content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def fmt_price(amt):
""" Format price as string with 2 decimals """
return '{:,.2f}'.format(amt)
|
03c36c1d297f26d173bb5d325e9be45c406ac8c7
| 677,659 |
def get_surface_specs(surface):
""" Get the OpenAPI specifications of a SED surface
Args:
surface (:obj:`Surface`): surface
Returns:
:obj:`dict` with schema `SedSurface`
"""
specs = {
'_type': 'SedSurface',
'id': surface.id,
'xDataGenerator': surface.x_data_generator.id,
'yDataGenerator': surface.y_data_generator.id,
'zDataGenerator': surface.z_data_generator.id,
}
if surface.name:
specs['name'] = surface.name
return specs
|
c742d1a64868cd3e9a5a38487fa45aef710fc14d
| 231,216 |
from typing import Iterable
from typing import Any
def null(it: Iterable[Any]) -> bool:
"""
Return empty or boolean value of iterable object
Args:
it: Iterable object
Examples:
>>> fpsm.null([])
True
>>> fpsm.null(range(100))
False
"""
return not list(it)
|
c4fdf053bbc0ea37e64f895af577608161a8ef5c
| 91,578 |
def describe_list_indices(full_list):
"""
Describe the indices of the given list.
Parameters
----------
full_list : list
The list of items to order.
Returns
-------
unique_elements : list
A list of the unique elements of the list, in the order in which
they first appear.
element_indices : dict
A dictionary of lists for each unique element, giving all the
indices in which they appear in the original list.
"""
unique_elements = []
element_indices = {}
for i in range(len(full_list)):
item = full_list[i]
# new item
if item not in unique_elements:
unique_elements.append(item)
element_indices[item] = [i]
# previously seen item
else:
element_indices[item].append(i)
return unique_elements, element_indices
|
664bcfd63dd0d5d5114ce24a4c7b2850b61364c5
| 12,447 |
def arrowheadCoordsForSide(s):
"""
Upwards pointing equilateral triangle with equal sides s
origin = 0,0
"""
factor = 3**0.5/2
coords = (
( # path
(0,0), (s/2,factor*s/4), (s,0), (s/2,factor*s),
),
)
return coords
|
7dd7cb20f76d374c73bcebb69c7bfae09ea6cc86
| 320,680 |
from typing import OrderedDict
def map_layers(weight):
""" Since the pre-trained weights provided for bls17 by us were trained with
different layer names, we map the layer names in the state dictionaries
to the new names using the following function map_layers().
"""
return OrderedDict([(k.replace('z', 'w'), v) if 'z' in k else (k, v) for k, v in weight.items()])
|
21f7e0a9a9447dcffda0c2f60adedc41bc7a17a0
| 381,540 |
def functional_border_sizes(border_size):
"""Calculate border sizing used in process to gen user specified border size
If border_size is negative then a stand-in border size is used to allow better keypoint tracking (i think... ?);
negative border is then applied at end.
:param border_size: user supplied border size
:return: (border_size, neg_border_size) tuple of functional border sizes
>>> functional_border_sizes(100)
(100, 0)
>>> functional_border_sizes(-10)
(100, 110)
"""
# 用户提供的边框宽度是负数
if border_size < 0:
# neg_border_size等于100加上负数的绝对值
neg_border_size = 100 + abs(border_size)
# border_size为100
border_size = 100
# 是非负数
else:
neg_border_size = 0
return border_size, neg_border_size
|
3ffd428aed3680c736192ef4568eea8916995ea7
| 103,554 |
def upper_bound(arr, value, first, last):
"""Find the upper bound of the value in the array
upper bound: the first element in arr that is larger than value
Args:
arr : input array
value : target value
first : starting point of the search, inclusive
last : ending point of the search, exclusive
Return
index : integer
if index == last => upper bound does not exist
else => arr[index] > value
"""
while first < last:
mid = first + (last - first) // 2
if arr[mid] <= value:
first = mid + 1
else:
last = mid
return first
|
fb66b3d5deedc67156843f18e5b7b60ed58b617e
| 621,078 |
def wants_metadata(request):
"""
Determine if a client request wants metadata to be included in the response.
This method checks to see if an incoming request has an Accept header with
the 'metadata=true' qualified attached to the MIME-type.
:param request: HTTPServerRequest or equivalent from client
:return boolean, True if metadata is requested.
"""
wants_metadata = False
if "Accept" in request.headers:
accept_elems = request.headers["Accept"].split(';')
if len(accept_elems) > 1:
for elem in accept_elems[1:]:
if '=' in elem:
elem = elem.split('=')
if elem[0].strip() == "metadata":
wants_metadata = str(elem[1]).strip().lower() == 'true'
return wants_metadata
|
b6ee44ff4ff07ee3a5bdd881e5bb1ec62ef95481
| 579,889 |
def kml_start(params):
"""Define basic kml
header string"""
kmlstart = '''
<Document>
<name>%s</name>
<open>1</open>
<description>%s</description>
'''
return kmlstart % (params[0], params[1])
|
c2fa4c1eeff086dfc3baa41ecd067634920b25b1
| 707,975 |
def get_max(arr: list) -> int:
"""Returns the maximum value in an list
Args:
arr (list): the list to find the value in
Returns:
int: the value itself
"""
max_value = arr[0]
for value in arr:
if value > max_value:
max_value = value
return max_value
|
ddd007e509f79bcdd155906220413dec9d81dd21
| 661,971 |
def build_features_ba_less_pa_over_cl(df):
"""
This function takes the wrangled data DataFrame as its argument,
calculates the ratio of ((bill amount−pay amount)/credit limit)
for each of the six pairs of BILL_AMT and PAY_AMT features, and
returns a new DataFrame that includes the six new
((bill amount−pay amount)/credit limit) features,
in addition to the original wrangled data DataFrame.
"""
bill_amount_column_list = ['BILL_AMT1',
'BILL_AMT2',
'BILL_AMT3',
'BILL_AMT4',
'BILL_AMT5',
'BILL_AMT6']
pay_amount_column_list = ['PAY_AMT1',
'PAY_AMT2',
'PAY_AMT3',
'PAY_AMT4',
'PAY_AMT5',
'PAY_AMT6']
for i, (ba, pa) in enumerate(zip(bill_amount_column_list,
pay_amount_column_list),
1):
new_column_name = 'ba_less_pa_over_cl_' + str(i)
df[new_column_name] = \
(df[ba] -df[pa])/ df['LIMIT_BAL']
return df
|
ee00cca2c41061a0726c0f3534a5e2100e0d2e74
| 346,460 |
def to_int(s, fallback=0):
"""Try to cast an int to a string. If you can't, return the fallback value"""
try:
result = int(s)
except ValueError:
# logging.warning("Couldn't cast %s to int" % s)
result = fallback
except TypeError:
# logging.warning("Couldn't cast %s to int" % s)
result = fallback
return result
|
c1fcdf6b8a9140139e9e28336a827d736a561d88
| 626,527 |
def endpointId_to_entityId(endpointId: str) -> str:
"""Use for converting Alexa endpoint to HA entity id."""
return endpointId.replace("_", ".", 1)
|
2290f9c58488172d34a49d1b2756f4bd60c73915
| 100,853 |
def update_dict(origin, extras):
"""Update the content of ORIGIN with the content of EXTRAS
:param origin: the dictionary to update
:type origin: dict
:param extras: the dictionary to update ORIGIN with
:type extras: dict
:rtype: dict
"""
final = origin.copy()
final.update(extras)
return final
|
92905992dcac3e23e5f93863de2e78508abc3f0c
| 412,149 |
def formatCoreEvent(eventComp):
"""Formats Core event components for use as "vmkperf start [event]"."""
eventN = eventComp[1] # Place in which the event was processed
name = eventComp[3] # Name of the event
eventSel = eventComp[4] # eventSel of the event
unitMask = eventComp[5] # unitMask of the event
modifiers = eventComp[6] # modifiers of the event
cmask = eventComp[7] # cmask of the event
# Determines which event components were provided with the event, and
# constructs the event string accordingly.
event = eventN
if eventSel is None and unitMask is None:
event = name
if eventSel is not None:
event = '%s -e%s' % (event, eventSel)
if unitMask is not None:
event = '%s -u%s' % (event, unitMask)
if modifiers is not None:
event = '%s -d%s' % (event, modifiers)
if cmask is not None:
event = '%s -c%s' % (event, cmask)
return event
|
db5c7cedb561205069d9b44a7a745e15f0f470bb
| 213,285 |
def dict_contain(dict_a, dict_b):
"""Test if all the key:value pairs of dict_b are in dict_a.
Arguments:
dict_a -- The dictionary
dict_b -- The sub-dictionary
Return:
True if all the key:value pairs of dict_b are in dict_a,
False otherwise
"""
if len(dict_b) > len(dict_a): return False
for k,v in dict_b.iteritems():
if not (k in dict_a and dict_a[k] == v):
return False
return True
|
6f44f1bb80c641362bca52fed3fe343a5d9bcdfc
| 623,845 |
import torch
def decorate_batch(batch, device='cpu'):
"""Decorate the input batch with a proper device
Parameters
----------
batch : {[torch.Tensor | list | dict]}
The input batch, where the list or dict can contain non-tensor objects
device: str, optional
'cpu' or 'cuda'
Raises:
----------
Exception: Unsupported data type
Return
----------
torch.Tensor | list | dict
Maintain the same structure as the input batch, but with tensors moved to a proper device.
"""
if isinstance(batch, torch.Tensor):
batch = batch.to(device)
return batch
elif isinstance(batch, dict):
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.to(device)
elif isinstance(value, dict) or isinstance(value, list):
batch[key] = decorate_batch(value, device)
# retain other value types in the batch dict
return batch
elif isinstance(batch, list):
new_batch = []
for value in batch:
if isinstance(value, torch.Tensor):
new_batch.append(value.to(device))
elif isinstance(value, dict) or isinstance(value, list):
new_batch.append(decorate_batch(value, device))
else:
# retain other value types in the batch list
new_batch.append(value)
return new_batch
else:
raise Exception('Unsupported batch type {}'.format(type(batch)))
|
a0bd4a5dff0b5cf6e304aede678c5d56cb93d1dd
| 6,286 |
def select_3_with_duplicates(items):
""" Generate selections of 3 items allowing duplicates."""
results = []
for i in range(len(items)):
for j in range(i, len(items)):
for k in range(j, len(items)):
results.append(items[i] + items[j] + items[k])
return results
|
40535727b33cf7b4595368281603b847781366d7
| 227,259 |
def snap_key_to_snapnum(snap_key):
"""
Given the name of a snapshot key, finds the associated snapshot number.
This is necessary because the 0th snapshot key may not be snapshot 000 and
there could be missing snapshots. This function searches backwards for a
group of digits that identify the snapshot number. If there are numbers
outside of this cluster they will be disregarded and a warning raised.
For example, if the key is "Snap1_030", the function will return 30 and
issue a warning that there were digits ignored.
Parameters
----------
snap_key: String.
The name of the snapshot key.
Returns
----------
snapnum: Integer.
The snapshot number that corresponds to the snapshot key.
Examples
----------
>>> snap_key_to_snapnum('Snap_018')
18
>>> snap_key_to_snapnum('018_Snap')
18
>>> snap_key_to_snapnum('Sn3p_018')
--WARNING--
For Snapshot key 'Sn3p_018' there were numbers that were not \
clustered together at the end of the key.
We assume the snapshot number corresponding to this key is 18; \
please check that this is correct.
18
"""
snapnum = ""
reached_numbers = None
for letter in reversed(snap_key): # Go backwards through the key.
if letter.isdigit():
if reached_numbers == False and len(snapnum):
print("--WARNING--")
print("For Snapshot key '{0}' there were numbers that were not"
" clustered together at the end of the key.\nWe assume "
"the snapshot number corresponding to this key is {1}; "
"please check that this is correct."
.format(snap_key, int(snapnum[::-1])))
break
# When a number is found, we concatenate it with the others and
# flag that we have encountered a cluster of numbers.
snapnum = "{0}{1}".format(snapnum, letter)
reached_numbers = True
else:
# When we reach something that's not a number, turn flag off.
reached_numbers = False
snapnum = snapnum[::-1] # We searched backwards so flip the string around.
return int(snapnum)
|
9b30f0efc978e50beaf50427eb4aac35dcb1f964
| 632,335 |
def get_one_mask_layer(mask_layers, layer_name):
"""
Returns the layer definitions that need to be suppressed.
Args:
mask_layers (list): The layers that need to be suppressed.
layer_name (str): The name of target layer.
Returns:
Union[MaskLayerDes, None], the layer definitions that need to be suppressed.
"""
for each_mask_layer in mask_layers:
if each_mask_layer.layer_name in layer_name and not each_mask_layer.inited:
return each_mask_layer
return None
|
25621b95601a9ceee68397146fc6902a25b562c1
| 292,553 |
def create_subtoken_map(tokens_len, indices):
"""
Creates subtoken map by grouping specified indices.
"""
if len(indices) == 0:
return list(range(tokens_len)) # No entities, nothing to do
k = 0 # Tracks new tokens with named entities grouped
j = 0 # Tracks which named entity we are processing
subtoken_map = {}
sorted_indices = sorted(indices, key=lambda x: x[0])
curr_start, curr_end = sorted_indices[j]
for i in range(tokens_len):
if i > curr_end and j < len(sorted_indices) - 1: # Move up to next named entity
j += 1
curr_start, curr_end = sorted_indices[j]
if curr_start <= i < curr_end:
subtoken_map[i] = k
else:
subtoken_map[i] = k
k += 1
return list(subtoken_map.values())
|
b158cbb4ad0cdb7907693bebb4590e88b50e7fd2
| 325,916 |
import base64
def encode_message(string: str) -> str:
"""
Encode string in base64.
Args:
string (str): String to decode.
Returns:
str: Encoded string.
"""
message_bytes = string.encode('utf-8')
return base64.b64encode(message_bytes).decode("utf-8")
|
ff6869b0a6c4781a1c5e53116f771c919d4e1784
| 293,698 |
def is_aws_managed_policy(policy_arn):
"""
Look for only the AWS Managed Policies (not policies you created) by looking for "iam::aws" in the ARN
Got this trick from: https://gist.github.com/0xdabbad00/4ed4a7a56bbb93d70505a709de227414#file-grab-sh-L21
"""
if 'iam::aws' in policy_arn:
return True
else:
return False
|
825a44f879adfe50a1d509d8e0b340277216ac0b
| 557,008 |
import math
def write_troe_dt(lang, rxn, beta_0minf, E_0minf, k0kinf):
"""Writes section of line for temperature partial derivative of Troe falloff.
Parameters
----------
lang : str
Programming language, {'c', 'cuda'}
rxn : `ReacInfo`
Reaction of interest; pressure dependence expressed with Troe falloff.
beta_0minf : float
Low-pressure limit temperature exponent minus high-pressure value.
E_0minf : float
Low-pressure limit activation energy minus high-pressure value.
k0kinf : float
Low-pressure limit reaction coefficient divided by high-pressure value.
Returns
-------
jline : str
Line fragment with Troe temperature derivative
"""
jline = (' + (((1.0 / '
'(Fcent * (1.0 + A * A / (B * B)))) - '
'lnF_AB * ('
'-{:.16e}'.format(0.67 / math.log(10.0)) +
' * B + '
'{:.16e} * '.format(1.1762 / math.log(10.0)) +
'A) / Fcent)'
' * ({:.16e}'.format(-(1.0 - rxn.troe_par[0]) /
rxn.troe_par[1]) +
' * exp(T / '
'{:.16e}) - '.format(-rxn.troe_par[1]) +
'{:.16e} * '.format(rxn.troe_par[0] /
rxn.troe_par[2]) +
'exp(T / '
'{:.16e})'.format(-rxn.troe_par[2])
)
if len(rxn.troe_par) == 4 and rxn.troe_par[3] != 0.0:
jline += (' + ({:.16e} / '.format(rxn.troe_par[3]) +
'(T * T)) * exp('
'{:.16e} / T)'.format(-rxn.troe_par[3])
)
jline += '))'
jline += (' - lnF_AB * ('
'{:.16e}'.format(1.0 / math.log(10.0)) +
' * B + '
'{:.16e}'.format(0.14 / math.log(10.0)) +
' * A) * '
'({:.16e} + ('.format(beta_0minf) +
'{:.16e} / T) - 1.0) / T'.format(E_0minf)
)
return jline
|
7ddc29aaa5223a27ba9f29b591d4674d9f93b38b
| 220,382 |
def get_egress_lossless_buffer_size(host_ans):
"""
Get egress lossless buffer size of a switch
Args:
host_ans: Ansible host instance of the device
Returns:
total switch buffer size in byte (int)
"""
config_facts = host_ans.config_facts(host=host_ans.hostname,
source="running")['ansible_facts']
if "BUFFER_POOL" not in config_facts.keys():
return None
buffer_pools = config_facts['BUFFER_POOL']
profile_name = 'egress_lossless_pool'
if profile_name not in buffer_pools.keys():
return None
egress_lossless_pool = buffer_pools[profile_name]
return int(egress_lossless_pool['size'])
|
a2bd17d4d8b522f80e4f3749feb29aa63fd80184
| 674,017 |
def getGussVariables(project_vars: dict) -> tuple:
"""Collects from project_variables.csv the parameters related to the activation of GUSS tool.
Args:
project_vars (dict): project variables collected from project_variables.csv.
Raises:
Exception: GUSS should be "yes" or "no" in project_variables.csv
Exception: GUSS_parallel should be "yes" or "no" in project_variables.csv
Exception: GUSS_parallel_threads must be an integer in project_variables.csv
Returns:
tuple: 3-element tuple containing
- **guss** (*bool*): activation of GUSS tool.
- **guss_parallel** (*bool*): run GUSS tool in parallel.
- **guss_parallel_threads** (*int*): number CPUs used to run GUSS tool in parallel.
"""
if project_vars["GUSS"].lower() in ["yes", "no"]:
guss = True if project_vars["GUSS"].lower() == "yes" else False
else:
raise Exception('GUSS should be "yes" or "no"')
if project_vars["GUSS_parallel"].lower() in ["yes", "no"]:
guss_parallel = (
True if project_vars["GUSS_parallel"].lower() == "yes" else False
)
else:
raise Exception('GUSS_parallel should be "yes" or "no"')
if isinstance(project_vars["GUSS_parallel_threads"], int):
guss_parallel_threads = project_vars["GUSS_parallel_threads"]
elif project_vars["GUSS_parallel_threads"].isdigit():
guss_parallel_threads = int(project_vars["GUSS_parallel_threads"])
else:
raise Exception("GUSS_parallel_threads must be an integer")
return guss, guss_parallel, guss_parallel_threads
|
04a6f39aa0f5ce9f6325ccd37dbb5d2bf358bc8f
| 430,985 |
import math
def _rad2deg(value):
""" Convert radian to decimal degrees
"""
return math.degrees(value)
|
90a9b4339125807853b4c0ad23a45f86195ec64c
| 533,825 |
def private_byte_prefix(is_test):
"""WIF prefix. Returns b'\x80' for main network and b'\xef' for testnet"""
return b'\xef' if is_test else b'\x80'
|
7f719715e9905726cc470443e90a85a60fec7dda
| 281,558 |
import six
def to_unicode(s):
"""Return the object as unicode (only matters for Python 2.x).
If s is already Unicode, return s as is.
Otherwise, assume that s is UTF-8 encoded, and convert to Unicode.
:param (basestring) s: a str, unicode or other basestring object
:return (unicode): the object as unicode
"""
if not isinstance(s, six.string_types):
raise ValueError("{} must be str or unicode.".format(s))
if not isinstance(s, six.text_type):
s = six.text_type(s, 'utf-8')
return s
|
a3689042dbdc1f6873f11c6efce2c5620a137a29
| 563,016 |
def rel_err(v_theo:float, v_exp:float) -> float:
"""Computes the relative error between v_theo and v_exp.
Args:
v_theo (float): Theoretical value.
v_exp (float): Experimental value.
Returns:
float: Relative error between the values
"""
return abs(v_theo - v_exp) / v_theo * 100
|
0348d49115ad105853f70e3c22d2fcf300cb21e2
| 181,919 |
def bin_to_gray(bin_list):
"""
Convert from binary coding to gray coding.
We assume big endian encoding.
Examples
========
>>> bin_to_gray('111')
'100'
See Also
========
gray_to_bin
"""
b = [bin_list[0]]
for i in range(len(bin_list) - 1):
b += str(int(bin_list[i]) ^ int(b[i - 1]))
return ''.join(b)
|
7ad89f7f58db25ac44420b8d8e9539cce2752ef9
| 587,858 |
def _compressKerningPhase2(kerning):
"""
>>> kerning = {
... ("A", 100) : set(["A", "Aacute"]),
... ("Aacute", 100) : set(["A", "Aacute"]),
... ("A", 200) : set(["Agrave"]),
... ("Agrave", 200) : set(["A"]),
... ("A", 300) : set(["Adieresis"]),
... }
>>> expected = {
... (("A", "Aacute"), 100) : set(["A", "Aacute"]),
... (tuple(["Agrave"]), 200) : set(["A"]),
... (tuple(["A"]), 200) : set(["Agrave"]),
... (tuple(["Adieresis"]), 300) : set(["A"]),
... }
>>> result = _compressKerningPhase2(kerning)
>>> result == expected
True
"""
# create a dict of form {(glyph2s, value) : set(glyph1s)}
compressed = {}
for (glyph1, value), glyph2List in kerning.items():
k = (tuple(sorted(glyph2List)), value)
if k not in compressed:
compressed[k] = set()
compressed[k].add(glyph1)
return compressed
|
585a0db38023150eba78189900a237d2e86bed75
| 419,216 |
def as_bare_id(string):
"""
Return an id stripped from its leading checksum algorithm prefix if present.
"""
if not string:
return string
if string.startswith('sha256:'):
_, _, string = string.partition('sha256:')
return string
|
79680bacf5b67e4cf5883d06d599552ec264f88d
| 326,256 |
def comp_normalize(comp_dict, target=1.0):
"""Normalize gas composition saved in a dictionary.
Parameters
----------
comp_dict : dict
Gas composition in the measurement volume stored in a dictionary.
target : float, optional
Normalization factor, by default 1.0.
Returns
-------
dict
Normalized gas composition stored in a dictionary.
"""
raw = sum(comp_dict.values())
factor = target/raw
return {key: value*factor for key, value in comp_dict.items()}
|
a2954e46f880db1284a67e927782022bc292b85e
| 448,267 |
def create_bm_dictionary(name, federate_count, core_type, real_time, cpu_time, threads):
"""This function creates a dictionary for a single benchmark
run.
Args:
name (str) - The name of the benchmark, e.g. BMecho_singleCore
federate_count (int) - The number of federates.
core_type (str) - The name of the core type.
real_time (float) - The human-interpreted time it takes to
execute this script.
cpu_time (float) - The time it takes a CPU to execute this script.
threads (int) - The number of threads.
Returns:
bm_dict (dict) - A dictionary of the benchmark results.
"""
if name == "BMecho_singleCore":
bm_dict = {
"name": "{}/{}/iterations:1/real_time".format(name, federate_count),
"run_name": "{}/{}/iterations:1/real_time".format(name, federate_count),
"run_type": "iteration",
"repetitions": 1,
"repetitions_index": 1,
"threads": threads,
"iterations": 1,
"real_time": real_time,
"cpu_time": cpu_time,
"time_unit": "s",
}
else:
bm_dict = {
"name": "{}/{}Core/{}/real_time".format(name, core_type, federate_count),
"run_name": "{}/{}Core/{}/real_time".format(name, core_type, federate_count),
"run_type": "iteration",
"repetitions": 1,
"repetitions_index": 1,
"threads": threads,
"iterations": 1,
"real_time": real_time,
"cpu_time": cpu_time,
"time_unit": "s",
}
return bm_dict
|
afacd2cce6695ca56a2f6346b72bb405b5cbcb7f
| 251,387 |
from typing import List
def remove_existing_nodes_from_new_node_list(new_nodes, current_nodes) -> List[str]:
"""Return a list of nodes minus the nodes (and masters) already in the inventory (groups 'nodes' and 'masters')."""
return [node for node in new_nodes if node not in current_nodes]
|
e87e29ee0e9592922e568a1eec1f63d5065b7bc5
| 654,323 |
import re
def extract_year(string: str) -> int:
"""
Extracts a four-digit valid year (1900-2099) from a string. If there
are multiple four-digit valid years on the string, the first
occurrence is returned.
Parameters
----------
string
String to extract the year from.
Returns
-------
int
Four-digit integer representing the year.
"""
expr = r"(?:19|20)\d{2}"
matches = re.findall(expr, string)
if matches:
year = matches[0]
else:
raise Exception("The string does not have any valid year.")
return int(year)
|
beb3c03bdc1405f8bca959ebd357cadacd0548e8
| 202,202 |
def is_very_long(password):
"""Return True if password is very long."""
return len(password) >= 13
|
7be381aa079c5b70a2fce82143c70b6242a6c5ec
| 75,447 |
import codecs
def bytes_to_str(b):
""" Converts bytes into a hex-encoded string.
Args:
b (bytes): bytes to encode
Returns:
h (str): hex-encoded string corresponding to b.
"""
return codecs.encode(b, 'hex_codec').decode('ascii')
|
d58f3ab0387aa5567f3033b1de231d1376e216ce
| 213,316 |
def reversed_hit(locus_list, decoy_string):
"""Checks if any proteins are reversed (decoy) entries.
"""
rev = False
for loci in locus_list:
if decoy_string in loci.ID:
rev = True
return rev
|
dd14dc02e4dcd070a4aebfc5a2d9aa59d7785bd7
| 196,075 |
def calculate_batch(batch_size, length):
"""
Calculate the batch size for the data of given length.
Parameters
----------
batch_size : int, float, default=None
Batch size for training. Must be one of:
- int : Use `batch_size`.
- float : Use `batch_size * n_samples`.
- None : Use `n_samples`.
length : int
Length of the data to be batched.
Returns
-------
batch : int
Actual batch size.
"""
if batch_size is None : return length
elif isinstance(batch_size, int) and batch_size > 0 and \
batch_size <= length:
return batch_size
elif isinstance(batch_size, float) and 0 < batch_size <= 1:
return int(batch_size * length)
else:
raise ValueError("Batch size must be None, an int less than %d," % length,
"or a float within (0,1]")
|
5615c6973cff66b3ca35ababf3584075bef1db1a
| 167,137 |
def DropWikiSuffix(wiki_filename):
"""Removes the .wiki suffix (if any) from the given filename."""
return (wiki_filename[:-len('.wiki')] if wiki_filename.endswith('.wiki')
else wiki_filename)
|
96ec5a3c81ee31c5a6c7f049ec83b5e3c9d4f1b8
| 578,667 |
def gcd_steps(a, b):
""" Return the number of steps needed to calculate GCD(a, b)."""
# GCD(a, b) = GCD(b, a mod b).
steps = 0
while b != 0:
steps += 1
# Calculate the remainder.
remainder = a % b
# Calculate GCD(b, remainder).
a = b
b = remainder
# GCD(a, 0) is a.
#return a
return steps
|
768d52c795c8c8eb20f4adfaf26f10da12962534
| 45,827 |
import decimal
def round_half_up(money):
"""
Explicitly round a decimal to 2 places half up, as should be used for
money.
>>> exponent = decimal.Decimal('0.01')
>>> should_not_be_one = decimal.Decimal('1.005')
>>> should_not_be_one.quantize(exponent)
Decimal('1.00')
>>> round_half_up(should_not_be_one)
Decimal('1.01')
"""
return money.quantize(decimal.Decimal('0.01'), decimal.ROUND_HALF_UP)
|
e87199531ae45be4a17359751c68a5a15a8edecd
| 122,623 |
def extract_teams(summary):
"""
split the summary to get team names:
teamA - team B
return team names if found, (None, None) otherwise
"""
if summary.startswith((
"AS SAINT-ÉTIENNE",
"AS SAINT-?TIENNE",
"PARIS SAINT-GERMAIN"
)):
a1, a2, b = summary.split('-', 2)
return "%s-%s" % (a1, a2), b
return summary.split('-', 1)
|
a0dfb0612c18479570806dcd04f9d5a9f263bfb4
| 291,866 |
def get_processable_layers(layers):
"""
Returns computable layers from a list of layers, along with their types.
We check that by searching specific keywords in layer's name,
since we can't be sure about layer's type.
If you wish to extend the project and add compatibility
for more layers, you should as well update this function.
"""
processable_layers = []
for layer in layers:
layer_name = layer.name.lower()
if "conv" in layer_name:
processable_layers.append([layer_name, "CONVOLUTIONAL"])
elif "primary" in layer_name and "caps" in layer_name:
processable_layers.append([layer_name, "PRIMARY_CAPS"])
elif "caps" in layer_name:
processable_layers.append([layer_name, "DENSE_CAPS"])
elif "mask" in layer_name:
processable_layers.append([layer_name, "MASK"])
return processable_layers
|
ac77e821afc58b0d3bdbb0a23035b2ca48eb3fb0
| 91,990 |
def lremove(s, prefix):
"""Remove prefix from string s"""
return s[len(prefix):] if s.startswith(prefix) else s
|
b19235b643c3c0074e08f2b939353f05b6d0f630
| 683,303 |
def add_to_dict_of_levels(dict_levels, c, cur_level, index):
"""
Function returns the dict of positions according to the level of space or comma
Example: {'1_,': [14], '2_,': [9], '0_ ': [3], '1_ ': [12]}
comma of level 1: position 14
comma of level 2: position 9
space of level 0: position 3
space of level 1: position 12
"""
symbol = str(cur_level) + '_' + c
if symbol not in dict_levels:
dict_levels[symbol] = []
dict_levels[symbol].append(index)
return dict_levels
|
26f6b142a05ed1eedd3508413c1f48a423c5b22a
| 209,233 |
def get_sorted_exons(session, transcript, protein_coding=False):
""" Retrieve all Exons associated with input Transcript and return in sorted order. Option to
filter on protein coding Exons only
Parameters
session: A session connected to the DB where the Exons and Transcripts live
transcript (Transcript):
Transcript for which the Exons will be retrieved
protein_coding (Bool):
If True, only protein coding Exons will be returned
Returns
List of (filtered) Exons, sorted by order of appearance in the protein, so for Transcripts from the
reverse strand, order will be descending.
"""
exons = []
for exon in transcript.exons:
if protein_coding and not exon.cds:
continue
exons.append(exon)
if transcript.gene.strand == "fw":
return list(sorted(exons, key=lambda x : x.begin))
elif transcript.gene.strand == "rv":
return list(sorted(exons, key=lambda x : x.begin, reverse=True))
|
3f99f20a3bf2c1f956d4fb3ca361721b877c9b6d
| 237,604 |
def serialize_profile(user_profile):
"""
Serializes an user profile object.
:param user_profile: user profile object
:return: dictionary with the user profile info
"""
return {
'bio': user_profile.bio,
'description': user_profile.description,
'resume': user_profile.resume,
'full_name': user_profile.full_name,
'mail': user_profile.mail,
'birth_date': user_profile.birth_date.strftime("%d-%m-%Y"),
'avatar': user_profile.avatar,
}
|
4eb1f88c197117c9dd31ab3090d541c0ae7b65bb
| 20,941 |
def removeSpaces(string):
"""Returns a new string with spaces removed from the original string
>>> string = '1 173'
>>> removeSpaces(string)
'1173'
"""
return ''.join([char for char in string if char != ' '])
|
ce00687c43ce521c14b578105bd9412c31b9817a
| 28,019 |
from pathlib import Path
import json
def get_secrets_list(env: str) -> dict[str, set]:
"""Create a list of available app secrets, without their values."""
path = (Path() / "configuration").resolve()
default_file = json.loads((path / "default.json").read_text())
env_file = json.loads((path / f"{env}.json").read_text())
config_keys: set[str] = set()
config_keys.update(default_file["secrets"], env_file["secrets"])
return {"AVAILABLE_SECRETS": config_keys}
|
f31905458529d1dae8ad6da7a4a60acc8aa9f3d8
| 647,170 |
def get_edge_name(edge):
"""Separates the edge name from its abbreviation"""
# the true edge name is everything before the final '_' character
# so if we have PROCESS_OF_PpoP, we still want to keep 'PROCESS_OF' with the underscores intact.
return '_'.join(edge.split('_')[:-1])
|
2c7f569877857a81debd0d1237f1957b0f58091a
| 207,952 |
from typing import List
import math
def _percentile_index(histogram: List[int], select_percentile: float = 0.95) -> int:
"""
Given an array of elements where each ith element refer to ith frequency,
finds the index of the percentile indicated by percentile.
:param histogram: Array of frequencies of integers.
Value of ith element should refer to the frequency of i.
:param select_percentile: Percentile to use for selecting the number of seeds.
For example, 0.5 will take the median number of seeds.
:return: The median value of the values.
"""
curr_total = 0
median_pos = math.ceil(sum(histogram) * select_percentile)
for i in range(len(histogram)):
if curr_total + histogram[i] >= median_pos:
return i
curr_total += histogram[i]
return len(histogram)
|
89eabb7af8c216fe69b5c7b3f04b34cf0d749915
| 579,368 |
def tree_to_list(tree):
"""
Method joins tree leaves and label in one list.
Parameters
----------
tree : tree
nltk tree instance
Returns
-------
tree_list : list
tree represented as list with its label
"""
return [" ".join(tree.leaves()), tree.label()]
|
f22948e018ed3b5bb8a5c89f014c2becd60000e3
| 193,119 |
from typing import List
from typing import Tuple
import copy
def convert_scene_for_placing(opt, scene: List) -> Tuple:
"""Converts the scene into a modified scene for placing, with the following steps:
1. Denote the (x, y) location of object index 0 as the placing destination (x, y).
2. Remove object index 0 from the scene list.
Args:
scene: The original scene.
Returns:
new_scene: The scene modified for placing.
place_dst_xy: The (x, y) placing destination for the placing task.
"""
# Make sure that removing the destination object from the scene won't modify the
# source object index.
assert opt.scene_place_src_idx < opt.scene_place_dst_idx
# Remove the destination object from the scene.
new_scene = copy.deepcopy(
scene[: opt.scene_place_dst_idx] + scene[opt.scene_place_dst_idx + 1 :]
)
# Use the location of the destination object as the (x, y) placing destination.
place_dst_xy = scene[opt.scene_place_dst_idx]["position"][:2]
# Construct an imaginary object with the same shape attribute as the source object
# to visualize the placing destination.
place_dest_object = copy.deepcopy(scene[opt.scene_place_src_idx])
place_dest_object["position"] = place_dst_xy + [0.0]
place_dest_object["height"] = 0.005
return new_scene, place_dst_xy, place_dest_object
|
9fab3940ec215dc0b70720b3a3ccb6e588be80d5
| 467,926 |
import click
def demander_mouvement(mvmts_possibles: str):
""" Fonction qui demande au joueur le mouvement qu'il souhaite effectuer
Args:
mvmts_possibles (str): Mouvements que le joueur peut faire
Retourne:
str: Mouvement choisi par le joueur
H : Aller vers le Haut
B : Aller vers le Bas
G : Aller à Gauche
D : Aller à Droite
"""
mouvement = ""
mouvements_to_fr = {"H":'Monter', "B":"Descendre", "G":"Aller à gauche", "D":"Aller à droite"}
while mouvement == "" or mouvement not in "HBGD":
print('Tu peux :')
for mvmt in mvmts_possibles:
print(f"- {mouvements_to_fr[mvmt]}")
click.echo('Où aller ? [ZQSD / Flèches] ', nl=False)
c = click.getchar()
click.echo()
if (c == '\xe0H' or c.upper() == "Z") and "H" in mvmts_possibles:
mouvement = "H"
elif (c == '\xe0K' or c.upper() == "Q") and "G" in mvmts_possibles:
mouvement = "G"
elif (c == '\xe0P' or c.upper() == "S") and "B" in mvmts_possibles:
mouvement = "B"
elif (c == '\xe0M' or c.upper() == "D") and "D" in mvmts_possibles:
mouvement = "D"
else:
click.echo('Entrée invalide ou mouvement impossible :(')
return mouvement
|
40f06c023e6792bf1b752c2181fcd87a3a0b722f
| 659,711 |
import locale
def sort_func(row1, row2):
"""Compare two rows to determine which should be first. Sort them
alphabetically by podcast title.
Parameters
----------
row1 : Gtk.ListBoxRow
The first row
row2 : Gtk.ListBoxRow
The second row
Returns
-------
int
-1 if row1 should be before row2,
0 if they are equal,
1 otherwise
"""
if row1.podcast.title is None:
return 1
elif row2.podcast.title is None:
return -1
else:
return locale.strcoll(row1.podcast.title, row2.podcast.title)
|
450ef53d8f9e89315e23ed428e6ec03126469075
| 521,282 |
import re
from typing import List
def parse_input(s) -> List[tuple]:
"""
Parses the search input query and creates a data structure:
( column_to_search_in, string_to_search, should we filter filter for quoted string)
:param s: input string to parse
:return: the list of the search terms to perform and where
"""
# implementation for 'AND'
combined_queries = s.split(' AND ')
queries_to_perform = []
# find content operators (e.g. "title:")
regex = r"([a-z]+):([a-zA-Z0-9 _]+( |$))"
for query in combined_queries:
matches = re.finditer(regex, query, re.MULTILINE)
for match in matches:
query = list(match.groups())
# match 0 is the column
# match 1 is the string to query
queries_to_perform.append((query[0], query[1], False))
# assumption: quoted queries are not combined with search operators
if not queries_to_perform:
if s.startswith('"') and s.endswith('"'):
s.replace('"', '') # remove quotes
queries_to_perform.append(('content', s, True))
else:
queries_to_perform.append(('content', s, False))
return queries_to_perform
|
8b7b388e82d69723875a2281a21e625fce34c063
| 65,471 |
from operator import contains
def project_contains_keywords(project, keywords):
"""Returns True if project contains at least one of the keywords."""
# Iterate over all sprites and backdrops, and the project itself.
for child in project["children"] + [project]:
# Perform a DFS on each script looking for keywords.
if any(contains(script, keywords) for script in child.get("scripts", [])):
return True
return False
|
00a2749d54a189d5ff4b6bbe2833e97f3ba89aba
| 657,015 |
def merge_l_t(l, lt):
"""
Merge a list of tuples lt, each of three values into three lists l.
For example: [('a', 'b', 'c'), ('a', 'd', 'e')] ->
[['a', 'a'], ['b', 'd'], ['c', 'e']]
"""
for t in lt:
l[0].append(t[1])
l[1].append(t[2])
l[2].append(t[0])
return l
|
145c09bfbe1d351e7044a36622414fde610b8c1d
| 674,917 |
def _plot_ids(ax, x, y, size, marker='.', color=None, **kwargs):
"""Plot points, return the used color"""
# plot is faster than scatter, go figure...
return ax.plot(x, y, color=color, markersize=size, marker=marker,
linestyle='None', **kwargs)[0].get_color()
|
7e4dda2315005f576aff6d2d2746dd4dc3f8f807
| 71,983 |
def string_to_int_list(line) -> list[int]:
"""
Given a line containing integers, return a list of ints.
Return list[int]: A list of integers from the string.
>>> string_to_int_list('22 13 17 11 0')
[22, 13, 17, 11, 0]
>>> string_to_int_list('22,13,17,11,0')
[22, 13, 17, 11, 0]
"""
line = line.strip()
if ',' in line:
return [int(x) for x in line.split(',')]
else:
return [int(x) for x in line.split()]
|
0a31a7e3b320effb1851d1f37e9fb640c78d0c72
| 653,751 |
def scale_array(arr, s):
"""Scale an array by s
Parameters:
1. array: a numeric array or list
2. s: scaling factor, real number
"""
return [a*s for a in arr]
|
3b7cbec86a73c8e5f99f08ce8eb091ce6aecf4ac
| 688,072 |
import math
def mass_flow(row):
"""Calculate the mass flow."""
l = row.column_length
w = row.column_width
a = math.pi / 4 * row.column_width ** 2
p = row.porosity
p_vs = row.influent_pore_volumes
return l * w * a * p * p_vs
|
df060bd46934cde1aba7f6cf4e148eac142cabf7
| 276,869 |
from pathlib import Path
def default_conf(testdatadir):
""" Returns validated configuration suitable for most tests """
configuration = {
"max_open_trades": 1,
"stake_currency": "BTC",
"stake_amount": 0.001,
"fiat_display_currency": "USD",
"ticker_interval": '5m',
"dry_run": True,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": False,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": False,
"bids_to_ask_delta": 1
}
},
"ask_strategy": {
"use_order_book": False,
"order_book_min": 1,
"order_book_max": 1
},
"exchange": {
"name": "bittrex",
"enabled": True,
"key": "key",
"secret": "secret",
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"XRP/BTC",
"NEO/BTC"
],
"pair_blacklist": [
"DOGE/BTC",
"HOT/BTC",
]
},
"telegram": {
"enabled": True,
"token": "token",
"chat_id": "0"
},
"datadir": str(testdatadir),
"initial_state": "running",
"db_url": "sqlite://",
"user_data_dir": Path("user_data"),
"verbosity": 3,
}
return configuration
|
0ceb6b8ecc9aca14b122e5ecf8f84da2fe4d9f74
| 332,095 |
def flatten_dict_data(data, fun="{}/{}".format):
"""
Flatten nested dictionary data into one layer dictionary.
:return: Dictionary
"""
if isinstance(data, dict):
ret = {}
for i in data:
tmp = flatten_dict_data(data[i])
if isinstance(tmp, dict):
for j in tmp:
ret[fun(i, j)] = tmp[j]
else:
ret[i] = tmp
return ret
else:
return data
|
edf69fb32375dbaa635049a3f675061408427083
| 224,761 |
def app_model_or_none(raw_model):
"""
Transforms `raw_model` to its application model. Function can handle `None` value.
"""
return raw_model.get_app_model() if raw_model is not None else None
|
fdaa53876e4d0eba6260b4d8b5ecf90c5e8a33aa
| 104,390 |
import random
def text_loader(caption, tokenizer, max_length, training, drop_rate=0, transform_cnt=1):
"""
args:
caption: str
tokenizer: str, transformers.AutoTokenizer
max_length: int, max num of tokens
training: bool
drop_rate: float, default 0, rate to use empty caption
transform_cnt: int, default 1, >= 1 if self-supervised
returns:
tokens['input_ids']: tensor, [transform_cnt, max_length]
tokens['attention_mask']: tensor, [transform_cnt, max_length], 0-padding
"""
if training:
if caption == '':
text_batch = ['' for _ in range(transform_cnt)]
else:
text_batch = []
for _ in range(transform_cnt):
if random.random() < drop_rate:
text_batch.append('')
else:
text_batch.append(caption)
else:
text_batch = [caption]
tokens = tokenizer(text_batch,
return_tensors='pt',
padding='max_length',
truncation=True,
max_length=max_length)
return tokens['input_ids'], tokens['attention_mask']
|
7332d0d6c44732ef0a3be577be0b54f201e7ffff
| 254,669 |
def _CropAndResizeGradBoxesShape(op):
"""Shape function for CropAndResizeGradBoxes."""
return [op.inputs[2].get_shape()]
|
b3f9e2e5649dd819bca515b1431555686ca39f7c
| 364,737 |
def convert_weka_to_py_date_pattern(p):
"""
Converts the date format pattern used by Weka to the date format pattern used by Python's datetime.strftime().
"""
# https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
# https://www.cs.waikato.ac.nz/ml/weka/arff.html
p = p.replace('yyyy', r'%Y')
p = p.replace('MM', r'%m')
p = p.replace('dd', r'%d')
p = p.replace('HH', r'%H')
p = p.replace('mm', r'%M')
p = p.replace('ss', r'%S')
return p
|
2028f3c22ee8d34f9c78aa285bf63c4bbdfe5428
| 242,116 |
def get_attributes(obj, names):
"""Return attributes dictionary with keys from `names`.
Object is queried for each attribute name, if it doesn't have this
attribute, default value None will be returned.
>>> class Class:
... pass
>>> obj = Class()
>>> obj.attr = True
>>> obj.value = 13
>>> obj.string = "Hello"
>>> d = get_attributes(obj, ['attr', 'string', 'other'])
>>> d == {'attr': True, 'string': "Hello", 'other': None}
True
"""
attrs = {}
for name in names:
attrs[name] = getattr(obj, name, None)
return attrs
|
603a0411e6ac2d602343306234e0a71fbb3b2f9a
| 624,116 |
def in_facebook_app(request):
"""
Determine if the given request points to a page within the Facebook app.
"""
return request.path.startswith('/fb')
|
d256953f78ef8dd02f3cf3c3e1f9c006dec94cdb
| 613,465 |
def is_hex(color):
""" Method to check if a color code is hexadecimal (HEX)
This method returns the value True if the input argument corresponds to an hexadecimal color
code.
Parameters
----------
color: :obj:
Color code
Returns
-------
bool
True if the input color code takes the hexadecimal (HEX) form.
Examples
--------
>>> from uibcdf_stdlib.colors import is_hex
>>> is_hex('#008080')
True
>>> is_hex([0.0, 0.5, 0.5])
False
"""
output = False
if type(color)==str:
if (len(color)==6) or (len(color)==7 and color.startswith('#')):
output = True
return output
|
8b8dafa1d59ceba27f423a5dc592c9936b85df54
| 573,391 |
from datetime import datetime
def now(includetime=True):
"""Get current time in ISO 8601 format in string format
Args:
includetime(bool): includes current hour and minutes. Default is True.
Returns:
str: return the current date (and time) in string
"""
if includetime:
return (datetime.now().strftime("%Y-%m-%dT%H:%M"))
else:
return (datetime.now().strftime("%Y-%m-%d"))
|
9c43e06d5f20f0dfa9d6c7251dfc0297096c858e
| 346,427 |
def _colorize(t):
"""Convert (r, g, b) triple to "#RRGGBB" string
For use with ``visualize(color=...)``
Examples
--------
>>> _colorize((255, 255, 255))
'#FFFFFF'
>>> _colorize((0, 32, 128))
'#002080'
"""
t = t[:3]
i = sum(v * 256 ** (len(t) - i - 1) for i, v in enumerate(t))
h = hex(int(i))[2:].upper()
h = "0" * (6 - len(h)) + h
return "#" + h
|
d986e76722113bbd94d4de7195d6d76aecced92e
| 529,041 |
def words_before_index(text, idx):
"""Counts the number of words in the text before idx"""
while text[idx] != ' ':
idx -= 1
if idx <= 0:
return 0
n_words = len(text[:idx].split(' '))
return n_words
|
d9f36d6d70efc9c0a4699f2c5bb0e39645d1ec34
| 174,901 |
import string
import random
def GenerateRandomString(length=30):
"""Make a unique string that is difficult to guess."""
valid_chars = ''.join(set(string.ascii_lowercase) - set('aeiou'))
valid_chars += valid_chars.upper() + string.digits
return ''.join(random.choice(valid_chars)
for _ in range(length))
|
9fb74d32f9f30d198e34e662cdcab1b5003f0453
| 461,753 |
def make_type_entity_id(type_id=None, entity_id=None):
"""
Assemble a type_id and entity_id and return a composite identifier.
If the entity Id is blank, ignore the supplied type id
>>> make_type_entity_id(type_id="type_id", entity_id="entity_id") == "type_id/entity_id"
True
>>> make_type_entity_id(type_id="type_id", entity_id="") == ""
True
"""
assert type_id is not None, "make_type_entity_id: no type id (%s, %s)"%(type_id, entity_id)
assert entity_id is not None, "make_type_entity_id: no entity id (%s, %s)"%(type_id, entity_id)
if entity_id != "":
return type_id + "/" + entity_id
return ""
|
8de40843e2bc35431333a2ea21947e5cd91d2db2
| 23,732 |
def merge_mappings(target, other, function=lambda x, y: x + y):
"""
Merge two mappings into a single mapping. The set of keys in both
mappings must be equal.
"""
assert set(target) == set(other), 'keys must match'
return {k: function(v, other[k]) for k, v in target.items()}
|
b2cb4c27c83f00b6d8ce2431c00223bef825c33d
| 537,579 |
def make_text(text, i18n_texts=None):
"""
make text.
reference
- `Common Message Property <https://developers.worksmobile.com/jp/document/100500801?lang=en>`_
:return: text content.
"""
if i18n_texts is not None:
return {"type": "text", "text": text, "i18nTexts": i18n_texts}
return {"type": "text", "text": text}
|
36d53f8190ecce5147c3ae9920e8c84c3ce57b5a
| 611,028 |
import re
def get_links(html):
""" Return a list of links from an html string"""
return re.findall(r'(?:href|link|src)=["\'](.*?)["\']', html)
|
184b20816d14c7c4dec49f021514ee4cc4b57a96
| 335,634 |
def is_list_obj(obj):
"""Return True if obj is a list or tuple."""
return isinstance(obj, (list, tuple))
|
2146505e63e143086a5780ee2e15b95fbfb5d480
| 505,146 |
def parse_fos(response, paper_id):
"""Parse the fields of study of a paper from a MAG API response.
Args:
response (json): Response from MAG API in JSON format. Contains all paper information.
paper_id (int): Paper ID.
Returns:
fields_of_study (:obj:`list` of :obj:`dict`): List of dictionaries with fields of study information.
There's one dictionary per field of study.
paper_with_fos (:obj:`list` of :obj:`dict`): Matching fields of study and paper IDs.
"""
# two outputs: fos_id with fos_name, fos_id with paper_id
paper_with_fos = []
fields_of_study = []
for fos in response["F"]:
# mag_fields_of_study
fields_of_study.append(
{"id": fos["FId"], "name": fos["DFN"], "norm_name": fos["FN"]}
)
# mag_paper_fields_of_study
paper_with_fos.append({"field_of_study_id": fos["FId"], "paper_id": paper_id})
return paper_with_fos, fields_of_study
|
a31b6a32012054f123380836384bb000580da73c
| 531,537 |
def reportnulls(df):
"""
Takes a data frame and check de nulls and sum
the resutls and organizes them from highest to lowest
"""
null_counts = df.isnull().sum().sort_values(ascending=False)
# return count of null values
return null_counts
|
a3dc20feeaaf0f3467de76812531f1d0b791dc01
| 9,810 |
from datetime import datetime
def parse_doc_timestamp(timestamp: str):
""" Parse the timestamp of an elasticsearch document. """
try:
parsed = datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.%fZ')
except ValueError:
parsed = datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%SZ')
return parsed
|
0715e7a7345fceed3055594d3f8e12e6772fc6f0
| 296,987 |
def deal_with_out_boundary(img):
"""
Deal with the outlier.
:param img: input image.
:return: image without outlier.
"""
img[img > 255.] = 255.
img[img < 0.] = 0.
return img
|
9dc8549183adab719b7e9b557e9b99b8f91b18b8
| 665,638 |
def generate_arn(service, arn_suffix, region=None):
"""Returns a formatted arn for AWS.
Keyword arguments:
service -- the AWS service
arn_suffix -- the majority of the arn after the initial common data
region -- the region (can be None for region free arns)
"""
arn_value = "arn"
aws_value = "aws"
region_qualified = region if region else ""
return f"{arn_value}:{aws_value}:{service}:{region_qualified}:{arn_suffix}"
|
53dcf55c3fb15784770d1c2d62375d1e750469f8
| 706,229 |
def percent(count, total): #-------------------------------------------------<<<
"""Return a percent value, or 0 if undefined.
Arguments may float, int, or str.
"""
if not count or not total:
return 0
return 100 * float(count) / float(total)
|
06805a4622db36d019df711df250e3e14e8cebf0
| 122,391 |
def show_seconds(value, show_units):
"""Return nicely formatted seconds."""
if value is None:
return "unknown"
if show_units:
return f"{value} s"
return value
|
24aed8018571c233aaf94079aeee6cff34f63e26
| 647,436 |
def write_uint8(data, value, index):
""" Write 8bit value into data string at index and return new string """
data = data.decode('utf-8') # This line is added to make sure both Python 2 and 3 works
return '{}{:02x}{}'.format(
data[:index*2],
value,
data[index*2 + 2:])
|
2ec2fa0cae31fde71db15f00e3e5ecee4e56835f
| 473,187 |
import base64
def encode_to_b16(inp: str) -> bytes:
"""
Encodes a given utf-8 string into base-16.
>>> encode_to_b16('Hello World!')
b'48656C6C6F20576F726C6421'
>>> encode_to_b16('HELLO WORLD!')
b'48454C4C4F20574F524C4421'
>>> encode_to_b16('')
b''
"""
# encode the input into a bytes-like object and then encode b16encode that
return base64.b16encode(inp.encode("utf-8"))
|
b47a6cc599c3e201012d556f8e795a3427a25ebc
| 327,556 |
def recall_neg(y, y_pred):
"""compute recall of the negative class"""
return (y[y == 0] == y_pred[y==0]).sum()/float((y==0).sum())
|
16fd1a07031ab7094801099b078c26ce793ba31e
| 401,569 |
def find_count(substring, string):
"""finds the number of occurences of substring in string"""
counter = 0
index = string.find(substring)
while index >= 0:
counter += 1
index = string.find(substring, index + 1)
return counter
|
4cf562045c20d8acbfe372bc315c50f089925663
| 634,035 |
from typing import List
import re
import yaml
def parse_multidicts(config: str) -> List[dict]:
"""Parse multiple YAML dictionaries from string, return list of them"""
data = ""
for line in config.split("\n"):
if line.startswith("#") or re.fullmatch(r"^\s+$", line):
print("IGNORE", line)
continue
elif re.match(r"^\S", line):
data += "\n--- \n"
data += line + "\n"
res = list(yaml.safe_load_all(data))
return res
|
fbb5b8cee0346eb6257578665ebbbcb88539f645
| 574,150 |
def xy_to_im_coords(xy, im_size):
"""
Args:
xy [batch_size, 2] in [-1, 1] x [-1, 1]
im_size
Returns:
im_coords [batch_size, 2] in [0, im_size] x [0, im_size]
"""
im_coords = xy.clone()
im_coords[:, 0] = (xy[:, 0] + 1) / 2 * im_size
im_coords[:, 1] = im_size - (xy[:, 1] + 1) / 2 * im_size
return im_coords
|
270085038c18dad1306199fedaf30d5826710a5a
| 612,507 |
async def prefix_wrapper_regex(re_pattern, message):
"""
Function to execute asynchronous callable prefix.
This function is a coroutine.
Parameters
----------
re_pattern : `async-callable`
Async callable returning the prefix.
message : ``Message``
The received message to parse the prefix from.
Returns
-------
prefix : `None`, `str`
The prefix used by the user. Returned as `None` of parsing failed.
end : `int`
The start of the content after the prefix. Returned as `-1` if parsing failed.
"""
content = message.content
if content is None:
prefix = None
end = -1
else:
parsed = re_pattern.match(content)
if parsed is None:
prefix = None
end = -1
else:
prefix = parsed.group(0)
end = parsed.end()
return prefix, end
|
047d02b4544dd1edd1685e5e83944688ec5478e5
| 223,996 |
def make_testitem(nodeid, keywords, location):
"""Return JSON-serializable test item."""
item = {
'nodeid': nodeid,
'lineno': location[1],
# The outcome will be overridden in case of failure
'outcome': 'passed',
}
if keywords:
item['keywords'] = keywords
return item
|
cfcf0a4233f8ef73cce889cf4b674c47936deb09
| 111,461 |
def _final_is_inside_doc(line, index_of_final, doc_start_symbol):
"""Checks whether the `final` modifier is inside a doc defined by starting symbol.
Doc starting symbols can be, for example, `//` for the ordinary comment and `*` for the Javadoc.
Args:
line: the line to check.
index_of_final: the index where the `final` keyword is located in the line.
doc_start_symbol: the symbol defining where the code ends and the doc starts.
Returns:
bool: `True` if the `final` modifier is inside a doc and `False` otherwise.
"""
if doc_start_symbol not in line:
return False
doc_start = line.find(doc_start_symbol)
final_is_part_of_doc = index_of_final > doc_start
return final_is_part_of_doc
|
49fe526aab1e3e4655b4c2520dee22970ce078eb
| 501,804 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.