content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def WithChanges(resource, changes):
"""Apply ConfigChangers to resource.
It's undefined whether the input resource is modified.
Args:
resource: KubernetesObject, probably a Service.
changes: List of ConfigChangers.
Returns:
Changed resource.
"""
for config_change in changes:
resource = config_change.Adjust(resource)
return resource
|
4e0db8a71b24146e0ef5d18c65e71ac12e500fef
| 670,472 |
import socket
def is_port_open(port):
"""
Checks if the port is open on localhost by creating a socket connection to it.
:param port: The port as a number
:return: True if open, false otherwise
"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
return sock.connect_ex(('127.0.0.1', port)) == 0
|
51ab6b8a5259f2628a2b9d163acda2c266130566
| 615,318 |
from typing import Any
import requests
def from_url(url: str) -> Any:
"""Gets json response from url."""
resp = requests.get(url=url)
resp_json = resp.json()
return resp_json
|
ea72f01ea304c96da2ab03361ab194eadf1fcdbe
| 434,956 |
def validation_failed(schema, doc):
"""Return True if the parsed doc fails against the schema
This will ignore validation failures of the type: IDREF attribute linkend
references an unknown ID. This is because we are validating individual
files that are being imported, and sometimes the reference isn't present
in the current file."""
return not schema.validate(doc) and \
any(log.type_name != "DTD_UNKNOWN_ID" for log in schema.error_log)
|
dcfa36da3370c1e20b9ce1e11588868eb9bcdb55
| 529,031 |
def filter_stream(streams, excludes):
"""
Uses a list of keywords to remove sensors or streams from the list returned by OOI Net.
:param streams: list of sensor or streams returned from OOI Net
:param excludes: list of keywords to use in pruning the list
:return: a cleaned, pruned list
"""
clean = []
for stream in streams:
if not any(sub in stream for sub in excludes):
clean.append(stream)
return clean
|
d7c7278714cb80541a2aa29ab1c111256ef6b618
| 39,987 |
def extract_demonym(demonyms, gender):
"""
Search through the list of demonyms and find the right one by gender
:param demonyms:
:param gender: may be male (u'Q499327') od female (u'Q1775415')
:return: demonym in Serbian language
"""
description = u''
for demonym in demonyms:
local_demonym = demonym.getTarget()
if local_demonym.language == u'sr':
demonym_qualifiers = demonym.qualifiers
if 'P518' in demonym_qualifiers:
demonym_gender = demonym_qualifiers['P518']
if len(demonym_gender) > 1:
exit()
demonym_gender = demonym_gender[0].target.id
if demonym_gender == gender:
description += local_demonym.text
break
return description
|
1e35a61db65778f98cdbd814d0e9f223a232d675
| 76,732 |
def best_scale_factor(x, y):
"""Maximum distance from zero for one variable relative to another
>>> best_scale_factor([.1, .2, .3], [.2, .4, .6]) # doctest: +ELLIPSIS
2.0
>>> best_scale_factor([-.1, -.2, -.3], [-1, -2, -3]) # doctest: +ELLIPSIS
10.0
For speed and simplicity, the scale factor is intended for data near or crossing zero.
It is not the maximum relative ranges of the data.
"""
if any(x) and any(y):
return float(max(abs(min(y)), abs(max(y)))) / max(abs(min(x)), abs(max(x)))
return 1.
|
70d526054627d720affa6c8dad91dcc95f3a5b90
| 199,257 |
def _pretty_class(s):
"""
convert the internal class name representation into what users
expect to see. Currently that just means swapping '/' for '.'
"""
# well that's easy.
return str(s).replace("/", ".")
|
4fc3292bce1ce2cf72688c6b580eed174c4ad5c4
| 587,385 |
def packed_letter_to_number(letter):
"""Unpack a letter to the corresponding number according to MPC.
See:
https://www.minorplanetcenter.net/iau/info/DesDoc.html
Args:
letter (str): Single character to decode.
Returns:
int: Corresponding number.
"""
try:
int(letter)
return letter.rjust(2, '0')
except ValueError:
ord_letter = ord(letter)
if ord_letter >= 97 and ord_letter <= 122:
return str(ord_letter - 61)
elif ord_letter >= 65 and ord_letter <= 96:
return str(ord_letter - 55)
else:
raise ValueError(f'Letter "{letter}" is invalid')
|
ab83f539363316c09c4b38be93a78f34605774ee
| 285,200 |
import platform
def is_linux() -> bool:
"""
:return: True if running on Linux. False otherwise.
"""
return platform.system().lower() == 'linux'
|
2126de6751fdaf27eab606eef54230690270e4bf
| 660,443 |
def normalize( df, baseline = 0.1 ):
"""
Normalize all spectrum.
:param df: The Pandas DataFrame to normalize.
:param baseline: Baseline correction threshold or False for no correction.
[Default: 0.1]
:returns: The normalized DataFrame.
"""
df = df.copy()
df /= df.max()
if baseline is not False:
base = df[ df.abs() < baseline ]
df -= base.mean()
return df
|
65a7a0238736c2c5a5e21b4bfc0205aca9f9f778
| 641,145 |
def choose_features(features, hrs=True, numlocs=True, location=True, latlon=True):
"""
Returns a list of feature names chosen from the dictionary "features"
Parameters:
features: a dictionary with keys equal to the arguments of the function, values list of df variables
hrs: If True, choose feature group that contains hours spent in Tuscany, hours spent outside Tuscany
numlocs: If True, choose feature group that contains number of locations and number of unique locations visited in Tuscany and Italy
location: If True, choose feature group that contains time spent (in mumtiples of ) at the locations with respective features, including landscape, cities visited, and total number of attactions visited.
latlon: If True, choose feature group that contains latitude and longitude of average location, most visited location, start and end location, and standard deviation of all lat/lon
"""
final_features=[]
options = [hrs, numlocs, location, latlon]
for f in zip(options,features.keys()):
#print (f)
if f[0]==True:
final_features.extend(features[f[1]])
return final_features
|
5403fcd5728121a187113abf2a7f6ab2a59ece75
| 372,503 |
def dtype(x):
"""Returns the dtype of a tensor as a string. """
return x.dtype.name
|
5be6755b88e6f9c1985ab5c57afb47921be84c9a
| 309,979 |
def get_mode_from_operator_identifier(identifier):
"""Get the Fmm mode from the operator identifier."""
descriptor = identifier.split("_")[0]
if descriptor == "laplace":
return "laplace"
elif descriptor == "helmholtz":
return "helmholtz"
elif descriptor == "modified":
return "modified_helmholtz"
elif descriptor == "maxwell":
return "helmholtz"
else:
raise ValueError("Unknown identifier string.")
|
8fa7d55ccde72d87ab548cb52b562a3697277d5e
| 494,104 |
def remove_keys(road):
"""
:param road: A road segment as a dict
:return: The same road segment without "felt" and "kvalitet".
"""
road.pop("felt", None)
road["geometri"].pop("kvalitet", None)
return road
|
633f5934f2e41bbf9a0a83b55ada2400ec9b3ddf
| 607,759 |
import math
def dwpf(tmpf, relh):
"""
Compute the dewpoint in F given a temperature and relative humidity
"""
if tmpf is None or relh is None:
return None
tmpk = 273.15 + (5.00 / 9.00 * (tmpf - 32.00))
dwpk = tmpk / (1 + 0.000425 * tmpk * -(math.log10(relh / 100.0)))
return int(float((dwpk - 273.15) * 9.00 / 5.00 + 32))
|
49031b6fb76f0311ec2554aae01671b2b935eaf7
| 63,198 |
from typing import Union
import pathlib
def name_modules(
folder: Union[str, pathlib.Path],
recursive: bool = False) -> list[str]:
"""Returns list of python module names in 'folder'.
Args:
folder (Union[str, pathlib.Path]): path of folder to examine.
recursive (bool): whether to include subfolders. Defaults to False.
Returns
list[str]: a list of python module names in 'folder'.
"""
kwargs = {'folder': folder, 'suffix': '.py', 'recursive': recursive}
paths = [p.stem for p in get_paths(**kwargs)] # type: ignore
return [str(p) for p in paths]
|
b5f23927deb52c557aac571e977cf2fdb35408f8
| 501,913 |
def intersection(x1, x2):
"""Histogram Intersection
Parameters
----------
x1: numpy.ndarray
Vector one
x2: numpy.ndarray
Vector two
Returns
-------
distance: float
Histogram intersection between `x1` and `x2`
"""
assert(len(x1) == len(x2))
minsum = 0
for i in range(len(x1)):
minsum += min(x1[i], x2[i])
return float(minsum) / min(sum(x1), sum(x2))
|
055530363d62b0993eee8a9c72c7f759982a8376
| 39,389 |
def _slugify(value: str) -> str:
"""
Converts the value to a slugified version reducing the str down to just
alpha-numeric values and removing white-space
:param value: value as a str
:return: slugified version of the value
"""
return ''.join(s for s in value if s.isalnum()).lower()
|
dd0e28381f1033c4fea9bb4b368a715f2ba132fe
| 686,664 |
def merge_dictionaries(base_dict: dict, in_dict: dict) -> dict:
"""
This will return a complete dictionary based on the keys of the first matrix. If the same key should exist in the
second matrix, then the key-value pair from the first dictionary will be overwritten. The purpose of this is that
the base_dict will be a complete dictionary of values such that an incomplete second dictionary can be used to
update specific key-value pairs.
:param base_dict: Complete dictionary of key-value pairs.
:param in_dict: Subset of key-values pairs such that values from this dictionary will take precedent.
:return: A merged single dictionary.
"""
for k, v in base_dict.items():
if k in in_dict.keys():
base_dict[k] = in_dict[k]
return base_dict
|
34abb21b38f64aff27c62b1029cf19e99f1ac99f
| 345,916 |
from typing import Dict
def create_authorization_headers(authorization: str) -> Dict[str, str]:
"""Creates headers containing authorization"""
return {"Authorization": authorization}
|
6df2ac11c778944c36d9d6145f7c466425526e0d
| 204,839 |
def _FindAdobeIllustrator(f):
"""Does a file contain "Adobe_Illustrator"?
Args:
f: an open File
Returns:
bool: True if reading forward in f, we find "Adobe_Illustrator"
"""
while True:
s = f.readline()
if not s or s.startswith(b"%%EndProlog"):
break
if s.find(b"Adobe_Illustrator") >= 0:
return True
return False
|
899edf5500c350485089d7a63e6ac867e5d1ad96
| 466,477 |
def read64str(f):
"""Read 8 bytes from a file and return as an ASCII string.
"""
return f.read(8).decode("latin1")
|
532dd21f33d5935b3aa9fc329747f3edd468a6aa
| 618,860 |
def decode_resouce_type(id: str) -> int:
"""Decode a number between 0 and 0xFFFF from a 4-character hex string"""
return int(id, 16)
|
64a1d319a95dd497721635c6cbb4c806ac172245
| 576,722 |
def count_binary_ones(number):
"""
Returns the number of 1s in the binary representation of number (>=0)
For e.g 5 returns 2 (101 has 2 1's), 21 returns 3 ("10101")
"""
# Use only builtins to get this done. No control statements plz
return bin(number)[2:].count("1")
|
c4d153d08e0d1d114fbd95a6ca0bfe33af5cbd9c
| 335,446 |
def check_ssid(ssid: str) -> str:
""" Check if SSID is valid """
if len(ssid) > 32:
raise ValueError("%s length is greater than 32" % ssid)
return ssid
|
aea354e4299ed2524f1caa3fcd72b843d87d52b9
| 375,233 |
def on_condition_that(condition, fuzzer):
"""
A composite fuzzer that applies the supplied fuzzer if the specified condition holds.
:param condition: Can either be a boolean value or a 0-ary function that returns a boolean value.
:param fuzzer: the fuzz operator to apply if the condition holds.
:returns: a fuzz operator that applies the underlying fuzz operator if the specified condition is satisfied.
"""
def _on_condition_that(steps, context):
if hasattr(condition, '__call__'):
if condition():
return fuzzer(steps, context)
else:
return steps
elif condition:
return fuzzer(steps, context)
else:
return steps
return _on_condition_that
|
b5b8d6ba5e13619b06f8a92ed882f1cb78d7a4a6
| 211,595 |
def mix(x, y, a):
"""
re-implementation of opengl mix
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/mix.xhtml
The return value is computed as x×(1−a)+y×a
"""
return x * (1.0 - a) + y * a
|
d95f7026b47273e91891dfdc5f39905e99533e50
| 87,998 |
def slice_vis(step, uvw, v=None):
""" Slice visibilities into a number of chunks.
:param step: Maximum chunk size
:param uvw: uvw coordinates
:param src: visibility source
:param v: Visibility values (optional)
:returns: List of visibility chunk (pairs)
"""
nv = len(uvw)
ii = range(0, nv, step)
if v is None:
return [ uvw[i:i+step] for i in ii ]
else:
return [ (uvw[i:i+step], v[i:i+step]) for i in ii ]
|
6c12607e4966575f6f3d3ae3a0004e6d9b6d2648
| 485,249 |
def format_address(msisdn):
"""
Format a normalized MSISDN as a URI that ParlayX will accept.
"""
if not msisdn.startswith('+'):
raise ValueError('Only international format addresses are supported')
return 'tel:' + msisdn[1:]
|
f5a5cc9f8bcf77f1185003cfd523d7d6f1212bd8
| 5,320 |
import random
def some_simple_data(length=1000000):
"""Generate random array of integers"""
data = list(range(length))
random.shuffle(data)
return data
|
c12a22a2e226e80176c428816d9162d0d2cead1b
| 581,958 |
def safe_hasattr(obj, attr, _marker=object()):
"""Does 'obj' have an attribute 'attr'?
Use this rather than built-in hasattr, as the built-in swallows exceptions
in some versions of Python and behaves unpredictably with respect to
properties.
"""
return getattr(obj, attr, _marker) is not _marker
|
2ed0ed97c072b5476e1ae679863d2bd50e22f845
| 223,467 |
def base_convert_to_ten(base: int, digits: list[int]) -> int:
"""
Examples:
>>> digits = [0, 1, 1]
>>> base_convert_to_ten(2, digits)
6
"""
assert abs(base) >= 2
p = 1
n = 0
for d in digits:
n += d * p
p *= base
return n
|
007f887a2dc5e8cc19dc9c9b9d1d248456d5eda3
| 79,771 |
def as_list(tup_list):
"""
Turns a tuple-list into a list of the first element of the tuple
@param tup_list is the tuple-list you are converting
@returns the created list
"""
res = []
for elem in tup_list:
res.append(elem[0])
return res
|
770f5f4e302e1796f6945507c7f314cf157cc77a
| 101,236 |
def print_sr(search_results, readable_list):
"""
Prints results of movie lookup (movie/tv show title and release year)
Param: search_results (list) like sr and readable_list (str) like org_list
Example: print_sr(sr, org_list)
Returns: None
"""
for title in search_results:
readable_list.append(title["Title"] + ", " + title["Year"].replace("–","-"))
print(title["Title"] + " (" + title["Year"] +")") # prints a list of the search results' title and release year
return None
|
aaa92cff09d9909e2c13b55f6eb6525b6c6034bd
| 225,137 |
def convert_cases(case):
"""
Converts cases as found on Wikidata to more succinct versions.
"""
case = case.split(" case")[0]
if case in ["accusative", "Q146078"]:
return "Acc"
elif case in ["dative", "Q145599"]:
return "Dat"
elif case in ["genitive", "Q146233"]:
return "Gen"
else:
return ""
|
a479d4624f5b1402db8367679b45a013c523412a
| 420,945 |
def has_converged(mu, oldmu):
"""
A boolean indicating whether or not a set of centroids has converged
Parameters:
mu - the latest array of centroids
oldmu - the array of centroids from the previous iteration
Returns:
A boolean indicating whether or not the old and new centroids are the same,
representing whether or not the clustering has converged
"""
return (set([tuple(a) for a in mu]) == set([tuple(a) for a in oldmu]))
|
35234531a15baaf4f1df2f196e6abcec40fade59
| 41,177 |
import random
def random_bits(bit_ranges):
"""Generate random binary mask with ones in the specified bit ranges.
Each bit_ranges is a list of tuples of lower and upper limits of bit
positions will be fuzzed. The limits are included. Random amount of bits
in range limits will be set to ones. The mask is returned in decimal
integer format.
"""
bit_numbers = []
# Select random amount of random positions in bit_ranges
for rng in bit_ranges:
bit_numbers += random.sample(range(rng[0], rng[1] + 1),
random.randint(0, rng[1] - rng[0] + 1))
val = 0
# Set bits on selected positions to ones
for bit in bit_numbers:
val |= 1 << bit
return val
|
6347f98cbf141c8059f920a1e03e007004fb1090
| 414,602 |
def day_of_month(date_time_col):
"""Returns the day of month from a datetime column."""
return date_time_col.dt.day
|
c69e12d5a7bbababd9816df0ca13e09fd12eca48
| 125,405 |
def p1_for(input_list):
"""Compute some of numbers in list with for loop."""
out = 0
for i in input_list:
out += i
return out
|
7691bc14e10eab3a7fbda46091dcb62773704f1a
| 675,882 |
from typing import Counter
def check_outliers(df,list):
"""
Check for upper and lower limit
Parameters
----------
df : dataframe
dataframe to be inspected
list : list
list of columns less id
Returns
-------
outlier_index_unique : list
index of rows with outlier values
"""
outlier_index=[]
for feature in list:
lower_limit=df[feature].quantile(0.25)
upper_limit=df[feature].quantile(0.75)
iqr=upper_limit-lower_limit
iqr_step=iqr*1.5
feature_outlier_index=df[(df[feature]<lower_limit-iqr_step)|(df[feature]>upper_limit+iqr_step)].index
outlier_index.extend(feature_outlier_index)
outlier_index_counter=Counter(outlier_index)
outlier_index_unique=[]
for key,value in outlier_index_counter.items():
outlier_index_unique.append(key)
return outlier_index_unique
|
d12f08f14254c135f95c74185564b2d637ecd5e5
| 101,990 |
def add_a_b(a,b):
"""return sum of a and b"""
return a+b
|
05bb65169489a4f401628750e0b79bda0bed0f03
| 370,163 |
import json
def is_nonexistent_file_error(e):
""" Differentiates between an abnormal connection issue or the file not existing
Args:
e: the HTTP exception to analyze
Returns:
bool whether the error is a nonexistent file http error
"""
no_file_msg = 'The File does not exist with the provided parameters.'
return e.response is not None and (json.loads(e.response.content).get('detail') == no_file_msg)
|
6c52bd8b79abebec73252df4369d5f3e5cf77fe5
| 342,367 |
def interp(val, array_value, array_ref):
"""
Interpolate the array_value from the array_ref with val. The array_ref
must be in an increasing order!
"""
if val <= array_ref[0]:
return array_value[0]
elif val > array_ref[len(array_ref)-1]:
return array_value[len(array_ref)-1]
else:
i = 1
while val > array_ref[i]:
i += 1
delta = array_ref[i] - array_ref[i-1]
return ((array_ref[i]-val)*array_value[i-1]+array_value[i]*(val-array_ref[i-1]))/delta
|
a47e49eea2bc8233103c4425103f2a4bab42c6ce
| 125,293 |
def get_vertex_indices( structure, centre_species, vertex_species, cutoff=4.5, n_vertices=6 ):
"""
Find the atom indices for atoms defining the vertices of coordination polyhedra, from
a pymatgen Structure object.
Given the elemental species of a set of central atoms, A,
and of the polyhedral vertices, B, this function finds:
for each A, then N closest neighbours B (within some cutoff).
The number of neighbours found per central atom can be a single
value for all A, or can be provided as a list of values for each A.
Args:
structure (`pymatgen.Structure`): A pymatgen Structure object, used to
find the coordination polyhedra vertices..
centre_species (str): Species string identifying the atoms at the centres
of each coordination environment, e.g. "Na".
vertex_species (str or list(str)): Species string identifying the atoms at the vertices
of each coordination environment, e.g. "S"., or a list of strings, e.g. ``["S", "I"]``.
cutoff (float): Distance cutoff for neighbour search.
n_vertices (int or list(int)): Number(s) of nearest neighbours to return
for each set of vertices. If a list is passed, this should be the same
length as the number of atoms of centre species A.
Returns:
list(list(int)): Nested list of integers, giving the atom indices for each
coordination environment.
"""
central_sites = [ s for s in structure if s.species_string == centre_species ]
if isinstance(n_vertices, int):
n_vertices = [n_vertices] * len(central_sites)
if isinstance(vertex_species, str):
vertex_species = [ vertex_species ]
vertex_indices = []
for site, n_vert in zip(central_sites, n_vertices):
neighbours = [ s for s in structure.get_neighbors(site, r=cutoff, include_index=True)
if s[0].species_string in vertex_species ]
neighbours.sort(key=lambda x: x[1])
atom_indices = [ n[2] for n in neighbours[:n_vert] ]
vertex_indices.append( atom_indices )
return vertex_indices
|
b4edeaaf1329b9b2f1f130cd4ffa91ddcc021fe2
| 298,147 |
import requests
def get_lihkg_response(resp):
"""
get_lihkg_response(resp)
Obtain the data of the response object.
Return:
-------
A dictionary.
"""
response = dict()
if isinstance(resp, requests.models.Response):
if resp.status_code == 200:
response = resp.json()
if response.get('success', 0) == 1:
response = response.get('response', dict())
return response
else:
raise TypeError('resp must be a \'requests.models.Response\' object.')
|
46f3677fd42b5eaf7779cdb3daa70f3f616ebb1b
| 39,715 |
def add_prefix_un(word):
"""Take the given word and add the 'un' prefix.
:param word: str - containing the root word.
:return: str - of root word prepended with 'un'.
"""
return 'un' + word
|
5ce5b6899d1ebd83572ba2daaf1467ed3b239055
| 583,353 |
def getChromSizes(infile):
""" read a chrom sizes file and return a dict keyed by names valued by ints.
"""
chromDict = {}
with open(infile, 'r') as f:
for line in f:
line = line.strip()
if line == '':
continue
data = line.split()
chromDict[data[0]] = int(data[1])
return chromDict
|
a96042f7b3140a558bfae2c54538fac2d0628ff2
| 353,694 |
def parse_residue_spec(resspec):
"""
Light version of:
vermouth.processors.annotate_mud_mod.parse_residue_spec
Parse a residue specification:
<mol_name>#<mol_idx>-<resname>#<resid>
Returns a dictionary with keys 'mol_name',
'mol_idx', and 'resname' for the fields that are specified.
Resid will be an int.
Parameters
----------
resspec: str
Returns
-------
dict
"""
molname = None
resname = None
mol_idx = None
resid = None
mol_name_idx, *res = resspec.split('-', 1)
molname, *mol_idx = mol_name_idx.split('#', 1)
if res:
resname, *resid = res[0].split('#', 1)
error_msg = ('Your selection {} is invalid. Was not able to assign {}'
'with value {}')
out = {}
if mol_idx:
try:
mol_idx = int(mol_idx[0])
except ValueError:
raise IOError(error_msg.format(resspec, 'mol_idx', mol_idx))
out['mol_idx'] = mol_idx
if resname:
out['resname'] = resname
if molname:
out['molname'] = molname
if resid:
try:
out['resid'] = float(resid[0])
except ValueError:
raise IOError(error_msg.format(resspec, 'mol_idx', mol_idx))
return out
|
eab66570595e28cfea2ed92834c3eaffd14ba474
| 228,649 |
def conceptnet_create_search_query(input_dict):
"""
Constructs a Conceptnet search query.
"""
input_limit = input_dict['limit']
input_offset = input_dict['offset']
input_text = input_dict['text']
input_minweight = input_dict['minweight']
query = "search?"
if input_limit != None and input_limit != '':
query = query + 'limit=' + str(input_limit) + '&'
if input_offset != None and input_offset != '':
query = query + 'offset=' + str(input_offset) + '&'
if input_text != None and input_text != '':
query = query + 'text=' + str(input_text) + '&'
if input_minweight != None and input_minweight != '':
query = query + 'minWeight=' + str(input_minweight) + '&'
output_dict = {}
output_dict["query"] = query[0:len(query)-1]
return output_dict
|
d725657c30734607174acc2a632a66dd28593489
| 457,567 |
def capitalise(input_string: str) -> str:
"""Convert the first character of the string to uppercase."""
return input_string[0].upper() + input_string[1:]
|
eb5dd6a2208ed626bac496b456c7b1f45770a1d5
| 614,177 |
import hashlib
def md5(file_path):
"""Get md5 hash of a file.
Args:
file_path (str): File path
Returns:
md5_hash (str): md5 hash of data in file_path
"""
hash_md5 = hashlib.md5()
with open(file_path, 'rb') as fhandle:
for chunk in iter(lambda: fhandle.read(4096), b''):
hash_md5.update(chunk)
return hash_md5.hexdigest()
|
c63d974cddff78a825ba9cde8cac0fac8567b64e
| 597,874 |
import math
def bin_of_week(dt, bin_size_mins=30):
"""
Compute bin of week based on bin size for a pandas Timestamp object
or a Python datetime object.
Based on .weekday() convention of 0=Monday.
Parameters
----------
dt : pandas Timestamp object or a Python datetime object, default now.
bin_size_mins : Size of bin in minutes; default 30 minutes.
Returns
-------
0 to (n-1) where n is number of bins per week.
Examples
--------
dt = datetime(2020, 2, 4, 1, 45)
bin = bin_of_week(dt, 30)
# bin = 51
"""
# if dt is None:
# dt = datetime.now()
# Number of minutes from beginning of week (Monday is 0)
minutes = (dt.weekday() * 1440) + (dt.hour * 60) + dt.minute
# Convert minutes to bin
time_bin = math.trunc(minutes / bin_size_mins)
return time_bin
|
f49cd29e43e32bd3d331cdcca593ed00c6737a90
| 64,302 |
def pvap_water(TC):
"""Return vapor pressure of water (Pa) for temperature in C"""
# Antoine equation
a, b, c = 8.07131, 1730.63, 233.426
p_mmHg = 10**(a - (b/(c+TC)))
p_Pa = p_mmHg * 133.3
return p_Pa
|
7881cf6aba9e4f8abd927eaf20535c44f749eddb
| 334,652 |
def _parse_query_arguments(query_arguments):
""" This function converts a string in the format 'key1:value1-key2:value2' to a dict in the
format {'key1': 'value1', 'key2': 'value2',...}.
Args:
query_arguments: A string cuntianing all the arguments to query by
e.g. 'tags:cat,plastic-tag_mode:any'.
Returns:
A dict of all the args e.g. {'tags': 'cat,plastic', 'tag_mode': 'any', 'text':''}.
"""
init_query_arguments = {'tags': 'all', 'tag_mode': 'any', 'text': ''}
if query_arguments is not None:
different_arg = query_arguments.split('-')
for arg in different_arg:
key = arg.split(':')[0]
value = arg.split(':')[1]
if key in init_query_arguments:
if key == 'tag_mode' and value != 'any' and value != 'all':
raise ValueError('Invalid tag_mode, tag_mode can be "any" or "all"')
init_query_arguments[key] = value
else:
raise ValueError('Invalid query_arguments key can be tags, tag_mode or text.')
return init_query_arguments
|
81bdff575a45f46c11cbcf6e8ef7871a6ff59590
| 367,635 |
def IsBuildingModule(env, module_name):
"""Returns true if the module will be built with current build process.
Args:
env: The environment.
module_name: module name.
Returns:
Whether the given module will be built.
"""
return module_name in env['BUILD_SCONSCRIPTS']
|
ed71032319c708d6640952fee0b1914a420932c7
| 391,624 |
import math
import random
def generate_entities(num_entities=100):
"""generate num_entities random entities for synthetic knowledge graph."""
i = 0
entity_list = []
hex_chars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
l = int(math.log(num_entities, 18)+1)
# print l
while i < num_entities:
entity = "/entity_{}".format(''.join(random.sample(hex_chars, l)))
if entity not in entity_list:
entity_list.append(entity)
i += 1
return entity_list
|
6ccdf228dbfe6b04b002bdc648ed73d1c759f426
| 89,727 |
def _json_container_dates(containers):
"""
Moves container "status date" to a JSON friendly value.
Unit tested: test__json_container_dates
:param containers: The containers found from docker ps.
:type containers: list
:returns: The containers found from docker ps, with JSON friendly dates.
:rtype: list
"""
clean_containers = []
for container in containers:
tmp_container = container
tmp_container["status_date"] = str(tmp_container["status_date"])
tmp_container["created_date"] = str(tmp_container["created_date"])
clean_containers.append(tmp_container)
return clean_containers
|
25c05068ae56e8f58c98d17308e81b8b1cde3b36
| 579,141 |
def create_distance_callback(data):
"""Creates callback to return distance between points."""
distances = data["distances"]
def distance_callback(from_node, to_node):
"""Returns the manhattan distance between the two nodes"""
return distances[from_node][to_node]
return distance_callback
|
20c8a1e7239ad05152c3ad66c975ad47e2a5f2f0
| 400,430 |
def _process_disk_details(sub, disk):
"""Process disk record and yield them.
Arguments:
sub (Subscription): Azure subscription object.
disk (dict): Raw disk record.
Yields:
dict: An Azure record of type ``disk``.
"""
disk_type = 'unattached'
if 'managed_by' in disk:
if disk.get('managed_by'):
disk_type = 'attached'
record = {
'raw': disk,
'ext': {
'cloud_type': 'azure',
'record_type': 'disk',
'disk_type': disk_type,
'subscription_id': sub.get('subscription_id'),
'subscription_name': sub.get('display_name'),
'subscription_state': sub.get('state'),
},
'com': {
'cloud_type': 'azure',
'record_type': 'disk',
'reference': disk.get('id')
}
}
return record
|
2a1849257bda7bab85c538f7989caa2d87906f2b
| 359,066 |
def replicate_config(cfg, num_times=1):
"""Replicate a config dictionary some number of times
Args:
cfg (dict): Base config dictionary
num_times (int): Number of repeats
Returns:
(list): List of duplicated config dictionaries, with an added 'replicate' field.
"""
# Repeat configuration settings across replicates
configs = []
for replicate in range(num_times):
_config = cfg.copy()
_config.update({"replicate": replicate})
configs.append(_config)
return configs
|
8b4d43002c22d20c6d2238c2309086a21d560c5c
| 20,425 |
def square(number):
"""Returns the number of grains on given square on chess board."""
if number not in range(1, 64+1):
raise ValueError(f"{number} is not a square in a chess board.")
return 2**(number - 1)
|
3efa293ec67b0b50731d295943e479330b7d1fc8
| 355,075 |
import struct
def ext_cap_hdr(buf, offset):
"""Read an extended cap header."""
# struct pcie_ext_cap_hdr
cap_id, cap_next = struct.unpack_from('HH', buf, offset)
cap_next >>= 4
return cap_id, cap_next
|
199c2d268000e7163931273e636d21e2c8b30f5b
| 259,425 |
from typing import Iterable
from typing import Tuple
from typing import Any
from typing import List
def unzip(tuples: Iterable[Tuple[Any, ...]]) -> List[Iterable[Any]]:
"""The inverse of the `zip` built-in function."""
return [list(x) for x in zip(*tuples)]
|
10dd4755c501f64f6b98dea8abd7677d6fa23535
| 21,964 |
import yaml
import collections
def ParseMappingAsOrderedDict(enable=True,
loader=yaml.Loader,
dumper=yaml.Dumper):
"""Treat OrderedDict as the default mapping instance.
While we load a yaml file to a object, modify the object, and dump to a yaml
file, we hope to keep the order of the mapping instance. Therefore, we should
parse the mapping to the Python OrderedDict object, and dump the OrderedDict
instance to yaml just like a dict object.
Args:
enable: if enable is True, load and dump yaml as OrderedDict.
"""
def DictRepresenter(dumper, data):
return dumper.represent_dict(data.items())
def OrderedDictRepresenter(dumper, data):
return dumper.represent_object(data)
def OrderedDictConstructor(loader, node):
return collections.OrderedDict(loader.construct_pairs(node))
def DictConstructor(loader, node):
return dict(loader.construct_pairs(node))
if enable:
# Represent OrderedDict object like a dict.
# Construct the yaml mapping string to OrderedDict.
yaml.add_representer(collections.OrderedDict, DictRepresenter,
Dumper=dumper)
yaml.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG,
OrderedDictConstructor, Loader=loader)
else:
# Set back to normal.
yaml.add_representer(collections.OrderedDict, OrderedDictRepresenter,
Dumper=dumper)
yaml.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG,
DictConstructor, Loader=loader)
|
6145d9737e9a11b2cc65c24e271917dd0f9a46a0
| 618,797 |
def is_fplus_include_line(code_line):
"""
Tests whether or not a C++ code line is a include statement that concerns a fplus header,
(i.e this will *exclude* lines like "#include <vector>")
"""
return ( code_line.startswith("#include <fplus/")
or code_line.startswith("#include \""))
|
dd325b7a8f4120aad03e0ce4a70041f34604d7cc
| 442,460 |
import math
def get_path_length(path):
"""
Compute path length
"""
length = 0
for i,k in zip(path[0::], path[1::]):
length += math.dist(i,k)
return length
|
e7a2b2e7e766dd5c423e908b8ae48d305bfe4ef3
| 227,857 |
def _aisc_table(metric, version):
"""
Returns the name of the AISC table matching the criteria.
Parameters
----------
metric : bool
If True, searches for the name in the metric shape database. Otherwise,
searches for the name in the imperial shape database.
version : {'15.0'}
The version of the shape database to query. If None, the latest version
will be used.
"""
if version is None:
# Use the latest version
version = '15.0'
# Return the name of the version table
if version == '15.0':
if metric:
return 'aisc_metric_15_0'
else:
return 'aisc_imperial_15_0'
else:
raise ValueError('Version {!r} not found.'.format(version))
|
0914154232b9452f90053ef189ddea01ba75023d
| 168,707 |
import re
import logging
def _find_includes_recursive(fname, files=None):
"""Recursive helper function for find_includes()
Recursively traverse all files included by ``fname``, results
are accumulated in ``files`` and then returned.
"""
if files is None:
files = set()
if fname in files:
return files
files.add(fname)
l = []
try:
with open(fname, 'r') as f:
for line in f:
m = re.match(r'#\s*include\s*[<"](.*?)[>"]', line)
if not m:
continue
inc = m.group(1).replace('/', '\\')
if not inc.startswith('boost'):
continue
l.append(inc)
for inc in l:
_find_includes_recursive(inc, files)
except FileNotFoundError as e:
logging.warn("File not found: '%s'", fname)
return files
|
f5e77d87320a1e1c8c62696a69275500b40e822c
| 389,044 |
def str_to_bytes(s):
"""
Converts a given string into an integer representing bytes
where G is gigabytes, M is megabytes, K is kilobytes, and B
is bytes.
"""
if type(s) is int:
return s
units = {'B': 1, 'K': 1024, 'M': 1024 ** 2, 'G': 1024 ** 3}
if len(s) < 2:
raise ValueError('invalid size')
order = s[-1]
try:
return units[order] * int(s[:-1])
except ValueError:
raise ValueError('invalid size')
except KeyError:
raise ValueError('invalid units')
|
c36d5491698cfc3d2cc32854c209b20f84247b7f
| 68,141 |
from datetime import datetime
def squash_dates(obj):
"""squash datetime objects into ISO8601 strings"""
if isinstance(obj, dict):
obj = dict(obj) # don't clobber
for k, v in obj.items():
obj[k] = squash_dates(v)
elif isinstance(obj, (list, tuple)):
obj = [squash_dates(o) for o in obj]
elif isinstance(obj, datetime):
obj = obj.isoformat()
return obj
|
4799784d15897e260aada2b4c5f18615b438bda5
| 40,653 |
def proglen(s):
"""
Program length is measured in characters, but in order to keep the values
in a similar range to that of compressibility, DTW and Levenshtein, we
divide by 100. This is a bit arbitrary.
:param s: A string of a program phenotype.
:return: The length of the program divided by 100.
"""
return len(s) / 100.0
|
7b945e9d0c8b79b5afb9cc1611c82b49bd541feb
| 372,654 |
def rgb_to_grayscale(vid, channel=0):
"""Convert the given RGB Image Tensor to Grayscale.
For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
is L = R * 0.2989 + G * 0.5870 + B * 0.1140
Args:
vid (Tensor): Image to be converted to Grayscale in the form [C, N, H, W].
channel: color channel
Returns:
Tensor: Grayscale video tensor [C, N, H, W].
"""
assert vid.size(channel) == 3
return (0.2989 * vid.select(channel,0) + 0.5870 * vid.select(channel,1) + 0.1140 * vid.select(channel,2)).to(vid.dtype)
|
0f328825ea3c3e72c629bb5e964250a17b3e0661
| 225,410 |
import re
def get_error_num(function):
"""
Extract first number from function name and return string with it.
Leading zeroes will be truncated.
"""
match_obj = re.search(r"\d+", function.__name__)
if match_obj is None:
return "0"
result = match_obj.group(0).lstrip("0")
if result == "":
result = "0"
return result
|
67f0fb54e2b7bc260b1f26e2f15f1ea101f2168b
| 621,502 |
def remove_quotes(val):
"""Helper that removes surrounding quotes from strings."""
if val[0] in ('"', "'") and val[0] == val[-1]:
val = val[1:-1]
return val
|
11a8c26e5b261e75a08ae9b11d9c4e39f07da4c3
| 33,293 |
def intify(*nums):
""" Safely convert to integer (avoiding None).
**Parameter**\n
nums: list/tuple/1D array
Numeric array to convert to integer.
**Return**\n
intnums : list
Converted list of numerics.
"""
intnums = list(nums) # Make a copy of the to-be-converted list
for i, num in enumerate(nums):
try:
intnums[i] = int(num)
except TypeError:
pass
return intnums
|
ff0fb63e2c8a3db178af61da383b625a56d60b95
| 472,370 |
def join(sep):
"""join(sep)(iterable) Join strings in iterable with sep.
str -> [str] -> str
>>> comma_separate = join(', ')
>>> comma_separate(['a', 'b', 'c', 'd'])
'a, b, c, d'
"""
def join_sep(iterable):
return sep.join(iterable)
return join_sep
|
7cd633ea5eb43572df8260badf6fde86a078a0c9
| 325,070 |
def _julian_century(jd):
"""Caluclate the Julian Century from Julian Day or Julian Ephemeris Day"""
return (jd - 2451545.0) / 36525.0
|
477f07e9106c09a2a54a5f279248a221f3729b4e
| 128,713 |
def test_lzh (archive, compression, cmd, verbosity, interactive):
"""Test a LZH archive."""
opts = 't'
if verbosity > 1:
opts += 'v'
return [cmd, opts, archive]
|
802ad486be339535a97557c1dbe8bbafe8752415
| 552,890 |
def find_heads(own_snake, data):
"""
Finds coordinates of all the heads of enemy snakes
:param own_snake:
:param data:
:return: list of coordinates of heads
"""
enemy_heads = [(snake['body'][0]['x'], snake['body'][0]['y']) for snake in data['board']['snakes'] if
snake['id'] != own_snake.id]
return enemy_heads
|
baf0aeb80b438612b86310477f761089119ad691
| 451,255 |
def collect(app, *args, **kwargs):
"""Calls `tf.fabric.Fabric.collect` from an app object."""
TF = app.api.TF
return TF.collect(*args, **kwargs)
|
1f54eb523c521c46b76a207b220190eacd340b4a
| 561,235 |
def format_as(format_string):
"""format_as(form)(obj) = form % obj
Useful to format many objects with the same format string.
>>> list(map(format_as("0x%x"), [0, 1, 10, 11, 15]))
['0x0', '0x1', '0xa', '0xb', '0xf']
"""
return lambda obj : format_string % obj
|
ad2e02106b32b2157c6c026f8031120f3d16fe1e
| 642,652 |
import torch
def batch_index_select(input, dim, index):
"""batch version of ``torch.index_select``.
Returns a new tensor which indexes the input tensor along dimension ``dim``
using the corresponding entries in ``index`` which is a ``LongTensor``.
The returned tensor has the same number of dimensions as the original tensor (input).
The ``dim``th dimension has the same size as the length of index; other dimensions have the same size as in the original tensor.
Parameters
----------
input : torch.Tensor
(B, ..)the input tensor.
dim : int
the dimension in which we index. Must be ``>0`` since we use the ``0``th
index as the batch.
May be negative.
index : torch.LongTensor
(B, N) the 1-D tensor containing the indices to index per batch
Returns
-------
torch.Tensor
(B, ...) tensor that matches the input dimensions, except the ``dim``th
dimension now has length ``N``.
NOTE: does NOT use the same storage as ``input`` Tensor
"""
if dim < 0:
dim = input.ndim + dim
assert dim > 0, "Cannot index along batch dimension."
assert (
input.shape[0] == index.shape[0]
), "input and index must have same batch dimension."
for ii in range(1, len(input.shape)):
if ii != dim:
index = index.unsqueeze(ii)
expanse = list(input.shape)
expanse[0] = -1
expanse[dim] = -1
index = index.expand(expanse)
return torch.gather(input, dim, index)
|
3708aab64f952085a7c43717c38b134a91973f9a
| 75,371 |
def i_input(prompt):
"""input function to return an integer."""
while True:
q_temp = input(prompt)
if q_temp.isnumeric():
return int(q_temp)
|
4975840611a6d9559a387bde914d858b05493a8a
| 150,102 |
import collections
def load_dem_rsc(filename):
"""Loads and parses the .dem.rsc file
Args:
filename (str) path to either the .dem or .dem.rsc file.
Function will add .rsc to path if passed .dem file
Returns:
dict: dem.rsc file parsed out, keys are all caps
example file:
WIDTH 10801
FILE_LENGTH 7201
X_FIRST -157.0
Y_FIRST 21.0
X_STEP 0.000277777777
Y_STEP -0.000277777777
X_UNIT degrees
Y_UNIT degrees
Z_OFFSET 0
Z_SCALE 1
PROJECTION LL
"""
# Use OrderedDict so that upsample_dem_rsc creates with same ordering as old
output_data = collections.OrderedDict()
# Second part in tuple is used to cast string to correct type
field_tups = (('WIDTH', int), ('FILE_LENGTH', int), ('X_STEP', float), ('Y_STEP', float),
('X_FIRST', float), ('Y_FIRST', float), ('X_UNIT', str), ('Y_UNIT', str),
('Z_OFFSET', int), ('Z_SCALE', int), ('PROJECTION', str))
rsc_filename = '{}.rsc'.format(filename) if not filename.endswith('.rsc') else filename
with open(rsc_filename, 'r') as f:
for line in f.readlines():
for field, num_type in field_tups:
if line.startswith(field):
output_data[field] = num_type(line.split()[1])
return output_data
|
94ac2021e49286e7122d98465c17a330139d6e36
| 511,035 |
import math
def quadrant(x):
"""Returns which quadrant of the unit circle x is in.
"""
norm = x % (math.pi * 2)
quad = x % (math.pi / 2)
if 0 <= norm < math.pi / 2: # first quadrant
return 1
elif math.pi / 2 <= norm < math.pi: # second quadrant
return 2
elif math.pi <= norm < math.pi * (3 / 2): # third quadrant
return 3
elif math.pi * (3 / 2) <= norm < math.pi * 2: # fourth quadrant
return 4
|
124c18305eb804e76104478c827804dd89974255
| 563,790 |
def prime_factors(number):
"""Finds prime factors of an integer (by trial-division).
:param number: The integer to factor
:type number: int
:rtype: list of ints
**Examples**
>>> prime_factors(314)
[2, 157]
>>> prime_factors(31)
[31]
"""
factor = 2
factors = []
while factor * factor <= number:
if number % factor:
factor += 1
else:
number //= factor
factors.append(factor)
if number > 1:
factors.append(number)
return factors
|
de1726b6a54eddb8927a2eb700b0f466ef077364
| 111,279 |
import socket
def is_port_used(ip, port):
"""
check whether the port is used by other program
:param ip:
:param port:
:return: True(in use) False(idle)
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect((ip, port))
return True
except OSError:
return False
finally:
s.close()
|
56fbcf03ab0bbfb23fdea56df8eeda19adaac539
| 690,726 |
import math
import random
def random_coords(min_lat=-75, max_lat=75, min_lon=-180, max_lon=180):
"""
Produces a random lat/lon pair within the given bounds.
"""
lats_ok = -90 < min_lat <= max_lat < 90
lons_ok = -180 <= min_lon <= max_lon <= 180
assert lats_ok and lons_ok, "Bad coordinate bounds arguments"
# Source: https://www.jasondavies.com/maps/random-points/
min_x = 0.5 * (1 - math.sin(math.pi * min_lat / 180))
max_x = 0.5 * (1 - math.sin(math.pi * max_lat / 180))
lat = (180 / math.pi) * math.acos(2 * random.uniform(min_x, max_x) - 1) - 90
lon = random.uniform(min_lon, max_lon)
return (lat, lon)
|
cb6a64319cd94d94936f76b669d02cfa53fd409d
| 442,790 |
import pickle
def load_pickle(filename):
"""
load an object from a given pickle file
:param filename: source file
:return: loaded object
"""
with open(filename, 'rb') as file:
return pickle.load(file)
|
575c1601ca2ee1370e6a4911369e6948cd345c82
| 340,177 |
def get_categories(x):
"""
Return the categories of x
Parameters
----------
x : category_like
Input Values
Returns
-------
out : Index
Categories of x
"""
try:
return x.cat.categories # series
except AttributeError:
try:
return x.categories # plain categorical
except AttributeError:
raise TypeError("x is the wrong type, it has no categories")
|
19495de6478955f27e1bdc3ef91e9bd0453a180f
| 245,926 |
from textwrap import dedent
def split_docstring(docstring):
"""
Split a docstring into a summary and a description.
Arguments:
docstring (str): the docstring
Returns:
summary (str or None): a one-line summary.
description (str or None): the multi-line description.
"""
summary = None
description = None
if docstring:
doc_lines = docstring.strip().split("\n")
if doc_lines:
summary = doc_lines[0].strip()
if len(doc_lines) > 1:
description = dedent("\n".join(doc_lines[1:]))
return summary, description
|
0d8d74a0629864757aa294ab967570ba508fdd32
| 641,342 |
def _compare_logical_disks(ld1, ld2):
"""Compares the two logical disks provided based on size."""
return ld1['size_gb'] - ld2['size_gb']
|
29a51ee7241239a2a02739db203e1c481c462568
| 121,255 |
import pathlib
def _get_csv_file_path(data_dir: str, three_sec_song: bool) -> pathlib.Path:
"""Gets CSV file path from data directory.
Parameters
----------
data_dir : str
directory where datafiles are stored
three_sec_song : bool
if should use the three second song csv (as opposed to thirty second songs)
Returns
-------
pathlib.Path
path to csv file
"""
if three_sec_song:
return pathlib.Path(data_dir).joinpath(pathlib.Path("Data/features_3_sec.csv"))
else:
return pathlib.Path(data_dir).joinpath(pathlib.Path("Data/features_30_sec.csv"))
|
8ce28b1fe367f329a1629dc04cb930715baec765
| 585,349 |
def str_to_bool(s):
"""Transform a string to boolean.
:param s: the value to transform as boolean
:type s: str
:return: the given is as bool
:rtype: boolean
"""
if s == 'false':
return False
if s == 'true':
return True
raise Exception('Unable to cast as bool %s' % s)
|
9acfe7df11d82c1f5642251046e2e1651212d8a3
| 457,875 |
def fileinfo_remove(log_table, remove_table):
"""
Remove files from log table that are in remove table.
Params:
log_table {fileinfo} - dictionary to remove from
remove_table {fileinfo} - dicionary containing keys to remove
Returns:
removed (int) - number of entries removed
Notes:
does not actually remove entries simply marks for deletion (see fileinfo_clean)
"""
removed = 0
for k in remove_table:
if k in log_table:
log_table[k].flags |= 0x2 # marked for removal
removed += 1
return removed
|
e7de73edf1ea97e980a3ff4328d6d02b771da4a6
| 118,772 |
def lfnGroup(job):
"""
_lfnGroup_
Determine the lfnGroup from the job counter and the agent number
provided in the job baggage, the job counter and agent number
default both to 0. The result will be a 5-digit string.
"""
modifier = str(job.get("agentNumber", 0))
jobLfnGroup = modifier + str(job.get("counter", 0) // 1000).zfill(4)
return jobLfnGroup
|
55e7f934128ef1212fc7ff428ffb0d6ef5a10267
| 183,868 |
from datetime import datetime
import click
import json
def write_json_file(file_name: str, results: list) -> str:
"""Write data to json file"""
now = datetime.now()
timestamp = f"_{now.month}-{now.day}-{now.year}_{now.hour}-{now.minute}.json"
file_path = file_name + timestamp
click.secho(f"[*] Writing results to {file_path}", fg="green")
with open(file_path, "w") as f:
json.dump(results, f, indent=4)
return file_path
|
4cb127c0b9bb916ab5f32c859fd03cc0570eb561
| 93,519 |
def value_in_list(answers, key, values):
"""Determine user's answer for the key is in the value list.
Args:
answer: Dict of user's answers to the questions.
key: question key.
values: List of values to check from.
"""
try:
value = answers[key]
return value in values
except KeyError:
return False
|
8e1dd440063645e39419864ee7cc7563608c64c3
| 589,907 |
import torch
def get_activations(imgs, model, dim=2048):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- imgs : Tensor of images
-- model : Instance of inception model
-- dims : Dimensionality of features returned by Inception
Returns:
-- A pytorch tensor of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
n_imgs = len(imgs)
pred_arr = torch.empty((n_imgs, dim))
imgs = imgs.cuda()
pred = model(imgs)[0]
pred_arr = pred.data.view(n_imgs, -1)
return pred_arr
|
8fdf135b00ebc91855b75863f2c67a6fd6661b2f
| 164,515 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.