content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import time
def toc(tic):
"""Returns the time since 'tic' was called."""
return time.perf_counter() - tic
|
976cdeb30a723a8667ae2e0d86a4270ad356d634
| 638,715 |
from typing import Optional
import math
def round_for_theta(
v: float,
theta: Optional[float]
) -> float:
"""
Round a value based on the precision of theta.
:param v: Value.
:param theta: Theta.
:return: Rounded value.
"""
if theta is None:
return v
else:
return round(v, int(abs(math.log10(theta)) - 1))
|
ef6d18df588df8a80be9dc6c9b7f9104e3109d69
| 11,514 |
def read_DDTpos(inhdr):
"""
Read reference wavelength and DDT-estimated position from DDTLREF and
DDT[X|Y]P keywords. Will raise KeyError if keywords are not available.
"""
try:
lddt = inhdr['DDTLREF'] # Ref. wavelength [A]
xddt = inhdr['DDTXP'] # Predicted position [spx]
yddt = inhdr['DDTYP']
except KeyError as err:
raise KeyError("File has no DDT-related keywords (%s)" % err)
# Some sanity check
if not (abs(xddt) < 7 and abs(yddt) < 7):
raise KeyError(
"Invalid DDT position: %.2f x %.2f is outside FoV" % (xddt, yddt))
return lddt, xddt, yddt
|
39cce130305440f14db8e5378ae4e66b8e124b20
| 32,979 |
def markdown_list(url: str, title: str) -> str:
"""Return the Markdown list syntax for YouTube video."""
return f'* [{title}]({url})'
|
d6da7ea5bcef4fd4f6f1b6fe48521e7cf71772c6
| 327,034 |
def traverse_maze(network, part_two=False):
"""Traverse the maze collecting letters and counting the steps taken."""
x = network[0].index('|')
y = 0
direction = 'D'
letters = []
steps = 0
while network[y][x] != ' ':
if direction == 'D':
y += 1
elif direction == 'U':
y -= 1
elif direction == 'R':
x += 1
elif direction == 'L':
x -= 1
if network[y][x] == '+':
if direction in ('L', 'R'):
if y != len(network) - 1 and network[y+1][x] != ' ':
direction = 'D'
else:
direction = 'U'
else:
if x != len(network[0]) - 1 and network[y][x+1] != ' ':
direction = 'R'
else:
direction = 'L'
elif network[y][x].isalpha():
letters.append(network[y][x])
steps += 1
if not part_two:
return ''.join(letters)
return steps
|
eceda7d741a37db63784a708effefdf0f2908f05
| 379,708 |
import re
def parse_jobs_list(cli_output):
"""
Parse Databricks CLI output of `databricks jobs list` to return
a list of job ids and their names.
"""
jobs = cli_output.decode('utf-8').replace('\r\n','\n').split('\n')
output = {}
for job in jobs:
matches = re.search('(\d+) +(.+)', job)
if matches:
output[matches.group(1)] = matches.group(2)
return output
|
ca3970fca80e88bc7b9c376fdae0f8fed10ac9da
| 407,061 |
def scapy_layers_dot11_Dot11_find_elt_by_id(self, id):
"""Iterate over elt and return the first with a specific ID"""
for elt in self.elts():
if elt.ID == id:
return elt
return None
|
a976e4a0487cc9d3e0cef0cf1a5730c710db95ba
| 564,923 |
def reduce_id(id_):
"""Reduce the SsODNet ID to a string with fewer free parameters."""
return id_.replace("_(Asteroid)", "").replace("_", "").replace(" ", "").lower()
|
8f6d236030bb6304af04808cdabc6a15c06aeb40
| 588,372 |
def reverse(s):
"""Returns the string s, reverse-videoed."""
return '\x16%s\x16' % s
|
c62fa89f9b50ee401482a2bcb1b4b2e56f792446
| 160,991 |
def Levenshtein_Distance(str1, str2):
"""
cal str1 and str2 edit distance.
Args:
str1: string A
str2: string B
Return:
value of edit distance
"""
matrix = [[ i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
for i in range(1, len(str1)+1):
for j in range(1, len(str2)+1):
if(str1[i-1] == str2[j-1]):
d = 0
else:
d = 1
matrix[i][j] = min(matrix[i-1][j]+1, matrix[i][j-1]+1, matrix[i-1][j-1]+d)
return matrix[len(str1)][len(str2)]
|
89b8c6d761442bb514d798e650c87705e3126397
| 240,572 |
def get_menu_name(name):
"""Make any supplied string suitable/nice for menubar name.
:arg name: Name need to make nice for menubar.
:type name: str
:return: Nice menu name for menubar.
:rtype: str
"""
# get menu name and use it for menu identifier
menu_name = ""
for char in name:
if char == '_' or char == '-':
char = ' '
if char.isalpha() or char.isdigit() or char.isspace():
menu_name += char
return menu_name
|
1e53113a99209e81b60e57846a27de1a7ec19959
| 187,457 |
import re
def validate_hair_color(hcl):
"""
Validate Height - a # followed by exactly six characters 0-9 or a-f.
"""
match = re.search("#[0-9a-f]{6}", hcl)
return bool(match)
|
96a63139b907861ffd29cff27b02842ba2d43e9b
| 492,178 |
def pivotCombinedInventories(combinedinventory_df):
"""Create a pivot table of combined emissions.
:param combinedinventory_df: pandas dataframe returned from a
'combineInventories..' function
:return: pandas pivot_table
"""
# Group the results by facility,flow,and compartment
combinedinventory_df_pt = combinedinventory_df.pivot_table(
values=['FlowAmount', 'DataReliability'],
index=['FRS_ID', 'SRS_ID', 'Compartment'],
columns='Source')
return combinedinventory_df_pt
|
71d56bd546b5990c7b2658f0616ebaf8ed6f472f
| 628,390 |
def permutation_from_block_permutations(permutations):
"""Reverse operation to :py:func:`permutation_to_block_permutations`
Compute the concatenation of permutations
``(1,2,0) [+] (0,2,1) --> (1,2,0,3,5,4)``
:param permutations: A list of permutation tuples
``[t = (t_0,...,t_n1), u = (u_0,...,u_n2),..., z = (z_0,...,z_nm)]``
:type permutations: list of tuples
:return: permutation image tuple
``s = t [+] u [+] ... [+] z``
:rtype: tuple
"""
offset = 0
new_perm = []
for p in permutations:
new_perm[offset: offset +len(p)] = [p_i + offset for p_i in p]
offset += len(p)
return tuple(new_perm)
|
3b6508c103e39051ccfa909b54aa9ec506b35f86
| 64,666 |
def lol_product(head, values):
"""List of list of tuple keys, similar to `itertools.product`.
Parameters
----------
head : tuple
Prefix prepended to all results.
values : sequence
Mix of singletons and lists. Each list is substituted with every
possible value and introduces another level of list in the output.
Examples
--------
>>> lol_product(('x',), (1, 2, 3))
('x', 1, 2, 3)
>>> lol_product(('x',), (1, [2, 3], 4, [5, 6])) # doctest: +NORMALIZE_WHITESPACE
[[('x', 1, 2, 4, 5), ('x', 1, 2, 4, 6)],
[('x', 1, 3, 4, 5), ('x', 1, 3, 4, 6)]]
"""
if not values:
return head
elif isinstance(values[0], list):
return [lol_product(head + (x,), values[1:]) for x in values[0]]
else:
return lol_product(head + (values[0],), values[1:])
|
bc48c9044ba30fd84347430cf42e4d31904a8d74
| 233,272 |
import random
def max_weight_paths(k, weight_paths_dict, paths_to_edges, overlap=True, norev=False, rgen=None):
"""
Returns k largest-weight paths. The function proceeds in order through descending weight values to select paths,
and if an entire weight class of paths is not to be included, applies a predictable order to the paths
before checking them for inclusion (by sorting the (src,dst) pairs in the class and then applying rgen.shuffle).
:param k: number of paths to select
:param weight_paths_dict: a dict {weight: set} where keys are weight values, and corresponding values are sets of paths having that weight
:param paths_to_edges: a dict {(src, dst): set} where the path with endpoints (src, dst) consists of the edges in the corresponding set
:param overlap: True if max-weight paths selected can share links; False if selected paths should be disjoint
:param norev: True if (dst,src) should be excluded if (src,dst) is chosen
:param rgen: RNG object with .shuffle() method to use; random.shuffle() is used if not provided
:return: (set, set): the set of (src,dst) pairs for paths selected, and the set of edges covered by those paths
"""
if rgen is None: rgen = random
selected_paths = set()
probed_edges = set()
weight_list = sorted(weight_paths_dict, reverse=True)
weight_index = -1
while k > 0 and weight_index < len(weight_list)-1:
weight_index += 1
weight_class = weight_paths_dict[weight_list[weight_index]]
l = len(weight_class)
if k-l >= 0 and overlap and not norev:
# in this case we will use all paths in the weight class, so no ordering is necessary
selected_paths.update(weight_class)
k -= l
else:
# in this case we may not use all paths in the weight class, either because:
# (1) we don't need them all (including them all will result in more than k paths); or
# (2) we have to check for reverses and/or overlap and thus may skip over some paths in the class
# so we first sort the paths (deterministic) and then rgen.shuffle them so the weight tie is broken randomly but reproducibly given the RNG
paths = sorted(weight_class)
rgen.shuffle(paths)
if overlap and not norev:
selected_paths.update(paths[:k])
k = 0
elif overlap and norev:
# paths is an ordered list, so iteration is deterministic
for s, d in paths:
if (d,s) not in selected_paths:
selected_paths.add((s,d))
k -= 1
if k <= 0: break
else:
# paths is an ordered list, so iteration is deterministic
for path in paths:
if norev and (path[1],path[0]) in selected_paths: continue
path_edges = paths_to_edges[path]
if probed_edges.isdisjoint(path_edges):
selected_paths.add(path)
probed_edges |= path_edges
k -= 1
if k <= 0: break
# if overlap==True, then we didn't have to update probed_edges, so do it now
if overlap:
for path in selected_paths:
probed_edges |= paths_to_edges[path]
return selected_paths, probed_edges
|
50264effde7c0f7f97c6e5a4c6c34899ad5462db
| 669,326 |
def countit(objs):
"""Return a dict with counts for each item in a list."""
out = {}
for el in objs:
out[el] = 1 + out.get(el, 0)
out = {k: v for k, v in out.items()}
return out
|
f9909092180ccd1bf12bc96a972701cfbd6ff3c7
| 504,418 |
def dataframeToPaths(df):
"""
returns list of paths for given dataframe
:param df: dataframe/segment of dataframe
:return: gcp urls/paths for this segment/dataframe
"""
return df['gcp_url'].tolist()
|
c10bb462c350039631f631953da5fca18b82c031
| 143,639 |
def factorial(
*,
number: int,
) -> int:
"""Recursive Factorial Function
Args:
number (int): number
Returns:
int: factorial of the number
"""
if number <= 1:
return 1
return number * factorial(number=number - 1)
|
0ab7323ebd6bd9df7a72a3b26abeddc46e8a5a37
| 643,881 |
def type_of_user(datum, city):
"""
Takes as input a dictionary containing info about a single trip (datum) and
its origin city (city) and returns the type of system user that made the
trip.
Remember that Washington has different category names compared to Chicago
and NYC.
"""
user_type = ""
# 'usertype'(Subscriber or Customer) or 'Member Type'(Registered or Casual)
if city is "Washington":
user_type = "Subscriber" if datum.get("Member Type") == "Registered" else "Customer"
else:
user_type = datum.get("usertype")
return user_type
|
63e21b544dab127043f46bab7956b056a3aa1058
| 407,445 |
import pathlib
def get_message(message):
"""
get message from file or string format and return it.
Args:
message: str or Path.file path to the cleartext or cleartext itself.
Returns:
message: str.cleartext
"""
if not isinstance(message, str) and not isinstance(message, pathlib.Path):
print("input str object or Path object.aborting...")
exit()
if isinstance(message, str):
if message == "":
print("message is empty.aborting...")
exit()
else:
return message
else:
try:
with message.open() as f:
message = f.read()
if message == "":
print("message is empty.aborting...")
exit()
return message
except UnicodeDecodeError:
print("file is binary.aborting...")
exit()
|
c00dfa1bda60445c605eddaa8a8e7df1a3802be0
| 98,357 |
def GitRemoteUrlFilter(url, patch):
"""Used with FilterFn to isolate a patch based on the url of its remote."""
return patch.git_remote_url == url
|
eb6e509c1966e5b9b9e6abf00a164b3a3f9cb1f2
| 74,302 |
import torch
def region_mask(n, min_mask_size, max_mask_size, maskable_length, device=None):
"""Create a vector of ``n`` random region masks.
Masks are returned in a vector with shape `(n, maskable_length)`.
The mask vectors are boolean vectors of ``maskable_length`` with a
continuous region of 1s between ``min_mask_size`` and ``max_mask_size``
(inclusive).
"""
# Generate the start & end positions for each mask, then compare these to
# absolute indices to create the actual mask vectors.
mask_sizes = (
torch.rand([n, 1], device=device) * (max_mask_size - min_mask_size)
+ min_mask_size
)
mask_starts = torch.rand([n, 1], device=device) * (maskable_length - mask_sizes)
mask_ends = mask_starts + mask_sizes
indexes = torch.arange(0, maskable_length, device=device)
return (mask_starts <= indexes) & (indexes < mask_ends)
|
ceedf548f1b9f25f579bff51d69cfb593ab2b7df
| 98,420 |
def mass_transfer_coefficient_OILTRANS(wind_speed, length, schmdt_nmbr):
"""
Return the mass transfert coefficien [m/s], formula derived
from (Mackay and Matsugu, 1973)
source : (Berry et al., 2012)
Parameters
----------
wind_speed : Wind speed 10 meters above the surface [m/s]
length : Downwind length of the oil slick axis [m]
schmdt_nmbr : Schmidt number []
"""
return (0.0048 * (wind_speed **(7/9)) * (length ** (-1/9))
* schmdt_nmbr ** (-2/3))
|
799a491fce669262c939a18da07dbb2a52750c43
| 298,582 |
async def ping():
"""A test ping endpoint."""
return {"ping": "I'm alive!"}
|
3e12e2ec3b4d7fd26b64ca9e2269a24c5ab995e6
| 103,307 |
def sanitize_price(price_str):
"""
Normalise a price string and convert to float value.
:param price_str: Price string to normalise.
:return: Float price value.
"""
if price_str is None:
return None
price_str = price_str.strip('$ \t\n\r')
price_str = price_str.replace(',', '')
return float(price_str)
|
84af7c25c19bcbef690cc19554f01e6e284446f2
| 26,457 |
def indent(s, indentation=" "):
"""
helper function to indent text
@param s the text (a string)
@param indentation the desired indentation
@return indented text
"""
return [indentation + _ for _ in s]
|
59ec5d6751f906b84c2d46a51777f0831116082a
| 35,074 |
def calculate_mean(some_list):
"""
Function to calculate the mean of a dataset.
Takes the list as an input and outputs the mean.
"""
return (1.0 * sum(some_list) / len(some_list))
|
d0374fc5321f6caa05f546e274490e906bf60106
| 30,681 |
def enf_list(item):
"""
When a list is expected, this function can be used to ensure
non-list data types are placed inside of a single entry list.
:param item: any datatype
:return list: a list type
"""
if not isinstance(item,list) and item:
return [item]
else:
return item
|
b27bde2da0855ffa02837dda2f8dfb85f43db30a
| 150,151 |
def b_ord(byte):
"""Return the Unicode code point for a byte or iteration product \
of a byte string alike object (e.g. bytearray).
:param byte: The single byte or iteration product of a byte string to \
convert
:type byte: bytes or str or int
:return: Unicode code point
:rtype: int"""
return byte if isinstance(byte, int) else ord(byte)
|
ba79752c7ee7cadde1e7a7323f88fcb46f2d8511
| 463,835 |
def get(isamAppliance, instance_id, id, check_mode=False, force=False):
"""
Retrieving the contents of a file in the administration pages root
"""
return isamAppliance.invoke_get("Retrieving the contents of a file in the administration pages root",
"/wga/reverseproxy/{0}/management_root/{1}".format(instance_id, id))
|
7ced8fa881e2fe89da5a135f43f883d7e20f8f62
| 286,956 |
from typing import Any
import yaml
def parse_arg_value(val: str) -> Any:
"""Parse a string value into its Python representation."""
return yaml.safe_load(val)
|
dfa3a916f78360c7b8209abb573c5cdc17ef2d9d
| 169,617 |
def _is_sequence(obj):
"""Check if the object is a sequence (list, tuple etc.).
Parameters
-----------
object
an object to be checked
Returns
--------
bool
True if the object is iterable but is not a string, False otherwise
"""
return hasattr(obj, '__iter__') and not isinstance(obj, str)
|
8733ec482df1b09e6051537524f9c69d5a4295da
| 291,597 |
def get_attribute_from_tag(tag, attribute):
"""Returns a xml attribute from a given tag"""
element = None
try:
element = tag.attrib[attribute]
except KeyError:
pass
# print("Error: attribute {} was not defined in this tag.".format(e))
return element
|
914e04f2e6441ffb5f42d71de49bd99fe5e3092b
| 27,207 |
import logging
def getLogger(module_name=None):
"""
Returns a logger appropriate for use in the ocp_cd_tools
module. Modules should request a logger using their __name__
"""
logger_name = 'ocp_cd_tools'
if module_name:
logger_name = '{}.{}'.format(logger_name, module_name)
return logging.getLogger(logger_name)
|
ff1f9e859332c7f0f7d9f734d63eaefdd766b491
| 94,704 |
import math
def deg2rad(ang_deg):
"""
Converts degrees to radians
"""
return math.pi*ang_deg/180.0
|
190dbd8bfccba8ffe206ef5bb089145026bb9f07
| 103,596 |
def Dict(**entries):
"""Create a dct out of the argument=value arguments.
Ex: Dict(a=1, b=2, c=3) ==> {'a':1, 'b':2, 'c':3}"""
return entries
|
a7575cffcd6345b9402ca8ae21213d72f5e83775
| 237,933 |
def get_job_status(job):
"""Returns the status of the job(celery.result.ResultSet) as a percentage
of completed tasks
"""
total = len(job.results)
return (float(job.completed_count()) / total) * 100
|
5cc2bfd7cce4cd5aa3344bf52a99b6a8f48c8d6a
| 214,621 |
import math
def _gain2db(gain):
"""
Convert linear gain in range [0.0, 1.0] to 100ths of dB.
Power gain = P1/P2
dB = 10 log(P1/P2)
dB * 100 = 1000 * log(power gain)
"""
if gain <= 0:
return -10000
return max(-10000, min(int(1000 * math.log10(min(gain, 1))), 0))
|
1bd602e0db397b3730c4f2b3439aeb351e6bd854
| 9,041 |
def group_list(actions, agent_states, env_lens):
"""
Unflat the list of items by lens
:param items: list of items
:param lens: list of integers
:return: list of list of items grouped by lengths
"""
grouped_actions = []
grouped_agent_states = []
cur_ofs = 0
for g_len in env_lens:
grouped_actions.append(actions[cur_ofs: cur_ofs + g_len])
grouped_agent_states.append(agent_states[cur_ofs: cur_ofs + g_len])
cur_ofs += g_len
return grouped_actions, grouped_agent_states
|
bc6199f5cc0efcdfde7e9c9085c1ccc95c535e30
| 662,003 |
import json
import requests
def check_aws(admin_api_key, env, cc_account_id):
"""
Checks if an account is an AWS Account with get_account API call
"""
api_url = env + "/api/account.json/get_account"
get_account_info = json.dumps({"account_id": cc_account_id})
r7 = requests.post(api_url, headers = {"Content-Type": "application/json", "access_key": admin_api_key}, data = get_account_info)
# checks for AWS (works for mav and non-mav)
if "Provider" in r7.json():
if r7.json()["Provider"] == "Amazon Web Services":
return True
return False
|
fc69b72870dadb54b796e4206319f2181d252686
| 606,726 |
def is_input_op(node):
"""Return true when the node is the input of the graph."""
return node.WhichOneof("op_type") == "input_conf"
|
294f5f1b785bb4ac26be8f7d9cacde2a26e73ce6
| 373,155 |
def is_fq(name):
"""Return True if the supplied 'name' is fully-qualified, False otherwise.
Usage examples:
>>> is_fq('master')
False
>>> is_fq('refs/heads/master')
True
:name: string name of the ref to test
:returns: bool
"""
return name.startswith('refs/')
|
e603920b192caa4e72d7f265dac72761cf2d6611
| 226,635 |
import time
from datetime import datetime
def format_date(timestamp, precision=0):
"""
Construct an ISO 8601 time from a timestamp.
There are several possible sources for *timestamp*.
- time.time() returns a floating point number of seconds since the
UNIX epoch of Jan 1, 1970 UTC.
- time.localtime(time.time()) returns a time tuple for the current
time using the local time representation.
- datetime.datetime.now() returns a datetime object for the current
time using the local time representation, but with no information
about time zone.
- iso8601.parse_date(str) returns a datetime object for a previously
stored time stamp which retains time zone information.
In the first three cases the formatted date will use the local time
representation but include the UTC offset for the local time. The
fourth case the UTC offset of the time stamp will be preserved in
formatting.
If *precision* is given, encode fractional seconds with this many digits
of precision. This only works if *timestamp* is datetime object or seconds
since epoch.
"""
dt = None
microsecond = 0
# Try converting from seconds to time_struct
try:
microsecond = int(1000000*(timestamp-int(timestamp)))
timestamp = time.localtime(timestamp)
except TypeError:
# Not a floating point timestamp; could be datetime or time_struct
pass
# Try converting from datetime to time_struct
if isinstance(timestamp, datetime):
microsecond = timestamp.microsecond
tz = timestamp.utcoffset()
if tz is not None:
dt = tz.days*86400 + tz.seconds
timestamp = timestamp.timetuple()
# Find time zone offset
isdst = timestamp.tm_isdst if timestamp.tm_isdst >=0 else 0
if dt is None:
dt = -(time.timezone,time.altzone)[isdst]
# Do the formatting
local = time.strftime('%Y-%m-%dT%H:%M:%S',timestamp)
sign = "+" if dt >= 0 else "-"
offset = "%02d:%02d"%(abs(dt)//3600,(abs(dt)%3600)//60)
fraction = ".%0*d"%(precision,microsecond//10**(6-precision)) if precision else ""
return "".join((local,fraction,sign,offset))
|
305e001bef5aa91d2524e152552073413d974577
| 75,768 |
from functools import reduce
def rank(B, S):
"""Return the rank of the subset S in base set B."""
return reduce(lambda a,b: a | b, [1 << (i if type(B) == int else B[1][i]) for i in S], 0)
|
fa81b882f27bb3bd0505c00b05dbe16653ff1927
| 150,961 |
def typed_property(name, expected_type):
"""Common function used to creating arguments with forced type
:param name: name of attribute
:param expected_type: expected type of attribute value
:return: property attribute
"""
private_name = '_' + name
@property
def prop(self):
return getattr(self, private_name)
@prop.setter
def prop(self, value):
if not isinstance(value, expected_type):
raise TypeError('Expected {}'.format(expected_type))
setattr(self, private_name, value)
return prop
|
d1cc4dd8ea01d2d32efeffe28dea3236b8ab30c2
| 33,156 |
def sign(l):
"""
:param l: ordered list of indices
:type l: list (or similar)
:return: sign of l
Compute the sign of an ordered list (-1 for each flip needed to get to ascending order)
"""
res = 1
for i in range(len(l)):
for j in range(i + 1, len(l)):
if l[i] > l[j]: res *= -1
return res
|
f11a8ed5e8f6b01fb443c69aedb50e91e22dd4c5
| 458,802 |
import torch
def attention_bias(inputs, mode, inf=-1e20):
""" A bias tensor used in attention mechanism
:param inputs: A tensor
:param mode: either "causal" or "masking"
:param inf: A float, denoting an inf value
:returns: A tensor with shape [batch, heads, queries, memories]
"""
if mode == "causal":
result = torch.triu(torch.ones([inputs, inputs]), diagonal=1) * inf
return result.reshape([1, 1, inputs, inputs])
elif mode == "masking":
result = (1.0 - inputs.float()) * inf
return result.unsqueeze(1).unsqueeze(1)
else:
raise ValueError("Unknown mode %s" % mode)
|
c3e69d8c86b36d38ddc7fcad76013781f191223a
| 266,707 |
def iou(polygon_1,polygon_2):
"""
Calculate intercept over union for shapely polygons.
Args:
polygon_1
polygon_2
Returns:
intercept over union
"""
area_intersection = polygon_1.intersection(polygon_2).area
area_polygon_1_polygon_2 = polygon_1.union(polygon_2).area
iou = area_intersection/(area_polygon_1_polygon_2) * 100
return iou
|
14d9bac353466abe1556393e2d33862e40e99225
| 534,474 |
def get_number(key, row):
"""Reads a number from a row (assume all as float)."""
if key in row and row[key]:
return float(row[key])
else:
return None
|
b0519ef90cdce3da49588c14887dc74113d542a2
| 256,240 |
def get_test_object_names(obj):
""" Returns all attribute names that starts with "test_" """
ret = []
for o in dir(obj):
if o.startswith("test_"):
ret.append(o)
return ret
|
ca22389234fdf98c1ec0405fa4871926f0c7165c
| 547,944 |
def get_cpu_mask(cores):
"""Return a string with the hex for the cpu mask for the specified core numbers."""
mask = 0
for i in cores:
mask |= 1 << i
return '0x{0:x}'.format(mask)
|
8034506756c5db0706070cefd6f231586cc816e2
| 535,596 |
def interval_to_milliseconds(interval):
"""Convert a Binance interval string to milliseconds
:param interval: Binance interval string, e.g.: 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w
:type interval: str
:return:
int value of interval in milliseconds
None if interval prefix is not a decimal integer
None if interval suffix is not one of m, h, d, w
"""
seconds_per_unit = {
"m": 60,
"h": 60 * 60,
"d": 24 * 60 * 60,
"w": 7 * 24 * 60 * 60,
}
try:
return int(interval[:-1]) * seconds_per_unit[interval[-1]] * 1000
except (ValueError, KeyError):
return None
|
ab1745a846f7536e4e2c0c91dc482d754fa3d7f3
| 282,594 |
def get_id(corpus, key):
"""
Get the corpus ID of a word
(handle utf-8 encoding errors, following change
https://github.com/vered1986/LexNET/pull/2 from @gossebouma)
:param corpus: the corpus' resource object
:param key: the word
:return: the ID of the word or -1 if not found
"""
id = -1 # the index of the unknown word
try:
id = corpus.get_id_by_term(key.encode('utf-8'))
except UnicodeEncodeError:
pass
return id
|
84cfd2a12952ef1be984001304ad5c7c3ce161f2
| 549,440 |
from typing import Any
from typing import Literal
def _return_true(*_: Any) -> Literal[True]:
"""Always return true, discarding any arguments"""
return True
|
a72e74ecc942a36d472bae7e957a7a6fb0879403
| 48,682 |
def caption_fmt(caption):
""" Format a caption """
if caption:
return "\n== {} ==\n".format(caption)
return ""
|
e6e94efa5f16f9b0590e912e68ee1e3acfb4d54a
| 41,712 |
def task_exists(twarrior, task_name: str) -> bool:
"""
Check if task exists before inserting it
in Task Warrior.
"""
tasks = twarrior.load_tasks()
for key in tasks.keys():
for task in tasks[key]:
if task['description'] == task_name:
return True
return False
|
1a5dbd790b11492c7417b7611c7f62af544a7862
| 36,471 |
def result_to_metrics(result):
"""Specific for the result dictionary of simpletransformers binary classification,
which is a dictionary including keys: `tp`, `fp`, `tn`, and `fn`.
TP = True Positive
FP = False Positive
TN = True Negative
FN = False Negative
accuracy = (TP + TN) / (TP + FP + TN + FN)
precision = TP / (TP + FP)
recall = TP / (TP + FN)
:returns accuracy, precision, recall
"""
accuracy = (result['tp'] + result['tn']) / (result['tp'] + result['fp'] + result['tn'] + result['fn'])
positives = result['tp'] + result['fp']
if positives > 0:
precision = result['tp'] / (result['tp'] + result['fp'])
else:
# If there are no positives, we set the precision to 1
precision = 1.0
labeled_positives = result['tp'] + result['fn']
if labeled_positives > 0:
recall = result['tp'] / (result['tp'] + result['fn'])
else:
# If there are no labelled positives, we set the recall to 1
recall = 1.0
if precision + recall > 0:
f1 = (2 * precision * recall) / (precision + recall)
else:
f1 = 0.0
return accuracy, precision, recall, f1
|
03fc76c88d3468d5ff518ae90ecba7db61ff947d
| 458,175 |
import click
def detect_config_version(config):
"""Return version of an slo-generator config based on the format.
Args:
config (dict): slo-generator configuration.
Returns:
str: SLO config version.
"""
if not isinstance(config, dict):
click.secho(
'Config does not correspond to any known SLO config versions.',
fg='red')
return None
api_version = config.get('apiVersion', '')
kind = config.get('kind', '')
if not kind: # old v1 format
return 'v1'
return api_version.split('/')[-1]
|
26cb4d7ae7eba981e456dc8f9201df719f720896
| 16,407 |
import yaml
def read_config(file_name="config.yaml"):
"""Read configurations.
Args:
file_name (str): file name
Returns:
configs (dict): dictionary of configurations
"""
with open(file_name, 'r') as f:
config = yaml.safe_load(f)
return config
|
51faf47b4c28d1cbf80631d743d9087430efb148
| 14,643 |
import json
def _GenerateCopyCommand(from_path, to_path, comment=None):
"""Returns a Dockerfile entry that copies a file from host to container.
Args:
from_path: (str) Path of the source in host.
to_path: (str) Path to the destination in the container.
comment: (str) A comment explaining the copy operation.
"""
cmd = "COPY {}\n".format(json.dumps([from_path, to_path]))
if comment is not None:
formatted_comment = "\n# ".join(comment.split("\n"))
return "# {}\n{}".format(formatted_comment, cmd)
return cmd
|
c1c5fb832cbde60f4ebed675b231a15166159673
| 639,044 |
def dice_name_from_cost(cost: str) -> str:
"""Given a string like `magic:face` returns just `magic`"""
return cost.split(":")[0]
|
e72a9ed41b257c17e38d7b46f1ca19856d8bdb43
| 531,429 |
import inspect
def monkeypatch_methods(monkeypatch):
"""Monkeypatch all methods from `cls` onto `target`.
This utility lets you easily mock multiple methods in an existing class.
In case of classmethods the binding will not be changed, i.e. `cls` will
keep pointing to the source class and not the target class.
"""
def _monkeypatch_methods(target, cls):
for name, method in inspect.getmembers(cls, inspect.ismethod):
if method.__self__ is None:
# For unbound methods we need to copy the underlying function
method = method.__func__
monkeypatch.setattr(f'{target}.{name}', method)
return _monkeypatch_methods
|
d3139c55831e03bc7a66d93a8fa81b1d3abcca4b
| 425,724 |
def is_fittable(data_form, layers_form):
"""
Return True if a fit problem (comprised of all its forms)
is fittable or not. To be fittable, refl1d requires at least
one free parameter.
"""
has_free = data_form.has_free_parameter()
for layer in layers_form:
has_free = has_free or layer.has_free_parameter()
return has_free
|
51b5375f7f56087f780079d44326b8c987048165
| 382,781 |
def specframe2sample(frame, hop_size=3072, win_len=4096):
"""
Takes frame index (int) and returns the corresponding central time (sec)
"""
return frame * hop_size + win_len / 2
|
cffe9aca5d290368145aba2d5cc29b0e84f9696a
| 444,546 |
def meta_command(name, bases, attrs):
"""
Look for attrs with a truthy attribute __command__ and add them to an
attribute __commands__ on the type that maps names to decorated methods.
The decorated methods' doc strings also get mapped in __docs__.
Also adds a method run(command_name, *args, **kwargs) that will
execute the method mapped to the name in __commands__.
"""
commands = {}
docs = {}
for attr, value in attrs.items():
if getattr(value, '__command__', False):
commands[attr] = value
# methods have always have a __doc__ attribute, sometimes empty
docs[attr] = (getattr(value, '__doc__', None) or
'perform the %s command' % attr).strip()
attrs['__commands__'] = commands
attrs['__docs__'] = docs
def run(self, command, *args, **kwargs):
return self.__commands__[command](self, *args, **kwargs)
attrs.setdefault('run', run)
return type(name, bases, attrs)
|
39ca4b4b7ffd9a09ba1e0715976d5a8c4c4b2b58
| 398,560 |
def gen_params(guess):
"""Return dict of parameters with guess string."""
return {'file': 'foo', 'signature': guess}
|
be82c04d61b1bf5115d65acc5fe08c23a0136619
| 332,496 |
from typing import Tuple
def is_parent(parent_key: Tuple[str], key: Tuple[str]) -> bool:
"""Determines if keys have parent:child relationship.
Example using dot notation:
is_parent(a.b, a.b.c) == True
is_parent(a.b, a.b.c.d) == True
is_parent(a.b, a.x.y) == False
"""
return len(key) > len(parent_key) and key[: len(parent_key)] == parent_key
|
10f13f05fac3495ace654528aa0bb249d235d6d4
| 134,405 |
def asint(value):
"""Coerce to integer."""
if value is None:
return value
return int(value)
|
d6372f0e545b6e4923c8fecf74a0817fb56a5699
| 548,416 |
def formatFieldEqVal(fieldNames, sepStr = " and "):
"""Format a (field1=value1) and (field2=value2)... clause
in the form used with a data dictionary.
This is intended to help generate select commands.
Inputs:
- fieldNames: a list or other sequence of field names
- sepStr: the string to separate field=value pairs.
Example:
sqlCmd = "select * from %s where %s" % (tableName, formatFieldEqVal(fieldNames))
dbCursor.execute(sqlCmd, dataDict)
"""
fmtFieldList = ["(%s=%%(%s)s)" % (fieldName, fieldName) for fieldName in fieldNames]
return sepStr.join(fmtFieldList)
|
abb1ee3f9b4d2fc145cc4b34094226d367821f13
| 439,311 |
def f2hex(flo):
"""Convert floating point value `flo` (`0 <= f <=1`) to a zero-padded hex string."""
if not 0 <= flo <= 1:
raise ValueError("value must be between 0 and 1 (inclusive)", flo)
intval = round(255 * flo)
return f"{intval:X}".zfill(2)
|
96d5f7d1635b348c2224dcd11e6490770765b8bc
| 469,535 |
def do_steps_help(cls_list):
"""Print out the help for the given steps classes."""
for cls in cls_list:
print(cls.help())
return 0
|
19ce1585f915183fcb38c2ea268a6f30780830bb
| 689,001 |
def normalise_spaces(text: str) -> str:
"""Normalise spaces of arbitrary length to single spaces"""
return " ".join([s.strip() for s in text.split(" ")])
|
28c3ee96ddf57173335dea2271bf922ccf8174cb
| 155,789 |
def _pop_all(kind, universe, iterable, validate=True):
"""
Removes all elements of 'iterable' from 'universe' and returns them.
If 'validate' is true, then a ValueError is raised if a element
would be removed multiple times, or if an element of 'iterable' does
not appear in 'universe' at all.
"""
members = set()
for elem in iterable:
if validate and elem in members:
raise ValueError("%s '%s' specified multiple times" % (kind, elem))
if elem in universe:
universe.remove(elem)
members.add(elem)
elif validate:
raise ValueError("Unrecognized %s '%s'" % (kind, elem))
return members
|
19843d6855270c35de2ff9c6e8a91e4f49c1e82d
| 191,778 |
def get_model_name(obj):
"""
Returns the name of the model
"""
return obj._meta.model_name
|
2a74e19aa618e759c06459c2ca8b577dffeef646
| 150,794 |
def get_destination_filename(path, prefix="t", overwrite=False):
"""
Get the output file name.
:param pathlib.Path path: Destination path
:param str prefix: prefix of filename.
:param bool overwrite: if True then
:return: file name for output
:rtype: str
"""
if overwrite:
name = path.name
else:
name = "-".join([prefix, path.name])
return name
|
af57d27b04fa1040fa0584ca7e6250101a32d77f
| 17,687 |
def num_in_row(board, row, num):
"""True if num is already in the row, False otherwise"""
return num in board[row]
|
ca9ab9de4514740e25e0c55f3613d03b2844cdb8
| 708,225 |
import textwrap
import itertools
def rewrap(text, width=None):
"""
Rewrap text for output to the console.
Removes common indentation and rewraps paragraphs according to the console
width.
Line feeds between paragraphs preserved.
Formatting of paragraphs that starts with additional indentation
preserved.
"""
if width is None:
width = 80
# Remove common indentation.
text = textwrap.dedent(text)
def needs_wrapping(line):
# Line always non-empty.
return not line[0].isspace()
# Split text by lines and group lines that comprise paragraphs.
wrapped_text = ""
for do_wrap, lines in itertools.groupby(text.splitlines(True),
key=needs_wrapping):
paragraph = ''.join(lines)
if do_wrap:
paragraph = textwrap.fill(paragraph, width)
wrapped_text += paragraph
return wrapped_text
|
a327e1828941422daa6f1f94cbbee14bb7433559
| 102,305 |
import re
def extract_sentence_id(tag):
"""
Extract the sentence ID of current sentence.
Args:
tag (str): Sentence tag
Returns:
str: sentence ID
"""
if "<s" not in tag:
return ""
pattern = re.compile('id="[a-z0-9]+?"(?=\s)')
res = re.findall(pattern, tag)
if len(res) == 0:
return None
return res[0].replace('"', "").replace("id=", "")
|
99a24d332e21b5861c74b00fdcb334892eda4b7c
| 32,550 |
import math
def euclidean_distance(p1, p2):
"""
Precondition: p1 and p2 are same length
:param p1: point 1 tuple coordinate
:param p2: point 2 tuple coordinate
:return: euclidean distance between two points p1 and p2
"""
distance = 0
for dim in range(len(p1)):
distance += (p1[dim] - p2[dim])**2
return math.sqrt(distance)
|
e284e97f4cd92de55ea15b37f819301df007580a
| 191,214 |
def get_exception_kwargs(e):
""" Extracts extra info (attributes) from an exception object. """
kwargs = {}
for attr, value in vars(e).items():
if not attr.startswith('_') and attr not in ('args', 'message'):
kwargs[attr] = value
return kwargs
|
45b5a78c766c02ee49a3af4ed793a61025e9424a
| 46,396 |
def _str_to_int_or_float(val):
"""helper function that tries to cast a str to int and if that fails then tries casting to float"""
try:
val = int(val)
except ValueError:
val = float(val)
return val
|
7139ef92b0cc9f0db14e7ca0d0af24b272d6e50d
| 504,878 |
def clean_styles(widget, styles) -> dict:
"""
Ensures safety while passing styles to tkinter objects. Normally tkinter objects raise errors for declaring
styles that are not allowed for a given widget. This function takes in the styles dictionary and removes
invalid styles for the particular widget returning the cleaned styles dictionary. As a bonus, duplicate definitions
are overwritten.
:param widget:
:param styles:
:return: dict cleaned_styles
"""
allowed_styles = widget.config() or {}
cleaned_styles = {}
for style in styles:
if style in allowed_styles:
cleaned_styles[style] = styles[style]
return cleaned_styles
|
efe325a0cc202ac5deff38547822156b8b40fae0
| 581,430 |
def catch(func, *args, **kwargs):
"""
Call the supplied function with the supplied arguments,
catching and returning any exception that it throws.
Arguments:
func: the function to run.
*args: positional arguments to pass into the function.
**kwargs: keyword arguments to pass into the function.
Returns:
If the function throws an exception, return the exception.
If the function does not throw an exception, return None.
"""
try:
func(*args, **kwargs)
except Exception as e:
return e
|
23aa157713090c26d69f98599c9ce0b41c947ccc
| 411,333 |
def aln_abuts_unknown_bases(tx, fasta):
"""
Do any exons in this alignment immediately touch Ns?
:param tx: a GenePredTranscript object
:param fasta: pyfasta Fasta object for genome
:return: boolean
"""
chrom = tx.chromosome
for exon in tx.exon_intervals:
if exon.start == 0: # we are at the edge of the contig
left_base = None
else:
left_base = fasta[chrom][exon.start - 1]
if exon.stop >= len(fasta[chrom]): # we are at the edge of the contig
right_base = None
else:
right_base = fasta[chrom][exon.stop]
if left_base == 'N' or right_base == 'N':
return True
return False
|
ceb31739be0091b3b52f763c0c0d6d15b1aebd19
| 22,188 |
def tartaglia(n):
""" Funzione per generare un triangolo di tartaglia.
Parametri
---------
n: int
Altezza del triangolo da generare
Output
------
triangolo: list of lists [[],[],[],...]
Lista di liste, corrispondenti alle righe del triangolo di tartaglia.
Esempio
-------
>>> triangolo = tartaglia(4)
>>> triangolo
[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1]]
"""
triangolo = []
# Scrivere il proprio codice quì
return triangolo
|
1dbb18879e565feef3405e533da492936d4a4b20
| 630,373 |
def auto_str(cls):
"""
Add implementation of __str__ and __repr__ functions to a class
"""
def __str__(self):
return type(self).__name__ + '{' + ','.join(f'{k}={str(v)}' for k, v, in vars(self).items()) + '}'
def __repr__(self):
return type(self).__qualname__ + '{' + ','.join(f'{k}={repr(v)}' for k, v, in vars(self).items()) + '}'
cls.__str__ = __str__
cls.__repr__ = __repr__
return cls
|
7b03f04b7091fa32fb813fa6c04aac44815e2ff3
| 304,617 |
def _columns(cursor, table):
"""Return the columns of a table as a list."""
cursor.execute('''
SELECT column_name FROM information_schema.columns WHERE table_schema = 'public' AND table_name = %s
''', (table, ))
return [column['column_name'] for column in cursor.fetchall()]
|
03544abe0980dfa00b366b38687f4795707b9385
| 615,876 |
from typing import Sequence
from typing import Optional
def sequence_find(hay: Sequence, needle: Sequence) -> Optional[int]:
"""
Return the index for starting index of a sub-sequence within a sequence.
The function is intended to work similarly to the built-in `.find()` method for
Python strings, but accepting all types of sequences (including different types
for `hay` and `needle`).
Example
********
.. code-block:: python
>>> seqsim.common.sequence_find([1, 2, 3, 4, 5], [2, 3])
1
:param hay: The sequence to be searched within.
:param needle: The sub-sequence to be located in the sequence.
:return: The starting index of the sub-sequence in the sequence, or `None` if not
found.
"""
# Cache `needle` length and have it as a tuple already
len_needle = len(needle)
t_needle = tuple(needle)
# Iterate over all sub-lists (or sub-tuples) of the correct length and check
# for matches
for i in range(len(hay) - len_needle + 1):
if tuple(hay[i : i + len_needle]) == t_needle:
return i
return None
|
2601e73c4230292f558db4ad54e346a503f7ee43
| 566,347 |
def is_boolean(op):
"""
Tests whether an operation requires conversion to boolean.
"""
return op in ['or', 'and', '!']
|
5989c5db1befe76e61baa22a313b2d2e8f201553
| 659,748 |
def table(custom_headings, col_headings_formatted, rows, spec):
"""
Create a LaTeX table
Parameters
----------
custom_headings : None, dict
optional dictionary of custom table headings
col_headings_formatted : list
formatted column headings
rows : list of lists of cell-strings
Data in the table, pre-formatted
spec : dict
options for the formatter
Returns
-------
dict : contains key 'latex', which corresponds to a latex string representing the table
"""
longtables = spec['longtables']
table = "longtable" if longtables else "tabular"
if custom_headings is not None \
and "latex" in custom_headings:
latex = custom_headings['latex']
else:
latex = "\\begin{%s}[l]{%s}\n\hline\n" % \
(table, "|c" * len(col_headings_formatted) + "|")
latex += ("%s \\\\ \hline\n"
% (" & ".join(col_headings_formatted)))
for formatted_rowData in rows:
if len(formatted_rowData) > 0:
formatted_rowData_latex = [
(formatted_cell['latex'] if isinstance(formatted_cell, dict)
else formatted_cell) for formatted_cell in formatted_rowData]
latex += " & ".join(formatted_rowData_latex)
#MULTI-ROW support for *data* (non-col-header) rows of table. Currently
# unused (unneeded) - see multirow formatter that is commented out in formatters.py
#multirows = [ ("multirow" in el) for el in formatted_rowData_latex ]
#if any(multirows):
# latex += " \\\\ "
# last = True; lineStart = None; col = 1
# for multi,data in zip(multirows,formatted_rowData_latex):
# if last == True and multi == False:
# lineStart = col #line start
# elif last == False and multi == True:
# latex += "\cline{%d-%d} " % (lineStart,col) #line end
# last=multi
# res = _re.search("multicolumn{([0-9])}",data)
# if res: col += int(res.group(1))
# else: col += 1
# if last == False: #need to end last line
# latex += "\cline{%d-%d} "%(lineStart,col-1)
# latex += "\n"
#else:
latex += " \\\\ \hline\n"
latex += "\end{%s}\n" % table
return {'latex': latex}
|
0ca28fce26fc7476aa5b88a621c5476ae8d381ce
| 1,213 |
import pickle
def load_ddata(path, num):
"""
Load data for defender.
Input:
- path: path to pickled file
- num: number of (source,target) pairs
Return: graph, target nodes, community assignment, source nodes
"""
with open(path, "rb") as f:
data = pickle.load(f)
graph = data["graph"]
targets = {
"random": data["targets_random"][:num],
"degree": data["targets_degree"][:num],
"community": data["targets_community"][:num],
}
sources = data["sources"][:num]
node_com = data["node_com"]
return graph, targets, sources, node_com
|
bbda82c773888b3534907f93f6312b55e7c34f4b
| 153,180 |
from datetime import datetime
def better_time(text):
"""Convert the time format to a better format"""
dt = datetime.strptime(text, '%a %b %d %H:%M:%S %z %Y')
return dt.strftime('%c')
|
5b5f7efa94e07d32956cfbeee6536b8a55c4b1cd
| 431,525 |
def _convert_ketone_unit(raw_value):
"""Convert raw ketone value as read in the device to its value in mmol/L."""
return int((raw_value + 1) / 2.) / 10.
|
804d34ecc9d901f3d958ebee34282885248c3499
| 697,361 |
import torch
from typing import Tuple
def sigmoid_soft_top_k(
logits: torch.Tensor,
k: int,
tau: float,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Calculate soft top k mask using a sigmoid function.
Args:
logits: Parameters used for weighting.
k: Number of elements that should be selected.
tau: Temperature that is used to vary steepness of sigmoid function.
Returns:
mask: Soft top k mask that can be used to select k elements.
x0: Exactly k (normalized) logits are larger than x0. (Useful to gain insight in logits.)
"""
if k == len(logits):
# Not doing anything
return torch.ones_like(logits), torch.zeros(
1,
device=logits.device,
)
std, mean = torch.std_mean(logits)
logits = (logits - mean) / torch.maximum(std, torch.tensor(1e-3))
# Find splitter value: k values are >=q
q = 1 - k / len(logits)
x0 = torch.quantile(logits, q).detach()
# Center and stretch depending on temperature tau
logits = (logits - x0) / tau
return torch.sigmoid(logits), x0.detach()
|
e46726760d2c496e8eb34c34282a3bf9dd91f6d7
| 197,022 |
def _parse_restriction_split(source_object, restriction_split, search_low_dbnum,
search_high_dbnum):
"""
Parses a split restriction string and sets some needed variables.
Returns a tuple in the form of: (low dbnum, high dbnum)
"""
restriction_size = len(restriction_split)
if restriction_size >= 2:
try:
search_low_dbnum = int(restriction_split[1].strip())
except ValueError:
source_object.msg("Invalid value for low dbref limit.")
return False
if restriction_size >= 3:
try:
search_high_dbnum = int(restriction_split[2].strip())
except ValueError:
source_object.msg("Invalid value for high dbref limit.")
return False
return search_low_dbnum, search_high_dbnum
|
bca959a7ab8a37f4c261e25fabfbd76e956f5cf6
| 352,522 |
def open_file(file_path, read_mode="r"):
"""
Opens a file from the OS and reads it to cast
it to string.
Args:
file_path (str): OS file path of the archive;
read_mode (str): read mode.
Returns:
(str): the file contents as a string.
"""
with open(file_path, read_mode) as myfile:
file_txt = myfile.read()
return file_txt
|
333297ed76b663872e6588dd5d495f27326d493d
| 449,912 |
def generate_bps(perturbator, t):
"""Generate a motion perturbation field by using the method described in
:cite:`BPS2006`.
Parameters
----------
perturbator : dict
A dictionary returned by initialize_motion_perturbations_bps.
t : float
Lead time for the perturbation field (minutes).
Returns
-------
out : ndarray
Array of shape (2,m,n) containing the x- and y-components of the motion
vector perturbations, where m and n are determined from the perturbator.
See also
--------
pysteps.noise.motion.initialize_bps
"""
vsf = perturbator["vsf"]
p_par = perturbator["p_par"]
p_perp = perturbator["p_perp"]
eps_par = perturbator["eps_par"]
eps_perp = perturbator["eps_perp"]
V_par = perturbator["V_par"]
V_perp = perturbator["V_perp"]
g_par = p_par[0] * pow(t, p_par[1]) + p_par[2]
g_perp = p_perp[0] * pow(t, p_perp[1]) + p_perp[2]
return (g_par * eps_par * V_par + g_perp * eps_perp * V_perp) / vsf
|
481ac1f8c48d06ef7b1e05eca7fa4b89e6c65238
| 320,553 |
from typing import Any
def equals(check_value: Any, item: Any) -> bool:
"""Check if two values are equal.
:param check_value: Value to check.
:type check_value: Any
:param item: Item to check against.
:type item: Any
:return: Bool of comparison.
:rtype: bool
"""
return check_value == item
|
960fa68702f0ead68d6c64d55c863546db06e92a
| 315,668 |
def convert_adsorption_energy_units(AE):
"""Converts the adsorption energy into units of KJ/mol
Parameters
----------
AE : :py:attr:`array_like`
array of adsorption energies
Returns
-------
:py:attr:`array_like`
array of adsorption energies in units of KJ/mol
"""
return (AE * 96.485 * 1000)
|
f447f6b1e5edae12e293a5c06983ee625cc67296
| 407,580 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.