content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import torch
def get_prediction_ids(predictions):
""" Get the label ids from the raw prediction outputs """
tensor = torch.tensor(predictions)
softmax = torch.nn.functional.softmax(tensor, dim=-1)
argmax = torch.argmax(softmax, dim=-1)
return argmax.tolist()
|
51b93b23138c1d32cdba27d218ad01a87ebccb93
| 628,460 |
def get_names_from_rows(frows):
"""
Gets names from workbook and returns a list
Returns
-------
names : LIST
['first last', 'first last'] ... all are stripped and lowered.
"""
names = []
for row in frows:
name = row[2] + ', ' + row[1]
if name not in names:
names.append(name)
return sorted(names)
|
449b4a00b1e4000b17fd6618e296605cde462c77
| 421,467 |
def quote_string(arg: str) -> str:
"""Quote a string"""
if '"' in arg:
quote = "'"
else:
quote = '"'
return quote + arg + quote
|
ed982c56dfeb57c8c9244d693bbc94289b29f90c
| 558,451 |
def _compute_negative_examples(
label,
all_items,
pos_items,
item_to_labels,
label_graph,
assert_ambig_neg
):
"""
Compute the set of negative examples for a given label.
This set consists of all items that are not labelled
with a descendant of the label, but are also not labelled
with an ancestor of the label (can include siblings).
"""
anc_labels = label_graph.ancestor_nodes(label)
candidate_items = set(all_items) - set(pos_items)
if assert_ambig_neg:
neg_items = list(candidate_items)
else:
# Remove items from the negatives that are labelled
# most specifically as an ancestor of the current label
final_items = set()
for item in candidate_items:
ms_item_labels = label_graph.most_specific_nodes(
item_to_labels[item]
)
ms_item_labels = set(ms_item_labels)
if len(ms_item_labels & anc_labels) == 0:
final_items.add(item)
neg_items = list(final_items)
return neg_items
|
1e09ea6b88f03801eeb04103deeb62f642d54747
| 652,293 |
def all_unique(s):
"""
Returns a boolean which is True if each element in
iterable was used only once.
>>> all_unique('abcd')
True
>>> all_unique('ab')
False
"""
seen_it = {}
for c in s:
if c in seen_it:
return False
else:
seen_it[c] = True
return True
|
85d1888f1c8314ccf96940ef48aa04ccc7053e05
| 302,800 |
def recursive_dict_filling(dct, keys, value):
"""
Recursively add value to an arbitrary deep dictionary structure based on a list of keys.
"""
if not keys:
return value
else:
if not keys[0] in dct.keys():
dct[keys[0]] = dict()
dct[keys[0]] = recursive_dict_filling(dct[keys[0]], keys[1:], value)
return dct
|
2f9dfaaec843022501fef2dd0b39a7b2ecaa05a7
| 416,944 |
def draw_forces(ax, pos, vel, **kwargs):
""" draw forces on atoms
Args:
ax (plt.Axes): matplotlib Axes object, must have projection='3d'
pos (np.array): array of atomic positions
vel (np.array): array of forces on each atom (or velocities)
kwargs (dict,optional): keyword arguments passed to plt.plot
Returns:
list: a list of plt.Line3D
"""
x, y, z = zip(*pos)
vx, vy, vz = zip(*vel)
qvs = ax.quiver(x, y, z, vx, vy, vz, **kwargs)
return qvs
|
746ee30bd668ef53eb820959505fe254808a681f
| 184,562 |
def compare(numA, numB):
"""
compare(numA, numB):
Compares two numbers. Returns:
1, if the first number is greater than the second,
0, if they are equal,
-1, if the first number is smaller than the second.
Parameters
----------
numA: integer or float
numB: integer of float
Returns
-------
integer
"""
if numA > numB:
return 1
if numA < numB:
return -1
if numA == numB:
return 0
|
7ad62cb677882d22b32adb517a31a4149685ecef
| 22,259 |
def normalize_repo_root_url(url):
"""Normalize a GitHub URL into the root repository URL.
Parameters
----------
url : `str`
A GitHub URL
Returns
-------
url : `str`
Normalized URL of a GitHub repository.
Examples
--------
>>> normalize_repo_root_url('https://github.com/lsst/LDM-151.git')
'https://github.com/lsst/LDM-151'
"""
# Strip the .git extension, if present
if url.endswith('.git'):
url = url[:-4]
return url
|
bbd01746ebdc777ba23cce3ef6a1aa9081d8d46f
| 570,485 |
def point_in_polygon(x, y, polygon):
""" Check if a point is inside a polygon
- x,y - Coordinates of the point
- polygon - List of the vertices of the polygon [(x1, x2), (x2, y2), ..., (xn, yn)]"""
i = 0
j = len(polygon) - 1
res = False
for i in range(len(polygon)):
if (polygon[i][1] < y and polygon[j][1] >= y) \
or (polygon[j][1] < y and polygon[i][1] >= y):
if polygon[i][0] + (y - polygon[i][1]) / (polygon[j][1] - polygon[i][1]) * (
polygon[j][0] - polygon[i][0]) < x:
res = not res
j = i
return res
|
5e52fead34f6c0cc768dea5006edba153a505655
| 219,009 |
import string
import secrets
def random_string(length:int = 1024, ascii:bool = True, digits:bool = True) -> str:
"""Generate a random alphanumeric string of size `length`
Keyword arguments:
Argument: length:int (defaults to 128),
Return: string
"""
alphabet = []
if ascii: alphabet += string.ascii_letters
elif digits: alphabet += string.digits
else: raise SyntaxError("bool or digits should either be True")
return ''.join(secrets.choice(alphabet) for i in range(length))
|
4d267db4bf81fc6ea12bc9adc72dc05912a2eaca
| 368,490 |
def _convert_to_index_name(s):
"""Converts a string to an Elasticsearch index name."""
# For Elasticsearch index name restrictions, see
# https://github.com/DataBiosphere/data-explorer-indexers/issues/5#issue-308168951
# Elasticsearch allows single quote in index names. However, they cause other
# problems. For example,
# "curl -XDELETE http://localhost:9200/nurse's_health_study" doesn't work.
# So also remove single quotes.
prohibited_chars = [
' ', '"', '*', '\\', '<', '|', ',', '>', '/', '?', '\''
]
for char in prohibited_chars:
s = s.replace(char, '_')
s = s.lower()
# Remove leading underscore.
if s.find('_', 0, 1) == 0:
s = s.lstrip('_')
print('Index name: %s' % s)
return s
|
4ce052c19e97ed0d528890f3a444e05b88344753
| 672,829 |
import random
def backoff(retries: int, jitter: bool = True) -> int:
"""
Compute duration (seconds) to wait before retrying using exponential backoff with
jitter based on the number of retries a message has already experienced.
The minimum returned value is 1s
The maximum returned value is 604800s (7 days)
With max_retries=9, you will have roughly 30 days to fix and redeploy the the task
code.
Parameters
----------
retries : int
How many retries have already been attemped.
jitter : bool
Whether to add random noise to the return value (recommended).
Notes
-----
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
"""
x = 6**(retries + 1)
if jitter:
x = random.randrange(x // 3, x * 2)
return min(604_800, x)
|
51b7802f76697f52dc6bea800b349973061ec428
| 563,908 |
def isunauthenticated(f):
"""
Checks to see if the function is marked as not requiring authentication
with the @unauthenticated decorator. Returns True if decorator is
set to True, False otherwise.
"""
return getattr(f, 'unauthenticated', False)
|
fdf6dded7bd656ee122eb4f2b67b669dd0b9be1f
| 322,977 |
import typing
import re
def _mask_command(text: str, rules: str) -> str:
"""Mask part of text using rules.
:param text: source text
:type text: str
:param rules: regex rules to mask.
:type rules: str
:return: source with all MATCHED groups replaced by '<*masked*>'
:rtype: str
"""
masked: typing.List[str] = []
# places to exclude
prev = 0
for match in re.finditer(rules, text):
for idx, _ in enumerate(match.groups(), start=1):
start, end = match.span(idx)
masked.append(text[prev:start])
masked.append("<*masked*>")
prev = end
masked.append(text[prev:])
return "".join(masked)
|
e9c424cc5d699c3f50b2b265b0f261fa321e10a8
| 141,136 |
def format_weather_header_for_HELP(itype, iunits, city, lat=None):
"""
Prepare the header for the precipitation, air temperature and
global solar radiation input weather datafile for HELP. The format of the
header is defined in the subroutine READIN of the HELP Fortran source code.
"""
fheader = [['{0:>2}'.format(itype)], # 3: data was entered by the user.
['{0:>2}'.format(iunits)], # 1 for IP and 2 for SI
['{0:<40}'.format(city[:40])],
]
if lat is not None:
# Append the latitude if the data are solar radiation.
fheader.append(['{0:>6.2f}'.format(lat)])
else:
fheader.append([])
return fheader
|
7d848481b7316cef4094c2d24b9978665a1c2e1d
| 20,399 |
def calculate_average_error(actual_hist, noisy_hist):
"""
Calculates error according to the equation stated in part (e).
Args: Actual histogram (list), Noisy histogram (list)
Returns: Error (Err) in the noisy histogram (float)
"""
error = 0.0
for i in range(len(actual_hist)):
error += abs(actual_hist[i] - noisy_hist[i])
error = error / len(actual_hist)
return error
|
3df201e67c3849b62d9ceda7ec6d0b6072b18e2f
| 181,286 |
def parse_line_update_success(tokens):
"""Parses line which logs stats for a successful write/update request."""
latency = float(tokens[2])
name = tokens[1]
name_server = int(tokens[4])
local_name_server = int(tokens[5])
return latency, name, name_server, local_name_server
|
7cec3ef424a4b606b9e836e54d20a155d6bb016c
| 73,271 |
import requests
def get_url(url):
""" Get a url, return it's contents. """
headers = {"User-Agent": "dftools"}
resp = requests.get(url, headers=headers)
if resp.status_code == requests.codes.ok:
return resp.content, resp.status_code
else:
return None, resp.status_code
|
6a67f273277605979fb114031760e07253dbd565
| 104,404 |
def combine(background_img, figure_img):
"""
:param background_img: SimpleImage, the background image
:param figure_img: SimpleImage, the green screen figure image
:return: SimpleImage, the green screen pixels are replaced with pixels of background image
"""
# (x, y) represent every pixel in the figure image
for x in range(figure_img.width):
for y in range(figure_img.height):
# get pixel at (x, y) in figure image
pixel_fg = figure_img.get_pixel(x, y)
# find the maximum value between R-value and B-value at (x, y)
bigger = max(pixel_fg.red, pixel_fg.blue)
# check whether pixel at (x, y) is green screen
if pixel_fg.green > bigger * 2:
# get pixel at (x, y) in background image
pixel_bg = background_img.get_pixel(x, y)
# replace figure image's R-value at (x, y) with background image's R-value at (x, y)
pixel_fg.red = pixel_bg.red
# replace figure image's G-value at (x, y) with background image's G-value at (x, y)
pixel_fg.green = pixel_bg.green
# replace figure image's B-value at (x, y) with background image's B-value at (x, y)
pixel_fg.blue = pixel_bg.blue
# return the combined image
return figure_img
|
07ae5d988fa3c7e5132ad9a50173a682be6cc840
| 673,385 |
def get_provenance_record(caption: str, ancestors: list):
"""Create a provenance record describing the diagnostic data and plots."""
record = {
'caption':
caption,
'domains': ['reg'],
'authors': [
'kalverla_peter',
'smeets_stef',
'brunner_lukas',
'camphuijsen_jaro',
],
'references': [
'brunner2019',
'lorenz2018',
'knutti2017',
],
'ancestors':
ancestors,
}
return record
|
b4eba250f5a581989c80a8de727d7ed3e034bdd6
| 656,217 |
from typing import List
def findMedianArrays(nums1: List[int], nums2: List[int]) -> float:
"""Receives two arrays of ints and returns the median of the merged arrays after sorting."""
nums1.extend(nums2)
nums1.sort()
if len(nums1) % 2 == 0:
return (nums1[len(nums1)//2 - 1] + nums1[len(nums1)//2])/2
else:
return nums1[len(nums1)//2]
|
760d910d86b5f6689c99e9ab07c123659a22683b
| 570,229 |
def word_preprocessing(word, ignore_non_alnumspc=True, ignore_space=True, ignore_numeric=True, ignore_case=True):
"""
Function for word preprocessing
|
| Argument
| | word: a string to be processed
|
| Parameter
| | ignore_non_alnumspc: whether to remove all non alpha/numeric/space characters
| | ignore_space: whether to remove all spaces
| | ignore_numeric: whether to remove all numeric characters
| | ignore_case: whether to convert all alpha characters to lower case
|
| Output
| | processed string (type: str)
"""
if ignore_non_alnumspc: word = "".join(filter(lambda x: x.isalnum() or x.isspace(), word))
if ignore_space: word = "".join(filter(lambda x: not x.isspace(), word))
if ignore_numeric: word = "".join(filter(lambda x: not x.isnumeric(), word))
if ignore_case: word = word.lower()
return word
|
b5c1737cc5b92337e05e0c1f58950146d94f95e4
| 668,198 |
from datetime import datetime
def python_type_to_sql_type(_python_type):
"""
Convert a python data type to ab SQL type.
:param _python_type: A Python internal type
"""
if _python_type == str:
return 'string'
elif _python_type == bytes:
return "blob"
elif _python_type == float:
return "float"
elif _python_type == int:
return "integer"
elif _python_type == datetime:
return "datetime"
elif _python_type == bool:
return "boolean"
else:
raise Exception("python_type_to_sql_type: _type_code \"" + str(_python_type) + "\"not supported")
|
d74c0a8e8b1ef2340e1fc1decddcd60aba718570
| 30,832 |
def test_tosolr_index_update_errors(basic_exporter_class, record_sets,
new_exporter, setattr_model_instance,
assert_records_are_indexed,
assert_records_are_not_indexed):
"""
When updating indexes via a ToSolrExporter, if one record causes an
error during preparation (e.g. via the haystack SearchIndex obj),
the export process should: 1) skip that record, and 2) log the
error as a warning on the exporter. Other records in the same batch
should still be indexed.
"""
records = record_sets['item_set']
expclass = basic_exporter_class('ItemsToSolr')
invalid_loc_code = '_____'
exporter = new_exporter(expclass, 'full_export', 'waiting')
def prepare_location_code(obj):
code = obj.location_id
if code == invalid_loc_code:
raise Exception('Code not valid')
return code
exporter.indexes['Items'].prepare_location_code = prepare_location_code
setattr_model_instance(records[0], 'location_id', invalid_loc_code)
exporter.export_records(records)
exporter.commit_indexes()
assert_records_are_not_indexed(exporter.indexes['Items'], [records[0]])
assert_records_are_indexed(exporter.indexes['Items'], records[1:])
assert len(exporter.indexes['Items'].last_batch_errors) == 1
|
dda25db5a2e2c43e4aea9de15c77017dc8f75a13
| 108,704 |
import base64
def authorization_headers(user, token):
"""
Prepares authorization header for an API request
"""
if None in [user, token]:
return None
credentials = '%s:%s' % (user, token)
auth = base64.b64encode(credentials.encode('utf-8'))
headers = {'Authorization': 'Basic %s' % auth.decode('utf-8')}
return headers
|
623a728197d9458e77fbde90c411db9306987a09
| 416,653 |
def Q_ssm(nres, rmsd, n1, n2):
"""
Compute the SSM 'Q' score for an alignment of two proteins with n1
and n2 residues, with nres residues aligned and RMSD value of rmsd
(Angstroms).
This score is defined in
Kirssinel, E. & Henrick, K. 2004 'Secondary-structure matching (SSM), a new
tool for fast protein structure alignment in three dimensions'
Acta Crystallographica D60:2256-2268
Parameters:
nres - number of residues in alignment
rmsd - root mean square deviation of aligned residues (Angstroms)
n1 - number of residues in protein 1
n2 - number of residues in protein 2
Return value: Q score for alignment
"""
R0 = 3.0 # Krissinel & Henrick p. 2262
return nres**2 / ( (1 + (rmsd / R0)**2) * n1 * n2)
|
ed778309469abd251032561d4a9f104264b0de16
| 493,864 |
def get_bool_input(msg):
"""
Gets a user input from the console, ensuring that it is either 'yes' or 'no'.
:param msg: Message to be prompted to the user.
:return: Valid user input.
"""
user_input = input(msg + " (yes, no)")
while user_input != "yes" and user_input != "no":
user_input = input(msg + " (yes, no)")
return user_input == "yes"
|
bc5ff3b109b1d7941e1ab584c8a4a2cfe27aef32
| 223,027 |
def get_time_sorted_events_list(df, n_states):
"""
Given a dataframe returns a list of events, ordered by timestamp.
"""
end_event = n_states - 1
beginning_event = n_states - 2
events_list = list([beginning_event])
events_list.extend(df.reset_index()
.set_index("timestamp")
.sort_index()
['event'].values)
events_list.append(end_event)
return events_list
|
5858bf34d896cf838e404a4c6001d7430cd7ed32
| 577,601 |
def ground(visited_node_dict, end_node):
"""
'grounds' a rod: it returns a list of nodes given a dict of nodes pointing to their precessor.
For example:
{2 : 1, 3 : 2, 5 : 3}, 5 -> [1, 2, 3, 5]
"""
res = []
curr = end_node
while curr is not None:
res.append(curr)
curr = visited_node_dict.get(curr, None)
return res[::-1]
|
4ffd5a229ecf996d6c18dae6f6deae31de4b27d3
| 498,345 |
def pivots_col(matrix):
"""
Checks to see if pivots are required due to negative values in right column,
excluding the bottom value.
Args:
matrix (numpy array): matrix to be reviewed.
Returns:
Flag (bool): True or False indicating whether a negative element was found.
"""
m = min(matrix[:-1, -1])
if m >= 0:
return False
else:
return True
|
f44c5583284ae7a816dcc55be9d530ccf1c02a39
| 359,303 |
def calc_julian_days_dg(tlc_time):
"""Calculate the Julida dayys according to the fomula provided by
DigitalGlobe. Found in section 4.1.2
here https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/207/Radiometric_Use_of_WorldView-3_v2.pdf
Parameters
----------
tlc_time: datetime.datetime
Returns
-------
int:
days since the beginning of the year -4712
Meuss, Jean. "Astronomical algorithms, 2nd Ed.." Richmond, VA: Willmann-Bell(1998). Pg 61
"""
a = tlc_time.year // 100
b = 2 - a + (a // 4)
UT = tlc_time.hour + tlc_time.minute/60 + \
(tlc_time.second+tlc_time.microsecond)/3600
jd = int(365.25*(tlc_time.year+4716)) + \
int(30.6001*(tlc_time.month+1)) + \
tlc_time.day + UT/24+b-1524.5
return jd
|
c25c304d7aa2f27abf521cf07538200784b73e22
| 261,875 |
def mm_on_cpu(x, w):
"""
(helper function) Perform matrix multiplication on CPU.
PLEASE DO NOT EDIT THIS FUNCTION CALL.
Input:
- x: Tensor of shape (A, B), on CPU
- w: Tensor of shape (B, C), on CPU
Returns:
- y: Tensor of shape (A, C) as described above. It should not be in GPU.
"""
y = x.mm(w)
return y
|
583984e5692ee17908e1136fd025d32f5a28157e
| 295,945 |
def isGlideinHeldNTimes(jobInfo, factoryConfig=None, n=20):
"""This function looks at the glidein job's information and returns if the
CondorG job is held for more than N(defaults to 20) iterations
This is useful to remove Unrecoverable glidein (CondorG job) with forcex option.
Args:
jobInfo (dict): Dictionary containing glidein job's classad information
Returns:
bool: True if job is held more than N(defaults to 20) iterations, False if otherwise.
"""
if factoryConfig is None:
factoryConfig = globals()["factoryConfig"]
greater_than_n_iterations = False
nsysholds = jobInfo.get("NumSystemHolds")
if nsysholds > n:
greater_than_n_iterations = True
return greater_than_n_iterations
|
e608ada46f1571b9e96531bc3cca3692f940846a
| 694,035 |
def conn_count() -> str:
"""Return amount of active connections to database."""
return "SELECT SUM(numbackends) FROM pg_stat_database"
|
912b53a5035b5fa8fc84bd60e61a10b6879baeac
| 148,945 |
import requests
import time
def etiget(url: str, crawl_delay=2, headers={'User-agent': 'Custom'}, **kwargs) -> requests.Response:
"""
Wrap requests.get() to conform to webscraping etiquette.
"""
time.sleep(crawl_delay)
return requests.get(url, headers=headers, **kwargs)
|
75cc5772ffada1714709847fb2c14d0accdb7240
| 552,613 |
def stringify(value):
"""
Return string ``value``, with quotes around if there is whitespace.
:param value: Value to stringify
:return: Stringified, possibly quoted, value
:rtype: :class:`str`
"""
rv = str(value)
if len(rv.split()) > 1:
return '"%s"' % rv
return rv
|
277e3b3cdc166e805f8509464d53980b5371abf8
| 385,045 |
import math
def radiansToDegrees(radians):
"""Convert radians to degrees."""
return math.degrees(radians)
|
842f2ac9c9d48ee5ff52a1cafe679b4ffb374123
| 429,564 |
def get_tags(tweet, lower=False):
"""Extract tags from a tweet"""
try:
ent = tweet.get('entities', [])
if not ent:
return []
if lower:
return (tag['text'].lower() for tag in ent.get('hashtags', []))
return set(tag['text'] for tag in ent.get('hashtags', []))
except KeyError as e:
print("get_tags got KeyError")
|
9399e2acce8073904277c8c3357a10e04a8b67ad
| 408,373 |
def _get_channel_to_group(channel_groups):
"""Take a list of ChannelGroup instances, and return a mapping
channel ==> channel_group index"""
mapping = {}
channels_list = [(i, cg.channels) for i, cg in channel_groups.iteritems()]
for igroup, channels in channels_list:
for channel in channels:
mapping[channel] = igroup
return mapping
|
c253015422721dfcb4ef2fb701f63ad86f3dccb6
| 334,656 |
def get_index_of_last_match(obj, li):
"""Get index of last item matching obj in list"""
# start end step, start inclusive - end not
for i in range(len(li) - 1, -1, -1):
if obj == li[i]:
return i
|
f4c2b422fcb708e4c52c4c591f92ae1aec99fc8b
| 423,222 |
import torch
def cross_squared_distance_matrix(x, y):
"""Pairwise squared distance between two (batch) matrices' rows (2nd dim).
Computes the pairwise distances between rows of x and rows of y
Args:
x: [batch_size, n, d] float `Tensor`
y: [batch_size, m, d] float `Tensor`
Returns:
squared_dists: [batch_size, n, m] float `Tensor`, where
squared_dists[b,i,j] = ||x[b,i,:] - y[b,j,:]||^2
"""
x_norm_squared = torch.sum(torch.mul(x, x))
y_norm_squared = torch.sum(torch.mul(y, y))
x_y_transpose = torch.matmul(x.squeeze(0), y.squeeze(0).transpose(0, 1))
# squared_dists[b,i,j] = ||x_bi - y_bj||^2 = x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = x_norm_squared - 2 * x_y_transpose + y_norm_squared
return squared_dists.float()
|
cbe660db0458554619de62d25654991c9faf6b22
| 664,331 |
def stars_filter(scorestars):
"""
Used from the template to produce stars rating the treebank.
Takes a pair of floats (score,stars).
"""
score=scorestars[0]
stars=scorestars[1]
return '<span class="hint--top hint--info" data-hint="%f"><img src="/img/stars%02d.png" style="max-height:1em; vertical-align:middle" /></span>'%(score,stars*10)
|
12449f1094db8f24e03a6622bf8b8ca14319cd31
| 66,823 |
def dunderkey(*args):
"""Produces a nested key from multiple args separated by double
underscore
>>> dunderkey('a', 'b', 'c')
>>> 'a__b__c'
:param *args : *String
:rtype : String
"""
return '__'.join(args)
|
8a7fe3921000f5f4e8052207ddda1c79553ef113
| 102,977 |
import math
def rotate_vector(vector, angle_degree):
"""Rotate a vector with given angle in degree."""
angle_rad = math.pi * angle_degree / 180
xval = vector[0]*math.cos(angle_rad) + vector[1]*math.sin(angle_rad)
yval = -vector[0]*math.sin(angle_rad) + vector[1]*math.cos(angle_rad)
return xval, yval
|
c43f31d5dcb7900437dda676af6ed0f6d9c40356
| 259,690 |
from torch.utils.data._utils.collate import default_collate
from typing import Sequence
from typing import Dict
def multi_supervision_collate_fn(batch: Sequence[Dict]) -> Dict:
"""
Custom collate_fn for K2SpeechRecognitionDataset.
It merges the items provided by K2SpeechRecognitionDataset into the following structure:
.. code-block::
{
'features': float tensor of shape (B, T, F)
'supervisions': [
{
'sequence_idx': Tensor[int] of shape (S,)
'text': List[str] of len S
'start_frame': Tensor[int] of shape (S,)
'num_frames': Tensor[int] of shape (S,)
}
]
}
Dimension symbols legend:
* ``B`` - batch size (number of Cuts),
* ``S`` - number of supervision segments (greater or equal to B, as each Cut may have multiple supervisions),
* ``T`` - number of frames of the longest Cut
* ``F`` - number of features
"""
dataset_idx_to_batch_idx = {
example['supervisions'][0]['sequence_idx']: batch_idx
for batch_idx, example in enumerate(batch)
}
def update(d: Dict, **kwargs) -> Dict:
for key, value in kwargs.items():
d[key] = value
return d
supervisions = default_collate([
update(sup, sequence_idx=dataset_idx_to_batch_idx[sup['sequence_idx']])
for example in batch
for sup in example['supervisions']
])
feats = default_collate([example['features'] for example in batch])
return {
'features': feats,
'supervisions': supervisions
}
|
3b85c2ca4dcdbbd3b5d902bb2b061562401422ae
| 674,230 |
def at_most_one_none(*args):
"""
Returns True if at most one of the args is not None.
"""
n_none = sum([a is None for a in args])
return n_none <= 1
|
addb2d89ade13904fbe4e479835acec0b0ddb665
| 395,585 |
def is_in_range(x, config):
"""
Checks to see x is in the range of the config.
:param x: number
:type x: int/float
:param config: configuration
:type config: dict
:returns: bool
"""
try:
return config['start'] <= float(x) <= config['end']
except:
raise TypeError("Value is not a float")
|
b6d5dff449465556267e4f80d09ab262ba67ff81
| 183,672 |
def who_split(who):
"""
Returns a tuple with target owner specification split in two parts, the
userid and the ticket. The ticket will be None if the orders
specification doesn't contain it.
"""
if ":" in who:
return who.split(":", 2)
return who, None
|
db4c8ce71c42c396ac07de850a6b5ec809fee431
| 548,933 |
def validateApiRequest(api_returned_message) -> None:
"""
Validates the API request and looks for an success message.
If the message is not present the programm will print an error and exit.
"""
if api_returned_message != "success":
print("ERROR: API message was not success")
exit(1)
return None
|
5ecb1209450917d13ffeeff55438914115623ecf
| 301,499 |
import random
def CalculateWaitForRetry(retry_attempt, max_wait=60):
"""Calculates amount of time to wait before a retry attempt.
Wait time grows exponentially with the number of attempts.
A random amount of jitter is added to spread out retry attempts from different
clients.
Args:
retry_attempt: Retry attempt counter.
max_wait: Upper bound for wait time.
Returns:
Amount of time to wait before retrying request.
"""
wait_time = 2 ** retry_attempt
max_jitter = (2 ** retry_attempt) / 2
return min(wait_time + random.randrange(-max_jitter, max_jitter), max_wait)
|
a1dd746984eeceaf1950de02afecd4e516e19cd0
| 522,422 |
def parse_payload_v1(event):
"""
Get HTTP request method/path/body for v1 payloads.
"""
body = event.get('body')
method = event.get('httpMethod')
try:
package, *_ = event['pathParameters']['package'].split('/')
except KeyError:
package = None
return (method, package, body)
|
2a32dd96bcaf916efdb53ba3dd8430ba4c5eef5d
| 646,273 |
import re
def clean_len(s):
"""
Calculate the length of a string without it's color codes
"""
s = re.sub(r'\x1b\[[0-9;]*m', '', s)
return len(s)
|
5148d6fe580e45e5e3ce11b6bbcda602d3886305
| 634,268 |
def sharedLangCost(criterion, frRow, exRow):
"""Returns 1 if the two do not share a language, else 0"""
fluentQ = criterion['fluentQ']
learningQ = criterion['learningQ']
frLangs = [set(frRow[fluentQ].split(',')),
set(frRow[learningQ].split(','))]
exLangs = [set(exRow[fluentQ].split(',')),
set(exRow[learningQ].split(','))]
# Do they share no language ?
return int(len(frLangs[0].union(frLangs[1])\
.intersection(exLangs[0].union(exLangs[1]))) == 0)
|
11d6f6db627f93ecc726407eee29a3e46cea6cc0
| 611,489 |
def submit_pyspark_job(dataproc, project, region,
cluster_name, bucket_name, filename):
"""Submits the Pyspark job to the cluster, assuming `filename` has
already been uploaded to `bucket_name`"""
job_details = {
'projectId': project,
'job': {
'placement': {
'clusterName': cluster_name
},
'pysparkJob': {
'mainPythonFileUri': 'gs://{}/{}'.format(bucket_name, filename)
}
}
}
result = dataproc.projects().regions().jobs().submit(
projectId=project,
region=region,
body=job_details).execute()
job_id = result['reference']['jobId']
print('Submitted job ID {}'.format(job_id))
return job_id
|
550cad720f507d39814b7b5a3a8c08eeb9cae399
| 534,088 |
def read_matrix(filename):
"""
Reads a matrix and returns a dictionary with the data and list of conditions (tuple of dict and list)
:param filename: the matrix containing genes id , conditions and reads
:return: data, conditions
"""
data = {}
with open(filename, "r") as f:
header = f.readline().strip().split('\t')
conditions = header[1:]
for row in f:
parts = row.strip().split('\t')
gene_id = parts[0]
expression_values = parts[1:]
gene_data = {}
for condition, read_counts in zip(conditions, expression_values):
gene_data[condition] = read_counts
data[gene_id] = gene_data
return data, conditions
|
b9885ea156e347b949ad5584eb96f79144ea91ce
| 361,454 |
from typing import List
from typing import Dict
from typing import Any
def _transform_dto_list_to_list_of_dicts(dto_list) -> List[Dict[str, Any]]:
"""
Given a list of DTO objects, this function returns a list of dicts, that can be passed to jsonify function.
"""
return [vars(dto_obj) for dto_obj in dto_list]
|
41d4d587aa78cf1e3879c22c2d95e28f9e4b0507
| 683,823 |
import time
def create_time_name() :
"""Create a time-link name for file saving purposes
Return: a string including the YearMonthDay_HourMinSec
"""
return str(time.strftime("%Y%m%d_%H%M%S", time.localtime()))
|
bb9e4be66fdb62bc5f6595f4783124bb92a1272f
| 239,061 |
def ircLower(string):
"""
Lowercases a string according to RFC lowercasing standards.
"""
return string.lower().replace("[", "{").replace("]", "}").replace("\\", "|")
|
6d64ea5a8b0ce489eac5d81e5f7438df631ef5f8
| 578,630 |
def convert_to_boolean(value):
"""Turn strings to bools if they look like them
Truthy things should be True
>>> for truthy in ['true', 'on', 'yes', '1']:
... assert convert_to_boolean(truthy) == True
Falsey things should be False
>>> for falsey in ['false', 'off', 'no', '0']:
... assert convert_to_boolean(falsey) == False
Other things should be unchanged
>>> for value in ['falsey', 'other', True, 0]:
... assert convert_to_boolean(value) == value
"""
if isinstance(value, str):
if value.lower() in ['t', 'true', 'on', 'yes', '1']:
return True
elif value.lower() in ['f', 'false', 'off', 'no', '0']:
return False
return value
|
7cbf7a8fd601904c7aa8b685f6a3b3f5eaaa5c51
| 706,443 |
import torch
def denormalise(tensor_bchw, scale, mean_c, std_c):
"""Reversed normalisation
Args:
tensor_bchw (torch.tensor): 4D tensor of shape BxCxHxW
scale (float): scale value
mean_c (np.ndarray): mean array of shape (C,)
std_c (np.ndarray): standard deviation array of shape (C,)
Returns:
Un-normalised torch tensor.
"""
mean_bchw = (
torch.from_numpy(mean_c[None, :, None, None]).float().to(tensor_bchw.device)
)
std_bchw = (
torch.from_numpy(std_c[None, :, None, None]).float().to(tensor_bchw.device)
)
return (tensor_bchw * std_bchw + mean_bchw) / scale
|
275dc4ded45daafac09674ebeb4e1264b23740f8
| 447,970 |
def rosenbrock(tensor):
"""
Compute Rosenbrock function.
# https://en.wikipedia.org/wiki/Test_functions_for_optimization
"""
x, y = tensor
return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2
|
ab036bf21aa5a23739a1c560da409a59af3ea4cb
| 619,133 |
def find_nearest_index(data, value):
"""Find the index of the entry in data that is closest to value.
Example:
>>> data = [0, 3, 5, -2]
>>> i = partmc.find_nearest_index(data, 3.4)
returns i = 1
"""
min_diff = abs(value - data[0])
min_i = 0
for i in range(1,len(data)):
diff = abs(value - data[i])
if diff < min_diff:
min_diff = diff
min_i = i
return min_i
|
41454836eba73757cc3fbe537389479d38d9f8ff
| 480,592 |
def _by_idx(x):
"""Sorting key for Operators: queue index aka temporal order.
Args:
x (Operator): node in the circuit graph
Returns:
int: sorting key for the node
"""
return x.queue_idx
|
1d9f8caeb18e10b62302a4c0f5ac11db31ea679c
| 539,352 |
def typename(obj):
"""
Get the typename of object.
:param obj: Target object.
:return: Typename of the obj.
"""
if not isinstance(obj, type):
obj = obj.__class__
try:
return f'{obj.__module__}.{obj.__name__}'
except AttributeError:
return str(obj)
|
029dcdbd7a14f2e74be072582bc1e556fde8c2c2
| 228,593 |
def between(full, start, end):
"""Returns the substring of the given string that occurs between the start
and end strings."""
try:
if not start:
parse = full
else:
parse = full.split(start, 1)[1]
if end:
result = parse.split(end, 1)[0]
else:
result = parse
return result
except:
return full
|
34697a5625d07724b2f6b22cad6b6b98badcd7c1
| 616,575 |
def indent(text, indent=4):
"""Indents text with spaces."""
return u'\n'.join([u' ' * indent + x for x in text.splitlines()])
|
81684634882cdc061c3b453eaa8aff69e91accec
| 105,734 |
def reducer(words, frequency):
"""
reduces words to final output frequency list
:param words:
:param frequency:
:return: dict of unique words and their frequencies
"""
for word in words:
frequency[word] += 1
return frequency
|
07e631ad152ba8551f7f152bdd5a7be343b10192
| 288,443 |
def linear_gradient(x, y, theta):
"""
ํน์ ๋ฐ์ดํฐ (x, y)์์ ๊ธฐ์ธ๊ธฐ์ y์ ํธ์ ๋ํ
ํธ๋ฏธ๋ถ ๋ฒกํฐ ๋ฆฌํด
:param x: ์ค์ ๋ฐ์ดํฐ
:param y: ์ค์ ๋ฐ์ดํฐ
:param theta: [theta1, theta2] ๋ฒกํฐ(๋ฆฌ์คํธ). [๊ธฐ์ธ๊ธฐ, y์ ํธ]
"""
slope, intersect = theta
y_hat = slope * x + intersect # ์์๊ฐ
error = y_hat - y # ์ค์ฐจ
# error**2์ ์ต์ํํ๋ slope(๊ธฐ์ธ๊ธฐ), intersect(์ ํธ) ์ฐพ๊ธฐ
# ์ (x,y)์์ [๊ธฐ์ธ๊ธฐ์ ๋ํ ํธ๋ฏธ๋ถ, ์ ํธ์ ๋ํ ํธ๋ฏธ๋ถ]
gradient = [error * x, error]
return gradient
|
1b6e1f9bf3f9ac953d4a8329c715535765d456b7
| 571,918 |
def boxUnion(b1, b2):
"""
Compute a box big enough to contain both input boxes
"""
# easy enough
return tuple(map(min, zip(b1[0], b2[0]))), tuple(map(max, zip(b1[1], b2[1])))
|
d511d91d0a5f42cbaaf59f9b0c392b59c7317f6a
| 146,932 |
from typing import get_origin
from typing import Tuple
def is_tuple(typ) -> bool:
"""
Test if the type is `typing.Tuple`.
"""
try:
return issubclass(get_origin(typ), tuple)
except TypeError:
return typ in (Tuple, tuple)
|
c8c75f4b1523971b20bbe8c716ced53199150b95
| 707,794 |
import json
def convert_log_dict_to_json(cf_dict):
""" Convert a parsed log dictionary to JSON """
return json.dumps(cf_dict, sort_keys=True)
|
addd88890b3de888b120b9b9fecbd05eee0d614c
| 312,261 |
def get_exception_name(exception: Exception) -> str:
"""
Gets the name of the exception (e.g., IndexError gives ``"IndexError"``).
"""
return exception.__class__.__name__
|
a32ec7ac8d1be60786cc2d1b4392865470cd6bfa
| 563,372 |
def stateful_replace_properties(change):
""" List of property changes that triggered replace action """
property_list = set()
for detail in change['Details']:
if detail['Target']['Attribute'] == 'Properties':
if detail['Target']['RequiresRecreation'] != 'Never':
property_list.add(detail['Target']['Name'])
return property_list
|
012f2cb70ebbbaadb44053e249aa5c4e826b6d4d
| 338,803 |
def state2str(State):
"""
Converts the dictionary representation of a state into the string representation of a state.
If *State* is already of type string it is simply returned.
**arguments**
* *State* (dict): dictionary representation of state
**returns**
* *State* (str): string representation of state
**example**::
>>> state = {"v2":0, "v1":1, "v3":1}
>>> state2str(primes, state)
'101'
"""
if type(State) == str:
return State
return ''.join([str(State[x]) for x in sorted(State)])
|
d8248a131750f0e490737df955bc4e553a2640ee
| 163,943 |
import math
def distance(point1, point2):
"""
Args:
point1: ex) (1,1), (2,3)
point2: ex) (1,1), (2,3)
Returns:
sqrt((x2-x1)**2 - (y2-y1)**2)
Example:
>>> distance((1,1) (2,2))
>>> 1.4142135623730951
"""
return math.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
# return distance(point1[0], point1[1], point2[0], point2[1])
|
7999bb379a947fd834b6c3db7781d54200f4d83e
| 224,742 |
def sum_card(lst):
"""
Takes in a list of numbers and returns the summed total as a string.
>>> sum_card([1, 8, 9, 9, 7, 6, 7, 5, 5, 3, 5, 6, 1, 5, 8])
'85'
"""
total = 0
for num in lst:
total += num
return str(total)
|
4a98027c5d8779bf82206ededf3d6846f9faaee2
| 214,041 |
def fib2(n):
"""
returns list of Fibonacci series up to nth term
"""
result = [0, 1]
i = 2
while i < n:
result.append(result[i-1] + result[i-2])
i += 1
return result
|
dbef3bb7c270330c31860e350f0e15ed6d8d03e1
| 606,066 |
import functools
import math
def gcd_multiple(*args) -> int:
"""Return greatest common divisor of integers in args"""
return functools.reduce(math.gcd, args)
|
c686b9495cd45ff047f091e31a79bedcd61f8842
| 708,215 |
def contributes_to(id):
""" A factory for extension point decorators!
As an alternative to making contributions via traits, you can use this
decorator to mark any method on a 'Plugin' as contributing to an extension
point (note this is *only* used on 'Plugin' instances!).
e.g. Using a trait you might have something like::
class MyPlugin(Plugin):
messages = List(contributes_to='acme.messages')
def _messages_default(self):
return ['Hello', 'Hola']
whereas, using the decorator, it would be::
class MyPlugin(Plugin):
@contributes_to('acme.messages')
def _get_messages(self):
return ['Hello', 'Hola']
There is not much in it really, but the decorator version looks a little
less like 'magic' since it doesn't require the developer to know about
Traits default initializers. However, if you know that you will want to
dynamically change your contributions then use the trait version because
all you have to do is change the value of the trait and the framework will
react accordingly.
"""
def decorator(fn):
""" A decorator for marking methods as extension contributors. """
fn.__extension_point__ = id
return fn
return decorator
|
a0010a88a02ce99bffbdefb7ea029d5bfb8da74c
| 527,398 |
import re
def parse_budget(s):
"""
Parse a `budget` string and convert it to numeric.
Parameters
----------
s : str or float
String `budget` value
Returns
-------
Float
Numeric `budget` value
"""
# Check if value is null or already a float
if isinstance(s, float):
return s
# Remove $, spaces, and commas
s = re.sub(r'[\$\s,]', '', s).lower()
# Convert to float
if 'mil' in s:
return float(s.replace('mil', '')) * 1e6 # million
else:
return float(s)
|
c9bf9a611a9859f12860a497e726f42ad2a3e679
| 474,120 |
def add_python_snippet(txt: str, expandable: bool = True):
"""
Add a python snippet.
:param txt: A string object.
:param expandable: If true, puts code in <details></details> syntax.
:return: Python string markdown syntax.
"""
md_str = f"\n```python\n{txt}\n```"
if expandable:
md_str = f"\n<details>\n<summary>source code</summary>\n{md_str}\n</details>\n"
return md_str
|
749820d9da60d1b3e7897d329ebc6479587564aa
| 625,196 |
def _test_rast(h):
"""Sun raster file"""
if h.startswith(b'\x59\xA6\x6A\x95'):
return 'rast'
|
510b8088fd1aa29926fa8ec740241acc7643ed62
| 655,770 |
def get_version(fname="flake8_black.py"):
"""Parse our source code to get the current version number."""
with open(fname) as f:
for line in f:
if line.startswith("__version__"):
return eval(line.split("=")[-1])
|
17d6a6bfcd05fedd65f2fd4d3e6ae39bb0d0ef58
| 312,311 |
def shquote(arg):
"""Quote an argument for later parsing by shlex.split()"""
for c in '"', "'", "\\", "#":
if c in arg: return repr(arg)
if arg.split()!=[arg]:
return repr(arg)
return arg
|
543894d6bf98ae27000d0ee4241f908546d9722e
| 607,366 |
import hashlib
def get_file_hash(file_path, block_size=1024, hasher=None):
"""
Generate hash for given file
:param file_path: Path to file
:type file_path: str
:param block_size: Size of block to be read at once (default: 1024)
:type block_size: int
:param hasher: Use specific hasher, defaults to md5 (default: None)
:type hasher: _hashlib.HASH
:return: Hash of file
:rtype: str
"""
if hasher is None:
hasher = hashlib.md5()
with open(file_path, 'rb') as f:
while True:
buffer = f.read(block_size)
if len(buffer) <= 0:
break
hasher.update(buffer)
return hasher.hexdigest()
|
1c4be71f67e86af1e50e670e0a91cad64496899e
| 252,044 |
def intramolecular_constraints(constraint_charge, constraint_groups):
"""Extracts intramolecular constraints from user constraint input
Parameters
----------
constraint_charge : list
list of lists of charges and atom indices list
e.g. [[0, [1, 2]], [1, [3, 4]]]
The sum of charges on 1 and 2 will equal 0
The sum of charges on 3 and 4 will equal 1
constraint_group : list
list of lists of indices of atoms to have equal charge
e.g. [[1, 2], [3, 4]]
atoms 1 and 2 will have equal charge
atoms 3 and 4 will have equal charge
Returns
-------
constrained_charges : list
list of fixed charges
constrained_indices : list
list of lists of indices of atoms in a constraint
negative number before an index means
the charge of that atom will be subtracted.
Notes
-----
Atom indices starts with 1 not 0.
Total charge constraint is added by default for the first molecule.
"""
constrained_charges = []
constrained_indices = []
for i in constraint_charge:
constrained_charges.append(i[0])
group = []
for k in i[1]:
group.append(k)
constrained_indices.append(group)
for i in constraint_groups:
for j in range(1, len(i)):
group = []
constrained_charges.append(0)
group.append(-i[j-1])
group.append(i[j])
constrained_indices.append(group)
return constrained_charges, constrained_indices
|
e73ce20f0d44e3bf24a5b11d0afe4a7709adb7fd
| 369,708 |
def merge_dictionaries(dicts):
""" Merge multiple dictionaries.
# Arguments
dicts: List of dictionaries.
# Returns
result: Dictionary.
"""
result = {}
for dict in dicts:
result.update(dict)
return result
|
eabe7e9b98cdd41baa4cce8d0bcb0e81d482e270
| 417,031 |
def intersection(p1,p2,pause=[0,0]):
"""
Given two converging forks and their firing time and speeds,
compute the position of the intersection
as well as the position of the time of intersection.
If the intersection is outside [x1,x2], the initial position of the forks,
then return False
"""
x1,t1,R_fork_speed=p1.pos,p1.firing_time,p1.R_fork_speed
x2,t2,L_fork_speed=p2.pos,p2.firing_time,p2.L_fork_speed
t1 += pause[0]
t2 += pause[1]
assert(x2>x1)
#x = (x1+x2)/2 + (t2-t1)*v/2
x = 1/(1/L_fork_speed+1/R_fork_speed)*(t2-t1 + x1/L_fork_speed+x2/R_fork_speed)
if not( x1<x<x2):
return False,[None,None]
t = (x2-x1)/(R_fork_speed+L_fork_speed) + (t1 * R_fork_speed + t2 * L_fork_speed)/(R_fork_speed+L_fork_speed)
return True,[x,t]
|
f7bb92e5d020fec76f29bd17406582ef41f997aa
| 317,020 |
def parse_number(string):
"""
Retrieve a number from the string.
Parameters
----------
string : str
the string to parse
Returns
-------
number : float
the number contained in the string
"""
num_str = string.split(None, 1)[0]
number = float(num_str)
return number
|
67fc6f4f2d6ab6e99578bdc0906bbb7328d0fdb2
| 75,633 |
import pytz
def normalized_utc(value):
"""
normalizes input datetime value as utc datetime with zero offset and returns it.
:param datetime value: value to get it's utc equivalent.
:rtype: datetime
"""
utc = pytz.utc
return utc.normalize(value)
|
f1e375c2ae6206d280591bc1be0f51b1ca6cd21c
| 564,037 |
def school_year(date, as_tuple=False):
"""
Return the school year of 'date'. Example:
* as_tuple = False: "2013 โ 2014"
* as_tuple = True: [2013, 2014]
"""
if date.month < 8:
start_year = date.year - 1
else:
start_year = date.year
if as_tuple:
return (start_year, start_year + 1)
else:
return "%d โ %d" % (start_year, start_year + 1)
|
b18fcde3abb76f5f90a48792c1e9be21da6ff276
| 693,397 |
def __repr__(self):
"""A custom repr for targetdb models.
By default it always prints pk, name, and label, if found. Models can
define they own ``__print_fields__`` as a list of field to be output in the
repr.
"""
fields = ['pk={0!r}'.format(self.pk)]
for ff in self.__print_fields__:
if hasattr(self, ff):
fields.append('{0}={1!r}'.format(ff, getattr(self, ff)))
return '<{0}: {1}>'.format(self.__class__.__name__, ', '.join(fields))
|
98c7ab169dd0e8cb7074f65099432fccf4a18c31
| 623,990 |
import filecmp
import io
import difflib
def _perform_diff(result, original):
""" Compares the files `result` and `original`
Returns a tuple:
The first value is True if the files are the same
The second arg is the text representation of the diff
"""
are_same = filecmp.cmp(result, original)
if not are_same:
with open(result) as f:
result_txt = f.readlines()
with open(original) as f:
original_txt = f.readlines()
with io.StringIO() as output_stream:
for line in difflib.unified_diff(result_txt, original_txt):
output_stream.write(line)
return (False, output_stream.getvalue())
else:
return (True, "")
|
3f447b8233a1d17b9c296dd4c2a2a6c732b5bcab
| 170,067 |
def find_falling_hydrometeors(obs, is_liquid, is_insects):
"""Finds falling hydrometeors.
Falling hydrometeors are radar signals that are
a) not insects b) not clutter. Furthermore, falling hydrometeors
are strong lidar pixels excluding liquid layers (thus these pixels
are ice or rain).
Args:
obs (_ClassData): Container for observations.
is_liquid (ndarray): 2-D boolean array of liquid droplets.
is_insects (ndarray): 2-D boolean array of insects.
Returns:
ndarray: 2-D boolean array containing falling hydrometeors.
"""
is_z = ~obs.z.mask
no_clutter = ~obs.is_clutter
no_insects = ~is_insects
falling_from_lidar = ~obs.beta.mask & (obs.beta.data > 1e-6) & ~is_liquid
is_falling = (is_z & no_clutter & no_insects) | falling_from_lidar
return is_falling
|
aaf4daef6a104a392abd8f308a11c3ccf799c0ae
| 98,231 |
def sumList(alist):
"""
To calcualte the sum of a list of numbers.
"""
sum = 0
for value in alist:
sum += value
return sum
|
a1958170ea5027f537332c513c5ad55aba3ad9ad
| 318,115 |
def unsigned_right_shift(a, b):
"""Computes a >>> b in Java, or an unsigned right shift. Assumes longs, e.g., 64-bit integers."""
if a >= 0:
return a >> b
else:
return ((a + 2 ** 64) >> b)
|
9e3bc0c822c61ec9a4d73698aef1201e11f77564
| 294,776 |
import re
def _is_a_glob(a_string):
"""
Return True or False depending on whether a_string appears to be a glob
"""
pattern = re.compile(r'[\*\[\]\{\}\?]')
return bool(pattern.search(a_string))
|
849bdf0e49ae95e0b425b5072afd2b800aa93848
| 624,025 |
import torch
def ordinal_accuracy(logits, levels, device='cpu', tolerance=0, reduction='mean'):
"""Computes the accuracy with a tolerance for ordinal error.
Parameters
----------
logits : torch.tensor, shape(num_examples, num_classes-1)
Outputs of the CONDOR layer.
levels : torch.tensor, shape(num_examples, num_classes-1)
True labels represented as extended binary vectors
(via `condor_pytorch.dataset.levels_from_labelbatch`).
device: 'cpu', 'cuda', or None (default='cpu')
If GPUs are utilized, then the device should be passed accordingly.
tolerance : integer
Allowed error in the ordinal ranks that will count as
a correct prediction.
reduction : str or None (default='mean')
If 'mean' or 'sum', returns the averaged or summed loss value across
all data points (rows) in logits. If None, returns a vector of
shape (num_examples,)
Returns
----------
loss : torch.tensor
A torch.tensor containing a single loss value (if `reduction='mean'` or '`sum'`)
or a loss value for each data record (if `reduction=None`).
Examples
----------
>>> import torch
>>> levels = torch.tensor(
... [[1., 1., 0., 0.],
... [1., 0., 0., 0.],
... [1., 1., 1., 1.]])
>>> logits = torch.tensor(
... [[2.1, 1.8, -2.1, -1.8],
... [1.9, -1., -1.5, -1.3],
... [1.9, 1.8, 1.7, 1.6]])
>>> ordinal_accuracy(logits, levels)
tensor(1.)
"""
nclasses = logits.shape[1]+1
nbatch = logits.shape[0]
if not logits.shape == levels.shape:
raise ValueError("Please ensure that logits (%s) has the same shape as levels (%s). "
% (logits.shape, levels.shape))
y_true = torch.sum(levels,dim=1,keepdim=True,dtype=logits.dtype).to(device)
y_est = torch.sum(torch.cumprod(torch.sigmoid(logits),dim=1)>0.5,dim=1,keepdim=True,dtype=logits.dtype).to(device)
# 1 when correct and 0 else
val = torch.le(torch.abs(y_true-y_est),tolerance).to(torch.float32)
if reduction == 'mean':
loss = torch.mean(val)
elif reduction == 'sum':
loss = torch.sum(val)
elif reduction is None:
loss = val
else:
s = ('Invalid value for `reduction`. Should be "mean", '
'"sum", or None. Got %s' % reduction)
raise ValueError(s)
return loss
|
0c02598013044b4beefc28ddd8908edc64fe5423
| 655,455 |
def convert_index_2_bool(index):
"""
Convert integer style outlier / inlier index to boolean.
Inputs:
index: (list) -1 for outliers and 1 for inliers.
Returns:
(list) False for outliers and True for inliers.
"""
return [True if i == 1 else False for i in index]
|
bcc1e6bed141ae9141b601a04210abb518e020ab
| 227,360 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.