content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import re
def extract_character_name(actor_str):
"""Returns the character name extracted from the input string."""
if not actor_str:
return 'UNKNOWN'
actor_str = actor_str.replace('(', '').replace(')', '')
actor_str = actor_str.replace('[', '').replace(']', '')
actor_str = actor_str.replace('van binnen', '')
parts = re.split('[.,]', actor_str)
return parts[0].strip()
|
8797a8fa4df2e83e46557b76317087a1aa2a72a8
| 162,909 |
from typing import List
def list_params(pop: list, gen: int, lamarck: bool, multicore: bool,
**extra_params: dict) -> List:
"""
Internal function to list execution parameters.
For advanced users only.
Parameters
----------
pop : list
List of individuals.
gen : int
Number of generations.
lamarck : bool
If Lamarckian Evolution is used.
multicore : bool
If parallelism is used.
**extra_params : dict
Extra parameters. For details, please check: https://github.com/PonyGE/PonyGE2/wiki/Evolutionary-Parameters.
Returns
-------
param_list : List
List of parameters.
"""
param_list = []
if 'population_size' not in extra_params.keys():
param_list.append('--population_size={0}'.format(str(pop)))
if 'generations' not in extra_params.keys():
param_list.append('--generations={0}'.format(str(gen)))
if multicore and 'multicore' not in extra_params.keys():
param_list.append("--multicore")
if lamarck and 'lamarck' not in extra_params.keys():
param_list.append("--lamarck")
for (key, val) in extra_params.items():
if val == "True":
param_list.append("--"+key)
elif val=="False" or val=="":
continue
else:
param_list.append("--{0}={1}".format(key, val))
return param_list
|
d08629029f24a85df1adaeeb3db865c2b4a9507f
| 17,430 |
def delete_profile(db, user_id, profile_id):
"""Deletes a profile for the given user.
Args:
db (object): The db object
user_id (int): The id of the user.
profile_id (int): The id of the profile to delete.
Returns:
True if the record was deleted, False otherwise
"""
db.execute('''DELETE FROM profile
WHERE user_id=? and id=?''',
(user_id, profile_id))
return not db.rows_affected == 0
|
728247bd982a7b4f3916b8c358e95ff18c837625
| 40,760 |
def calc_nlanes(reg_dict):
"""
Return the number of MIPI Lanes used during readout
Parameters
----------
reg_dict : dict
The dictionary that contains all the register information
Returns
----------
nlanes : int
The number of lanes, 2 or 4
"""
if reg_dict["DATA_LANE_CONFIG"][2] == 0:
return 2
elif reg_dict["DATA_LANE_CONFIG"][2] == 1:
return 4
else:
raise RuntimeError("Invalid lane configuration!")
return
|
8cfd2b6c21db5651f5d4e67f90365c63df8ce835
| 387,812 |
def _formatter_self(name, value):
"""Format the "self" variable and value on instance methods.
"""
__mname = value.__module__
if __mname != '__main__':
return '%s = <%s.%s object at 0x%x>' % (name, __mname, value.__class__.__name__, id(value))
else:
return '%s = <%s object at 0x%x>' % (name, value.__class__.__name__, id(value))
|
5ab8794f01ddcfccb38b704150ff6a430618bbaa
| 578,910 |
import re
def get_words(text):
"""
Parameters:
text: a string of text which needs to be processed
Returns:
string of all words extracted from the input string
"""
text = text.lower()
wordlist = text.split()
clean_list = []
for word in wordlist:
# only get words (no digits)
if re.match(r"^[a-z]+$", word):
clean_list.append(word)
return " ".join(clean_list)
|
bf2aa60d2f670371dff751eb37a434553a281a64
| 413,601 |
def parse_coverage_list(coverage_list):
"""
Given a coverage_list (structured as a list of coverage statements (which
are strings) that define the poset, parses them into a dictionary.
Parameters
----------
coverage_list : `list`
list of coverage statements defining a poset, e.g.:
["_<1",
"_<2",
"_<3",
"1<12",
"1<13",
"2<12",
"2<23",
"3<13",
"3<23",
"13<123",
"12<123",
"23<123"]
Returns
-------
coverage_dict : `dict`
keys are items in the poset, other than the maximal element
values are items in the poset that cover their respective key
Example Usage
-------------
>>> coverage_list = [
... "_<1",
... "_<2",
... "_<3",
... "1<12",
... "1<13",
... "2<12",
... "2<23",
... "3<13",
... "3<23",
... "13<123",
... "12<123",
... "23<123"]
>>> parse_coverage_list(coverage_list)
{'_': ['1', '2', '3'],
'1': ['12', '13'],
'2': ['12', '23'],
'3': ['13', '23'],
'13': ['123'],
'12': ['123'],
'23': ['123']}
"""
coverage_dict = {}
if "<" not in coverage_list[0]:
coverage_dict[coverage_list[0]] = []
for i in [j.split("<") for j in coverage_list]:
for j in range(len(i)-1):
if i[j] not in coverage_dict.keys():
coverage_dict[i[j]] = []
coverage_dict[i[j]].append(i[j+1])
return coverage_dict
|
9715bd6fed1c3d032ef5ef5524429c35a7370307
| 633,882 |
import ctypes
import codecs
import functools
def add_string_properties_from_utf_16_le(c):
"""
c_ubyte arrays that start with '_' are automatically converted to a string attribute
with the name of the field without the leading '_'. The content of the original
Bytarray is decoded using UTF-16-LE.
:param c: Class to add the properties to
:return: Nothing
"""
for field_name, field_type in c._fields_:
if field_type._type_ == ctypes.c_ubyte and field_type._length_ > 1 and field_name.startswith('_'):
field = field_name[1:]
def getter(self, name=None):
value = getattr(self, "_%s" % name)
return codecs.decode(value, 'UTF-16-LE', 'replace').split('%')[0]
setattr(c, field, property(functools.partial(getter, name=field)))
|
77618545d8e4c2c6241e493027db9cd896430492
| 234,465 |
def neighbour(x,y,image):
"""Return 8-neighbours of image point P1(x,y), in a clockwise order"""
img = image.copy()
x_1, y_1, x1, y1 = x-1, y-1, x+1, y+1;
return [img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1]]
|
8e645f7634d089a0e65335f6ea3363d4ed66235b
| 5,348 |
def _to_original(sequence, result):
""" Cast result into the same type
>>> _to_original([], ())
[]
>>> _to_original((), [])
()
"""
if isinstance(sequence, tuple):
return tuple(result)
if isinstance(sequence, list):
return list(result)
return result
|
7b9d8d1d2b119d61b43dde253d8d3c48bd0e45b8
| 709,274 |
def correct_time_dilation(df):
"""Short summary.
Parameters
----------
df : Pandas DataFrame
The dataframe containing the photometry of all events.
Returns
-------
Pandas DataFrame
The same dataframe with undilated times.
"""
for idx, row in df.iterrows():
row['T'] = row['T'] / (1.+row.ZCMB)
return df
|
b7aae7a26279d5629a367cf49e898a5543981dd9
| 627,016 |
import math
def rotatePoint(x, y, z, ax, ay, az):
"""Returns an (x, y, z) point of the x, y, z point arguments rotated
around the 0, 0, 0 origin by angles ax, ay, az (in radians).
Directions of each axis:
-y
|
+-- +x
/
+z
"""
# Rotate around x axis:
rotatedX = x
rotatedY = (y * math.cos(ax)) - (z * math.sin(ax))
rotatedZ = (y * math.sin(ax)) + (z * math.cos(ax))
x, y, z = rotatedX, rotatedY, rotatedZ
# Rotate around y axis:
rotatedX = (z * math.sin(ay)) + (x * math.cos(ay))
rotatedY = y
rotatedZ = (z * math.cos(ay)) - (x * math.sin(ay))
x, y, z = rotatedX, rotatedY, rotatedZ
# Rotate around z axis:
rotatedX = (x * math.cos(az)) - (y * math.sin(az))
rotatedY = (x * math.sin(az)) + (y * math.cos(az))
rotatedZ = z
return (rotatedX, rotatedY, rotatedZ)
|
39a2f6491ac8df4780f9f39be863d1b46433825c
| 67,099 |
from typing import List
import math
def calc_new_ahc_rating(past_perfs: List[float], perf: float) -> float:
"""
AHCに沿ってレーティングを求める (https://www.dropbox.com/s/ne358pdixfafppm/AHC_rating.pdf?dl=0)
past_perfs: 過去のパフォーマンス
perf: 今回のパフォーマンス
returns: new rating
"""
R = 0.8271973364
S = 724.4744301
Q = sorted([p - S*math.log(j) for p in past_perfs + [perf] for j in range(1, 101)], reverse=True)
numerator = sum([Q[i-1]*R**i for i in range(1, 101)])
denominator = sum([R**i for i in range(1, 101)])
r = numerator / denominator
if r >= 400:
return r
else:
return 400 / math.exp((400 - r) / 400.0)
|
df8c09596bb61b95c5ea6b3a87023f0b3fbb36b8
| 370,686 |
def SegmentContains(main_l, main_r, l, r):
"""Returns true if [l, r) is contained inside [main_l, main_r).
Args:
main_l: int. Left border of the first segment.
main_r: int. Right border (exclusive) of the second segment.
l: int. Left border of the second segment.
r: int. Right border (exclusive) of the second segment.
"""
return main_l <= l and main_r >= r
|
761b064131b7885327e59818f7838573ee292264
| 75,037 |
def _is_bst(root, min_value=float('-inf'), max_value=float('inf')):
"""Check if the binary tree is a BST (binary search tree).
:param root: Root node of the binary tree.
:type root: binarytree.Node | None
:param min_value: Minimum node value seen.
:type min_value: int | float
:param max_value: Maximum node value seen.
:type max_value: int | float
:return: True if the binary tree is a BST, False otherwise.
:rtype: bool
"""
if root is None:
return True
return (
min_value < root.value < max_value and
_is_bst(root.left, min_value, root.value) and
_is_bst(root.right, root.value, max_value)
)
|
24dbb77c0d7d7e4a0f4fc3fca60a2cbc70441044
| 312,734 |
from typing import Iterable
from typing import Optional
def sentence_join(items: Iterable[str], *, joiner: Optional[str] = None, oxford: bool = False) -> str:
"""Join a list of strings like a sentence.
>>> sentence_join(['red', 'green', 'blue'])
'red, green and blue'
Optionally, a different joiner can be provided.
"""
if not items:
return ""
if joiner is None:
joiner = "and"
ox = ""
if oxford:
ox = ","
# Do this in case we received something like a generator, that needs to be wrapped in a list
items = list(items)
if len(items) == 1:
return items[0]
return f"{', '.join(items[:-1])}{ox} {joiner} {items[-1]}"
|
a7c5b3c24a5e9b3823162be6fe32c1765c31d52c
| 497,502 |
def find_attr(name, attrs):
"""Find an attribute in an HTML tag by name.
name - The attribute name to search for.
attrs - The list of attributes to search.
Returns the matching attribute or None.
"""
for attr, values in attrs:
if attr == name:
return values
return None
|
8633083870a38d14731eca729ada3a5ef6658408
| 442,397 |
def multi_replace_final(inputlist, replacements):
"""Apply the replace method multiple times and join lines.
"inputlist" is a list of strings, each to have replace method applied
multiple times. "replacements" is a list of tuples, the fist item of each
tuple the substring to be replaced and the second the replacement text.
After all replacements are applied, the string will be joined with a new
line character between each line and the resulting string will be returned.
"""
inputlist = inputlist.split("\n")
for line in inputlist:
for replacement in replacements:
if replacement[0] in line:
line = line.replace(replacement[0], replacement[1])
outputstring = "\n".join(inputlist)
return outputstring
|
bce7c3424771e0546e5a6e927e1fa985add7d065
| 141,590 |
import fnmatch
def GetTestsFromDevice(runner):
"""Get a list of tests from a device, excluding disabled tests.
Args:
runner: a TestRunner.
"""
# The executable/apk needs to be copied before we can call GetAllTests.
runner.test_package.StripAndCopyExecutable()
all_tests = runner.test_package.GetAllTests()
# Only includes tests that do not have any match in the disabled list.
disabled_list = runner.GetDisabledTests()
return filter(lambda t: not any([fnmatch.fnmatch(t, disabled_pattern)
for disabled_pattern in disabled_list]),
all_tests)
|
89c575bfca9b03983354be84df00100da49ab41e
| 104,356 |
def merge(list_a, length_a, list_b, length_b):
"""
Merges two lists together by always choosing the smaller of the two values
from the front of the lists. When one list is exhausted, the other list has
simply all its elements added to the end of the merged list.
"""
index_a, index_b = 0, 0
merged_list = []
while index_a < length_a and index_b < length_b:
if list_a[index_a] < list_b[index_b]: # Add the smallest of the two
merged_list.append(list_a[index_a])
index_a += 1
else:
merged_list.append(list_b[index_b])
index_b += 1
if index_a < length_a: # The list who hasn't reached its end is not exhausted
merged_list.extend(list_a[index_a:])
else:
merged_list.extend(list_b[index_b:])
return merged_list
|
4dbc322bcfa1e5a0c2aa1249c36476c7e773f863
| 223,738 |
def _preprocess(sentences, preprocess_pipeline, word_tokenize=None):
"""
Helper function to preprocess a list of paragraphs.
Args:
param (Tuple): params are tuple of (a list of strings,
a list of preprocessing functions, and function to tokenize
setences into words). A paragraph is represented with a
single string with multiple setnences.
Returns:
list of list of strings, where each string is a token or word.
"""
if preprocess_pipeline is not None:
for function in preprocess_pipeline:
sentences = function(sentences)
if word_tokenize is None:
return sentences
else:
return sentences, [word_tokenize(sentence) for sentence in sentences]
|
9f44962a5ba4a66523beb40feb0a25b63d1dc528
| 638,770 |
import turtle
def initialize(turtle_shape, bg_color, turtle_color, turtle_speed):
"""
Initializes turtle instance for turtle game.
"""
turtle_instance = turtle.Turtle()
turtle_instance.shape(turtle_shape)
turtle.bgcolor(bg_color)
turtle_instance.color(turtle_color)
turtle_instance.speed(turtle_speed)
return turtle_instance
|
8657270f06961445030aee7e41c2aa61dd1c6cd3
| 217,143 |
def nest(coefficients, x, base_points):
"""Evaluates polynomial from nested form using Horner's Method
Parameters
----------
coefficients, list
This is the coefficients of the polynomial, with coefficients[0]
indicating the constant term and coefficients[-1] indicating the degree
of the polynomial term.
x, float
The value to evaluate the polynomial on
base_points, list
An array of base points, if needed.
len(base_points) + 1 == len(coefficients)
Default: base_points == [0] * (len(coefficients) - 1)
Returns
-------
value, float
`value` is the function value using the coefficients and x
"""
value = float(coefficients[-1])
for i, coef in enumerate(coefficients[-2::-1]):
value = coef + value * (x - base_points[i])
return value
|
90a17386832a34184a142a638150705bcd5b97bb
| 470,850 |
import math
def cal_SEM(input_std: float, sample_number) -> float:
"""This function returns the SEM given the std and the sample size"""
return round(input_std / math.sqrt(sample_number - 1), 4)
|
b36b1140ed9b03cdeb057041db68d893dcdae1c8
| 138,991 |
def read_file(input_file):
"""
Reads in a file, returns contents one line at a time.
"""
with open(input_file) as f:
content = f.readlines()
return content
|
64a0a8276c1227bc13a7cbb131803693c6de74db
| 533,033 |
def unprime(s):
"""Given a variable's name as a `str`, check if the variable is a prime, i.e. has "_p" at the end.
If so, return the unprimed version, if not return itself."""
if s[-2:] == "_p":
return s[:-2]
else:
return s
|
87f62801cd51c5863c0231f3553c1ece69f4193b
| 135,573 |
def max_digits(x):
"""
Return the maximum integer that has at most ``x`` digits:
>>> max_digits(4)
9999
>>> max_digits(0)
0
"""
return (10 ** x) - 1
|
3f0ffdfbbb3fdaec8e77889b3bfa14c9b9829b2e
| 699,184 |
def parse_database_credentials(db_credentials):
"""
Parsing database credentials to needed format
:param db_credentials: Dictionary
:return: Dictionary
"""
_db_config = {
'name': db_credentials['db-name'],
'host': db_credentials['db-hostname'],
'password': db_credentials['db-password'],
'port': db_credentials['db-port'],
'user': db_credentials['db-username'],
}
return _db_config
|
f84d0b311511e28182979c8747bcb0547d542ab7
| 415,312 |
import asyncio
def mock_coro(return_value=None, exception=None):
"""Return a coro that returns a value or raise an exception."""
fut = asyncio.Future()
if exception is not None:
fut.set_exception(exception)
else:
fut.set_result(return_value)
return fut
|
d06d037bab143e288534e3e7e98da259f7c1cefc
| 704,448 |
import re
def FormatTime(time):
"""Returns the time variable back in ##:## format
Args:
time: a string representing the iqamah time
Returns: a string containing the iqamah time in ##:## format
"""
# if the time input is in a format where it contains integers
# then proceed forward otherwise return None
if re.match(r'(\d+)', time):
# strip the time variable from anything added to it
# example: 10:00 PM becomes 1000 and 5 AM becomes 5
time = ''.join(re.findall(r'(\d+)', time))
# if time length is more than 2 characters then add a : after
# the second character from the right
# example: 1000 becomes 10:00 and 5 stays 5
if len(time) > 2:
return time[:-2] + ':' + time[-2:]
return time + ':00'
|
c7d595b7ee8016236e25439d87b1bbd730408d50
| 202,688 |
def _createLegendString(value, unit):
"""
Creates a label "value unit"
"""
legendString = "%.4g" % value
if (unit):
legendString += (" " + unit)
return legendString
|
21e19cedfbd7893f2151d74a44234bbcc92d0b24
| 483,672 |
def get_first_label(x):
"""Returns the label of the first element.
:param x: Series or DataFrame
"""
return x.index[0]
|
9c2c98cca3f163a01b9ce06fa75b516e9b84a49b
| 650,740 |
def plus(a, b):
"""add vectors, return a + b """
return [a[i] + b[i] for i in range(len(a))]
|
66dec1e1967c5f43827629f67d994db197bd749c
| 137,825 |
import math
def clamping_acos(cos):
"""
Calculate arccos with its argument clamped to [-1, 1]
"""
if cos > 1:
return 0
if cos < -1:
return math.pi/2
return math.acos(cos)
|
427fb795a3d384f4d7aea55831a07ce896822af2
| 527,133 |
import math
def hsv_to_rgb (h, s, v, a = 1):
"""
Convert hue, saturation, value (0..1) to RGBA.
"""
f,i = math.modf(h * 6)
p = v * (1-s)
q = v * (1-f*s)
t = v * (1-(1-f)*s)
i %= 6
if i == 0: r,g,b = v,t,p
elif i == 1: r,g,b = q,v,p
elif i == 2: r,g,b = p,v,t
elif i == 3: r,g,b = p,q,v
elif i == 4: r,g,b = t,p,v
else: r,g,b = v,p,q
return [r,g,b,a]
|
5588288125b99d312449f0d750399ceaf2a30068
| 356,784 |
def list_modules(curdir, pattern):
"""List names from files (*.py) in ``curdir`` match ``pattern``.
"""
return sorted(
m.name.replace('.py', '')
for m in curdir.glob('*.py') if pattern.match(m.name)
)
|
0f278ca11626589c287cff9c6b0d644e185b4c0f
| 473,706 |
import yaml
def parse_yaml(filename):
"""Parse a YAML file and return the parsed object."""
with open(filename) as f:
return yaml.safe_load(f)
|
8758c021370d9568f2c62f8d0652c738b808503d
| 395,198 |
def update_parameters(parameters, gradients, learning_rate=1.0):
"""updates parameters using the gradient descent update rule"""
# retrieve each parameter from the dictionary parameters
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
# retrieve each gradient from the dictionary gradients
dW1 = gradients['dW1']
db1 = gradients['db1']
dW2 = gradients['dW2']
db2 = gradients['db2']
# update rule for each parameter
W1 -= learning_rate * dW1
b1 -= learning_rate * db1
W2 -= learning_rate * dW2
b2 -= learning_rate * db2
parameters = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
return parameters
|
45d6edf89f577542d6833cb669ea422649ae95bc
| 328,096 |
def seqWeightThenLenCmp(seq1, seq2):
"""
Compares two sequences according to the assignment weight and if it`s the same or not defined,
it compares them according to their length.
"""
weight1 = seq1.getTaxonomyPathWeight()
weight2 = seq2.getTaxonomyPathWeight()
if (weight1 is not None) and (weight2 is not None):
if (weight1 - weight2) < 0:
return -1
else:
return 1
else:
return seq1.seqBp - seq2.seqBp
|
945776d40a2c981bf9ff12f2fa45e23bb383658d
| 544,152 |
import six
def inclusion_only_unlimited_args(*args):
"""Expected inclusion_only_unlimited_args __doc__"""
return {"result": "inclusion_only_unlimited_args - Expected result: %s" % (', '.join(six.text_type(arg) for arg in args))}
|
b2f3759bb81722bba6a1777a4a74b274908b9ec1
| 373,447 |
from typing import Iterable
def join_last_separator(elements: Iterable, separator: str, last_separator: str, final_char='') -> str:
"""
Join all the elements in a string, using a separator for all of them except the last one, where it uses
last_separator.
You can also add to final char.
>>> join_last_separator(['Uno', 'dos', 'tres', 'cuatro'], ', ', ' y ', '.')
'Uno, dos, tres y cuatro.'
"""
elements = list(elements)
if not len(elements):
return ''
if len(elements) == 1:
return f'{elements[0]}{final_char}'
return f'{separator.join(elements[:-1])}{last_separator}{elements[-1]}{final_char}'
|
3f12080cddf66eaf95d92c8b9e33e39bf023bb7d
| 192,132 |
def plot_components(self):
"""
Wrapper function for Prophet's default plotting functionality.
"""
return self.model.plot_components(self.results)
|
3ef0eead99a9faf40d45275bb6bf9eab79eda80d
| 411,853 |
def flatten_config_dict(x, prefix=""):
"""Flattens config dict into single layer dict
Example:
flatten_config_dict({
MODEL: {
FBNET_V2: {
ARCH_DEF: "val0"
}
}
})
=> {"MODEL.FBNET_V2.ARCH_DEF": "val0"}
"""
if not isinstance(x, dict):
return {prefix: x}
d = {}
for k, v in x.items():
new_key = f"{prefix}.{k}" if prefix else k
d.update(flatten_config_dict(v, new_key))
return d
|
7929574ba28377ae255ed2e8a0236387f51e8f1f
| 325,736 |
import csv
def load_cluster(path, iso3):
"""
Load cluster number. You need to make sure the
R clustering script (pytal/vis/clustering/clustering.r)
has been run first.
Parameters
----------
path : string
Directory path to the capacity lookup table, generated by pysim5g.
iso3 : string
The ISO 3-digital country code for the country being modeled.
"""
with open(path, 'r') as source:
reader = csv.DictReader(source)
for row in reader:
if row['ISO_3digit'] == iso3:
return row['cluster']
|
2b1b5c08a708c18353cbdaab978c587cfab32aa8
| 373,014 |
def _select_room(caller, menuchoice, **kwargs):
"""
Get a room from the selection using the mapping we created earlier.
"""
room = caller.ndb._menutree.room_map[menuchoice]
return "node_join_room", {"room": room}
|
b2eca7af5273589175e8671a89c61d95ffa611f7
| 328,052 |
def getDimmedRGB(color, alpha=255):
"""Returns dimmed RGB values, with low and high pass to ensure LEDs are fully off or on"""
if alpha >= 253: # int is 1
return color
elif alpha <= 2: # int is 0
return 0, 0, 0
else:
p = alpha/255.0
r, g, b = color
return int(r*p), int(g*p), int(b*p)
|
e574e1e96d38f7da5ae8aebc64e2d3a870e31b4a
| 301,986 |
def ds_read_mock(data_set, *args, **kwargs):
"""
Mock of IkatsApi.ts.fid method
Same parameters and types as the original function
"""
return {"description": "description of my data set",
"ts_list": ['00001',
'00002',
'00003',
'00004']}
|
1da970015a3affe088f54022b4b3da5e5f036dce
| 687,135 |
def shift(coord_paths, shift_vector):
"""
Take an array of paths and shift them by the coordinate.
"""
new_paths = []
for path in coord_paths:
new_path = []
for point in path:
new_path.append( (point[0] + shift_vector[0], point[1]+ shift_vector[1]))
new_paths.append(new_path)
return new_paths
|
feae7b047d9c0362bc5309b2fd3229cf2bef8160
| 292,240 |
import base64
def _auth_header(username, password):
"""return the value part of an Authorization: header for basic auth with the specified username and password"""
return b"Basic " + base64.b64encode(username + b":" + password)
|
83ce29513993bea0185b209a6cb6b4d9beb9ee3a
| 580,291 |
import time
def banner(SCRIPT_NAME, SCRIPT_VERSION, REVISION_DATE, AUTHORS, CONTRIBUTORS, DESCRIPTION,):
"""
Banner for python scripts.
:param SCRIPT_NAME: The name of the script
:param SCRIPT_VERSION: The version number
:param REVISION_DATE: The latest revision date
:param AUTHORS: The main authors
:param CONTRIBUTORS: Any contributing authors
:param DESCRIPTION: A brief description
:return banner_list: A nicely formatted banner
:rtype: list
"""
banner_list = []
banner_list.append("============================================================================== ")
banner_list.append(SCRIPT_NAME + " " + SCRIPT_VERSION + " (" + REVISION_DATE + ")")
banner_list.append(AUTHORS)
banner_list.append("============================================================================== ")
banner_list.append(time.ctime())
banner_list.append("")
banner_list.append(DESCRIPTION)
if CONTRIBUTORS != '':
banner_list.append("With contributions from:")
banner_list.append(CONTRIBUTORS)
banner_list.append("")
return banner_list
|
1c4b2f74bae29901aacac9f1465d4c5858333fa3
| 269,763 |
import torch
def rand_stiefel(n,p):
"""
Generate random Stiefel point using qr of random normally distributed
matrix
"""
X = torch.randn(n, p)
q, r = torch.qr(X)
return q
|
222cac7e6e32c021fa51b45e3fd473b190bf8788
| 256,427 |
def merge_dicts(srcdict: dict, mergedict: dict, overwrite=False):
"""Recursively merges `mergedict` into `srcdict` and returns `srcdict`.
Makes shallow copies of `dict` and `list` values.
"""
for k, v in mergedict.items():
srcvalue = srcdict.get(k, None)
if isinstance(v, dict) and isinstance(srcvalue, dict):
merge_dicts(srcvalue, v, overwrite)
continue
if overwrite or srcvalue is None:
if isinstance(v, dict):
v = dict(v)
elif isinstance(v, list):
v = list(v)
srcdict[k] = v
return srcdict
|
c0adfaa48be3965c67b730978ce0b043a0cfe32a
| 271,187 |
import logging
def prepare_logger(level):
"""Configure logging for the module."""
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(
datefmt='%Y/%m/%d %H:%M:%S',
fmt='%(asctime)s %(levelname)-5s %(message)s'))
bot_logger = logging.getLogger(__package__)
prawtools_logger = logging.getLogger('prawtools')
for logger in (bot_logger, prawtools_logger):
logger.setLevel(getattr(logging, level))
logger.addHandler(handler)
return bot_logger
|
ce63a1819530d3d1b0e0e6dd6248df762e421832
| 601,975 |
def sanity_check(vars, cons):
""" Check all variables participate in some constraint """
v_con = []
for c in cons:
for x in cons[c]['scope']:
if x not in v_con:
v_con.append(x)
for v in vars:
if v not in v_con:
return False
return True
|
fc9885ce27d459b9f95310e1a1bda970e412a741
| 559,026 |
def user_discrim(user):
"""
Return the user's username and disc
in the format <username>#<discriminator>
"""
return f"{user.name}#{user.discriminator}"
|
22866ad0c23a23bfbd7460844a9582916970991c
| 38,280 |
from typing import Union
from typing import Any
def gte(query: Union[int, float], field_name: str, object: Any) -> bool:
"""
Check if value of object is greater than or equal to value of query
"""
return float(getattr(object, field_name)) >= float(query)
|
26f8378a008e20b0b17e2f54d99d088b46f1c722
| 447,157 |
def list_remote_branches(repo):
"""
Lists remote branches of given git repository
Args:
repo(:class:`~git.repo.base.Repo`): Git repository instance
Returns:
List[str]: Branches of current git repository
"""
branches = []
for ref in repo.references:
if ref not in repo.branches + repo.tags:
remote = str(ref).split('/')[1]
if remote not in ['HEAD']:
branches.append(remote)
return branches
|
ac161b0c39f10f45f02a43f86e4caa76a9bb3621
| 323,496 |
def keys_are_unique(hyperparam_list):
"""Check if the ``base_keys`` in a list of ``HyperparameterOption`` objects are unique.
Args:
hyperparam_list (list)(HyperparameterOption): a list of hyperparameter options.
Returns:
bool: True if all the ``base_keys`` are unique, otherwise False.
"""
keys = [item.base_key for item in hyperparam_list]
keys = set(keys)
return len(keys) == len(hyperparam_list)
|
656e453f00bb56f929d0a577329d41976eb22a3a
| 455,877 |
def get_node_ips_from_config(boot_config):
"""
Returns the IPs of the configured nodes
:param boot_config: the snaps-boot config to parse
:return: a list if IPs for the given nodes
"""
out_hosts = list()
if ('PROVISION' in boot_config
and 'DHCP' in boot_config['PROVISION']
and 'subnet' in boot_config['PROVISION']['DHCP']):
for subnet in boot_config['PROVISION']['DHCP']['subnet']:
if 'bind_host' in subnet:
for bind_host in subnet['bind_host']:
if 'ip' in bind_host:
out_hosts.append(bind_host['ip'])
return out_hosts
|
0bc9fc9bc8f5ef577ecf21e0a754f0b3ac1d4e0a
| 100,863 |
def shrink_to_hint(s: str):
"""
Shrink a string to hint.
:param str s: Source string
:return: str
"""
length = len(s)
if length < 4:
return '*' * length
return '{}**{}'.format(s[0], s[length - 1])
|
f1aed54259127a589c279902a26947e968bcd41d
| 390,449 |
def write_source(t, s, shot, imp="Ca"):
"""Write a STRAHL source file.
This will overwrite any {imp}flx{shot}.dat locally.
Parameters
----------
t : array of float, (`n`,)
The timebase (in seconds).
s : array of float, (`n`,)
The source function (in particles/s).
shot : int
Shot number, only used for saving to a .dat file
imp : str, optional
Impurity species atomic symbol
Returns
-------
contents : str
Content of the source file written to {imp}flx{shot}.dat
"""
contents = "{.d}\n".format(len(t),)
for tv, sv in zip(t, s):
contents += " {5.5f} {5.5e}\n".format(tv, sv)
with open(f"{imp}flx{shot}.dat", "w") as f:
f.write(contents)
return contents
|
30ecf4474af48ba00d6c50d2fa2643c01b20ea91
| 293,297 |
def Resample(df_z, kind, time):
"""Resamples the data frame from 1 second resolution to either
1 Hour or 1 Day resolution
Arguments:
df_z - full data frame
kind - Water type, either hotIn or coldIn
time - resolution, either 1H or 24H
Returns:
df_a - resampled data frame
"""
df_a = df_z[kind].resample(rule=time, base=0).sum() * (1 / 60)
return df_a
|
35de617f7dedb6043b39906b068d3c17a40c3463
| 502,005 |
def flatten(l):
"""
Flatten a list of lists
:param l: List of lists
:return: flattened list
"""
try:
return [item for sublist in l for item in sublist]
except TypeError:
return l
|
a2bddde75d5aa58ade6c628fc339c1eaa36a91f5
| 139,034 |
import torch
import math
def uniform_binning_correction(x, n_bits=8):
"""Replaces x^i with q^i(x) = U(x, x + 1.0 / 256.0).
Args:
x: 4-D Tensor of shape (NCHW)
n_bits: optional.
Returns:
x: x ~ U(x, x + 1.0 / 256)
objective: Equivalent to -q(x)*log(q(x)).
"""
b, c, h, w = x.size()
n_bins = 2**n_bits
chw = c * h * w
x += torch.zeros_like(x).uniform_(0, 1.0 / n_bins)
objective = -math.log(n_bins) * chw * torch.ones(b, device=x.device)
return x, objective
|
22f1cfe6b66ac11788a15edb281b6dee4e213654
| 684,143 |
import torch
def unif(n):
"""return a uniform histogram of length n (simplex)
Parameters
----------
n : int
number of bins in the histogram
Returns
-------
h : torch.Tensor (n,)
histogram of length n such that h_i=1/n for all i
"""
return torch.ones(n)/n
|
36f154d1cdd06f79ba5007b480c1e2e970955775
| 66,479 |
def find_line_no(content_lines, match_text, error_message):
"""Find line number where given content occurs."""
for line_no, line in enumerate(content_lines):
if line.startswith(match_text):
return line_no
else:
raise LookupError(error_message)
|
75c2271507483c70f6b293348805bea0aceab1b2
| 174,282 |
def reset_df_index(data_frame):
"""
Resets pandas data frame index, dropping current index and replacing it
with a "clean" index in place. Useful after data frame filtering and multi-
value column splitting.
:param data_frame: pandas data frame (pd df)
:return: resets index index in place in original df (None)
"""
return data_frame.reset_index(drop=True, inplace=True)
|
9cc10b510bbbbe52cbfebdb8cbcc945d930e966a
| 489,933 |
def _match_pragma(stmt, key):
"""Internal helper to match stmt to pragma stmt.
Parameters
----------
stmt : Stmt
The AttrStmt
key : str
The pragma key
"""
return ((stmt.attr_key == "pragma_" + key) or
(stmt.attr_key == "pragma_scope" and stmt.value.value == key))
|
eec6d79ff091ffb4e43086889689d9e2cf29efd0
| 462,819 |
def merge(*ds):
"""
Merge several ``dict``s together.
"""
res = {}
for d in ds:
if d:
res.update(d)
return res
|
e83e6893d32b31e6c1c6e2b1fe657cf1b02fb38c
| 180,138 |
import json
def get_json_content(json_path):
"""Get json content.
Args:
json_path (str): path to json.
Returns:
(dict): json content.
"""
with open(json_path, 'r') as json_bytes:
content = json.load(json_bytes)
return content
|
bd0630a38c89fa9d7d211b087b3c3a753b4d3ecc
| 510,543 |
import re
def extract_paths(file):
""" Extract the list of modified paths from the patch file. """
paths = []
fp = open(file)
for line in fp:
if line[:4] != '+++ ':
continue
match = re.match('^([^\t]+)', line[4:])
if not match:
continue
paths.append(match.group(1).strip())
return paths
|
d309e9a64cfd76cdc2527e612d3f4472df3aa17b
| 399,180 |
def sqlite_quote(val):
"""Return text to quote some sqlite value."""
return "'%s'" % val
|
577bebaf087711f93479556f2e2a6eb8f5da4a8c
| 257,295 |
import torch
def scale_and_translation_transform_batch_torch(P, T):
"""
First Normalises batch of input 3D meshes P such that each mesh has mean (0, 0, 0) and
RMS distance from mean = 1.
Then transforms P such that it has the same mean and RMSD as T.
:param P: (batch_size, N, 3) batch of N 3D meshes to transform.
:param T: (batch_size, N, 3) batch of N reference 3D meshes.
:return: P transformed
"""
P_mean = torch.mean(P, dim=1, keepdim=True)
P_trans = P - P_mean
P_scale = torch.sqrt(torch.sum(P_trans ** 2, dim=(1, 2), keepdim=True) / P.shape[1])
P_normalised = P_trans / P_scale
T_mean = torch.mean(T, dim=1, keepdim=True)
T_scale = torch.sqrt(torch.sum((T - T_mean) ** 2, dim=(1, 2), keepdim=True) / T.shape[1])
P_transformed = P_normalised * T_scale + T_mean
return P_transformed
|
cd3b1da9111233376d1056217ae2c14ffdd8ea38
| 585,182 |
def first_phrase(name):
"""
returns phrase, given lab member
Parameters
----------
name : str
lab member
Returns
----------
utterance : string
phrase simulating specific lab member
"""
if name == 'gina':
return('I just re-listened to my spotify playist; ')
if name == 'lucy':
return('I keep seeing psych professors at the gym; ')
if name == 'andy':
return('My new puppy has so much energy; ')
if name == 'kirsten':
return('I just ran myself on the attention task; ')
if name == 'jeremy':
return('The episode of West Wing I\'m on now...')
if name == 'emily':
return('I\'m addicted to drinking hot water; ')
if name == 'paxton':
return('I always sit in front for Jeremy\'s lecture; ')
|
753d32d69c9b0de24912262876fae2ae112fc0e0
| 524,929 |
import pickle
def load_pickle(filename):
"""
Load saved data from pickle file
:param filename: pickle file name
:return: data from pickle file
"""
with open(filename, "rb") as f:
data = pickle.load(f)
return data
|
aabb0fb57fca48ef53c75129d662bf82f683d978
| 646,153 |
def save(df, name):
"""
Save a dataframe as a csv and pickle file
:param df: (pd.DataFrame) - dataframe to save
:param name: (str) - output name
:return name: (str) - output name
"""
df.to_csv('{0}.csv'.format(name))
df.to_pickle('{0}.pkl'.format(name))
return name
|
4efda71dc0f5dcd0208558b7f211636cbf52bb5d
| 660,748 |
def get_npp_block(value):
"""
Determine the number of pixels per block value.
Parameters
----------
value : int
Returns
-------
int
"""
return 0 if value > 8192 else value
|
ca189015705dffbfd74ad28e1676210bba7936ac
| 503,239 |
def chunks(obj, size, start=0):
"""Convert `obj` container to list of chunks of `size`."""
return [obj[i : i + size] for i in range(start, len(obj), size)]
|
c523a346906b85c121bf67a56a806d51f639eeb3
| 30,282 |
from typing import Union
from typing import List
from typing import Tuple
from typing import Dict
def format_locations(locations: Union[str, List, Tuple]) -> List[Dict[str, str]]:
"""
Format locations from YAML file into the list format expected by boto3.
Possible inputs are:
a) A 2 letter country code string, e.g. "US"
b) A 2-tuple (or 2 item list) of 2 letter country and subdivision codes , e.g ("US", "NY")
c) A list of two or more instances of a) and/or b)
"""
if isinstance(locations, str):
return [{'Country': locations}]
elif isinstance(locations, list) or isinstance(locations, tuple):
return [{'Country': l[0], 'Subdivision': l[1]} if isinstance(l, (tuple, list))
else {'Country': l} for l in locations]
else:
raise TypeError
|
c332fe63dd1fe5e4703a746a53a545cd684a1d0d
| 412,581 |
def mac_to_oid(mac):
"""
Converts a MAC address to an OID string
"""
return '.'.join([ str(int(x,16)) for x in mac.split(':') ])
|
823f68a1708a2d4db6184b3aedc003f9f8fe79fe
| 631,150 |
def BFS(start, target, getNeighborsFunction):
"""
Breadth First Search Algorithm, it starts at the root node (the start node) and searches all of its neighbors.
If a neighbor is the target node, we return the shortest path from start to target.
Otherwise we repeat this proccess for each neighbor until we find the target node.
Args:
start (Graph Node): The node we start searching from.
target (Graph Node): The target we're searching.
getNeighborsFunction (Function): A function we can use to find a node's neighbors (in order for this method to work on multiple data structures).
Returns:
Graph Node: The shortest path from the start node to the target node.
Time Complexity:
Worst-Case: O(V + E)
"""
q = [start]
explored = []
parents = {}
parents[start] = None
while len(q) > 0:
v = q.pop(0)
if v == target:
path = [v]
while parents[v] != None:
path.insert(0, parents[v])
v = parents[v]
return path
explored.append(v)
neighbors = getNeighborsFunction(v)
for n in neighbors:
if n not in explored:
q.append(n) # In DFS we insert at index 0, here we append (BFS uses a queue, DFS uses a stack).
explored.append(n)
parents[n] = v
return None
|
312b1df54a8457072c2e869a9a442058059814dd
| 405,139 |
def _create_instance(row):
"""
Parse individual row of ARFF file in PHP dataset. If the row is from a
tokens file, the first field must be a string of tokens optionally enclosed
in single quotes. If the row is from a metrics file, it must be a comma-
separated list of numbers. The last field must have values 'yes' or 'no,
which are mapped to the integers 1 and 0, respectively.
Args:
row: String representing an individual row of an ARFF file in the PHP
dataset.
Returns:
List of the form [features, label], where features is a list of
features (tokens or metrics data) and label is an integer having the
value 1 if the last field of the row is 'yes' and '0' otherwise.
"""
assert row.count('\'') in [0,2]
mod_row = row.split('\'');
# Rows with multiple tokens are wrapped in single quote marks. Otherwise,
# they are separated by commas.
if row.count('\'') == 2:
mod_row = row.split('\'')[1:];
else:
mod_row = row.split(',');
assert (len(mod_row) == 2), "mod row: {}".format(mod_row)
return [mod_row[0].replace('\'', ''), 1 if 'yes' in mod_row[1] else 0]
|
4908add0399c34c7545c37694cf6e853b98d4518
| 421,681 |
def get_column_name(column):
"""
gets the pure column name from given column name with ordering info.
for example:
+age -> age
age -> age
-age -> age
:param str column: column name to extract pure name from it.
:rtype: str
"""
if column.startswith(('-', '+')):
return column[1:]
return column
|
eff552e85b5bebd2fac6cad4ee21f3d2ec4ea994
| 171,680 |
def ExtractDependencies(input):
""" Create a list of dependencies from input list of lines
Each element contains the name of the object and a list of
files that it depends on.
Dependencies that contain "/usr/" are removed as they are system headers. """
deps = []
for line in input:
headersLine = line.startswith(" ") or line.startswith("\t")
line = line.strip()
line = line.rstrip("\\ ")
fileNames = line.strip().split(" ")
if not headersLine:
# its a source file line, there may be headers too
sourceLine = fileNames[0].rstrip(":")
fileNames = fileNames[1:]
deps.append([sourceLine, []])
deps[-1][1].extend(header for header in fileNames if "/usr/" not in header)
return deps
|
8c0f87af50342221c1c73356e9c3ffdefb690e03
| 671,262 |
import ast
def status_from_analysis(line):
"""
Utility method to obtain the process status boolean flags from the relative line in the final analysis output
text file.
:param line: string from log file
:return: list of boolean status flags
"""
line = line.strip().split('\t')
return [ast.literal_eval(line[1]),
ast.literal_eval(line[3]),
ast.literal_eval(line[5]),
ast.literal_eval(line[7]),
ast.literal_eval(line[9])]
|
7983bd8d9e74a457a019b912cdaa0a1b31272bd9
| 671,130 |
def get_conversion_option(shape_records):
"""Prompts user for conversion options"""
print("1 - Convert to a single zone")
print("2 - Convert to one zone per shape (%d zones) (this can take a while)" % (len(shape_records)))
import_option = int(input("Enter your conversion selection: "))
return import_option
|
7608c588960eb3678970e0d4467c67ff9f17a331
| 2,952 |
def get_matched_primer_pair(le,ri):
"""
Inputs:
two lists of primers
get matching primers from a list (get primer pair from same amplicon)
Returns:
matched primer pair (same amplicon) if any
"""
for l in le:
for r in ri:
if l[2] == r[2]:
return l, r
return None, None
|
5d04466741c295d4c9c21720e59fba08fb41709f
| 138,556 |
def frequency(string, word):
""" Find the frequency of occurrences of word in string
as percentage """
word_l = word.lower()
string_l = string.lower()
# Words in string
count = string_l.count(word_l)
# Return frequency as percentage
return 100.0*count/len(string_l)
|
dd2183dcec04bdf835ab22a8a351d53571f6e5e9
| 19,566 |
def getattr_(entity, attribute):
"""Either unpack the attribute from every item in the entity
if the entity is a list, otherwise just return the attribute
from the entity. Returns None if the entity is either None
or empty."""
if entity in (None, []):
return None
if isinstance(entity, list):
return [getattr(item, attribute) for item in entity]
return getattr(entity, attribute)
|
42dbfb2c0cdb1bd59d627cd6d509e6dc43ba7a2d
| 670,168 |
import json
def list_of_schematized_configs(test_configs_root):
"""returns list of configuration files,
schematized with attributes
so that fixtures and unit tests can specify those attributes
to find the filename of a specific configuration file,
that can then be used to get that file.
Each element in the list is a dict with the following keys:
`filename`, `config_type`, `audio_format`, `spect_format`, `annot_format`
These keys define the schema for config files.
For example, here is the first one:
{
"filename": "test_eval_audio_cbin_annot_notmat.toml",
"config_type": "eval",
"audio_format": "cbin",
"spect_format": null,
"annot_format": "notmat"
}
The ``specific_config`` factory fixture returns a function that
itself return a configuration ``filename``, when provided values for
all of the other keys.
"""
with test_configs_root.joinpath("configs.json").open("r") as fp:
return json.load(fp)["configs"]
|
d5e5e54ee78077a77057bc179d26da703b1a3694
| 267,067 |
def is_boundary(loop):
"""Is a given loop on the boundary of a manifold (only connected to one face)"""
return len(loop.link_loops) == 0
|
4d4df7e552c6a57b42fa3e9c43682368ae5091c1
| 41,325 |
def _keep_spikes(samples, bounds):
"""Only keep spikes within the bounds `bounds=(start, end)`."""
start, end = bounds
return (start <= samples) & (samples <= end)
|
b63979156e23cf9d26c0c51b4eebf16100dd7804
| 306,267 |
def _compute_newton_step(lambdas, p_norm, w_norm):
"""Compute the Newton step.
Args:
lambdas (namedtuple): Named tuple containing the current candidate
value for the damping factor lambda, its lower bound and upper bound.
p_norm (float): Frobenius (i.e. L2-norm) of the candidate vector.
w_norm (float): Frobenius (i.e. L2-norm) of vector w, which is the solution
to the following triangular system: U.T w = p.
Returns:
(float): Newton step computed according to formula (4.44) p.87
from Nocedal and Wright (2006).
"""
return lambdas.candidate + (p_norm / w_norm) ** 2 * (p_norm - 1)
|
30319530a61029d3a689856d1ac686ad2954b46d
| 335,623 |
def unnormalize(z, bounds):
"""Inverse of normalize"""
return z * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0]
|
9a39768cdaaa1c169ea88b8dfcb5080a38b9e358
| 644,289 |
def RGBtoYCC(R, G, B):
""" convert RGB to YCC color
The Kodak* PhotoYCC* was developed for encoding Photo CD* image data.
This model comprises luminance (Y) and two color difference, or chrominance (C1, C2) components.
The PhotoYCC is optimized for the color photographic material,
and provides a color gamut that is greater than the one that can currently be displayed.
Warning: Converting RGB to YCC then back doesn't necessarily give the same result
:param R: red value (0;255)
:param G: green value (0;255)
:param B: blue value (0;255)
:return: YCC tuple (0;1) """
rgb = [i / 255.0 for i in (R, G, B)]
Y = (0.213 * rgb[0]) + (0.419 * rgb[1]) + (0.081 * rgb[2])
C1 = (-0.131 * rgb[0]) - (0.256 * rgb[1]) + (0.387 * rgb[2]) + 0.612
C2 = (0.373 * rgb[0]) - (0.312 * rgb[1]) - (0.061 * rgb[2]) + 0.537
return Y, C1, C2
|
a70c694930a06e5bca42a11fb345b53c6b3065ca
| 157,303 |
def _do_get_features_list(featurestore_metadata):
"""
Gets a list of all features in a featurestore
Args:
:featurestore_metadata: metadata of the featurestore
Returns:
A list of names of the features in this featurestore
"""
features = []
for fg in featurestore_metadata.featuregroups.values():
features.extend(fg.features)
features = list(map(lambda f: f.name, features))
return features
|
d5d1b99aa77067dc22473d12fb8fec6312d75b53
| 691,030 |
def _get_tf_batch_norm_parameter_name(bn_counter):
"""Returns the name of the batch_norm layer for the given batch norm index.
Args:
bn_counter: Integer number denoting the batch norm op index.
Returns:
A String denoting the name of the batch norm layer.
"""
if bn_counter != 0:
return 'batch_normalization_%d' % bn_counter
return 'batch_normalization'
|
2259cb01188354eaaeab082b6d00071326b9d9fa
| 95,618 |
def mandel(x, y, max_iters):
"""
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.
"""
c = complex(x, y)
z = 0.0j
for i in range(max_iters):
z = z*z + c
if (z.real*z.real + z.imag*z.imag) >= 4:
return i, z
return max_iters, z
|
988f34156365551631eb926da2e1d5e08faff4f0
| 668,473 |
def select_last_n_imports(stats_file, n=3):
"""
Selects which independent full and partial imports should be plotted based on n.
:param stats_file: pandas DataFrame with stats data.
:param int n: number of independent imports to select.
:return: List of import ids to be plotted according to selection criterion.
"""
partial = []
full = []
if 'datetime' in stats_file and 'import_id' in stats_file and 'Import_flag' in stats_file:
df = stats_file[['datetime', 'import_id', 'Import_flag']].sort_values('datetime', ascending=False).drop_duplicates(['import_id'], keep = 'first', inplace = False)
full = df[df['Import_flag'] == 'full']
full = full.iloc[:n, 1].tolist()
partial = df[df['Import_flag'] == 'partial']
partial = partial.iloc[:n, 1].tolist()
return partial + full
|
39c3f2975ae333543a1e6ba239e4c10e61ba01c8
| 307,196 |
from typing import Sequence
from typing import Union
import shlex
def command_strings_to_lists(
cmds: Sequence[Union[str, Sequence[str]]]
) -> Sequence[Sequence[str]]:
"""
Convert any command strings in `cmds` to lists.
Args:
cmds: Commands - either strings or lists of arguments.
Returns:
A sequence of command argument sequences.
"""
return [shlex.split(cmd) if isinstance(cmd, str) else cmd for cmd in cmds]
|
53e8977b89b2cfdc144111ac98ea8cf2de8d689a
| 446,960 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.