 45,685 |
def transform_coord(coord, matrix):
"""
Transforms the given coordinate by the given matrix
:param coord: The coordinate to transform (tuple (x, y))
:param matrix: The matrix to transform by (3x3 numpy array)
:return: The transformed coordinate (tuple (x, y), components casted to ints)
"""
h0 = matrix[0, 0]
h1 = matrix[0, 1]
h2 = matrix[0, 2]
h3 = matrix[1, 0]
h4 = matrix[1, 1]
h5 = matrix[1, 2]
h6 = matrix[2, 0]
h7 = matrix[2, 1]
h8 = matrix[2, 2]
tx = (h0 * coord[0] + h1 * coord[1] + h2)
ty = (h3 * coord[0] + h4 * coord[1] + h5)
tz = (h6 * coord[0] + h7 * coord[1] + h8)
return int(tx/tz), int(ty/tz)
|
39b75a25fd47c47a8ad9ed27c5c52a901fdd6874
| 45,690 |
def naiveVarDrop(X, searchCols, tol=0.0001, standardize=False, asList=False,
print_=False):
"""
Drop columns based on which columns have variance below the threshold.
Parameters
----------
X : pandas dataframe
Feature (or design) matrix.
searchCols : list or list-like (str)
The columns to search. If None, use all columns. Default is None.
tol : float, optional
The threshold for variance to decide which columns to keep or drop.
The default is 0.0001.
asList : bool, optional
Return only the list of columns to be dropped. The default is False.
print_ : bool, optional
Print the columns to be dropped. The default is False.
Returns
-------
list or dataframe
Either list of columns to be dropped or dataframe with columns removed.
"""
cols_to_drop = []
if searchCols is None:
searchCols = list(X.columns)
for i in searchCols:
var = X.loc[:, i].var(ddof=1)
if var < tol:
cols_to_drop.append(i)
if print_:
print("Dropped " + str(len(cols_to_drop)) + " low-var Columns")
if asList:
return cols_to_drop
else:
return X.drop(cols_to_drop, axis=1)
|
9bee1417a6cfff3b398c612463c6f56a163db1ba
| 45,692 |
def selectCommands(commands, indexList, lineNumbers=False):
"""Prints commands indexed by the list passed."""
commandList = []
for index in indexList:
record = commands[index]['cmd']
if lineNumbers:
record = (index, record)
commandList.append(record)
return commandList
|
650632d0e168df8cbf5bc64aa79fd4b8fb746b44
| 45,695 |
def should_go_right(event: dict):
"""Returns true if the current text event implies a "right" button press to proceed."""
if event["text"].startswith("Review"):
return True
elif event["text"].startswith("Amount"):
return True
elif event["text"].startswith("Address"):
return True
elif event["text"].startswith("Confirm"):
return True
elif event["text"].startswith("Fees"):
return True
return False
|
c5c47f5e4f02b6e875e869201d6a266a819d3ba6
| 45,697 |
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
"""Return True if the values a and b are close to each other and False otherwise. (Clone from Python 3.5)
Args:
a: A float.
b: A float.
rel_tol: The relative tolerance – it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is
1e-09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.
abs_tol: The minimum absolute tolerance – useful for comparisons near zero. abs_tol must be at least zero.
Returns:
True if the values a and b are close to each other and False otherwise.
"""
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
|
270be278b3865f5faebdf1bb436daa7bec90fb9c
| 45,699 |
def get_user_identity(event):
"""Gets event identity from event."""
return event['detail'].get('userIdentity', {})
|
d90b47ad530ce05fd2e667c2e5499519ea00122a
| 45,700 |
import yaml
def read_yaml(infile, log=None) -> dict:
"""
Read YAML file and return a python dictionary
Args:
infile: path to the json file; can be hdfs path
Returns:
python dictionary
"""
if infile.startswith("hdfs"):
raise NotImplementedError
else:
return yaml.safe_load(open(infile, "r"))
|
9c0c2ce90841119d158a72966061db3a7fa9a36a
| 45,701 |
def distance_point(p1, p2):
"""
Returns the Euclidian distance between two points.
Retourne la distance euclidienne entre deux points.
@param p1 point 1
@param p2 point 2
@return distance
"""
d = 0
for a, b in zip(p1, p2):
d += (a - b) ** 2
return d ** 0.5
|
56cbebd2856e870e807fe6a4bd92b914f806d64e
| 45,704 |
def get_cloudines(input_json):
"""Return the cloudiness using a phrase description."""
clouds_val = int(input_json['clouds']['all'])
cloudines = ''
if 11 <= clouds_val < 25:
cloudines = 'Few clouds'
elif 25 <= clouds_val < 50:
cloudines = 'Scattered clouds'
elif 50 <= clouds_val < 85:
cloudines = 'Broken clouds'
elif 85 <= clouds_val <= 100:
cloudines = 'Overcast clouds'
return cloudines
|
2dc9a828e6b767504e2632d102e65c352695d7a7
| 45,707 |
def get_extension(t_path):
""" Get extension of the file
:param t_path: path or name of the file
:return: string with extension of the file or empty string if we failed
to get it
"""
path_parts = str.split(t_path, '.')
extension = path_parts[-1:][0]
extension = extension.lower()
return extension
|
70fa800714c1fbd71f3071ed4832a1cd96f1949f
| 45,708 |
from typing import Union
def strint(value: Union[int, str, float]) -> str:
"""
If the passed value is a number type, return the number as a string with no
decimal point or places.
Else just return the string.
"""
if type(value) in (int, float):
return str(int(value))
else:
return str(value)
|
271424978e0816d9e998221b18c86cc88c9adfb0
| 45,719 |
def batch_data(data, batch_size):
"""Given a list, batch that list into chunks of size batch_size
Args:
data (List): list to be batched
batch_size (int): size of each batch
Returns:
batches (List[List]): a list of lists, each inner list of size batch_size except possibly
the last one.
"""
batches = [data[i : i + batch_size] for i in range(0, len(data), batch_size)]
return batches
|
1404f67ff4a2e2515c555905e9b5ec5fdf560dd6
| 45,720 |
def parse_account(config, auth, account):
""" Breaks a [account:advertiser@profile] string into parts if supplied.
This function was created to accomodate supplying advertiser and profile
information
as a single token. It needs to be refactored as this approach is messy.
Possible variants include:
* [account:advertiser@profile]
* [account:advertiser]
* [account@profile]
Args:
* auth: (string) Either user or service.
* account: (string) A string represeting [account:advertiser@profile]
Returns:
* ( network_id, advertiser_ids, profile_id) after parsing the account token.
"""
network_id = account
advertiser_ids = None
profile_id = None
# if exists, get profile from end
try:
network_id, profile_id = network_id.split('@', 1)
except:
profile_id = None
# if exists, get avertiser from end
try:
network_id, advertiser_ids = network_id.split(':', 1)
except:
pass
# if network or advertiser, convert to integer
if network_id is not None:
network_id = int(network_id)
if advertiser_ids is not None:
advertiser_ids = [
int(advertiser_id.strip())
for advertiser_id in advertiser_ids.split(',')
]
return network_id, advertiser_ids
|
a1c00ebc9f03358d7864765bac5ad545497444ad
| 45,728 |
def get_intel_doc_label_item(intel_doc_label: dict) -> dict:
""" Gets the relevant fields from a given intel doc label.
:type intel_doc_label: ``dict``
:param intel_doc_label:
The intel doc label obtained from api call
:return: a dictionary containing only the relevant fields.
:rtype: ``dict``
"""
return {
'ID': intel_doc_label.get('id'),
'Name': intel_doc_label.get('name'),
'Description': intel_doc_label.get('description'),
'IndicatorCount': intel_doc_label.get('indicatorCount'),
'SignalCount': intel_doc_label.get('signalCount'),
'CreatedAt': intel_doc_label.get('createdAt'),
'UpdatedAt': intel_doc_label.get('updatedAt'),
}
|
578467798f08bfd0776aa285790dc95d4686a830
| 45,731 |
def Extensible(cls):
"""Returns a subclass of cls that has no __slots__ member.
This allows you to set arbitrary members in each instance, even if they
don't exist already in the class.
This is useful for making one-off Exporter() instances in tests,
for example.
Args:
cls: a class to inherit from.
Returns:
A new class derived from cls.
Example:
o = Extensible(object)
o.Foo = 5
"""
class Ext(cls):
pass
Ext.__name__ = 'Ext_' + cls.__name__
return Ext
|
ce579072a24652fa3195cbb809978bc21fef5c29
| 45,737 |
async def mock_successful_connection(*args, **kwargs):
"""Return a successful connection."""
return True
|
fc3801c8be6a98033c265a97de3bb413d0c249cc
| 45,739 |
import socket
import ipaddress
def _verify_hostname(host):
"""Verify a hostname is resolvable."""
try:
resolved = socket.getaddrinfo(host, None)[0][4][0]
ip = ipaddress.ip_address(resolved)
return ip
except (socket.gaierror, ValueError):
return False
|
d0b74fdcf7fabec0083cd5de295199077ad6e676
| 45,749 |
def is_gcs_path(path):
# type: (str) -> bool
"""Returns True if given path is GCS path, False otherwise."""
return path.strip().lower().startswith("gs://")
|
c6b8035d685264a206555abf219c67bb5e04d340
| 45,750 |
def read(file):
"""Read a $file to memory"""
with open(file, 'rb') as f:
buffer = f.read()
return buffer
|
09dcf131cb8a3899a02bb279bc49cd83e06f6df4
| 45,751 |
def load_w2v_vocab(fname):
"""Load vocabulary file generated by gensim as a dictionary.
Note that this does not correspond to the gensim vocabulary
object.
Parameters
----------
fname: string
Filename where the w2v model is stored.
Returns
-------
vocab: dict{str: int}
A dictionary containing the words as keys and their counts as
values.
"""
lst = []
with open(fname, 'r') as f:
for line in f:
word, count = line.split()
lst.append((word, int(count)))
vocab = dict(lst)
return vocab
|
a53c1f88ec6f67d5ad4173316ac4e4975bbd487f
| 45,752 |
import re
def slurp_word(s, idx):
"""Returns index boundaries of word adjacent to `idx` in `s`."""
alnum = r"[A-Za-z0-9_]"
start, end = idx, idx
while True:
if re.match(alnum, s[start - 1]):
start -= 1
else:
break
end = idx
while True:
if re.match(alnum, s[end]):
end += 1
else:
break
return start, end
|
0b04de59cc1a848fac02bf58081ec990c8aa245b
| 45,763 |
def get_user_rating_max(ratings,n=20):
"""Return the keys of users with at most ratings"""
return [key for key,value in ratings.iteritems() if len(value)<=n]
|
9b4ba9c0ee6e11d1d5ec14ac41b1b93f029d6db4
| 45,764 |
def strxor(str1, str2):
"""Xors 2 strings character by character.
"""
minlen = min(len(str1), len(str2))
ans = ""
for (c1, c2) in zip(str1[:minlen], str2[:minlen]):
ans += chr(ord(c1) ^ ord(c2))
return ans
|
05051bd6938726f4ce222ec01c063f53a43536cb
| 45,774 |
def string_from_source(source) :
"""Returns string like "CxiDs2.0:Cspad.0" from "Source('DetInfo(CxiDs2.0:Cspad.0)')" or "Source('DsaCsPad')"
"""
str_in_quots = str(source).split('"')[1]
str_split = str_in_quots.split('(')
return str_split[1].rstrip(')') if len(str_split)>1 else str_in_quots
|
741ea85cda2e197f6b882852f32f4df5e5338355
| 45,777 |
def make_values(repo_pkg, cur_ver, new_ver, branch, check_result):
"""
Make values for push_create_pr_issue
"""
values = {}
values["repo_pkg"] = repo_pkg
values["cur_version"] = cur_ver
values["new_version"] = new_ver
values["branch"] = branch
values["check_result"] = check_result
return values
|
38d5cbc983c57c04bbcf1efcddcc67cabb02b4fb
| 45,779 |
def get_coordinates_from_token(token, mod):
""" A function which takes a mod and a token, finds the token in the mod,
and then returns the coordinate (tuple) at which the token is found. If it
is not found, it returns None. """
for coordinates, token_in_mod in mod.items():
# No possibility of duplicate tokens. If found, return the token.
if token_in_mod == token:
return coordinates
return None
|
429e42a6439972d23bc54ac5108f196aa0ca93b7
| 45,780 |
import json
def failed_validation(*messages, **kwargs):
"""Return a validation object that looks like the add-on validator."""
upload = kwargs.pop('upload', None)
if upload is None or not upload.validation:
msgs = []
else:
msgs = json.loads(upload.validation)['messages']
for msg in messages:
msgs.append({'type': 'error', 'message': msg, 'tier': 1})
return json.dumps({'errors': sum(1 for m in msgs if m['type'] == 'error'),
'success': False,
'messages': msgs,
'prelim': True})
|
fc9b54d5ef480ccaf0943f75042b3619a56a0924
| 45,781 |
def make_unique(arr):
"""Choose only the unique elements in the array"""
return list(set(list(arr)))
|
e1ef04f55f1c132e54d3db4c7118469979303876
| 45,784 |
def ensure_list(obj, tuple2list=False):
"""
Return a list whatever the input object is.
Examples
--------
>>> ensure_list(list("abc"))
['a', 'b', 'c']
>>> ensure_list("abc")
['abc']
>>> ensure_list(tuple("abc"))
[('a', 'b', 'c')]
>>> ensure_list(tuple("abc"), tuple2list=True)
['a', 'b', 'c']
>>> ensure_list(None)
[]
>>> ensure_list(5.0)
[5.0]
"""
if obj is None:
return []
if isinstance(obj, list):
return obj
elif tuple2list and isinstance(obj, tuple):
return list(obj)
return [obj]
|
9f14560525f39951e3296b606c232d3fdb806f07
| 45,787 |
def env_chk(val, fw_spec, strict=True, default=None):
"""
env_chk() is a way to set different values for a property depending
on the worker machine. For example, you might have slightly different
executable names or scratch directories on different machines.
env_chk() works using the principles of the FWorker env in FireWorks.
This helper method translates string "val" that looks like this:
">>ENV_KEY<<"
to the contents of:
fw_spec["_fw_env"][ENV_KEY]
Otherwise, the string "val" is interpreted literally and passed-through as is.
The fw_spec["_fw_env"] is in turn set by the FWorker. For more details,
see: https://materialsproject.github.io/fireworks/worker_tutorial.html
Since the fw_env can be set differently for each FireWorker, one can
use this method to translate a single "val" into multiple possibilities,
thus achieving different behavior on different machines.
Args:
val: any value, with ">><<" notation reserved for special env lookup values
fw_spec: (dict) fw_spec where one can find the _fw_env keys
strict (bool): if True, errors if env format (>><<) specified but cannot be found in fw_spec
default: if val is None or env cannot be found in non-strict mode,
return default
"""
if val is None:
return default
if isinstance(val, str) and val.startswith(">>") and val.endswith("<<"):
if strict:
return fw_spec["_fw_env"][val[2:-2]]
return fw_spec.get("_fw_env", {}).get(val[2:-2], default)
return val
|
b33218f924064beda1dc0c8f922d4577bf4bd307
| 45,791 |
def _clean_subpath(subpath, delim="/"):
"""
Add / to the subpath if needed to avoid partial s-exon matching.
"""
first = subpath[0]
last = subpath[len(subpath)-1]
cleaned_subpath = ""
if first != "s": # start
cleaned_subpath += delim
cleaned_subpath += subpath
if last != "p": # stop
cleaned_subpath += delim
return cleaned_subpath
|
2195bfea9f798a88e688de62eafa75e1519ab647
| 45,792 |
def preconvert_str(value, name, lower_limit, upper_limit):
"""
Converts the given `value` to an acceptable string by the wrapper.
Parameters
----------
value : `str`
The string to convert,
name : `str`
The name of the value.
lower_limit : `int`
The minimal length of the string.
upper_limit : `int`
The maximal length of the string.
Returns
-------
value : `str`
Raises
------
TypeError
If `value` was not passed as `str` instance.
ValueError
If the `value`'s length is less than the given `lower_limit` or is higher than the given than the given
`upper_limit`.
"""
if type(value) is str:
pass
elif isinstance(value, str):
value = str(value)
else:
raise TypeError(f'`{name}` can be `str` instance, got {value.__class__.__name__}.')
length = len(value)
if (length != 0) and (length < lower_limit or length > upper_limit):
raise ValueError(f'`{name}` can be between length {lower_limit} and {upper_limit}, got {length!r}; {value!r}.')
return value
|
226d9109b9056057f0998634d10f3f5801a2db09
| 45,793 |
import logging
import torch
def restore_checkpoint(model, optimizer, checkpoint_file, device):
"""
Restores model and optimizer from a checkpoint file and returns checkpoint information.
Has side effect of loading the state_dict for model and optimizer (i.e. modifies the instances).
:param model: [class], torch model instance
:param optimizer: [class], torch optimizer instance
:param checkpoint_file: string, full file path
:param device: [class], torch device instance
:return: Tuple of the checkpoint values
"""
assert checkpoint_file
logging.info("** ** * Restore from checkpoint: %s" % checkpoint_file)
checkpoint_state = torch.load(checkpoint_file, map_location=device)
model.load_state_dict(checkpoint_state["model_state_dict"])
optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"])
last_epoch = checkpoint_state["epoch"]
global_step = checkpoint_state["global_step"]
logging.info(" RESTORED AT epoch:%d-%s, global_step:%d" % (last_epoch, global_step))
logging.info("** ** * Model restored! ** ** * ")
# model.train() # Do this in calling code for now, maybe want model.eval() there instead
return last_epoch, global_step
|
8a620531bded9000c6f030d45d65df27a261a67a
| 45,795 |
def import_tnmr_pars(path):
"""
Import parameter fields of tnmr data
Args:
path (str) : Path to .tnt file
Returns:
params (dict) : dictionary of parameter fields and values
"""
params = {}
with open(path, "rb") as f:
params["version"] = f.read(8).decode("utf-8")
return params
|
19a7043fb261d7d909d453f7ee2f7518a26a7ec7
| 45,801 |
from typing import Optional
def _extract_sequence_identifier(description: str) -> Optional[str]:
"""Extracts sequence identifier from description. Returns None if no match."""
split_description = description.split()
if split_description:
return split_description[0].partition('/')[0]
else:
return None
|
b6f927daf3726a8a933eb47d066ed2aeee82fc70
| 45,812 |
def render_fobi_forms_list(context, queryset, *args, **kwargs):
"""Render the list of fobi forms.
:syntax:
{% render_fobi_forms_list [queryset] [show_edit_link] \
[show_delete_link] \
[show_export_link] %}
:example:
{% render_fobi_forms_list queryset show_edit_link=True \
show_delete_link=False \
show_export_link=False %}
"""
request = context.get('request', None)
show_edit_link = kwargs.get('edit_link', False)
show_delete_link = kwargs.get('delete_link', False)
show_export_link = kwargs.get('export_link', False)
return {
'show_custom_actions': (
show_edit_link or show_delete_link or show_export_link
),
'show_edit_link': show_edit_link,
'show_delete_link': show_delete_link,
'show_export_link': show_export_link,
}
|
0e2df881729ec6bf0cd2a9798a67de2c2973526c
| 45,815 |
def cents_to_hz(F_cent, F_ref=55.0):
"""Converts frequency in cents to Hz
Notebook: C8/C8S2_FundFreqTracking.ipynb
Args:
F_cent (float or np.ndarray): Frequency in cents
F_ref (float): Reference frequency in Hz (Default value = 55.0)
Returns:
F (float or np.ndarray): Frequency in Hz
"""
F = F_ref * 2 ** (F_cent / 1200)
return F
|
c73c67bb931d07743ee3b53a662485924b0c3f56
| 45,816 |
def get_continuous_column_by_class(dataset):
"""Separates continuous column by binary class"""
# Separate continuous column by class
continuous_column = dataset.columns_that_are('continuous')[0]
continuous_true = []
continuous_false = []
for cont_value, class_value in zip(continuous_column, dataset.cls):
if class_value:
continuous_true.append(cont_value)
else:
continuous_false.append(cont_value)
continuous_column_by_class = [continuous_true, continuous_false]
return continuous_column_by_class
|
71c52e3703f6e9eea60c6dbdba839ef45365b3fa
| 45,817 |
def get_mac_s(output: bytes) -> bytes:
"""Support function to get the 64-bit resynchronisation authentication code
(MAC-S) from OUT1, the output of 3GPP f1* function.
:param output: OUT1
:returns: OUT1[64] .. OUT1[127]
"""
edge = 8 # = ceil(63/8)
return output[edge:]
|
c5f1d2d14819e9a9bf660aeb82dd24b8111263b5
| 45,823 |
def custom_sort(dictionary, sort_top_labels, sort_bottom_labels):
""" Given a dictionary in the form of
{'<a_label>': {
'label': '<a_label>'
'value': '<a_value>'
},
...
}
and two lists (for top and bottom)
['<a_label>', '<c_label>', '<b_label>', ...]
return a list of the dictonaries values ordered
<all top items found in dictionary, in the given order>
<others>
<all bottom items found in dictionary, in the given order>
"""
ret = []
for l in sort_top_labels:
if l in dictionary:
ret.append(dictionary[l])
for label, facet in dictionary.items():
if label not in sort_top_labels + sort_bottom_labels:
ret.append(facet)
for l in sort_bottom_labels:
if l in dictionary:
ret.append(dictionary[l])
return ret
|
41d8b12fcf397e416ba9c2adb5bd8f2cafee36b1
| 45,824 |
def reconstruct_path(current, came_from):
"""
Reconstruct path using last node and dictionary that maps each node on path
to its predecessor.
Args:
current (int): Last node in discovered path
came_from (dict): Dictionary mapping nodes on path to their predecessors
Retuns:
(tuple): Path in the form of a list and the same path encoded in an edge list
"""
# Initialize path and add last found node.
path = [current]
# Reconstruct.
while current in came_from:
current = came_from[current]
path.insert(0, current)
# Construct edgelist.
edgelist = [(path[idx], path[idx+1]) for idx in range(len(path)-1)]
# Return path and edge list.
return path, edgelist
|
43d05b50987d3022f748d40b76942de38f866ac5
| 45,826 |
def gcd_steps(a, b):
""" Return the number of steps needed to calculate GCD(a, b)."""
# GCD(a, b) = GCD(b, a mod b).
steps = 0
while b != 0:
steps += 1
# Calculate the remainder.
remainder = a % b
# Calculate GCD(b, remainder).
a = b
b = remainder
# GCD(a, 0) is a.
#return a
return steps
|
768d52c795c8c8eb20f4adfaf26f10da12962534
| 45,827 |
import math
def avp_from_temperature_min(temperature_min):
"""
Estimate actual vapour pressure (*ea*) from minimum temperature.
This method is to be used where humidity data are lacking or are of
questionable quality. The method assumes that the dewpoint temperature
is approximately equal to the minimum temperature (*temperature_min*), i.e. the
air is saturated with water vapour at *temperature_min*.
**Note**: This assumption may not hold in arid/semi-arid areas.
In these areas it may be better to subtract 2 deg C from the
minimum temperature (see Annex 6 in FAO paper).
Based on equation 48 in Allen et al (1998).
:param temperature_min: Daily minimum temperature [deg C]
:return: Actual vapour pressure [kPa]
:rtype: float
"""
return 0.611 * math.exp((17.27 * temperature_min) / (temperature_min + 237.3))
|
2eeeaac62d228c6fb05ff583a5e539ab3bafffe4
| 45,829 |
def make_mock_video_ids(num_videos):
"""Makes a list of video ids used for unit tests.
num_videos: an integer; the number of mock video ids to make.
Returns: a list of strings of that can be used as video ids for unit tests.
"""
video_ids = []
for video_num in range(num_videos):
video_ids.append(f"video{video_num}")
return video_ids
|
14ec177575d4a11aa44a0e42e70cfd5791e38ad2
| 45,832 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.