content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def overlaps(s1, e1, s2, e2):
"""
Check if two start/end ranges have overlap
:param `s1`: range 1 start
:type `s1`: int
:param `e1`: range 1 end
:type `e1`: int
:param `s2`: range 2 start
:type `s2`: int
:param `e2`: range 2 end
:type `e2`: int
:return: True if ranges overlap
:rtype: bool
"""
s_cand = max(s1, s2)
e_cand = min(e1, e2)
return s_cand < e_cand
|
30656ce4bd685a64faf81efa59e4d1c694c299a0
| 31,571 |
def compareConfigs(name, c1, c2, shortcut=True, rtol=1E-8, atol=1E-8, output=None):
"""
Helper function for Config.compare; used to compare two Configs for
equality.
If the Configs contain RegistryFields or ConfigChoiceFields, unselected
Configs will not be compared.
Floating point comparisons are performed by :func:`numpy.allclose`; refer to
that for details.
Parameters
----------
name :
Name to use when reporting differences
c1 :
LHS config to compare
c2 :
RHS config to compare
shortcut :
If True, return as soon as an inequality is found.
rtol :
Relative tolerance for floating point comparisons.
atol :
Absolute tolerance for floating point comparisons.
output :
If not None, a callable that takes a string, used (possibly repeatedly)
to report inequalities.
"""
assert name is not None
if c1 is None:
if c2 is None:
return True
else:
if output is not None:
output("LHS is None for %s" % name)
return False
else:
if c2 is None:
if output is not None:
output("RHS is None for %s" % name)
return False
if type(c1) != type(c1):
if output is not None:
output("Config types do not match for %s: %s != %s" % (
name, type(c1), type(c2)))
return False
equal = True
for field in c1._fields.values():
result = field._compare(
c1, c2, shortcut=shortcut, rtol=rtol, atol=atol, output=output)
if not result and shortcut:
return False
equal = equal and result
return equal
|
463c94f8912924a933d64c3f6eeeb38e8df5ed80
| 31,572 |
def pyAttrName2XmlAttrName(key):
"""
The @pyAttrName2XmlAttrName@ converts the Python XML attribute name @key@ to an
appropriate XML attribute identifier.
If the *key* is 'cssClass' then it is translated into 'class'.
If an HTML5 attribute *data_xxxx* is used, then change that to *data-xxxx*.
"""
if key == 'cssClass':
key = 'class'
elif key == 'cssId':
key = 'id'
elif key.startswith('data'):
key = key.replace('_', '-')
return key
|
7bafbef748960b1e5e34ee27d14a39778bb8ec43
| 31,573 |
def get_images_helper(request, images):
"""
Helper method for gathering an object's list of images and formatting them along with their
corresponding types.
Parameters:
request : Request object from the serializer instance.
images : Queryset of image objects connected to the Object
Returns:
List of Image objects in JSON format.
"""
image_list = []
for image in images:
image_dict = {
"image_url": f"{request.scheme}://{request.get_host()}{image.image.url}",
"image_type": image.type.type,
}
image_list.append(image_dict)
return image_list
|
97b798ca406e63dcc00b9eefdd27edc9fcd9aef9
| 31,574 |
def find_authorization_in_db(user_id, users_collection):
"""Queries the db to find authorization of the given user."""
first_user = users_collection.find_one({'user_id': user_id})
if first_user is None: # user not found
return False
authorized = first_user.get('is_organizer')
return bool(authorized)
|
8834e83abf638e8a98c87fcd3f86b03e943ab5ad
| 31,576 |
def celciusToFarenheit(celcius):
""" Convert a temperatur in Celcius to Farenheit """
if celcius is None:
return None
else:
return float(celcius) * 1.8 + 32.0
|
ccf57c2d376de6c7b61b2ac48e6c22348dd83ee2
| 31,579 |
def decimal2dms(decimal_degrees):
""" Converts a floating point number of degrees to the equivalent
number of degrees, minutes, and seconds, which are returned
as a 3-element list. If 'decimal_degrees' is negative,
only degrees (1st element of returned list) will be negative,
minutes (2nd element) and seconds (3rd element) will always be positive.
Example:
>>> decimal2dms(121.135)
[121, 8, 6.0000000000184173]
>>> decimal2dms(-121.135)
[-121, 8, 6.0000000000184173]
"""
degrees = int(decimal_degrees)
decimal_minutes = abs(decimal_degrees - degrees) * 60
minutes = int(decimal_minutes)
seconds = (decimal_minutes - minutes) * 60
return [degrees, minutes, seconds]
|
14586909f670e4dd4a8173925eea4dc330ed6adc
| 31,580 |
def frame_ranges_to_string(frames):
"""
Take a list of numbers and make a string representation of the ranges.
>>> frame_ranges_to_string([1, 2, 3, 6, 7, 8, 9, 13, 15])
'[1-3, 6-9, 13, 15]'
:param list frames: Sorted list of frame numbers.
:return: String of broken frame ranges (i.e '[10-14, 16, 20-25]').
"""
if not frames:
return '[]'
if not isinstance(frames, list):
frames = list(frames)
frames.sort()
# Make list of lists for each consecutive range
ranges = [[frames.pop(0)]]
current_range_index = 0 # index of current range
for x in frames:
if x - 1 == ranges[current_range_index][-1]:
ranges[current_range_index].append(x)
else:
current_range_index += 1
ranges.append([x])
range_strings = []
for x in ranges:
if len(x) > 1:
range_strings.append('-'.join([str(x[0]), str(x[-1])]))
else:
range_strings.append(str(x[0]))
complete_string = '[' + ', '.join(range_strings) + ']'
return complete_string
|
9fdd3f05812a34144102f3727cfe49f37a4c0f60
| 31,581 |
import zlib
def bytes_to_zlib(bytes_data):
""" Compress a bytes array """
return zlib.compress(bytes_data)
|
d9e9583a35d52ba1f69972bcc2fcaa295348a4ec
| 31,582 |
def get_short_uuid(uuid):
"""get the first block of a 4-word UUID to use as a short identifier"""
full_uuid = str(uuid)
return full_uuid.split('-', 1)[0]
|
727847113068d7bd48356047d98b12d00d9c811a
| 31,583 |
def is_go_source(view, point=None):
"""Return True if the given view contains Go source code.
:param sublime.View view: View containing the code to be formatted.
:returns: bool
"""
if point is None:
point = view.sel()[0].begin()
return view.score_selector(point, 'source.go') > 0
|
f666309988d754f1c352b4febf92e5e443f17384
| 31,586 |
def is_negatively_charged_oxygen(atom_name, resname):
"""
Determine whether the oxygen atom of interest is either negatively charged
(usually a carboxyl group or sulfate/phosphate), or has a lone pair (and
no hydrogen atom) that would similarly repel anions.
Parameters
-----------
atom_name : str
resname : str
Returns
-------
bool
"""
if ((atom_name in ["OD1","OD2","OE1","OE2"]) and
(resname in ["GLU","ASP","GLN","ASN"])):
return True
elif ((atom_name == "O") and (not resname in ["HOH","WAT"])):
return True # sort of - the lone pair acts this way
elif ((len(atom_name) == 3) and (atom_name[0:2] in ["O1","O2","O3"]) and
(atom_name[2] in ["A","B","G"])):
return True
elif (resname in ["SO4","PO4"]):
return True
return False
|
2e3e4b3aab87da8bf44708ca28ee11b3d8fb5e1e
| 31,588 |
import json
import errno
def write_config_file(path, config):
"""Writes the specified configuration to the specified file."""
contents = json.dumps(config, indent=4, separators=(',', ': ')) + '\n'
try:
with open(path, 'w') as f:
f.write(contents)
return True
except IOError as ex:
if ex != errno.ENOENT:
raise
return False
|
f72720aa3c96830b55726cfc961c66b5d8975802
| 31,589 |
def create_reference_lookup_df(df):
"""Return a dataframe indexed by task_id for looking up the reference."""
df = df[df['tag'] == 'reference']
df.drop_duplicates(subset=['task_id'], inplace=True)
df.set_index('task_id', verify_integrity=True, inplace=True)
return df
|
3acdef32286af7ed6f596e0b3668fc441b775a11
| 31,596 |
def action_traffic_permitted(env, state, action):
"""
Return True if action is permitted in terms of firewall traffic
"""
if action.is_scan():
return True
network = env.network
service = action.service
dest = action.target[0]
# add 0 since 0 = internet
compromised_subnets = set([0])
for m in env.address_space:
if state.machine_compromised(m):
compromised_subnets.add(m[0])
for src in compromised_subnets:
if network.traffic_permitted(src, dest, service):
return True
return False
|
dcce59e1b9d48bd0c35a65f7e016a0477d86e2f7
| 31,597 |
def find_multilines(config_text):
"""
Parses condor config file looking for multiline entries
Args:
config_text: string, contents of a condor configuration file
Returns:
multi: dictionary. keys are first line of multi line config
values are the rest of the multi line config
keeping original formatting
see parse_configs_for_multis() below for example muli dict
"""
multi = {}
tag = None
dict_key = None
for line in config_text:
parts = line.split()
if tag is None:
for idx in range(len(parts)):
if parts[idx].startswith("@="):
tag = parts[idx].replace("=", "").strip()
dict_key = parts[idx - 1].strip()
multi[dict_key] = "".join(parts[idx:]) + "\n"
else:
if "#" not in line:
multi[dict_key] += line
for idx in range(len(parts)):
if tag in parts[idx]:
tag = None
return multi
|
551785ff3188b3194f5e3795308376c86ac42019
| 31,599 |
from typing import List
def get_effective_lindbladian_object_names() -> List[str]:
"""Return the list of valid effective-lindbladian-related object names."""
names = []
names.append("hamiltonian_vec")
names.append("hamiltonian_mat")
names.append("effective_lindbladian_mat")
names.append("effective_lindbladian")
return names
|
7c5f63e2ab48fd9cb6e0f53fcab895261311e5b5
| 31,601 |
import re
def tokenize(library):
"""
Function that takes a string of text a tokenizes it.
The text is returned tokenized.
"""
# Make sure all words are written with lower cases
library = library.lower()
# Remove non-alphabetic characters
tokenizer = re.compile(r"\W+")
# tokenize
tokenized_library = tokenizer.split(library)
return(tokenized_library)
|
b638cda4945aee3ed377614968998314121735cf
| 31,605 |
def sign_string(value):
"""
Return a string representing the sign of a numerical value, "+" for positive, "-" for negative,
and "+/-" for 0.
:param value: A numerical value.
:return: The sign of that value as a string.
"""
return "+" if value > 0 else "-" if value < 0 else "+/-"
|
f305cd9199e174520ea675c3a46f340904e410e6
| 31,610 |
import requests
from bs4 import BeautifulSoup
def url2bs(url: str):
"""
HTTP GET response text with the url to a BeautifulSoup object parsed with lxml.
:param url: URL.
:return: BeautifulSoup object.
"""
try:
response = requests.get(url)
result = BeautifulSoup(response.text, 'lxml')
except requests.exceptions.RequestException as e:
print('Error in HTTP GET from the url:\n\t' + url + '\nERROR MESSAGE:')
print(e)
result = None
return result
|
374a94bb3c9970a340fccce4b596ae15ad60022c
| 31,611 |
def agenda_width_scale(filter_categories, spacer_scale):
"""Compute the width scale for the agenda filter button table
Button columns are spacer_scale times as wide as the spacer columns between
categories. There is one fewer spacer column than categories.
"""
category_count = len(filter_categories)
column_count = sum([len(cat) for cat in filter_categories])
# Refuse to return less than 1 to avoid width calculation problems.
return max(spacer_scale * column_count + category_count - 1, 1)
|
7c26fdb708ddf622593388af0377fa3957e3a753
| 31,612 |
from typing import List
def encode(obs: List[int], spaces: List[int]) -> int:
"""
Encode an observation from a list of gym.Discrete spaces in one number.
:param obs: an observation belonging to the state space (a list of gym.Discrete spaces)
:param spaces: the list of gym.Discrete spaces from where the observation is observed.
:return: the encoded observation.
"""
assert len(obs) == len(spaces)
sizes = spaces
result = obs[0]
shift = sizes[0]
for o, size in list(zip(obs, sizes))[1:]:
result += o * shift
shift *= size
return result
|
32e2f6c1b43e8567f113905d8fc2452dd7058750
| 31,614 |
import re
def num_in_str(lst: list) -> list:
"""Create a list of strings that have numbers in it."""
return [i for i in lst if re.search(r"\d", i)]
|
a9c94acbf5812e1c5ecfc5bb6b08d325882d2806
| 31,617 |
import re
def clean_genre(df):
"""
Clean genre by reducing multiple genres to singular genre.
Parameters
----------
df : pd.DataFrame
A data frame with a column of movie genres.
Returns
-------
df : pd.DataFrame
A modified data frame with grouped genres.
"""
# Convert the movie Social to Drama
df["GenreFix"] = df["Genre"].apply(lambda x: re.sub("social", "drama", x))
# Take the first genre from a tuple (A,B). E.g., Comedy, Romance => Comedy
df["GenreFix"] = df["GenreFix"].apply(lambda x: re.sub("(?<=[a-z]),\s*[a-z]+", "", x))
# Take the first genre from A-B. E.g., Comedy-romance => Comedy
df["GenreFix"] = df["GenreFix"].apply(lambda x: re.sub("(?<=[a-z])\s*-\s*[a-z]+", "", x))
# Take the first genre A/B. E.g., Comedy/Romance => Comedy
df["GenreFix"] = df["GenreFix"].apply(lambda x: re.sub("(?<=[a-z])\s*/\s*[a-z]+", "", x))
# Categorize as war movies
df["GenreFix"] = df["GenreFix"].apply(lambda x: "war" if x.find("ww") != -1 or \
x.find("world war") != -1 or \
x.find("war") != -1 else x)
# Categorize as animations
df["GenreFix"] = df["GenreFix"].apply(lambda x: "animation" if x.find("anim") != -1 \
else x)
# Categorize as crime movies
df["GenreFix"] = df["GenreFix"].apply(lambda x: "crime" if x.find("crime") != -1 \
else x)
# Remove the word "film"
df["GenreFix"] = df["GenreFix"].apply(lambda x: re.sub("film", " ", x))
# Historical drama => drama etc.
df["GenreFix"] = df["GenreFix"].apply(lambda x: x.split()[-1] if x != " " else x)
# Remove commas and dots alongside their whitespaces
df["GenreFix"] = df["GenreFix"].apply(lambda x: re.sub(",|\.", "", x.strip()))
return df
|
5be5331fc23b6e2ad8c1c56e9a21069ca06842a6
| 31,618 |
import base64
def base64解码(data):
"""
将base64字符串 解码为 bytes 字节集
"""
return base64.b64decode(data)
|
6b52b555b29595b1cbe4a9510fd8b2c0902511ae
| 31,619 |
def trackSpeeds_to_bodyFixed(right_track_speed, left_track_speed, track_width):
"""
Function maps speeds for individual skid-steering tracks to the body-fixed
velocity and angular velocity
Arguments:
right_track_speed - speed of the right track
left_track_speed - speed of left track
track_width - track width of the vehicle (distance between the two tracks)
right_track_max - maximum speed of right track, default = 100
right_track_min - maximum speed of right track, default = -100
left_track_max - maximum speed of right track, default = 100
left_track_min - maximum speed of right track, default = -100
Returns:
velocity (m)
angular_velocity (rad/)
"""
velocity = (right_track_speed + left_track_speed) / 2
angular_velocity = (right_track_speed - left_track_speed) / track_width
return velocity, angular_velocity
|
a2b720f100776ef696d3479a28f35811ff75966d
| 31,620 |
def chunk(lst, n_chunks):
"""
https://stackoverflow.com/questions/2130016/
splitting-a-list-into-n-parts-of-approximately-equal-length
Parameters
----------
lst : list
n_chunks : int
Returns
-------
list
chunked list
"""
k, m = divmod(len(lst), n_chunks)
return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)]
for i in range(n_chunks)]
|
418fa1599676821bb897efd139d3c17c5facebb8
| 31,622 |
def convert_lon(lon):
"""Convert a single longitude value to a floating point number.
Input longitude can be string or float and in
-135, 135W, 225 or 225E format.
Output longitude lies in the range 0 <= lon <= 360.
"""
lon = str(lon)
if 'W' in lon:
deg_east = 360 - float(lon[:-1])
elif 'E' in lon:
deg_east = float(lon[:-1])
elif float(lon) < 0.0:
deg_east = 360 + float(lon)
else:
deg_east = float(lon)
assert 0 <= deg_east <= 360, "Longitude must lie between 0-360E"
return deg_east
|
b86343766209d81957d74b8ba96ebc69f462289a
| 31,623 |
def crop_from_quad(quad):
"""Return (left, top, right, bottom) from a list of 4 corners."""
leftmost = min([corner[0] for corner in quad])
topmost = min([corner[1] for corner in quad])
rightmost = max([corner[0] for corner in quad])
bottommost = max([corner[1] for corner in quad])
return (leftmost, topmost, rightmost, bottommost)
|
eeb2a2041f52fd342d5f121ecf4df5cf42f07ac2
| 31,629 |
import textwrap
def reflow(text, width, protect):
"""Reflow the given `text` with line width `width`
Return unchanged `text` if `protect` is True.
"""
if protect:
return text
else:
dedented_text = textwrap.dedent(text.strip())
wrapped_text = textwrap.fill(
dedented_text, width=width, break_on_hyphens=False,
break_long_words=False)
return wrapped_text
|
dedfb019188d4963cb0eaec185d46e60b6a9ab38
| 31,633 |
def array(fr):
"""
Return a Numpy array for input frame or Numpy array.
Parameters
----------
fr : Frame, or 2D ndarray
Input frame or Numpy array
Returns
-------
data : ndarray
Data array
"""
try:
return fr.get_data()
except AttributeError:
return fr
|
4268494b205e484863c19e5bad72e69972ccb680
| 31,636 |
import getopt
def get_command_line_args(argv):
"""
Gets the command line arguments which are:
Returns
-------
pm_model (str) - The PowerModels.jl power model e.g. "DCPPowerModel"
pm_solver (str) - The solver to use, e.g. "juniper", "gurobi"
grid_name (str) - optional if you only want to calculate one grid, e.g. "rts"
lc (str) - the loadcases to calculate. Either "ts" or "scaled"
kind (str) - the optimizations to run, e.g. "tnep,ots,repl". Can only be a part of these like "tnep,repl"
"""
pm_model, pm_solver, grid_name = None, None, None
kind = "tnep,repl,ots"
lc = "scaled"
try:
opts, args = getopt.getopt(argv, ":m:s:g:k:",
["model=", "solver=", "grid=", "kind="])
except getopt.GetoptError:
raise getopt.GetoptError("error reading input")
for opt, arg in opts:
if opt in ("-m", "--model"):
pm_model = arg
if opt in ("-s", "--solver"):
pm_solver = arg
if opt in ("-g", "--grid"):
grid_name = arg
if opt in ("-k", "--kind"):
kind = arg
if pm_solver is None:
UserWarning("pm_solver is None. You must specify a solver with '--solver='")
if pm_model is None:
UserWarning("pm_model is None. You must specify a model with '--model='")
return pm_model, pm_solver, grid_name, lc, kind
|
126de7ba0aa6267ef9052b70ca4273ef1af97601
| 31,642 |
import collections
import csv
def read_dataset(dataset_path):
"""
Returns a tuple of three dicts. The gloss data is a {gloss: [[lang, trans,
segments, cog_class],]} dict. The concepticon data is a {gloss: global_id}
dict. The ISO codes data is a {lang: iso_code} dict.
"""
data = collections.defaultdict(list)
gloss_ids = {}
iso_codes = {}
with open(dataset_path, newline='', encoding='utf-8') as f:
reader = csv.DictReader(f, delimiter='\t')
for row in reader:
li = [
row['language'], row['transcription'],
row['tokens'], row['cognate_class']]
if li not in data[row['gloss']]:
data[row['gloss']].append(li)
gloss_ids[row['gloss']] = row['global_id']
iso_codes[row['language']] = row['iso_code']
return dict(data), gloss_ids, iso_codes
|
136e0ad25f798f870d975cf44c69d3b96aacdd43
| 31,643 |
def polevl(x, coefs, n):
"""
Evaluate polynomial of degree n.
:param x: polynomial variable
:type x: float
:param coefs: polynomial coefficients
:type coefs: list
:param n: degree
:type n: int
:return: result as float
"""
ans = 0
power = len(coefs) - 1
for coef in coefs:
ans += coef * x**power
power -= 1
return ans
|
f5ffb93d252a780fd02ac791afe8c0a0f61fb9a4
| 31,647 |
def reset_key_secret(api, configuration, api_version, api_exception, key_id):
""" Resets the secret of an API key.
:param api: The Deep Security API modules.
:param configuration: Configuration object to pass to the api client.
:param api_version: The version of the API to use.
:param api_exception: The Deep Security API exception module.
:param key_id: The ID of the key.
:return: An APIKeysApi object that contains the secret of the key.
"""
try:
# Reset the key
api_keys_api = api.APIKeysApi(api.ApiClient(configuration))
return api_keys_api.replace_api_secret_key(key_id, api_version)
except api_exception as e:
return "Exception: " + str(e)
|
99ca4d56e07a4f5f9fb8fa3b0fb2c16f2cdcac32
| 31,648 |
import requests
def url_ok(url):
"""
Checks that a given URL is reachable.
:param url: A URL
:rtype: bool
"""
return requests.head(url).ok
|
f4aa22e55a6c05948488fcb16098c4ed76f9c0d6
| 31,649 |
from typing import Union
from typing import Any
from typing import Sequence
def supports_iteration(value: Union[Any, Sequence[Any]]) -> bool:
"""Returns ``True`` if the ``value`` supports iterations."""
try:
for _ in value:
return True
except TypeError:
pass
return False
|
b74b0ffc85fdfdabfdd1fb5f352c23632966eb97
| 31,650 |
import requests
def fetch_idol(idx):
"""Fetch data for a single idol."""
r = requests.post('https://www.produce101event.com/entry_info.php', data={'idx': idx})
r.raise_for_status()
idol_data = r.json()
if idol_data['result'] == 'success' and idol_data['name']:
return idol_data
else:
return None
|
7378ba567336df0240116c4355c2fd8cf56e52d7
| 31,653 |
from dateutil import tz
def local_time(dt):
"""
Convert a datetime.datetime object to a timezone-aware datetime.datetime
in the users local timezone.
:param dt: A datetime.datetime object.
:returns: A timezone-aware datetime.datetime object in the users local
timezone.
"""
if dt is None:
return None
return dt.replace(tzinfo=tz.tzutc()).astimezone(tz.tzlocal())
|
73d66c916fe7c849184181faf781715535da3166
| 31,654 |
def from_datastore(entity):
"""Formats data from datastore
Datastore typically returns:
[Entity{key: (kind, id), prop: val, ...}]
This returns:
[ name, description, pageCount, author, review ]
"""
if not entity:
return None
if isinstance(entity, list):
entity = entity.pop()
return [entity['name'],entity['description'],entity['pageCount'],entity['author'],entity['review']]
|
45b7b4690258b380bf7c7e69c631cf4f520559e2
| 31,667 |
import math
def round_sample(input_dataframe, frac=0.1, min_samples=1):
"""Sample X ensuring at least min samples are selected."""
num_samples = max(min_samples, math.floor(len(input_dataframe) * frac))
return input_dataframe.sample(num_samples)
|
1e6279a9e069929bdf9fef931b00d9d99a9b6f0c
| 31,668 |
import time
def time_sorting(sort_fxn, data):
""" Record the run times for each run of a sorting function
:param sort_fxn:
The sort function of form sort_fxn(vec) to call
:param data:
A list of vectors to sort
:returns:
A list of run times to sort each element in data
"""
times = [time.process_time()]
for vec in data:
sort_fxn(vec)
times.append(time.process_time())
return [t1 - t0 for t0, t1 in zip(times[:-1], times[1:])]
|
5d7f2e83ec2a74202264447e24fb43dbd03ab83c
| 31,671 |
def caffe_compute(transformed_image,
caffe_net=None, output_layers=None):
"""
Run a Caffe network on an input image after preprocessing it to prepare
it for Caffe.
:param PIL.Image pimg:
PIL image to be input into Caffe.
:param caffe.Net caffe_net:
A Caffe network with which to process pimg afrer preprocessing.
:param list output_layers:
A list of the names of the layers from caffe_net whose outputs are to
to be returned. If this is None, the default outputs for the network
are returned.
:return:
Returns the requested outputs from the Caffe net.
"""
if caffe_net is not None:
# Grab the default output names if none were requested specifically.
if output_layers is None:
output_layers = caffe_net.outputs
input_name = caffe_net.inputs[0]
all_outputs = caffe_net.forward_all(blobs=output_layers,
**{input_name: transformed_image})
outputs = all_outputs[output_layers[0]][0].astype(float)
return outputs
else:
return []
|
09d6581a5db5e184092742ae4296cc3310122507
| 31,676 |
def kstairs(n, k):
"""Give the number of ways to take n steps, given that at each step, you
can choose to take 1, 2, ... k-2, k-1 or k steps.
>>> kstairs(5, 2)
8
>>> kstairs(5, 5)
16
>>> kstairs(10, 5)
464
"""
if n == 0:
return 0
if n <= k:
return 2**(n-1)
return sum([kstairs(n - i, k) for i in range(1, k + 1)])
|
07484fe1186967ba892d3d4e3284962d93a36b91
| 31,678 |
def bin_names_to_coords_filepath(query_bin, ref_bin, results_dir):
"""
prepare a file path for results
:param query_bin: bin number 1 name/filepath (reference sequence)
:param ref_bin: bin number 2 name/filepath. (query sequence)
:return:string like Acidovora-69x_Ga0081644_to_Acidovorax-79_Ga0081651
"""
return results_dir + '/' + query_bin + "_to_" + ref_bin
|
946b788acaf776322cc02aaa3b6740f198b61b4d
| 31,685 |
from typing import Tuple
import re
def parse_hp_condition(hp_condition: str) -> Tuple[int, int, str]:
"""
HPと状態異常を表す文字列のパース
:param hp_condition: '50/200' (現在HP=50, 最大HP=200, 状態異常なし) or '50/200 psn' (状態異常の時)
:return: 現在HP, 最大HP, 状態異常('', 'psn'(毒), 'tox'(猛毒), 'par', 'brn', 'slp', 'frz', 'fnt'(瀕死))
"""
if hp_condition == '0 fnt':
# 瀕死の時は0という表示になっている
# 便宜上最大HP100として返している
return 0, 100, 'fnt'
m = re.match('^(\\d+)/(\\d+)(?: (psn|tox|par|brn|slp|frz|fnt)|)?$', hp_condition)
assert m is not None, f"HP_CONDITION '{hp_condition}' cannot be parsed."
# m[3]は状態異常がないときNoneとなる
return int(m[1]), int(m[2]), m[3] or ''
|
cbe9ec75efbae1b144836cc8129fdc3256e0dccf
| 31,686 |
from typing import List
from typing import Dict
def dictify(data, keys: List, val: Dict) -> Dict:
"""Turns a flat :class:`NodeTree` dictionary into a nested dictionary.
Helper function to generate nested dictionary from list of keys and value.
Calls itself recursively.
Arguments:
data (dict): A dictionary to add value to with keys.
keys (list): A list of keys to traverse along tree and place value.
val (dict): A value for innermost layer of nested dict.
"""
key = keys[0]
key = int(key) if key.isdecimal() else key.lower()
if len(keys) == 1:
data[key] = val
else:
if key in data.keys():
data[key] = dictify(data[key], keys[1:], val)
else:
data[key] = dictify({}, keys[1:], val)
return data
|
e7c0111f67b7755a6e28d6264d8f7b300e94273c
| 31,690 |
def normalize(x, min_x, max_x):
"""
Goal of this function is to normalize passed data given the min and max of the data to fit in 0 - 1
:param x: Array Like structure: The data to be normalized
:param min_x: Float like: The minimum of the data set
:param max_x: Float like: The maximum of the data set
:return: Array: The normalized data in an array with values ranging from 0 to 1
"""
return (x - min_x) / (max_x - min_x)
|
4fbbaf06017cedd14eca3e7f0639d9002b231be4
| 31,691 |
import textwrap
import html
def pretty_text(data):
"""Unsescape the html characters from the data & wrap it"""
if data is not None:
return textwrap.fill(html.unescape(html.unescape(data)), width=60)
else:
return ""
|
f5baf58394b8578b26ad3cb95aff26867bc5f748
| 31,692 |
def count_recursive(contents_per_bag, bag_list):
"""
Count number of nested bags from the given list
:param contents_per_bag: per-bag mapping
:param bag_list: list of bag to inspect
:return: number of bags
"""
nested_bag_qty = 0
for bag in bag_list:
nested_bag_qty += 1
nested_bag_qty += count_recursive(contents_per_bag, contents_per_bag[bag])
return nested_bag_qty
|
d48e317ee73bf0f18021d27bc9857a3ad898759c
| 31,697 |
def sort_list(doc_name: str, *vart):
"""Checks if a string contains the identifiers in vart. If it does return the initial string, if not return None."""
for var in vart:
if var.lower() in doc_name.lower() and "(old" not in doc_name and "~" not in doc_name:
return doc_name
|
92caeaa253daa4dc1b9fac5acda4e38963a984bf
| 31,699 |
def from_homogeneous(vectors, at_infinity):
"""Converts vectors from homogeneous (from point or direction)."""
if at_infinity:
return vectors[:-1,...]
else:
divided = vectors / vectors[-1,...]
return divided[:-1,...]
|
002c7fe26fa5100f4b21a373b8506e4960081b4c
| 31,700 |
def rotl(x, count):
"""Rotates the 64-bit value `x` to the left by `count` bits."""
ret = 0
for i in range(64):
bit = (x >> i) & 1
ret |= bit << ((i + count) % 64)
return ret
|
6bba2bf109f9ddd0f9b4c202c3192e14a0cd625f
| 31,701 |
from typing import Union
import re
def _header_line(line: str) -> Union[None, tuple]:
"""
If it is detected as header line, returns its header level and caption.
Otherwise returns `None`.
"""
m = re.match(r"^(#+)(.+)", line)
if m:
level = len(m.group(1))
caption = m.group(2)
return level, caption
return None
|
0704ff88623eb66caef6a0473047f17a152701f4
| 31,702 |
from typing import Optional
import re
def get_nb_query_param(nb_url_search: str, param: str) -> Optional[str]:
"""
Get a url query parameter from the search string.
Parameters
----------
nb_url_search: str
The URL search string
param: str
The parameter name to search for
Returns
-------
Optional[str]
value of the query string parameter or None if not found.
"""
qs_regex = r"[\\?&]{param}=(?P<val>[^&#]*)".format(param=param)
query_string_match = re.search(qs_regex, nb_url_search)
if query_string_match:
return query_string_match["val"]
return None
|
28b36c630879a16dbca38a9739fe92b1d54aa5ca
| 31,704 |
def MinMaxAvg(data):
"""
Given a list of values, the MIN/MAX/AVG value is returned in a Dictionary
:param data: List of data of the same kind
:type data: int[] or float[]
:returns: a dictionary { 'min':min,'max':max,'avg':average }
:rtype: dictionary
.. seealso:: Stats
"""
min_val = data[0]
max_val = data[0]
acc_val = 0
count = 0
for d in data:
if (d < min_val ): min_val= d
if (d > max_val ): max_val= d
acc_val = acc_val + d
count = count+1
return { 'min':min_val,'max':max_val,'avg':acc_val/count }
|
0373da1ab3dfa36453669d0f6f33b8541e33eb52
| 31,709 |
from pathlib import Path
def read_html_file(file_path):
"""Reads the contents of an HTML file."""
html_file = Path(file_path)
if html_file.exists() and html_file.is_file():
with html_file.open() as temp_file:
contents = temp_file.read()
return contents
return None
|
260b56d895a42696ff04badf62d58268b4f24c0a
| 31,713 |
def rsa_encrypt(data: int, e: int, n: int) -> int:
"""
encrypt data with the rsa cryptosystem (rsa_fernet_encrypt is more secure and supports more data)
:param data: the plaintext
:param e: public key (e) of the other person
:param n: public key (n) of the other person
:return: the ciphertext
"""
if data > n:
raise OverflowError('')
return pow(data, e, n)
|
58f39297a594a1ed224b0ea09b81e7f988c2fe54
| 31,716 |
from typing import List
def is_armstrong(number: int) -> bool:
"""Return True if the given number is an armstrong number."""
digits = list(map(int, str(number)))
exponent = len(digits)
powers: List[int] = [base ** exponent for base in digits]
return sum(powers) == number
|
2c84a53e439368a403f75066e4fbdca119d68f2f
| 31,718 |
def quote_identifier(identifier, sql_mode=""):
"""Quote the given identifier with backticks, converting backticks (`)
in the identifier name with the correct escape sequence (``) unless the
identifier is quoted (") as in sql_mode set to ANSI_QUOTES.
Args:
identifier (str): Identifier to quote.
Returns:
str: Returns string with the identifier quoted with backticks.
"""
if sql_mode == "ANSI_QUOTES":
return '"{0}"'.format(identifier.replace('"', '""'))
return "`{0}`".format(identifier.replace("`", "``"))
|
c032e6e597795b74b3a25c8529074684fc4ab619
| 31,719 |
from typing import Counter
import re
def build_wordlist(input_file):
"""Build a wordlist Counter from lines of the corpus file"""
wordlist = Counter()
for line in input_file:
words = re.findall(r'\w+', line)
wordlist.update(words)
return wordlist
|
575a6fb872750dc83ac8b6f8b66f4b779962b71d
| 31,720 |
def check_max_amplitude(st, min=5, max=2e6):
"""
Checks that the maximum amplitude of the traces in the stream are ALL
within a defined range. Only applied to counts/raw data.
Args:
st (obspy.core.stream.Stream):
Stream of data.
min (float):
Minimum amplitude for the acceptable range. Default is 5.
max (float):
Maximum amplitude for the acceptable range. Default is 2e6.
Returns:
Stream that has been checked for maximum amplitude criteria.
"""
if not st.passed:
return st
for tr in st:
# Only perform amplitude/clipping check if data has not been converted
# to physical units
if 'remove_response' not in tr.getProvenanceKeys():
if (abs(tr.max()) < float(min) or
abs(tr.max()) > float(max)):
tr.fail('Failed max amplitude check.')
return st
|
3043ac4e29904779578c52dfb1c7b79f1cf13ad1
| 31,721 |
def _calc_corr(dbal, benchmark_dbal, window):
"""
Calculate the rollowing correlation between two returns.
Parameters
----------
dbal : pd.Series
Strategy daily closing balance indexed by date.
benchmark_dbal : pd.Series
Benchmark daily closing balance indexed by date.
window : int
Size of the moving window. This is the number of observations
used for calculating the statistic.
Returns
-------
corr : pd.DataFrame
Window size rollowing correlation between `dbal` and
`benchmark_dbal`.
"""
ret = dbal.pct_change()
benchmark_ret = benchmark_dbal.pct_change()
corr = ret.rolling(window).corr(benchmark_ret)
return corr
|
4ae0ec7184774a6500eecafa91467daee7800ca1
| 31,724 |
def iben_tutukov1984(history, al=1):
"""
CE formalism from
`Iben & Tutukov 1984, ApJ, 284, 719 <https://ui.adsabs.harvard.edu/abs/1984ApJ...284..719I/abstract>`_
Required history parameters:
- star_1_mass
- star_2_mass
- he_core_mass
- binary_separation
:param history: ndarray with model parameters
:param al: alpha CE, the efficiency parameter for the CE formalism
:return: final separation, final primary mass
"""
M1 = history['star_1_mass'][-1]
M2 = history['star_2_mass'][-1]
Mc = history['he_core_mass'][-1]
a = history['binary_separation'][-1]
af = al * (Mc * M2) / (M1 ** 2) * a
return af, Mc
|
6eef41463eef83668902c74f748258a39e8b919f
| 31,725 |
def _count_words(text):
"""
Count words in a piece of text.
"""
if isinstance(text, (list, tuple)):
text = "\n".join(text)
return len(text.split()) if text else 0
|
473b91262f27400b8ae7c95a819eb35288cb1dc4
| 31,727 |
def parse_monitors(monitors):
"""
Given a list of dictionaries, returns a list of hosts that
can be used in an ansible inventory. These host lines can include
host variables as well.
For example, monitors in this format::
[
{"host": "mon0.host", "interface": "eth0"},
{"host": "mon1.host", "interface": "enp0s8"},
]
Would return the following::
["mon0.host monitor_interface=eth0", "mon1.host monitor_interface=enp0s8"]
Because the API allows for both ``interface`` or ``address`` this utility
will look for both. Ideally, only one should be defined, but it is up to
the client to ensure that the one that is needed is passed to the API.
"""
hosts = []
for mon in monitors:
host = []
host.append(mon["host"])
# This is an 'either or' situation. The schema engine does not allow us
# to play with situations that might have one key or the other. That
# problem gets solved here by trying to use monitor_interface first and
# then falling back to its address if defined.
try:
host.append("monitor_interface=%s" % mon['interface'])
except KeyError:
try:
host.append("monitor_address=%s" % mon['address'])
except KeyError:
# do not append monitor_* and just use the host
pass
hosts.append(" ".join(host))
return hosts
|
5fc05ca5713bb188c022b0f070bf63f97162174f
| 31,729 |
def jump_stats(previous_jumps, chute_altitude):
"""Compare altitude when chute opened with previous successful jumps.
Return the number of previous jumps and the number of times
the current jump is better.
"""
n_previous_jumps = len(previous_jumps)
n_better = sum(1 for pj in previous_jumps if chute_altitude < pj)
return n_previous_jumps, n_better
|
f9b92c1355ca45b4bb8be77c0e446bc71cdae7fc
| 31,733 |
from operator import xor
def detect_secstruct_clash(i, j, secstruct):
"""
Detect if an EC pair (i, j) is geometrically
impossible given a predicted secondary structure
Based on direct port of the logic implemented in
choose_CNS_constraint_set.m from original pipeline,
lines 351-407.
Use secstruct_clashes() to annotate an entire
table of ECs.
Parameters
----------
i : int
Index of first position
j : int
Index of second position
secstruct : dict
Mapping from position (int) to secondary
structure ("H", "E", "C")
Returns
-------
clashes : bool
True if (i, j) clashes with secondary
structure
"""
# extract a secondary structure substring
# start and end are inclusive
def _get_range(start, end):
return "".join(
[secstruct[pos] for pos in range(start, end + 1)]
)
def _all_equal(string, char):
return string == len(string) * char
# get bigger and smaller of the two positions
b = max(i, j)
s = min(i, j)
# if pair too distant in primary sequence, do
# not consider for clash
if b - s >= 15:
return False
# get secondary structure in range between pairs
secstruct_string = _get_range(s, b)
# part 1: check for clashes based on alpha helices
# first check for helix between them, or both in a helix
# (or either one directly next to helix)
if _all_equal(_get_range(s + 1, b - 1), "H"):
return True
# of if just one of them is in a helix
elif xor(secstruct[s] == "H", secstruct[b] == "H"):
h2 = "H" * (b - s - 1)
h3 = "H" * (b - s - 2)
if h2 in secstruct_string:
if b - s > 6:
return True
elif h3 in secstruct_string:
if b - s > 11:
return True
# part 2: check for clashes based on beta strands
if _all_equal(_get_range(s + 1, b - 1), "E"):
return True
elif _all_equal(_get_range(s + 2, b - 2), "E"):
if b - s > 8:
return True
if xor(secstruct[s] == "E", secstruct[b] == "E"):
e2 = "E" * (b - s - 1)
e3 = "E" * (b - s - 2)
e4 = "E" * (b - s - 3)
if e2 in secstruct_string:
return True
elif e3 in secstruct_string:
return True
elif e4 in secstruct_string:
if b - s > 8:
return True
return False
|
2591bffd2f21266ace9371fee68f3ac729f3cc9d
| 31,739 |
def gauss_sum(n):
"""Calculate sum(x for x in range(1, n+1)) by formula."""
return n * (n + 1) // 2
|
96d611e8975d163f1cc1cdf207f0930b5951d4a1
| 31,742 |
def _is_mobi(file_bytes: bytes) -> bool:
"""
Decide if a file is a MOBI/AZW3 file.
From ./se/vendor/kindleunpack/mobi_sectioner.py lines 49-53
"""
return file_bytes[:78][0x3C:0x3C+8] in (b"BOOKMOBI", b"TEXtREAd")
|
dcd1fb584b5a8c373fc5b453314ccbc9574b66ea
| 31,743 |
def remove_empty(rec):
""" Deletes sequences that were marked for deletion by convert_to_IUPAC """
for header, sequence in rec.mapping.items():
if all(char == 'X' for char in sequence):
rec.headers.remove(header)
rec.sequences.remove(sequence)
rec.update()
return rec
|
57616d8fb35f6bf5c74d4271dfe709e87171932a
| 31,747 |
def get_y_for_x(x: float, gradient: float, y_intercept: float) -> float:
"""
Linear equation, y = mx + c
"""
return (x * gradient) + y_intercept
|
f2e4226c159e74621ae8301d24ecc5bef85971f4
| 31,754 |
import math
def regularize(data):
"""Converts every non-numerical list value to zero which is useful for analysis later."""
for index, val in enumerate(data):
if math.isinf(val) or math.isnan(val):
data[index]=0
return data
|
ae38fa7a3a1f5bb6bfeba2ca4fbcfd5145f36ee8
| 31,763 |
from typing import List
def padding_list(someList: List[str], N: int) -> List[str]:
"""Padding the list with <s> at the front and </s> behind
Args:
someList (List[str]): The list to be padded with
N (int): The amount of <s>, </s> to be padded
Returns:
List[str]: Padded list
"""
for i in range(N):
someList = ['<s>'] + someList + ['</s>']
return someList
|
e8df315d715e5e1e4575b42da5f6ff1691107732
| 31,767 |
def check_non_ascii(line):
"""Checks if a line contains a non ascii chars
Params:
line (unicode)
Returns:
true if line does not contain non ascii chars
"""
try:
line.encode('ascii')
return True
except UnicodeEncodeError:
return False
|
9e9eebf5623000b27e3b2234ada4c2c5eaafad83
| 31,775 |
def az_rate(val):
"""Convert an integer value to a floating point angular rate."""
return val * 90. / 2**16
|
22dfd3cfcc04ec83dc5b6d845eb333de96cd5f7a
| 31,776 |
def getelasticpublicip(ip):
"""Gets the PublicIp address of the Elastic IP Address"""
return ip["PublicIp"]
|
84e4f788cb4a9b765f4b5dfc1a0606004162a4ed
| 31,781 |
def commands(ctx):
"""
Returns a string of Rimworld specific commands
Parameters:
ctx: The context of the message
Returns:
str: The list of commands
"""
response = ''
response = 'Rimworld Commands: !item, !event, !iteminfo, !eventinfo, !mods'
return response
|
4fcb162740e97437f414f8925eff97d3032e5319
| 31,782 |
def add_timeout_arg(parser):
"""Add the timeout argument to a parser"""
def _validator(val):
"""Validate acceptable inputs for the timeout of the function"""
error = 'Value for \'timeout\' must be an integer between 10 and 900'
try:
timeout = int(val)
except ValueError:
raise parser.error(error)
if not 10 <= timeout <= 900:
raise parser.error(error)
return timeout
parser.add_argument(
'-t',
'--timeout',
required=True,
help=(
'The AWS Lambda function timeout value, in seconds. '
'This should be an integer between 10 and 900.'
),
type=_validator
)
|
2b96c763f579650e86e311a2081eab2313f6dc49
| 31,784 |
def remove_dul(entitylst):
"""
Remove duplicate entities in one sequence.
"""
entitylst = [tuple(entity) for entity in entitylst]
entitylst = set(entitylst)
entitylst = [list(entity) for entity in entitylst]
return entitylst
|
7763ea273b9eed00d923ac1b8d631b9a24daf01a
| 31,786 |
def a_source_filename(plugin_ctx, fsm_ctx):
"""send source filename."""
src_file = plugin_ctx.src_file
fsm_ctx.ctrl.sendline(src_file)
return True
|
97a2d12fd2807b0dfca8d503478ccc5c514b88b6
| 31,793 |
import re
def seperate_data(data, labels):
"""
Given a data file such as
| x11 u11 x12 other x13 |
| x21 u21 x22 other x23 |
| ..................... |
And labels for each column such as
'x' 'u' 'x' '_' 'x'
Split the data into x' and u'
"""
# Take the index of all instances of 'x', get the cols with
# that index, which should be the states.
xt = data[:, [m.start() for m in re.finditer('x', labels)]]
# Save as above, but with 'u' and inputs.
ut = data[:, [m.start() for m in re.finditer('u', labels)]]
return xt, ut
|
6dc739f55fcf6113cc45d849c256e5186e328cc0
| 31,798 |
def hr2deg(deg):
"""Convert degrees into hours."""
return (deg * (24.0 / 360.0))
|
e9f268be41221cd2b17d596f859d7a7686c3b4ac
| 31,799 |
from typing import Union
import time
def cast_timestamp_seconds_since_epoch_to_text(seconds: Union[int, float, str],
timezone: str = "UTC",
time_in_nanoseconds: bool = False,
date_time_format: str = '%Y-%m-%d %H:%M:%S') -> str:
"""
>>> assert cast_timestamp_seconds_since_epoch_to_text(0,"UTC") == '1970-01-01 00:00:00'
>>> assert cast_timestamp_seconds_since_epoch_to_text("0","LOCAL")
>>> assert cast_timestamp_seconds_since_epoch_to_text(1590674483 ,"UTC") == '2020-05-28 14:01:23'
>>> assert cast_timestamp_seconds_since_epoch_to_text(1590674574765797619 ,"UTC", time_in_nanoseconds=True) == '2020-05-28 14:02:55'
"""
seconds = float(seconds)
if time_in_nanoseconds:
seconds = seconds / 1E9
seconds = int(round(seconds))
if timezone == "UTC":
epochseconds = time.gmtime(seconds)
else:
epochseconds = time.localtime(seconds)
return time.strftime(date_time_format, epochseconds)
|
cc675ad75bc90e3866eb737b6878c1c21d049ac4
| 31,805 |
def to_lower( tokens ):
"""Convert all tokens to lower case.
Args:
tokens (list): List of tokens generated using a tokenizer.
Returns:
list: List of all tokens converted to lowercase.
"""
return [w.lower() for w in tokens]
|
acef98d5e52ed03104f75d542b8f8328790a7c5f
| 31,806 |
import re
def has_three_consecutive_vowels(word):
"""Returns True if word has at least 3 consecutive vowels"""
pattern = re.compile(r"[aAeEiIoOuU]{3,}")
match = pattern.search(word)
return True if match else False
|
6159ccca9a132e2d2bbd28b8a867aca496ba8436
| 31,807 |
def rotc(ebit, debt, equity):
"""Computes return on total capital.
Parameters
----------
ebit : int or float
Earnins before interest and taxes
debt : int or float
Short- and long-term debt
equity : int or float
Equity
Returns
-------
out : int or float
Return on total capital
"""
return ebit / (debt - equity)
|
4c4149d55439c0b6d91b15559fe0618dd09efac0
| 31,811 |
def is_final_option(string):
"""Whether that string means there will be no further options
>>> is_final_option('--')
True
"""
return string == '--'
|
272b3300571096eb0a4931c7f699b00b7a39842c
| 31,812 |
def traverse_dict(obj: dict, convert_to_string: bool = True):
"""
Traversal implementation which recursively visits each node in a dict.
We modify this function so that at the lowest hierarchy,
we convert the element to a string.
From https://nvie.com/posts/modifying-deeply-nested-structures/
"""
if isinstance(obj, dict):
out_dict = {}
for key, val in obj.items():
out_dict[key] = traverse_dict(val)
return out_dict
if isinstance(obj, list):
return [traverse_dict(elem) for elem in obj]
return_obj = str(obj) if convert_to_string else obj
return str(return_obj)
|
af323c350fc5c784362baf6aaee9a61be0d7f0ca
| 31,816 |
def squash_dims(tensor, dims):
"""
Squashes dimension, given in dims into one, which equals to product of given.
Args:
tensor (Tensor): input tensor
dims: dimensions over which tensor should be squashed
"""
assert len(dims) >= 2, "Expected two or more dims to be squashed"
size = tensor.size()
squashed_dim = size[dims[0]]
for i in range(1, len(dims)):
assert dims[i] == dims[i - 1] + 1, "Squashed dims should be consecutive"
squashed_dim *= size[dims[i]]
result_dims = size[:dims[0]] + (squashed_dim,) + size[dims[-1] + 1:]
return tensor.contiguous().view(*result_dims)
|
d12ee924fabae3529aa48a90d124bbb41cc3a655
| 31,817 |
def transform_post(post):
"""Transforms post data
Arguments:
post {dict} -- Post data
"""
return {
'id': post['id'],
'title': post['title'],
'url': post['url'],
'image': post['feature_image'],
'summary': post['custom_excerpt'] \
if post['custom_excerpt'] else post['excerpt']
}
|
c765ba32ec5b00c289034e8daa2424f431678307
| 31,821 |
def min_operations(number):
"""
Return number of steps taken to reach a target number
number: target number (as an integer)
:returns: number of steps (as an integer)
"""
# Solution:
# 1. The number of steps to reach a target number = number of steps take to make the target number 0
# 2. We will be greedy, each time if it is possible we will try to make the number half
steps_count = 0
while number > 0:
# check if we can make the number half
if number % 2 == 0:
number = number / 2
else:
# number can't halved so we can only decrease it by 1
number -= 1
steps_count += 1
return steps_count
|
d15d91e22aa2d552acb8308882482ffeafa9d5e3
| 31,824 |
import ipaddress
def validate_ipv4_address(ipv4_address):
"""
This function will validate if the provided string is a valid IPv4 address
:param ipv4_address: string with the IPv4 address
:return: true/false
"""
try:
ipaddress.ip_address(ipv4_address)
return True
except:
return False
|
51de6b7d4da2de4413217ee339147538aac4c2f5
| 31,825 |
def flatten(some_list):
"""
Flatten a list of lists.
Usage: flatten([[list a], [list b], ...])
Output: [elements of list a, elements of list b]
"""
new_list = []
for sub_list in some_list:
new_list += sub_list
return new_list
|
26df175c0e119f5a872449df9fd8ea8d46393542
| 31,827 |
from typing import Any
from typing import Set
def _all_names_on_object(obj: Any) -> Set[str]:
"""Gets all names of attributes on `obj` and its classes throughout MRO.
Args:
obj: The object to get names for.
Returns:
A set of names of attributes of `obj` and its classes.
"""
nameset = set(obj.__dict__.keys())
for cls in obj.__class__.__mro__:
nameset = nameset.union(set(cls.__dict__.keys()))
return nameset
|
ac635b970df640a602656af55eabb94c4d55daae
| 31,831 |
import ipaddress
import re
def _validate_cidr_format(cidr):
"""Validate CIDR IP range
:param str cidr:
:return:
:rtype: bool
"""
try:
ipaddress.ip_network(cidr, strict=False)
except (ValueError, ipaddress.AddressValueError,
ipaddress.NetmaskValueError):
return False
if '/' not in cidr:
return False
if re.search('\s', cidr):
return False
return True
|
5f2a667c93720909ce7b9ff3019a0c403a499222
| 31,833 |
def _convert_path_to_ee_sources(path: str) -> str:
"""Get the remote module path from the 'ee-sources' GCS bucket.
Args:
path: str
Returns:
An ee-sources module url.
"""
if path.startswith("http"):
eempath = path
else:
bpath = path.replace(":", "/")
eempath = f"https://storage.googleapis.com/ee-sources/{bpath}"
return eempath
|
f650736711fb8909e0e11df2165a89f06210cb53
| 31,838 |
import pytz
def convert_utc_to_localtime(utc_datetime, timezone_str):
"""
轉換 utc 時間為指定的 local 時間,如果輸入的時區有錯,則保持原來的 UTC
Args:
utc_datetime(datetime): utc 時間
timezone(str): 指定轉換的時區,採用 tz database 列表
Returns
timezone_dt(datetime): 回傳轉換好的時區時間
"""
# 取得 tzinfo 的時區
if timezone_str in pytz.common_timezones:
tz = pytz.timezone(timezone_str)
# 取得時區資訊的 dateime
dateime_include_tzinfo = pytz.utc.localize(utc_datetime, is_dst=None)
timezone_dt = dateime_include_tzinfo.astimezone(tz)
return timezone_dt
return utc_datetime
|
3185746161ddfd812f023bdfa74bb58bd2be9113
| 31,840 |
import collections
def list_compare(a: list, b: list) -> bool:
"""Check if two lists contain the same elements."""
return collections.Counter(a) == collections.Counter(b)
|
05a15f46b5e00f6e17e81f4b67332a196154f4e7
| 31,848 |
def copper_heat_capacity_CRC(T):
"""
Copper specific heat capacity as a function of the temperature from [1].
References
----------
.. [1] William M. Haynes (Ed.). "CRC handbook of chemistry and physics". CRC Press
(2014).
Parameters
----------
T: :class:`pybamm.Symbol`
Dimensional temperature
Returns
-------
:class:`pybamm.Symbol`
Specific heat capacity
"""
cp = 1.445e-6 * T ** 3 - 1.946e-3 * T ** 2 + 0.9633 * T + 236
return cp
|
5a1aa532ea0d9eb7cb4974709963495835d608aa
| 31,853 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.