content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import six
def _prompt(message, result_type=str):
"""
Non-public function that prompts the user for input by logging 'message',
converting the input to 'result_type', and returning the value to the
caller.
"""
return result_type(six.moves.input(message))
|
333da5d331a011d0f2e5505276bc1c415360c510
| 608,149 |
import csv
def read_crubadan_language_model(pairs, config, gram_type):
"""
Read a Crubadan language model for a (language name, ISO code) pair.
Args:
pairs: a list of (name, code) pairs to construct models for
config: model parameters
gram_type: what type of gram to use - 'character' or 'word'
Returns:
list of tuples of ngrams, or None if no language model exists for
the given name-ISO pairing
"""
if gram_type != 'character' and gram_type != 'word':
raise ValueError("argument 'gram_type' not 'character' or 'word'")
base_path = config['locations']['crubadan-language-model']
table = open(config['locations']['crubadan-directory-index'], encoding='utf8')
reader = csv.reader(table)
header = next(reader) # discard header row
dir_map = {}
for row in reader:
name = row[0]
iso = row[1]
directory = row[2].strip()
dir_map[(name, iso)] = directory
table.close()
if gram_type == 'character':
file_basename = {
3: "-chartrigrams.txt"
}.get(int(config['parameters']['crubadan-char-size']))
else:
file_basename = {
1: "-words.txt",
2: "-wordbigrams.txt"
}.get(int(config['parameters']['crubadan-word-size']))
all_lms = {}
for lang_name, iso_code in pairs:
try:
this_dir = dir_map[(lang_name, iso_code)]
crubadan_code = this_dir.split("_")[1]
with open("{}/{}/{}{}".format(base_path, this_dir, crubadan_code, file_basename), encoding='utf8') as f:
lines = f.readlines()
except (FileNotFoundError, KeyError, IndexError):
continue
lm = set()
for line in lines:
if line.strip() == '':
continue
line = line.split()[:-1]
feature = tuple(line[0]) if gram_type == 'character' else tuple(line)
lm.add(feature)
all_lms[(lang_name, iso_code)] = lm
return all_lms
|
8d3ce5829830f1900b6c54b54bb0584934e43986
| 284,651 |
import random
def _order_alternatives(alts):
""" Pop don't know alts, randomize and append "don't know" alt last """
new_alts = []
no_answer = []
for alt in alts:
if alt['no_answer']:
no_answer.append(alt)
else:
new_alts.append(alt)
random.shuffle(new_alts)
return new_alts + no_answer
|
757f37194567f6c7432660137e7b9efbd97efe70
| 518,062 |
def _which_asm_has_finer_mesh(asm, neighbor=None):
"""Determine which assembly has finer meshing
Parameters
----------
asm1 : DASSH Assembly object
Active assembly around which we are creating mesh
asm2 (optional) : DASSH Assembly object
Neighboring assembly across active hex side
Returns
-------
tuple
DASSH Assembly object
One of the two input DASSH Assembly objects with the
finer meshing in its pin bundle region
int
Number of gap edge subchannels per side
"""
if neighbor is None: # Use active asm parameters on this hex side
sc_per_side = 0
if asm.has_rodded:
sc_per_side = asm.rodded.n_ring - 1
return asm, sc_per_side
else: # Need to compare them
# If one asm is rodded and the other isn't, use the rodded asm
if asm.has_rodded and not neighbor.has_rodded:
return asm, asm.rodded.n_ring - 1
elif not asm.has_rodded and neighbor.has_rodded:
return neighbor, neighbor.rodded.n_ring - 1
# If both unrodded, trivial
elif not asm.has_rodded and not neighbor.has_rodded:
return asm, 0
# If both rodded, need to compare
else:
sc_per_side = asm.rodded.n_ring - 1
sc_per_side_adj = neighbor.rodded.n_ring - 1
# If both assemblies have same number of sc_per_side:
# Choose the spacing with the smaller pin pitch
if sc_per_side == sc_per_side_adj:
if asm.rodded.pin_pitch < neighbor.rodded.pin_pitch:
return asm, sc_per_side
else:
return neighbor, sc_per_side_adj
# Otherwise, choose the meshing with more edge subchannels
elif sc_per_side < sc_per_side_adj:
return neighbor, sc_per_side_adj
else:
return asm, sc_per_side
|
10465f9272abe37cb3a1d448a4ffacd08eed0dc5
| 614,819 |
import re
def normalize_name(name, dns_1035=False):
"""
Normalize name
:param name: name to normalize
:type name: str
:param dns_1035: (Optional) use DNS-1035 format, by default False
:type dns_1035: bool
:return: str -- normalized name
"""
invalid_delimiters = ' ', '_', '+'
invalid_chars = r'[^a-zA-Z0-9\-\.]'
if dns_1035:
invalid_chars = r'[^a-zA-Z0-9\-]'
invalid_delimiters = ' ', '_', '+', '.'
for char in invalid_delimiters:
name = name.replace(char, '-')
return re.sub(invalid_chars, '', name)
|
d9f8219d3bb9f73e6e294eab0e1d86f0206a9934
| 492,644 |
def get_folders(values_dict):
"""Returns a dict of all the folders in the given value_dict."""
return dict(
(item, configs) for (item, configs) in values_dict.iteritems()
if item.endswith('/')
)
|
f383e21fedb4ee3510d1360a442fb0bfd32a9fd7
| 619,965 |
def str2bool(value):
"""Parse a string into a boolean value"""
return value.lower() in ("yes", "y", "true", "t", "1")
|
76b078822bac4f706cc6e6b1e730128e0f656185
| 578,335 |
def convert_to_bytes(mem_str):
"""Convert a memory specification, potentially with M or G, into bytes.
"""
if str(mem_str)[-1].upper().endswith("G"):
return int(round(float(mem_str[:-1]) * 1024 * 1024))
elif str(mem_str)[-1].upper().endswith("M"):
return int(round(float(mem_str[:-1]) * 1024))
else:
return int(round(float(mem_str)))
|
ae0e80565778d7c6308cb07be30cf3a293fd9733
| 194,273 |
def moreThan3Chars(value):
"""String must contain at least 3 characters."""
if len(value) >= 3:
return True
return False
|
a50a923e70a6ed89a094ac2040ac27f0f0273aa5
| 591,593 |
def get_thresholds(points=100, power=3) -> list:
"""Run a function with a series of thresholds between 0 and 1"""
return [(i / (points + 1)) ** power for i in range(1, points + 1)]
|
5238a5d6ecf3f5ef05b4128a047f63e93b20cbfd
| 232,048 |
def margin_fee(self, **kwargs):
"""Query Cross Margin Fee Data (USER_DATA)
Get cross margin fee data collection with any vip level or user's current specific data as https://www.binance.com/en/margin-fee
GET /sapi/v1/margin/crossMarginData
https://binance-docs.github.io/apidocs/spot/en/#query-cross-margin-fee-data-user_data
Keyword Args:
vipLevel (int, optional): User's current specific margin data will be returned if vipLevel is omitted
coin (str, optional)
recvWindow (int, optional): The value cannot be greater than 60000
"""
return self.sign_request("GET", "/sapi/v1/margin/crossMarginData", kwargs)
|
f2ca69c13b77fffadf6aa319f1847004ed5615da
| 23,958 |
def learn_routem_configs(device, output_config=False):
""" Gets the current running config on device
Args:
output_config ('bool'): Specifies whether the config
or path of the config is outputted
Raise:
None
Returns:
Config ('dict'): {pid: config}
ex.) Config = {'123': 'config'}
"""
output = device.parse("ps -ef | grep routem")['pid']
configs = {}
for pid, info in output.items():
config_data = info['cmd'].split()
if len(config_data) == 4:
config_data = config_data[2]
else:
continue
if output_config:
try:
config_data = device.execute("cat {}".format(config_data))
except:
raise ValueError("The config file at {} does not exist.".format(config_data))
configs.setdefault(pid, config_data)
return configs
|
7cbc98a273025c8b71a85046abd37b1612f7da76
| 156,380 |
def make_param_dict(param_val_dict):
"""Makes dictionary for VI RandomVariable and parameters.
:param param_val_dict: (dict of list) A dictionary with key being
parameter names, and values being a list of
[RandomVariable, mean_vi_param, scale_vi_param]
:return:
model_param: (dict of RandomVariable)
Keys are variable names, Values are RandomVariable output
from VI families.
vi_param: (dict) Keys are variable names, Values are
dict of loc and scale VI parameters.
"""
model_param = dict()
vi_param = dict()
for key, value in param_val_dict.items():
model_param[key] = value[0]
vi_param[key] = {"loc": value[1], "scale": value[2]}
return model_param, vi_param
|
887d211c47440094450b3fc1b20451281fb7a2b2
| 361,539 |
def _ct_specification_type_to_python_type(specification_type: str) -> str:
"""
Convert a custom specification type into its python equivalent.
:param specification_type: a protocol specification data type
:return: The equivalent data type in Python
"""
python_type = specification_type[3:]
return python_type
|
4a63283b0c888fe31e0d87b18b42d1948633b962
| 596,987 |
def qn(namespace, tag_name):
"""Return the qualified name for a given namespace and tag name
This is the ElementTree representation of a qualified name
"""
return "{%s}%s" % (namespace, tag_name)
|
1d2d6a5455980f65e615e4dd3f3a2e8323623ea2
| 375,401 |
import uuid
def CreateShoppingCampaign(client, budget_id, merchant_id):
"""Creates a shopping campaign with the given budget and merchant IDs.
Args:
client: an AdWordsClient instance.
budget_id: the str ID of the budget to be associated with the shopping
campaign.
merchant_id: the str ID of the merchant account to be associated with the
shopping campaign.
Returns:
The created Shopping Campaign as a sudsobject.
"""
campaign_service = client.GetService('CampaignService', 'v201809')
campaign = {
'name': 'Shopping campaign #%s' % uuid.uuid4(),
# The advertisingChannelType is what makes this a shopping campaign
'advertisingChannelType': 'SHOPPING',
# Recommendation: Set the campaign to PAUSED when creating it to stop the
# ads from immediately serving. Set to ENABLED once you've added targeting
# and the ads are ready to serve.
'status': 'PAUSED',
# Set portfolio budget (required)
'budget': {
'budgetId': budget_id
},
'biddingStrategyConfiguration': {
'biddingStrategyType': 'MANUAL_CPC'
},
'settings': [
# All shopping campaigns need a ShoppingSetting
{
'xsi_type': 'ShoppingSetting',
'salesCountry': 'US',
'campaignPriority': '0',
'merchantId': merchant_id,
# Set to "True" to enable Local Inventory Ads in your campaign.
'enableLocal': True
}
]
}
campaign_operations = [{
'operator': 'ADD',
'operand': campaign
}]
campaign = campaign_service.mutate(campaign_operations)['value'][0]
print ('Campaign with name "%s" and ID "%s" was added.'
% (campaign['name'], campaign['id']))
return campaign
|
208b2ad37d2fda5ee5b85827029597ed8bc6801b
| 36,057 |
def skip_label(what):
"""Generate a "skip" label name."""
return f"skip {what}"
|
60c32ec2636cb3c14216b604dfa1987381f52dd5
| 107,035 |
def vector_orientation (x, y):
"""Assigns an orientation to a 2D vector according to the Spanish CTE compass rose."""
if x <= 0.3826 and x >= -0.3826 and y <= 1 and y >= 0.9238:
return "North"
elif x < 0.8660 and x > 0.3826 and y < 0.9238 and y > 0.5000:
return "Northeast"
elif x <= 1 and x >= 0.8660 and y <= 0.5000 and y >= -0.3583:
return "East"
elif x < 0.9335 and x > 0.3090 and y < -0.3583 and y > -0.9510:
return "Southeast"
elif x <= 0.3090 and x >= -0.3090 and y <= -0.9510 and y >= -1:
return "South"
elif x < -0.3090 and x > -0.9335 and y < -0.3583 and y > -0.9510:
return "Southwest"
elif x <= -0.8660 and x >= -1 and y <= 0.5000 and y >= -0.3583:
return "West"
elif x < -0.3826 and x > -0.8660 and y < 0.9238 and y > 0.5000:
return "Northwest"
else:
return "No orientation"
|
d23030e759dcb697cd4ed9d1ad8a50ac51204ac7
| 98,907 |
def not_implemented(*args, **kwargs) -> dict:
"""
Default response if pair is good, but no action is taken
:return: OpenC2 response message - dict
"""
return dict(
status=501,
status_text="command good, no action taken"
)
|
02d0f6e6e4915dd14bbb65b1a29c3ae61798d64d
| 327,140 |
def _calculate_precision(value: str) -> int:
"""Calculate the precision of given value as a string."""
no_decimal_point = value.replace(".", "")
no_leading_or_trailing_zeros = no_decimal_point.strip("0")
return len(no_leading_or_trailing_zeros)
|
be97a9ab0484e052d80033d0d26cd1259a9f6237
| 86,051 |
def get_cache_key_counter(bound_method, *args, **kwargs):
""" Return the cache, key and stat counter for the given call. """
model = bound_method.__self__
ormcache = bound_method.clear_cache.__self__
cache, key0, counter = ormcache.lru(model)
key = key0 + ormcache.key(model, *args, **kwargs)
return cache, key, counter
|
241b13b29b3dce0888f2eeb40361dfa03d5f8389
| 12,964 |
def _parse_ipv4_number(input_):
"""Parses a single IPv4 number"""
r = 10
try:
if len(input_) >= 2:
if input_[:2].lower() == "0x":
r = 16
input_ = input_[2:]
elif input_.startswith("0"):
r = 8
input_ = input_[1:]
if input_ == "":
return 0, False
return int(input_, r), r != 10
except ValueError:
return None, False
|
bb2ddbe23a17dfb9ff39c5c4a2a2a60092b1f51a
| 250,352 |
def degree_of_item(train):
"""Calculates degree of items from user-item pairs."""
item_to_deg = {}
for pair in train:
_, item = pair
if item in item_to_deg:
item_to_deg[item] += 1
else:
item_to_deg[item] = 1
return item_to_deg
|
9f44848b446ffded46c0ceb2aff7e2540cf9f346
| 318,592 |
def hashdigit(cpf, position): # type: (str, int) -> int
"""
Will compute the given `position` checksum digit for the `cpf`
input. The input needs to contain all elements previous to
`position` else computation will yield the wrong result.
"""
val = sum(int(digit) * weight for digit, weight in zip(cpf, range(position, 1, -1))) % 11
return 0 if val < 2 else 11 - val
|
f6984e209b2061c1c7af41da3704ddee77e04d45
| 186,198 |
def get_ip_label(ip):
"""
Format ip address of the node and convert into label
The label will consist of hexadecimal values of the ip. Each octet will be
converted into it's corresponding hex value and the whole label will be
saved as an 8 character string. For example, 10.255.0.192 would have a
label of 0AFF00C0
"""
ip_label = ""
for octet in ip.split("."):
hex_val = hex(int(octet))[2:]
if len(hex_val) == 1:
hex_val = "0" + hex_val
ip_label += hex_val
return ip_label
|
ee39aa2d5ba20011efe971e2da31a9dd57560e52
| 219,090 |
import itertools
def group_on_delimiter(iterable, delimiter):
"""Group elements separated by delimiter into chunks.
group(['a', 'b', '', 'c', 'd', '', 'e'], '') => [['a', 'b'], ['c', 'd'], ['e']]
"""
return [list(g) for is_delimiter, g in itertools.groupby(iterable, lambda el: el == delimiter) if not is_delimiter]
|
1d4c89b33c8e6ff7b682acddbd05218a44323de1
| 605,099 |
import string
def subfig(fig,xloc=0,yloc=1,fontsize=16,**plt_kwargs):
"""
Add subfigure labels to axes in figure using axes coordinates
Parameters:
fig: Figure on which to apply labels
xloc: X location for label, in axes coordinates (0-1)
yloc: Y location for label, in axes coordinates (0-1)
fontsize: Font size for axes labels
Returns:
fig: Figure with labels applied
"""
axes = fig.get_axes() # Get all axes in figure
letters = list(string.ascii_lowercase)
for x in range(len(axes)):
axes[x].text(xloc, yloc,'('+letters[x]+')',transform=axes[x].transAxes,
fontsize=fontsize,va='top',**plt_kwargs)
return(fig)
|
fc0d45fab52ebd250bf1590333655c8543ffbb77
| 362,458 |
def point_str(point) -> str:
"""
Convert a point to a string
"""
# some string conversion functions (since looking up strings in a dict is pretty fast performance-wise)
return str(point[0]) + ";" + str(point[1])
|
39ea3fbd51fa179941fd36598b508feae4e5a57a
| 234,914 |
import torch
def log1p_safe(x):
"""The same as torch.log1p(x), but clamps the input to prevent NaNs."""
x = torch.as_tensor(x)
return torch.log1p(torch.min(x, torch.tensor(33e37).to(x)))
|
5f1f4ce93dd2192bc6722b183ddec276788c8070
| 129,615 |
from typing import Counter
def count_pileups(bam, contig, start, end):
"""Returns the number of piled-up bases between the given
start and end positions in the given contig."""
raw_counts = Counter({x.pos: x.n
for x in bam.pileup(contig, start, end)
if start <= x.pos <= end})
return [{"pos": pos, "count": raw_counts[pos]}
for pos in range(start, end)]
|
7fe2335f6fbd37d0eb31ddff0ef1f6a0dc17b622
| 458,177 |
def actions(self):
"""
Returns all the action objects whether enabled or disabled.
"""
return self.__actions
|
9eec5e6df3788259230cceb63f9baa0faa868cc8
| 108,208 |
def list_output_tensors(node):
"""
Since Tensorflow 1.14, sometimes the node.output_tensors may not be a list, though the output_tensors is plural.
"""
return [node.output_tensors] if hasattr(node.output_tensors, 'dtype') else node.output_tensors
|
f1e0a5fe304c25eec25936b9a200c8797ace389f
| 183,467 |
def get_gradient_values(gradient_img, multiplier=1):
""" Given the image gradient returns gradient_alpha_rgb_mul and one_minus_gradient_alpha.
These pre-calculated numbers are used to apply the gradient on the camera image
Arguments:
gradient_img (Image): Gradient image that has to applied on the camera image
multiplier (float): This decides what percentage of gradient images alpha has to be applied.
This is useful in fading feature.
Returns:
(tuple): gradient_alpha_rgb_mul (Numpy.Array) gradient_img * gradient_alpha value
one_minus_gradient_alpha (Numpy.Array) (1 - gradient_alpha)
"""
(height, width, _) = gradient_img.shape
gradient_alpha = (gradient_img[:, :, 3] / 255.0 * multiplier).reshape(height, width, 1)
gradient_alpha_rgb_mul = gradient_img * gradient_alpha
one_minus_gradient_alpha = (1 - gradient_alpha).reshape(height, width)
return gradient_alpha_rgb_mul, one_minus_gradient_alpha
|
507ea8e1f6b03bc42f77453835ea55ee9a525bca
| 273,672 |
def get_search_url(search, page):
"""
Create the search URL according to search params and page number.
"""
url = (f"https://hub.docker.com/api/content/v1/products/" +
f"search?architecture=arm,arm64,386,amd64&operating_system=linux" +
f"&page={page}&page_size=100&q={search}&type=image")
return url
|
f482170f3cbfaa9d9738411394702c45ed587350
| 154,436 |
def json_encode_datetime(d):
"""Encoder for datetimes (from module datetime)."""
return {"datetime" : d.strftime("%Y-%m-%d %H:%M:%S.%f"),
"tzinfo" : d.tzinfo}
|
c800ab344601a26f69bcebc7a7bd8ca40acadaa8
| 561,750 |
def get_page_image_url(page_ann, vol_meta):
"""Return image url of the page
Args:
page_ann (dict): page annotation
vol_meta (dict): volume meta data
Returns:
str: image url of page
"""
cur_image_grp_id = ""
cur_image_grp_id = vol_meta["image_group_id"]
image_ref = page_ann["reference"]
image_url = f"https://iiif.bdrc.io/bdr:{cur_image_grp_id}::{image_ref}/full/max/0/default.jpg"
return image_url
|
becabcbdf613e0cc0bffe6c340e6dfa71d204927
| 189,806 |
def _common_length_of(l1, l2=None, l3=None):
"""
The arguments are containers or ``None``. The function applies
``len()`` to each element, and returns the common length. If the
length differs, ``ValueError`` is raised. Used to check arguments.
OUTPUT:
A tuple (number of entries, common length of the entries)
EXAMPLES::
sage: import sage.geometry.polyhedron.misc as P
sage: P._common_length_of([[1,2,3],[1,3,34]])
(2, 3)
"""
args = [];
if l1 is not None: args.append(l1)
if l2 is not None: args.append(l2)
if l3 is not None: args.append(l3)
length = None
num = 0
for l in args:
for i in l:
num += 1
length_i = len(i)
if length is not None and length_i != length:
raise ValueError("Argument lengths differ!")
length = length_i
return num, length
|
3a3f2ecfb541691d2ca833b14f9c8761f92584af
| 640,761 |
import json
def jsonDecode(jsonString):
"""Takes a json String and converts it into a Python object such as
a list or a dict.
If the input is not valid json, a string is returned.
Args:
jsonString (str): The JSON string to decode into a Python
object.
Returns:
dict: The decoded Python object.
"""
return json.loads(jsonString)
|
ab5fbd22089a80dc13e413986df0ec6de4c85b82
| 478,818 |
def getBlockNumbersForRegionFromBinPosition(regionIndices, blockBinCount, blockColumnCount, intra):
""" Gets the block numbers we will need for a specific region; used when
the range to extract is sent in as a parameter
Args:
regionIndices (array): Array of ints giving range
blockBinCount (int): The block bin count of the matrix
blockColumnCount (int): The block column count of the matrix
intra: Flag indicating if this is an intrachromosomal matrix
Returns:
blockSet (set): A set of blocks to print
"""
col1 = int(regionIndices[0] / blockBinCount)
col2 = int((regionIndices[1] + 1) / blockBinCount)
row1 = int(regionIndices[2] / blockBinCount)
row2 = int((regionIndices[3] + 1) / blockBinCount)
blocksSet = set()
# print(str(col1)+"\t"+str(col2)+"\t"+str(row1)+"\t"+str(row2))
for r in range(row1, row2+1):
for c in range(col1, col2+1):
blockNumber = r * blockColumnCount + c
blocksSet.add(blockNumber)
if intra:
for r in range(col1, col2+1):
for c in range(row1, row2+1):
blockNumber = r * blockColumnCount + c
blocksSet.add(blockNumber)
# print(str(blocksSet))
return blocksSet
|
065630ade7cf5b5ffc86b05fd80bcd890a0eed76
| 621,802 |
import json
def output_fn(predictions, content_type):
"""Post-process and serialize model output to API response"""
print('result:', predictions)
res = predictions.cpu().numpy().tolist()
return json.dumps(res)
|
f0c22dcd7e5a447b38afd141d6de7d16028fc670
| 623,646 |
from typing import List
from typing import Optional
def determine_root_gpu_device(gpus: List[int]) -> Optional[int]:
"""
Args:
gpus: non-empty list of ints representing which gpus to use
Returns:
designated root GPU device id
"""
if gpus is None:
return None
assert isinstance(gpus, list), "gpus should be a list"
assert len(gpus) > 0, "gpus should be a non empty list"
# set root gpu
root_gpu = gpus[0]
return root_gpu
|
c988e01573b242ab106ef4ef406f0ba88f7533c1
| 601,277 |
def posteriors(likelihoods, priors):
"""Calculate posterior probabilities given priors and likelihoods.
Usage: probabilities = posteriors(likelihoods, priors)
likelihoods is a list of numbers. priors is a list of probabilities.
Returns a list of probabilities (0-1).
"""
# Check that there is a prior for each likelihood
if len(likelihoods) != len(priors):
raise ValueError("Lists not equal lengths.")
# Posterior probability is defined as prior * likelihood
return [l * p for l, p in zip(likelihoods, priors)]
|
fc47c102d27f9d45dc1b38d58704255251961b6d
| 214,622 |
def filter_unmodified_overrides(pkg_info, overrides):
"""
Given a list of overrides from a particular package, return a copy of the
list that's filtered so that any overrides that have not been changed from
the underlying file are removed.
"""
for override in overrides:
result = pkg_info.override_diff(override, 1)
if result.is_empty:
overrides.remove(override)
return overrides
|
bbb4076af863ed2594696714c4ad5ad9a5c1233b
| 508,071 |
def toContigScafMap(scaffToContigListDict):
"""
Transforms the input dictionary (key -> list of items) into the inverse dictionary (item -> key).
To each item (contig) only one key (scaffold) exists.
@param scaffToContigListDict: map: scaffold -> list of contigs
@return: map: contig name -> scaffold name
"""
contigToScaffDict = dict()
for scaff in scaffToContigListDict:
for contig in scaffToContigListDict[scaff]:
assert contig not in contigToScaffDict, str('Contig: ' + contig + ' is not allowed to be twice in the directory!')
contigToScaffDict[contig] = scaff
return contigToScaffDict
|
257baef5bd783cd693465c6a9ee11161667ac0ee
| 280,423 |
def get_mask(source, source_lengths):
"""
Args:
source: [B, C, T]
source_lengths: [B]
Returns:
mask: [B, 1, T]
"""
B, _, T = source.size()
mask = source.new_ones((B, 1, T))
for i in range(B):
mask[i, :, source_lengths[i]:] = 0
return mask
|
8466ff5113ca22488b4218f86c43bfea248197d1
| 24,855 |
def datt3(b3, b5, b8a):
"""
Vegetation Index proposed by Datt 3 (Datt, 1998).
.. math:: DATT3 = b8a / (b3 * b5)
:param b3: Green.
:type b3: numpy.ndarray or float
:param b5: Red-edge 1.
:type b5: numpy.ndarray or float
:param b8a: NIR narrow.
:type b8a: numpy.ndarray or float
:returns DATT3: Index value
.. Tip::
Datt, B. 1998. Remote sensing of chlorophyll a, chlorophyll b, \
chlorophyll a + b, and total carotenoid content in eucalyptus leaves. \
Remote Sensing of Environment, 66, 111-121. \
doi:10.1016/S0034-4257(98)00046-7.
"""
DATT3 = b8a / (b3 * b5)
return DATT3
|
41bdcf06b049a36e5673f884762b488f42213f5b
| 462,215 |
def isInside(point, leftTop, rightBottom):
"""
return True if point is in the rectangle define by leftTop and rightBottom
"""
if not (leftTop[0] < point[0] < rightBottom[0]):
return False
if not (leftTop[1] < point[1] < rightBottom[1]):
return False
return True
|
f9727e5ac11011ea45d05d5db1a439848c882481
| 650,229 |
def dicts_equal(dictionary_one, dictionary_two):
"""
Return True if all keys and values are the same between two dictionaries.
"""
return all(
k in dictionary_two and dictionary_one[k] == dictionary_two[k]
for k in dictionary_one
) and all(
k in dictionary_one and dictionary_one[k] == dictionary_two[k]
for k in dictionary_two
)
|
abd7d1d89c034c8f57b34b3994f2f8a32b63987e
| 123,080 |
def defaultargs(options):
"""Produce a dictionary of default arguments from a list of options
tuples
Parameter
tuple[] - (flag, default, docstring) tuples describing each flag
Return
dict - {flag: default} for each option in input
"""
config = {}
for longname, default, doc in options:
config[longname] = default
return config
|
fe6a6c11aad99a95491507910a8dccb63139a785
| 283,666 |
import collections
def picard_idxstats(picard, align_bam):
"""Retrieve alignment stats from picard using BamIndexStats.
"""
opts = [("INPUT", align_bam)]
stdout = picard.run("BamIndexStats", opts, get_stdout=True)
out = []
AlignInfo = collections.namedtuple("AlignInfo", ["contig", "length", "aligned", "unaligned"])
for line in stdout.split("\n"):
if line:
parts = line.split()
if len(parts) == 2:
_, unaligned = parts
out.append(AlignInfo("nocontig", 0, 0, int(unaligned)))
elif len(parts) == 7:
contig, _, length, _, aligned, _, unaligned = parts
out.append(AlignInfo(contig, int(length), int(aligned), int(unaligned)))
else:
raise ValueError("Unexpected output from BamIndexStats: %s" % line)
return out
|
6ee5d38b272e4ae05a3df5d02230509bb427133b
| 64,923 |
import json
def lerArquivoJSON(caminho_arquivo):
"""
Retorna conteúdo de um arquivo JSON de comandos SQL, delegando tratamento para bloco de função reservado
:param caminho_arquivo:
:return: data (JSON)
"""
with open(caminho_arquivo, "r") as read_file:
data = json.load(read_file)
if caminho_arquivo is not None:
return data
else:
return None
|
2cfdd872295a244fb2a83f6b287a954e806da829
| 651,251 |
def _slugify(doi):
"""Generate a name from DOI using the same approach as SciHub."""
return doi.replace('/', '@')
|
f41552f5810ef13995db4edff90120400c7ed052
| 473,169 |
def _ceildiv(x, y):
"""Rounds `x/y` to next largest integer."""
return -int(-x // y)
|
7430a8148424c170cee225571eeb3574c9a9c237
| 293,409 |
from pathlib import Path
import json
def template_json(keyboard):
"""Returns a `keymap.json` template for a keyboard.
If a template exists in `keyboards/<keyboard>/templates/keymap.json` that text will be used instead of an empty dictionary.
Args:
keyboard
The keyboard to return a template for.
"""
template_file = Path('keyboards/%s/templates/keymap.json' % keyboard)
template = {'keyboard': keyboard}
if template_file.exists():
template.update(json.load(template_file.open(encoding='utf-8')))
return template
|
7949c78a164abfb04ef1b46caaf0897acac88bfc
| 61,846 |
def b_to_s(b: bytes) -> str:
"""convert bytes to string
:param b: input bytes
:type b: bytes
:return: output string
:rtype: str
"""
s = b.decode('utf8')
return s
|
98c4abf3d78e86f5e1b00459135e65d4ec94e030
| 336,825 |
def filter_data(data: dict, keys: list) -> dict:
"""Returns a dictionary with only key/value pairs where the key is in the keys list"""
return {k: data[k] for k in keys if k in data}
|
78dc222b3f6af7d252a01f6d9b5457f14656a477
| 428,932 |
def my_kinetic_energy(vel, mass):
""" Calculate total kinetic energy.
Args:
vel (np.array): particle velocities, shape (natom, ndim)
mass (float): particle mass
Return:
float: total kinetic energy
"""
k = 0.0
for i in vel:
k += sum(0.5 * mass * i ** 2)
return k
|
75917ef0fa698539db6207c2b297ad02acea1026
| 222,565 |
def get_metric_scores(ground_truth, simulation, measurement, metric, measurement_kwargs={}, metric_kwargs={}):
"""
Function to combine measurement and metric computations
:param ground_truth: pandas dataframe of ground truth
:param simulation: pandas dataframe of simulation
:param measurement: measurement function
:param metric: metric function
:return: metric computation for measurements calculated from gold and simulation
"""
print("Calculating {} for {}".format(metric.__name__, measurement.__name__))
measurement_on_gt = measurement(ground_truth, **measurement_kwargs)
measurement_on_sim = measurement(simulation, **measurement_kwargs)
return measurement_on_gt, measurement_on_sim, metric(measurement_on_gt, measurement_on_sim, **metric_kwargs)
|
4087e60ce0578d11756f449e776e01ee81b6e4ac
| 696,025 |
def duration(first, last):
"""Evaluate duration
Parameters
----------
first : int
First timestamp
last : int
Last timestamp
Returns
-------
str
Formatted string
"""
ret = ''
diff = last - first
if diff <= 0:
return ''
mm = divmod(diff, 60)[0]
if mm == 0:
# don't bother unless we have some minutes
return ''
hh, mm = divmod(mm, 60)
if hh > 24:
dd, hh = divmod(hh, 24)
ret = "%2dd %02dh" % (dd, hh)
elif hh > 0:
ret = "%2dh %02dm" % (hh, mm)
else:
ret = "%02dm" % (mm)
return ret
|
d368f18cb574dadab3794e3816410c9d8dcb07ee
| 636,643 |
def _legendre(a, p):
"""
Returns the legendre symbol of a and p
assuming that p is a prime
i.e. 1 if a is a quadratic residue mod p
-1 if a is not a quadratic residue mod p
0 if a is divisible by p
Parameters
==========
a : int
The number to test.
p : prime
The prime to test ``a`` against.
Returns
=======
int
Legendre symbol (a / p).
"""
sig = pow(a, (p - 1)//2, p)
if sig == 1:
return 1
elif sig == 0:
return 0
else:
return -1
|
3349f3154fdb6618a4366acf1fffd4179bced25a
| 136,488 |
def parse_dir(save_dir):
"""Parses the save directory to get only the directory (without the file name) to save the pictures to
:param save_dir: save directory string
:return: save directory string without the file name
"""
dir_list = save_dir.split('/')
dir = ''
if len(dir_list) == 1:
dir_list = dir_list[0].split('\\')
if not(len(dir_list) == 1):
for elem in dir_list[:-1]:
dir += elem + '/'
return dir
|
d40ff6ff03859654210bce5ed67d33f25e07a467
| 660,502 |
def difference(actual, expected):
"""
Returns strings describing the differences between actual and expected sets.
Example::
>>> difference({1, 2, 3}, {3, 4, 5})
('; added {1, 2}', '; removed {4, 5}')
>>> difference({1}, {1})
('', '')
:param set actual: the actual set
:param set expected: the expected set
"""
added = actual - expected
if added:
added = f'; added {added}'
else:
added = ''
removed = expected - actual
if removed:
removed = f'; removed {removed}'
else:
removed = ''
return added, removed
|
cd0d20645effe52df995c6bb6d04eecd6be06e12
| 404,202 |
def lambda_handler(event, context):
"""Sample pure Lambda function
Parameters
----------
event: dict, required
Choice output
{
"JobName": "your_job_name",
"JobRunId": "jr_uuid",
"JobRunState": "SUCCEEDED",
"StartedOn": "2021-09-20T20:30:55.389000+00:00",
"CompletedOn": "2021-09-20T20:32:51.443000+00:00",
"ExecutionTime": 106
}
context: object, required
Lambda Context runtime methods and attributes
Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
Returns
------
Final status of the execution
"""
output = {
"message": "successful glue job execution"
}
return output
|
50b61531dc1d28965148429128d4f1b840d2cc00
| 379,632 |
def _times_to_steps(ts, num_trotter_slices):
"""
Based on the requested times `ts`, calculate Trotter step numbers at which
(subsystems of) evolved states need to be saved.
.. doctest::
>>> _times_to_steps([10, 25, 30], 100)
([33, 83, 100], 0.3)
>>> _times_to_steps([8, 26, 19], 80)
([25, 80, 58], 0.325)
Args:
ts (list[float]):
The times for which the evolution should be computed and the
state of the full system or a subsystem returned (i.e. it's reduced
density matrix (for now only works with method='mpo'. If the
method is not mpo, omit subsystems)). The algorithm will
calculate the evolution using the given number of Trotter steps
for the largest number in ts. On the way there it will store the
evolved states for smaller times.
NB: Beware of memory overload since len(t)
mpnum.MPArrays will be stored
num_trotter_slices (int): Number of Trotter slices to be used for the
largest t in ts.
Returns:
tuple[list[int], float]: step numbers, tau = maximal t /
num_trotter_slices
"""
tau = max(ts) / num_trotter_slices
step_numbers = [int(round(t / tau)) for t in ts]
return step_numbers, tau
|
f18e0ef0ecbcbbfa28a1f8ea663f8161c05a0f6c
| 233,328 |
import codecs
def _int_to_bytes(i):
"""
Converts the given int to the big-endian bytes
"""
h = hex(i)
if len(h) > 1 and h[0:2] == "0x":
h = h[2:]
# need to strip L in python 2.x
h = h.strip("L")
if len(h) % 2:
h = "0" + h
return codecs.decode(h, "hex")
|
5fdfdeac50d13e26385277c9cef12b4ed393a08b
| 56,506 |
def bonus_letter(puzzle: str, view: str, letter: str) -> bool:
"""Return True iff the letter is a consonant that appears in the puzzle but not view.
>>> bonus_letter('apple', 'a^^le', 'p')
True
>>> bonus_letter('banana', 'ba^a^a', 'b')
False
>>> bonus_letter('apple', '^pp^e', 'a')
False
"""
if letter in puzzle and letter not in view:
if letter not in ('a', 'e', 'i', 'o', 'u'):
return True
return False
|
6255fc1d39055f7d28b4027ca697bb0ca6a4e174
| 458,203 |
def arithmetic_mean(samples):
"""Computes the arithmetic mean of a set of samples.
"""
return float(sum(samples)) / float(len(samples))
|
d71cd1782a1c30e0bd6579079a3a56e5c47da764
| 345,100 |
def level_list(root):
"""Get full level order traversal of binary tree nodes.
Example:
>>> from leetcode_trees import binarytree
>>> tree = binarytree.tree_from_list([5,1,4,None,None,3,6])
>>> binarytree.print_tree(tree)
___5___
1 _4_
3 6
>>> print(binarytree.level_representation(tree))
[[5], [1, 4], [None, None, 3, 6]]
The list of lists contain TreeNode objects.
"""
curr_level = [root]
levels = [curr_level]
next_level = []
while True:
for node in curr_level:
if node is not None:
next_level.append(node.left)
next_level.append(node.right)
else:
next_level.append(None)
next_level.append(None)
if not all(n is None for n in next_level):
levels.append(next_level)
curr_level = next_level
next_level = []
else:
break
return levels
|
f53c14c5b195a6d0b5364c5258bd2576f1fabe66
| 640,564 |
def fibonacci(n):
"""Fibonacci series
0, 1, 1, 2, 3, 5, 8, 13, ...
"""
if n <= 1:
return n
a = 0
b = 1
c = 1
for i in range(2, n):
a = b
b = c
c = a + b
return c
|
275e6594e8662df9d1a5661344ffa3c1e28a7889
| 261,778 |
def load_model(plugin, model, weights, device):
"""
Load OpenVino IR Models
Input:
Plugin = Hardware Accelerator IE Core
Model = model_xml file
Weights = model_bin file
Output:
execution network (exec_net)
"""
# Read in Graph file (IR) to create network
net = plugin.read_network(model, weights)
# Load the Network using Plugin Device
exec_net = plugin.load_network(network=net, device_name=device)
return net, exec_net
|
f9fa99f2e111d5aa4a1b9f24774f049e55138d73
| 209,081 |
def energy_overlap(sp1, sp2):
"""
Calculate the overlap energy range of two spectra, i.e. lower bound is the
maximum of two spectra's minimum energy.
Upper bound is the minimum of two spectra's maximum energy
Args:
sp1: Spectrum object 1
sp2: Spectrum object 2
Returns:
Overlap energy range
"""
overlap_range = [max(sp1.x.min(), sp2.x.min()), min(sp1.x.max(),
sp2.x.max())]
return overlap_range
|
4e0f08f3be1e7c8fc39805bc9d16319c1f61f3a4
| 113,435 |
def GetFC(FCFCS):
""" Return the FC of the FCFCS """
return FCFCS[0]
|
8329ada301193b9acc69d52acfcd7801df439b5b
| 433,899 |
def strip_suffix(s: str, suffix: str) -> str:
"""Strip the given suffix, if present, and return the resulting string."""
return s[: -len(suffix)] if s.endswith(suffix) else s
|
ea9f31e5fd15b222f01be767db8a64d008d00812
| 327,535 |
def make_list_template_element(title, subtitle=None, image=None,
resource_id=None, action=None, i18n_titles=None,
i18n_subtitles=None, i18n_images=None,
i18n_resource_ids=None):
"""
create carousel list template a Row.
reference
- `Common Message Property <https://developers.worksmobile.com/jp/document/100500805?lang=en>`_
"""
content = {
"title": title
}
if subtitle is not None:
content["subtitle"] = subtitle
if image is not None:
content["image"] = image
if resource_id is not None:
content["resourceId"] = resource_id
if action is not None:
content["action"] = action
if i18n_titles is not None:
content["i18nTitles"] = i18n_titles
if i18n_subtitles is not None:
content["i18nSubtitles"] = i18n_subtitles
if i18n_images is not None:
content["i18nImages"] = i18n_images
if i18n_resource_ids is not None:
content["resourceIds"] = i18n_resource_ids
return content
|
46665f7c91a9fc4525899279da3318494e0991a9
| 459,253 |
def get_brand_tweets(dataframe, brand):
"""
Filters out all tweets that dont belong to a specific brand
:param dataframe: dataframe from kaggle with all the tweets.
:param brand: brand that we want to keep.
"""
return dataframe[dataframe["author_id"] == brand]
|
2d28351ce61b574582c812f8dbad29511ba34897
| 537,787 |
def z_function(text):
"""
Z Algorithm in O(n)
:param text: text string to process
:return: the z_array, where z_array[i] = length of the longest common prefix of text[i:] and text
"""
n = len(text)
z_array = [0] * n
l = r = 0
for i in range(1, n):
z = z_array[i - l]
if i + z >= r:
z = max(r - i, 0)
while i + z < n and text[z] == text[i + z]:
z += 1
l, r = i, i + z
z_array[i] = z
z_array[0] = n
return z_array
|
ed0552ca771865644b2df59c80bc3b785578fab5
| 604,940 |
async def pause_(self, ctx):
"""Pause the currently playing song."""
vc = ctx.voice_client
if not vc or not vc.is_playing():
return await ctx.send('I am not currently playing anything!', delete_after=20)
elif vc.is_paused():
return
vc.pause()
await ctx.send(f'**`{ctx.author}`**: Paused the song!')
|
47271577c1aec1176f33ec56b8285787e1609b0b
| 602,849 |
def element_name(element_path):
"""
Gives the last element in an xpath
:param element_path: An xpath with at least one '/'
"""
return element_path[element_path.rfind('/') + 1:]
|
975b99d9fc30141e630c31a2ec310f827685b383
| 286,726 |
def cli_method(func):
"""Decorator to register method as available to the CLI."""
func.is_cli_method = True
#setattr(func, 'is_cli_method', True)
return func
|
0eb80215e37b7b9290732dc1a8a2a33bbfb647ed
| 59,565 |
def findAllInfectedRelationships(tx):
"""
Method that finds all INFECTED relationships in the data base
:param tx: is the transaction
:return: a list of relationships
"""
query = (
"MATCH (n1:Person)-[r:COVID_EXPOSURE]->(n2:Person) "
"RETURN ID(n1) , r , r.date , r.name , ID(n2);"
)
results = tx.run(query).data()
return results
|
0b5e35d98ae8a91973e60c68b772e159294db751
| 690,897 |
def combine_two_lists_no_duplicate(list_1, list_2):
"""
Method to combine two lists, drop one copy of the elements present in both and return a list comprised of the
elements present in either list - but with only one copy of each.
Args:
list_1: First list
list_2: Second list
Returns:
The combined list, as described above
"""
additional_unique_elements_list_2 = [i for i in list_2 if i not in list_1]
return list_1 + additional_unique_elements_list_2
|
4caa2d3494eeef61d502bc898433d04362e81f39
| 690,327 |
def _make_credentials_property(name):
"""Helper method which generates properties.
Used to access and set values on credentials property as if they were native
attributes on the current object.
Args:
name: A string corresponding to the attribute being accessed on the
credentials attribute of the object which will own the property.
Returns:
An instance of `property` which is a proxy for the `name` attribute on the
credentials attribute of the object.
"""
def get_credentials_value(self):
return getattr(self.credentials, name)
def set_credentials_value(self, value):
setattr(self.credentials, name, value)
return property(get_credentials_value, set_credentials_value)
|
17692cb4cf0ea072d4345d60106bb04c0ad030bd
| 651,517 |
def extract_text(element):
"""
Return *text* attribute of an implied element if available.
"""
if element is not None:
return element.text
else:
return None
|
b17c43e1d816a56f43ba27af5bc4a626f8b66181
| 557,293 |
import re
def valid_url(url):
"""Return `True` if URL is valid."""
return re.match(r'https?://\S+', url) is not None
|
05afb03fc96679dd361e799f86d85d8a343cdf18
| 196,251 |
def _gcd(a, b):
"""Computes the greatest common divisor of two numbers using Euclid's Algorithm.
Example:
>>> _gcd(30, 18)
6
Args:
a (int): The first parameter.
b (int): The second parameter.
Returns:
int: The greatest common divisor of a and b.
"""
while b:
a, b = b, a % b
return a
|
0e3ea9b27e22651875c48ae3660ab681117d9dc5
| 477,896 |
def _getControllerWalkNodes(tag):
"""Get the node conneted to a controllers tag as a controller object
Arguments:
tag (controller list): Maya's controller tag
Returns:
dagNode: The list of controller objects
"""
nodes = []
if not isinstance(tag, list):
tag = [tag]
for t in tag:
cnx = t.controllerObject.connections()
if cnx:
nodes.append(cnx[0])
return nodes
|
c1e79c8d323931959de3ea7f1882d856ed41eb81
| 314,267 |
def group_by_key(param_list, key):
"""
Return a dictionary of the form {key_value: [param_list]}
where the list of param sets is broken up according to common key values
>>> param_list = [{'a':0, 'b':1, 'c':2, 'd':3, 'name':'counter'}, {'a':0, 'b':1, 'c':3, 'name':'jumper'}, {'a':0, 'b':'beta', 'name':'greek'}]
>>> g = group_by_key(param_list, 'a')
>>> for k in get_sorted_keys(g): print(k, len(g[k]))
0 3
None 0
>>> g = group_by_key(param_list, 'b')
>>> for k in get_sorted_keys(g): print(k, len(g[k]))
1 2
None 0
beta 1
>>> g = group_by_key(param_list, 'd')
>>> for k in get_sorted_keys(g): print(k, len(g[k]))
3 1
None 2
>>> g = group_by_key(param_list, 'name')
>>> for k in get_sorted_keys(g): print(k, len(g[k]))
None 0
counter 1
greek 1
jumper 1
"""
group = {'None':[]}
for p in param_list:
if key in p:
val = str(p[key])
if val in group:
group[val].append(p)
else:
group[val]=[p]
else:
group['None'].append(p)
return group
|
90fb9857385b19d72bd723eb5207f0a577b99434
| 397,274 |
import math
def trunc_gaussmf(x, parameters):
"""
Gaussian Truncated fuzzy membership function
:param x: data point
:param parameters: a list with 2 real values (mean and variance) and 2 limits
:return: the membership value of x given the parameters
"""
mean = parameters[0]
var = parameters[1]
lower_bound = parameters[2]
upper_bound = parameters[3]
coordinate_index = parameters[4]
value = x[coordinate_index]
if (value >= lower_bound) & (value <= upper_bound) :
return math.exp((-(value - mean)**2)/(2 * var**2))
else:
return 0
|
a8160968379f626378774137d59662af5527110c
| 344,199 |
import json
def LoadJSON(json_string):
"""Loads json object from string, or None.
Args:
json_string: A string to get object from.
Returns:
JSON object if the string represents a JSON object, None otherwise.
"""
try:
data = json.loads(json_string)
except ValueError:
data = None
return data
|
598c9b4d5e358a7a4672b25541c9db7743fcd587
| 709,634 |
def get_domain_id_field(domain_table):
"""
A helper function to create the id field
:param domain_table: the cdm domain table
:return: the id field
"""
return domain_table + '_id'
|
5805da82b4e57d14d4105d92a62cf4b5cc4bc3f2
| 5,711 |
def get_form_field_chart_url(url, field):
"""Append 'field_name' to a given url"""
return u'%s?field_name=%s' % (url, field)
|
239147fdac8d2f953aba3152b1e709b0057207d5
| 216,978 |
import time
def timef(fun):
"""
decorator to record execution time of a function
"""
def wrapper(*args,**kwargs):
start = time.time()
res = fun(*args,**kwargs)
end = time.time()
print(f'Function {fun.__name__} took {end-start}s\n')
return res
return wrapper
|
17e2ce5caf7e32b74306c57a8f8d03afb4a92272
| 281,106 |
import string
def hex_escape(bin_str):
"""
Hex encode a binary string
"""
printable = string.ascii_letters + string.digits + string.punctuation + ' '
return ''.join(ch if ch in printable else r'0x{0:02x}'.format(ord(ch)) for ch in bin_str)
|
f934aa66f3821272f89aafdf12e1343b297b3370
| 191,584 |
from typing import List
def attributes_to_list(attributes: str) -> List[str]:
"""Transform a string with potentially multiple attributes to a list of the attributes.
Args:
attributes: Attributes as a single string.
Returns:
List of attributes.
"""
attributes_list = attributes.split(",")
attributes_list = [venue.strip(" ") for venue in attributes_list]
return attributes_list
|
011a9cdeaba4830ea931e5cc67040111d4abb557
| 196,032 |
def filter_images_by_tags(annotations_df, include=None, exclude=None):
"""Filter images on tags
:param annotations_df: pandas DataFrame of project annotations
:type annotations_df: pandas.DataFrame
:param include: include images with given tags
:type include: list of strs
:param exclude: exclude images with given tags
:type exclude: list of strs
:return: filtered image names
:rtype: list of strs
"""
df = annotations_df[annotations_df["type"] == "tag"]
images = set(df["imageName"].dropna().unique())
if include:
include_images = set(
df[df["tag"].isin(include)]["imageName"].dropna().unique()
)
images = images.intersection(include_images)
if exclude:
exclude_images = set(
df[df["tag"].isin(exclude)]["imageName"].dropna().unique()
)
images = images.difference(exclude_images)
return list(images)
|
9164b1452dd66145ecd3b1ef4089123330ef04d5
| 590,218 |
def truncate(text, max_len, fill="..."):
"""
Truncate given text to a given maximum length.
Parameters
----------
text : str
The text to truncate.
max_len : int
The maximum allowed length for `text`. If `text` is longer than
`max_len` it will be shortened, otherwise it will remain unchanged.
fill : str, optional
The string that should be displayed at the end of the truncated text to
indicate truncation. If `max_len` is too short, the fill may be omitted
or changed. Defaults to `...`.
Returns
-------
str
The truncated (or unchanged) text, of length no greater than `max_len`
(including any filling added at the end).
"""
if max_len <= 0:
return ""
if max_len < len(fill):
fill = "~"
if len(text) > max_len:
end_len = max(0, max_len - len(fill))
text = text[:end_len] + fill
try:
assert len(text) <= max_len
except AssertionError:
raise AssertionError("{text} {max_len}".format(**locals()))
return text
|
8bc0a033b720bba3391fd14eb043c67efc4d7afa
| 432,641 |
def is_subsequence(short_seq, long_seq):
"""Is short_seq a subsequence of long_seq."""
if not short_seq:
return True
pos = 0
for x in long_seq:
if pos == len(short_seq):
return True
if short_seq[pos] == x:
pos += 1
if pos == len(short_seq):
return True
return False
|
cd72675cd423b5ae60f6286575ee3e319bf9c72e
| 170,023 |
def add_vec(pos, vec, dt):
"""add a vector to a position"""
px, py, pz = pos
dx, dy, dz = vec
px += dx * dt
py += dy * dt
pz += dz * dt
p = (px, py, pz)
return p
|
891bd5a1535fdad58957083369661eff68ab6c25
| 378,729 |
import requests
import json
def get_stock(symbol):
"""
Fetches stock information from the IEX API.
:param symbol: The trading symbol or ticker, e.g. "AAPL" for Apple Inc.
"""
url = 'https://api.iextrading.com/1.0/stock/' + symbol + '/batch'
print(url)
params = { 'types': 'quote' }
try:
req = requests.get(url, params=params)
print(req.text)
stock = req.json()
stock_quote = {'quote': stock['quote']}
return stock_quote
except requests.exceptions.RequestException as re:
print('%s (%s)' % (re.strerror, type(re)))
except json.decoder.JSONDecodeError as jde:
print('%s (%s)' % (jde.msg, type(jde)))
|
2c7a8a858851dab42c2dac318777a4125aa0be4d
| 194,108 |
def format_seconds(total_seconds: int) -> str:
"""Format a count of seconds to get a [H:]M:SS string."""
prefix = '-' if total_seconds < 0 else ''
hours, rem = divmod(abs(round(total_seconds)), 3600)
minutes, seconds = divmod(rem, 60)
chunks = []
if hours:
chunks.append(str(hours))
min_format = '{:02}'
else:
min_format = '{}'
chunks.append(min_format.format(minutes))
chunks.append('{:02}'.format(seconds))
return prefix + ':'.join(chunks)
|
c0f79b7f45c32589537b5dbf51a95b4811c50417
| 12,570 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.