content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import inspect
def _called_from_instance_init(instance, calling_frame):
""" Helper to check a calling_frame is in an instance's __init__ """
from_init = inspect.getframeinfo(calling_frame).function == "__init__"
from_this = calling_frame.f_locals.get('self') is instance
return from_init and from_this
|
116602a31c452560da64015b4364350c47c454d9
| 208,019 |
import platform
def is_windows() -> bool:
"""Return whether the user is using a Windows machine or not.
Returns
-------
:rtype: bool
"""
if platform.system() == 'Windows':
return True
return False
|
91cae1734edd8e2a39c01a191f8381f340a899c2
| 353,994 |
import six
def sorted_files(pdict):
"""
Returns the file_summary information sorted in reverse order based on duration
:param pdict: profile dict
:return: sorted list of file_summary dicts
"""
return sorted([v['file_summary'] for k, v in six.iteritems(pdict) if k != 'summary'],
key=lambda f: f['duration'], reverse=True)
|
3135561bd68cdc0018c1b904f8a6b47dc4a96468
| 18,052 |
def getYN(text=''):
"""Prompts user for yes or no input.
accepts y,Y,yes,Yes,YES,n,N,no,No,NO.
returns 'y' for yes and 'n' for no.
other inputs prompt user to re-enter a response"""
AcceptableResponses={'y':'y','yes':'y','n':'n','no':'n'}
while 1:
print(text)
userInput=input('Please select Yes or No (y/n):').lower()
if userInput in list(AcceptableResponses.keys()):
return AcceptableResponses[userInput]
else:
print("""
Invalid input - not recognized as yes or no \n
[Proper response required to exit loop]""")
|
1690647c4141fd0df4eb14c4997f1717ef22d641
| 467,722 |
def trans_matrix(M):
"""Take the transpose of a matrix."""
n = len(M)
return [[ M[i][j] for i in range(n)] for j in range(n)]
|
142baf4664d84e10ab68fe094c4eac510abbcf44
| 684,701 |
def get_connection_name(connection_id, friend_list):
"""
Given a mutual friends' ID, check the given list of Facebook friends and extract the name.
:param connection_id: Connection's (mutual friend) Facebook ID.
:type connection_id: str
:param friend_list: List of Facebook friends.
:type friend_list: list of pynder.models.friend.Friend
:return: Friend's name.
:rtype: str
"""
for friend in friend_list:
if connection_id == friend.facebook_id:
return friend.name
return ''
|
bfe9e4e9ffb7dadbe7305ed0a3fb5d3b28b193c4
| 263,767 |
def _get_elem_at_rank(rank, data, n_negative, n_zeros):
"""Find the value in data augmented with n_zeros for the given rank"""
if rank < n_negative:
return data[rank]
if rank - n_negative < n_zeros:
return 0
return data[rank - n_zeros]
|
6517ccc434e86640141278e049a8ff62b4faa8d2
| 683,737 |
def calculate_distance(a, b):
"""Helper function to calculate the distance between node a and b."""
(x1, y1) = a
(x2, y2) = b
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
|
a0b23177009e842df010cc3d3b43a21b92803411
| 376,554 |
import calendar
def daysinmonth(yyyy,mm):
"""
return number of days in month given yyyy,mm
"""
return calendar.monthrange(yyyy,mm)[1]
|
df6391ab08911024d3e649211baec18e74c956d8
| 139,045 |
def tostring(s):
"""
Convert the object to string for py2/py3 compat.
"""
try:
s = s.decode()
except (UnicodeDecodeError, AttributeError):
pass
return s
|
be284dcbcca4ec267c45bdec75a6c9214e6940bd
| 128,222 |
from typing import List
from typing import Union
def inverse_cumulative_sum(increasing_numbers: List[Union[int, float]]):
""" inverse function of cumulative sum
:param increasing_numbers: ([number]) [1,3,6]
:return: ([number]) [1,2,3]
"""
if not increasing_numbers:
return []
inv_cumsum = [increasing_numbers[0]]
for e1, e2 in zip(increasing_numbers[:-1], increasing_numbers[1:]):
inv_cumsum.append(e2 - e1)
return inv_cumsum
|
a52fbc66adfd76229a0843e1c89f482a54f977c1
| 211,344 |
from typing import List
from typing import Any
from typing import Optional
def paginate(
items: List[Any], offset: int = 0, limit: Optional[int] = None
) -> List[Any]:
"""
Mimic the behavior of database query's offset-limit pagination
"""
end = limit + offset if limit is not None else None
return items[offset:end]
|
f400df1a28feb772d81b28a89fe742bc38053875
| 572,081 |
import ctypes
def ctypes2buffer(cptr, length):
"""Convert ctypes pointer to buffer type."""
if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)):
raise RuntimeError('expected char pointer')
res = bytearray(length)
rptr = (ctypes.c_char * length).from_buffer(res)
if not ctypes.memmove(rptr, cptr, length):
raise RuntimeError('memmove failed')
return res
|
04da7b4a76479976c49695364441d14374fc10df
| 331,147 |
def crop_image_to_bounding_box(img, bnd_box):
"""Crops the given image to the given bounding box"""
result = img[bnd_box[0][1] : bnd_box[1][1] + 1, bnd_box[0][0] : bnd_box[1][0] + 1]
return result
|
27d5d780f9712d72e973cb3de816b04e2ab3ec72
| 639,839 |
def is_lookml(dashboard):
"""Check if a dashoard is a LookML dashboard"""
return dashboard.model is not None and '::' in dashboard.id
|
39cbfeedecf12bf5060596c9188392c62aedf6cf
| 82,314 |
def downsample_ds(normlogSAR, downsample_factor=5):
"""Spatially downsample an xarray DataArray or Dataset.
"""
downsampled = normlogSAR.groupby_bins('x',len(normlogSAR.x)/downsample_factor).mean(dim='x').groupby_bins('y',len(normlogSAR.y)/downsample_factor).mean(dim='y')
downsampled = downsampled.rename({'x_bins':'x','y_bins':'y'})
return downsampled
|
f6e17c9c22ce7eb3a95700d4915636c93cca2fb3
| 606,725 |
def anonymize_ip(real_ip: str) -> str:
"""
Sets the last byte of the IP address `real_ip`.
.. note::
It is a good step but it may be possible to find out the physical address
with some efforts.
Example:
If the input is "595.42.122.983", the output is "595.42.122.0".
Raises:
ValueError: ``real_ip`` must have 4 blocks separated with a dot.
Args:
real_ip (str): Full IPv4 address.
Returns:
str: ``real_ip`` with the last `byte` zeroed.
"""
anonymized_ip = real_ip.split(".")
if len(anonymized_ip) != 4:
raise ValueError("Bad format of the IP address '" + real_ip + "'")
anonymized_ip[3] = "0"
return ".".join(anonymized_ip)
|
f4ca8a072f295f6b06ac14712b84fe765a57d823
| 621,447 |
def format_time(seconds):
# type: (int) -> str
"""
Return *seconds* in a human-readable format (e.g. 25h 15m 45s).
Unlike `timedelta`, we don't aggregate it into days: it's not useful when reporting logged work hours.
"""
out = []
if seconds > 3599:
out.append('%sh' % (seconds // 3600))
seconds = seconds % 3600
if seconds > 59:
out.append('%sm' % (seconds // 60))
seconds = seconds % 60
if seconds > 0:
out.append('%ss' % seconds)
return ' '.join(out)
|
0ae814e3dd0fd31ba4eb2ab1b55f6ed6419fb280
| 525,630 |
def get_average(pixels):
"""
Given a list of pixels, finds the average red, blue, and green values
Input:
pixels (List[Pixel]): list of pixels to be averaged
Returns:
rgb (List[int]): list of average red, green, blue values across pixels respectively
Assumes you are returning in the order: [red, green, blue]
"""
red_avg = sum([x.red for x in pixels])//len(pixels)
green_avg = sum([x.green for x in pixels])//len(pixels)
blue_avg = sum([x.blue for x in pixels])//len(pixels)
return [red_avg, green_avg, blue_avg]
|
2cae3992f3a7a3d0d9ef3feb84221a4964221bbf
| 692,405 |
def get_seat_ID(seat_string: str) -> int:
"""Take in seat string and calculate its ID.
Args:
seat_string (str): self-explantory
Returns:
int: seat ID
"""
row_string = seat_string[:-3]
col_string = seat_string[-3:]
row_binary = row_string.replace("F", "0").replace("B", "1")
col_binary = col_string.replace("L", "0").replace("R", "1")
row_num = int(row_binary, 2)
col_num = int(col_binary, 2)
return 8 * row_num + col_num
|
1bdad136d90441c05bd0b9ddaec365433b4bb1c8
| 256,715 |
import math
def _c3857t4326(t1, t2, lon, lat):
"""
Pure python 3857 -> 4326 transform. About 12x faster than pyproj.
"""
xtile = lon / 111319.49079327358
ytile = math.degrees(
math.asin(math.tanh(lat / 20037508.342789244 * math.pi)))
return(xtile, ytile)
|
f146149a102b1155f9d391719387e6ce43e73bf0
| 376,250 |
def register(key, version, description=None, format='json', expensive=None):
"""
A decorator used to register a function as a metric collector.
Decorated functions should do the following based on format:
- json: return JSON-serializable objects.
- csv: write CSV data to a filename named 'key'
@register('projects_by_scm_type', 1)
def projects_by_scm_type():
return {'git': 5, 'svn': 1}
"""
def decorate(f):
f.__awx_analytics_key__ = key
f.__awx_analytics_version__ = version
f.__awx_analytics_description__ = description
f.__awx_analytics_type__ = format
f.__awx_expensive__ = expensive
return f
return decorate
|
3eebeb5c792ea84949b2880b624b74c6f537e44f
| 481,368 |
import torch
def kl_divergence_mc(
q_distrib: torch.distributions.Distribution, p_distrib: torch.distributions.Distribution, z: torch.Tensor
):
"""Elementwise Monte-Carlo estimation of KL between two distributions KL(q||p) (no reduction applied).
Any number of dimensions works via broadcasting and correctly set `event_shape` (be careful).
Args:
z: Sample or samples from the variational distribution `q_distrib`.
q_distrib: Variational distribution.
p_distrib: Target distribution.
Returns:
tuple: Spatial KL divergence and log-likelihood of samples under q and under p (torch.Tensor)
"""
q_logprob = q_distrib.log_prob(z)
p_logprob = p_distrib.log_prob(z)
kl_dwise = q_logprob - p_logprob
return kl_dwise, q_logprob, p_logprob
|
1a1c0a14f13f4ed705608f37b2c4f00f67a1cbaa
| 670,406 |
from typing import List
def merge(intervals: List[List[int]]) -> List[List[int]]:
"""
Time complexity: O(N * log(N))
Space complexity: O(N)
Parameters
----------
intervals : List[List[int]]
input intervals
Returns
-------
merged : List[List[int]]
merged intervals
"""
merged = []
intervals.sort(key=lambda x: x[0])
for i in range(len(intervals)):
if not merged or intervals[i][0] > intervals[i - 1][1]:
merged.append(intervals[i])
else:
merged[-1][1] = max(merged[-1][1], intervals[i][1])
return merged
|
01e13470fb88cd3bb8efec9430692d9d4512c1f2
| 319,403 |
def parse_ieee_block_header(block):
"""
Parse the header of a IEEE block.
Definite Length Arbitrary Block:
#<header_length><data_length><data>
The header_length specifies the size of the data_length field.
And the data_length field specifies the size of the data.
Indefinite Length Arbitrary Block:
#0<data>
:param block: IEEE block.
:type block: bytes | bytearray
:return: (offset, data_length)
:rtype: (int, int)
"""
# Function copied from pyVISA
# copyright: 2014 by PyVISA Authors, see AUTHORS for more details.
# license: MIT, see pyVISA LICENSE for more details.
begin = block.find(b'#')
if begin < 0:
raise ValueError("Could not find hash sign (#) indicating the start of"
" the block.")
try:
# int(block[begin+1]) != int(block[begin+1:begin+2]) in Python 3
header_length = int(block[begin + 1:begin + 2])
except ValueError:
header_length = 0
offset = begin + 2 + header_length
if header_length > 0:
# #3100DATA
# 012345
data_length = int(block[begin + 2:offset])
else:
# #0DATA
# 012
data_length = len(block) - offset - 1
return offset, data_length
|
8f06d3d375d45712cdc1c45c8f01fd7bb8a3388f
| 493,123 |
def resets_json(fn):
"""
Decorator that resets cached device info json
Usage:
@resets_json
def modify_device(self):
pass
"""
the_fn = fn
def wrapper(self, *args, **kwargs):
try:
r = the_fn(self, *args, **kwargs)
except:
raise
finally:
self._json = None
return r
return wrapper
|
c80934349480bc916ce8bb68b3ec378a01750c77
| 253,917 |
def _read_request_line_dict(line):
"""Return a dict containing the method and uri for a request line"""
# Split the line into words.
words = line.split(" ")
method = "GET"
# If the line contains only one word, assume the line is the URI.
if len(words) == 1:
uri = words[0]
else:
method = words[0]
uri = words[1]
return {
"method": method,
"uri": uri
}
|
c7e2800143dc1aff3135cb6d13f724da186ff1ed
| 492,259 |
def reopen_to(fhandle, path, mode):
"""
close a filehandle and return a new one opened for the specified path and mode.
example: sys.stdout = reopen_to(sys.stdout, "/tmp/log.txt", "w")
Parameters:
fhandle (file): the file handle to close (may be None)
path (str): the new path to open
mode (str): the file open mode, ie "r", "w"
Returns:
file: the new filehandle
"""
newhandle = open(path, mode)
if fhandle:
fhandle.flush()
fhandle.close()
return newhandle
|
17eb5da556899e80962866b9229d3cde478ec7df
| 670,191 |
def _position_is_empty_in_board(position, board):
"""
Checks if given position is empty ("-") in the board.
:param position: Two-elements tuple representing a
position in the board. Example: (0, 1)
:param board: Game board.
Returns True if given position is empty, False otherwise.
"""
return True if board[int(position[0])][int(position[1])] == "-" else False
|
dda9166588cdeaf81f5c17c57bedc81b856a0ce5
| 601,821 |
def ffmpeg_middle(ext_to):
"""
Function to get ffmpeg command middle section to convert to a given
file extension.
Parameter
---------
ext_to: string
filetype to convert to
Returns
-------
ffmiddle: string
ffmpeg command middle section
"""
ffmiddles = {
"mp3": " -codec:a libmp3lame -ac 2 -qscale:a 2 ",
"wav": " -ac 2 -acodec pcm_s16le "
}
return(ffmiddles[ext_to.lower()])
|
aa89f14ecaf53a049b393e71c24629bf2956117d
| 565,071 |
def capitalise(string: str) -> str:
"""Capitalises the first character of a string"""
if not len(string):
return ''
return string[0].upper() + string[1:]
|
f8cb687d61dd60ac068cac724b88e0ed04cbe51c
| 611,040 |
def get_name_dir(name):
"""Construct a reasonable directory name from a descriptive name. Replace
spaces with dashes, convert to lower case and remove 'content' and 'Repository'
if present.
"""
return name.lower().replace(' ', '-').replace('-content', '')\
.replace('-repository', '')
|
1de53f36e8cbfa31c2292ff9b252d286b54ec2e1
| 296,626 |
def output_to_IOB2_string(output):
"""
Convert Stanford NER tags to IOB2 tags.
"""
iob2_tags = []
names = []
previous_tag = 'O'
for _, tup in enumerate(output):
name, tag = tup
if tag != 'O':
tag = 'E'
if tag == 'O':
iob2_tags.append(tag)
previous_tag = tag
names.append(name)
else:
if previous_tag == 'O':
iob2_tags.append('B-' + tag)
else:
iob2_tags.append('I-' + tag)
previous_tag = tag
names.append(name)
return names, iob2_tags
|
1b31df0b72fff2317f3658c6c085d8ae86f03e9a
| 681,728 |
def step_decay(epoch_ix, lr, step_size=10, decay_factor=0.5):
"""
Defines 'step_decay'-type learning rate schedule, to be used in
keras.Callbacks.LearningRateScheduler.
Input
epoch_ix: index of epoch
lr: current learning rate
step_size: positive interger, number of episodes after which learning rate will adapt
decay_factor: factor by which lr will be multiplied
Returns
learning rate as a function of lr and epoch_ix
"""
if ((epoch_ix > 0) and ((epoch_ix % step_size) == 0)):
lr = lr * decay_factor
return lr
|
43608166f5610d349db6ef78354d9d8853dd77ad
| 514,600 |
def process_nlp_response(get_response):
"""
This function takes as input an NLP GET response
and returns a list of concept codes.
Input: get_response - A list of GET responses
Output: codes - A list of concept Codes
"""
keep = ["ICD9CM", "ICD10CM", "RXNORM", "SNOMEDCT_US", "SNOMED", "NCI"]
codes = []
for dict_entry in get_response["documents"]:
for entity in dict_entry["entities"]:
if "links" in entity.keys():
for link in entity["links"]:
if link["dataSource"] in keep:
codes.append(
[
dict_entry["id"],
entity["text"],
entity["category"],
entity["confidenceScore"],
link["dataSource"],
link["id"],
]
)
return codes
|
0afb8a28664d51fdbed7a670afbac817795901f1
| 658,401 |
def getFingerPrintOnCount(A):
"""
Input:
Iterable having boolean values 0 or 1
Output:
Count of number of 1 found in A
"""
count = 0
for i in A:
if(i == 1):
count += 1
return count
|
d5cfebcd440826c0502b46e0cc75cc434efb1c7b
| 656,870 |
def half_full_to_half(data):
"""
Convert single half court movement to shot log dimensional movement
Parameters
----------
data: pandas.DataFrame
dataframe containing SportVU movement data that is converted to
a single half court (x_loc < 47)
Returns
-------
data: pandas.DataFrame
dataframe containing SportVU movement data that is converted
to the single shooting court that follows shot log dimensions
(-250-250, -47.5-422.5)
"""
# convert to half court scale
# note the x_loc and the y_loc are switched in shot charts from movement data (charts are perpendicular)
data['x_loc_copy'] = data['x_loc']
data['y_loc_copy'] = data['y_loc']
# Range conversion formula
# http://math.stackexchange.com/questions/43698/range-scaling-problem
data['x_loc'] = data['y_loc_copy'].apply(lambda y: 250 * (1 - (y - 0)/(50 - 0)) + -250 * ((y - 0)/(50 - 0)))
data['y_loc'] = data['x_loc_copy'].apply(lambda x: -47.5 * (1 - (x - 0)/(47 - 0)) + 422.5 * ((x - 0)/(47 - 0)))
data = data.drop(['x_loc_copy', 'y_loc_copy'], axis=1, inplace=False)
return data
|
8cd178ae6ce26c7762cdad4887ab3bbab089f8bf
| 560,982 |
def get_numeric_columns(df):
"""get all numeric columns' names
Parameters
----------
df : [pandas.DataFrame]
the dataset
Returns
-------
list
list of numeric column names
"""
numeric_cols = df.select_dtypes("number").columns.tolist()
return numeric_cols
|
7d4d0b4fc42f89c5ec28e1c02074a84af2935999
| 379,167 |
def filter_by_ids(original_list, ids_to_filter):
"""Filter a list of dicts by IDs using an id key on each dict."""
if not ids_to_filter:
return original_list
return [i for i in original_list if i['id'] in ids_to_filter]
|
c411fbb21bbd9828a389f0ca89b98983c4a81200
| 240,268 |
def _is_or_is_not(bool_value):
"""Produces display text for whether metadata is applicable to artifact.
Args:
bool_value: a BoolValue instance.
Returns:
A str with value "is" if bool_value is True, else "is not".
"""
return "is" if bool_value else "isn't"
|
23a141a8eee7c63c592c0676217c8559bf585369
| 216,256 |
def find_nearest_datapoint(lat, lon, ds):
"""Find the point in the dataset closest to the given latitude and longitude"""
datapoint_lats = ds.coords.indexes["latitude"]
datapoint_lons = ds.coords.indexes["longitude"]
lat_nearest = min(datapoint_lats, key=lambda x: abs(x - lat))
lon_nearest = min(datapoint_lons, key=lambda x: abs(x - lon))
return lat_nearest, lon_nearest
|
ffc106e0ac092ce32d0e499369898f2139ac9ab9
| 648,919 |
def get_values(worksheet, start_row=1):
"""
Get the values stored in the cells from the second row onwards. Returns a list of each row of the worksheet as a list
i.e. [ [row2_col1_value, row2_col2_value, ... ], [row3_col1_value, ... ], ... ]. Cells that contain a datetime object
as the value will be converted into string object with the 'mm/dd/yy' format.
"""
values = list()
for row in worksheet.iter_rows(min_row=2):
db_row = list()
for cell in row:
if cell.is_date:
db_row.append(cell.value.strftime('%x'))
elif cell.data_type == cell.TYPE_STRING:
db_row.append(cell.value.strip().replace('\'', '\'\''))
else:
db_row.append(cell.value)
values.append(db_row)
return values
|
879ce3307ecfb73f599039d0cce5086453ca1ed4
| 551,263 |
def _create_padded_message(message: str) -> str:
"""Create padded message, used for encrypted responses."""
extra = len(message) % 16
return (16 - extra) * "0" + message
|
616b36648a1f4d39354fd5978d532a97edd7e156
| 669,064 |
def get_member_profile_image_upload_path(instance, filename):
"""
Construct the upload path for a given member and filename.
"""
return str("member/{0}/profile-images/{1}").format(instance.user.id, filename)
|
8b6486e881ac487a128a882f8b624c0ef445f467
| 188,953 |
def AveragePool(self, name, in_t, attrs):
"""
Create and add AveragePool op to Graph
"""
out_t = self.layer(op="AveragePool", name=name,
inputs=[in_t], outputs=[name],
attrs=attrs)[0]
out_t.name = "{}_out_0".format(name)
return out_t
|
bbfefb9f0d63021d12bd57f2023d08a4bb360fa3
| 499,797 |
import math
def format_float(number, decimal_places):
"""
Accurately round a floating-point number to the specified decimal
places (useful for formatting results).
"""
divisor = math.pow(10, decimal_places)
value = number * divisor + .5
value = str(int(value) / divisor)
frac = value.split('.')[1]
trail_len = decimal_places - len(frac)
return value + ''.join(['0'] * trail_len)
|
e7aaa92025284489075ce053319c27310bb96a00
| 704,662 |
import itertools
def relative_bics(saveresult):
"""
This convenience function calculates all the relative BIC comparisons
from an AFINO save result.
Parameters
----------
saveresult : dict
An AFINO save result dictionary. Can be restored from a previous save file
Returns
-------
dbic_values : dict
A dictionary of relative BIC value comparisons, i.e. BICa - BICb for every a,b pair
"""
bics = []
ids = []
dbic_values = {}
for key in saveresult:
bics.append(saveresult[key]['BIC'])
ids.append(int(saveresult[key]['ID']))
# extract all the ID and BIC pairs (includes reverse pairings)
combo_list = list(itertools.permutations(ids))
combo_bic_list = list(itertools.permutations(bics))
# for each ID/BIC pair a,b, put BICa - BICb in a dictionary
for i, combo in enumerate(combo_list):
dbic_values['dBIC_' + str(combo[0]) + '_minus_' + str(combo[1])] = combo_bic_list[i][0] - combo_bic_list[i][1]
return dbic_values
|
d84516b75103991f6ac4aa26552890cfc19c8616
| 212,178 |
def load_vocab(vocab_file):
"""
:param vocab_file: one character per line
:return: labels: list of character
"""
labels = []
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
labels.append(line)
return labels
|
d7cebbcdd529d11f8db5fe4d7d2e4c6300c0c023
| 577,176 |
import math
def ci_to_sd(lowerci, upperci, cival=95.0, size=100):
"""
Converts Confidence interval to Mean and Standard deviation.
Parameters:
lowerci (float, required): The lower bound of the confidence
interval.
upperci (float, required): The upper bound of the confidence
interval.
cival (float, optional): The confidence level.
It must be one of the following values.
[99.9,99.5,99.0,95.0,90.0,85.0,80.0]
The default value is 95 for 95% confidence interval.
size (int, optional): The size of the sample to be generated.
The default value is 100.
Returns:
float: A float value for Standard deviation.
"""
zvals = {99.9:3.291, 99.5:2.807, 99.0:2.807, 95.0:1.960, 90.0:1.645, \
85.0:1.645, 80.0:1.282}
zscore = zvals[float(cival)]
sdev = math.sqrt(size)*(upperci-lowerci)/zscore
return sdev
|
76bb3b0d905501cfdb3edc6b41e425f6df997ace
| 411,839 |
import requests
def download_holdings_file(holdings_file_url, file_extension, ticker):
"""Download a holdings list file (CSV, Excel, PDF, Json) from a URL and save it locally.
:param holdings_file_url: The URL from which the holdings file can be downloaded.
:param file_extension: The expected file type ('csv', 'xlsx', 'pdf', 'json').
:param ticker: The fund ticker symbol to ensure a unique file name when saved.
:returns: The filename of the downloaded holdings file.
"""
r = requests.get(holdings_file_url, headers={'User-Agent': 'Mozilla/5.0'}, allow_redirects=True)
filename = 'holdings-{}.{}'.format(ticker, file_extension)
open(filename, 'wb').write(r.content)
return filename
|
b48d3bcd5b11c147cb5e2492b6020e7d0f028bc9
| 247,827 |
import yaml
def load_yaml_file(filename):
"""Loads dictionary from yaml file.
Args:
filename: file to read from
Returns: Dict
"""
with open(filename) as f:
contents = yaml.load(f, Loader=yaml.FullLoader)
return contents
|
a6e70c21d4f0001f301c519409abdf12a42d71b5
| 659,477 |
import jinja2
def make_jinja_env(templates_dir):
"""
Create the default Jinja environment given the template folder.
Parameters
----------
templates_dir : str or pathlib.Path
The path to the templates.
Returns
-------
env : jinja2.Environment
The environment used to render the templates.
"""
# Need to add the current dir so we can use the Markdown files as templates
env = jinja2.Environment(
loader=jinja2.FileSystemLoader([str(templates_dir), "."], followlinks=True),
extensions=["jinja2.ext.do", "jinja2.ext.loopcontrols"],
)
return env
|
79d03ae0aeaf7dafed04001e44b2446756313444
| 662,749 |
def readRawChats(inFile):
"""
Reads .csv file and split into transcripts by splitting on the Timestamp which includes the Date.
The returned transcriptList is a list-of-lists where each "outer" list item contains information about
a single chat.
"""
inFile = open(inFile, "r") # NOTE .csv file assumed to have column-headings line
dateAtStartCount = 0
transcriptList = []
currentTranscriptLines = []
for line in inFile:
frontOfLine = line[:6]
if frontOfLine.count("/") == 2:
dateAtStartCount += 1
if dateAtStartCount == 1: #ignore header line
currentTranscriptLines = [line.strip()]
else:
transcriptList.append(currentTranscriptLines)
currentTranscriptLines = [line.strip()]
else:
currentTranscriptLines.append(line.strip())
transcriptList.append(currentTranscriptLines)
return transcriptList
|
8e16bb290e2c613ccd3c00148293f55d01de128a
| 410,172 |
def read_in(path):
"""Read in a file, return the str"""
with open(path, "r") as file_fd:
return file_fd.read()
|
e9b407ef45aefd2efaf47fdb729ef71130c4e163
| 85,216 |
import re
def apply_correction(message, pattern, replacement):
"""
Replaces all occurences of pattern in message with replacment. It tries to
treat the pattern and replacement as regular expressions, but falls back to
string replace if that fails.
"""
try:
message = re.compile(pattern).sub(replacement, message)
except:
message = message.replace(pattern, replacement)
return message
|
359857f7394a98b872031cd9692ee188fd8018dd
| 215,651 |
def get_configuration_attribute(attribute, class_obj, default=None):
"""
Look for an attribute in a class and return if present
Otherwise return the specified default
:param attribute: String - Name of attribute to look for
:param class_obj: Class - Class to look for attribute
:param default: String - The default to be returned if the attribute does
not exist, Default: None
"""
if hasattr(class_obj, attribute):
return getattr(class_obj, attribute)
else:
return default
|
5ae51ad5ff2b34733501eb4f2c97d36a2382d9a3
| 136,216 |
def resize_image(image, tuple_wh, preserve_aspect=True):
"""Resizes an instance of a PIL Image.
In order to prevent un-intended side effects,
this function always returns a copy of the image,
as the resize function from PIL returns a copy
but the thumbnail function does not.
Args:
image: An instance of a PIL Image.
tuple_wh: A tuple containing the (width, height) for resizing.
preserve_aspect: A boolean that determines whether or not the
resizing should preserve the image's aspect ratio.
Returns: A resized copy of the provided PIL image.
"""
if preserve_aspect:
img_cpy = image.copy()
img_cpy.thumbnail(tuple_wh)
return img_cpy
else:
return image.resize(tuple_wh)
|
8446233e07061b7145f02ed34c126fc0afa25d81
| 275,947 |
def parse_item_and_prep(item_and_prep):
"""Parse an ingredient listing into the food item and preparation instructions."""
components = [i.strip() for i in item_and_prep.split(',')]
return components[0], ' '.join(components[1:])
|
1660b2f677855d873e1683b69cad4b079a13f0c1
| 287,213 |
import re
def format_sql_query(sql: str, page: int, per_page: int) -> str:
"""
Formats an sql query with the required limit and offset.
:param sql: original sql query (string)
:param page: number of the current page (int)
:param per_page: number of records per page (int)
:return: (str)
"""
terminator_regex = r";"
limit_string = " LIMIT {} OFFSET {};".format(per_page, per_page * (page-1))
if not re.search(terminator_regex, sql):
return sql + limit_string
return re.sub(terminator_regex, limit_string, sql)
|
863b0801d61963a36f68f639457e55f8d17d1dd7
| 337,012 |
def get_move(old_i, new_i):
"""
Returns a string corresponding to the move between two positions of a tile
old_i: a tuple representing the old index of the tile
new_i: a tuple representing the new index of the tile
"""
dx = new_i[0] - old_i[0]
dy = new_i[1] - old_i[1]
if dx > 0:
return "left"
elif dx < 0:
return "right"
elif dy > 0:
return "up"
elif dy < 0:
return "down"
else:
return ""
|
56189e7853d79ad6cd7ac79bc9a8c3571b3175ec
| 560,889 |
def build_endpoint(route, target=None):
"""Build a REST endpoint string by joining route and target.
Args:
route (:obj:`str`):
Route part of endpoint.
target (:obj:`str`, optional):
Target part of endpoint.
Defaults to None.
Returns:
:obj:`str`
"""
target = "" if target is None else "/{}".format(target)
return "{}{}".format(route, target)
|
9f22fdb79926407b052a5d1c28dbeea81de4c502
| 291,834 |
from datetime import datetime
def cid_to_date(cid):
"""Converts a cid to date string YYYY-MM-DD
Parameters
----------
cid : int
A cid as it is generated by the function ``utils.create_cid()``
Returns
-------
str
A string formated date (e.g. YYYY-MM-DD, 2018-10-01)
"""
return datetime.utcfromtimestamp(
cid/10000000.0
).strftime("%Y-%m-%d")
|
ab919f9cfd5c56f6fb6b65cbae8731687fc42faf
| 708,289 |
def parse_game_features(s):
"""
Parse the game features we want to detect.
"""
game_features = ['target', 'enemy', 'health', 'weapon', 'ammo']
split = list(filter(None, s.split(',')))
assert all(x in game_features for x in split)
return [x in split for x in game_features]
|
de436221f5749484b0fa6767eb55c99502f4aaa3
| 198,591 |
import torch
def skip_special_tokens(tensor, device, special_token_ids):
"""Filters out special tokens by ids in the given 1D tensor.
Adapted from https://stackoverflow.com/a/62588955
Args:
tensor (tensor): PyTorch Tensor
device (str): Device, usually "cpu" or "cuda:0"
token_ids (set): List of Token IDs
"""
special_token_id_tensor = torch.unique(torch.as_tensor(special_token_ids)).to(
device
)
return tensor[
~tensor.unsqueeze(1).eq(special_token_id_tensor.unsqueeze(1)).any(1)
].tolist()
|
804e200286e53b9c07d93fa10059b4be1b1720ca
| 332,412 |
def cross_entropy_binary_der(y_true, y_pred, delta=1e-9):
"""
The derivative of binary cross-entropy.
The derivative of the cross-entropy function (i.e. derivative of the
error output) with respect to the predicted value (y_pred).
The value inside the brackets is the value of the derivative of the
log-likelihood for a bernoulli distribution. The negative is added
because of our definition of cross-entropy.
Parameters
----------
y_true : numpy array
True, observed values. The outcome of an event (where 1 == success).
y_pred : numpy array
The predicted success probabilities.
delta : float, optional
A small, positive constant to offset predicted probabilities that are
zero, which avoids log(0). Is ignored if delta = 0.
The default is 1e-9.
Returns
-------
float
The derivative of binary cross-entropy.
"""
# Compute the cross-entropy cost
# To avoid log(0) errors (not necessary in most cases)
ypred = y_pred.copy()
if delta != 0:
ypred[ypred <= delta] = delta
ypred[ypred >= 1-delta] = 1-delta
return -((y_true/ypred) - (1-y_true)/(1-ypred))
|
58eb19301901b3ded417cd75b48da026eaed1f3e
| 531,473 |
import contextlib
import socket
def check_connection(host=None, port=None, timeout=None):
"""Checks whether internet connection is available.
:param host: dns host address to lookup in.
:param port: port of the server
:param timeout: socket timeout time in seconds
:rtype: bool
:return: True if available False otherwise
"""
if not host:
host = '8.8.8.8'
if not port:
port = 53
#: Family and Type will be default
with contextlib.closing(socket.socket()) as sock:
sock.settimeout(timeout)
with contextlib.suppress(socket.error):
sock.connect((host, port))
return True
return False
|
8cd42f7039407633c37ccb40c60a230f47dc0695
| 197,755 |
def mps_to_mph(mps):
"""
Convert meters per second to miles per hour (floats)
"""
return mps / 0.44704
|
ba56b3ae78f9f82e73ef204058ee4d0508547212
| 515,932 |
import ast
def _get_last_child_with_lineno(node):
"""
Return the last direct child of `node` that has a lineno attribute,
or None if `node` has no such children.
Almost all node._field lists are sorted by the order in which they
appear in source code. For some nodes however, we have to skip some
fields that either don't have line numbers (e.g., "ctx" and "names")
or that are in the wrong position (e.g., "decorator_list" and
"returns"). Then we choose the first field (i.e., the field with the
highest line number) that actually contains a node. If it contains a
list of nodes, we return the last one.
"""
ignored_fields = {"ctx", "decorator_list", "names", "returns"}
fields = node._fields
# The fields of ast.Call are in the wrong order.
if isinstance(node, ast.Call):
fields = ("func", "args", "starargs", "keywords", "kwargs")
for name in reversed(fields):
if name in ignored_fields:
continue
try:
last_field = getattr(node, name)
except AttributeError:
continue
# Ignore non-AST objects like "is_async", "level" and "nl".
if isinstance(last_field, ast.AST):
return last_field
elif isinstance(last_field, list) and last_field:
return last_field[-1]
return None
|
6ab189384f596edb4017c3f0be3a1a34cface69b
| 149,104 |
def set_dont_care(key, parkeys, dont_care):
"""Set the values of `key` named in `dont_care` to 'N/A'."""
key = list(key)
for i, name in enumerate(parkeys):
if name in dont_care:
key[i] = 'N/A'
return tuple(key)
|
017c93495c8d165688ece6e5721aa5cf4408454f
| 242,991 |
def _capitalize_first_letter(word):
"""
Capitalizes JUST the first letter of a word token.
Note that str.title() doesn't work properly with apostrophes.
ex. "john's".title() == "John'S"
"""
if len(word) == 1:
return word.upper()
else:
return word[0].upper() + word[1:]
|
30fbc276c238dcb601b4da7d7ed99007f9de26c4
| 436,256 |
def sum_hours(entries):
"""Return the sum total of get_total_seconds() for each entry."""
return sum([e.get_total_seconds() for e in entries])
|
1522bb65b3fc5bbe73360f9efc3362681fbe9c93
| 612,756 |
def boost(d, k=2):
"""Given a distance between 0 and 1 make it more nonlinear"""
return 1 - (1 - d)**k
|
2dcead669de9c3781ab5c85d8a72e445130628c5
| 358,671 |
def imul_cupydense(cpd_array, value):
"""Multiply this CuPyDense `cpd_array` by a complex scalar `value`."""
return cpd_array.__imul__(value)
|
2b70d367e6395637942ea9d5d6c553390c3da36f
| 513,221 |
def _get_shock_sds(params, info, dimensions):
"""Create the array of standard deviations of the shocks in transition functions."""
return params[info["shock_sds"]].reshape(-1, dimensions["n_states"])
|
6c60e35190f814b52f0950723ea7927f05960a45
| 224,991 |
from typing import List
import pathlib
from typing import Dict
from typing import Any
import pickle
def _open_hydra_pickles(paths: List[pathlib.Path]) -> Dict[str, Any]:
"""Open pickles in directory of Hydra log and return dict of data.
Parameters
----------
paths : List[pathlib.Path]
Paths to Hydra pickles to load.
Returns
-------
Dict[str, Any]
Dict of loaded data, where the key is the loaded file name without its
extension.
"""
loaded_data = {}
for path in paths:
name = pathlib.Path(path).parent.name
with open(path, 'rb') as f:
opened_pickle = pickle.load(f)
loaded_data[name] = opened_pickle
return loaded_data
|
fc5b187549251fc7aba7e711b64551e254bfde8d
| 662,755 |
def get_formatted_name(first_name, last_name):
# Describe the function
"""Return a full name, neatly formatted."""
# The names are joined into full name
formatted_name = first_name + ' ' + last_name
# return the value, don't do anything with it yet
return formatted_name.title()
|
7fa7a9eb576458322ecebe07b3bab9c92f9b9d05
| 540,031 |
def _decompress(indices):
"""
Convert a str representing a sequence of entries into a list.
:param indices: One line in the custom input data that represents a
sequence of entries in a list. See module docstring for
information on the file format.
:type indices: str
:returns: The decompressed list
:rtype: list of float
Examples:
>>> _decompress("2x3.0 1x4.2 3x2.0")
[3.0, 3.0, 4.2, 2.0, 2.0, 2.0]
>>> _decompress("3x0 2x5 3x4")
[0.0, 0.0, 0.0, 5.0, 5.0, 4.0, 4.0, 4.0]
"""
decompressed = []
for entry in indices.split(" "):
if "x" in entry:
counter, value = entry.split("x")
else:
counter = 1
value = entry
decompressed.extend(int(counter) * [float(value)])
return decompressed
|
04f41a88efc6b2579c957412cf459d2435fd2e46
| 413,670 |
def collector_url_from_hostport(host, port):
"""
Create an appropriate collector URL given the parameters.
"""
return ''.join(['http://', host, ':', str(port), '/api/v1/spans'])
|
75367231b2c4e1b1131b84e04303f1b99e48d992
| 228,106 |
def _read_file(path):
"""reads a file given by path, removes trailing white spaces,
tabs and new lines and returns result"""
with open(path) as attrib:
data = attrib.read()
return data.rstrip(' \t\n\r')
|
681805d92bb8d731adcabe593d921c23b37f1ad5
| 199,237 |
def get_message_template_params(case):
"""
Data such as case properties can be referenced from reminder messages
such as {case.name} which references the case's name. Add to this result
all data that can be referenced from a reminder message.
The result is a dictionary where each key is the object's name and each
value is a dictionary of attributes to be referenced. Dictionaries can
also be nested, so a result here of {"case": {"parent": {"name": "joe"}}}
allows you to reference {case.parent.name} in a reminder message.
At the moment, the result here is of this structure:
{
"case": {
...key:value case properties...
"parent": {
...key:value parent case properties...
}
}
}
"""
result = {"case": {}}
if case:
result["case"] = case.case_properties()
parent_case = case.parent if case else None
result["case"]["parent"] = {}
if parent_case:
result["case"]["parent"] = parent_case.case_properties()
return result
|
013a3224194ce9abc97ea828398d2ab251cbb258
| 309,278 |
def strike_a_match(str1, str2):
"""Implements Dice Bi-Grams metric.
str1, str2: str
Input values in unicode.
Returns
-------
float
A similarity score normalized in range [0,1].
"""
pairs1 = {str1[i:i + 2] for i in range(len(str1) - 1)}
pairs2 = {str2[i:i + 2] for i in range(len(str2) - 1)}
union = len(pairs1) + len(pairs2)
hit_count = 0
for x in pairs1:
for y in pairs2:
if x == y:
hit_count += 1
break
try:
return (2.0 * hit_count) / union
except:
if str1 == str2:
return 1.0
else:
return 0.0
|
4665d675536e30a7a529dbca7b26c7cf8ae389dc
| 196,727 |
def get_null_stats(df):
"""
Function that will return count (absolute and relative) of null
values in each column in `df`.
Parameters
----------
df : pandas.DataFrame
DataFrame on which this function will operate.
Return
------
pandas.DataFrame with `df.columns` as row index and `["cnt", "ratio"]`
(for absolute and relative counts, respectively) in column index.
"""
nulls = df.isnull().sum()
nulls = nulls.rename("cnt").to_frame()
nulls["ratio"] = nulls / len(df)
return nulls.sort_values("ratio", ascending=False)
|
aca977692497682b1360998f646034cbed841477
| 584,658 |
def is_preview_request(request):
""" Return true if this is a request for a task preview """
return ('assignmentId' not in request.GET or
request.GET['assignmentId'] == 'ASSIGNMENT_ID_NOT_AVAILABLE')
|
19901bf095159eeb0208f16da85b5568cc0fe087
| 455,709 |
def future_value(interest, period, cash):
"""(float, int, int_or_float) => float
Return the future value obtained from an amount of cash
growing with a fix interest over a period of time.
>>> future_value(0.5,1,1)
1.5
>>> future_value(0.1,10,100)
259.37424601
"""
if not 0 <= interest <= 1:
raise ValueError('"interest" must be a float between 0 and 1')
for d in range(period):
cash += cash * interest
return cash
|
a2a69434c78f29ee15e6c4e00b65746c0327dac5
| 609,660 |
def read_submission_file(f_sub_name):
"""
Reads in a submission file
Parameters
----------
f_sub_name : submission file name
Returns
-------
predicted_ctr : a list of predicted click-through rates
"""
f_sub = open(f_sub_name)
predicted_ctr = []
for line in f_sub:
line = line.strip().split(",")
predicted_ctr.append(float(line[0]))
#predicted_ctr.append(float(line))
return predicted_ctr
|
e7d0a6282a5ec8d9d45b0a31372ec4eaec2ff339
| 238,170 |
def maximum_weighted_independent_set_qubo(G, weight=None, lagrange=2.0):
"""Return the QUBO with ground states corresponding to a maximum weighted independent set.
Parameters
----------
G : NetworkX graph
weight : string, optional (default None)
If None, every node has equal weight. If a string, use this node
attribute as the node weight. A node without this attribute is
assumed to have max weight.
lagrange : optional (default 2)
Lagrange parameter to weight constraints (no edges within set)
versus objective (largest set possible).
Returns
-------
QUBO : dict
The QUBO with ground states corresponding to a maximum weighted independent set.
Examples
--------
>>> from dwave_networkx.algorithms.independent_set import maximum_weighted_independent_set_qubo
...
>>> G = nx.path_graph(3)
>>> Q = maximum_weighted_independent_set_qubo(G, weight='weight', lagrange=2.0)
>>> Q[(0, 0)]
-1.0
>>> Q[(1, 1)]
-1.0
>>> Q[(0, 1)]
2.0
"""
# empty QUBO for an empty graph
if not G:
return {}
# We assume that the sampler can handle an unstructured QUBO problem, so let's set one up.
# Let us define the largest independent set to be S.
# For each node n in the graph, we assign a boolean variable v_n, where v_n = 1 when n
# is in S and v_n = 0 otherwise.
# We call the matrix defining our QUBO problem Q.
# On the diagnonal, we assign the linear bias for each node to be the negative of its weight.
# This means that each node is biased towards being in S. Weights are scaled to a maximum of 1.
# Negative weights are considered 0.
# On the off diagnonal, we assign the off-diagonal terms of Q to be 2. Thus, if both
# nodes are in S, the overall energy is increased by 2.
cost = dict(G.nodes(data=weight, default=1))
scale = max(cost.values())
Q = {(node, node): min(-cost[node] / scale, 0.0) for node in G}
Q.update({edge: lagrange for edge in G.edges})
return Q
|
21b2ebeca0a4f84523c0d0712c5add9c5b0ca9e2
| 559,242 |
def scraped_table_to_list(table):
"""Convert the scraped table to a multidimensional list.
Args:
table: table to scrape
Returns:
data scraped from soup of table
"""
return [[cell.text for cell in row.find_all(['th', 'td'])] for row in table.find_all('tr')]
|
c1de9a932cedc60d6b272cceebcce1f6c45e37e6
| 149,060 |
from typing import Union
def numify(variable: str) -> Union[int, float, str]:
"""Attempts to convert 'variable' to a numeric type.
If 'variable' cannot be converted to a numeric type, it is returned as is.
Args:
variable (str): variable to be converted.
Returns
variable (int, float, str) converted to numeric type, if possible.
"""
try:
return int(variable)
except ValueError:
try:
return float(variable)
except ValueError:
return variable
|
a61b2b714318dc6eef8e82040e8d3ccbfbe439ef
| 221,971 |
def get_list_b_nodes_without_area(city):
"""
Returns list of building node ids without area parameter.
Requires osm call to generate city obejct, first!
Parameters
----------
city : object
City object generated with osm call
Returns
-------
list_missing_area : list (of ints)
List with building node ids without area parameter
"""
list_missing_area = []
for n in city.nodes():
if 'node_type' in city.nodes[n]:
if city.nodes[n]['node_type'] == 'building':
if 'area' not in city.nodes[n]:
list_missing_area.append(n)
return list_missing_area
|
c592054fc2283fa8ea490fb49f776484e313fcfa
| 569,966 |
def is_coplanar(points):
"""Check if 4 points lie on the same plane"""
a1 = points[1].x - points[0].x
b1 = points[1].y - points[0].y
c1 = points[1].z - points[0].z
a2 = points[2].x - points[0].x
b2 = points[2].y - points[0].y
c2 = points[2].z - points[0].z
a = b1 * c2 - b2 * c1
b = a2 * c1 - a1 * c2
c = a1 * b2 - b1 * a2
d = (- a * points[0].x - b * points[0].y - c * points[0].z)
# equation of plane is: a*x + b*y + c*z = 0 #
# checking if the 4th point satisfies
# the above equation
if(a * points[3].x + b * points[3].y + c * points[3].z + d == 0):
return True
return False
|
404a275dbaa829c797d6cd52f2e761083940110f
| 474,420 |
def first_word(sentence):
"""Return first word of a string."""
try:
return sentence.split(' ', 1)[0]
except:
return None
|
c7938a06b7f6ae4169b622863ed8285e173f34a0
| 631,286 |
def magic_index(arr):
""" 8.3 Magic Index: A magic index in an array A [ 0... n -1] is defined
to be an index such that A[i] = i.
Given a sorted array of distinct integers, write a method to find a magic
index, if one exists, in array A.
FOLLOW UP
What if the values are not distinct?
For distinct values we can recurse on the half of the array which is smaller,
all the time. For non-distinct values, we have to recurse on all elements.
"""
def rec_magic_index(arr, left, right):
if right < left:
return []
if right - left == 0:
if arr[right] == right:
return [right]
else:
return []
middle = (right + left) / 2
left_magic_indices = rec_magic_index(arr, left, middle)
right_magic_indices = rec_magic_index(arr, middle + 1, right)
return left_magic_indices + right_magic_indices
return rec_magic_index(arr, 0, len(arr) - 1)
|
3f89d0c2ce8f9fbfb7c268e49e7a074a360201a2
| 512,443 |
import typing
def discretize_layer(width: float, stretch_factor: float = 1.3, minimum_division=0.001, maximum_division=0.2) \
-> typing.List[float]:
"""
Creates a subdivision of the material to be used for the discretization.
:param width: Width of the material to be subdivided
:param minimum_division: Width of the smallest division
:param stretch_factor: Increase in subdivisions
:param maximum_division: Maximum size of a cell
:return: List containing width of subdivisions
"""
processed_width = 0
next_ = minimum_division
left_side = []
right_side = []
while processed_width < width:
remaining = width - processed_width
if next_*2 <= remaining:
left_side.append(next_)
right_side.append(next_)
processed_width += next_*2
else:
if remaining <= maximum_division:
left_side.append(remaining)
processed_width += remaining
else:
left_side.append(remaining/2)
right_side.append(remaining/2)
processed_width += remaining
next_ = min(next_ * stretch_factor, maximum_division)
new_grid = left_side + right_side[::-1]
return new_grid
|
405c04635e5b895c6dbca013d3edd7e83564161e
| 313,856 |
from pathlib import Path
def ensure_file(file_path: Path) -> Path:
"""Ensure that file exists"""
file_path.parent.mkdir(parents=True, exist_ok=True)
file_path.touch(exist_ok=True)
return file_path
|
80bfadc9fea62f5982a8666325ff041a7029901a
| 345,350 |
def get_response(action, next):
"""Returns a fairly standard Twilio response template."""
response = """<?xml version="1.0" encoding="UTF-8"?>
<Response>
{action}<Redirect method="GET">{next}</Redirect>
</Response>"""
return response.format(action=action, next=next)
|
55cf089fa806d57eff530e0f6f8121b08a52a2b6
| 319,501 |
def _primary_artist(artist):
"""
Utitlity function that tries to only get the main artist of a song.
Example: "Tyler featuring Xyz" would just return "tyler"
"""
artist = artist.casefold()
artist = artist.split('featuring')[0].strip()
artist = artist.split('/')[0].strip()
artist = artist.split(' x ')[0].strip()
return artist
|
5d3214b4fec24552487a75a53f3abd3516efcdbd
| 186,639 |
from typing import Any
def to_len(value: Any) -> int:
"""Get the length of a value. The value is converted to string and the
number of characters in the resulting string is returned.
Parameters
----------
value: any
Value whose length is returned.
Returns
-------
int
"""
return len(str(value))
|
9980653b8e6682019ac19a317b67b8f7f9138714
| 111,004 |
def print_square(num: int = 20) -> str:
"""Output the square of a number."""
result = num ** 2
return f"The square of {num:.2} is {result:.2}."
|
29aefdbedcd8c05a71a1b72beae48ed9ce0c6954
| 126,367 |
def m21_midievent_to_event(midievent):
"""Convert a music21 MidiEvent to a tuple of MIDI bytes."""
status = midievent.data + midievent.channel - 1
return (status, midievent.pitch, midievent.velocity)
|
3950b4e6715ac4de2dbdcc2d87d5cf51387a220c
| 703,261 |
def calc_tot_orbits(n_orbit_dict):
"""Calculate the total number of direct and indirect orbits in
n_orbit_dict.
Parameters
----------
n_orbit_dict : dictionary
A dictionary where each key is an object in the system and each value
is a tuple of 2 values. The first represents the number of direct
orbits and the second the number of indirect orbits.
Returns
-------
n_direct_tot : int
The number of direct orbits
n_indirect_tot : int
The number of indirect orbits
"""
n_direct_tot = sum([n_orbits[0] for n_orbits in n_orbit_dict.values()])
n_indirect_tot = sum([n_orbits[1] for n_orbits in n_orbit_dict.values()])
return n_direct_tot, n_indirect_tot
|
07a9dbc11866b9710503ef8fe75297c14aa0b6c9
| 638,743 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.