content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def boolean(flag):
"""
Convert string in boolean
"""
s = flag.lower()
if s in ('1', 'yes', 'true'):
return True
elif s in ('0', 'no', 'false'):
return False
raise ValueError('Unknown flag %r' % s)
|
9469314a87b048d428691d06722c374898fb848c
| 32,475 |
import random
def choose(population, weights=None, k=None):
"""
Chooses k times from the given population with an optional weighted probability.
:param population: the population to chose from
:param weights: the weights attached to each population element
:param k: the amount of times to chose
:return: an element of the list if k = None, or a k-sized list of choices
"""
choice = random.choices(population, weights=weights, k=k or 1)
return choice if k else choice[0]
|
4a78dde05dba4f9774ae64f0b85bd89e61204b89
| 32,477 |
def _get_arg_config_file(args):
"""Return String yaml config file path."""
if not args.config_file:
raise ValueError("YAML Config File was not supplied.")
return args.config_file
|
34e4570cee420035cbaeab3c852069c4abf6a3ae
| 32,478 |
def normalize_whitespace(value):
"""Removes repeated whitespace from string"""
value = " ".join(value.split())
return value
|
e268e12665bb50d96c9418dfc999be20a2c96b37
| 32,480 |
def abbr_status(value):
"""
Converts RFC Status to a short abbreviation
"""
d = {'Proposed Standard':'PS',
'Draft Standard':'DS',
'Standard':'S',
'Historic':'H',
'Informational':'I',
'Experimental':'E',
'Best Current Practice':'BCP',
'Internet Standard':'IS'}
return d.get(value,value)
|
08025ed44e9c8ea725755f9a07b6a5a04834f896
| 32,490 |
def encode_base64(base64_string: str) -> bytes:
""" Convert base64 string to bytes. """
return bytes(base64_string, encoding="UTF8")
|
ba0263624b4ce25bac4f19684cee60db351d9b40
| 32,491 |
def between(min, max):
"""
Returns a function to test if a value lies between min and max
"""
def op(x):
if min < x and x < max:
return True
print("ERROR: Value must be between {} and {}".format(min, max))
return False
return op
|
2ccc2b78be3f4a85fb910e392f2c9f291e15d19b
| 32,494 |
async def hello_user(name= 'Regina'):
"""Returns a simple greeting 👋"""
return {'user_name' : f'Hello {name}'}
|
5fb582fed75d9abee001fb2f0c1425d5a0abddf4
| 32,496 |
def _slice_extent_axis(ext_min, ext_max, fctr):
"""Slice an extent into multiple extents along an axis."""
strd = (ext_max - ext_min) / fctr
return [(ext_min + i * strd, ext_max - (fctr - i - 1) * strd) for i in range(fctr)]
|
3365dd289cc822bed0e7c6075587ddae15806c50
| 32,501 |
def encode_special_characters(user_string):
"""
Encode Special Characters for user's search Strings
Args:
user_string(string): raw string to encode
Returns:
Encode string for elasticsearch
"""
if user_string is None:
return ""
sp_chars = ['+', '-', '=', '|', '<', '>', '!', '(', ')', '{', '}', '[', ']', '^', '"', '~', '*', '?', ':', '\\', '/']
# List of special characters can be found here: https://www.elastic.co/guide/en/elasticsearch/reference/2.4/query-dsl-query-string-query.html#_reserved_characters
output_list = []
for char in user_string:
if char in sp_chars:
# replace
output_list.append(char.replace(char, '\\' + char))
else:
output_list.append(char)
return "".join(output_list)
|
00d31e32a823028a08333bd59000f52b64dafcf9
| 32,502 |
from importlib import import_module
from typing import Callable
def import_function(function_path: str) -> Callable:
"""
Import a function from a dotted path.
Example:
>>> import_function("generate_changelog.pipeline.noop_func")
<function noop_func at 0x11016d280>
Args:
function_path: A dotted path to a function
Returns:
The callable function
"""
bits = function_path.split(".")
function_name = bits[-1]
module = import_module(".".join(bits[:-1]))
return getattr(module, function_name)
|
3105abee396d73e3580d737b1149dbdd00e0751b
| 32,507 |
def should_include_rustc_srcs(repository_ctx):
"""Determing whether or not to include rustc sources in the toolchain.
Args:
repository_ctx (repository_ctx): The repository rule's context object
Returns:
bool: Whether or not to include rustc source files in a `rustc_toolchain`
"""
# The environment variable will always take precedence over the attribute.
include_rustc_srcs_env = repository_ctx.os.environ.get("RULES_RUST_TOOLCHAIN_INCLUDE_RUSTC_SRCS")
if include_rustc_srcs_env != None:
return include_rustc_srcs_env.lower() in ["true", "1"]
return getattr(repository_ctx.attr, "include_rustc_srcs", False)
|
a6b4c093d44d77880edc7310980fd27791a47c37
| 32,509 |
def get_table_4(air_type):
"""表4 外皮の内側にある空気層の熱抵抗
Args:
air_type(str): 空気層の種類
'AirTight'(面材で密閉された空気層)または'OnSiteNonConnected'(他の空間と連通していない空気層)または
'OnSiteConnected'(他の空間と連通している空気層)
Returns:
float: 外皮の内側にある空気層の熱抵抗
"""
R_dict = {'AirTight': 0.09, 'OnSiteNonConnected': 0, 'OnSiteConnected': 0}
try:
return R_dict[air_type]
except KeyError:
raise ValueError(air_type)
|
66f28b535f9ef69525cf1e74e0af4bbf155ec458
| 32,511 |
def create_mapping(dict_times):
"""
If times are not integers, transform them into integers.
:param dict_times: Dict where keys are times.
:return: A mapping which is a dictionary maps from current names of time stamps to integers (by their index)
"""
keys = list(dict_times.keys())
mapping = {}
for i in range(len(keys)):
mapping.update({keys[i]: i})
return mapping
|
75893a6419b61d86bc0d4d0693bbc1b25f111a75
| 32,512 |
def package(label):
"""Given the label object supplied, returns its string representation.
Args:
label: a Label object.
Returns:
A string, describing the full path of the package.
Example:
>>> package(Label(":target"))
"@enkit//bazel/utils:target"
"""
return "{workspace}//{package}:{name}".format(
workspace = label.workspace_name,
package = label.package,
name = label.name,
)
|
0f82ce092a806823c6e9248addeea6fabd14100b
| 32,514 |
def get_hashtag_counts(key, val, collection):
"""
Returns a dict of the region from the colletion.
For states, you receive a document containing keys:
'name', 'fips', 'counts', 'abbrev', 'landarea'
The value associated to 'counts' is a dict of hashtag and hashtag counts.
Query by: 'name', 'fips', or 'abbrev'.
For counties, you receive a document containing keys:
'name', 'state_fips', 'county_fips', 'geoid', 'landarea'
Etc.
Examples:
hashtag_counts_by_state('name', 'Washington', collection)
hashtag_counts_by_state('fips', 53, collection)
hashtag_counts_by_state('abbrev', 'WA', collection)
"""
c = collection.find({key: val})
hashtag_counts = {}
first = True
for doc in c:
if first:
hashtag_counts.update(doc)
first = False
else:
# After the first one, we must explictly update the inner dict.
hashtag_counts['counts'].update(doc['counts'])
return hashtag_counts
|
ae152f15dd1dd7bb0f15ef9c181adf820c3cb32b
| 32,515 |
import torch
def ex_net_svd(model, in_dim):
"""Performs a Singular Value Decomposition on a given model weights
Args:
model (torch.nn.Module): neural network model
in_dim (int): the input dimension of the model
Returns:
U, Σ, V (Tensors): Orthogonal, diagonal, and orthogonal matrices
"""
W_tot = torch.eye(in_dim)
for weight in model.parameters():
W_tot = weight @ W_tot
U, Σ, V = torch.svd(W_tot)
return U, Σ, V
|
5a37aed05f8685683f986da2794569c7ae9a2291
| 32,517 |
import socket
import json
def get_json_data(stats_sock):
"""Returns uwsgi stats data as dict from the socket file."""
data_dict = {}
data = ""
try:
with socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) as s:
s.connect(stats_sock)
while True:
d = s.recv(4096)
if len(d) < 1:
break
data += d.decode("utf8", "ignore")
s.close()
data_dict = json.loads(data)
except Exception as e:
print(e)
pass
return data_dict
|
67b6687fabecfeb84c4c460d133a93da21cc8f5e
| 32,518 |
def contains_prefix(root, input_prefix):
"""Check if prefix exists and return True/False w/ num of words with that prefix."""
output_list = []
cNode = root
for char in list(input_prefix):
found_match = False
for node in cNode.nodes:
if node.char == char:
found_match = True
cNode = node
break
if not found_match:
return False, 0
return True, cNode.num_words_at_letter
|
b658cb31f54c4d1de2534e27bf1b057d72ccf254
| 32,520 |
def normalize_run_info(run_info):
"""Normalize all dictionaries describing a run.
Args:
run_info (List[Dict]): The list of dictionaries to be normalized.
Returns:
List[Dict]: The input run_info but with each dictionary now having all the same keys. Note
that there will be empty string values when a key was not originally found on a
dictionary.
"""
keys = set([])
for run in run_info:
keys.update(run.keys())
def get_run_info_with_blanks(run):
"""Ensure all of the required keys are found on a single run dictionary.
Args:
run (Dict): The run's original dictionary.
Returns:
Dict: The input run dictionary with all of the required keys. Empty string values will
be added when a required key is not present.
"""
return dict(zip(keys, map(lambda x: run.get(x, ''), keys)))
return list(map(get_run_info_with_blanks, run_info))
|
1f80c1a14bae565dc1e55ba552d281a7249918f1
| 32,531 |
def linear_interpolate(x, y, x0, y0, x1, y1):
"""Format a call to linear_interpolate for the given arguments and expected result.
"""
fmt = """
select
linear_interpolate({x}, {x0}, {y0}, {x1}, {y1}),
{y} as answer,
{y} = linear_interpolate({x}, {x0}, {y0}, {x1}, {y1}) as match ;"""
return fmt.format(x=x, y=y, x0=x0, y0=y0, x1=x1, y1=y1)
|
4a4137f1c004a32f933700618fec3948fcadea50
| 32,534 |
import six
def replace_with_dict(string, str_func, replacements, count=-1):
""":yaql:replace
Returns a string with all occurrences of replacements' keys replaced
with corresponding replacements' values.
If count is specified, only the first count occurrences of every key
are replaced.
:signature: string.replace(replacements, count => -1)
:receiverArg string: input string
:argType string: string
:arg replacements: dict of replacements in format {old => new ...}
:argType replacements: mapping
:arg count: how many first occurrences of every key are replaced. -1 by
default, which means to do all replacements
:argType count: integer
:returnType: string
.. code::
yaql> "abc ab abc".replace({abc => xx, ab => yy})
"xx yy xx"
yaql> "abc ab abc".replace({ab => yy, abc => xx})
"yyc yy yyc"
yaql> "abc ab abc".replace({ab => yy, abc => xx}, 1)
"yyc ab xx"
"""
for key, value in six.iteritems(replacements):
string = string.replace(str_func(key), str_func(value), count)
return string
|
d2c22d59dc030a600cf886afb98c015a572eed3d
| 32,535 |
import string
import random
def get_random_string(uppercase=True, alphanum=True, length=32):
""" Generate random strings.
:param uppercase: include uppercase characters
:param alphanum: include numbers
:param length: result length
"""
if uppercase:
symbols = string.ascii_letters
else:
symbols = string.ascii_lowercase
if alphanum:
symbols += string.digits
return u''.join([random.choice(symbols) for _ in range(length)])
|
8a4c26886e9b9ba3acd9b17c84d468cf9c399f9e
| 32,536 |
import json
def create_user(user_info, app_client):
"""
Create a user, providing back the id and the token.
@param user_dict: dictionary with email and password
@param app_client: a Flask app client to create against
@returns user_id, token for newly created user
"""
res = app_client.post(
'/api/create_user',
data=json.dumps(user_info),
content_type='application/json'
)
res = json.loads(res.data.decode("utf-8"))
return res['id'], res['token']
|
26661ddb485ab8be600f53b63e2dc5ca744c342c
| 32,537 |
def email_is_string(email):
"""
Check if the email is a string.
:param email: The email to be tested.
:type email: str
:return: True if the email is a string, else false.
:rtype: bool
"""
return isinstance(email, str)
|
9262fa4fbfdbaeaa2d605f695b94fbba93de813c
| 32,539 |
import base64
def np_to_base64(a):
"""
base64 encode the input NumPy array
Args:
a (array): numpy array
Returns:
str: Encoded string
"""
return base64.b64encode(a).decode("utf-8")
|
9f88796f019ce1f1191c4b0492029ec8e737ffe2
| 32,540 |
import math
def round_gb_size_up(gb_size, dp=2):
"""Rounds a GB disk size (as a decimal float) up to suit the platform.
Use this method to ensure that new vdisks, LUs, etc. are big enough, as the
platform generally rounds inputs to the nearest [whatever]. For example, a
disk of size 4.321GB may wind up at 4.32GB after rounding, possibly leaving
insufficient space for the image.
:param gb_size: A decimal float representing the GB size to be rounded.
:param dp: The number of decimal places to round (up) to. May be zero
(round to next highest integer) or negative, (e.g. -1 will round to the
next highest ten).
:return: A new decimal float which is greater than or equal to the input.
"""
shift = 10.0 ** dp
return float(math.ceil(gb_size * shift)) / shift
|
3e65412f461e8ab2f7bb11ef19102879b9e5782b
| 32,542 |
def dict_to_str(dictionary: dict,
level: int = 0,
) -> str:
"""
A helper function to log dictionaries in a pretty way.
Args:
dictionary (dict): A general python dictionary.
level (int): A recursion level counter, sets the visual indentation.
Returns:
str: A text representation for the dictionary.
"""
message = ''
for key, value in dictionary.items():
if isinstance(value, dict):
message += ' ' * level * 2 + str(key) + ':\n' + dict_to_str(value, level + 1)
else:
message += ' ' * level * 2 + str(key) + ': ' + str(value) + '\n'
return message
|
7af1d272d15174a13ad9aaf192e9cce6624e12ba
| 32,544 |
def tvbatch(t, v):
"""
Convenience method for paring x and y data for training and validation.
Returns tuples pairing, e.g., the offsetting each block by one timestep
with respect to x and y versions, such that at each timestep t,
y[t] = x[t + 1].
Note that here and elsewhere it has been my custom to identify training data
with the variables x and y, and validation data with xx and yy. This seems
marginally more parsimonious to me than something like "training_x," etc.
Returns:
x, y, xx, yy
"""
x, y = t[:,:-1], t[:,1:]
xx, yy = v[:,:-1], v[:,1:]
return x, y, xx, yy
|
707acb9d516fac70db6fa049f2820ff554a7758b
| 32,548 |
import re
def extract_sentence_id(tag):
"""
Extract the sentence ID of current sentence.
Args:
tag (str): Sentence tag
Returns:
str: sentence ID
"""
if "<s" not in tag:
return ""
pattern = re.compile('id="[a-z0-9]+?"(?=\s)')
res = re.findall(pattern, tag)
if len(res) == 0:
return None
return res[0].replace('"', "").replace("id=", "")
|
99a24d332e21b5861c74b00fdcb334892eda4b7c
| 32,550 |
from typing import List
def _make_citation_command_regex(commands: List[str]) -> str:
"""
A citation command typically has this structure:
\\command[prenote][postnote]{keys}[punctuation]
where prenote, postnote, and punctuation are all optional.
Reference: https://ctan.math.illinois.edu/macros/latex/contrib/biblatex/doc/biblatex.pdf
"""
command_names = r"(?:" + "|".join([r"\\" + c for c in commands]) + ")"
return command_names + r"(?:\[[^\]]*\]){0,2}{([^}]*?)}(?:\[[^\]]*\])?"
|
3545b58a4e8be5601184d2aa01e45aef53b50560
| 32,551 |
import warnings
def validate_record(record):
"""Check that `record` contains a key called "time".
Args:
record (dict): a dictionary representing a data record, where the
keys name the "columns".
Returns:
True if there is a key called "time" (it actually checks for ``"time"``
(a string) and ``b"time"`` (a binary)). False if there is no key
called "time".
"""
if not any(k in record for k in ("time", b"time")):
warnings.warn(
'records should have "time" column to import records properly.',
category=RuntimeWarning,
)
return True
|
5e995c438cf197449596622385b9d3aa47846cba
| 32,552 |
def _DecodeCSVShape(op):
"""Shape function for the DecodeCSV op."""
input_shape = op.inputs[0].get_shape()
# Optionally check that all of other inputs are scalar or empty.
for default_input in op.inputs[1:]:
default_input_shape = default_input.get_shape().with_rank(1)
if default_input_shape[0] > 1:
raise ValueError(
"Shape of a default must be a length-0 or length-1 vector.")
return [input_shape] * len(op.outputs)
|
22bd949426a595106335a8b68387f4191ce9985b
| 32,559 |
def prime(a):
"""Return True if a is prime."""
if a == 2: return True
if a < 2 or a % 2 == 0: return False
return not any(a % x == 0 for x in range(3, int(a**0.5) + 1, 2))
|
c086eab2edc2fcb30eec3e2b8e992a266a4fd085
| 32,566 |
def generate_project(name='AILE', version='1.0', comment=''):
"""Generate an Slybot project file"""
return {
'name': name,
'version': version,
'comment': comment
}
|
fa73e224754f823177f37fdbe4ba5452ea4388c0
| 32,568 |
def linear_forward(current_set, parameter_w, parameter_b):
"""
linear step for forward propagation
:param current_set: current A, numpy arrays
:param parameter_w: current parameter W, numpy arrays
:param parameter_b: current parameter b, numpy arrays
:return: current z, and caches for following calculations, numpy arrays and dictionaries
"""
current_z = parameter_w.dot(current_set) + parameter_b
assert (current_z.shape == (parameter_w.shape[0], current_set.shape[1]))
cache = (current_set, parameter_w, parameter_b)
return current_z, cache
|
e00004faa5a66fa7a1390e778edf584eaa63df85
| 32,570 |
def check_login(session):
"""
Function to check if the specified session has a logged in user
:param session: current flask session
:return: Boolean, true if session has a google_token and user_id
"""
# Check that session has a google_token
if session.get('google_token') and session.get('user_id'):
return True
return False
|
cd5651ce622ffd108ea7d0b8c1c4f70b1b4947ab
| 32,571 |
def serialize_enum_model(model):
"""Serializes api model into an json serializable object.
:param model: BaseModel instance to serialize
:return: serialized object
"""
return model.value
|
cb68a5346d4c804e545bf29db966ff93468e1a46
| 32,573 |
def load32(byte):
"""
bytearray to int (little endianness)
"""
return sum((byte[i] << (8 * i)) for i in range(4))
|
9e33b13fcf1d58b27e6915a319c98db4d951ac69
| 32,576 |
def build_repr(instance, fields):
"""
Build the string representation for an instance.
Args:
instance:
The instance to build the repr for.
fields:
A list of fields to include in the repr.
Returns:
A string describing the provided instance including
representations of all specified fields.
"""
values = [f"{f}={repr(getattr(instance, f))}" for f in fields]
return f'{instance.__class__.__name__}({", ".join(values)})'
|
832b36b9dd93de7e7e22b71693d2b5dbac3749ad
| 32,584 |
import torch
def get_entropy_loss(memory, args, i_agent):
"""Compute entropy loss for exploration
Args:
memory (ReplayMemory): Class that includes trajectories
args (argparse): Python argparse that contains arguments
i_agent (int): Index of agent to compute entropy loss
Returns:
entropy_loss (torch.Tensor): Entropy loss for encouraging exploration
"""
_, _, entropies, _, _ = memory.sample()
entropy = torch.stack(entropies[i_agent], dim=1)
assert entropy.shape == (args.traj_batch_size, args.ep_horizon), \
"Shape must be: (batch, ep_horizon)"
entropy_loss = -args.entropy_weight * torch.mean(torch.sum(entropy, dim=1))
return entropy_loss
|
0d031100d17b64402340f1c0626a04fc083be8a0
| 32,591 |
from typing import List
from typing import Tuple
import struct
def vox_dict( entries: List[ Tuple[ str, str ] ] ) -> bytes:
"""Produces the binary representation of a dictionary for the .vox format.
Note that all keys and values are strings.
Examples
--------
>>> vox_dict( [ ( '_t', '10 5 2' ) ] )
This dictionary (from the 'nTRN' chunk) defines a translation.
"""
w = bytearray( )
w.extend( struct.pack( '<I', len( entries ) ) )
for (key, value) in entries:
key_b = bytes( key, 'UTF-8' )
value_b = bytes( value, 'UTF-8' )
w.extend( struct.pack( '<I', len( key_b ) ) )
w.extend( key_b )
w.extend( struct.pack( '<I', len( value_b ) ) )
w.extend( value_b )
return bytes( w )
|
c8622ad47397fd4b93104ccab578a96ab00ca6dd
| 32,592 |
def find_short(strg):
"""Return length of shortest word in sentence."""
words = strg.split()
min_size = float('inf')
for word in words:
if len(word) < min_size:
min_size = len(word)
return min_size
|
87e99a5754ede74d74e76199c176f956d424fc44
| 32,593 |
def add_properties(objectclass, property_list):
"""Generate class properties for a model that provide read-only access
to elements from the internal ._data data structure.
:param objectclass: The class to which properties should be added
:param property_list: A list of property name + data structure key
+ optional docstring tuples. Property names
then read from the given data structure keys.
"""
for prop_item in property_list:
key = prop_item[0]
internalkey = prop_item[1]
def model_attribute(self, k=internalkey):
return self._data[k]
if len(prop_item) > 2:
model_attribute.__doc__ = prop_item[2]
setattr(objectclass, key, property(model_attribute))
|
268b83bd1b794ede60b7ebce27586dc499004730
| 32,596 |
from pathlib import Path
import csv
def display_playlist_tracks(playlist):
"""
display playlist tracks from saved csv file
"""
path = Path('playlist_tracks_csv/')
file_name = '{}'.format(playlist)
# read from existing csv file
fpath = (path / file_name).with_suffix('.csv')
with fpath.open(mode='r') as csv_file:
csv_reader = csv.DictReader(csv_file)
tracks = []
line_count = 1
for row in csv_reader:
track = "{} - {}: spotify_url: {}".format(row['name'], row['artists'], row['spotify_url'])
tracks.append(track)
line_count += 1
i = 0
while i != len(tracks) - 1:
print("{}. {}".format(i, tracks[i]))
i += 1
print(f'Processed {line_count} lines.')
return tracks
|
20fd48e1d90ef1c86dd0542ce9552666da49742a
| 32,597 |
def get_corepy_output(code, inst):
"""Take an instruction, and return a hex string of its encoding, as encoded by CorePy"""
hex_list = inst.render()
hex = ""
for x in hex_list:
hex += "%02x" % (x)
return hex
|
26816cc8d424bfeb6db9e3a404f22a648c0d0d41
| 32,605 |
import requests
import json
def create_secret(api_url, token, scope, secret_name, secret_value):
"""
Creates a secret in Databricks workspace in the given scope.
This will overwrite any existing secrets with the same name.
"""
r = requests.post(api_url + 'preview/secret/secrets/write',
headers={"Authorization": "Bearer " + token},
json={"scope": scope, "key": secret_name, "string_value": secret_value
})
response_body = r.json()
if r.status_code != 200:
raise Exception('Error creating scope: ' + json.dumps(response_body))
return (response_body)
|
4b1cf12d115aa8c3c04d7e59adae11cbf36489cb
| 32,609 |
def autorange_xy(img, axx, axy, data, xy_limits, xy_pad):
""" Adjust axx and axy vertical range.
xy_limits:
None or "auto" # matplotlib default range
(min, max) # vrange to specified values
"data" # vrange to min and max of data -/+ xy_pad
"match" # vrange to min and max of default ranges of each
"clim" # vrange to img.clim() -/+ xy_pad
args:
axx # horizontal axis
axy # vertical axis
data # 2D numpy.ndarray
xy_limits # None or "auto" / (min, max) / "data" / "match" / "clim"
xy_pad # padding of the xy vertical range
# (active for xy_limits="data" or "clim")
returns:
axx, axy
"""
# axx vertical range
if xy_limits is None or xy_limits == "auto":
pass
elif isinstance(xy_limits, tuple):
# values specified
axx.set_ylim(*xy_limits)
axy.set_xlim(*xy_limits)
elif xy_limits == "data":
# edge plots range to match padded data range
rng = data.max() - data.min()
limits = (data.min() - xy_pad * rng,
data.max() + xy_pad * rng)
axx.set_ylim(*limits)
axy.set_xlim(*limits)
elif xy_limits == "match":
# edge plots range to match each other
limits = (min(axx.get_ylim()[0], axy.get_xlim()[0]),
max(axx.get_ylim()[1], axy.get_xlim()[1]))
axx.set_ylim(*limits)
axy.set_xlim(*limits)
elif xy_limits == "clim":
# edge plots range to match padded image clim
clim = img.get_clim()
rng = clim[1] - clim[0]
limits = (clim[0] - xy_pad * rng,
clim[1] + xy_pad * rng)
axx.set_ylim(*limits)
axy.set_xlim(*limits)
else:
raise ValueError(f"Invalid value for `xy_limits`={xy_limits}")
return axx, axy
|
a375f92f2800a2dbd7b600c26dfc6e287325eb12
| 32,610 |
from typing import Iterable
from typing import Iterator
def flatten_iterator(*args: Iterable, depth=None) -> Iterator:
"""
Iterates and flattens iterables recursively according to the specified depth.
If depth=None (the default) it flattens recursively until it finds no iterable.
>>> type(flatten_iterator([1, 2, [3, 4, ['cinco']]]))
<class 'generator'>
>>> list(flatten_iterator([1, 2, [3, 4, ['cinco']]]))
[1, 2, 3, 4, 'cinco']
>>> list(flatten_iterator([1, 2, [3, 4, ['cinco']]], depth=1))
[1, 2, [3, 4, ['cinco']]]
>>> list(flatten_iterator([1, 2, [3, 4, ['cinco']]], depth=2))
[1, 2, 3, 4, ['cinco']]
"""
current_depth = -1
def flatten_iterator_(*args_: Iterable, depth_=None) -> Iterator:
nonlocal current_depth
if depth_ is not None:
current_depth += 1
for arg_ in args_:
if isinstance(arg_, Iterable) and not isinstance(arg_, (str, bytes)) and (depth_ is None or current_depth < depth_):
yield from flatten_iterator_(*arg_, depth_=depth_)
if depth_ is not None:
current_depth -= 1
else:
yield arg_
return flatten_iterator_(*args, depth_=depth)
|
2e10b23a7c17fb2a19691e10d8b4c290b50f2ca0
| 32,611 |
def oddNumbers(l, r):
"""
List odd numbers within a closed interval.
:param l: left interval endpoint (inclusive)
:param r: right interval endpoint (inclusive)
:return: odd numbers within [l, r].
"""
l = l if l % 2 == 1 else l + 1
r = r if r % 2 == 0 else r + 1
return list(range(l, r, 2))
|
aa2768b013f42030a0bae2526c169c412963f235
| 32,612 |
def times(values):
"""
Reads the stdout logs, calculates the various cpu times and creates a dictionary
of idle time and the total time
Parameters
----------
values : list
output of the command from the std out logs
Returns
-------
tuple
idle and total time of the cpu
"""
user, nice, system, idle, io, irq, soft, steal, _, _ = values
idle = idle + io
non_idle = user + nice + system + irq + soft + steal
total = idle + non_idle
return total, idle
|
74b7675a5854c757f3f3f2ddf53474b664e3d74b
| 32,614 |
def cluster_profile_query(city):
"""SQL query to get cluster descriptions as 24-houred timeseries within `city`
Parameters
----------
city : str
City of interest, either ̀bordeaux` or `lyon`
Returns
-------
str
SQL query that gives the timeseries cluster profile in `city`
"""
if city not in ('bordeaux', 'lyon'):
raise ValueError("City '{}' not supported.".format(city))
return ("WITH ranked_centroids AS ("
"SELECT *, rank() OVER (ORDER BY stop DESC) AS rank "
"FROM {schema}.{centroid}) "
"SELECT cluster_id, "
"h00, h01, h02, h03, h04, h05, h06, h07, h08, h09, h10, h11, "
"h12, h13, h14, h15, h16, h17, h18, h19, h20, h21, h22, h23, "
"start, stop "
"FROM ranked_centroids "
"WHERE rank=1"
";").format(schema=city,
centroid='centroid')
|
fedb6ec448f6b3e273730e9898481fef1c2b7a2a
| 32,617 |
def format_duration(seconds: float) -> str:
"""
Nicely format a given duration in seconds.
Args:
seconds: The duration to format, in seconds.
Returns:
The duration formatted as a string with unit of measurement appended.
"""
return f"{seconds:.2f} sec"
|
dac9a110051680e75bdcb99c473270fa43b1d07a
| 32,619 |
import requests
def browse(url):
"""Retrieve the server response contents of the given URL."""
# A cookie is required to allow books with adult content to be served.
return requests.get(url, cookies={"adultOff": "no"}).text
|
06b6d1195141dde662fd5252714e8d5facdc8c1d
| 32,621 |
import torch
def apply_across_dim(function, dim=1, shared_keys=None, **tensors):# -> Dict[str, torch.Tensor]:
"""
Apply a function repeatedly for each tensor slice through the given dimension.
For example, we have tensor [batch_size, X, input_sequence_length] and dim = 1, then we will concatenate the following matrices on dim=1.
- function([:, 0, :])
- function([:, 1, :])
- ...
- function([:, X-1, :]).
Args:
function (function): Function to apply.
dim (int): Dimension through which we'll apply function. (1 by default)
shared_keys (set): Set of keys representing tensors to be shared. (None by default)
tensors (torch.Tensor): Keyword arguments of tensors to compute. Dimension should >= `dim`.
Returns:
Dict[str, torch.Tensor]: Dictionary of tensors, whose keys are corresponding to the output of the function.
"""
# Separate shared and non-shared tensors
shared_arguments = {}
repeat_targets = {}
for key, tensor in tensors.items():
if not isinstance(tensor, torch.Tensor) or (shared_keys and key in shared_keys):
shared_arguments[key] = tensor
else:
repeat_targets[key] = tensor
# Check whether the size of the given dimension is the same across sliced_tensors.
size = {key: tensor.shape[dim] for key, tensor in repeat_targets.items()}
assert len(set(size.values())) == 1, 'Tensors does not have same size on dimension %s: We found %s' % (dim, size)
# Since the sizes are the same, we will represent the size using the first entry.
size = list(size.values())[0]
# Dictionary for storing outputs
output = {}
for i in range(size):
# Build kwargs for the function.
kwargs = {key: tensor.select(dim=dim, index=i).contiguous() for key, tensor in repeat_targets.items()}
kwargs.update(shared_arguments)
# Apply function on the slice and restore the dimension for concatenation.
for key, tensor in function(**kwargs).items():
if key in shared_keys:
continue
if key not in output:
output[key] = []
output[key].append(tensor.unsqueeze(dim=dim))
# Check whether the outputs are have the same size.
assert all(len(t) == size for t in output.values())
# Concatenate all outputs, and return.
return {key: torch.cat(tensor, dim=dim).contiguous() for key, tensor in output.items()}
|
efea38442de6c42c0d3d4eead8ddf18546559f31
| 32,623 |
def bool_setter(value: bool):
"""Generic setter for bool objects
Args:
value: The value to be validated.
Raises:
TypeError: If the value is not bool
"""
if isinstance(value, bool) or value is None:
return value
if value == "false":
return False
if value == "true":
return True
raise ValueError("Type should be bool")
|
eec686da23b4a95c0276b8e2b97975fe24bf7b91
| 32,624 |
def string_to_index(needle, columns):
"""Given a string, find which column index it corresponds to.
:param needle: The string to look for.
:param columns: The list of columns to search in.
:returns: The index containing that string.
:raises ValueError: Value "`needle`" not found in columns "`columns`"
"""
for index, value in enumerate(columns):
if needle == value:
return index + 1
raise ValueError("Value \"{0}\" not found in columns \"{1}\"".format(needle, columns))
|
358a88e1ec487b142ae6380a1cb9579688cd0451
| 32,629 |
def nested_sum(t):
"""Computes the total of all numbers in a list of lists.
t: list of list of numbers
returns: number
"""
total = 0
for nested in t:
total += sum(nested)
return total
|
44d9fa3e0a6011c74f23a002e86bef13b0c52e72
| 32,634 |
def application_state(app):
"""Return the consolidated state for application *app*.
The *app* parameter must be a dict as returned by
:meth:`~RavelloClient.get_application`.
The consolidated state for an application is the set of distinct states
for its VMs. As special cases, None is returned if there are no VMs, and
the single state is returned if there is exactly one state.
"""
states = list(set((vm['state'] for vm in app.get('deployment', {}).get('vms', []))))
return states if len(states) > 1 else states[0] if len(states) == 1 else None
|
d7dbd1f17e311138864f7570c5d9432a621b728c
| 32,638 |
from typing import IO
from typing import Any
from typing import List
import mmap
def _get_lines_from_fd(fd: IO[Any], nb: int = 10) -> List[str]:
"""
Get the last log lines from a fileno with mmap
:param fd: File descriptor on the log file
:param nb: number of messages to fetch
:returns: A list of message lines
"""
with mmap.mmap(fd.fileno(), 0, prot=mmap.PROT_READ) as m:
# start of messages begin with MI or MR, after a \n
pos = m.rfind(b"\nM") + 1
# number of message found so far
count = 0
while pos != 0 and count < nb - 1:
count += 1
pos = m.rfind(b"\nM", 0, pos) + 1
lines = m[pos:].decode(errors='replace').splitlines()
return lines
|
a3a97b7ff8fcc8a0e9b564233ccbb11fa0ee7061
| 32,639 |
def bookkeep_reactant(mol):
"""Bookkeep bonds in the reactant.
Parameters
----------
mol : rdkit.Chem.rdchem.Mol
RDKit molecule instance for reactants.
Returns
-------
pair_to_bond_type : dict
Mapping 2-tuples of atoms to bond type. 1, 2, 3, 1.5 are
separately for single, double, triple and aromatic bond.
"""
pair_to_bond_type = dict()
for bond in mol.GetBonds():
atom1, atom2 = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
atom1, atom2 = min(atom1, atom2), max(atom1, atom2)
type_val = bond.GetBondTypeAsDouble()
pair_to_bond_type[(atom1, atom2)] = type_val
return pair_to_bond_type
|
e8ee50904596152299d140a58ac4496e98c771df
| 32,642 |
def get_backbones(nts):
""" Get backbone pairs.
Args:
___
nts (dict): DSSR nucleotide info.
Returns:
---
bb (list): list of tuples (5' base, 3' base)
"""
bb = []
for i, three_p in enumerate(nts):
if i == 0:
continue
five_p = nts[i-1]
if five_p['chain_name'] != three_p['chain_name']:
continue
if three_p['nt_type'] != 'RNA' or five_p['nt_type'] != 'RNA':
continue
if 'break' not in three_p['summary']:
bb.append((five_p, three_p))
return bb
|
724c38be0c5a29ac75fde21359467209f2f4a566
| 32,645 |
import hashlib
def get_file_hash(file_list):
"""
Gets an MD5 Hash value for each file in a list.
Returns a dictionary of {file: hash} items
"""
if type(file_list) != list:
file_list = [file_list]
BLOCKSIZE = 65536
file_dict = {}
for file in file_list:
hasher = hashlib.md5()
with open(file, 'rb') as afile:
buf = afile.read(BLOCKSIZE)
while len(buf) > 0:
hasher.update(buf)
buf = afile.read(BLOCKSIZE)
file_dict[file] = hasher.hexdigest()
# print(file.name, ":", hasher.hexdigest())
return file_dict
|
6302bda4c321539072f4c09d7b82807d3c1a2fbe
| 32,646 |
def Validate(func, value):
"""Raises a ValueError if the value doesn't cause the given function to return true"""
if func(value):
return value
raise ValueError("%r: Invalid value %r" % (func, value))
|
b079a809fa54635ee933242aad9c7d2673ee74ca
| 32,651 |
def find_longest_paper(pubs):
"""
This function finds the longest paper in a year_dict, in terms of how many
tokens are in the paper.
Parameters:
pubs (list-like, required): The year_dict to be searched
Returns:
longest (int): The length of the longest paper in the year dict
"""
longest = 0
for paper in pubs:
if len(paper) > longest:
longest = len(paper)
return longest
|
60f687c8131cef5bf77cb31cfe86a855136dcef7
| 32,652 |
def parent_counts(experiment_proto):
"""Return a map from all counts to counts from their input round.
Args:
experiment_proto: selection_pb2.Experiment describing the experiment.
Returns:
Dict[str, str] mapping SequencingReads names to the read name for positive
results from the previous. Reads without a parent count are omitted.
"""
input_counts = {}
for round_name, round_proto in experiment_proto.rounds.items():
if round_proto.input:
parent_round = experiment_proto.rounds[round_proto.input]
input_counts[round_name] = parent_round.positive_reads.name
else:
input_counts[round_name] = None
dependencies = {}
for round_name, round_proto in experiment_proto.rounds.items():
for reads in [round_proto.positive_reads, round_proto.negative_reads]:
field = reads.name
if field:
parent_count = input_counts[round_name]
if parent_count:
dependencies[field] = parent_count
return dependencies
|
2fedab0eb54b75f12616e1c6ed232352a911643e
| 32,653 |
def linspace(start, end, number_of_points):
"""
Generate a list of floats from start to end containing number_of_points elements.
clone of NumPy function with same name.
:param start: starting point of list.
:param end: ending point of list.
:param number_of_points: number of points in returned list.
"""
if start >= end:
raise ValueError(
'The starting value must be less than the ending value.')
if number_of_points < 2:
raise ValueError('The space must contain at least two points.')
interval = (end - start) / (number_of_points - 1)
return [start + interval * i for i in range(number_of_points)]
|
9be2c37a67e3f1e00bac8dfa0691434570aa4bc9
| 32,655 |
def split_endpoint_timestamp(file):
"""Split a file into the endpoint and timestamp part.
Parameters
----------
file : pathlib.Path
Can be a dated file or a link.
Returns
-------
str, str
endpoint name and timestamp
"""
endpoint, date, time = file.resolve().stem.rsplit("_", 2)
return endpoint, date + "_" + time
|
53bbf880e80bf37f66ff95913f15d97fb2505cc4
| 32,662 |
def _event_QSpinBox(self):
"""
Return value change signal for QSpinBox
"""
return self.valueChanged
|
b9d4b9788b3770431858606b53992ef7694f82bb
| 32,663 |
def system_reduction_factor(delta_ss, delta_frot, delta_fshear, eta_ss, eta_frot, eta_fshear):
"""
Calculates the system displacement reduction factor based on the foundation and superstrucutre
displacement reduction factors.
:param delta_ss: superstructure displacement
:param delta_frot: displacement due to foundation rotation
:param delta_fshear: displacement due to soil-foundation shear deformation
:param eta_ss: superstructure displacement reduction factor
:param eta_frot: foundation rotation displacement reduction factor
:param eta_fshear: soil foundation shear deformation displacement reduction factor
:return:
"""
delta_total = delta_ss + delta_frot + delta_fshear
return (delta_ss * eta_ss + delta_frot * eta_frot + delta_fshear * eta_fshear) / delta_total
|
217aa81d2a148c22a719eeb71af4fc198931c5fc
| 32,668 |
def generate_order_by_clause(params):
"""Generates order_by clause strings from the given list.
:param list params: A list of column names to sort the result to::
params = [
'id', 'name', 'full_path', 'parent_id',
'resource', 'status', 'project_id',
'task_type', 'entity_type', 'percent_complete'
]
will result a search string like::
order by
tasks.id, tasks.name, tasks.full_path,
tasks.parent_id, , resource_info.info,
"Statuses".code, "Tasks".project_id, task_types.name,
tasks.entity_type
"""
order_by_string = ''
order_by_string_buffer = []
column_dict = {
'id': 'id',
'parent_id': "parent_id",
'name': "name",
'path': "full_path",
'full_path': "full_path",
'entity_type': "entity_type",
'task_type': "task_types.name",
'project_id': 'project_id',
'date_created': 'date_created',
'date_updated': 'date_updated',
'has_children': 'has_children',
'link': 'link',
'priority': 'priority',
'depends_to': 'dep_info',
'resource': "resource_info.resource_id",
'responsible': 'responsible_id',
'watcher': 'watcher_id',
'bid_timing': 'bid_timing',
'bid_unit': 'bid_unit',
'schedule_timing': 'schedule_timing',
'schedule_unit': 'schedule_unit',
'schedule_model': 'schedule_model',
'schedule_seconds': 'schedule_seconds',
'total_logged_seconds': 'total_logged_seconds',
'percent_complete': 'percent_complete',
'start': 'start',
'end': '"end"',
'status': '"Statuses".code',
}
for column_name in params:
order_by_string_buffer.append(column_dict[column_name])
if len(order_by_string_buffer):
# need to indent the first element by hand
order_by_string = 'order by %s' % ', '.join(order_by_string_buffer)
return order_by_string
|
9f9a74d6a16b53cd65542a000fe4215a9d16ced1
| 32,669 |
def rect2raster(r,h):
"""Convert iulib rectangles to raster coordinates. Raster coordinates are given
as (row0,col0,row1,col1). Note that this is different from some other parts of
Python, which transpose the rows and columns."""
(x0,y0,x1,y1) = (r.x0,r.y0,r.x1,r.y1)
y1 = h-y1-1
y0 = h-y0-1
return (y1,x0,y0,x1)
|
7892e789076fa41e07db9f640f44a76498f53196
| 32,672 |
def draw_box(image, bbox, color, lw):
"""Draw RGB(A) `color` bounding box on image array."""
y1, x1, y2, x2 = bbox
image[y1 : y1 + lw, x1:x2] = color
image[y2 : y2 + lw, x1:x2] = color
image[y1:y2, x1 : x1 + lw] = color
image[y1:y2, x2 : x2 + lw] = color
return image
|
e2156f60918d2fd9a1641ee33c744fe7288560b0
| 32,674 |
def get_entity_list_container_field(name):
"""Returns the container field used in list responses
GET /active_computers -> {"items": [...]}
GET /jobs -> {"jobs": [...]}
"""
if name == "active_computers":
return "items"
elif name == "inventory_computers":
return "items"
elif name == "rpc_tasks":
return "tasks"
elif name == "rpc_jobs":
return "jobs"
return name
|
b9210a61b9b1d4e33689370a118c983cedb71456
| 32,675 |
def _parse_findings(findings, region):
"""
Returns relevant information from AWS Security Hub API response.
Args:
findings (list): AWS Security Hub response.
region (str): AWS region.
Returns:
List[dict]: List of compliance information dictionaries.
"""
new_findings = []
for finding in findings:
new_findings.append(
{
"Region": region,
"Title": finding["Title"],
"Description": finding["Description"],
"Severity": finding["Severity"],
"Compliance": finding["Compliance"]["Status"],
"Recommendation": finding["Remediation"]["Recommendation"]["Text"],
"Reference": finding["Remediation"]["Recommendation"]["Url"],
}
)
return new_findings
|
276f189027e105586a884cf74c8abee9bddd93be
| 32,677 |
def read_playlists(fname="playlists.txt"):
"""Reads in the Playlists"""
with open(fname) as f:
return f.readlines()
|
d6d36ae0df82b26c4b64bf3d785c8c42874a25cc
| 32,679 |
def is_valid_filename(filename):
"""Check if a file has a valid filename (valid chars and max length gotten from
stack overflow and other sources, may be wrong)"""
# Added some accents, ö and stuff like that is still verboten
valid_chars = '-_.() abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789àèéíóòúüÀÈÉÍÒÓÚÜ'
if len(filename) > 260:
return False
for char in filename:
if char not in valid_chars:
return False
return True
|
680d7719c08cc0159bb9d50787253d97129b8f42
| 32,682 |
def disjoint_union(*graphs):
"""Given a list of graphs, construct their disjoint union."""
res_vertices = []
res_edges = []
for (vertices, edges) in graphs:
l = len(res_vertices)
res_edges.extend((a+l, b+l) for (a, b) in edges)
res_vertices.extend(vertices)
return (res_vertices, res_edges)
|
dd8a62ca4c3f9603fef56f52e83d643932d03b27
| 32,683 |
def bool_str(b: bool) -> str:
"""Converts boolean to string ('0' or '1')"""
return '1' if b else '0'
|
9bbcc98a9d488e09d19c8b5689583ee835d900b8
| 32,684 |
def obsmode_name(mode):
"""Return full name of the observing mode"""
if type(mode) is not list:
mode = [mode]
full_names = {'fiducial': 'Fiducial',
'binospec': 'Binospec',
'hectochelle': 'Hectochelle',
'desi': 'DESI-like',
'gaia': 'Gaia-like',
'exgal': 'Extragalactic'}
keys = full_names.keys()
names = []
for m in mode:
if m in keys:
name = full_names[m]
else:
name = m
names += [name]
return names
|
e608ae1e60286202153b0754fa071239c280eed9
| 32,686 |
def no_of_misplaced_tiles(state):
"""
Returns the number of the misplaced tiles in the given state
state: a list representing the state to be checked
"""
h1 = 0
goal_state = [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
for y in range(len(goal_state)):
for x in range(len(goal_state[y])):
if state[y][x] != goal_state[y][x]:
h1 += 1
return h1
|
1901f757db0b27ba3b3e8235efa1d52abeb3d18b
| 32,687 |
import re
def parse_tweet_text(tweet_text):
"""
Input: tweet_text: a string with the text of a single tweet
or a concatenation of tweets
Output: lists of tokens in the text:
words (many emoticons are recognized as words)
hashtags
users mentioned
urls
Usage: words, hashes, users, urls = parse_tweet_text(tweet_text)
"""
content = tweet_text
# collect and remove URLs
urls = re.findall(r"\b((?:https?|ftp|file)://[-A-Z0-9+&@#/%?=~_|$!:,.;]*[A-Z0-9+&@#/%=~_|$])", content, re.IGNORECASE)
content = re.sub(r"\b((?:https?|ftp|file)://[-A-Z0-9+&@#/%?=~_|$!:,.;]*[A-Z0-9+&@#/%=~_|$])", "", content, 0, re.IGNORECASE)
content = content.lower()
# collect and remove users mentioned
users = re.findall(r"@(\w+)", content)
content = re.sub(r"@(\w+)", "", content, 0)
# collect and remove hashtags
hashes = re.findall(r"#(\w+)", content)
content = re.sub(r"#(\w+)", "", content, 0)
# strip out extra whitespace in the remaining text
content = re.sub(r"\s{2,}", " ", content)
# strip out singleton punctuation
raw_words = content.split()
words = []
for word in raw_words:
if word in ['.',':','!',',',';',"-","-","?",'\xe2\x80\xa6',"!","|",'"','~','..','/']: continue
re_pattern = re.compile(u'[^\u0000-\uD7FF\uE000-\uFFFF]', re.UNICODE)
word = re_pattern.sub(u'\uFFFD', word)
#if word.encode('utf-8') in ['\xe2\x80\xa6']: continue
# remove trailing commas, periods, question marks, colons, exclamation marks
word = re.sub(r"(.*)[,\.,\?,:,!]$", r"\1", word, 0, re.MULTILINE)
words.append(word)
return (words, hashes, users, urls)
|
facb5f319a542ca34c9cacf6c930b98d001de78e
| 32,688 |
def get_x_y(receiver):
"""
(receiver: Receiver) -> (Column, Column)
Returns x column and y column tuple.
Assumes Receiver has at least two columns, takes first two.
"""
selection = receiver.selection
return selection[1][0], selection[1][1]
|
93ad6f0f84dac8b4daed62fdfb9ee2cc52001349
| 32,689 |
from typing import Optional
def normalize_dewey(class_mark: str) -> Optional[str]:
"""
Normalizes Dewey classification to be used in call numbers
Args:
class_mark: Dewey classification
Returns:
normalized class_mark
"""
if isinstance(class_mark, str):
class_mark = (
class_mark.replace("/", "")
.replace("j", "")
.replace("C", "")
.replace("[B]", "")
.replace("'", "")
.strip()
)
try:
# test if has correct format
float(class_mark)
while class_mark[-1] == "0":
class_mark = class_mark[:-1]
return class_mark
except ValueError:
return None
else:
return None
|
7cf7056902e6ac410b79deca9644a8cea5fae971
| 32,695 |
from functools import reduce
def count(l):
"""Count the number of elements in an iterator. (consumes the iterator)"""
return reduce(lambda x,y: x+1, l)
|
c30519261dbd6e02cd41d4df07607087cb7a6374
| 32,698 |
def check_commandline_inputs(n, limit):
"""See if the n and limit passed from the command line were valid"""
try:
n = int(n)
except:
raise ValueError("n wasn't a number")
valid_ns = [5, 7, 11, 17, 23, 29, 37, 47, 59, 71, 83, 97, 113, 131, 149,
167, 191, 223, 257, 293, 331, 373, 419, 467, 521]
if n not in valid_ns:
raise ValueError("n must be one of: {0}".format(valid_ns))
try:
limit = int(limit)
except:
raise ValueError("Limit wasn't a number")
return n, limit
|
38432af09b6550349a942ea677a9e76c1616dbc7
| 32,699 |
def insert_cnpj(num):
"""
Cast a string of digits to the formatted 00.000.000/0001-00 CNPJ standard.
"""
cnpj = num[:2]+'.'+num[2:5]+'.'+num[5:8]+r'/'+num[8:12]+'-'+num[12:]
return cnpj
|
973e6a1e0e0235e5390fec075a4ee6443df32841
| 32,702 |
def get_empty_action_space(num_actions):
"""
Returns an action space with nothing selected.
"""
return [0] * num_actions
|
43dd1b10ba6737ca9a9f0926f3109754ba2737c9
| 32,708 |
from typing import get_origin
from typing import Sequence
def _is_collection_type(o) -> bool:
"""
Check whether the provided type/annotation is one which can hold elements. Necessarily since the minor versions
of Python 3 have evolving ways of comparing type annotations.
:param o: An annotation or type reference
:return: Whether it represents a type which can hold elements
"""
try:
# Py3.9+
cls = get_origin(o) or o
return issubclass(cls, Sequence)
except ImportError:
pass
# extract the base type if 'o' is an annotation
cls = o if type(o) == type else o.__orig_bases__[0]
return issubclass(cls, Sequence)
|
386400e5a7e6ea5690bc080e31507e9de57fb193
| 32,709 |
def doc2vector(model, samples):
"""Infer vectors for samples
Args:
model: The instance to use to infer vectors vectors as :class:`gensim.models.Doc2Vec`.
samples: The samples as :class:`list`.
Returns:
The :class:`list` of inferred vectors.
"""
return [model.infer_vector(sample) for sample in samples]
|
0d05ea36555e925fe11bdcde0ea182c169f0b374
| 32,710 |
def child_structure_dfs(sampler, seen=None):
"""Return the structure of a composed sampler using a depth-first search on its
children.
Args:
sampler (:obj:`.Sampler`):
:class:`.Structured` or composed sampler with at least
one structured child.
seen (set, optional, default=False):
IDs of already checked child samplers.
Returns:
:class:`~collections.namedtuple`: A named tuple of the form
`Structure(nodelist, edgelist, adjacency)`, where the 3-tuple values
are the :attr:`.Structured.nodelist`, :attr:`.Structured.edgelist`
and :attr:`.Structured.adjacency` attributes of the first structured
sampler found.
Raises:
ValueError: If no structured sampler is found.
Examples:
>>> sampler = dimod.TrackingComposite(
... dimod.StructureComposite(
... dimod.ExactSolver(), [0, 1], [(0, 1)]))
>>> print(dimod.child_structure_dfs(sampler).nodelist)
[0, 1]
"""
seen = set() if seen is None else seen
if sampler not in seen:
try:
return sampler.structure
except AttributeError:
# hasattr just tries to access anyway...
pass
seen.add(sampler)
for child in getattr(sampler, 'children', ()): # getattr handles samplers
if child in seen:
continue
try:
return child_structure_dfs(child, seen=seen)
except ValueError:
# tree has no child samplers
pass
raise ValueError("no structured sampler found")
|
9cb6f997e12a93230ed18bf1121493f2365adf24
| 32,712 |
import itertools
def sorted_classes_from_index_dict(idx_dct):
""" Obtain classes from index dict, sorted by class index.
:param idx_dct: A dictionary mapping atom keys to class indices.
:type idx_dct: dict
:returns: A tuple of tuples of keys for each class, sorted by class
index.
:rtype: tuple[tuple[int]]
"""
keys = sorted(idx_dct.keys())
clas = sorted(keys, key=idx_dct.__getitem__)
cla_dct = tuple(
tuple(c) for _, c in itertools.groupby(clas, key=idx_dct.__getitem__))
return cla_dct
|
3dd9c9a8b62c559fa8a300754fde2168c0d59fd1
| 32,715 |
def _get_option(options: dict, opt: str):
"""Dictionary look-up with flonb specific error message"""
if opt in options:
return options[opt]
raise ValueError(f"Missing option '{opt}'.")
|
ab048a65c3e92547085e9ce31c03e8fbd3b60558
| 32,716 |
def get_ip_address(event):
"""
Retrieves the client IP address from an event
:param event: event
:return: client IP address
"""
if "headers" in event:
if "Client-Ip" in event["headers"]:
return event["headers"]["Client-Ip"]
if "X-Forwarded-For" in event["headers"]:
return event["headers"]["X-Forwarded-For"].split(",")[0]
if (
"requestContext" in event
and "identity" in event["requestContext"]
and "sourceIp" in event["requestContext"]["identity"]
):
return event["requestContext"]["identity"]["sourceIp"]
return ""
|
2a919d84dce5bc84e0a527d8e8edc734797cb7d7
| 32,722 |
def partition(condition, iterable, output_class=tuple):
"""
split an iterable into two according to a function evaluating to either
true or false on each element
:param condition: boolean function
:param iterable: iterable to split
:param output_class: type of the returned iterables
:return: two iterables
"""
true = []
false = []
for i in iterable:
if condition(i):
true.append(i)
else:
false.append(i)
return output_class(true), output_class(false)
|
678eea1acf22ee07bbcf41b57a00516a076c7cc3
| 32,724 |
def parse_metadata(metadata_field):
"""Cleans the metadata field, in case it's NaN, converts it to str."""
str_field = str(metadata_field)
if str_field == "nan":
return ""
return str_field
|
e1a449756bba1b7e78e796664eeedef190b85155
| 32,725 |
def mscale(matrix, d):
"""Return *matrix* scaled by scalar *d*"""
for i in range(len(matrix)):
for j in range(len(matrix[0])):
matrix[i][j] *= d
return matrix
|
a98be25a0e0977e5e1c55b2efd602b1f3fabc493
| 32,727 |
def get_file_paths(file_prefix, num_files):
"""
Generates the json file paths of the format <file_prefix>idx.json
where idx is an integer between 0 and num_files-1
:param file_prefix: The first part of the file path
that all files to be averaged have in common
:param num_files: The number of files to be averaged
:return: A list of files to be averaged
"""
files = []
for i in range(num_files):
files.append(f"{file_prefix}{i}.json")
return files
|
08dd65503d4ccfff1b22c54e8002831b9e1db0b3
| 32,731 |
def get_appliance_flow_bandwidth_stats(
self,
ne_id: str,
flow_id: int,
flow_seq_num: int,
) -> list:
"""Get the so far accumulated bandwidth stats about the flow
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - flow
- GET
- /flow/flowBandwidthStats/{neId}/q
:param ne_id: Appliance id in the format of integer.NE e.g. ``3.NE``
:type ne_id: str
:param flow_id: Flow ID
:type flow_id: int
:param flow_seq_num: Flow sequence number
:type flow_seq_num: int
:return: Returns list of dictionaries for so far accumulated
bandwidth stats about the flow
:rtype: list[dict]
"""
return self._get(
"/flow/flowBandwidthStats/{}/q?id={}&seq={}".format(
ne_id, flow_id, flow_seq_num
)
)
|
99672d1ad0b4adebded4905cfc81e95b8adba098
| 32,734 |
def barycentric_to_cartesian(bary, vertices):
"""
Compute the Cartesian coordinates of a point with given barycentric coordinates.
:param bary: The barycentric coordinates.
:param vertices: The triangle vertices (3 by n matrix with the vertices as rows (where n is the dimension of the
space)).
:returns: The Cartesian coordinates vector.
:rtype: n-dimensional vector
"""
return vertices[0] * bary[0] + vertices[1] * bary[1] + vertices[2] * bary[2]
|
3576f93d190ef52669a0ba80483dea88c75696ac
| 32,740 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.