content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def uniquify(seq, preserve_order=False):
"""Return sequence with duplicate items in sequence seq removed.
The code is based on usenet post by Tim Peters.
This code is O(N) if the sequence items are hashable, O(N**2) if not.
Peter Bengtsson has a blog post with an empirical comparison of other
approaches:
http://www.peterbe.com/plog/uniqifiers-benchmark
If order is not important and the sequence items are hashable then
list(set(seq)) is readable and efficient.
If order is important and the sequence items are hashable generator
expressions can be used (in py >= 2.4) (useful for large sequences):
seen = set()
do_something(x for x in seq if x not in seen or seen.add(x))
Arguments:
seq -- sequence
preserve_order -- if not set the order will be arbitrary
Using this option will incur a speed penalty.
(default: False)
Example showing order preservation:
>>> uniquify(['a', 'aa', 'b', 'b', 'ccc', 'ccc', 'd'], preserve_order=True)
['a', 'aa', 'b', 'ccc', 'd']
Example using a sequence of un-hashable items:
>>> uniquify([['z'], ['x'], ['y'], ['z']], preserve_order=True)
[['z'], ['x'], ['y']]
The sorted output or the non-order-preserving approach should equal
that of the sorted order-preserving approach output:
>>> unordered = uniquify([3, 3, 1, 2], preserve_order=False)
>>> unordered.sort()
>>> ordered = uniquify([3, 3, 1, 2], preserve_order=True)
>>> ordered.sort()
>>> ordered
[1, 2, 3]
>>> int(ordered == unordered)
1
"""
try:
# Attempt fast algorithm.
d = {}
if preserve_order:
# This is based on Dave Kirby's method (f8) noted in the post:
# http://www.peterbe.com/plog/uniqifiers-benchmark
return [x for x in seq if (x not in d) and not d.__setitem__(x, 0)]
else:
for x in seq:
d[x] = 0
return d.keys()
except TypeError:
# Have an unhashable object, so use slow algorithm.
result = []
app = result.append
for x in seq:
if x not in result:
app(x)
return result
|
25502efa0931ed161f708ef5056df8e09cb45a39
| 481,091 |
def variable_match(series_1, series_2):
"""
Returns a binary series representing the equality of
pairwise elements in two series
:param series_1: pd.Series
:param series_2: pd.Series
:return: pd.Series
"""
return (series_1 == series_2) * 1
|
7c2b272513b6512e398060eb4aa4fef448a7e835
| 260,633 |
import textwrap
def _wrap_docstring(doc):
"""Helper function to wrap a docstring at 72 characters while
maintaining line breaks.
"""
return "\n".join(
["\n".join(textwrap.wrap(l, subsequent_indent=" "))
for l in doc.split('\n') if l])
|
3993687d579c532bf5db859213fabeca462591b0
| 319,216 |
import calendar
def get_month_week_number(day):
"""
Given a datetime object (day), return the number of week the day is
in the current month (week 1, 2, 3, etc)
"""
weeks = calendar.monthcalendar(day.year, day.month)
for week in weeks:
if day.day in week:
return weeks.index(week)
|
964499d69f003e5a8c28758b18239307312e5f55
| 535,523 |
def quiesce(board, alpha, beta, evaluate):
"""Search for all moves that would lead to a capture of own piece.
A 'quiet' move is one that ends without a chance of capture.
Standing pat:
In order to allow the quiescence search to stabilize, we need to be able to
stop searching without necessarily searching all available captures. In
addition, we need a score to return in case there are no captures available
to be played. This is done by a using the static evaluation as a "stand-pat"
score (the term is taken from the game of poker, where it denotes playing
one's hand without drawing more cards). At the beginning of quiescence, the
position's evaluation is used to establish a lower bound on the score. This
is theoretically sound because we can usually assume that there is at least
one move that can either match or beat the lower bound. If the lower bound
from the stand pat score is already greater than or equal to beta, we can
return the stand pat score (fail-soft) or beta (fail-hard) as a lower bound.
Otherwise, the search continues, keeping the evaluated "stand-pat" score as
an lower bound if it exceeds alpha, to see if any tactical moves can
increase alpha.
"""
# Get lower bound (standing pat) score
stand_pat = evaluate(board)
# Check if standing pat score is better than beta.
# If so, assume other player would not follow this route
if stand_pat >= beta:
return beta
# Update alpha if standing pat score is better
if alpha < stand_pat:
alpha = stand_pat
# Iterate through legal moves (from the opposing player)
for move in board.legal_moves:
# Check if moves leads to capture
if board.is_capture(move):
# Keep iterating until a quiet move is found
board.push(move)
score = -quiesce(board, -beta, -alpha, evaluate)
# Restore the previous position.
board.pop()
# Cehck if score > beta. If so, oppenent wil not go down this route
if score >= beta:
return beta
# Update alpha if score is best explored option on this path
if score > alpha:
alpha = score
# Return alpha, the best score in this path
return alpha
|
a6dacde30de149d1aff63c01f32db296ffa14c91
| 129,938 |
def unzip(l):
"""Unpacks a list of tuples pairwise to a lists of lists:
[('a', 1), ('b', 2)] becomes [['a', 'b'], [1, 2]]"""
return zip(*l)
|
b1dec3ba48d37bef05e56542b5ff6cf2fb267269
| 444,698 |
def dict_item_to_string(key, value):
"""
inputs: key-value pairs from a dictionary
output: string 'key=value' or 'key=value1,value2' (if value is a list)
examples: 'fmt', 'csv' => 'fmt=csv' or 'r', [124, 484] => 'r=124,484'
"""
value_string = str(value) if not isinstance(value, list) else ','.join(map(str, value))
return '='.join([key, value_string])
|
1ad44fd06216feea1ddff4f2b208f605f0f60cff
| 195,111 |
def token_is_a(token1, token2):
"""Returns true if token1 is the same type as or a child type of token2"""
if token1 == token2:
return True
parent = token1.parent
while(parent != None):
if parent == token2:
return True
parent = parent.parent
return False
|
8e5e2d1ebdaa7ede4a10d314c8285fea73952726
| 124,307 |
import re
def scrub_words(text):
"""Basic cleaning of texts."""
"""Taken from https://github.com/kavgan/nlp-in-practice/blob/master/text-pre-processing/Text%20Preprocessing%20Examples.ipynb """
# remove html markup
text=re.sub("(<.*?>)","",text)
#remove non-ascii and digits
text=re.sub("(\\W|\\d)"," ",text)
# remove the extra spaces that we have so that it is easier for our split :) Taken from https://stackoverflow.com/questions/2077897/substitute-multiple-whitespace-with-single-whitespace-in-python
text=re.sub(' +', ' ', text).strip()
return text
|
ed7224d56b02e10fc683a742f1c1313b2b243c26
| 65,911 |
import click
from pathlib import Path
def _ensure_relative_path(node_subdir: str) -> str:
"""Checks that the subdir path does not contain parent directory
navigator (..), is not absolute, and is not "peekingduck/pipeline/nodes".
"""
pkd_node_subdir = "peekingduck/pipeline/nodes"
if ".." in node_subdir:
raise click.exceptions.UsageError("Path cannot contain '..'!")
if Path(node_subdir).is_absolute():
raise click.exceptions.UsageError("Path cannot be absolute!")
if node_subdir == pkd_node_subdir:
raise click.exceptions.UsageError(f"Path cannot be '{pkd_node_subdir}'!")
return node_subdir
|
3de71977a9e0aafd76365a7a305561c7e0b53e63
| 319,213 |
def _javaMapToDict(m):
"""
Converts a java map to a python dictionary.
:param m: java map.
:return: python dictionary.
"""
result = {}
for e in m.entrySet().toArray():
k = e.getKey()
v = e.getValue()
result[k] = v
return result
|
4ad45f37b8767bc5fab7b7547f42e47e374e86ba
| 163,082 |
def pair(x, y):
"""Return a function that represents a pair."""
def get(index):
if index == 0:
return x
elif index == 1:
return y
return get
|
dddb156489b2fff860471f74fd7829752a31bee5
| 131,573 |
def _update_other_results(results, best):
"""Update the positions and provisional input_sets of ``results`` based on
performing the contraction result ``best``. Remove any involving the tensors
contracted.
Parameters
----------
results :
List of contraction results produced by ``_parse_possible_contraction``.
best :
The best contraction of ``results`` i.e. the one that will be performed.
Returns
-------
mod_results :
The list of modifed results, updated with outcome of ``best`` contraction.
"""
best_con = best[1]
bx, by = best_con
mod_results = []
for cost, (x, y), con_sets in results:
# Ignore results involving tensors just contracted
if x in best_con or y in best_con:
continue
# Update the input_sets
del con_sets[by - int(by > x) - int(by > y)]
del con_sets[bx - int(bx > x) - int(bx > y)]
con_sets.insert(-1, best[2][-1])
# Update the position indices
mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
mod_results.append((cost, mod_con, con_sets))
return mod_results
|
d6beeae8734d886e817668abb51b776333ebf2d2
| 587,852 |
import yaml
def read_vibdata(vib_file):
"""Reads a yaml file containing the
vribational frequencies from a DFT calculation.
Parameters
----------
vib_file : (:py:attr:`str`):
File name
Returns
-------
vib_prop : :py:attr:`dict`
Dictionary of vibrational freqencies.
"""
with open(vib_file, 'r') as file:
vib_prop = yaml.load(file, Loader=yaml.FullLoader)
return vib_prop
|
31006173c40b9ad5edc27688aaad330bc7335bb9
| 578,156 |
def get_property_content(content, prefix):
"""Add the prefix to each object in the content and return the
concatenated string with "," as the separator.
Args:
content: the list containing property objects
prefix: the prefix before dcid, such as "dcs:"
Returns:
objects separated by comma. For example:
"dcs:bio/CWH41_YEAST,dcs:bio/RPN3_YEAST"
"""
if not content:
return None
item_list = []
for obj in content:
item_list.append(prefix + obj)
return ','.join(item_list)
|
385955f38efdf35519e34fee0334d778335b5681
| 517,178 |
def generate_frequency_dict(data):
"""Generate a dictionary of all symbols (keys) with their number of appearances
(values) from data.
"""
dict_appearances = {}
for crrt_char in data:
if crrt_char in dict_appearances:
dict_appearances[crrt_char] += 1
else:
dict_appearances[crrt_char] = 1
return dict_appearances
|
4ad0bea5b1251f138d240e8db2a805f60c384a61
| 435,844 |
def wt_lb_kg(wt):
"""Converts height from centimeter to squared meter
Parameters
----------
wt: double
weight in pound
Returns
-------
double
weight in kilogram.
Examples
--------
>>> wt_lb_kg(200)
90.8
"""
return wt * 0.454
|
a6173dbcfe0361a06b10b00fb3b405e31daca325
| 392,585 |
def getFeatureId(feature):
"""
Return the ID of a feature
params:
feature -> a feature
"""
return feature["id"]
|
8bdccc4166c67d9076f702d03414cb4f3e4e8a48
| 653,980 |
from datetime import datetime
def get_tm1_time_value_now(use_excel_serial_date: bool = False) -> float:
"""
This function can be used to replicate TM1's NOW function
to return current date/time value in serial number format.
:param use_excel_serial_date: Boolean
:return: serial number
"""
# timestamp according to tm1
start_datetime = datetime(1899, 12, 30) if use_excel_serial_date else datetime(1960, 1, 1)
current_datetime = datetime.now()
delta = current_datetime - start_datetime
return delta.days + (delta.seconds / 86400)
|
fc3154fafe991b517e3464ea783ad6b985ad06de
| 111,182 |
def inverty(x, y, **kwargs):
"""Multiply y by -1"""
return x, -y
|
0feaa5e6dab3a9225ced398a03b6a65b05e769fc
| 427,247 |
def align_position2doc_spans(positions, doc_spans_indices, offset=0, default_value=-1,
all_in_span=True):
"""Align original positions to the corresponding document span positions
Parameters
----------
positions: list or int
A single or a list of positions to be aligned
dic_spans_indices: list or tuple
(start_position, end_position)
offset: int
Offset of aligned positions. Sometimes the doc spans would be added
after a question text, in this case, the new position should add
len(question_text)
default_value: int
The default value to return if the positions are not in the doc span.
all_in_span: bool
If set to True, then as long as one position is out of span, all positions
would be set to default_value.
Returns
-------
list: a list of aligned positions
"""
if not isinstance(positions, list):
positions = [positions]
doc_start, doc_end = doc_spans_indices
if all_in_span and not all([p in range(doc_start, doc_end) for p in positions]):
return [default_value] * len(positions)
new_positions = [
p - doc_start + offset if p in range(doc_start, doc_end) else default_value
for p in positions
]
return new_positions
|
5c4b5755f59e72ddb579b83932ab341e8a9c62d0
| 467,072 |
def request_cert(session, domain_name, validation_domain):
"""Requests a certificate in the AWS Certificate Manager for the domain name
Args:
session (Session|None) : Boto3 session used to communicate with AWS CertManager
If session is None no action is performed
domain_name (string) : domain name the certificate is being requested for
validation_domain (string) : domain suffix that request validation email
will be sent to.
Returns:
(dict|None) : Dictionary with the "CertificateArn" key containing the new
certificate's ARN or None if the session is None
"""
if session is None:
return None
client = session.client('acm')
validation_options = [
{
'DomainName': domain_name,
'ValidationDomain': validation_domain
},
]
response = client.request_certificate(DomainName=domain_name,
DomainValidationOptions=validation_options)
return response
|
8a6c5a0eff185d545edfe4a9aba9e4f93f0749ae
| 159,518 |
from typing import Iterable
def get_components_of_message(data: str) -> Iterable[str]:
"""Returns the three components (origin, destination, message) of a data packet."""
data_list = data.split(',')
origin, destination, message = data_list
return origin, destination, message
|
cc01d0107ef456d8c7d8a9dd0e7c5068e189d665
| 98,762 |
def to_upper(string: str) -> str:
"""
Converts :string: to upper case. Intended to be used as argument converter.
Returns
-------
:class:`str`
String to upper case
"""
return string.upper()
|
4decf6692745e9df10666756698e7a443df218f6
| 506,736 |
def filter_none(data, split_by_client=False):
"""This function filters out ``None`` values from the given list (or list of lists, when ``split_by_client`` is enabled)."""
if split_by_client:
# filter out missing files and empty clients
existing_data = [
[d for d in client_data if d is not None] for client_data in data
]
existing_data = [client_data for client_data in existing_data if client_data]
else:
# filter out missing files
existing_data = [d for d in data if d is not None]
return existing_data
|
7cc88ecdf7aba245f56598ee1094fed7c1f9f4f7
| 11,746 |
import errno
def read_no_interrupt(p):
"""Read from a pipe ignoring EINTR errors.
This is necessary because when reading from pipes with GUI event loops
running in the background, often interrupts are raised that stop the
command from completing."""
try:
return p.read()
except IOError as err:
if err.errno != errno.EINTR:
raise
|
0fed5b7655c73e1611915157a62ce7fbd2d5b379
| 563,459 |
import ipaddress
def get_prefix_protocol(prefix):
"""
Takes a network address space prefix string and returns
a string describing the protocol
Will raise a ValueError if it cannot determine protocol
Returns:
str: IPv4 or IPv6
"""
try:
ipaddress.IPv4Network(prefix)
return "IPv4"
except ipaddress.AddressValueError:
try:
ipaddress.IPv6Network(prefix)
return "IPv6"
except ipaddress.AddressValueError:
raise ValueError("Prefix invalid")
|
2aa24198eee51c966388c4e0de3416a4638027f7
| 124,668 |
import torch
from typing import Sequence
def crop(data: torch.Tensor, corner: Sequence[int], size: Sequence[int]) -> torch.Tensor:
"""
Extract crop from last dimensions of data
Args:
data: input tensor
corner: top left corner point
size: size of patch
Returns:
torch.Tensor: cropped data
"""
_slices = []
if len(corner) < data.ndim:
for i in range(data.ndim - len(corner)):
_slices.append(slice(0, data.shape[i]))
_slices = _slices + [slice(c, c + s) for c, s in zip(corner, size)]
return data[_slices]
|
2f596db499e3b1d59475477e71a95e8a170242da
| 23,838 |
def _dataset_ids_equal(dataset_id1, dataset_id2):
"""Compares two dataset IDs for fuzzy equality.
Each may be prefixed or unprefixed (but not null, since dataset ID
is required on a key). The only allowed prefixes are 's~' and 'e~'.
Two identical prefixed match
>>> 's~foo' == 's~foo'
>>> 'e~bar' == 'e~bar'
while non-identical prefixed don't
>>> 's~foo' != 's~bar'
>>> 's~foo' != 'e~foo'
As for non-prefixed, they can match other non-prefixed or
prefixed:
>>> 'foo' == 'foo'
>>> 'foo' == 's~foo'
>>> 'foo' == 'e~foo'
>>> 'foo' != 'bar'
>>> 'foo' != 's~bar'
(Ties are resolved since 'foo' can only be an alias for one of
s~foo or e~foo in the backend.)
:type dataset_id1: string
:param dataset_id1: A dataset ID.
:type dataset_id2: string
:param dataset_id2: A dataset ID.
:rtype: bool
:returns: Boolean indicating if the IDs are the same.
"""
if dataset_id1 == dataset_id2:
return True
if dataset_id1.startswith('s~') or dataset_id1.startswith('e~'):
# If `dataset_id1` is prefixed and not matching, then the only way
# they can match is if `dataset_id2` is unprefixed.
return dataset_id1[2:] == dataset_id2
elif dataset_id2.startswith('s~') or dataset_id2.startswith('e~'):
# Here we know `dataset_id1` is unprefixed and `dataset_id2`
# is prefixed.
return dataset_id1 == dataset_id2[2:]
return False
|
a8eec519af5159041f5b81943f4ef0e478170507
| 268,714 |
def pie_pct_format(value):
""" Determine the appropriate format string for the pie chart percentage label
Args:
value: value of the pie slice
Returns:
str: formated string label; if the slice is too small to fit, returns an empty string for label
"""
return '' if value < 7 else '%.0f%%' % value
|
ac5e7f15fb12b383cfe99e3579dff9d1e2b84843
| 599,801 |
def get_name(model, index: int):
"""Get the input name corresponding to the input index"""
return model.inputs[index]
|
6620098f8fb99b18a37aed4ca4f8a28f038c8c79
| 678,497 |
from typing import Dict
def get_opt_value(result_data: Dict, param_name: str) -> float:
"""A helper function to get parameter value from a result dictionary.
Args:
result_data: Result data.
param_name: Name of parameter to extract.
Returns:
Parameter value.
Raises:
KeyError:
- When the result does not contain parameter information.
ValueError:
- When specified parameter is not defined.
"""
try:
index = result_data["popt_keys"].index(param_name)
return result_data["popt"][index]
except KeyError as ex:
raise KeyError(
"Input result has not fit parameter information. "
"Please confirm if the fit is successfully completed."
) from ex
except ValueError as ex:
raise ValueError(f"Parameter {param_name} is not defined.") from ex
|
bc9c50934757f858973c06c2ddf6b0671b7d9740
| 153,895 |
import torch
def np2torch(array, dtype=None):
"""
Convert a numpy array to torch tensor convention.
If 4D -> [b, h, w, c] to [b, c, h, w]
If 3D -> [h, w, c] to [c, h, w]
:param array: Numpy array
:param dtype: Target tensor dtype
:return: Torch tensor
"""
d = array.ndim
perm = [0, 3, 1, 2] if d == 4 else \
[2, 0, 1] if d == 3 else \
[0, 1]
tensor = torch.from_numpy(array).permute(perm)
return tensor.type(dtype) if dtype else tensor.float()
|
1651ba975e9854fa8727b4019683cf0828a37d24
| 548,434 |
def parse_csv_data(csv_filename:str)->list:
"""
Functionality:
---------------
Takes a csv file and puts the data in a list of strings
so that they can be processed later
Parameters:
---------------
csv_filename : str
The name of the file to be open and read from
Returns:
---------------
data: list
The resulting list of strings
"""
with open(csv_filename, "r") as csv_file:
lines = csv_file.readlines()
data = []
for line in lines:
data.append(line[:-1])
return data
|
319358a99174c17df8dcdcd6777237bd48be475b
| 226,714 |
def journal(record):
"""
Turn the journal field into a dict composed of the original journal name
and a journal id (without coma or blank).
:param record: the record.
:type record: dict
:returns: dict -- the modified record.
"""
if "journal" in record:
# switch journal to object
if record["journal"]:
record["journal"] = {"name": record["journal"], "ID": record["journal"].replace(',', '').replace(' ', '').replace('.', '')}
return record
|
4714872865967e757bdc6c6e93a78cee1d64ab81
| 153,251 |
def binary_string_to_value(binary_string):
"""
Convert a binary string representing an unsigned int to a value
Args:
binary_string (str): The string to convert. e.g. "001010010"
Returns:
(int): the value of the binary string
"""
return int(binary_string, 2)
|
075a4d1958ef9a1c409cfda7a7e71d533434f42e
| 108,335 |
from typing import List
def replace_words_with_prefix_hash(dictionary: List[str], sentence: str) -> str:
"""
Replace words in a sentence with those in the dictionary based on the prefix match.
Intuition:
For each word in the sentence, we'll look at successive prefixes and see if we saw them before
Algorithm:
Store all roots in a set. Then for each word, look at successive prefixes for that word. If we find a prefix that is
root, replace the word with that prefix. Otherwise, the prefix will just be the word itself, and we should add that
to the final sentence
Complexity Analysis:
- Time Complexity: O(∑w i2) where wi is the length of the i-th word. We might check every prefix,
the i-th of which is O(w_i^2) work.
- Space Complexity: O(N) where N is the length of our sentence; the space used by root_set.
@param dictionary: List of roots
@param sentence: words separated by space to perform replacement on
@return: New sentence with replaced words
"""
root_set = set(dictionary)
def replace(word: str) -> str:
for x in range(1, len(word)):
if word[:x] in root_set:
return word[:x]
return word
return " ".join(map(replace, sentence.split()))
|
bb46b0dc61eab2be358d44f8fb46782f867e3c30
| 24,990 |
def calc_montage_horizontal(border_size, *frames):
"""Return total[], pos1[], pos2[], ... for a horizontal montage.
Usage example:
>>> calc_montage_horizontal(1, [2,1], [3,2])
([8, 4], [1, 1], [4, 1])
"""
num_frames = len(frames)
total_width = sum(f[0] for f in frames) + (border_size * num_frames + 1)
max_height = max(f[1] for f in frames)
total_height = max_height + (2 * border_size)
x = border_size
pos_list = []
for f in frames:
y = border_size + (max_height - f[1]) // 2
pos_list.append([x, y])
x += f[0] + border_size
result = [[total_width, total_height]]
result.extend(pos_list)
return tuple(result)
|
8fe5de84d9b1bff9950690ec99f63e174f2f0d22
| 701,204 |
def _get_checksum_algorithm_set(payload_info_list):
"""Get set of checksum algorithms in use."""
return {d["checksum_algorithm"] for d in payload_info_list}
|
76c86e66bc5778c6c2a85ccbc681be93ee6504dc
| 324,665 |
import socket
def ipaddr_str(t):
"""Pass through a string provided it represents an ip address (not a host name) otherwise raise an exception"""
try:
socket.inet_aton(t)
except socket.error:
raise ValueError("IP address string not of the form nnn.nnn.nnn.nnn")
return t
|
364dc5a6599cc3d420a8bbca817fd6a82ce89c2f
| 411,037 |
def get_property_name(x: str) -> str:
"""Return message name of property in proto.
Args:
x (str): The name of property.
Returns:
str: Message name of property in proto .
"""
x_name = x[0].upper()
x_name += x[1:]
x_name += 'Property'
return x_name
|
1abe7c040a7e64bb4df3a7726e6047492d2b7d2f
| 302,989 |
def load_categories(file_name):
"""
Loads the category index from file. Each category label is
the name of a class specified on a separate line. The entry order
is the index of the class.
"""
labels = []
with open(file_name) as f:
labels = f.read().splitlines()
categories = {}
for category in labels:
categories[category] = len(categories)
return categories
|
54bcd375c2e5b9d5d9078d6f0a75b9cebce03702
| 668,891 |
def supports_ordinals(bv):
""" Check whether the BinaryView supports ordinal imports """
return bv.view_type == 'PE'
|
5a2fb60385361dd958be2c1aee8641838b175f51
| 234,602 |
from datetime import datetime
def datetime_from_iso8601(date_str):
"""Convert ISO 8601 datetime string to datetime.
See `ISO 8601 (Wikipedia) <https://en.wikipedia.org/wiki/ISO_8601>`_.
Parameters
----------
date_str : str
Example: 2016-12-11T10:00:00.000Z
Return
------
dt : datetime
Datetime representation
"""
date_str = date_str[:-5] # remove milliseconds: '.000Z'
return datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S")
|
eca77d3a19449a810e6b399d0c876a2db1e1f015
| 170,923 |
def mae_expr(gray_only: bool = True) -> str:
"""Mean Absolute Error string to be integrated in std.Expr.
Args:
gray_only (bool, optional):
If both actual observation and prediction are one plane each.
Defaults to True.
Returns:
str: Expression.
"""
return 'x y - abs' if gray_only else 'x a - abs y b - abs max z c - abs max'
|
98098d0412357f98721b4da645dadf9a688ab091
| 292,230 |
def struct2spglib(st):
"""Transform :class:`~pwtools.crys.Structure` to spglib input tuple (cell,
coords_frac, znucl).
"""
return st.get_spglib()
|
a8d2e08c7e17e507eb9b2992ae834009403bd4e9
| 671,060 |
def calc_answer(question, solution):
"""
Calculate the black and white pegs of a question
@param question: The question that is asked
@param solution: The secret solution
@return: black, white pegs
"""
q = question.lst()
s = solution.lst()
r = []
b = w = 0
for i in range(len(q)):
if q[i] == s[i]:
b += 1
r.append(i)
for d in reversed(r):
del q[d]
del s[d]
for i in range(len(q)):
for j in range(len(s)):
if q[i] == s[j]:
w += 1
del s[j]
break
return b, w
|
08e06f00c80c0b8a411f82f7b5107c8770dc4b61
| 438,406 |
def extract_star_names(file):
"""Extracts star names from a text file
Arguments:
file {str} -- the path to the text file
Returns:
star_names {list} -- a list of star_names from text file
"""
names = open(file, 'r')
star_names = [line[:-1] for line in names.readlines()]
return star_names
|
182a7d101da130b0035d8d18a7ff0b9ae142e4d6
| 114,222 |
import torch
def l2_norm(input, axis=1):
"""l2 normalization.
Args:
input (torch.Tensor): The input tensor.
axis (int, optional): Specifies which axis of input to calculate the
norm across. Defaults to 1.
Returns:
Tensor: Tensor after L2 normalization per-instance.
"""
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
|
850e9c8424b8c315953062e224980ce74611682d
| 505,263 |
import re
def frame_of(path):
"""
Get the frame number of a specific image path
:param path:
:return: frame as int
"""
frame = re.findall('.+[\._](\d{4,8})\.[A-Za-z]{3,4}', path)
if frame and len(frame) == 1:
return int(frame[0])
|
b1604d172deae39772eeea79c753b1c0a58abfca
| 229,122 |
def get_reverted_disk_rses_id_name_map(disk_rses_id_name_map):
"""Revert k:v to v:k"""
return {v: k for k, v in disk_rses_id_name_map.items()}
|
51ea8b84a5d23f365b3e6a182b62ca586dae7009
| 626,008 |
def subtraction(a, b):
"""subtraction: subtracts b from a, return result c"""
a = float(a)
b = float(b)
c = b - a
return c
|
0115222efc08588a12a6fbc1965441b83a7eaff0
| 699,510 |
def vector_to_dictionary(theta):
"""
Unroll all our parameters dictionary from a single vector satisfying our specific required shape.
"""
parameters = {}
parameters["W1"] = theta[:20].reshape((5,4))
parameters["b1"] = theta[20:25].reshape((5,1))
parameters["W2"] = theta[25:40].reshape((3,5))
parameters["b2"] = theta[40:43].reshape((3,1))
parameters["W3"] = theta[43:46].reshape((1,3))
parameters["b3"] = theta[46:47].reshape((1,1))
return parameters
|
1e945fe5850e90466622df82b0dfe9fe2de6c36f
| 263,975 |
def merge_diffs(d1, d2):
"""
Merge diffs `d1` and `d2`, returning a new diff which is
equivalent to applying both diffs in sequence. Do not modify `d1`
or `d2`.
"""
if not isinstance(d1, dict) or not isinstance(d2, dict):
return d2
diff = d1.copy()
for key, val in d2.items():
diff[key] = merge_diffs(diff[key], val) if key in diff else val
return diff
|
7314ad63a4679308d27bcff956c9b570d89df8a7
| 684,739 |
def path_to_filename(path):
""" Returns filename from path by keeping after last '\'
"""
return path.split("\\")[-1]
|
645751dda77ac572940d4542228e8769b194de7c
| 410,935 |
import requests
def get_stock_data(stock_symbol, start_date, end_date):
"""
Make an REST API call to the tiingo API to get historic stock data
Parameters
----------
stock_symbol : str
US stock market symbol
start_date : str
yyyy-mm-dd formated date that begins time series
end_date : str
yyyy-mm-dd formated date that ends the time series
returns
-------
response : request.response
The response object to be parsed
"""
TIINGO_API_KEY='c391b96b9ea2e55ce48335fc7ab86245f2a41ec2'
base_url = f'https://api.tiingo.com/tiingo/daily/{stock_symbol}/prices?'
payload = {
'token':TIINGO_API_KEY,
'startDate':start_date,
'endDate':end_date
}
response = requests.get(base_url, params=payload)
return response
|
c32ac75581622a4694e8dca96ca87311500e09ec
| 559,883 |
import torch
def logit(p):
"""
inverse function of sigmoid
p -> tensor \in (0, 1)
"""
return torch.log(p) - torch.log(1 - p)
|
290d07606aa01c9837bfce6cdd411ec241ec4484
| 306,898 |
def is_terminal(depth, board):
"""
Generic terminal state check, true when maximum depth is reached or
the game has ended.
"""
return depth <= 0 or board.is_game_over()
|
7678f3861e628b4e284725c52227b6277ff2f645
| 445,477 |
def handle_arguments(**mapping):
"""
Decorator that will remap keyword arguments.
Useful to support maya "short" and "long" form for function arguments.
ex: `cmds.ls(selection=True)` and `cmds.ls(sl=True)` are equivalent.
:param mapping: A mapping of argument short name by their long name.
:type mapping: dict[str, str]
:return: A decorated function
:rtype: callable
"""
def _deco(func):
def _wrapper(*args, **kwargs):
kwargs_conformed = {}
for attr, alias in mapping.items():
if attr in kwargs:
kwargs_conformed[attr] = kwargs.pop(attr)
if alias in kwargs:
kwargs_conformed[attr] = kwargs.pop(alias)
if kwargs:
raise NotImplementedError(
"Not implemented keyword argument{s}: {keys}".format(
s="s" if len(kwargs) > 1 else "", keys=", ".join(kwargs.keys())
)
)
return func(*args, **kwargs_conformed)
return _wrapper
return _deco
|
440d67230ae3dd377a6d007234ac1dbda6a4df65
| 337,949 |
def _check_boolean(input, name):
"""Exception raising if input is not a boolean
Checks whether input is not ``None`` and if not checks that the input is a
boolean.
Parameters
----------
input: any
The input parameter to be checked
name: str
The name of the variable for printing explicit errors in ``Exception``
Returns
-------
bool
Returns the input if all checks pass
Raises
------
ValueError
If input is None
TypeError
If input does not have correct type
"""
if input is None:
raise ValueError(f"`{name}` is None")
if not ((input is True) or (input is False)):
raise TypeError(f"`{name}` must be type {bool} but is " +
f"{type(input)}")
return input
|
b9fb435efc9a2b22384f570f0fa5d5462c07a6a9
| 675,769 |
def get_chart_size_range(length, padding):
"""Calculate the chart size range for a given axis based on the length and padding."""
return [length * padding, length * (1 - padding)]
|
41e57b7f2f4066d14d6c82ef05b84d2ceda3b6f2
| 235,904 |
def _reduce_datetimes(row):
"""Receives a row, converts datetimes to strings."""
row = list(row)
for i in range(len(row)):
if hasattr(row[i], 'isoformat'):
row[i] = row[i].isoformat()
return tuple(row)
|
f6442cb04c2941f7b83271db430802f6decf51d9
| 385,078 |
def get_headers(dataframe):
"""Get the headers name of the dataframe"""
return dataframe.columns.values
|
8276160a185dc1515da5910811b6b021279bc1f0
| 262,784 |
def get_category_from_topchart_url(url: str) -> str:
"""Return the category from an url.
Throws an error if the url isn't recognized.
"""
category = url.split("/")[3]
# check category
if category not in [
"films",
"series",
"jeuxvideo",
"livres",
"bd",
"musique",
]:
raise Exception(
"URL malformed. Check that the url contains a Senscritique Top (not a Survey)."
)
return category
|
f32296ef176e70df0abf39d8391df394db6bc9d2
| 619,229 |
def read_lines_from_tar_file(tar_file):
"""
Read the tar file returning the lines
"""
txt = tar_file.read()
txt = txt.decode('utf-8')
return txt.splitlines()
|
82c702a4c2fcdb9115774c32730a49f1b3280c8c
| 98,828 |
def format_car(car):
"""Given a car dictionary, returns a nicely formatted name."""
return "{} {} ({})".format(
car["car_make"], car["car_model"], car["car_year"])
|
9719c1c1467b5f866a7b285d093e9bb3d3718ea4
| 526,785 |
def make_grid(area):
"""Make orchard grid given required area."""
height = 3
width = (area // height) + 1
return [[1] * width for _ in range(height)]
|
7c6500c5927ea2ab5b4cc428f37edf0dc451fb2e
| 338,678 |
import re
def fullmatch(regex, string, flags=0):
"""Emulate python-3.4 re.fullmatch()."""
matched = re.match(regex, string, flags=flags)
if matched and matched.span()[1] == len(string):
return matched
return None
|
72de0abe5c15dd17879b439562747c9093d517c5
| 3,374 |
def list_or_int_or_float_or_str(value):
"""
Parses the value as an int, else a float, else a string. If the value
contains commas, treats it as a list of ints or floats or strings. Also
handles None, True, and False.
"""
if "," in value:
return [list_or_int_or_float_or_str(item) for item in value.split(",")]
special_vals = {
"None": None,
"True": True,
"False": False
}
if value in special_vals:
return special_vals[value]
try:
return int(value)
except ValueError:
try:
return float(value)
except ValueError:
return str(value)
|
dcbe8aa414925a8771d1e8591e8aa1344ea2b8f3
| 185,698 |
def remove_prefix(text: str, prefix: str) -> str:
"""Remove prefix from string
:param str text: Text to remove prefix from
:param str prefix: Prefix to remoe
:return: Text with prefix removed if present
"""
if text.startswith(prefix):
return text[len(prefix):]
return text
|
c48060c156fc960a769f27151e3cef1549942842
| 329,110 |
import torch
def gaussian(window_size, sigma):
"""
Computer Gaussian.
"""
x = torch.arange(window_size) - window_size // 2
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp((-x.pow(2.0) / (2 * sigma ** 2)))
return gauss / gauss.sum()
|
7babdf151ffe3b8fef16f076ea31f57140aa385a
| 312,344 |
def alphabet_of_cipher(symbols="ABCDEFGHIJKLMNOPQRSTUVWXYZ"):
"""
Returns the list of characters in the string input defining the alphabet.
Notes
=====
First, some basic definitions.
A *substitution cipher* is a method of encryption by which
"units" (not necessarily characters) of plaintext are replaced with
ciphertext according to a regular system. The "units" may be
characters (ie, words of length `1`), words of length `2`, and so forth.
A *transposition cipher* is a method of encryption by which
the positions held by "units" of plaintext are replaced by a
permutation of the plaintext. That is, the order of the units is
changed using a bijective function on the characters' positions
to perform the encryption.
A *monoalphabetic cipher* uses fixed substitution over the entire
message, whereas a *polyalphabetic cipher* uses a number of substitutions
at different times in the message.
Each of these ciphers require an alphabet for the messages to be
constructed from.
Examples
========
>>> from sympy.crypto.crypto import alphabet_of_cipher
>>> alphabet_of_cipher()
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
>>> L = [str(i) for i in range(10)] + ['a', 'b', 'c']; L
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c']
>>> A = "".join(L); A
'0123456789abc'
>>> alphabet_of_cipher(A)
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c']
>>> alphabet_of_cipher()
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
"""
symbols = "".join(symbols)
return list(symbols)
|
e7a7aed5006c35ac2aa42455dd97c1f95a2e2ca6
| 355,376 |
def flux_at_edge(X, min_value=0):
"""Determine if an edge of the input has flux above min_value
Parameters
----------
X: tensor or array
2D matrix to evaluate
min_value: float
Minimum value to trigger a positive result.
Returns
-------
result: bool
Whether or not any edge pixels are above the minimum_value
"""
return bool(max(X[:, 0].max(), X[:, -1].max(), X[0].max(), X[-1].max()) > min_value)
|
3cb29f64e6b9cdce0cb987d27af95b828e10475a
| 86,930 |
def _build_css_asset(css_uri):
"""Wrap a css asset so it can be included on an html page"""
return '<link rel="stylesheet" href="{uri}" />'.format(uri=css_uri)
|
450edf9a134ef6ce3f4b47445e3c26d00b41d45a
| 346,243 |
def _train_dev_split(X, y, dev_ratio=0.25):
"""
This function spilts data into training set and development set.
"""
train_size = int(len(X) * (1 - dev_ratio))
return X[:train_size], y[:train_size], X[train_size:], y[train_size:]
|
a547cc105e6e89077dd99c43a50a77e6cc527259
| 641,353 |
def extract_output(line):
"""
Extract the index of the tree and the matched tree fragment from a line of Tregex outout.
"""
line = line.strip()
index = None
fragment = None
for k, c in enumerate(line):
if c == ':':
index = line[:k]
fragment = line[(k+1):].strip()
break
assert index is not None
return int(index), fragment
|
b47d8d317108d896f8144a29477a4f2d873cd4c1
| 498,979 |
def err_func(params, x, y, func, w=None, func_list=None):
"""
Error function for fitting a function
Parameters
----------
params : tuple
A tuple with the parameters of `func` according to their order of
input
x : float array
An independent variable.
y : float array
The dependent variable.
func : function
A function with inputs: `(x, *params)`
w : ndarray
A weighting function. Allows emphasizing certain parts of the
original function. Should have the same length as x/y.
func_list : dict
dict of callables, each with it's own set of indices into the params
Returns
-------
The marginals of the fit to x/y given the params.
"""
err = y - func(x, *params)
if w is not None:
err = err * w
if func_list is not None:
err2 = 0
for f in func_list:
this_err = (y - f[0](x, *[params[ii] for ii in f[1]]))
if f[2] is not None:
this_err = this_err * f[2]
err2 = err2 + this_err
err = err2 + err
return err
|
421a98fca40ec666ff8843b701e1a59de6576933
| 380,593 |
import random
def select_random_subgraph(bqm, n):
"""Select randomly `n` variables of the specified binary quadratic model.
Args:
bqm (:class:`dimod.BinaryQuadraticModel`):
Binary quadratic model (BQM).
n (int):
Number of requested variables. Must be between 0 and `len(bqm)`.
Returns:
list: `n` variables selected randomly from the BQM.
Examples:
This example returns 2 variables of a 4-variable BQM.
>>> import dimod
>>> bqm = dimod.BQM({}, {'ab': 0, 'bc': 1, 'cd': 2}, 0, 'BINARY')
>>> select_random_subgraph(bqm, 2) # doctest: +SKIP
['d', 'b']
"""
return random.sample(bqm.linear.keys(), n)
|
c41823e1e5c664b14e33cc7d9ef26ea5599ae592
| 426,723 |
def diff_set(before, after, create_replaced=True):
"""Compare sets to get additions, removals and replacements
Return 3 sets:
added -- objects present in second set, but not present in first set
removed -- objects present in first set, but not present in second set
replaced -- objects that have the same name in both sets, but are different
"""
removed = before - after
added = after - before
replaced = set()
removed_by_name = {}
for element_removed in removed:
removed_by_name[element_removed.name] = element_removed
for element_added in added:
element_removed = removed_by_name.get(element_added.name)
if element_removed and create_replaced:
replaced.add((element_removed, element_added))
if create_replaced:
for (element_removed, element_added) in replaced:
removed.discard(element_removed)
added.discard(element_added)
return (added, removed, replaced)
|
f61fab8c964c768c57f574061c5e0226de9f2771
| 101,600 |
import re
def alias_tpl(data):
"""Generates Mantle alias
Output:
@"postTime": @"post_time",
"""
name = data['original_name']
candidates = re.findall(r'(_\w)', name)
if not candidates:
new_name = data['name']
else:
new_name = re.sub(r'_(\w)', lambda x: x.group(1).upper(), name)
return '@"{}": @"{}",'.format(new_name, name)
|
13e42ecffb27018e87acfd1919bb812603c50f4c
| 93,416 |
def _append_y(clifford, qubit):
"""Apply a Y gate to a Clifford.
Args:
clifford (Clifford): a Clifford.
qubit (int): gate qubit index.
Returns:
Clifford: the updated Clifford.
"""
x = clifford.table.X[:, qubit]
z = clifford.table.Z[:, qubit]
clifford.table.phase ^= x ^ z
return clifford
|
ac2429e81590fcdb8f2821154b81165031a5ef26
| 566,940 |
def get_null_columns(train, null_threshold=0.4):
"""
finds columns with null values greater than threshold(default=0.4)
returns list of columns to be removed
"""
missingcol = train.columns[(train.isnull().sum() /
train.shape[0]) > null_threshold]
return missingcol
|
7aefb259facdc8c2ae36b78a297e1937732c0e8f
| 185,262 |
def turn_psql_url_into_param(postgres_url: str) -> dict:
"""
>>> turn_psql_url_into_param(
... 'postgres://USERNAME:PASSWORD@URL:PORT/USER?sslmode=SSLMODE') == {
... 'db_user':'USERNAME', 'db_password': 'PASSWORD', 'db_host': 'URL', 'db_port':
... 'PORT', 'db_name': 'USER', 'sslmode': 'SSLMODE'}
True
>>> turn_psql_url_into_param(
... 'USERNAME:PASSWORD@URL:PORT/USER?sslmode=SSLMODE')
Traceback (most recent call last):
...
AttributeError: The database URL is not well formated
>>> turn_psql_url_into_param(
... 'postgres://USERNAME:PASSWORD@URL:PORT/USER') == {
... 'db_user': 'USERNAME', 'db_password': 'PASSWORD', 'db_host': 'URL',
... 'db_port': 'PORT', 'db_name': 'USER'}
True
>>> turn_psql_url_into_param("postgresql://") == {}
True
>>> turn_psql_url_into_param('postgresql://localhost') == {'db_host':
... 'localhost'}
True
>>> turn_psql_url_into_param('postgresql://localhost:5433') == {'db_host':
... 'localhost', 'db_port': '5433'}
True
>>> turn_psql_url_into_param('postgresql://localhost/mydb') == {'db_host':
... 'localhost', 'db_name': 'mydb'}
True
>>> turn_psql_url_into_param('postgresql://user@localhost') == {'db_host':
... 'localhost', 'db_user': 'user'}
True
>>> turn_psql_url_into_param('postgresql://user:secret@localhost') == {
... 'db_host': 'localhost', 'db_user': 'user', 'db_password': 'secret'}
True
>>> turn_psql_url_into_param('postgresql://oto@localhost/ther?'
... 'connect_timeout=10&application_name=myapp') == {
... 'db_host': 'localhost', 'db_user': 'oto', 'db_name': 'ther',
... 'connect_timeout': '10', 'application_name': 'myapp'}
True
"""
if not postgres_url.startswith(("postgres://", "postgresql://")):
raise AttributeError("The database URL is not well formated")
response = {}
# Get parameters
params_start = postgres_url.rfind("?")
if not params_start == -1:
params = postgres_url[params_start + 1 :]
params = [param.split("=") for param in params.split("&")]
for param in params:
response[param[0]] = param[1]
user_and_db_info = postgres_url[postgres_url.find("://") + 3 : params_start]
else:
user_and_db_info = postgres_url[postgres_url.find("://") + 3 :]
if not user_and_db_info:
return response
# User information
if "@" in user_and_db_info:
user_info, db_info = tuple(user_and_db_info.split("@"))
user_info = user_info.split(":")
response["db_user"] = user_info[0]
if len(user_info) > 1:
response["db_password"] = user_info[1]
else:
db_info = user_and_db_info
# Database information
db_info = db_info.split("/")
if len(db_info) > 1:
response["db_name"] = db_info[1]
url_and_port = db_info[0]
url_and_port = url_and_port.split(":")
response["db_host"] = url_and_port[0]
if len(url_and_port) > 1:
response["db_port"] = url_and_port[1]
return response
|
6a25bea1c647e80114828e708f61b04b14c35327
| 493,431 |
def intToByte(i):
"""
int -> byte
Determines whether to use chr() or bytes() to return a bytes object.
"""
return chr(i) if hasattr(bytes(), 'encode') else bytes([i])
|
e70741a85138e0ef82d828bf46bbce90252707e6
| 176,836 |
def split_sentence(s):
"""
Given a string, [s], split it into sentences.
# Arguments
* `s` (str) - a string to split.
# Returns
A list strings representing the sentences of the text. It is guaranteed
that each string is non-empty, has at least one whitespace character, and
both start and end on non-whitespace characters.
"""
lines = map(str.strip, s.splitlines())
return list([line for line in lines if line])
|
c805e4c22e9136cb3d7e07e94a2be2301452c6e3
| 513,637 |
def get_curated_date(date):
"""
remove the seconds etc, e.g., 2018-07-15T16:20:55 => 2018-07-15
"""
return date.strip().split('T')[0]
|
08fc369c7b33612b5460cd6ae155999d50cdd2fe
| 540,230 |
def get_docker_base_image_name() -> str:
"""
Return a base name for docker image.
"""
base_image_name = "amp"
return base_image_name
|
6b9e6d71e9d530430a1572fbc2f3d80f4aa39b80
| 550,084 |
def to_ms(ts):
"""
Returns an ms-formatted version of the specified tree sequence.
"""
output = ""
for tree in ts.trees():
length = tree.interval[1] - tree.interval[0]
output += "[{}]{}\n".format(length, tree.newick())
return output
|
517ab1bbe1a0d5b2309375564ec7acbbd3f8c91d
| 493,187 |
import random
def sample_from(weights):
"""returns i with probability weights[i] / sum(weights)"""
total = sum(weights)
rnd = total * random.random() # uniform between 0 and total
for i, w in enumerate(weights):
rnd -= w
if rnd <= 0: # return the smallest i such that
return i
|
084cc781ac6dd7ffe0df96bf23dfc00de7d5d4eb
| 314,839 |
def clean_multiple_coordsets(protein):
"""
Deletes all but the first coordinate set of a protein.
"""
if len(protein.getCoordsets()) > 1:
for i in range(len(protein.getCoordsets())):
if i == 0:
pass
else:
protein.delCoordset(-1)
return protein
|
70e0c9355394b78331b802c40369b98c74ed75f1
| 35,127 |
def hfsym(self, kcn="", xkey="", ykey="", zkey="", **kwargs):
"""Indicates the presence of symmetry planes for the computation of
APDL Command: HFSYM
acoustic fields in the near and far field domains (beyond the finite
element region).
Parameters
----------
kcn
Coordinate system reference number. KCN may be 0 (Cartesian), or
any previously defined local Cartesian coordinate system number
(>10). Defaults to 0.
xkey
Key for acoustic field boundary condition, as prescribed for the
solution, corresponding to the x = constant plane:
None - No sound soft or sound hard boundary conditions (default).
SSB - Sound soft boundary (pressure = 0).
SHB - Sound hard boundary (normal velocity = 0).
ykey
Key for acoustic field boundary condition, as prescribed for the
solution, corresponding to the y = constant plane:
None - No sound soft or sound hard boundary conditions (default).
SSB - Sound soft boundary (pressure = 0).
SHB - Sound hard boundary (normal velocity = 0).
zkey
Key for acoustic field boundary condition, as prescribed for the
solution, corresponding to the z = constant plane:
None - No sound soft or sound hard boundary conditions (default).
SSB - Sound soft boundary (pressure = 0).
SHB - Sound hard boundary (normal velocity = 0).
Notes
-----
HFSYM uses the image principle to indicate symmetry planes (x, y, or z
= constant plane) for acoustic field computations outside the modeled
domain. A sound hard boundary condition must be indicated even though
it occurs as a natural boundary condition.
No menu paths are available for acoustic applications.
"""
command = f"HFSYM,{kcn},{xkey},{ykey},{zkey}"
return self.run(command, **kwargs)
|
27b4b9b262fc39afe159f7886e8a4a3854e4ef36
| 511,153 |
import math
def _pad(text, block_size):
"""
Performs padding on the given plaintext to ensure that it is a multiple
of the given block_size value in the parameter. Uses the PKCS7 standard
for performing paddding.
"""
no_of_blocks = math.ceil(len(text)/float(block_size))
pad_value = int(no_of_blocks * block_size - len(text))
if pad_value == 0:
return text + chr(block_size) * block_size
else:
return text + chr(pad_value) * pad_value
|
d5334e05924c2221c539d92e819e2188074faac8
| 642,374 |
def size(price_left=1, price_right=1, vol_left=1, vol_right=1, unit_size_left=1,
multiplier_left=1, multiplier_right=1):
"""Calculate volatility weighted size for each leg of pairs trade
Calculate the number of units for each leg of a pairs trade by
passing the price of both legs and optionally the share size of one
leg and multipliers in the case of futures. Returns a dict with the
given arguments and the number of units for each leg.
It is often desirable to equate the level of risk for each leg of a
pairs trade. This risk depends on both the equity value and the
volatility of each leg.
For example, suppose a pairs trade consists of two legs. The first
leg is long stock ABC, which trades for $100 per share and has a
30-day historical standard deviation of 2%. The second leg is a
short position in stock XYZ, which trades for $25 per share and has
a standard deviation of 7%. How many shares of each stock should be
traded to create a neutral pairs trade?
Clearly, if 100 shares of each leg were traded, the risk in one leg
would be much greater than the other. So, we want to equate the
equity of each leg:
abc_shares * abc_price = xyz_shares * xyz_price
left_shares * left_price = right_shares * right_price
...where we have arbitrarily defined ABC as the "left" side of the
trade.
However, the above equation fails to adequately equate the risk in
each leg; since the volatility of XYZ is 7% and the volatility of
ABC is 2%, sizing the trade based on the above equation would put
more risk in the XYZ leg than the ABC leg.
So, to equate the risk in each leg, we add a measure of volatility
to the prior equation:
left_shares * left_price * left_vol = right_shares * right_price * right_vol
Compared to the prior equation, this equation reduces the number of
shares traded in XYZ, since the risk is larger in each unit of
equity for XYZ, because XYZ has higher volatility.
Now, suppose that we're comfortable trading 100 shares of ABC and we
want to now calculate the quantity of XYZ shares to trade. We can do
a simple algebriac manipulation to calculate the number of shares:
right_shares = (left_shares * left_price * left_vol) / (right_price * right_vol)
= (100 * 100 * 2) / (25 * 7)
= 114.28
..and this can be plugged back into the original equation as a
check.
In the case of a futures contract, the *notional value* must be
calculated in order to volatility-weight each leg:
left_units * left_multiplier * left_price * left_vol =
right_units * right_multiplier * right_price * right_vol
...where the multiplier is a number used to convert the futures
price into the notional value of the futures contract. In the case
where both legs are a stock, the multipliers are simply 1. To
calculate the number of units for the right leg:
left_units =
(right_units * right_multiplier * right_price * right_vol) /
(left_multiplier * left_price * left_vol)
Parameters
----------
price_left, price_right : float
The entry prices for each leg of the pair, left and right.
vol_left, vol_right : float
A measure of volatility for each leg of the pair, left and
right.
unit_size_left : float
The number of units (e.g. shares) that compose the left leg of
the pair. Optional, default is 1 unit.
multiplier_left, multiplier_right : float
Multiplier for each leg of the pair, left and right. The
multiplier is a number that translates the asset price into the
notional (equity) value of one unit of the asset. In the case of
a stock, the mulitplier is simply 1. The multiplier for futures
contracts depends on the specifications of the contract.
Optional, default is 1.
Returns
-------
pair_specs : dict
Dict with keys multiplier_left, multiplier_right, price_left,
price_right, unit_size_left, unit_size_right, vol_left,
and vol_right.
"""
unit_size_right = \
(vol_left * price_left * multiplier_left * unit_size_left) / \
(vol_right * price_right * multiplier_right)
pair_specs = dict(vol_left=vol_left, price_left=price_left,
multiplier_left=multiplier_left,
multiplier_right=multiplier_right,
unit_size_left=unit_size_left, vol_right=vol_right,
price_right=price_right, unit_size_right=unit_size_right)
return pair_specs
|
9f1752689da25b923093679b130d0a40142d0ca2
| 136,573 |
def string_contains_space(string):
"""
Returns true if string contains space, false otherwise.
"""
for char in string:
if char.isspace():
return True
return False
|
2069afc7679c3b52606ba021f26aba9615ccdd9b
| 117,349 |
def _Checksum(sentence):
"""Compute the NMEA checksum for a payload."""
checksum = 0
for char in sentence:
checksum ^= ord(char)
checksum_str = '%02x' % checksum
return checksum_str.upper()
|
d3932b8079d0fc78774c825746d46ac569e42e2e
| 505,578 |
import time
def get_elapsed_time(start_time) -> str:
""" Gets nicely formatted timespan from start_time to now """
end = time.time()
hours, rem = divmod(end-start_time, 3600)
minutes, seconds = divmod(rem, 60)
return "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)
|
d75a1873254e1b1cc9ffc714e65d3a9ed95e5803
| 704,297 |
import json
def update_permissions_for_annotation(
gc, annotation_id=None, annotation=None,
groups_to_add=None, replace_original_groups=True,
users_to_add=None, replace_original_users=True):
"""Update permissions for a single annotation.
Parameters
----------
gc : gider_client.GirderClient
authenticated girder client instance
annotation_id : str
girder id of annotation
annotation : dict
overrides annotation_id if given
groups_to_add : list
each entry is a dict containing the information about user groups
to add and their permission levels. A sample entry must have the
following keys
- level, int -> 0 (view), 1 (edit) or 2 (owner)
- name, str -> name of user group
- id, st -> girder id of user group
replace_original_groups : bool
whether to replace original groups or append to them
users_to_add : list
each entry is a dict containing the information about user
to add and their permission levels. A sample entry must have the
following keys
- level, int -> 0 (view), 1 (edit) or 2 (owner)
- login, str -> username of user
- id, st -> girder id of user
replace_original_users
whether to replace original users or append to them
Returns
-------
dict
server response
"""
groups_to_add = [] if groups_to_add is None else groups_to_add
users_to_add = [] if users_to_add is None else users_to_add
if annotation is not None:
annotation_id = annotation['_id']
elif annotation_id is None:
raise Exception(
"You must provide either the annotation or its girder id.")
# get current permissions
current = gc.get('/annotation/%s/access' % annotation_id)
# add or replace as needed
if replace_original_groups:
current['groups'] = []
current_group_ids = []
else:
current_group_ids = [j['id'] for j in current['groups']]
if replace_original_users:
current['users'] = []
current_user_ids = []
else:
current_user_ids = [j['id'] for j in current['users']]
for group in groups_to_add:
if group['id'] not in current_group_ids:
current['groups'].append(group)
for user in users_to_add:
if user['id'] not in current_user_ids:
current['users'].append(user)
# now update accordingly
# BAD WAY!! -- do NOT do this!
# return gc.put('/annotation/%s/access?access=%s' % (
# annotation_id, json.dumps(current)))
# PROPER WAY
return gc.put('/annotation/%s/access' % annotation_id, data={
'access': json.dumps(current)})
|
e4e10862d3d11551197f281200497542a723f947
| 115,428 |
from typing import Sequence
def false_positive_rate(y_true: Sequence, y_pred: Sequence) -> float:
"""Calculates the false positive rate binary classification results.
Assumes that the negative class is -1.
"""
assert set(y_true).issubset({1, -1})
assert set(y_pred).issubset({1, -1})
false_positives = 0
true_negatives = 0
for true_label, predicted_label in zip(y_true, y_pred):
if true_label == -1 and predicted_label == 1:
false_positives += 1
elif true_label == predicted_label == -1:
true_negatives += 1
try:
return false_positives / (false_positives + true_negatives)
except ZeroDivisionError:
return 0
|
8668d01c2628062efef67b04c912ef315d37fa13
| 62,357 |
def fillNaToMode(data):
"""Iterates through NA values and changes them to the mode
Parameters:
dataset (pd.Dataset): Both datasets
Returns:
data (pd.Dataset) : Dataset with any NA values in the columns listed changed to the mode
"""
columns = ["MSZoning", "Functional", "Electrical", "KitchenQual", "Exterior1st", "Exterior2nd"]
for column in columns:
data[column] = data[column].fillna(data[column].mode()[0])
return data
|
6d8ec04da66b7463e69fdda3ff6665b3ce2bbde8
| 632,886 |
def get_names_probs(predict_output, cat_to_name, class_to_idx):
"""Return the names and probabilities of the predicted classes
Args:
predict_output (obj): A ``torch.tensor`` object from typically with 2 tensors
cat_to_name (dict): A dictionary containing key to category mapping of each category in the cat_to_name file
class_to_idx (dict): Class to id mapping of the train data
Returns:
tuple: Returns a tuple of
``flower_names`` - Name of the flowers predicted
``flower_probs`` - Probabilities associated with each predicted flower
"""
idx_to_class = {v: k for k, v in class_to_idx.items()}
flower_names = [cat_to_name[idx_to_class[x.item()]] for x in predict_output[1][0]]
flower_probs = [x.item() for x in predict_output[0][0]]
return flower_names, flower_probs
|
5b62aa1a98b4391733bcae2c02aa95663edcf11c
| 270,811 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.