content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def field_name(component):
"""Return the name for the FormField built for the given component."""
return 'comp-' + component.name
|
84ed4617b3843d80c5cf899eca02cc2692e1413c
| 89,966 |
def parse_wildcards(props):
"""Pull out the wildcard attributes from the Component props.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
list
List of Dash valid wildcard prefixes
"""
list_of_valid_wildcard_attr_prefixes = []
for wildcard_attr in ["data-*", "aria-*"]:
if wildcard_attr in props:
list_of_valid_wildcard_attr_prefixes.append(wildcard_attr[:-1])
return list_of_valid_wildcard_attr_prefixes
|
6751e178de74748f3cbb3032888dd57850c75086
| 602,668 |
def search_lhn(city):
"""
Search for existing LHN within city. Returns True, if LHN is found.
Parameters
----------
city : object
City object of pyCity_calc
Returns
-------
has_lhn : bool
Defines, if LHN system exists in city
"""
has_lhn = False
for edge in city.edges(data=True):
if 'network_type' in edge[2]:
if (edge[2]['network_type'] == 'heating' or
edge[2]['network_type'] == 'heating_and_deg'):
has_lhn = True
break
return has_lhn
|
37e435918d93179d8ffb11e476da99798a7ca701
| 595,162 |
def _remove_empty_events(sse):
"""
Given a sequence of synchronous events (SSE) `sse` consisting of a pool of
pixel positions and associated synchronous events (see below), returns a
copy of `sse` where all empty events have been removed.
`sse` must be provided as a dictionary of type
.. centered:: {(i1, j1): S1, (i2, j2): S2, ..., (iK, jK): SK},
where each `i`, `j` is an integer and each `S` is a set of neuron IDs.
Parameters
----------
sse : dict
A dictionary of pixel positions `(i, j)` as keys, and sets `S` of
synchronous events as values (see above).
Returns
-------
sse_new : dict
A copy of `sse` where all empty events have been removed.
"""
sse_new = sse.copy()
for pixel, link in sse.items():
if link == set([]):
del sse_new[pixel]
return sse_new
|
0596d43cc75fdd040c5096e3ddb81277b48d7456
| 34,332 |
def get_log_info(prefix='', rconn=None):
"""Return info log as a list of log strings, newest first. On failure, returns empty list"""
if rconn is None:
return []
# get data from redis
try:
logset = rconn.lrange(prefix+"log_info", 0, -1)
except:
return []
if logset:
loglines = [ item.decode('utf-8') for item in logset ]
else:
return []
loglines.reverse()
return loglines
|
d333fbeaff754e352a0b84c10f4d28e148badfa0
| 7,816 |
import json
def _read_notebook_data_dict(notebook_path: str) -> dict:
"""
Read a dictionary of notebook data.
Parameters
----------
notebook_path : str
Path of target notebook.
Returns
-------
notebook_data_dict : dict
A dictionary of notebook data.
"""
with open(notebook_path, 'r') as f:
notebook_data_str: str = f.read()
notebook_data_dict: dict = json.loads(notebook_data_str)
return notebook_data_dict
|
c74fabb3ad1ff7d0e5d002791b1aef08a353199a
| 39,241 |
def join_paths(*args):
"""Join paths without duplicating separators.
This is roughly equivalent to Python's `os.path.join`.
Args:
*args (:obj:`list` of :obj:`str`): Path components to be joined.
Returns:
:obj:`str`: The concatenation of the input path components.
"""
result = ""
for part in args:
if part.endswith("/"):
part = part[-1]
if part == "" or part == ".":
continue
result += part + "/"
return result[:-1]
|
b48f8805c59e6a7038121a85f828ff3f8e792e29
| 602,035 |
def single_cond_prob_to_str(grid_idx, val, num_indices = 6):
"""Generate the string representing the probability:
Pr(o_i = val)
ex:
For Pr(o_2 = 1), we'd have the string '21'
NB we're 1-indexing here
"""
assert grid_idx >= 1 and grid_idx <= num_indices
return str(grid_idx) + str(val)
|
462b35da49ae54b1fef9853243e902871abc76f3
| 567,998 |
def wavelength_pm(voltage_kV):
"""
Calculates the relativistic electron wavelength
in picometers based on the microscope accelerating
voltage
Parameters
----------
voltage_kV: float
microscope operating voltage in kilo
electronVolts
Returns
-------
wavelength: float
relativistic electron wavelength in
picometers
:Authors:
Debangshu Mukherjee <mukherjeed@ornl.gov>
"""
m = 9.109383 * (10 ** (-31)) # mass of an electron
e = 1.602177 * (10 ** (-19)) # charge of an electron
c = 299792458 # speed of light
h = 6.62607 * (10 ** (-34)) # Planck's constant
voltage = voltage_kV * 1000
numerator = (h ** 2) * (c ** 2)
denominator = (e * voltage) * ((2*m*(c ** 2)) + (e * voltage))
wavelength = (10 ** 12) *((numerator/denominator) ** 0.5) #in angstroms
return wavelength
|
cd8009db22e7d7e6113a611208a49ff5c7387842
| 245,728 |
import six
def construct_mirror_name(volume):
"""Constructs MirrorView name for volume."""
return 'mirror_' + six.text_type(volume.id)
|
75ec30c8e5cf204f525301ea0fd988222c1d1cf5
| 39,870 |
import codecs
import yaml
def parse_yaml_or_json(path):
"""
Return parsed YAML or JSON for a path to a file.
"""
with codecs.open(path, mode='r', encoding='utf-8') as infile:
doc = yaml.safe_load(infile)
return doc
|
6902c3fcc67e636c35fc9576106943e8bd8d2541
| 655,883 |
def sort(df, sort_column, ascending=True):
"""
Sorts a given DataFrame by a given column and returns it.
:param df: (pandas DataFrame) the data to be sorted.
:param sort_column: (string) describes which column on the given DataFrame to sort. Raises KeyError if the column
does not exist in the DataFrame.
:param ascending: (boolean, optional) if True, sorts the given DataFrame in ascending order on the given column
:return df: (pandas DataFrame) the data, now sorted on the given sort column.
"""
if sort_column not in df.columns:
raise KeyError("The sorting column is not present in the given DataFrame.")
return df.sort_values(sort_column, ascending=ascending)
|
b2bc3d2deefbd5134c0294824d7ab2cf83fc4549
| 616,258 |
import torch
def compute_mean_range(x: torch.Tensor, print_values=False):
"""
Compute mean and range of values over dataset (for inputs / outputs standardization)
"""
Max, _ = torch.max(x, dim=0)
Min, _ = torch.min(x, dim=0)
Mean = (Max + Min) / 2.0
Range = (Max - Min) / 2.0
if print_values:
print("Standardization enabled.")
print("Mean:", Mean.shape, "-->", Mean)
print("Range:", Range.shape, "-->", Range)
if (Range < 1e-6).nonzero().sum() > 0:
print(
"[Warning] Normalization: the following features have a range of values < 1e-6:",
(Range < 1e-6).nonzero(),
)
Range[Range < 1e-6] = 1.0
return Mean, Range
|
c1b14e0c253366122a7daa777a8d1f7b8f8d4259
| 562,890 |
from typing import Counter
def build_vocab(train_corpus):
"""
Build a vocabulary with word frequencies for an entire corpus.
Returns: {word : (ID, frequency)}
"""
vocab = Counter()
for line in train_corpus:
for tokens in line:
vocab.update([tokens])
return {word: (i, freq) for i, (word, freq) in enumerate(vocab.items())}
|
1404a5219df07999a1d40045eb02ac7fd651b354
| 412,591 |
def handle_nulls(function):
"""
Decorator to return null if any of the input arguments are null.
"""
def inner(*args, **kwargs):
if any(arg is None for arg in args):
return None
return function(*args, **kwargs)
return inner
|
f8dc8f8620aae74d90d21fb084306a807f627e98
| 371,528 |
import requests
import json
def edit_link(token, link, title):
"""
Edits an already existing Bitly links title.
Args:
token (str): Bitly access token.
link (str): Shortened URL to be edited by Bitly.
title (str): Updated Bitly link title.
Returns:
Bitly status information and the returned Bitly link on success.
"""
r = requests.get("https://api-ssl.bitly.com/v3/user/link_edit?access_token={}&link={}&edit=title&title={}".format(token, link, title))
return json.loads(r.content.decode("utf-8"))
|
3fbdc07f0e2d7b54787295250654ffffbf97054b
| 681,083 |
def service_level(orders_received, orders_delivered):
"""Return the inventory management service level metric, based on the percentage of received orders delivered.
Args:
orders_received (int): Orders received within the period.
orders_delivered (int): Orders successfully delivered within the period.
Returns:
Percentage (float) of orders received that were delivered within th period.
"""
return (orders_delivered / orders_received) * 100
|
8132596dbb8e845aa116bb2451ef89761897b5db
| 675,713 |
def pull_partition_status(partition):
"""
Retrieve the partition operational status as fast as possible and return
it.
"""
parts = partition.manager.cpc.partitions.list(
filter_args={'name': partition.name})
if len(parts) != 1:
raise AssertionError()
this_part = parts[0]
actual_status = this_part.get_property('status')
return actual_status
|
074d2c436c5e7b6cb2d7579305a4ffc678b53d77
| 591,398 |
def getMovingWindowSegments(data, windowSize):
"""
Given a 1D list of data, slide a window along to create individual segments
and return a list of lists (each of length windowSize)
"""
segmentCount = len(data) - windowSize
segments = [None] * segmentCount
for i in range(segmentCount):
segments[i] = data[i:i+windowSize]
return segments
|
99c885ff00f8a94669d85ec926af18f4ccdf31e6
| 526,404 |
def decode_material(encoded_material, vec_to_elem_dict):
"""Input: - encoded_material: vector
- vec_to_elem_dict: dict mapping elements to indexes
Returns: - decoded material (dictionary with stoich coeffs)
"""
decoded_material = {vec_to_elem_dict[index]: val for index, val in enumerate(encoded_material)}
return decoded_material
|
c40f8858cf92dee3a09d1968f4a8a6e4457fa5a8
| 395,363 |
def get_required_capacity_types_from_database(conn, scenario_id):
"""
Get the required type modules based on the database inputs
for the specified scenario_id. Required modules are the unique set of
generator capacity types in the scenario's portfolio.
:param conn: database connection
:param scenario_id: int, user-specified scenario ID
:return: List of the required type modules
"""
c = conn.cursor()
project_portfolio_scenario_id = c.execute(
"""SELECT project_portfolio_scenario_id
FROM scenarios
WHERE scenario_id = {}""".format(scenario_id)
).fetchone()[0]
required_capacity_type_modules = [
p[0] for p in c.execute(
"""SELECT DISTINCT capacity_type
FROM inputs_project_portfolios
WHERE project_portfolio_scenario_id = ?""",
(project_portfolio_scenario_id, )
).fetchall()
]
return required_capacity_type_modules
|
bdd4f101465c55b712eb3f54797bbf213ed50b80
| 695,517 |
def get_shapes_F1(F1):
"""
Get string showing shapes of F1.
Parameters
----------
F1: list of multidimensional np.arrays
(each elment has the samples for each station-poliarization.
Returns
-------
out : str
"""
return(str([(F1[i].shape) for i in range(len(F1))]))
|
b8c40ad7ba688612ae82056b8ae060f776c8c21b
| 97,091 |
def moderate(func):
"""Map [0,1] -> [0,1] with bias towards 0.5.
For instance this is needed to dampen extremes.
"""
def f(x):
return 1/2 + 4 * (func(x) - 1/2)**3
return f
|
541deeefacb0559053d8f3f204036910c12ad415
| 364,403 |
import math
def get_approx_flame_length(head_fire_intensity: float):
""" Returns an approximation of flame length (in meters).
Formula used is a field-use approximation of
L = (I / 300)^(1/2), where L is flame length in m and I is Fire Intensity in kW/m
"""
return math.sqrt(head_fire_intensity / 300)
|
5728ba488c8535ea27df31526b9e67fd9d01c6aa
| 667,874 |
import torch
def clip_tensor(x, lb=0., ub=1.):
"""
Clip a tensor to be within lb and ub
:param x:
:param lb: lower bound (scalar)
:param ub: upper bound (scalar)
:return: clipped version of x
"""
return torch.clamp(x, min=lb, max=ub)
|
ce6d53080285bf53c118f6f3cc9cc22830d792d1
| 75,918 |
def rectCenter(rect):
"""Determine rectangle center.
Args:
rect: Bounding rectangle, expressed as tuples
``(xMin, yMin, xMax, yMax)``.
Returns:
A 2D tuple representing the point at the center of the rectangle.
"""
(xMin, yMin, xMax, yMax) = rect
return (xMin+xMax)/2, (yMin+yMax)/2
|
4b1acca6aa11b293daee91de38fd7ebed7a7371e
| 514,038 |
def find_instance_in_args(obj, args):
"""find instance of given object type args.
Args:
obj(type): type of object to look for.
args(iterable): arguments to search for the given object type.
Returns:
obj. instance of the obj type that found in args.
"""
return next(filter(lambda arg: isinstance(arg, obj), args))
|
b5e7c9562c240eb22a9d04bc556f7080b32436c9
| 188,310 |
def extremum (a, b, c) -> tuple:
""" Returns the (x, y) coordinates of the extremum of the curve given by the polynomial, f(x | a, b, c).
The extremum can refer to either a maximum or minimum value. When 'a' is negative, the max or top of the curve is returned. Otherwise, the min is returned.
The value of the x-coordinate can be thought of as the midpoint of the curve."""
# Check params.
if a == 0:
raise ValueError('Argument Value Error:\tThe parameter, \'a\', in a polynomial, f(x) = ax^2 + bx + c, cannot be equal to zero.')
x = -b/(2*a)
return (x, a*x**2 + b*x + c)
|
fde4bd46492ea096c71d9d3091903592e6fca3d4
| 360,985 |
def replicate(lst, n):
""" Replicate each of the elements of lst a given number of times. For example, for lst = [a, b, c] and n = 3, the returned list is [a, a, a, b, b, b, c, c, c]. """
def rep_helper(val, n):
i = 0
v = ""
while i < n:
v = v + val
i += 1
return v
list_of_lists = [list(rep_helper(a, n)) for a in lst]
return [val for sublist in list_of_lists for val in sublist]
|
d8c78f8c0737704ec1969d540e5d89b990ea8340
| 64,142 |
import logging
def is_valid_dataset(platform):
"""Filters out datasets that can't be used because it is missing required data
such as the release date or an original price. Other required data includes
the name and abbreviation of the platform.
"""
if 'release_date' not in platform or not platform['release_date']:
logging.warn(u"{0} has no release date".format(platform['name']))
return False
if 'original_price' not in platform or not platform['original_price']:
logging.warn(u"{0} has no original price".format(platform['name']))
return False
if 'name' not in platform or not platform['name']:
logging.warn(u"No platform name found for given dataset")
return False
if 'abbreviation' not in platform or not platform['abbreviation']:
logging.warn(u"{0} has no abbreviation".format(platform['name']))
return False
return True
|
715187e707e6e070bb170ebceedd5e05bd9124c9
| 680,070 |
def none_low_med_high_to_value(scale_value):
"""
This method will transform a string value from the None / Low / Med /
High scale to its confidence integer representation.
The scale for this confidence representation is the following:
.. list-table:: None, Low, Med, High to STIX Confidence
:header-rows: 1
* - None/ Low/ Med/ High
- STIX Confidence Value
* - Not Specified
- Not Specified
* - None
- 0
* - Low
- 15
* - Med
- 50
* - High
- 85
Args:
scale_value (str): A string value from the scale. Accepted strings are
"None", "Low", "Med" and "High". Argument is case sensitive.
Returns:
int: The numerical representation corresponding to values in the
None / Low / Med / High scale.
Raises:
ValueError: If `scale_value` is not within the accepted strings.
"""
if scale_value == 'None':
return 0
elif scale_value == 'Low':
return 15
elif scale_value == 'Med':
return 50
elif scale_value == 'High':
return 85
else:
raise ValueError("STIX Confidence value cannot be determined for %s" % scale_value)
|
fb9daf699e2b1f9280290ad2cf37564cd1e440f2
| 130,702 |
def convert2voxels(x_um_rw, imExtends, voxelSize):
"""
Converting from real world um coordinates to 0 origin voxel.
:param x_um_rw: coordinates in real world frame, dimensions in um
:param imExtends (list of lists): the first list are the initial extends of the image, and the second list the
final ones. Dimensions are um and they are used to localize the image in the real world frame
:param voxelSize: voxel size
:return: coordinates in 0 centered frame, dimensions in voxels
"""
# First we bring the coordinates origin to 0
x_um_0 = x_um_rw - imExtends[0]
# And then we transform the dimensions to voxels
X_voxel_0 = x_um_0 / voxelSize
return X_voxel_0
|
123414615e40bb41802b8f5f072bb994f859f3d7
| 696,197 |
from typing import Type
def get_description_from_payload(payload):
"""
Return description from a single row.
We only return the name, type (inferred from the data) and if the values
can be NULL. String columns in Druid are NULLable. Numeric columns are NOT
NULL.
"""
return [
(
col['label'], # name
Type[col['type'].upper()], # type_code
None, # [display_size]
None, # [internal_size]
None, # [precision]
None, # [scale]
True, # [null_ok]
)
for col in payload['table']['cols']
]
|
50a2124b39fcc881e73408bb8d69a573805fa7f5
| 596,143 |
from itertools import chain
def get_words(words):
"""Splits out a parameter set into individual words.
First, it splits the input parameters by space. Then, it chains them
together. Then, it joins them together delimited by , and splits them
out once again. The end result is that words can be provided as
individual parameters, or a single comma separated string or a single
space separated string or some combination thereof.
Args:
words: The word list to split out
Returns:
A set (hash set) of words which were in the provided input
"""
# First, convert all arguments to strings
words = [i if isinstance(i, str) else (','.join(i) if hasattr(i, '__iter__')
else str(i))
for i in words]
# Split on spaces, then chain the resulting arrays together
# Join into a single string delimited by comma
words = ','.join(chain.from_iterable(i.split() for i in words))
# Split out the joined string by comma (to also split any single words which
# contained a comma). Ignore empty strings.
return set(i for i in words.split(',') if i)
|
bd5c26c6525460ea0127fd0c73b8f0b049370894
| 163,065 |
def validate_token_sequence(token_sequence: str) -> bool:
"""Returns True, if `token_sequence` is properly formed.
Token sequences are strings or words which are separated by
single blanks with no leading or trailing blank.
"""
return token_sequence[:1] != ' ' and token_sequence[-1:] != ' ' \
and token_sequence.find(' ') < 0
|
9419ce9c217d2cf2fa84b3fd34e5c6ac9b6de66f
| 108,060 |
async def get_unbuilt_count(db, ref_id: str) -> int:
"""
Return a count of unbuilt history changes associated with a given `ref_id`.
:param db: the application database client
:param ref_id: the id of the ref to count unbuilt changes for
:return: the number of unbuilt changes
"""
return await db.history.count_documents({
"reference.id": ref_id,
"index.id": "unbuilt"
})
|
6f055c81ef90bc68b314085fcb9c653a5d91caed
| 488,171 |
def get_all_index_in_list(L, item):
"""
get all the indexies of the same items in the list
:param L: list
:param item: item to be found
:return: the indexies of all same items in the list
"""
return [index for (index, value) in enumerate(L) if value == item]
|
3396daad5304ced92baa13f0ca15aab5b904d95b
| 483,093 |
def transaction_id(request):
"""
Extract the transaction id from the given request.
:param IRequest request: The request we are trying to get the
transaction id for.
:returns: A string transaction id.
"""
return request.responseHeaders.getRawHeaders('X-Response-Id')[0]
|
61329f18658f5d3fcce756cb2ac816e3e89ccd62
| 84,288 |
def unique_preserve_order(lst):
"""
Deduplicate lst without changing the order. Return a new list.
The elements of lst are not required to be hashable.
"""
new_lst = []
for item in lst:
if item not in new_lst:
new_lst.append(item)
return new_lst
|
4ddbf118947d7e1b6b1619cee7fd9193f60f02fb
| 510,157 |
def remove(bowl_a, bowl_b):
"""Return bowl b without the "ingredients" of bowl_a."""
for ingredient in bowl_a:
# If an ingredient is also in bowl_a and bowl_b - remove it.
if ingredient in bowl_b:
bowl_b.remove(ingredient)
return bowl_b
|
5480c6680f9cac9fd033dedacc14da5bc58fc551
| 88,905 |
def filter_image_only(f):
"""Filter only png file through."""
if f.endswith('png'):
return True
return False
|
2177bded7d41b7c6800a44e7678d6dae10c7064d
| 68,903 |
import math
def mean_and_std(values):
"""Compute mean standard deviation"""
size = len(values)
mean = sum(values) / size
s = 0.0
for v in values:
s += (v - mean) ** 2
std = math.sqrt((1.0 / (size - 1)) * s)
return mean, std
|
962bbf6de83afe0dd7c52132fe5ebaeb26397cb8
| 437,968 |
def convertConfigDict(origDict, sep="."):
"""
For each key in the dictionary of the form <section>.<option>,
a separate dictionary for is formed for every "key" - <section>,
while the <option>s become the keys for the inner dictionary.
Returns a dictionary of dictionary.
"""
result = {}
for keys in origDict:
tempResult = result
parts = keys.split(sep)
for part in parts[:-1]:
tempResult = tempResult.setdefault(part, {})
tempResult[parts[-1]] = origDict[keys]
return result
|
da4952ee883cd3d2d0d01e64f9055c22a277a16f
| 676,817 |
def get_translation_cache_key(translated_model, master_id, language_code):
"""
The low-level function to get the cache key for a translation.
"""
# Always cache the entire object, as this already produces
# a lot of queries. Don't go for caching individual fields.
return 'parler.{0}.{1}.{2}.{3}'.format(translated_model._meta.app_label, translated_model.__name__, master_id, language_code)
|
0da47b111ab3aad2e59679b29eb65b2325ef24d1
| 253,607 |
def simple_score(correlation, sharpe, drawdown, alpha, sensitivity, out=None):
"""
Calculate a simple score on a scale of 1 to 10 based on the
given metrics. Each metric is given 2 points. If alpha is zero,
then the score is zero since you have made no positive returns
correlation
correlation of strategy, between 1 and -1
sharpe
sharpe ratio
drawdown
max drawdown percentage
alpha
excess returns
sensitivity
price sensitivity based on open=high or open=low prices
out
output format.
returns score if None else the list of points for
any other argument
"""
# A list to hold points for each of the metric
points = [0, 0, 0, 0, 0]
correlation = abs(correlation)
drawdown = abs(drawdown)
if correlation < 0.1:
points[0] = 2
else:
points[0] = 2 * (1 - correlation)
if sharpe > 0:
points[1] = min(2, sharpe)
if abs(drawdown) < 0.05:
points[2] = 2
else:
points[2] = max(0, 2 - ((drawdown - 0.05) * 0.25 * 100))
if alpha > 0:
points[3] = min(2, alpha * 100)
if sensitivity < 0.1:
points[4] = 2
else:
points[4] = max(0, (0.3 - sensitivity) * 10)
if out == "list":
return points
else:
return 0 if alpha <= 0 else sum(points)
|
2dd8bdfec46e571afd7f8013bfbb574ad304d8a6
| 400,895 |
def bw_silver(x, y):
"""
Returns the Silverman bandwidth factor.
Parameters
----------
x : array_like
Color from the CMD.
y : array_like
Magnitude.
Returns
-------
bw : float
Silverman's bandwidth factor.
"""
d = 2
n = len(x)
bw = (n * (d + 2) / 4) ** (-1 / (d + 4))
return bw
|
5c891df2bdad0d3d4a952b7fa52a24aa5819380f
| 365,096 |
def is_number(val):
"""
Parameters
----------
val: str, arbitrary input
Returns
-------
bool, True if val is interpretable as a float and False else
"""
try:
float(val)
return True
except ValueError:
return False
|
b20c034093c82a274c44d5b0525d4f6c8ce3fbfe
| 513,509 |
def user_says_yes(
msg: str = "\nDo you want to delete log files for this source? (y/n) ",
) -> bool:
"""Asks the user to enter either "y" or "n" to confirm. Returns boolean."""
choice = None
while choice is None:
user_input = input(msg)
if user_input.lower() == "y":
choice = True
elif user_input.lower() == "n":
choice = False
else:
print('Please enter either "y" or "n".')
return choice
|
f984eb2524a84efe50330ac993a8b73802d15903
| 132,648 |
def get_clouds_landsat(file):
"""purpouse: to read cloud image level from landsat metadata file
Parameters
----------
file: path
path to metadata file
Returns
-------
cloud level
"""
with open(file, "r") as f:
lines = f.readlines()
cloud = None
for line in lines:
if "CLOUD_COVER_LAND" in line:
cloud = line.split("=")[1].replace("\n", "").strip()
return cloud
|
cd90fe65b25d45ffc1ffe9c2de993463379a831f
| 340,207 |
def test_function_attributes(cache):
""" Simple tests for attribute preservation. """
def tfunc(a, b):
"""test function docstring."""
return a + b
cfunc = cache()(tfunc)
assert cfunc.__doc__ == tfunc.__doc__
assert hasattr(cfunc, 'cache_info')
assert hasattr(cfunc, 'cache_clear')
assert hasattr(cfunc, '__wrapped__')
|
591e0148a5fbeb2cece1114f728a34ed6c453b9c
| 671,644 |
from pathlib import Path
from typing import List
def get_regions_data(path: Path) -> List[dict]:
"""Gets base data for a region in a page.
:param path: Path to the region directory.
:return: List of dictionaries holding base region data.
"""
regions = list()
for region in sorted(path.glob("./*.offset")):
region_dict = dict()
with region.open("r") as file:
(x, y) = file.read().split(",")
region_dict["name"] = str(region.stem)
region_dict["offset"] = (int(x), int(y))
regions.append(region_dict)
return regions
|
b5e4d10f58815eaec23104ec37ac6c9beaa45c43
| 676,050 |
def example_function(myinput: int) -> int:
"""
Returns the given parameter without change.
This function is just for demo purposes and should be removed when the template
is used for an actual project.
Args:
myinput: The parameter to return.
Returns:
The given parameter without change.
"""
return myinput
|
9c599f24075b837b64facbcef0eadf07462f1454
| 52,269 |
def is_pip_include_dependency(package: str) -> bool:
"""Returns True if the given package name (as used in a Conda environment file) relies on PIP includes,
in the format "-r requirements.txt"
:param package: The name of the PIP dependency to check.
:return: True if the package name is a PIP include statement.
"""
return package.strip().startswith("-r ")
|
bc31dc61eedf56e1a9acb555fcd5808ed2d5c9ce
| 534,762 |
def text_to_string(filename, useEncoding):
"""Read a text file and return a string."""
with open(filename, encoding=useEncoding, errors='ignore') as infile:
return infile.read()
|
f879bb747699496204820b74944fd563658a7117
| 707,080 |
def match_probability(h, bands, similarity):
"""
Function returning the probability two pairs will match given a number
of a signature's integers, the number of bands dividing the signature
matrix and the desired similarity.
Args:
h (int): Number of integers in the minhash signature.
bands (int): Number of bands dividing the signature matrix.
similarity (float): Desired Jaccard similarity.
Returns:
float: The match probability.
"""
return 1.0 - (1.0 - similarity ** (h / bands)) ** bands
|
f1c3dd3288b514de5df212eae5c7f1fa606d427b
| 505,830 |
def add_colons(df, id_name='', col_types={}):
"""
Adds the colons to column names before neo4j import (presumably removed by `remove_colons` to make queryable).
User can also specify a name for the ':ID' column and data types for property columns.
:param df: DataFrame, the neo4j import data without colons in it (e.g. to make it queryable).
:param id_name: String, name for the id property. If importing a CSV into neo4j without this property,
Neo4j mayuse its own internal id's losing this property.
:param col_types: dict, data types for other columns in the form of column_name:data_type
:return: DataFrame, with neo4j compatible column headings
"""
reserved_cols = ['id', 'label', 'start_id', 'end_id', 'type']
# Get the reserved column names that need to be changed
to_change = [c for c in df.columns if c.lower() in reserved_cols]
if not to_change:
raise ValueError("Neo4j Reserved columns (['id', 'label' 'start_id', 'end_id', 'type'] not " +
"found in DataFrame")
# Add any column names that need to be types
to_change += [c for c in df.columns if c in col_types.keys()]
change_dict = {}
for name in to_change:
# Reserved column names go after the colon
if name.lower() in reserved_cols:
if name.lower() == 'id':
new_name = id_name + ':' + name.upper()
else:
new_name = ':' + name.upper()
else:
# Data types go after the colon, while names go before.
new_name = name + ':' + col_types[name].upper()
change_dict.update({name: new_name})
return df.rename(columns=change_dict)
|
d7bca92e939c7ca109cd66841bb2a45d2fdbeac0
| 62,001 |
def dequeue(queue):
""" Return anytype from queue"""
return None if not queue else queue.pop(0)
|
ad8382c79a230a97e25b975bce7fbb67c65938c3
| 475,497 |
def is_nonterminal(subtree):
"""True if this subtree does not consist of a single terminal node
(i.e., a word or an empty node)."""
return isinstance(subtree, list)
|
0c5ddacc9ea85504af338ff649b068cce827e7e2
| 259,380 |
import logging
def allocate_colors(matches):
"""For the array of matching colors, build a new array that represents their relative allocations.
As a side effect, modifies `matches` to add the percentages to each color.
"""
# Allocate the colors by percentage to individual tiles
total_points = sum([int(m.num_points) for m in matches])
# Derive the percentage representation in the color set, throwing out any that are too rarely
# represented to be displayable in our 10x10 grid
for m in matches:
logging.info("Total points {} / num points {} for {}".format(total_points, m.num_points, m.tile))
alloc = int(m.num_points / total_points * 100)
m.freq = alloc
for m in matches[:]:
if m.freq == 0:
matches.remove(m)
# Sometimes the sums don't total 100 because we dropped out low representation items, so add those back
sum_counts = sum(x.freq for x in matches)
remainder = 100 - sum_counts
matches.sort(key = lambda x: x.freq)
matches.reverse()
matches[-1].freq += remainder
return matches
|
8748a19718439d62a8d567ce91ef4f3c774c0cad
| 162,155 |
import importlib
def load_object(path):
"""
Load an object given its absolute object path, and return it.
"""
if not isinstance(path, str):
if callable(path):
return path
else:
raise TypeError("Unexpected argument type, expected string "
"or object, got: %s" % type(path))
try:
dot = path.rindex('.')
except ValueError:
raise ValueError(f"Error loading object '{path}': not a full path")
module, name = path[:dot], path[dot + 1:]
mod = importlib.import_module(module)
try:
obj = getattr(mod, name)
except AttributeError:
obj = importlib.import_module(path)
# raise NameError(f"Module '{module}' doesn't define any object named '{name}'")
return obj
|
6c2bdf7575dba7fa8284ba445ae703fc51089b92
| 520,735 |
import json
def get_service_set(schema_path: str) -> set:
"""
Get the set of all services present in a schema.
Args:
schema_path: schema file path
Returns:
service_set: set of services in file
"""
service_set = set()
with open(schema_path, encoding="UTF-8") as f:
schema = json.load(f)
for service in schema:
service_set.add(service["service_name"])
f.close()
return service_set
|
8e0d51f2af7133ba92451c3fa1d4f9cd4cb4a997
| 609,961 |
def non_private_tags_in_dicom_dataset(ds):
"""Return all non-private tags from a DICOM dataset."""
non_private_tags = []
for elem in ds:
if not elem.tag.is_private and not (
# Ignore retired Group Length elements
elem.tag.element == 0
and elem.tag.group > 6
):
non_private_tags.append(elem.tag)
return non_private_tags
|
5a69e3a8d3936462210e43cfd7a17fcc90e2d9d7
| 491,911 |
def ReadInFile(file):
"""
Read the file and return the content of the file as a list.
"""
with open(file, "r") as f:
return f.readlines()
|
ff339de1029afd947f4da7023a7e1a557d2d0f4e
| 565,423 |
import sqlite3
def create_or_open_db(filename):
""" Create (1st time) or open database
:argument:
filename: str database file
:returns:
conn: sqlite3 database connection
cursor: sqlite3 database cursor
"""
conn = sqlite3.connect(filename)
cursor = conn.cursor()
sql = """ CREATE TABLE IF NOT EXISTS note (
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
bibkey TEXT UNIQUE NOT NULL,
author TEXT NOT NULL,
genre TEXT,
thesis TEXT,
hypothesis TEXT,
method TEXT,
finding TEXT,
comment TEXT,
img_linkstr TEXT
);"""
cursor.execute(sql)
sql = """ CREATE TABLE IF NOT EXISTS tags (
bibkey TEXT NOT NULL,
tag TEXT NOT NULL
);"""
cursor.execute(sql)
# create fts5 virtual table for full text search
sql = """ CREATE VIRTUAL TABLE IF NOT EXISTS fts USING fts5(
author,
thesis,
hypothesis,
method,
finding,
comment,
content="note",
content_rowid="id"
);
"""
cursor.execute(sql)
# create triggers
cursor.execute(""" CREATE TRIGGER IF NOT EXISTS tbl_ai
AFTER INSERT ON note BEGIN
INSERT INTO fts(rowid, author, thesis, hypothesis, method,
finding, comment) VALUES (new.id, new.author, new.thesis, new.hypothesis,
new.method, new.finding, new.comment);
END;""")
cursor.execute(""" CREATE TRIGGER IF NOT EXISTS tbl_ad
AFTER DELETE ON note BEGIN
INSERT INTO fts(fts, rowid, author, thesis, hypothesis, method,
finding, comment) VALUES ('delete', old.id, old.author, old.thesis,
old.hypothesis, old.method, old.finding, old.comment);
END;""")
cursor.execute(""" CREATE TRIGGER IF NOT EXISTS tbl_au
AFTER UPDATE ON note BEGIN
INSERT INTO fts(fts, rowid, author, thesis, hypothesis, method,
finding, comment) VALUES ('delete', old.id, old.author, old.thesis,
old.hypothesis, old.method, old.finding, old.comment);
INSERT INTO fts(rowid, author, thesis, hypothesis, method,
finding, comment) VALUES (new.id, new.author, new.thesis, new.hypothesis,
new.method, new.finding, new.comment);
END;""")
conn.commit()
return conn, cursor
|
df85ed38a2ed1d4c870d1bfdc69b4928c0e4b0c0
| 470,436 |
def _loc(content, node):
"""
Find the location of a node within ``content``
Args:
content (str): The file content
node (ast.Node): Node to find
Returns:
(int, int): Start/end indices of string
"""
start_line, start_col = node.lineno, node.col_offset
end_line, end_col = node.end_lineno, node.end_col_offset
line_lengths = [len(line) for line in content.splitlines(True)]
idx0 = sum(line_lengths[: start_line - 1]) + start_col
idx1 = sum(line_lengths[: end_line - 1]) + end_col
return (idx0, idx1)
|
6f7c798a300ca579ecbe037b076b7ded5d2a0054
| 68,365 |
from typing import Any
def get_class_name(module_ref: Any, suffix: str = "Location") -> str:
"""Get class name to be dynamically imported. Class name are expected to be in following formats
example -
module name: test
suffix: Abc
expected class names -
1. TESTAbc
2. TestAbc
:param module_ref: Module from which to get class location type implementation
:param suffix: suffix for class name
"""
module_name = module_ref.__name__.split(".")[-1]
class_names_formats = [
f"{module_name.title()}{suffix}",
f"{module_name.upper()}{suffix}",
]
for class_names_format in class_names_formats:
if hasattr(module_ref, class_names_format):
return class_names_format
raise ValueError(
"No expected class name found, please note that the class names should an expected formats."
)
|
f740430d903a5516fedacc621a0c0dcd5981d6f7
| 539,543 |
def curry(f):
"""
Convert a two-parameter function into two one-parameter functions. Curried
functions will allow the partial application of arguments to form new
functions.
((a, b) -> c) -> a -> b -> c
"""
return lambda a: lambda b: f(a, b)
|
bb70cd4f24a52780bf8587806431649f4a375594
| 488,501 |
from typing import Tuple
import torch
from typing import List
def encode_supervisions(
supervisions: dict, subsampling_factor: int
) -> Tuple[torch.Tensor, List[str]]:
"""
Encodes Lhotse's ``batch["supervisions"]`` dict into a pair of torch Tensor,
and a list of transcription strings.
The supervision tensor has shape ``(batch_size, 3)``.
Its second dimension contains information about sequence index [0],
start frames [1] and num frames [2].
The batch items might become re-ordered during this operation -- the
returned tensor and list of strings are guaranteed to be consistent with
each other.
"""
supervision_segments = torch.stack(
(
supervisions["sequence_idx"],
supervisions["start_frame"] // subsampling_factor,
supervisions["num_frames"] // subsampling_factor,
),
1,
).to(torch.int32)
indices = torch.argsort(supervision_segments[:, 2], descending=True)
supervision_segments = supervision_segments[indices]
texts = supervisions["text"]
texts = [texts[idx] for idx in indices]
return supervision_segments, texts
|
8cd6a0ef6fa5027af454e804b82dacfe6f44be12
| 687,357 |
def twitter_id_from_timestamp(ts: float) -> int:
"""Get twitter id from timestamp
Args:
ts (float): time stamp in seconds
Returns:
int: twitter id representing the timestamp
"""
return (int(ts * 1000) - 1288834974657) << 22
|
2eb6f394e217f28d5950d9fe6d03d868d4696ffb
| 623,257 |
def getxmlattr( xml_root, path, key):
"""
Function to extract the attribute of an xml key
"""
try:
res = xml_root.find(path).attrib[key]
except:
raise Exception('Cannot find attribute %s at %s'%(key, path))
return res
|
eda8a95c75b1d469af6db24e94cd0a1870faebca
| 295,999 |
import csv
def read_score_file(filename):
"""
Reads the given score file.
:param filename: A CSV file with segment scores.
:return: A dictionary with segment name to score mappings.
"""
"""Returns a dictionary of the scores in the csv file *filename*"""
with open(filename, 'r') as fp:
csv_file = csv.reader(fp)
_ = next(csv_file)
return {segment_name: float(score) for segment_name, score in csv_file}
|
5e8053d8345640b77a776d329e2b933b982b700b
| 247,755 |
import requests
import time
def make_request(method, url, headers=None, data=None, retries=3):
""" make a request, with the ability to have retries in specific return
codes
:param method: HTTP verb method
:param url:
:param retries: int, this should be greater or equal than 1
:return:
"""
no_retry_status = [404, 401, 403]
may_retry_status = [408, 500, 502, 503]
if not retries:
return requests.request(method=method,
url=url,
headers=headers,
data=data)
while retries:
r = requests.request(method=method,
url=url,
headers=headers,
data=data)
if r.status_code in no_retry_status:
return r
elif r.status_code in may_retry_status:
retries -= 1
time.sleep(1)
if retries == 0:
return r
continue
else:
return r
|
25281e1a4cc1b329e86a782aab19f0b80f70b4b1
| 473,544 |
import math
def apply_deadzone(value: float, threshold: float) -> float:
"""Apply a deadzone to a value in [-1,1].
This ensures that the rest of the input space maps to [-1,1].
"""
assert 0 <= threshold < 1
if abs(value) < threshold:
return 0
return (value - math.copysign(threshold, value)) / (1 - threshold)
|
49a0e0c642059865cb1de838bddf14e7ec3a8b9b
| 54,568 |
import json
import traceback
def _read_json_with_comments(json_path):
"""Reads a file with '//' comments.
Reads the file, removes the commented lines and return
a json loads of the result.
"""
file_lines = []
with open(json_path) as json_file:
file_lines = json_file.readlines()
lines_without_comments = []
for line in file_lines:
if line.strip()[0:2] != '//' and len(line.strip()) > 0:
lines_without_comments.append(line)
file_content_without_comments = ''.join(lines_without_comments)
json_data = {}
try:
json_data = json.loads(file_content_without_comments)
except Exception:
print('There was an error reading file {}'.format(json_path))
print(traceback.format_exc())
return json_data
|
f275a6e845f2d728f761371300d8f2f4988897e9
| 437,174 |
def translate_key(key):
"""
Function to return the correct configuration key.
If not found return the key itself.
Returns a string.
"""
mapping = {
'user': 'User',
'identityfile': 'IdentityFile',
'proxycommand': 'ProxyCommand',
'ip': 'Hostname',
'hostname': 'Hostname',
'port': 'Port',
}
if key in mapping:
return str(mapping[key])
else:
return str(key)
|
9c7b9b32d1b341946a9c66120c7b32c9c304c754
| 35,110 |
import yaml
def load_config_file(config_file):
"""Load configuration from a specified yaml config file path"""
with open(config_file) as f:
return yaml.load(f, Loader=yaml.FullLoader)
|
75d7ea22bc50d2c351f052152a5b25169f29ae7a
| 311,326 |
def parse_args(parser):
"""
Parse commandline arguments.
"""
parser.add_argument('-o', '--output_directory', type=str, default='logs', required=True, help='Directory to save checkpoints')
parser.add_argument('-d', '--dataset-path', type=str, default='filelists', help='Path to dataset')
parser.add_argument('--log-file', type=str, default='nvlog.json', help='Filename for logging')
parser.add_argument('--latest-checkpoint-file', type=str, default='checkpoint_latest.pt', help='Store the latest checkpoint in each epoch')
parser.add_argument('--phrase-path', type=str, default=None, help='Path to phrase sequence file used for sample generation')
parser.add_argument('--tacotron2-checkpoint', type=str, default=None, help='Path to pre-trained Tacotron2 checkpoint for sample generation')
# training
training = parser.add_argument_group('training setup')
training.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run')
training.add_argument('--epochs-per-alignment', type=int, default=10, help='Number of epochs per alignment')
training.add_argument('--epochs-per-checkpoint', type=int, default=50, help='Number of epochs per checkpoint')
training.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators')
training.add_argument('--dynamic-loss-scaling', type=bool, default=True, help='Enable dynamic loss scaling')
training.add_argument('--amp-run', action='store_true', help='Enable AMP')
training.add_argument('--cudnn-enabled', action='store_true', help='Enable cudnn')
training.add_argument('--cudnn-benchmark', action='store_true', help='Run cudnn benchmark')
training.add_argument('--disable-uniform-initialize-bn-weight', action='store_true', help='disable uniform initialization of batchnorm layer weight')
optimization = parser.add_argument_group('optimization setup')
optimization.add_argument('--use-saved-learning-rate', default=False, type=bool)
optimization.add_argument('--init-lr', '--initial-learning-rate', default=1e-3, type=float, required=True, help='Initial learing rate')
optimization.add_argument('--final-lr', '--final-learning-rate', default=1e-5, type=float, required=True, help='Final earing rate')
optimization.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay')
optimization.add_argument('--grad-clip-thresh', default=1.0, type=float, help='Clip threshold for gradients')
optimization.add_argument('-bs', '--batch-size', default=32, type=int, required=True, help='Batch size per GPU')
# dataset parameters
dataset = parser.add_argument_group('dataset parameters')
dataset.add_argument('--load-mel-from-disk', action='store_true', help='Loads mel spectrograms from disk instead of computing them on the fly')
dataset.add_argument('--training-anchor-dirs', default=['ljs_mel_text_train_filelist.txt'], type=str, nargs='*', help='Path to training filelist')
dataset.add_argument('--validation-anchor-dirs', default=['ljs_mel_text_val_filelist.txt'], type=str, nargs='*', help='Path to validation filelist')
dataset.add_argument('--text-cleaners', nargs='*', default=['basic_cleaners'], type=str, help='Type of text cleaners for input text')
# audio parameters
audio = parser.add_argument_group('audio parameters')
audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value')
audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate')
audio.add_argument('--filter-length', default=2048, type=int, help='Filter length')
audio.add_argument('--hop-length', default=275, type=int, help='Hop (stride) length')
audio.add_argument('--win-length', default=1100, type=int, help='Window length')
audio.add_argument('--mel-fmin', default=125.0, type=float, help='Minimum mel frequency')
audio.add_argument('--mel-fmax', default=7600.0, type=float, help='Maximum mel frequency')
distributed = parser.add_argument_group('distributed setup')
distributed.add_argument('--distributed-run', default=False, type=bool, help='enable distributed run')
distributed.add_argument('--rank', default=0, type=int, help='Rank of the process, do not set! Done by multiproc module')
distributed.add_argument('--world-size', default=1, type=int, help='Number of processes, do not set! Done by multiproc module')
distributed.add_argument('--dist-url', type=str, default='tcp://localhost:23456', help='Url used to set up distributed training')
distributed.add_argument('--group-name', type=str, default='group_name', required=False, help='Distributed group name')
distributed.add_argument('--dist-backend', default='nccl', type=str, choices={'nccl'}, help='Distributed run backend')
return parser
|
76a417cf89bdb0b36bb60a0f833cfacbcf041dc2
| 366,860 |
def get_path(path, search_space, include_key=False):
"""Retrieve a value from a nested dict by following the path.
Throws KeyError if any key along the path does not exist"""
if not isinstance(path, (tuple, list)):
path = [path]
current_value = search_space[path[0]]
if len(path) == 1:
return (path[0], current_value) if include_key else current_value
return get_path(path[1:], current_value, include_key)
|
778495fad59292ea2c75b062a3bdfb369b349a17
| 160,290 |
def find_mdf(df):
"""
Finds the median destructive field for AF demag data
Parameters
__________
df : dataframe of measurements
Returns
______
mdf : median destructive field
"""
mdf_df=df[df.meas_norm<=0.5]
mdf_high=mdf_df.treat_ac_field_mT.values[0]
mdf_df=df[df.meas_norm>=0.5]
mdf_low=mdf_df.treat_ac_field_mT.values[-1]
mdf=int(0.5*(mdf_high+mdf_low))
return mdf
|
c702435aae510e8c24154ad2ae9bff6da3270db4
| 167,297 |
def _enforce_trailing_slash(string: str) -> str:
"""Ensure string ends in forward slash."""
if string.endswith("/"):
return string
return f"{string}/"
|
94a42813e84e9b3704de7ad3fc92b612ddc1f511
| 299,117 |
def parseRange(string):
"""Parses a dash-separated string of ints into a tuple"""
splitarray = string.split("-")
if len(splitarray) == 1:
return (int(splitarray[0]), int(splitarray[0]))
if len(splitarray) == 2:
return (int(splitarray[0]), int(splitarray[1]))
raise ValueError("Cannot parse range " + string)
|
7df2962f06d2eb9b1e1107b7a2f20be82598547e
| 181,469 |
def valid_reverse_lookup(net):
"""
Check if the reverse lookup dictionary
has the same count as edges in the network
"""
return len(net.graph["keys"]) == len(net.edges())
|
b1335ae0bfa1d762ee14587b4149d7358a3c337a
| 168,511 |
def inter_cluster_mean_score(cluster, graph, mean=None):
"""
The method is based on the calculation of distances for each sample in a given cluster to
the specific centroid of cluster. If the centroid is not given by specifying mean, it is
calculated with the distance function that is provided by graph.
:param cluster: The cluster to determine the mean inter cluster score for
:param graph: The underlying graph that offers a distance function
:param mean: A precalculated centroid for given cluster
:return: Mean distances within the given cluster to its centroid
"""
distance = 0
assert cluster
if mean is None:
mean = graph.distance.mean(list(cluster))
for node in cluster:
distance += graph.distance(mean, node)
return distance / float(len(list(cluster)))
|
b669eaba5805c299c797a5bd7ae30ef0b106e2bc
| 610,228 |
def validate_dict(dict_like, schema):
"""Return a list of validation error strings.
Compare ``dict_like`` to ``schema``, returning a list of strings
describing all the validation errors. In particular, validate that
``dict_like`` contains every key specified in ``schema`` as well as
that each key's value is an instance of the type specified by
``schema``. It is *not* considered a validation error if
``dict_like`` has keys which are not in ``schema``.
Parameters
----------
dict_like : Dict
a dictionary-like object to be validated against ``schema``.
schema : Dict[String, type]
a dictionary mapping strings to instances of ``type`` (i.e.,
classes and built-in types like ``str``).
Returns
-------
List[str]
a list of strings describing all validation errors found when
comparing ``dict_like`` to ``schema``.
Example
-------
The following example shows a dictionary validated against a
schema where the dictionary passes validation::
>>> schema = {'foo': int}
>>> data = {'foo': 3}
>>> validate_dict(dict_like=data, schema=schema)
[]
"""
validation_errors = []
for key, value_type in schema.items():
if key not in dict_like:
validation_errors.append(f'Key ({key}) was not found.')
elif not isinstance(dict_like[key], value_type):
validation_errors.append(
f'Key ({key}) is not of type {value_type}')
return validation_errors
|
a900c388b8c2d5f144ae0b15fcfc566ae7d1e6bc
| 235,592 |
def feature_dict(entry):
"""Template dictionary for JSON feature from TED entry"""
corners = [*entry["corners"], entry["corners"][0]] # create Linear Ring
feature = {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [corners]
},
"properties": {
"name": entry["name"],
"ted-id": entry["id"],
"description": entry["type"]
}
}
return feature
|
0638da4ec93da344a72e00cc61795301fe10ffd8
| 568,944 |
def fitness(ref_matrix, guess_matrix):
"""Returns the value of the fitness function.
The input is the reference matrix and the guess matrix. The reference matrix is assumed to be regularized (to contain no zero elements)"""
f=1
for i in range (len(ref_matrix)):
for j in range (len(ref_matrix)):
f=f*(ref_matrix[i,j]**guess_matrix[i,j])
#Convertion from the product to an exponential of a sum is being used; transpose is needed to compute M_ij log(N_ij) and not M_ij log(N_ji)
# return(np.exp(np.trace(np.transpose(guess_matrix) .dot (np.log(ref_matrix) ) ) ))
return(f)
|
55af7b8ce29ee176fcc12839b943c1c2560a9ab9
| 153,684 |
import re
def get_phased(glstring):
"""
Take a GL String and return a list of phased alleles
"""
phased_list = []
for phased in re.split(r'[+|^\]', glstring):
if "~" in phased:
phased_list.append(phased)
return phased_list
|
0df0047ff247ac51bad378b15ff0f8018f23ec09
| 199,463 |
def compute_in_degrees(digraph):
"""
Compute In-Degree Dictionary for the given directed Graph.
:param digraph: dictionary representation of a directed graph.
:return: the dictionary representing the in-degree count for each node in
the graph.
"""
in_degrees_representation = dict.fromkeys(digraph.keys(), 0)
for connected_nodes in digraph.itervalues():
for entry in connected_nodes:
in_degrees_representation[entry] += 1
return in_degrees_representation
|
5e04ecd15a0b6e41ea9a40be771164a016deb24e
| 556,903 |
def round_up(n, size):
"""
Round an integer to next power of size. Size must be power of 2.
"""
assert size & (size - 1) == 0, "size is not power of 2"
return ((n - 1) | (size - 1)) + 1
|
02f34fd5f2c059a9ee1b657f099b4699d90dfc01
| 24,878 |
from typing import Dict
import json
def get_msd_score_matches(match_scores_path: str) -> Dict:
"""
Returns the dictionary of scores from the match scores file.
:param match_scores_path: the match scores path
:return: the dictionary of scores
"""
with open(match_scores_path) as f:
return json.load(f)
|
2b339285bffe1adaf032319d22eac5d2ac27cedc
| 100,878 |
def find_word(string, start=0):
"""Find the first word starting from `start` position
Return the word and the position before and after the word
"""
while start < len(string) and string[start].isspace():
start += 1
end = start
while end < len(string) and not string[end].isspace():
end += 1
return string[start:end], start, end
|
cd0f6f02d2797c5f7bd04b3307fe34c29e3be748
| 55,202 |
def _inference_best_shape(n_images):
"""Inferences the best matplotlib row/column layout.
This method searches for the two closest factors of the number
`n_images`, and returns this tuple as the best shape, since this
is the closest to a square grid as possible.
"""
a, b, i = 1, n_images, 0
while a < b:
i += 1
if n_images % i == 0:
a = i
b = n_images // a
return [b, a]
|
c09cb3956f1a644d80fc34491eee34c76b74c482
| 571,238 |
def str_to_list(str_value) -> list:
"""
Convert string to list with one element
or just return received list
"""
return [str_value] if not isinstance(str_value, list) else str_value
|
3b95f1b614ff9a33bacdce24e73a97d63c38d7ad
| 540,317 |
def _getDictWithKey(key, dict_list):
""" Returns the first dictionary in dict_list which contains the given key"""
for d in dict_list:
if key in d:
return d
return None
|
52ce0870e5589cb9d439b658d4a6f877657ca205
| 608,907 |
def is_labeled(G):
"""Returns True iff every edge in the graph `G`
has the attribute ``label``.
Parameters
----------
G : graph
Examples
--------
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1, 2, label="a")
>>> sd.is_labeled(G)
True
>>> G.add_edge(2, 1)
>>> sd.is_labeled(G)
False
"""
return all("label" in data for _, _, data in G.edges(data=True))
|
8a4520e42b1919d389e8c1c427cb2a9cc9841904
| 327,229 |
import math
def healpix_resolution_calculator(nodes):
"""Calculate the resolution of a healpix graph
for a given number of nodes.
Args:
nodes (int): number of nodes in healpix sampling
Returns:
int: resolution for the matching healpix graph
"""
resolution = int(math.sqrt(nodes / 12))
return resolution
|
b486aab5cce9a6337d6c54aeb685ca5db6450942
| 170,631 |
import torch
def arap_R(Si):
"""
Given the covariance matrix Si, computes the ARAP rotation for point Pi
Parameters
----------
Si : Tensor
the (3,3,) tensor represeting the covariance matrix of point Pi
Returns
-------
Tensor
a (3,3,) tensor representing the ARAP rotation matrix of point Pi
"""
U, _, V = torch.svd(Si)
return torch.matmul(V, torch.t(U))
|
7d266f16d6ce46ce04c8bcb3b074d089800423b5
| 72,021 |
def _check_magic(f):
"""Determines file type from leading bytes."""
# CDF
f.seek(0)
CDF = f.read(3)
if CDF == 'CDF':
VERSION_BYTE = ord(f.read(1))
if VERSION_BYTE == 1:
return 'NetCDF Classic'
elif VERSION_BYTE == 2:
return 'NetCDF 64-bit'
return None
# HDF
HDF_MAGIC = b"\x89HDF\r\n\x1a\n"
f.seek(0)
HDF = f.read(8)
if HDF == HDF_MAGIC:
return 'HDF'
# PKZIP
ZIP_MAGIC = b"\x50\x4b\x03\x04"
f.seek(0)
ZIP = f.read(4)
if ZIP == ZIP_MAGIC:
return 'ZIP'
return None
|
c70675fdcb2cdc035202f054f1ec4bc52202cfd2
| 151,845 |
def get_hosts(leases):
""" get list of host in leases
leases is a dict from parse_dhcpd_config
return hosts as list
"""
return leases.keys()
|
4e3f11901bb8634a7b4efc42c4d3ebe4945151ac
| 578,079 |
def is_lookup_in_users_path(lookup_file_path):
"""
Determine if the lookup is within the user's path as opposed to being within the apps path.
"""
if "etc/users/" in lookup_file_path:
return True
else:
return False
|
2b4f8efe43301f94586eb4831d29536bf8d7c68c
| 526,122 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.