content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import json
def get_metadata(bf):
""" Return the metadata of a BIDSFile
Parameters
----------
bf : BIDSFile object
Returns
-------
Dictionnary containing the metadata
"""
filename = bf.path.replace(
'.' + bf.get_entities()['extension'], '')
with open(filename + '.json', 'r') as handle:
return json.load(handle)
|
6d7503bd1da892a0e8d06c25fd95fb6b3fa51d95
| 45,129 |
import random
def random_message(length):
""" Generates a block of random bytes of a user-specified length. """
return bytes([random.randint(0, 255) for x in range(length)])
|
569b98033307bab548dbf636e2be12a2e4e846e4
| 45,130 |
import math
def df2idf(docfreq, totaldocs, log_base=2.0, add=0.0):
"""
Compute default inverse-document-frequency for a term with document frequency `doc_freq`::
idf = add + log(totaldocs / doc_freq)
"""
return add + math.log(1.0 * totaldocs / docfreq, log_base)
|
983b31e2b15471091f482445f624c2d412b20df7
| 45,131 |
def build_class(names):
""" Format ZLabels class file.
>>> names = ['Label.AColleague', 'Label.ZipPostalCode']
>>> output = build_class(names)
>>> print output
@isTest
private class ZLabels {
private static List<String> labels = new List<String> {
Label.AColleague,
Label.ZipPostalCode
};
}
<BLANKLINE>
"""
header = '@isTest\nprivate class ZLabels {\n private static List<String> labels = new List<String> {\n'
footer = ' };\n}\n'
content = ''.join(' ' + n + ',' + '\n' for n in names)
content = content[:-2] + '\n'
return header + content + footer
|
1b8c51fc27567861d70556b978f95b514d0163b4
| 45,138 |
def sqlite_db_tables(c=None):
"""
List the tables of a sqlite database.
How do I list all tables/indices contained in an SQLite database :
https://www.sqlite.org/faq.html#q7
"""
db_tables = []
if c is not None:
c.execute('select name from sqlite_master where type = "table" and name NOT LIKE "%sqlite_%"')
rows = c.fetchall()
for r in rows:
db_tables.append(r['name'])
return db_tables
|
e0b98eccbbe0a197d00385d115208ac3bf7cf31c
| 45,140 |
def parse_x12_major_version(x12_implementation_version) -> str:
"""
Parses the x12 major version from an implementation version string.
If the version is invalid, an empty string is returned.
Example:
x = parse_x12_major_version("005010X279A1")
print(x)
# prints 5010
x = parse_x12_major_version("00501")
print(x)
# prints ""
:param x12_implementation_version: The X12 implementation version typically conveyed in ST03
:returns: The x12 major version or an empty string
"""
if x12_implementation_version is None or len(x12_implementation_version) < 6:
return ""
return x12_implementation_version[2:6]
|
ea7163825ada4d5453ca9e7dcbf915009f41f236
| 45,150 |
import re
def generateTestKey(test_name):
"""
Generate a test 'key' for a given test name.
This must not have illegal chars as it will be used for dict lookup in a template.
Tests must be named such that they will have unique keys.
"""
key = test_name.strip().lower()
key = key.replace(" ", "")
# Remove any characters that cannot be used to represent a variable
key = re.sub(r'[^a-zA-Z0-9]', '', key)
return key
|
52fe95fa7f1625f9a01d8e119efdce4231fc5d76
| 45,151 |
def deltawords(num, arg):
"""An adverb to come after the word 'improved' or 'slipped'"""
delta = abs(num - arg)
# We only pick out changes over 10%; over 30% in 9 months is unheard of.
if delta == 0:
word = "not at all"
elif delta < 10:
word = "slightly"
elif delta < 20:
word = "moderately"
elif delta < 30:
word = "considerably"
else:
word = "massively"
return word
|
354fd7f2f5e029cbbe6d1d0160fcf6c26cf4acab
| 45,154 |
def is_alt(chrom):
"""
check if chromosome is an ALT
"""
return chrom.endswith("_alt")
|
88a61db7ca7cbb4fe6533f7af8d625674d336232
| 45,155 |
def inConvergenceCorridor(d_struct, d_gc, BS_d_struct, BS_d_gc):
"""
Check if a solutions qualities are within the convergence corridor
"""
struct_var = ((BS_d_struct / float(4)) + 3) * 4
gc_var = (BS_d_gc + 1 / float(100) * 5) + BS_d_gc + 1
if d_struct <= struct_var and d_gc <= gc_var:
return True
else:
return False
|
a86bd86ad259c9695fa5c4983a4715a39f7fd53b
| 45,158 |
def find_root(cfg):
"""
Find a root node for the given cfg
"""
toVisit = set()
for adj in cfg['adjacency']:
for n in adj:
toVisit.add(n['id'])
for i in range(len(cfg['nodes'])):
if cfg['nodes'][i]['id'] not in toVisit:
return i
return 0
|
54436087cd5793771d457d349f1362e7bc6052f5
| 45,160 |
def basis(u, cumul_var, p = 0.5):
"""Return the minimum number of basis vectors
from matrix U such that they account for at least p percent
of total variance.
Hint: Do the singular values really represent the variance?
Args:
u: (M, M) numpy array containing principal components.
For example, i'th vector is u[:, i]
cumul_var: (N, ) numpy array, variance along the principal components.
Returns:
v: (M, D) numpy array, contains M principal components from N
containing at most p (percentile) of the variance.
"""
#
# You code here
#
d = 0
var_cm = 0
# make sure d is at least 1
p = max(p, 1e-8)
while var_cm / cumul_var[-1] < p and d < len(cumul_var):
var_cm = cumul_var[d]
d += 1
v = u[:, :d]
return v
|
7c25674bddc0f6a9156ed79a6e26dab4b09b3112
| 45,162 |
def get_average(pixels):
"""
Given a list of pixels, finds the average red, blue, and green values
Input:
pixels (List[Pixel]): list of pixels to be averaged
Returns:
rgb (List[int]): list of average red, green, blue values across pixels respectively
Assumes you are returning in the order: [red, green, blue]
"""
avg_red = 0
avg_green = 0
avg_blue = 0
# 在pixels list上一個個找過去,獲得它的rgb值
for i in range(len(pixels)):
avg_red += pixels[i].red
avg_green += pixels[i].green
avg_blue += pixels[i].blue
# 獲得平均數
avg_red /= len(pixels)
avg_green /= len(pixels)
avg_blue /= len(pixels)
rgb_list = [int(avg_red), int(avg_green), int(avg_blue)]
return rgb_list
|
a20c875db1c99e82c449cef0dadc6df138f6f556
| 45,163 |
def str2_bool(v):
"""
This function converts a string to bool if this is the case.
If the value received is of type bool, it is just returned.
If it is a string and has one of these values "yes", "true", "t", "1"
regardless of whether it is uppercase or not, it will return a bool with a true value.
"""
if type(v) is bool:
return v
return v.lower() in ("yes", "true", "t", "1")
|
bfd12b9983b6da4039f76127c1b7fbb9aa0cb841
| 45,176 |
def process_issue_results(data):
"""Process the data returned by the issues GraphQL request.
Args:
data: The data returned
Returns:
issues: A list of dicts; each dict is the data for some of
the results
"""
edges = data.get("data").get("repository").get("issues").get("edges")
issues = []
for e in edges:
issues.append(e["node"])
return issues
|
42a9aae67df7dc824c495983e63b88163c269c36
| 45,177 |
import io
def remove_multiple_newlines_in_txt(txt: str) -> str:
""" This function will remove multiple, sequential newlines in text (str) data.
:param txt: a str containing the text to be cleaned.
:return: a str containing the text with multiple, sequential newlines removed.
"""
clean_txt = ''
# convert the text string into a buffer so that we can read lines.
txt_buffer = io.StringIO(txt)
last_line = True # initialize to True so that on our first pass through the loop we'll get the first line.
next_line = txt_buffer.readline()
while next_line:
stripped_next_line = next_line.strip()
# was our previous line also a new line?
if last_line: # strings in Python are "falsey" so '' will not pass.
# no, was not a newline... add the current line to our cleaned text.
clean_txt += next_line
else:
# yes, our previous line was a newline... is our current?
if stripped_next_line:
# must have content... write it out.
clean_txt += next_line
# set last_line to our current line (stripped version) and then grab the next line.
last_line = stripped_next_line
next_line = txt_buffer.readline()
return clean_txt
|
9b1be808c4253b0f2b58b1985b10417a65b7cdeb
| 45,184 |
import importlib
def _import_class(cls: str):
"""Take a string FQP and return the imported class or identifier
clas is of the form "package.module.klass".
"""
mod, name = cls.rsplit(".", maxsplit=1)
module = importlib.import_module(mod)
return getattr(module, name)
|
b2b3cddf49b88f99b35c6720d12d96dfa007441c
| 45,196 |
def check_var_constraints(var_constraints, rule_walks):
"""
Check variable constraints of the rule.
Parameters:
var_constraints (list): variable constraints from the rule
rule_walks (pd.DataFrame): all walks matching the rule
Returns:
rule_walks (pd.DataFrame): all walks matching the rule including the variable constraints
"""
for const in var_constraints:
for i in range(len(const) - 1):
rule_walks = rule_walks[
rule_walks["entity_" + str(const[i])]
== rule_walks["entity_" + str(const[i + 1])]
]
return rule_walks
|
b379526ee6a288b2a7de1ca224edf19be698acc9
| 45,221 |
from typing import Iterator
from typing import Tuple
from typing import Any
def _duplicate_avoiding_dict(pairs: Iterator[Tuple[Any, Any]]):
"""
The default output_type of CollectionParser.delimited_pairwise. Returns a dict from key-value pairs while
ensuring there are no duplicate keys.
"""
ret = {}
for k, v in pairs:
if k in ret:
raise ValueError(f'duplicate key {k}')
ret[k] = v
return ret
|
5be688e4e509997c4cf10403d7b7599b07cf83e5
| 45,222 |
def flatten_tree(tree: dict, full: bool = False) -> dict:
"""
Flatten an execution tree to make it easier to read.
Task trees are often a single node nested several levels deep. These trees may be collapsed
into a list. The execution order is the same, but it's easier for a human to read.
Before:
- foo
- bar
- xoo
After:
- xoo
- bar
- foo
Before:
- foo
- xar
- bar
- xoo
After:
- foo
- xar
- xoo
- bar
:param tree: Tree to flatten
:param full: Flatten tree into single list
:return: flattened task list
"""
def flatten_node(node: dict) -> list:
"""
Flatten a single node. Always return a list for consistency, even when returning a single
node.
:param node:
:param parent: parent task list to collapse into
:return: flattened node
"""
node = node.copy()
num_dependencies = len(node["dependencies"])
if num_dependencies == 0:
# no dependencies: nothing to flatten, return as-is
return [node]
elif full or num_dependencies == 1:
# flatten dependencies: flatten into single list that includes parent & child
flattened = []
for dependency in node["dependencies"]:
flattened_child = flatten_node(dependency)
flattened.extend(flattened_child)
# clear dependencies, since they are now siblings
# this node is added last since it runs after dependencies
node["dependencies"] = []
flattened.append(node)
return flattened
else:
# multiple dependencies: do not flatten into parent.
#
# Any dependencies that are flattened need to be merged with other dependencies.
# Dependency nodes should either be a single node, or a list of nodes
dependencies = []
for dependency in node["dependencies"]:
flattened = flatten_node(dependency)
dependencies.extend(flattened)
node["dependencies"] = dependencies
return [node]
root = flatten_node(tree)
if len(root) > 1:
# if root's dependencies were flattened into it, then the returned list will have all of
# those dependencies. Create a new root node to contain them all. This keeps the structure
# consistent-ish for downstream consumers. They still have to special case this node, but
# it should be a little simpler since all nodes are of a similar shape
return {"name": None, "dependencies": root}
else:
# a single node, unpack it and return as root.
return root[0]
|
77b133b80d70256643e22d1b778c1bdecb00badf
| 45,232 |
import pathlib
def mzcompose_location(mz_root: str) -> pathlib.Path:
"""Return the absolute path to mzcompose.
MZ_ROOT is expected to be set via pyactivate.
"""
return pathlib.Path(mz_root, "bin", "mzcompose")
|
80de24e6d4ea4bde9e846b2f7e942ed64a0d0e3f
| 45,234 |
from typing import Dict
from typing import Tuple
def apply(dfg: Dict[Tuple[str, str], int]) -> Dict[Tuple[str, str], float]:
"""
Computes a causal graph based on a directly follows graph according to the heuristics miner
Parameters
----------
dfg: :class:`dict` directly follows relation, should be a dict of the form (activity,activity) -> num of occ.
Returns
-------
:return: dictionary containing all causal relations as keys (with value inbetween -1 and 1 indicating that
how strong it holds)
"""
causal_heur = {}
for (f, t) in dfg:
if (f, t) not in causal_heur:
rev = dfg[(t, f)] if (t, f) in dfg else 0
causal_heur[(f, t)] = float((dfg[(f, t)] - rev) / (dfg[(f, t)] + rev + 1))
causal_heur[(t, f)] = -1 * causal_heur[(f, t)]
return causal_heur
|
c022aa8da1d5436f62b000619959a14db75672b2
| 45,235 |
def center(x, y, canvas_w, canvas_h, object_w, object_h):
""" Returns a positional tuple that will centre a surface on another surface. """
# Do some math and return a positional tuple for use in the outer scope
return x + canvas_w // 2 - object_w // 2, y + canvas_h // 2 - object_h // 2
|
91603a33d381b8de5074e7b522e257c2b20e177b
| 45,237 |
def shape_to_strides(shape):
""" Constructs strides from shape (for objects with no special strides). """
strides = []
curstride = 1
for s in reversed(shape):
strides.append(curstride)
curstride *= s
return list(reversed(strides))
|
8bea7683eeff0cf4f8c528aa59058cb19ff48d7c
| 45,240 |
def is_segmentable(partic_id):
"""
A function that returns True if the participant's interview clip is not
in the manually identified set of troubled clips. The clips below were
not segmentable do to excessive static, proximity to the virtual
interviewer, volume levels, etc.
"""
troubled = set(['P300', 'P305', 'P306', 'P308', 'P315', 'P316', 'P343',
'P354', 'P362', 'P375', 'P378', 'P381', 'P382', 'P385',
'P387', 'P388', 'P390', 'P392', 'P393', 'P395', 'P408',
'P413', 'P421', 'P438', 'P473', 'P476', 'P479', 'P490',
'P492'])
return partic_id not in troubled
|
58859f155d315311f353d31df4dcee47bd21ceb6
| 45,242 |
def quote(env, args):
"""Returns its argument; stops evaluation:
(quote (1 2 3)) = (1 2 3)
"""
if len(args) > 1:
raise ValueError(
"Function quote expectes one argument, got: '{}'"
.format(args)
)
else:
return args.car()
|
4b652a61b535dc36cd5449ad609c07aac82e4615
| 45,243 |
def int_to_bytes(num, lens):
"""
int转bytes
:param num: 整数
:param lens: 目标bytes的字节长度
:return: bytes类型
"""
int_bytes = int(num).to_bytes(lens, byteorder='big')
return int_bytes
|
2dee2d30ba5fb93cd9f8b74a0dc16e9c0ca20dad
| 45,245 |
import select
def read_ready(*read_fds, timeout=None):
"""Returns a list of file descriptors that are ready to be read.
Args:
*read_fds (int): Integers that refer to the file descriptors.
timeout (float): A timeout before returning an empty list if no file
descriptor is ready. None waits until at least one file descriptor
is ready.
"""
return [] if not read_fds else select.select(read_fds, [], [], timeout)[0]
|
ac0005928ca836c08f5064f34bb7093c695e2220
| 45,246 |
def solar_geometric_mean_longitude(julian_century):
"""Returns the Solar Geometric Mean with Julian Century, julian_century."""
solar_geometric_mean_longitude = (
280.46646 + julian_century * (36000.76983 + julian_century * 0.0003032)
) % 360
return solar_geometric_mean_longitude
|
ef414d97cf620be1a367e3b3dc2b8ba8c7aa5a68
| 45,247 |
import logging
def get_logger(name, level, fmt=None):
"""
Get logger from logging with given name, level and format without
setting logging basicConfig. For setting basicConfig in paddle
will disable basicConfig setting after import paddle.
Args:
name (str): The logger name.
level (logging.LEVEL): The base level of the logger
fmt (str): Format of logger output
Returns:
logging.Logger: logging logger with given settings
Examples:
.. code-block:: python
logger = log_helper.get_logger(__name__, logging.INFO,
fmt='%(asctime)s-%(levelname)s: %(message)s')
"""
logger = logging.getLogger(name)
logger.setLevel(level)
handler = logging.StreamHandler()
if fmt:
formatter = logging.Formatter(fmt=fmt)
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
|
ef8bc7864f0369b95dd7d08c4ef40cd5916a7d3a
| 45,248 |
from typing import List
def ks_filter_ascending(features: List[dict]) -> List[dict]:
"""
Filter out ascending path/rows from a STAC query
"""
return [f for f in features
if int(f['properties']['landsat:wrs_path']) < 100
and int(f['properties']['landsat:wrs_row']) < 100]
|
e55b80ee10cdc786d8418836532ca1cdfe7adfda
| 45,250 |
import json
def get_ignore_info(request):
"""Extract a dict of residues to ignore from the post request"""
ignore_dict = request.POST.get("ignore")
return json.loads(ignore_dict)
|
a200378b959b4d5b5b560df6e4d101909c086894
| 45,253 |
def export(varname):
"""Returns "export varname={formated value}\\n" """
var = str(globals()[varname])
frmted_var = var.strip("'\"").replace("\"", "\\\"").replace(r"\n", r"\\n")
return f"export {varname}=\"{frmted_var}\"\n"
|
0c0e0d09cfbc8784fc4ce7e265b5be4e534dc4ff
| 45,254 |
import secrets
def _make_token(num_bytes=16):
"""
Creates a cryptographically-secure, URL-safe string (for Python 3.6+)
"""
return secrets.token_urlsafe(num_bytes)
|
6b23ff243380619d92a0e36da14fc1b5a64ca519
| 45,255 |
def properties_to_dict(filepath):
"""
Convert Java .properties file to a dict
Only include non-commented lines
"""
out = {}
with open(filepath) as prop_file:
for line in prop_file.readlines():
line = line.strip()
if line and (not line.startswith('#')):
k, v = line.split('=')
out[k.strip()] = v.strip()
return out
|
d425bfa4a3e3d10b8a3625232d55a098b914db03
| 45,257 |
def assert_equals(source_dict, expected_dict):
"""
Check equality with expected values in dictionary keys.
Args:
- source_dict (dict): the dict containing the keys/values that should
conform to expected values
- expected_dict (dict): the dict containing keys of the `source_dict`, with
expected values of those keys as values
Returns:
list: empty list if all checks succeeded, list of error message str if
some checks failed
"""
error_tplt = "Expected value '{}' for key '{}', got '{}'"
errors = [
error_tplt.format(value, key, source_dict.get(key))
for key, value in expected_dict.items()
if source_dict.get(key) != value
]
return errors
|
884d3bbb46d32f52fc758bffd8e7f4787ceb4b5f
| 45,269 |
def is_end_of_file(empty_line_count):
"""
Checks whether reading of file reaches bottom of file
"""
return empty_line_count > 5
|
c6ba5121180c7bb10beed460c10ed285e7aedecb
| 45,271 |
def approx_pretty_size(total_bytes) -> str:
"""
Return a humane and pretty size approximation.
This looks silly bellow 1KB but I'm OK with that.
Don't call this with negative total_bytes or your pet hamster will go bald.
>>> approx_pretty_size(50)
'1KB'
>>> approx_pretty_size(2000)
'2KB'
>>> approx_pretty_size(2048)
'2KB'
>>> approx_pretty_size(3000000)
'3MB'
>>> approx_pretty_size(4000000000)
'4GB'
>>> approx_pretty_size(-314)
Traceback (most recent call last):
...
ValueError: total_bytes may not be negative
"""
if total_bytes < 0:
raise ValueError("total_bytes may not be negative")
for scale, _unit in ((1024 * 1024 * 1024, "GB"), (1024 * 1024, "MB"), (1024, "KB")):
div, rem = divmod(total_bytes, scale)
if div > 0:
if rem > 0:
div += 1 # always round up
break
else:
div, _unit = 1, "KB"
return f"{div:d}{_unit}"
|
dc9a15fed28e0bb9d5ca9d51d2f15a10887c70ea
| 45,275 |
import string
def prettify_permission_name(perm_name: str) -> str:
"""Takes a internal D.py permission name (such as send_tts_messages) and converts it to a prettified form suitable for showing to users (send_tts_messages -> Send TTS Messages)"""
pretty_perm_name = string.capwords(f"{perm_name}".replace('_', ' ')) # Capitalize the permission names and replace underlines with spaces.
pretty_perm_name = "Send TTS Messages" if pretty_perm_name == "Send Tts Messages" else pretty_perm_name # Mak sure that we capitalize the TTS acronym properly.
return pretty_perm_name
|
fea3a27a9f3a9f1c80641b571705a3d43a4678d3
| 45,283 |
def c_to_f(temp):
"""
Converts Celsius to Fahrenheit.
"""
return temp * 9/5 + 32
|
49071c9f52b47e3ae2d03133d68e63071ac8eb00
| 45,284 |
def prio_dscp_map(duthosts, rand_one_dut_hostname):
"""
This fixture reads the QOS parameters from SONiC DUT, and creates
priority Vs. DSCP priority port map
Args:
duthosts (pytest fixture) : list of DUTs
rand_one_dut_hostname (pytest fixture): DUT hostname
Returns:
Priority vs. DSCP map (dictionary, key = priority).
Example: {0: [0], 1: [1], 2: [2], 3: [3], 4: [4] ....}
"""
duthost = duthosts[rand_one_dut_hostname]
config_facts = duthost.config_facts(host=duthost.hostname,
source="running")['ansible_facts']
if "DSCP_TO_TC_MAP" not in config_facts.keys():
return None
dscp_to_tc_map_lists = config_facts["DSCP_TO_TC_MAP"]
if len(dscp_to_tc_map_lists) != 1:
return None
profile = dscp_to_tc_map_lists.keys()[0]
dscp_to_tc_map = dscp_to_tc_map_lists[profile]
result = {}
for dscp in dscp_to_tc_map:
tc = int(dscp_to_tc_map[dscp])
result.setdefault(tc, []).append(int(dscp))
return result
|
9538063704fc0a09599f7a8577781d0900e92404
| 45,289 |
def lerp(value1, value2, amt):
"""Calculates a number between two numbers at a specific increment.
The amt parameter is the amount to interpolate between the two values
where 0.0 equal to the first point, 0.1 is very near the first point,
0.5 is half-way in between, etc"""
return value1 + amt * (value2 - value1)
|
b94f21d3c6f646102f74560c815a3304a741e391
| 45,290 |
def split_folds(X, y, fold_series, test_fold):
"""Take a dataset whose observations have been grouped into folds,
then perform a train-test split.
X, y: feature and target DataFrames.
fold_series: Series containing the fold numbers of the observations.
test_fold: Integer, the fold number that will be used as the test fold.
Returns: tuple of four DataFrames"""
if fold_series.dtype != "int64":
raise AttributeError("The fold list does not purely contain integers.")
test_mask = (fold_series == test_fold)
X_train = X.loc[~test_mask].copy()
y_train = y.loc[~test_mask].copy()
X_test = X.loc[test_mask].copy()
y_test = y.loc[test_mask].copy()
return X_train, X_test, y_train, y_test
|
38051e584c427ffe77273fbbcdd764b6fe432b2f
| 45,296 |
def ffs(x: int) -> int:
"""Find first set - returns the index, counting from 0 (from the right), of the
least significant set bit in `x`.
"""
return (x&-x).bit_length()-1
|
1d9fef75b58bba59e0ddb442115d1f5c62dd7844
| 45,298 |
def all_services(request):
"""Return all test services."""
return request.param
|
165df889ce0e2729aaed431fbdc1020b6d3cf034
| 45,305 |
def _reformat_mspass_error(
mserr, prefix_message, suffix_message="Some requested metrics may not be computed"
):
"""
Helper for below used to reformat a message from ccore functions that
throw a MsPASSError. Needed to produce rational messages from
different error metric calculations.
:param mserr: MsPASSError object caught with a try: except: block
:param prefix_message: string that becomes the first part of the revised
message posted.
:param suffix_message: string that becomes a third line of the revised
message posted. Note this string is always preceded by a newline so do not
put a newline in this arg unless you want a blank line.
:return: expand message string
"""
log_message = "FD_snr_estimator: error in computing an snr metric"
log_message += prefix_message
log_message += mserr.message
log_message += "\n"
log_message += suffix_message
return log_message
|
469755c1251e98ab1ab15708956e0d3bba048627
| 45,306 |
def get_largest_mol(mol_list):
"""
Given a list of rdkit mol objects, returns mol object containing the
largest num of atoms. If multiple containing largest num of atoms,
picks the first one
Args:
mol_list(list): a list of rdkit mol object.
Returns:
the largest mol.
"""
num_atoms_list = [len(m.GetAtoms()) for m in mol_list]
largest_mol_idx = num_atoms_list.index(max(num_atoms_list))
return mol_list[largest_mol_idx]
|
f8d2692c34c5a49ecdeb6c3f3c5345091651c182
| 45,309 |
def patternhost(pattern, user):
"""
Given a 'something-%s-example.org' format, return that with %s replaced
(once) by the username in question.
"""
return pattern % user
|
96127b71b701f2e112bced8fd7e299001bdefea7
| 45,311 |
def daylight_saving(m, wd, d):
"""
Assuming that DST start at last Sunday of March
DST end at last Sunday of October
Input:
m: month, wd: week day, d: day of month are int() type
month, week day and day of month count start from 1
Output:
1 if clock need to shift 1 hour forward
-1 if clock need to shift 1 hour backward
0 does not need to adjust clock
"""
if m == 3:
if wd == 7:
if 31 >= d > 24:
return 1
elif m == 10:
if wd == 7:
if 31 >= d > 24:
return -1
else:
return 0
|
e40f0c2539a3c06279a9ea200f0faed11c5ea50d
| 45,313 |
import importlib
def dynamic_load(module_or_member):
"""
Dynamically loads a class or member of a class.
If ``module_or_member`` is something like ``"a.b.c"``, will perform ``from a.b import c``.
If ``module_or_member`` is something like ``"a"`` will perform ``import a``
:param module_or_member: the name of a module or member of a module to import.
:return: the returned entity, be it a module or member of a module.
"""
parts = module_or_member.split(".")
if len(parts) > 1:
name_to_import = parts[-1]
module_to_import = ".".join(parts[:-1])
else:
name_to_import = None
module_to_import = module_or_member
module = importlib.import_module(module_to_import)
if name_to_import:
to_return = getattr(module, name_to_import)
if not to_return:
raise AttributeError("{} has no attribute {}".format(module, name_to_import))
return to_return
else:
return module
|
882a9b4c68cd7d34a6ff5d914b7b819ad62156ae
| 45,315 |
def GetId(datas: bytes, length: int):
"""
从数据包内获取子站地址——ID
:param datas: 数据包
:param length: 地址长度
:return:
"""
# int length = System.Convert.ToInt32(SqliteProvider.ReadPara(SqliteProvider.icepara, "LinkAddrLength"))
if datas[0] == 0x10: # 固定帧长报文
return int.from_bytes(datas[2:2 + length], byteorder='little') # little big
elif datas[0] == 0x68: # 可变帧长报文
return int.from_bytes(datas[5:5 + length], byteorder='little')
else:
return 0
|
e660a516a9418c0755467e7889d3d53dd60a5a5b
| 45,322 |
def is_filename_char(x):
"""Return True if x is an acceptable filename character."""
if x.isalnum():
return True
if x in ['-', '_']:
return True
return False
|
bdf9ec319e16e11db8af3dcdabc1c16dbc8c317d
| 45,324 |
def carousel(app):
"""Fixture to get the carousel widget of the test app."""
return app.carousel
|
8229756e385e285d3dcc6a122d6e73a5b263fc70
| 45,327 |
def filter_df_by_cluster(df, clusters, number):
"""
Select only the members of a defined cluster.
:param df: pandas dataframe with samples/subjects as index and features as columns.
:param dict clusters: clusters dictionary from get_dendrogram function if div_clusters option was True.
:param int number: cluster number (key).
:return: Pandas dataframe with all the features (columns) and samples/subjects belonging to the defined cluster (index).
"""
return df[df.index.isin(clusters[number])]
|
3100b9ca59c24c102d6445babc0a247254cdd5a9
| 45,331 |
import itertools
def get_strategy_map(strategy_list, teams):
"""
Creates a strategy map, with all the possible strategy profiles on the game.
:return: A map with all the possible strategy profiles according the players and strategies available.
"""
strategy_maps = []
strategy_profiles = list(itertools.product(strategy_list, repeat=teams))
for profile in strategy_profiles:
strategy_map = {'name': '',
'map': {}}
# To keep the order preferred by Gambit
for index, strategy in enumerate(reversed(list(profile))):
strategy_name = strategy.name
strategy_map['name'] += strategy_name + "_"
strategy_map['map'][index] = strategy
strategy_map['name'] = strategy_map['name'][:-1]
strategy_maps.append(strategy_map)
return strategy_maps
|
a4178f2b6768116f4f0fd85b9c76db3e368689d5
| 45,337 |
from io import StringIO
def get_q2_comment_lines(md_file_loc):
"""Returns a list of line numbers in the file that start with "#q2:".
These lines should be skipped when parsing the file outside of Q2 (i.e.
in pandas). I guess we could also ostensibly use these lines' types here
eventually, but for now we just skip them.
Notes:
-The line numbers are 0-indexed (so they can easily be thrown in to
pandas.read_csv() as the skiprows parameter)
-This doesn't check check the first line of the file (assumed to be the
header)
-This stops checking lines once it gets to the first non-header line
that doesn't start with "#q2:". Currently, "#q2:types" is the only Q2
"comment directive" available, but ostensibly this could detect future
Q2 comment directives.
-This checks if md_file_loc is of type StringIO. If so, this will
handle it properly (iterating over it directly); otherwise, this
assumes that md_file_loc is an actual filename, and this will open
it using open().
(I realize that ideally this wouldn't have to do any type checking,
but it's either this or do a bunch of weird refactoring to get my test
code working.)
"""
def iterate_over_file_obj_lines(file_obj):
q2_lines = []
line_num = 0
for line in file_obj:
# Don't check for a #q2: comment on the first line of the file,
# since the first line (should) define the file header.
if line_num > 0:
if line.startswith("#q2:"):
q2_lines.append(line_num)
else:
# We assume that all #q2: lines will occur at the start of
# the file. Once we've reached a line that doesn't start
# with "#q2:", we stop checking.
break
line_num += 1
return q2_lines
if type(md_file_loc) == StringIO:
q2_lines = iterate_over_file_obj_lines(md_file_loc)
# HACK: Allow us to read through this StringIO again --
# https://stackoverflow.com/a/27261215/10730311
# Note that we're only ever bothering with StringIOs here during test
# code, so this weirdness should be ignored during normal operation of
# Qurro.
md_file_loc.seek(0)
return q2_lines
else:
with open(md_file_loc, "r") as md_file_obj:
return iterate_over_file_obj_lines(md_file_obj)
|
a9f5b62ba5ce1de57214f587528f8f8819827f70
| 45,339 |
def list_found_duplicates(in_list):
"""
Check list for duplicate entries. Return True if duplicates found,
and False if not duplicates found.
>>> in_list = ["hallo", "hello"]
>>> list_found_duplicates(in_list)
False
>>> in_list = ["hallo", "hello", "hollo", "hello"]
>>> list_found_duplicates(in_list)
True
"""
if len(set(in_list)) == len(in_list):
return False
else:
return True
|
bcdfa07c7a4931baa3522487b015e4ed703ebe0e
| 45,341 |
def kappa(A: float, B: float, C: float):
"""
Calculate Ray's asymmetry parameter for a given set of A, B, and C rotational constants.
This parameter determines how asymmetric a molecule is by setting a range between two limits: the prolate (+1)
and the oblate (-1) limits.
Parameters
----------
A, B, C: float
Rotational constant in MHz for each respective axis
Returns
-------
kappa: float
Ray's asymmetry parameter
"""
return (2 * B - A - C) / (A - C)
|
f2628858582645a43ffbe706d1f838196c6d4f20
| 45,342 |
def mark_coverage(percentage):
"""Return a mark from A to F based on the passed tests percentage.
:param percentage: Percentage of passed unit tests.
:type percentage: float
:return: Mark from A to F.
:rtype: str
"""
mark_table = {
"A": (90, 101),
"B": (80, 90),
"C": (70, 80),
"D": (60, 70),
"F": (0, 59),
}
for mark, mark_range in mark_table.items():
if int(percentage) in range(*mark_range):
return mark
|
2adae1e628219d073bb8cfaeb707fea0a1d0882d
| 45,343 |
def remove_fx_variables(cube):
"""
Remove fx variables present as cell measures or ancillary variables in
the cube containing the data.
Parameters
----------
cube: iris.cube.Cube
Iris cube with data and cell measures or ancillary variables.
Returns
-------
iris.cube.Cube
Cube without cell measures or ancillary variables.
"""
if cube.cell_measures():
for measure in cube.cell_measures():
cube.remove_cell_measure(measure.standard_name)
if cube.ancillary_variables():
for variable in cube.ancillary_variables():
cube.remove_ancillary_variable(variable.standard_name)
return cube
|
09427f418ac25e25e7fa658f17b2e5c346c9b7eb
| 45,344 |
import math
def _get_dct_norm_factor(n, inorm, dct_type=2):
"""Normalization factors for DCT/DST I-IV.
Parameters
----------
n : int
Data size.
inorm : {'none', 'sqrt', 'full'}
When `inorm` is 'none', the scaling factor is 1.0 (unnormalized). When
`inorm` is 1, scaling by ``1/sqrt(d)`` as needed for an orthogonal
transform is used. When `inorm` is 2, normalization by ``1/d`` is
applied. The value of ``d`` depends on both `n` and the `dct_type`.
dct_type : {1, 2, 3, 4}
Which type of DCT or DST is being normalized?.
Returns
-------
fct : float
The normalization factor.
"""
if inorm == 'none':
return 1
delta = -1 if dct_type == 1 else 0
d = 2 * (n + delta)
if inorm == 'full':
fct = 1 / d
elif inorm == 'sqrt':
fct = 1 / math.sqrt(d)
else:
raise ValueError('expected inorm = "none", "sqrt" or "full"')
return fct
|
b6f8e07b6d708f78d616f4a357e94ec3249676b4
| 45,347 |
import uuid
def is_string_uuid(val):
"""
Checks if the given string is a valid UUID
:param val: str
:return: boolean
"""
if val and isinstance(val, str):
try:
uuid.UUID(val)
return True
except ValueError:
pass
return False
|
573192cdb1b3a5001309b72bdf49e524984ccbe0
| 45,353 |
from typing import Counter
def most_common(list):
"""Returns the most common value in the given list."""
counts = Counter(list)
return counts.most_common(1)[0][0]
|
c8ed106c7b726849a687f729f1b808b95b5c3454
| 45,358 |
def _get_type(obj):
"""Return the type of an instance (old and new-style)"""
return getattr(obj, '__class__', None) or type(obj)
|
e354a397e573f89a998ee6a25b1971d1d8cd578b
| 45,363 |
def compute_all_squares(of_range):
"""Compute the squares of all the natural numbers in a range."""
# Register the list of squares.
squares = []
for i in range(of_range):
squares.append(i*i)
return squares
|
3c5cc90f7538393889f571a5e541c38945399123
| 45,365 |
def channel_reshape(x, channel_shape):
""" (B, *, H, W) to (B, custom, H, W) """
return x.reshape((x.shape[0],) + channel_shape + x.shape[-2:])
|
7d08dc4fc20686f9797a1e36ddaedbf9ef990a0c
| 45,369 |
def load_lfw_identities(lfw_identities_files):
""""
input: celeba_identities_file - path to the file containing CELEB-A IDs
identity_CelebA.txt
image_name_1 person_id_1
...
image_name_n person_id_n
output: identity_info - dictionary of the list image names per id
identity_info[person_id] -> (image_name_1, ..., image_name_n)
image_info[image_id] -> person_id
"""
identity_info = dict()
image_info = dict()
with open(lfw_identities_files) as identities:
lines = identities.readlines()
for idx, identity in enumerate(lines):
identity = identity.rstrip().lstrip().split()
# we have 2 infos per line, image name and identity id
if len(identity) != 2:
continue
image_name = identity[0]
image_id = idx
identity_id = int(identity[1])
if identity_id not in identity_info:
identity_info[identity_id] = []
identity_info[identity_id].append(image_name)
image_info[image_id] = identity_id
return identity_info, image_info
|
0e529331676297aaa3d1a1efa246948779d7d39a
| 45,374 |
def confirm_action(msg):
""" Prompts user for confirmation of action. """
print(" [*] {}".format(msg))
prompt = input(" [*] Y/N? ")
if prompt in ["yes", "y"]:
return True
elif prompt in ["no", "n"]:
return False
else:
print(" [-] Please answer with y/n")
return confirm_action(msg)
|
1baf657efd150639dd01a75a414d1d6f7fb961a0
| 45,384 |
from typing import List
from typing import Tuple
def minimum_bounding_box(coords: List[Tuple[float, float, float]],
buffer: float = 10.) -> Tuple[Tuple, Tuple]:
"""Calculate the minimum bounding box for a list of coordinates
Parameters
----------
coords : List[Tuple[float, float, float]]
a list of tuples corresponding to x-, y-, and z-coordinates
buffer : float (Default = 10.)
the amount of buffer to add to the minimum bounding box
Returns
-------
center: Tuple[float, float, float]
the x-, y-, and z-coordinates of the center of the minimum bounding box
size: Tuple[float, float, float]
the x-, y-, and z-radii of the minimum bounding box
"""
xs, ys, zs = zip(*coords)
min_x, max_x = min(xs), max(xs)
min_y, max_y = min(ys), max(ys)
min_z, max_z = min(zs), max(zs)
center_x = (max_x + min_x) / 2
center_y = (max_y + min_y) / 2
center_z = (max_z + min_z) / 2
size_x = (max_x - center_x) + buffer
size_y = (max_y - center_y) + buffer
size_z = (max_z - center_z) + buffer
center = center_x, center_y, center_z
size = size_x, size_y, size_z
return center, size
|
462628c0c3ae7373d09c16b3895330aa9185c9c4
| 45,385 |
def should_run_crawl(
force_crawl: bool, skip_crawl: bool, searching_path: bool, crawled_recently: bool
) -> bool:
"""
Check whether to run the crawl.
Always crawl if force_crawl is True.
Otherwise, never crawl if skip_crawl is True.
Assuming neither of the above are true, then crawl if searching_path is True or crawled_recently is False.
:param force_crawl: Always crawl if True.
:param skip_crawl: Never crawl if True, unless force_crawl is also True.
:param searching_path: If the above are both false, then crawl if we're searching a path.
:param crawled_recently: If all the above are False, then crawl if this is also False, as we
haven't crawled this path recently.
:return: True if we should crawl.
"""
if force_crawl:
return True
elif skip_crawl:
return False
elif searching_path:
return True
elif not crawled_recently:
return True
return False
|
de29d392923e2cc34d8987cbd5b55bb25b621552
| 45,386 |
def gcd_float(numbers, tol=1e-8):
"""
Returns the greatest common divisor for a sequence of numbers.
Uses a numerical tolerance, so can be used on floats
Args:
numbers: Sequence of numbers.
tol: Numerical tolerance
Returns:
(int) Greatest common divisor of numbers.
"""
def pair_gcd_tol(a, b):
"""Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b > tol:
a, b = b, a % b
return a
n = numbers[0]
for i in numbers:
n = pair_gcd_tol(n, i)
return n
|
bf84dc323a84413d49989300e135f66d52d334e8
| 45,389 |
from typing import Tuple
def split_reg_path(reg_path: str) -> Tuple[str, str, str]:
"""Splits a full registry path into hive, key, and path.
Examples
----------
>>> split_reg_path(\\REGISTRY\\MACHINE\\SYSTEM\\ControlSet001\\Control\\ComputerName)
(REGISTRY, ComputerName, MACHINE\\SYSTEM\\ControlSet001\\Control)
Parameters
----------
regpath : str
The full registry key
Returns
-------
Tuple[str, str, str]
Hive, registry key, and registry key path
"""
# RegistryKey Node Creation
hive = reg_path.split("\\")[0]
reg_key_path = "\\".join(reg_path.split("\\")[1:-1])
reg_key = reg_path.split("\\")[-1]
return (hive, reg_key, reg_key_path)
|
545329fc5a4dacde35c4040e5becff972e67a897
| 45,393 |
def clean_string_input(value: str) -> str:
"""Converts a string to lower case and and removes leading and trailing white spaces.
Parameters
----------
value: str
The user input string.
Returns
-------
str
value.lower().strip()
"""
return value.lower().strip()
|
66b6c1a84e6c98c0ae2c9eae655f565ba65a6213
| 45,394 |
import math
def get_color_table_size(num_colors):
"""Total values in the color table is 2**(1 + int(result, base=2)).
The result is a three-bit value (represented as a string with
ones or zeros) that will become part of a packed byte encoding
various details about the color table, used in the Logical
Screen Descriptor block.
"""
nbits = max(math.ceil(math.log(num_colors, 2)), 2)
return '{:03b}'.format(int(nbits - 1))
|
a61a1a73ebdb2f0b4ed263329f820daa45e1ce3b
| 45,396 |
import dis
def _get_opcodes(codeobj):
"""_get_opcodes(codeobj) -> [opcodes]
Extract the actual opcodes as a list from a code object
>>> c = compile("[1 + 2, (1,2)]", "", "eval")
>>> _get_opcodes(c)
[100, 100, 23, 100, 100, 102, 103, 83]
"""
i = 0
opcodes = []
s = codeobj.co_code
while i < len(s):
code = ord(s[i])
opcodes.append(code)
if code >= dis.HAVE_ARGUMENT:
i += 3
else:
i += 1
return opcodes
|
c48b80a6d742ad46c2cb034c43b15f19af9c5d3b
| 45,397 |
def _normalise_options(options):
"""
Return a sequence of (value, label) pairs for all options where each option
can be a scalar value or a (value, label) tuple.
"""
out = []
if hasattr(options, '__call__'):
options = options()
for option in options:
if isinstance(option, tuple):
out.append( option )
else:
out.append( (option, str(option)) )
return out
|
624c78695643aac0e7a26583e5196f6c28446ce4
| 45,400 |
import json
def decode_response(res):
"""Parse a WebSuccess or WebError response."""
decoded_dict = json.loads(res.data.decode('utf-8'))
return (decoded_dict['status'], decoded_dict['message'],
decoded_dict['data'])
|
e0e8b74ce31d6db6d77f91730b2a921562911afe
| 45,406 |
def set_new_methods(**kwargs):
"""
Semantics:
Set a set of new methods to a class, any quantity of methods.
Args:
**kwargs: name of method given by key, body by value.
Returns:
It returns the new class
"""
def wrapper(cls):
for key in kwargs:
setattr(cls, key, kwargs[key])
return cls
return wrapper
|
e9e6c4e51f15bf058f64361d185749c8d845b860
| 45,418 |
def model_key(row, headers, use_problem = True):
""" Generate a unique key for models that make them identifiable. """
model = ["ico_encoder", "article_encoder", "attn", "cond_attn",
"tokenwise_attention", "pretrain_attention",
"tune_embeddings", "no_pretrained_word_embeddings"]
problem = ["article_sections", "data_config"]
key = ""
for id_ in model:
key += row[headers[id_]] + "|||"
if (use_problem):
for id_ in problem:
key += row[headers[id_]] + "|||"
return key
|
6b8c66205e4a3184697f51aebede5ab71abe3736
| 45,434 |
def bytes2text(bs):
"""
Converts bytes (or array-like of bytes) to text.
:param bs: Bytes or array-like of bytes.
:return: Converted text.
"""
if type(bs) in (list, tuple) and len(bs) > 0:
if isinstance(bs[0], bytes):
return b''.join(bs).decode(errors='ignore').strip()
if isinstance(bs[0], str):
return ''.join(bs).strip()
else:
raise TypeError
elif isinstance(bs, bytes):
return bs.decode(errors='ignore').strip()
else:
return ''
|
a145a05211a20eb4787f9d217ba7f4226eb96125
| 45,435 |
import torch
def get_accuracy_with_logits(y_true: torch.Tensor, y_pred: torch.Tensor) -> float:
"""
Calculate accuracy with logits
:param y_true: torch.Tensor of ints containing true labels. shape = (N,)
:param y_pred: torch.Tensor of predicted logits. shape = (N, N_classes)
:return acc: float which equals to accuracy score
"""
return (y_true == y_pred.argmax(dim=1)).float().mean().item()
|
e975dad6efdd9221d565f6e7abfee40af20d77f1
| 45,442 |
def is_non_empty_string(str_):
"""checks if a string is not an empty string, True if not empty"""
return bool(str_ != '')
|
b911322a33cb9387c86648bdb7c5be4f6b7f21a1
| 45,444 |
def graph_input_anssel(si0, si1, sj0, sj1, se0, se1, y, f0=None, f1=None, s0=None, s1=None, kw=None, akw=None):
""" Produce Keras task specification from vocab-vectorized sentences.
The resulting 'gr' structure is our master dataset container, as well
as something that Keras can recognize as Graph model input.
* si0, si1: Words as indices in vocab; 0 == not in vocab
* sj0, sj1: Words as indices in GloVe; 0 == not in glove
(or in vocab too, which is preferred; never si0>0 and si1>0 at once)
* se0, se1: Words as embeddings (based on sj; 0 for nonzero-si)
* y: Labels
* f0, f1: NLP flags (word class, overlaps, ...)
* s0, s1: Words as strings
* kw, akw: Scalars for auxiliary pair scoring (overlap scores in yodaqa dataset)
To get unique word indices, sum si0+sj1.
"""
gr = {'si0': si0, 'si1': si1,
'sj0': sj0, 'sj1': sj1,
'score': y}
if se0 is not None:
gr['se0'] = se0
gr['se1'] = se1
if f0 is not None:
gr['f0'] = f0
gr['f1'] = f1
if s0 is not None:
# This is useful for non-neural baselines
gr['s0'] = s0
gr['s1'] = s1
if kw is not None:
# yodaqa-specific keyword weight counters
gr['kw'] = kw
gr['akw'] = akw
return gr
|
ef3627ebbc4b5fbc9b2c8e02e2cc4aa683ffd298
| 45,446 |
def test_file(test_dir):
"""
Returns path to the file with `filename` and `content` at `test_dir`.
"""
def wrapper(filename: str, content: str):
file = test_dir / filename
file.write_text(content, encoding="utf-8")
return file
return wrapper
|
e4e9d500ba7c5227add47833bdc8d3be3a8d4252
| 45,447 |
def get_slope(x, y):
"""Calculate slope by taking first and last values."""
return (y[-1]-y[0])/(x[-1]-x[0])
|
92f00bd246e27dae51552dbe546ae108abc17e40
| 45,453 |
def s3_get_bucket_versioning(s3_obj, bucketname, s3_client=None):
"""
Boto3 client based Get Bucket Versioning function
Args:
s3_obj (obj): MCG or OBC object
bucketname (str): Name of the bucket
s3_client: Any s3 client resource
Returns:
dict : GetBucketVersioning response
"""
if s3_client:
return s3_client.get_bucket_versioning(Bucket=bucketname)
else:
return s3_obj.s3_client.get_bucket_versioning(Bucket=bucketname)
|
58017d4a414929d06e4da4c8cac83e6a02ef9975
| 45,454 |
from typing import Union
from typing import List
def append_forward_slash_path(
paths: Union[List[str], str]
) -> Union[List[str], str, None]:
"""
Returns the input string(s), in the same format as they were passed in, with a minimum of one forward slash
at the end, given that no forward slash exists at the end.
:param paths: one or more paths to add a forward slash to.
:return:
"""
if paths is None:
return None
if isinstance(paths, str):
if paths[-1] != "/":
paths += "/"
return paths
else:
output = [path + ("/" if path[-1] != "/" else "") for path in paths]
return output
|
e5726067818674457bd5da1b39ba7e47dc91c4d5
| 45,459 |
import copy
def merge_config(base_config, new_config, in_place=False):
"""Recursively merges configurations. """
if base_config is None:
return new_config
if not in_place:
base_config = copy.deepcopy(base_config)
if new_config is None:
return base_config
# Merge a configuration file.
for key, new_value in new_config.iteritems():
base_value = base_config.get(key)
if isinstance(base_value, dict):
assert isinstance(new_value, dict), \
"New value must be dict: {} - {}".format(key, new_value)
# Recurse.
value = merge_config(base_value, new_value, in_place=True)
else:
# Overwrite.
value = new_value
base_config[key] = value
return base_config
|
9c26679c72559a82c46e99b61b1b5f8395258e9d
| 45,463 |
def div_growth_rateGm(curr_earn, cap_emp, dt):
"""
Calculates the growth rate of a dividend using the dividend growth rate
valuation model where dividend is paid yearly.
parameters:
-----------
curr_earn = current earnings
cap_emp = capital employed
dt = current dividend
"""
roi = curr_earn/cap_emp
b = (curr_earn - dt)/curr_earn
g = (roi * b) * 100
return round(g, 4)
|
f81bb60fe4c0f903ad308d444c578e1447bbb598
| 45,464 |
import re
def cigarToLen(cigar):
"""
Calculate sequence length from CIGAR string
"""
# Split "cigar" on capital letters
span = re.split('[A-Z]', cigar)
ops = re.split('[0-9]+', cigar)
len = 0
del(span[-1])
del(ops[0])
for i, span in enumerate(span):
if ops[i] in ["M", "I", "S"]:
len += int(span)
return len
|
fa7c2b0633a349cc3295519bffcff9965c6ae704
| 45,466 |
import torch
def mask_out(tensor, start_ind, end_ind, value, dim=1):
""" Set the elements before start_ind and after end_ind (both inclusive) to the value. """
if dim != 1:
raise NotImplementedError
batch_size, time = list(tensor.shape)[:2]
# (oleg) This creates the indices every time, but doesn't seem to affect the speed a lot.
inds = torch.arange(time, device=tensor.device, dtype=start_ind.dtype).expand(batch_size, -1)
mask = (inds >= end_ind[:, None]) | (inds <= start_ind[:, None])
tensor[mask] = value
return tensor, mask
|
1326220320679c32d728ce727d174e00065eaa0a
| 45,467 |
def interaction_strength(idx: int, mol_map: dict, acceptor_exp: float) -> float:
"""Calculate interaction strength for atom with index `idx`."""
acceptor_strength = mol_map[idx]["sa"]
num_lp = mol_map[idx]["num_lp"]
if num_lp != 0:
return acceptor_strength * (num_lp ** acceptor_exp)
return 0.0
|
382b69e56002a24691fdc9e8b6943eeeeee7293a
| 45,471 |
from json import JSONDecodeError, loads
from typing import Any
def decode_attrs(attrs: Any) -> Any:
"""Try to decode attributes as json if possible,
otherwise return the attrs as they are
Parameters
----------
attrs: Any
an object containing attributes
Returns
----------
Any
either the attributes as json or the attributes as received
"""
try:
attrs = loads(attrs)
except (JSONDecodeError, TypeError):
return attrs
|
e49f344769b75f3d37a0ce86d84ac55f681f8156
| 45,477 |
def calculate_score(hazard_list, dictionary):
"""This function will take the hazard codes from a list and grab the respectvie hazard scores from a dictionary """
score_list = []
for code in hazard_list:
# some of the codes end with a colon from extarcting from jsons. Remove them here if present.
if code.endswith(':'):
# removes last string from item, which will be the colon.
code = code[:-1]
for i in dictionary['Code']: # loop through the dictionary
if code == dictionary['Code'][i]: # if code is present in dictionary
# append the hazard score to the score list
score_list.append(dictionary['Hazard Score'][i])
return score_list
|
e0fe7d995ca263f47624929c84f1a87a506257ed
| 45,478 |
def verify(self, case='', level='', **kwargs):
"""Enter the verification run mode.
.. note::
This command is only valid at the ``/BEGIN`` level, obtained
with ``mapdl.finish()``.
Parameters
----------
case : str, optional
Optional title of the verification manual file. Also accepts
``'OFF'`` to disable the verification run mode.
level : int, optional
Verification level ranging from 1 to 6 defaulting to 4.
Returns
--------
Examples
--------
Enter the verification routine with the default option.
>>> mapdl.finish()
>>> mapdl.verify('VM1')
'*** VERIFICATION RUN - CASE VM1 *** OPTION= 4'
"""
return self.run(f'/VERIFY,{case},{level}', **kwargs)
|
0b25f240a6bc3bb551613727c32524ebc663f5ee
| 45,480 |
import unicodedata
import re
def _key_from_url(url: str) -> str:
"""
Convert a URL str to one valid for use as a file name or dict key. URL Protocols are
removed entirely. The returned string will have characters in the set [a-zA-Z.-_].
Parameters
----------
url : str
A URL string
Returns
-------
str
A filename-safe string
Example
-------
>>> url = _key_from_url('http://test.alyx.internationalbrainlab.org/')
'test.alyx.internationalbrainlab.org'
"""
url = unicodedata.normalize('NFKC', url) # Ensure ASCII
url = re.sub('^https?://', '', url).strip('/') # Remove protocol and trialing slashes
url = re.sub(r'[^.\w\s-]', '_', url.lower()) # Convert non word chars to underscore
return re.sub(r'[-\s]+', '-', url)
|
3e9f85fe38e68966f00f8d2a1fb0b3752d9efb75
| 45,487 |
def calculate_slasher_snapshot_difference(client, snapshot_old, snapshot_new):
"""
Calculates the difference between two slasher snapshots
Parameters
----------
client : ``Client``
The respective client.
snapshot_old : `None` or `tuple` of (`dict` of (`int`, `list` of `tuple` \
(`bool`, ``SlasherApplicationCommand``)) items, `None` or `set` of ``ComponentCommand``)
An old snapshot taken.
snapshot_new : `None` or `tuple` of (`dict` of (`int`, `list` of `tuple` \
(`bool`, ``SlasherApplicationCommand``)) items, `None` or `set` of ``ComponentCommand``)
A new snapshot.
Returns
-------
snapshot_difference : `None` or `tuple` (`tuple` (`set` of ``SlasherApplicationCommand``, `set` of \
``SlasherApplicationCommand``), `tuple` (`None` or `set` of ``ComponentCommand``, `None` or \
`set` of ``ComponentCommand``)
The difference between the two snapshots.
"""
if (snapshot_old is None) and (snapshot_new is None):
return None
if snapshot_old is None:
application_command_snapshot_old = None
component_command_snapshot_old = None
else:
application_command_snapshot_old, component_command_snapshot_old = snapshot_old
if snapshot_new is None:
application_command_snapshot_new = None
component_command_snapshot_new = None
else:
application_command_snapshot_new, component_command_snapshot_new = snapshot_new
if (application_command_snapshot_old is not None) or (application_command_snapshot_new is not None):
added_application_commands = []
removed_application_commands = []
guild_ids = set()
if (application_command_snapshot_old is not None):
guild_ids.update(application_command_snapshot_old.keys())
if (application_command_snapshot_new is not None):
guild_ids.update(application_command_snapshot_new.keys())
for guild_id in guild_ids:
local_added_application_commands = []
local_removed_application_commands = []
if (application_command_snapshot_new is not None):
try:
new_changes = application_command_snapshot_new[guild_id]
except KeyError:
pass
else:
for added, command in new_changes:
if added:
local_added_application_commands.append(command)
else:
local_removed_application_commands.remove(command)
if (application_command_snapshot_old is not None):
try:
old_changes = application_command_snapshot_old[guild_id]
except KeyError:
pass
else:
for added, command in old_changes:
if added:
try:
local_added_application_commands.remove(command)
except ValueError:
local_removed_application_commands.append(command)
else:
try:
local_removed_application_commands.remove(command)
except ValueError:
local_added_application_commands.append(command)
added_application_commands.extend(local_added_application_commands)
removed_application_commands.extend(local_removed_application_commands)
if (not added_application_commands):
added_application_commands = None
if (not removed_application_commands):
removed_application_commands = None
if (added_application_commands is None) and (removed_application_commands is None):
application_command_difference = None
else:
if client.running and client.application.id:
slasher = getattr(client, 'slasher', None)
if (slasher is not None):
slasher.sync()
application_command_difference = added_application_commands, removed_application_commands
else:
application_command_difference = None
if (component_command_snapshot_old is None) or (component_command_snapshot_new is None):
removed_component_commands = component_command_snapshot_old
added_component_commands = component_command_snapshot_new
else:
removed_component_commands = component_command_snapshot_old-component_command_snapshot_new
added_component_commands = component_command_snapshot_new-component_command_snapshot_old
if (not removed_component_commands):
removed_component_commands = None
if (not added_component_commands):
added_component_commands = None
if (added_component_commands is None) and (removed_component_commands is None):
component_command_difference = None
else:
component_command_difference = (removed_component_commands, added_component_commands)
if (application_command_difference is None) and (component_command_difference is None):
snapshot_difference = None
else:
snapshot_difference = (application_command_difference, component_command_difference)
return snapshot_difference
|
8e16f3943bcf7651496a7e6e6a2c2e7f59c6fb37
| 45,490 |
from typing import Tuple
def summarize_location(location: Tuple[str, str, str, str, str, str]) -> Tuple[str, str, str]:
""" Get manuscript location and summarize for usage in citavi
Args:
location (tuple): metadata of manuscript's location
Returns:
tuple: summary of metadata of manuscript's location
"""
location_list = list(location)
for i in range(len(location_list)):
if not location_list[i]:
location_list[i] = ""
continue
location_list[i] = location_list[i] + ", "
try:
settlement = location_list[1] + location_list[0]
settlement = settlement[:-2]
except:
settlement = "unknown"
try:
archive = location_list[2] + location_list[3] + location_list[4]
archive = archive[:-2]
except:
archive = "unknown"
signature = location_list[5]
signature = signature[:-2]
return settlement, archive, signature
|
fa6ed40a4ddc4510ea919773d9b68458c5edc738
| 45,501 |
def route_format(t_route_dest):
"""Shorten destinations to save space."""
# add more route name formatting to your choice to save dsiplay space
# If there's a substitution in the dictionary, use it, otherwise return the original
return {"TO GRANVILLE": "GRANVILLE", "COMM'L-BDWAY STN": "COM-BW STN"}.get(t_route_dest, t_route_dest)
|
17af8f25dc17c82292a23255676d4584bf44b89e
| 45,506 |
import pickle
def load_pkl(file):
"""Loads data from pickle
Parameters
----------
file : str
Returns
-------
data
"""
f = open(file, 'rb')
data = pickle.load(f)
f.close()
return data
|
ff7a9cefa4231c9dee6030b8fd14b72e55a11548
| 45,510 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.