content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def _compute_all_mask(ds):
"""Computes a mask that is true everywhere"""
da_mask = ds.z < ds.z + 1
da_mask.attrs["long_name"] = "All data mask"
return da_mask
|
93f04dde3a20c504b017d30ceb654d3c62bce798
| 31,859 |
import logging
def obr_repr(obj):
"""Return obj representation if possible."""
try:
return repr(obj)
# pylint: disable-msg=broad-except
except Exception as e:
logging.error(e)
return 'String Representation not found'
|
8a95574dc0d8b18fe1c7f8c040b167654930380e
| 31,865 |
def generate_playlist_url(playlist_id:str)->str:
"""Takes playlist Id and generates the playlist url
example https://www.youtube.com/playlist?list=PLGhvWnPsCr59gKqzqmUQrSNwl484NPvQY
"""
return f'https://www.youtube.com/playlist?list={playlist_id}'
|
f6f234e3f3eb061e37d573e35aff7c77637b0952
| 31,866 |
def int_check(self, value, key):
"""
Cast a value as an integer
:param value: The value to cast as int
:param key: The value name
:return: The value as an integer, otherwise an error message
"""
try:
int(value)
return int(value), ''
except:
return None, 'Error: %s value must be a integer' % (key)
|
4529cc80104dd075539f6e846dddd8814756e116
| 31,873 |
def get_organizer_emails(form):
"""Get up to 15 organizer emails from an input form."""
return form.getlist("organizer")[:15]
|
129b21b7fe0e3c9d12c0c363facce2cc669baa60
| 31,875 |
def find_dependency_in_spec(spec, ref):
"""Utility to return the dict corresponding to the given ref
in a dependency build spec document fragment
"""
for item in spec:
if item['ref'] == ref:
return item
|
e7fa516b5d7d88ec68cdd5e5f5994f37f6ca05ce
| 31,876 |
def encoding(fields, use_original_field_names=False):
"""Convert fields structure to encoding maps for values and field names.
Expects a fields dictionary structure, returns a tuple of two dictionaries where the keys are the field names
(either original or new depending on the use_original_field_names parameter).
Resulting dictionaries map the values for each field and field names.
"""
encoding_map = {}
encoding_field_names = {}
for original_field_name, f in fields.items():
if "encoding" in f:
if f["encoding"].get("expand", True):
if use_original_field_names:
key = original_field_name
else:
key = f.get("name", original_field_name)
encoding_field_names[key] = f["encoding"].get("name", f"{key}_")
encoding_map[key] = f["encoding"].get("map", {})
return encoding_map, encoding_field_names
|
4789733018eebbf7e9f7287359ebc6c56c5182f6
| 31,881 |
def getMatches(file, regex):
""" Returns a list of all passages in `file` matching `regex` """
source = open(file, "r")
return [x for x in regex.findall(source.read())]
|
17a791998d9bf2f2ba8aad9e15e6a395785b78c2
| 31,884 |
from typing import Tuple
def ext_gcd(a: int, b: int) -> Tuple[int, int, int]:
"""Extended Euclidean algorithm
solve ax + by = gcd(a, b)
Parameters
----------
a
b
Returns
-------
(d, x, y) s.t. ax + by = gcd(a, b)
"""
if b == 0:
return a, 1, 0
d, y, x = ext_gcd(b, a % b)
return d, x, y - (a // b) * x
|
a4c1c7f682d13ceab6bb3d06b855c61a9a88d9f8
| 31,886 |
def parse_zone_id(full_zone_id: str) -> str:
"""Parse the returned hosted zone id and returns only the ID itself."""
return full_zone_id.split("/")[2]
|
1dbcbcee8dbd09b24d22957d7e598e1f5692910f
| 31,888 |
import math
def distance(A, B):
""" Finds the distance between two points
@parameter A: point #1
@parameter B: point #2
@returns: distance between the points A and B"""
return math.sqrt((A[0] - B[0]) ** 2 + (A[1] - B[1]) ** 2)
|
e189723dafbb984656ae28b2824f4bbebbffa99c
| 31,891 |
def get_results(soup):
"""
Gets the results div from the HTML soup
@param {BeautifulSoup} soup Google Scholar BeautifulSoup instance
@return {BeautifulSoup[]} List of Google Scholar results as
BeautifulSoup instances
"""
return soup.find_all('div', class_='gs_r gs_or gs_scl')
|
efdcc2a5b827a84840868e250894c8f144ae0743
| 31,895 |
def has_ordered_sublist(lst, sublist):
"""
Determines whether the passed list contains, in the specified order, all
the elements in sublist.
"""
sub_idx = 0
max_idx = len(sublist) - 1
for x in lst:
if x == sublist[sub_idx]:
sub_idx += 1
if sub_idx > max_idx:
return True
return sub_idx > max_idx
|
4aa72edc8b4020bc49d266cddccd70e18c641ab0
| 31,899 |
from typing import List
from typing import Tuple
from typing import Dict
def convert(day_input: List[str]) -> Tuple[Dict[str, List[range]], List[int], List[List[int]]]:
"""Converts the input into a tuple with:
1. A dictionary with the fields, where for each field the value is a list
of the valid ranges, each represented as a tuple with the min and max value
2. The values for your ticket, a list of ints
3. A list with the values for the other tickets"""
iter_in = iter(day_input)
# Convert fields
fields = {}
for line in iter_in:
if line == '': break
key, vals = line.split(': ')
fields[key] = [range(int(v.split('-')[0]), int(v.split('-')[1]) + 1 ) for v in vals.split(' or ')]
while next(iter_in) != 'your ticket:':
continue
our = [int(n) for n in next(iter_in).split(',')]
while next(iter_in) != 'nearby tickets:':
continue
tickets = [[int(n) for n in line.split(',')] for line in iter_in]
return (fields, our, tickets)
|
7ef01443251595891c4adcd147dd0487b8b2fedf
| 31,913 |
def sample_approx(approx, draws=100, include_transformed=True):
"""Draw samples from variational posterior.
Parameters
----------
approx: :class:`Approximation`
Approximation to sample from
draws: `int`
Number of random samples.
include_transformed: `bool`
If True, transformed variables are also sampled. Default is True.
Returns
-------
trace: class:`pymc.backends.base.MultiTrace`
Samples drawn from variational posterior.
"""
return approx.sample(draws=draws, include_transformed=include_transformed)
|
2ff6eab14a5d42f0a9b2d531bcccee1245964f72
| 31,915 |
def find_hosts(ipa_client, pattern=None):
""" Returns list of matching hosts from IPA.
If no pattern is provided, returns all hosts.
"""
if pattern is None:
pattern = ''
return ipa_client.get_hosts(
pattern=pattern
)
|
38dd7a8e499af6372c9243c0cf91fe1c7e7f3d9b
| 31,921 |
def union_list(cmp_lists):
"""
Get the two or multiple lists' union. Support one empty list.
:param cmp_lists: A list of will do union calculate lists. It must have two list at least.
:return: result: The result of the lists union.
"""
result = list(set().union(*cmp_lists))
return result
|
013d7e45a1ea56bcd09fe8ed332d8d69962774fb
| 31,923 |
def replace_word(word_array, dict_of_words_to_replace):
"""
Given an array of words, replace any words matching a key in dict_of_words_to_replace with its corresponding
value.
:param word_array: The array of words to check.
:param dict_of_words_to_replace: The dictionary of words to replace paired with their replacements.
:return: The new array of words.
"""
new_word_array = []
for word in word_array:
if word in dict_of_words_to_replace:
new_word_array.extend(dict_of_words_to_replace[word])
else:
new_word_array.append(word)
return new_word_array
|
5e763a8f0af48b93c0eeeec4414e411dd4e2d69b
| 31,924 |
import hashlib
def md5sum(targetfile):
"""md5sum a file. Return the hex digest."""
digest = hashlib.md5()
with open(targetfile, 'rb') as f:
chunk = f.read(1024)
while chunk != "":
digest.update(chunk)
chunk = f.read(1024)
return digest.hexdigest()
|
0a599cbdcfcb1061a6577c3db2947f4f08425fae
| 31,928 |
def check_if_only_decoys(sequences):
"""
Check if the sequences to consolidate are composed only of decoys
"""
only_decoys = True
for sequence in sequences:
if 'decoy' not in sequence.split()[2]:
only_decoys = False
break
return only_decoys
|
aeb65a261bcea6db80cd7a81b566463ad3d0414f
| 31,934 |
def normalised_cooperation(cooperation, turns, repetitions):
"""
The per-turn normalised cooperation matrix for a tournament of n repetitions.
Parameters
----------
cooperation : list
The cooperation matrix (C)
turns : integer
The number of turns in each round robin.
repetitions : integer
The number of repetitions in the tournament.
Returns
-------
list
A matrix (N) such that:
N = C / t
where t is the total number of turns played in the tournament.
"""
turns = turns * repetitions
return[
[1.0 * element / turns for element in row]
for row in cooperation]
|
9d840592df4f538e30cc961aa6a51934a351006c
| 31,939 |
def truncate_string_end(string, length=40):
"""
If a string is longer than "length" then snip out the middle and replace with an
ellipsis.
"""
if len(string) <= length:
return string
return f"{string[:length-3]}..."
|
d1dfb8ea9ce82fd27777f02b5f01d35c1af4dfa8
| 31,943 |
import requests
import json
def get_todays_percent_change_of_symbol(symbol):
"""
fetch todays change in percent for the given symbol name
:param symbol: ticker name which will be queried
:return: todaysChangePercent
"""
p_auth = "Zay2cQZwZfUTozLiLmyprY4Sr3uK27Vp"
query = """https://api.polygon.io/v2/snapshot/locale/us/markets/stocks/tickers/""" + symbol + """?&apiKey=""" + p_auth
print(query)
response = requests.get(query)
json_data = json.loads(response.text)
print(json_data)
try:
change = json_data["ticker"]["todaysChangePerc"]
return change
except:
return None
|
16273218c5197171426071399151ce2c16d6c106
| 31,944 |
import re
def get_single_junction_overhang(cigar):
"""
Returns the number of reads left/right of a junction as indicated
by the LEFTMOST N in a cigar string. Return -1, -1 for reads that don't span
junctions.
:param cigar: string
:return left: int
:return right: int
"""
cigar_overhang_regex = r"(\d+)M[\d]+N(\d+)M"
overhangs = re.findall(cigar_overhang_regex, cigar)
if overhangs:
return int(overhangs[0][0]), int(overhangs[0][1])
else:
return -1, -1
|
96331b12ba05eb13ae783aab76589a5556fb1166
| 31,947 |
from typing import Sequence
def get_problem_type_input_args() -> Sequence[str]:
"""Return ``typing.get_args(ProblemTypeInput)``."""
return ("trivial-gcd", "nontrivial-gcd", "trivial-factor", "nontrivial-factor")
|
937759fde8ebeb0cf0666f83e7e3741720eac324
| 31,955 |
def selection_sort(numbs: list) -> list:
"""
Go through the list from left to right and search for the
minimum. Once the minimum is found, swap it with the
element at the end of the array. Repeat the same procedure
on the subarray that goes from the element after 'i' to the
end, until the array is sorted (i.e. when the subarray is
composed of only one element).
:param numbs: The array to be sorted
:return: The sorted array
"""
for i in range(len(numbs)):
minimum = i
for j in range(i + 1, len(numbs)):
if numbs[minimum] > numbs[j]:
minimum = j
numbs[i], numbs[minimum] = numbs[minimum], numbs[i]
return numbs
|
1d1a693a83c30753bb2829a18d7fd65d7f42b90d
| 31,957 |
import hashlib
def generate_sha256_hash(string_to_hash: str):
"""Return the sha256 hash of the string."""
return hashlib.sha256(f"{string_to_hash}".encode()).hexdigest()
|
7691b6ec1939f30cd7f35861abb8cef33feab448
| 31,960 |
import re
def similar_strings(s1, s2):
"""
Return true if at least half of the words in s1 are also in s2.
>>> assert similar_strings('1 2 3', '2 1 4')
>>> assert not similar_strings('1 2 3', '5 1 4')
"""
w1 = set(re.split(r'\W+', s1))
w2 = set(re.split(r'\W+', s2))
threshold = len(w1) // 2 + 1
return len(w1 & w2) >= threshold
|
c0d11d96e9d55b5774b718ba27f7382ac8460cf5
| 31,968 |
import torch
def to_tensor(data, dtype=None):
"""Convert the data to a torch tensor.
Args:
data (array like): data for the tensor. Can be a list, tuple,
numpy ndarray, scalar, and other types.
dtype (torch.dtype): dtype of the converted tensors.
Returns:
A tensor of dtype
"""
if not torch.is_tensor(data):
# as_tensor reuses the underlying data store of numpy array if possible.
data = torch.as_tensor(data, dtype=dtype).detach()
return data
|
d51fe5fcae8a32134eab771b302c08c609dda63a
| 31,970 |
def split_pair_insertion_rules(rule: str) -> tuple[str, str]:
"""Split pair insertion rule of the form 'XY -> Z' and return in the form 'XY', 'XZ'."""
mapping = rule.split(" -> ")
return mapping[0], mapping[0][0] + mapping[1]
|
eb84b743e5b42791d5872e4c7a6ac5d91e98829a
| 31,971 |
def itoa(value, alphabet, padding=None):
"""
Converts an int value to a str, using the given alphabet.
Padding can be computed as: ceil(log of max_val base alphabet_len)
"""
if value < 0:
raise ValueError("Only positive numbers are allowed")
elif value == 0:
return alphabet[0]
result = ""
base = len(alphabet)
while value:
value, rem = divmod(value, base)
result = alphabet[rem] + result
if padding:
fill = max(padding - len(result), 0)
result = (alphabet[0] * fill) + result
return result
|
506c9b809651eb8fc0fc3fcf5dc97a56d6350bf7
| 31,973 |
import re
def condense(input_string):
"""
Trims leadings and trailing whitespace between tags in an html document
Args:
input_string: A (possible unicode) string representing HTML.
Returns:
A (possibly unicode) string representing HTML.
Raises:
TypeError: Raised if input_string isn't a unicode string or string.
"""
try:
assert isinstance(input_string, str)
except AssertionError:
raise TypeError
removed_leading_whitespace = re.sub('>\s+', '>', input_string).strip()
removed_trailing_whitespace = re.sub('\s+<', '<', removed_leading_whitespace).strip()
return removed_trailing_whitespace
|
ee3a73f6d17914eaa2079111c79151833d3648f2
| 31,979 |
import math
def complex_abs_impl(context, builder, sig, args):
"""
abs(z) := hypot(z.real, z.imag)
"""
def complex_abs(z):
return math.hypot(z.real, z.imag)
return context.compile_internal(builder, complex_abs, sig, args)
|
f5cf9bb164bd89233c2aef6e3201fcb75bef8b37
| 31,980 |
import base64
import requests
def get_as_base64(url):
"""
Encode the response of a url in base64
Args:
url (str): The API URL to fetch
Returns:
the base64 string encoded
"""
return base64.b64encode(requests.get(url).content)
|
5924636566f9b501a5b865e9ce0ba6bc5672dd20
| 31,990 |
def render_command_exception(e):
"""
Return a formatted string for an external-command-related exception.
Parameters:
e: the exception to render
"""
if isinstance(e, OSError):
return 'Details: [Errno {0}] {1}'.format(e.errno, e.strerror)
else:
return 'Details: {0}'.format(e)
|
c2dbbaf3b634d41aebfe551064d4b9870f0d4131
| 31,991 |
def _translate(num_time):
"""Translate number time to str time"""
minutes, remain_time = num_time // 60, num_time % 60
str_minute, str_second = map(str, (round(minutes), round(remain_time, 2)))
str_second = (str_second.split('.')[0].rjust(2, '0'), str_second.split('.')[1].ljust(2, '0'))
str_time = str_minute.rjust(2, '0') + f':{str_second[0]}.{str_second[1]}'
return str_time
|
af49424d3b9c6dfb660955b604c33e9a31e1c3de
| 31,992 |
def basic_word_sim(word1, word2):
"""
Simple measure of similarity: Number of letters in common / max length
"""
return sum([1 for c in word1 if c in word2]) / max(len(word1), len(word2))
|
ed9f8b79efefd9cca673f681a976120aaf8e9fe1
| 31,993 |
def fix_nested_filter(query, parent_key):
"""
Fix the invalid 'filter' in the Elasticsearch queries
Args:
query (dict): An Elasticsearch query
parent_key (any): The parent key
Returns:
dict: An updated Elasticsearch query with filter replaced with query
"""
if isinstance(query, dict):
if 'filter' in query and parent_key == 'nested':
copy = dict(query)
if 'query' in copy:
raise Exception("Unexpected 'query' found")
copy['query'] = copy['filter']
del copy['filter']
return copy
else:
return {
key: fix_nested_filter(value, key) for key, value in query.items()
}
elif isinstance(query, list):
return [
fix_nested_filter(piece, key) for key, piece in enumerate(query)
]
else:
return query
|
691f5f39720c8c608ab6e9828da67f625b3849f0
| 31,995 |
import hashlib
def hash_file_at_path(filepath: str, algorithm: str) -> str:
"""Return str containing lowercase hash value of file at a file path"""
block_size = 64 * 1024
hasher = getattr(hashlib, algorithm)()
with open(filepath, "rb") as file_handler:
while True:
data = file_handler.read(block_size)
if not data:
break
hasher.update(data)
return hasher.hexdigest()
|
6c69ddb0fbb15890fd2d616808e00db04e8b14b3
| 31,996 |
import math
def apparent_to_absolute(d_pc, mag):
"""
Converts apparent magnitude to absolute magnitude, given a distance to the object in pc.
INPUTS
d_pc: Distance to the object in parsecs.
mag: Apparent magnitude.
OUTPUT
absMag: Absolute magnitude.
"""
absMag = mag - 5.0 * math.log10(d_pc / 10.0)
return absMag
|
7348730a7d932c8eb55bf5145e17186164d37cb8
| 31,997 |
def get_vocabulary(dataset, min_word_count=0):
"""
Filter out words in the questions that are <= min_word_count and create a vocabulary from the filtered words
:param dataset: The VQA dataset
:param min_word_count: The minimum number of counts the word needs in order to be included
:return:
"""
counts = {}
print("Calculating word counts in questions")
for d in dataset:
for w in d["question_tokens"]:
counts[w] = counts.get(w, 0) + 1
vocab = [w for w, n in counts.items() if n > min_word_count]
# cw = sorted([(n, w) for w, n in counts.items() if n > min_word_count], reverse=True)
# print('\n'.join(map(str, cw[:20])))
# Add the 'UNK' token
vocab.append('UNK') # UNK has it's own ID
return vocab
|
1ab05b1ba4df9251ce6077f9e3bc20b590bafe93
| 31,998 |
def n_subsystems(request):
"""Number of qubits or modes."""
return request.param
|
28ed56cc26e4bfa1d607bf415b3a7611eb030a27
| 31,999 |
def parse_ehdn_info_for_locus(ehdn_profile, locus_chrom, locus_start, locus_end, margin=700, motifs_of_interest=None):
"""Extract info related to a specific locus from an ExpansionHunterDenovo profile.
NOTE: Here "irr" refers to "In-Repeat Read" (see [Dolzhenko 2020] for details).
Args:
ehdn_profile (dict): dictionary representing the data from an EHdn str_profile.json file.
See https://github.com/Illumina/ExpansionHunterDenovo/blob/master/documentation/05_Computing_profiles.md
for a description of the ExpansionHunterDenovo str_profile output file.
locus_chrom (str): locus chromosome
locus_start (int): locus start coord
locus_end (int): locus end coord
margin (int): when looking for anchored-IRR regions, include regions this many base pairs away from the locus.
This should be approximately the fragment-length or slightly larger (700 is a reasonable value for
Illumina short read data).
motifs_of_interest (set): optionally, a set of motifs to include in the results even if EHdn found only
paired-IRRs and no anchored IRRs near the given locus.
Return:
List of dictionaries where each dictionary represents a region and has this schema:
{
"region": "chr18:52204909-52204910", # EHdn region containing anchored IRRs
"repeat_unit": "CAG",
"n_anchored_regions_for_this_repeat_unit": 3, # number of anchored regions for this locus
"anchored_irr_count_for_this_repeat_unit_and_region": 5, # number of IRRs found
"total_anchored_irr_count_for_this_repeat_unit": 10, # number of IRRs found across all regions that have this same repeat unit
"paired_irr_count_for_this_repeat_unit": 5, # number of paired IRRs
"total_irr_count_for_this_repeat_unit_and_region": 7.5 # anchored_irr_count_for_this_repeat_unit_and_region plus the total_anchored_irr_count_for_this_repeat_unit weighted by the fraction of anchored IRRs at the locus of interest vs. all other loci
"sample_read_depth": 30.6, # overall sample coverage computed by EHdn
}
"""
locus_chrom = locus_chrom.replace("chr", "")
sample_read_depth = ehdn_profile.pop("Depth")
sample_read_length = ehdn_profile.pop("ReadLength")
records = []
for repeat_unit, irr_counts in ehdn_profile.items(): # contains keys: IrrPairCounts, RegionsWithIrrAnchors
total_anchored_irr_count = irr_counts.get("AnchoredIrrCount", 0)
irr_pair_count = irr_counts.get("IrrPairCount", 0)
anchored_irr_regions = irr_counts.get("RegionsWithIrrAnchors", {})
for region, read_count in anchored_irr_regions.items():
chrom, start_and_end = region.split(":")
chrom = chrom.replace("chr", "")
start, end = map(int, start_and_end.split("-"))
overlaps_locus = ((chrom == locus_chrom) and
(end >= locus_start - margin) and
(start <= locus_end + margin))
if not overlaps_locus:
continue
records.append({
"region": region,
"repeat_unit": repeat_unit,
"n_anchored_regions_for_this_repeat_unit": len(anchored_irr_regions),
"anchored_irr_count_for_this_repeat_unit_and_region": read_count,
"total_anchored_irr_count_for_this_repeat_unit": total_anchored_irr_count,
"paired_irr_count_for_this_repeat_unit": irr_pair_count,
"total_irr_count_for_this_repeat_unit_and_region":
read_count + irr_pair_count * read_count / float(total_anchored_irr_count),
"sample_read_depth": sample_read_depth,
})
break
else:
# If none of the regions associated with `repeat_unit` overlap specified locus,
# and region isn't already appended to `records`/loop didn't exit with `break` statement, then
# check if `repeat_unit` is a known repeat unit and if there are irr_pairs
if motifs_of_interest and repeat_unit in motifs_of_interest:
records.append({
"region": None,
"repeat_unit": repeat_unit,
"n_anchored_regions_for_this_repeat_unit": 0,
"anchored_irr_count_for_this_repeat_unit_and_region": 0,
"total_anchored_irr_count_for_this_repeat_unit": total_anchored_irr_count,
"paired_irr_count_for_this_repeat_unit": irr_pair_count,
"total_irr_count_for_this_repeat_unit_and_region": irr_pair_count,
"sample_read_depth": sample_read_depth,
})
return records, sample_read_depth, sample_read_length
|
93eec9ae09b03539112dfb6715c2e831293e4036
| 32,000 |
def preorder_traversal_iterative(root):
"""
Return the preorder traversal of nodes' values.
- Worst Time complexity: O(n)
- Worst Space complexity: O(n)
:param root: root node of given binary tree
:type root: TreeNode or None
:return: preorder traversal of nodes' values
:rtype: list[int]
"""
# basic case
if root is None:
return []
# use stack to traverse
result = []
stack = [root]
while len(stack) != 0:
root = stack.pop()
result.append(root.val)
if root.right is not None:
stack.append(root.right)
if root.left is not None:
stack.append(root.left)
return result
|
202ebfa1e5ebb7a9f2632c66e9b7fe24f0041746
| 32,004 |
def lbm_lbm2grains(lbm_lbm):
"""lbm/lbm -> grains"""
return lbm_lbm * 7000.
|
82de5e1a6bfdd9956c8719183d95822bad551c92
| 32,005 |
def reformat_timezone_offset(in_date_string):
"""
Reformats the datetime string to get rid of the colon in the timezone offset
:param in_date_string: The datetime string (str)
:return: The reformatted string (str)
"""
out_data = in_date_string
if ":" == in_date_string[-3:-2]:
out_data = out_data[:-3] + out_data[-2:]
return out_data
|
279fbf00ff51f0926f3d284faee66a43327298e4
| 32,006 |
import random
def select_starting_point(map):
"""Return at random one possible starting point [row_index, column_index]
"""
starting_points = []
for row_idx, row in enumerate(map):
for col_idx, col in enumerate(row):
if col == 's':
starting_points.append([row_idx, col_idx])
return random.choice(starting_points)
|
eb7ae107aeba2e846913b85fce73991da08b3565
| 32,012 |
def check_freq(dict_to_check, text_list):
"""
Checks each given word's freqency in a list of posting strings.
Params:
words: (dict) a dict of word strings to check frequency for, format:
{'languages': ['Python', 'R'..],
'big data': ['AWS', 'Azure'...],
..}
text_list: (list) a list of posting strings to search in
Returns:
freq: (dict) frequency counts
"""
freq = {}
# Join the text together and convert words to lowercase
text = ' '.join(text_list).lower()
for category, skill_list in dict_to_check.items():
# Initialize each category as a dictionary
freq[category] = {}
for skill in skill_list:
if len(skill) == 1: # pad single letter skills such as "R" with spaces
skill_name = ' ' + skill.lower() + ' '
else:
skill_name = skill.lower()
freq[category][skill] = text.count(skill_name)
return freq
|
c36813b876ff62b26c5caecd58dcafdd0bfc6ded
| 32,014 |
def parse_package_arg(name, arg):
"""Make a command-line argument string specifing whether and which verison of a package to install.
Args:
name: The name of the package.
arg: True if the package is required, False if the package is not required,
or a string containing a version number if a specific version of the package
is required.
Returns:
A string which can be used as an argument to the virtualenv command.
"""
if arg == True:
option = ""
elif arg == False:
option = f"--no-{name}"
else:
option = f"--{name}={arg}"
return option
|
360cd93c96ab06f55ef8145b32c7c074d9abf349
| 32,015 |
def fetch_diagnoses(cursor):
""" Returns list of diagnoses """
cursor.execute("""SELECT * FROM diagnosis""")
return cursor.fetchall()
|
d653451503cdd2dccc96ccd0ad79a4488be88521
| 32,017 |
def factorial(n):
"""
Returns the factorial of a number.
"""
fact = 1.0
if n > 1:
fact = n * factorial(n - 1)
return fact
|
7c20382a053cc3609fa041d1920d23b884b8aa0b
| 32,018 |
def parse_copy_startup_config_running_config(raw_result):
"""
Parse the 'copy startup-config running-config' command raw output.
:param str raw_result: copy startup-config running-config
raw result string.
:rtype: dict
:return: The parsed result of the copy startup-config running-config:
::
{
'status': 'success'
'reason': 'Copied startup-config to running-config'
}
"""
if (
"Copy in progress " in raw_result and
"Success" in raw_result
):
return {
"status": "success",
"reason": "Copied startup-config to running-config"
}
if (
"Copy in progress " in raw_result and
"ERROR: Copy failed" in raw_result
):
return {
"status": "failed",
"reason": "Copy startup-config to running-config failed"
}
|
02f71846d2ba5b80469aac64f586f17eb135513a
| 32,020 |
def fizzbuzz() -> list:
"""Return Fizz Buzz from 1 to 100.
Return a list of numbers from 1 to 100,
replacing multiples of three with Fizz,
multiples of five with Buzz and
multiples of both with FizzBuzz.
"""
fizzbuzz_list = []
for num in range(1, 101):
if num % 3 == 0 and num % 5 == 0:
fizzbuzz_list.append("FizzBuzz")
elif num % 3 == 0:
fizzbuzz_list.append("Fizz")
elif num % 5 == 0:
fizzbuzz_list.append("Buzz")
else:
fizzbuzz_list.append(num)
return fizzbuzz_list
|
fb068b55a331d836ea2fa68d910714fb242f9318
| 32,022 |
def get_graph_element_name(elem):
"""Obtain the name or string representation of a graph element.
If the graph element has the attribute "name", return name. Otherwise, return
a __str__ representation of the graph element. Certain graph elements, such as
`SparseTensor`s, do not have the attribute "name".
Args:
elem: The graph element in question.
Returns:
If the attribute 'name' is available, return the name. Otherwise, return
str(fetch).
"""
if hasattr(elem, "attr"):
val = elem.attr("name")
else:
val = elem.name if hasattr(elem, "name") else str(elem)
return val
|
fa91db4237ba5d89bd475deb1ee04e3307098c93
| 32,025 |
import tqdm
def get_unique_value_used(all_sampled_adj_freq):
"""
Description
-----------
Get the set of coordinates for which calculation is need to compute the mean and the standard deviation
Parameters
----------
all_sampled_adj_freq : list
list of sampled adjacency matrices
Returns
-------
list
list of coordinates
"""
tuples_set = set()
for sampled_adj in tqdm.tqdm(all_sampled_adj_freq):
i_list = sampled_adj.nonzero()[0].tolist()
j_list = sampled_adj.nonzero()[1].tolist()
for i, j in zip(i_list,j_list):
tuples_set.update([(i, j)])
return list(tuples_set)
|
c61d21d1e7d85fd2568a4375bd221f59fa0576fb
| 32,034 |
def getCriticalElementIdx(puck):
"""Returns the index of the most critical element
:param puck: 2d array defining puckFF or puckIFF for each element and layer
"""
# identify critical element
layermax = puck.max().argmax()
return puck.idxmax()[layermax], layermax
|
d786775a08b7eedb7c5eeb2fbb6b63a4a2d75d32
| 32,036 |
def get_idx(prefix, itf):
"""
Gets the index of an interface string
>>> get_idx('et', 'et12')
12
>>> get_idx('ap', 'ap32')
32
"""
return int(itf[len(prefix) :])
|
0a4b1e49ad6c0a7e9a2a9ae1903480a3bf73d70e
| 32,042 |
def split_to_and_since_delong(df):
"""Split the frame into time periods that DeLong analyzed and those since his article.
:param df: The frame to split
:return: Tuple with (to_delong, since_delong)
"""
to_delong_index = [d for d in df.index if d.year <= 2004 and d.month < 6]
since_delong_index = [d for d in df.index if d.year > 2004 or (d.year is 2004 and d.month >= 6)]
return df.loc[to_delong_index], df.loc[since_delong_index]
|
9037acca6037ba4888b5ec1b3c8099e0216022d7
| 32,045 |
import logging
def calc_voltage_extremes(volt):
"""This function calculates the extreme values in the ECG data.
This functon takes the volt list as input which is the magnitude
of the ECG data, and finds the extreme values using the max() and
min() values. The max and min values are returned as a tuple.
Args:
volts (list): list of ECG voltage magnitudes
Returns:
tuple: (min, max)
"""
logging.info('Finding max and min ECG values')
maximum = max(volt)
minimum = min(volt)
ans = (minimum, maximum)
return ans
|
aa6e3fa75c15fdea87052f357b885398dd6adcd4
| 32,046 |
import typing
from typing import TypeGuard
import asyncio
def is_async_iterator(obj: typing.Any) -> TypeGuard[typing.AsyncIterator[object]]:
"""Determine if the object is an async iterator or not."""
return asyncio.iscoroutinefunction(getattr(obj, "__anext__", None))
|
160d1dd2d5f1c9d6d2637e6006ae0ef268c7810f
| 32,050 |
import math
def round_up_to_multiple(x, base):
"""Round up the given number to the nearest multiple of the given base number."""
return math.ceil(float(x) / float(base)) * base
|
09ef5da40f94bd713bfab3cd5e610f952bf0bf92
| 32,070 |
def get(self, url, **kwargs):
"""Sends a GET request. Returns :class:`Response` object.
:param url: URL for the new :class:`Request` object.
:param \*\*kwargs: Optional arguments that ``request`` takes.
"""
kwargs.setdefault('allow_redirects', True)
return self.request('GET', url, **kwargs)
|
8b63a8e62d8185048448f93e6511b8069bc295c6
| 32,071 |
def rotate(items: list, k: int) -> list:
"""Rotate a list by k elements."""
items = items[k:] + items[:k]
return items
|
c649f79d4ce3d501a9042288e6f83369a7899a84
| 32,073 |
from typing import Dict
from typing import Any
def _get_fp_len(fp_params: Dict[str, Any]) -> int:
"""
Return the length of the fingerprint with the given parameters.
Parameters
----------
fp_params : Dict[str, Any]
Parameters to get the fingerprint length from
Returns
-------
int
The fingerprint length belonging to the given fingerprint parameters
"""
return fp_params['nBits'] if 'nBits' in fp_params else fp_params['fpSize'] if 'fpSize' in fp_params else 166
|
944e952ad07fa0fa5ea11d5bff8e46b98c1ab87e
| 32,078 |
def flatesteam_feed(Q_feed, r_steam):
"""
Calculates the flow rate steam of boiler.
Parameters
----------
Q_feed : float
The heat load feed of heat exchanger, [W] [J/s]
r_steam : float
The heat vaporazation of dist [J/kg]
Returns
-------
flatesteam_feed : float
The flow rate steam of feed heat exchanger, [W] [J/s]
References
----------
Дытнерский, формула 2.3, стр.45
"""
return Q_feed / r_steam
|
ad4a0aa995c9333d70b8fbd003bb03f8bb231018
| 32,081 |
def convert_to_ids(dataset, vocabulary):
"""Convert tokens to integers.
:param dataset a 2-d array, contains sequences of tokens
:param vocabulary a map from tokens to unique ids
:returns a 2-d arrays, contains sequences of unique ids (integers)
"""
return [[vocabulary[token] for token in sample] for sample in dataset]
|
153094a0fcc57880193a441fde0927010b583d19
| 32,088 |
def getColumnLocations(columnNumber):
"""
Return a list of all nine locations in a column.
:param int rowNumber: Column
:return: List of tuples
:rtype: list
"""
return [(row, columnNumber) for row in range(9)]
|
8a7876284327c52badc15ba26a28856018790341
| 32,089 |
from typing import Dict
import torch
def clone_tensors(tensors: Dict[int, torch.Tensor]) -> Dict[int, torch.Tensor]:
"""
Clones all tensors in dictionary.
Args:
tensors (dict): Dictionary of tensors with string keys.
Returns:
New dictionary with cloned tensors.
"""
return {idx: tensor.clone() for idx, tensor in tensors.items()}
|
af5ae8f368c450d34ec412bd769abe03d77fd257
| 32,091 |
def lstripw(string, chars):
"""Strip matching leading characters from words in string"""
return " ".join([word.lstrip(chars) for word in string.split()])
|
17b7bffd3e6f5e02cc184c1976eeedd93ebb4f3e
| 32,092 |
def is_folder_url(url_parts):
"""
Determine if the given URL points to a folder or a file:
if URL looks like:
- www.site.com/
- www.site.com
then ==> Return True
if URL looks like:
- www.site.com/index.php
- www.site.com/index.php?id=1&name=bb
- www.site.com/index.php/id=1&name=bb
then ==> Return False
:param url_parts: Parsed URL to test.
:type url_parts: ParsedURL
:return: True if it's a folder, False otherwise.
:rtype: bool
"""
return url_parts.path.endswith('/') and not url_parts.query_char == '/'
|
c5ba46005e6c82cbbcb2ef914947b5a154bdd3b0
| 32,094 |
def formatear_camino(pila):
"""Convierte una lista de ciudades en un string separado por ->"""
return " -> ".join(map(str,pila))
|
3b85be818e8202e1b3626ce2020d91dd687e5383
| 32,095 |
import re
def check_word(word, string):
"""
function will check if the word exists in a string
uses word boundary for search
word: is the word to be searched
string: string to perform the operation on
"""
regexStr = re.search(r'(\b%s\b)' % word, string)
if regexStr is not None:
return True
return False
|
da0f559b714bff6ec7a41a892e4c313a4eef13c0
| 32,096 |
def GetSettingTemplate(setting):
"""Create the template that will resolve to a setting from xcom.
Args:
setting: (string) The name of the setting.
Returns:
A templated string that resolves to a setting from xcom.
"""
return ('{{ task_instance.xcom_pull(task_ids="generate_workflow_args"'
').%s }}') % (
setting)
|
8d8c1c7b58d91b1d0a9561fa504887e725416fae
| 32,097 |
import inspect
import re
def getargspec(fn):
"""
Similar to Python 2's :py:func:`inspect.getargspec` but:
- In Python 3 uses ``getfullargspec`` to avoid ``DeprecationWarning``.
- For builtin functions like ``torch.matmul`` or ``numpy.matmul``, falls back to
attempting to parse the function docstring, assuming torch-style or numpy-style.
"""
assert callable(fn)
try:
args, vargs, kwargs, defaults, _, _, _ = inspect.getfullargspec(fn)
except TypeError:
# Fall back to attempting to parse a PyTorch/NumPy-style docstring.
match = re.match(r"\s*{}\(([^)]*)\)".format(fn.__name__), fn.__doc__)
if match is None:
raise
parts = re.sub(r"[\[\]]", "", match.group(1)).split(", ")
args = [a.split("=")[0] for a in parts if a not in ["/", "*"]]
if not all(re.match(r"^[^\d\W]\w*\Z", arg) for arg in args):
raise
vargs = None
kwargs = None
defaults = () # Ignore defaults.
return args, vargs, kwargs, defaults
|
3aa76a3915e42e9f90f0326c37b94d434eed588a
| 32,103 |
import platform
def format_build_command(command):
"""Format a command string so that it runs in the Anroid build environment.
Args:
command: Command to format.
Returns:
Command modified to run in the Android build environment.
"""
environment = []
if platform.system() == 'Darwin':
environment.append('export BUILD_MAC_SDK_EXPERIMENTAL=1')
return ' && '.join(environment + ['source ./build/envsetup.sh', command])
|
4a0eb92d85f99c01c14a94b8df4fd996d9c23ba2
| 32,104 |
def create_additive_function(increment):
"""
return the addition of a fixed value as a function
:param increment: float
value that the returned function increments by
:return: function
function that can increment by the value parameter when called
"""
return lambda value: value + increment
|
b7432eaa11dcea49bb98ec2c6d3e0cc9dd979145
| 32,108 |
def get_dense_network_shapes(n_layers, hidden_size, n_features, n_outputs):
"""
Helper function to generate the input/output shapes for the layers of a densely connected network
:param n_layers: Number of hidden layers in the network
:param hidden_size: How many hidden neurons to use
:param n_features: Number of features in the original input
:param n_outputs: Output size/number of target variables
:return:
"""
shapes = {'input': (n_features, hidden_size),
'hidden': [],
'output': (hidden_size * (n_layers+1) + n_features, n_outputs)}
for i in range(n_layers):
shapes['hidden'].append((hidden_size * (i + 1) + n_features, hidden_size))
return shapes
|
ea5e74fcdc3fe0b923f1377e202284f0576bff87
| 32,112 |
def list_type_check(lst, data_type):
"""
Checks if each element of lst has a given type.
:param lst: List = list of objects
:param data_type: type = estimated type for the objects
:return: bool = true if all objects in list have the type data_type
"""
return all([type(e) == data_type for e in lst])
|
e0c774ddf09a843e5f2f52f7cbf1e332f3f862ad
| 32,113 |
import collections
def characters(info, error, otext, tFormats, *tFeats):
"""Computes character data.
For each text format, a frequency list of the characters in that format
is made.
Parameters
----------
info: function
Method to write informational messages to the console.
error: function
Method to write error messages to the console.
otext: iterable
The data of the *otext* feature.
tFormats:
Dictionary keyed by text format and valued by the tuple of features
used in that format.
tFeats: iterable
Each tFeat is the name and the data of a text feature.
i.e. a feature used in text formats.
Returns
-------
dict
Keyed by format valued by a frequency dict, which is
itself keyed by single characters and valued by the frequency
of that character in the whole corpus when rendered with that format.
"""
charFreqsByFeature = {}
for (tFeat, data) in tFeats:
freqList = collections.Counter()
for v in data.values():
freqList[v] += 1
charFreq = collections.defaultdict(lambda: 0)
for (v, freq) in freqList.items():
for c in str(v):
charFreq[c] += freq
charFreqsByFeature[tFeat] = charFreq
charFreqsByFmt = {}
for (fmt, tFeatures) in sorted(tFormats.items()):
charFreq = collections.defaultdict(lambda: 0)
for tFeat in tFeatures:
thisCharFreq = charFreqsByFeature[tFeat]
for (c, freq) in thisCharFreq.items():
charFreq[c] += freq
charFreqsByFmt[fmt] = sorted(x for x in charFreq.items())
return charFreqsByFmt
|
d8e4cf16a3df05c18394483fc008fb453b6ab352
| 32,116 |
import xml.dom.minidom
def format_xml(xml_str: str, exceptions: bool=False):
"""
Formats XML document as human-readable plain text.
:param xml_str: str (Input XML str)
:param exceptions: Raise exceptions on error
:return: str (Formatted XML str)
"""
try:
return xml.dom.minidom.parseString(xml_str).toprettyxml()
except Exception:
if exceptions:
raise
return xml_str
|
517dcd73dfeebaeb4828be2e57e3ab02042001fd
| 32,126 |
def sub(x,y):
"""
Returns the difference x-y
Parameter x: The value to subtract from
Precondition: x is a number
Parameter y: The value to subtract
Precondition: y is a number
"""
return x-y
|
9c7d9fcef236dff3e5d4b9840c082cbeacc9c7e5
| 32,129 |
def excel_column_label(n):
"""
Excel's column counting convention, counting from A at n=1
"""
def inner(n):
if n <= 0:
return []
if not n:
return [0]
div, mod = divmod(n - 1, 26)
return inner(div) + [mod]
return "".join(chr(ord("A") + i) for i in inner(n))
|
1555dcc33420d107c9aa74ce4d7f0395ae6b3029
| 32,130 |
def find_data_source_url(a_name, url_prefs):
"""Return the url prefix for data source name, or None."""
for row in url_prefs:
if row[0] == a_name:
return row[1]
return None
|
d91960040d4e572ff4c882a53f6ce66460253d9c
| 32,135 |
def tile(tensor, dim, repeat):
"""Repeat each element `repeat` times along dimension `dim`"""
# We will insert a new dim in the tensor and torch.repeat it
# First we get the repeating counts
repeat_dims = [1] * len(tensor.size())
repeat_dims.insert(dim + 1, repeat)
# And the final dims
new_dims = list(tensor.size())
new_dims[dim] = 2 * tensor.size(dim)
# Now unsqueeze, repeat and reshape
return tensor.unsqueeze(dim + 1).repeat(*repeat_dims).view(*new_dims)
|
a8386c5ed8d6f89f226d64271a8fbddbf0ead543
| 32,138 |
def get_lowest_bits(n, number_of_bits):
"""Returns the lowest "number_of_bits" bits of n."""
mask = (1 << number_of_bits) - 1
return n & mask
|
086a48a359984bf950e44e49648bfcac05382c84
| 32,140 |
def search_step(f, x_k, alf, p_k):
"""
This function performs an optimization step given a step length and step direction
INPUTS:
f < function > : objective function f(x) -> f
x_k < tensor > : current best guess for f(x) minimum
alf < float > : step length
p_k < tensor > : step direction
OUTPUTS:
x_(k+1) < tensor > : new best guess for f(x) minimum
f_(k+1) < tensor > : function evaluated at new best guess
"""
x_k1 = x_k + alf*p_k
f_k1 = f(x_k1)
return x_k1, f_k1
|
51d634ef8a6196a884a0c2ec855fb785acf65db5
| 32,141 |
def split_str(string):
"""Split string in half to return two strings"""
split = string.split(' ')
return ' '.join(split[:len(split) // 2]), ' '.join(split[len(split) // 2:])
|
01268b6c47a4181c7a2e04cacf7651a8c0c81c50
| 32,143 |
from typing import Tuple
def get_default_span_details(scope: dict) -> Tuple[str, dict]:
"""Default implementation for get_default_span_details
Args:
scope: the asgi scope dictionary
Returns:
a tuple of the span name, and any attributes to attach to the span.
"""
span_name = (
scope.get("path", "").strip()
or f"HTTP {scope.get('method', '').strip()}"
)
return span_name, {}
|
6177c4f32c5837752cce9c8b346350b480bfdcd2
| 32,144 |
def process_name_strings(language_data, df):
"""
Returns a dictionary of names for each of the different items specified in the DataFrame (df).
The key denotes the row_number of each item. A nested dictionary is the value, with each language code as the key, and the value the name.
If a language does not have a name/translation, None is provided in its place.
The default language (typically EN) is specified as 'default'. This should be used as a fallback.
"""
return_object = {}
included_languages = []
def map_to_dict(return_object, language_code, string_dict):
"""
Nested function that takes data from the DataFrame and puts it into the return_object.
"""
for row_number, name in string_dict.items():
if row_number not in return_object.keys():
return_object[row_number] = {}
name = name.strip()
if name == '':
return_object[row_number][language_code] = None
else:
return_object[row_number][language_code] = name
# Iterate over each of the columns, extracting the "name " fields.
# Determines what languages we have available in the DataFrame.
for column in df.columns:
if column.startswith('name'):
included_languages.append(column.lower().split()[-1])
# Build up the dictionary to return.
for language_code in language_data:
try:
string_name = df[f'name {language_code}']
map_to_dict(return_object, language_code, string_name.to_dict())
if language_data[language_code]['DEFAULT']:
map_to_dict(return_object, 'default', string_name.to_dict())
except KeyError:
continue
# Fill in the blanks - check each language we should be providing support for is mentioned.
# If not, specify None in its place.
for row_number in return_object.keys():
for language_code in language_data:
if language_code not in return_object[row_number].keys():
return_object[row_number][language_code] = None
return return_object
|
f77fd8a83c524f0bca8b0c8c15c2216437492e1f
| 32,150 |
def convert_list_type(x, type=int):
"""Convert elements in list to given type."""
return list(map(type, x))
|
36957a24aaeff11cedd2dcb0715c757b2c627083
| 32,151 |
def getExperimentAccuracy(list_of_results):
"""Returns a simple accuracy for the list of Result objects."""
num_correct, num_total = 0, 0
for result in list_of_results:
if result.isCorrect():
num_correct += 1
num_total += 1
return num_correct / num_total
|
8276e06a41a1105700232ed1ccfb38bd2b3d5063
| 32,152 |
import json
def parser(chunks):
"""
Parse a data chunk into a dictionary; catch failures and return suitable
defaults
"""
dictionaries = []
for chunk in chunks:
try:
dictionaries.append(json.loads(chunk))
except ValueError:
dictionaries.append({
'unparsed': chunk
})
return dictionaries
|
385b73026c079b635b6e33b35bfd8f5ebb453f64
| 32,154 |
def vlan_range_expander(all_vlans):
"""
Function for expanding list of allowed VLANs on trunk interface. Example: `1-4096` -> range(1, 4097). Can be used when trying to figure out whether certain
VLAN is allowed or not. Reverse function is ``vlan_range_shortener``.
:param all_vlans: Either list (`["1-10", "15", "20-30"]`) or string (`"1-10,15,20-30"`) of VLAN range.
:return: List of VLAN numbers (integers).
"""
if isinstance(all_vlans, list):
pass
elif isinstance(all_vlans, str):
all_vlans = all_vlans.split(",")
elif isinstance(all_vlans, int):
all_vlans = [str(all_vlans)]
full_list = []
for vlan in all_vlans:
if "-" in vlan:
temp = vlan.split("-")
full_list = full_list + list(range(int(temp[0]), int(temp[1])+1))
else:
full_list.append(int(vlan))
return full_list
|
5224436c8bf10509df6d8ad52321e7dd9214792a
| 32,163 |
import torch
def to_cuda(data):
"""
put input data into cuda device
"""
if isinstance(data, tuple):
return [d.cuda() for d in data]
elif isinstance(data, torch.Tensor):
return data.cuda()
raise RuntimeError
|
af9820bccbce3369357bf7c5b853efe3e88e052a
| 32,164 |
from typing import Optional
import ast
def get_version_using_ast(contents: bytes) -> Optional[str]:
"""Extract the version from the given file, using the Python AST."""
tree = ast.parse(contents)
# Only need to check the top-level nodes, and not recurse deeper.
version: Optional[str] = None
for child in tree.body:
# Look for a simple string assignment to __version__
if (
isinstance(child, ast.Assign)
and len(child.targets) == 1
and isinstance(child.targets[0], ast.Name)
and child.targets[0].id == "__version__"
and isinstance(child.value, ast.Str)
):
version = child.value.s
break
return version
|
690d4d04fd17263b90fa51a982519f685f9622a4
| 32,167 |
def _arg_scope_func_key(op):
"""Returns a key that can be used to index arg_scope dictionary."""
return getattr(op, '_key_op', str(op))
|
b713202ef1d53650996041bd15655b58f348423a
| 32,168 |
def _maybe_convert_to_int(value):
"""Returns the int representation contained by string |value| if it contains
one. Otherwise returns |value|."""
try:
return int(value)
except ValueError:
return value
|
2e67c4a8f6aa3ef5a0f982c85127f37b60f979ad
| 32,174 |
def get_centroid_idx(centroids, c):
"""
Returns the index of a given centroid c. Assumes that centroids
is the ndarray of shape (k, d) where k is a number of centroids
and d is a number od dimensions.
"""
return centroids.tolist().index(c.tolist())
|
08eae6aaa3ac7933c5f8bca08a9c1c75da26daf0
| 32,176 |
def undo_pad(data, pad_size):
"""Remove padding fromt edges of images
Parameters
----------
data : array-like
padded image
pad_size : array-like
amount of padding in every direction of the image
Returns
-------
data : array-like
unpadded image
"""
if pad_size.ndim == 1 and data.ndim != 1:
raise ValueError("Dimensions do not match")
if data.ndim != pad_size.shape[0]:
raise ValueError("Dimensions do not match")
start = pad_size[:, 0].astype(int)
end = (data.shape - pad_size[:, 1]).astype(int)
coords = list(zip(start, end))
slices = tuple(slice(coord[0], coord[1]) for coord in coords)
data = data[slices]
return data
|
873feb3cf4daaf6153dfe87662ba10b531ba222f
| 32,178 |
def df_to_vega(df):
""" Convert a Pandas dataframe to the format Vega-Lite expects.
"""
return [row[1].to_dict() for row in df.reset_index().iterrows()]
|
6ecbddde38cfc1420370c70a48161e21efd79980
| 32,183 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.