content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def eletype(eletype): """Assigns number to degrees of freedom According to iet assigns number of degrees of freedom, number of nodes and minimum required number of integration points. Parameters ---------- eletype : int Type of element. These are: 1. 4 node bilinear quadrilateral. 2. 6 node quadratic triangle. 3. 3 node linear triangle. 5. 2 node spring. 6. 2 node truss element. 7. 2 node beam (3 DOF per node). 8. 2 node beam with axial force (3 DOF per node). Returns ------- ndof : int Number of degrees of freedom for the selected element. nnodes : int Number of nodes for the selected element. ngpts : int Number of Gauss points for the selected element. """ elem_id = { 1: (8, 4, 4), 2: (12, 6, 7), 3: (6, 3, 3), 4: (18, 9, 9), 5: (4, 2, 3), 6: (4, 2, 3), 7: (6, 2, 3), 8: (6, 2, 3)} try: return elem_id[eletype] except: raise ValueError("You entered an invalid type of element.")
a1f520429f23ac53835bf0fd1279abecb378b737
58,368
def moles_to_pressure(volume: float, moles: float, temperature: float) -> float: """ Convert moles to pressure. Ideal gas laws are used. Temperature is taken in kelvin. Volume is taken in litres. Pressure has atm as SI unit. Wikipedia reference: https://en.wikipedia.org/wiki/Gas_laws Wikipedia reference: https://en.wikipedia.org/wiki/Pressure Wikipedia reference: https://en.wikipedia.org/wiki/Temperature >>> moles_to_pressure(0.82, 3, 300) 90 >>> moles_to_pressure(8.2, 5, 200) 10 """ return round(float((moles * 0.0821 * temperature) / (volume)))
43c7f5346da68db758dfae6e256260054cfd5d39
685,976
import math def lat_lon_to_tile(lat,lon,z): """convert a Point to tuple (x,y,z) representing a tile in Mercator projection information about converting coordinates to a tile in Mercator projection may be found at: http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames http://mapki.com/wiki/Lat/Lon_To_Tile """ lat_rad = math.radians(lat) n = 2.0 ** z x = ((lon + 180.0) / 360.0 * n) y = ((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n) tile_x = int(x) tile_y = int(y) pixel_x = int((x-tile_x)*256) pixel_y = int((y-tile_y)*256) return dict( z=z, tile_x=tile_x, tile_y=tile_y, pixel_x=pixel_x, pixel_y=pixel_y)
5dee0876f3bb7988b3b536d78a438a96a1702bda
140,386
def _half_window(window): """Computes half window sizes """ return tuple((w[0] / 2, w[1] / 2) for w in window)
664727d518ce1899d69c1cd3907d3e03aafba88d
179,350
def test_get_track_count(monkeypatch, albumdata): """Test track count getting with a fake cdparanoia output.""" testdata = """\ cdparanoia III release 10.2 (September 11, 2008) Table of contents (audio tracks only): track length begin copy pre ch =========================================================== 1. 1000 [00:10.00] 150 [00:01.50] no no 2 TOTAL 1150 [00:11.50] (audio only) """ class FakeProcess: def check_returncode(self): pass @property def stdout(self): return testdata obj = FakeProcess() monkeypatch.setattr('subprocess.run', lambda *x, **y: obj) assert albumdata.Albumdata._get_track_count('') == 1
8242026be59e3dd7bc7b78e1d11d2a5f5033060a
136,527
def s_time_offset_from_secs(secs): """ Return a string with offset from UTC in RFC3339 format, from secs. """ if secs > 0: sign = "+" else: sign = "-" secs = abs(secs) offset_hour = secs // (60 * 60) offset_min = (secs // 60) % 60 return "%s%02d:%02d" % (sign, offset_hour, offset_min)
a3f6ca131474928b6ffff3338d66a3f183444c4e
345,943
from pathlib import Path import _hashlib def get_hash(file: Path, first_chunk_only=False, hash_algo=_hashlib.sha1): """Returns a hash of the provided Path_Obj. Can return full hash or only first 1024 bytes of file. Args: file (Path_Obj): File to be hashed. first_chunk_only (bool, optional): Hash total file?. Defaults to False. hash_algo (Hash Function, optional): Hash routine to use. Defaults to _hashlib.sha1. Returns: Hash Value """ def chunk_reader(fobj, chunk_size=1024): """ Generator that reads a file in chunks of bytes """ while True: chunk = fobj.read(chunk_size) if not chunk: return yield chunk hashobj = hash_algo() with open(file, "rb") as f: if first_chunk_only: hashobj.update(f.read(1024)) else: for chunk in chunk_reader(f): hashobj.update(chunk) return hashobj.digest()
cd6d7dc87a1b25cf9111105ed49508dc91155a0e
119,812
def cm2inches(centimeters): """Convert cm to inches""" return centimeters / 2.54
bf6ce213135bf013c40f28098bacbf1de826642e
403,049
import unicodedata def remove_accents(string): """ Removes unicode accents from a string, downgrading to the base character """ nfkd = unicodedata.normalize('NFKD', string) return u"".join([c for c in nfkd if not unicodedata.combining(c)])
41c8e05aa8982c85cf5cf2135276cdb5e26fefec
704,740
import re def sympy2bnet(rule): """Converts a sympy string expression to a BNET string expression. Parameters ---------- rule : str Boolean expression in sympy format. Returns ------- str Expression in BNET format. """ crule = re.sub("~","!",rule) crule = re.sub("True","1",crule) crule = re.sub("False","0",crule) return crule
d69a7c3bdb496588c2867142f3c6b5c235db04af
449,389
def di(i, a, dt, tau): """ Computes the change of concentration given an initial concentration `i`, a time increment `dt` and a constant `k`. Args: a (float): the initial concentration value of the activator i (float): the initial concentration value of the inhibitor dt (float): the time increment tau (float): the constant tau Returns: (float): the change of concentration """ return dt/tau * (a - i)
2d932a3c0be2c950e5ed6c6a380995b37a1f351b
417,205
def clamp(a, low, high): """ Clamp a number between a range. """ if a > high: return high elif a < low: return low else: return a
f1f0e1860e55fa3b8a47a5727b263889c5bf339e
447,881
import json def parse_config_file(config_path): """ Loads config file like this: {'bit_str': '0110100000100000', 'freq': 315000000, 'baud': 410, 'sample_rate': 2000000, 'amp_map': {'LOW': 0.28, 'HIGH': 1.4}, 'header_len': 3.85, 'space_len': 3.78 } """ with open(config_path, 'r') as f: config_dict = json.load(f) return config_dict
262408e401a351f03cd3e838866fc93f203da22e
118,731
import requests def get_access_token(api_key): """Retrieve an access token from the IAM token service.""" token_response = requests.post( "https://iam.cloud.ibm.com/identity/token", data={ "grant_type": "urn:ibm:params:oauth:grant-type:apikey", "response_type": "cloud_iam", "apikey": api_key }, headers={ "Accept": "application/json" } ) if token_response.status_code == 200: print ("Got access token from IAM") return token_response.json()['access_token'] else: # print( token_response.status_code, token_response.json()) return None
b51c59ec76ec784f8c4d9c88c0f07926e4466565
69,652
def split_part_numbers(row): """Split part number string into main and alternates.""" part_no = '' part_no_alt = '' if row['manuf part'] != '': tmp = row['manuf part'].split(None, 1) part_no = tmp[0] if len(tmp) > 1: part_no_alt = tmp[1] row['manuf part'] = part_no row['manuf part alt'] = part_no_alt return row
2d53c15a91e4c4cbfe853d8716de2db794014cfc
196,219
def cartesian_product(set1, set2): """ Desc: In set theory a Cartesian product is a mathematical operation that returns a set (or product set or simply product) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. For reference you can visit Wikipedia """ cartesian_set = [] for i in range(0, len(set1), 1): for j in range(0, len(set2), 1): cartesian_set.append([set1[i], set2[j]]) return cartesian_set
dfa89c6c5e3218868d168ca001a9782e2f5f6b45
392,637
import itertools def get_spiro_atoms(mol): """Get atoms that are part of a spiro fusion :param mol: input RDKit molecule :return: a list of atom numbers for atoms that are the centers of spiro fusions """ info = mol.GetRingInfo() ring_sets = [set(x) for x in info.AtomRings()] spiro_atoms = [] for i, j in itertools.combinations(ring_sets, 2): i_and_j = (i.intersection(j)) if len(i_and_j) == 1: spiro_atoms += list(i_and_j) return spiro_atoms
ec6c82a90604c23cba0a628b1dfd4ab805db8e7d
232,721
def yes_no_to_bool(s): """Converts yes or y to True. false or f to False. Case-insensitive.""" return {"yes": True, "y": True, "no": False, "n": False}[s.casefold()]
fc7c580736209f650c6b1651affde7e3ab33148f
97,444
import re def parse_cnn_logs(filename): """Given a cnn log, return the number of true positives, and total test cases""" with open(filename, 'r') as handle: lines = [l.rstrip() for l in handle] summary_line = lines[-1] fraction = re.findall(r"[0-9]. \/ [0-9].$", summary_line).pop() tp, total = fraction.split("/") tp, total = int(tp), int(total) return tp, total
f01001e177dcb1b8e9ab6c927fc88bd86c008afa
128,284
def standardize_subject_id(sub_id): """Standardize subject ID to start with the prefix 'sub-'. Parameters ---------- sub_id : str subject ID. Returns ------- str Standardized subject IDs. """ return sub_id if str(sub_id).startswith("sub-") else "sub-" + str(sub_id)
e9bc78a051c75a2633be1f231cfffb9274a0c954
497,104
def is_hydrogen(line): """Check if (pdb)-line is Hydrogen-Record. If it's a proper-pdb line (77+ characters, extract element) If it's a Qprep-pdb line (<54 chars, take from atomname) """ if len(line) >= 78: return bool(line[77] == 'H') line = line.strip() if len(line) < 54: aname = line[13:17].strip() return bool(aname[0] == 'H')
2f92629c18be9a58b2490cbd44bbe41612867987
439,401
from typing import Any import types import functools def is_callable(func: Any) -> bool: """ Return ``True`` if ``func`` is callable. :param func: Function object :return: ``True`` if function """ # noinspection PyTypeChecker return isinstance(func, (types.FunctionType, types.BuiltinFunctionType, types.MethodType, functools.partial))
7eaa9f439c3464df44cd82d63a4f0f9e9d6ad928
104,345
def memoprop(f): """ Memoized property. When the property is accessed for the first time, the return value is stored and that value is given on subsequent calls. The memoized value can be cleared by calling 'del prop', where prop is the name of the property. """ fname = f.__name__ def fget(self): if fname not in self._memoized: self._memoized[fname] = f(self) return self._memoized[fname] def fdel(self): del self._memoized[fname] prop = property(fget=fget, fdel=fdel, doc=f.__doc__) return prop
31249af7040cb1a05cf8f644d74ea3153b1ca1d6
667,704
def part_sum2(x_table): """All subsetsums from a list x :param x_table: list of values :complexity: :math:`O(2^{len(x)})` """ answer = set([0]) # 0 = value of empty set for xi in x_table: answer |= set(value + xi for value in answer) return answer
848b1ff3510d83c9e8ada5078c85ae4ca7408b4b
243,702
def image_size(data): """ Parameters ---------- data : numpy.ndarray Image data. Returns ------- tuple (int, int) Image width and height. """ image_shape = data.shape return (image_shape[0], image_shape[1])
011c8a3385fc04c407f8b76b48cc7833f58d7df6
104,217
import base64 def unwrap(data): """ Decode a formatted base64 keystring or an encrypted string. Arguments: data: Bytes to decode. Returns: The decoded input. """ data = bytes([b for b in data if b not in b" \r\n"]) return base64.b64decode(data)
004550c9940371d2413b6ab4628c4af5b431d350
550,595
def _VerifyDirectoryIterables(existing, expected): """Compare two iterables representing contents of a directory. Paths in |existing| and |expected| will be compared for exact match. Arguments: existing: An iterable containing paths that exist. expected: An iterable of paths that are expected. Raises: AssertionError when there is any divergence between |existing| and |expected|. """ def FormatPaths(paths): return '\n'.join(sorted(paths)) existing = set(existing) expected = set(expected) unexpected = existing - expected if unexpected: raise AssertionError('Found unexpected paths:\n%s' % FormatPaths(unexpected)) missing = expected - existing if missing: raise AssertionError('These files were expected but not found:\n%s' % FormatPaths(missing))
40daa32a2ad239a2fc6f309b41ca7f4d64bb7b25
648,798
def sleep_stage_dict(mode="decode"): """ Get dictionary to encode/decode sleep stage Parameters ---------- mode : {"decode", "encode"}, default "decode" If "decode", return dict num -> str If "encode", return dict str -> num Returns ------- dict Dictionary for decoding/encoding sleep stages """ assert mode in ["decode", "encode"] d = { "no_sleep": 0, "wake": 1, "awake": 1, "no_stage": 2, "rem": 3, "restless": 4, "light": 5, "asleep": 6, "deep": 7, } if mode == "decode": d = {val: key for key, val in d.items()} return d
d03a6bd9f1691d97dfbe9bf9d290b2d71897d5f3
391,687
def from_size(n): """ Constructs a zeroed, *n* sized vector clock. """ return (0,) * n
64de5493f441c077f63d5416108dd8962e932a9b
56,769
def read_title_and_seq(filename): """Crude parser that gets the first record from a FASTA file.""" with open(filename) as handle: title = handle.readline().rstrip() assert title.startswith(">") seq = "" for line in handle: if line.startswith(">"): break seq += line.strip() return title[1:], seq
e5b0be843dc96c77593ed00ad4924d1b5fb1b15c
386,231
import torch def get_node_features(omega, theta, phi, sc=False): """ Extract node features Parameters: ----------- omega : torch.Tensor, (L, L) or (2, L, L) omega angles or sines and cosines theta : torch.Tensor, (L, L) or (2, L, L) theta angles or sines and cosines phi : torch.Tensor, (L, L) or (2, L, L) phi angles or sines and cosines Returns: -------- * : torch.Tensor, (L, 10) {sin, cos}×(ωi, φi, φ_ri, ψi, ψ_ri). """ if (omega.sum() == 0.0) and (theta.sum() == 0.0) and (phi.sum() == 0.0): return torch.zeros(omega.shape[0], 10) def get_features(omega, theta, phi): # omega is symmetric, n1 is omega angle relative to prior device = omega.device n1 = torch.cat((torch.tensor([0.], device=device), torch.diagonal(omega, offset=1))) # theta is asymmetric, n2 and n3 relative to prior n2 = torch.cat((torch.diagonal(theta, offset=1), torch.tensor([0.], device=device))) n3 = torch.cat((torch.tensor([0.], device=device), torch.diagonal(theta, offset=-1))) # phi is asymmetric n4 and n5 relative to prior n4 = torch.cat((torch.diagonal(phi, offset=1), torch.tensor([0.], device=device))) n5 = torch.cat((torch.tensor([0.], device=device), torch.diagonal(phi, offset=-1))) ns = torch.stack([n1, n2, n3, n4, n5], dim=1) return ns if not sc: ns = get_features(omega, theta, phi) s = torch.sin(ns) c = torch.cos(ns) else: s = get_features(omega[0], theta[0], phi[0]) c = get_features(omega[1], theta[1], phi[1]) return torch.cat([s, c], dim=1)
5c08df44e26135487c74368d92858f283cef6669
238,951
def playagain() -> bool: """ask user to play again""" return input("Would you like to play again (Yes/No)? ").lower().startswith("y")
84d24db06be40540784ba8648e43ea0275223fa8
86,077
def ConstructEnsembleBV(bv, bitsToKeep): """ >>> from rdkit import DataStructs >>> bv = DataStructs.ExplicitBitVect(128) >>> bv.SetBitsFromList((1,5,47,99,120)) >>> r = ConstructEnsembleBV(bv,(0,1,2,3,45,46,47,48,49)) >>> r.GetNumBits() 9 >>> r.GetBit(0) 0 >>> r.GetBit(1) 1 >>> r.GetBit(5) 0 >>> r.GetBit(6) # old bit 47 1 """ finalSize = len(bitsToKeep) res = bv.__class__(finalSize) for i, bit in enumerate(bitsToKeep): if bv.GetBit(bit): res.SetBit(i) return res
39ce7f781c1b7d1752a52c7d36f28be7b3d60312
492,874
def convert_temperature(temp_in, units_in, units_out): """Converts temperature from F to C or C to F. Parameters ========== temp_in: np.array temperature in units_in units_in: str C for Celcius or F for Fahrenheit units_out: str C for Celcius or F for Fahrenheit Returns ======= temp_out: np.array temperature in units_out """ temp_out = None if units_in == 'F': if units_out == 'C': temp_out = (temp_in - 32) * (5./9.) else: temp_out = temp_in elif units_in == 'C': if units_out == 'C': temp_out = temp_in else: temp_out = (temp_in * (9./5.)) + 32 return temp_out
ccf7141b4d0caa414f8957c0db720e413a2fb23c
539,354
import logging def find_log_path(lg): """ Find the file paths of the FileHandlers. """ out = [] for h in lg.handlers: if isinstance(h, logging.FileHandler): out.append(h.baseFilename) return out
efab0cb7eafd0491e1365224dc83f816c7bb1b51
15,836
def no_filtering( dat: str, thresh_sam: int, thresh_feat: int) -> bool: """Checks whether to skip filtering or not. Parameters ---------- dat : str Dataset name thresh_sam : int Samples threshold thresh_feat : int Features threshold Returns ------- skip : bool Whether to skip filtering or not """ skip = False if not thresh_sam and not thresh_feat: print('Filtering threshold(s) of 0 do nothing: skipping...') skip = True thresh_sam_is_numeric = isinstance(thresh_sam, (float, int)) thresh_feat_is_numeric = isinstance(thresh_feat, (float, int)) if not thresh_sam_is_numeric or not thresh_feat_is_numeric: print('Filtering threshold for %s not a ' 'integer/float: skipping...' % dat) skip = True if thresh_sam < 0 or thresh_feat < 0: print('Filtering threshold must be positive: skipping...') skip = True return skip
49867e2597180ffad0bbd7a80ebd04d338b4cc91
126,901
def split_host_port(host_port): """Return a tuple containing (host, port) of a string possibly containing both. If there is no port in host_port, the port will be None. Supports the following: - hostnames - ipv4 addresses - ipv6 addresses with or without ports. There is no validation of either the host or port. """ colon_count = host_port.count(':') if colon_count == 0: # hostname or ipv4 address without port return host_port, None elif colon_count == 1: # hostname or ipv4 address with port return host_port.split(':', 1) elif colon_count >= 2: # ipv6 address, must be bracketed if it has a port at the end, i.e. [ADDR]:PORT if ']:' in host_port: host, port = host_port.split(']:', 1) if host[0] == '[': # for valid addresses, should always be true host = host[1:] return host, port else: # no port; may still be bracketed host = host_port if host[0] == '[': host = host[1:] if host[-1] == ']': host = host[:-1] return host, None
89fd98aee3a07406c478eca82922bdecf5cb7078
22,982
def compatibility_in_test(a, b): """Return True when a is contained in b.""" return a in b
c55bc1cf46de5cfe2f7b63e811d316845af14545
70,139
def apply_caching(response): """ This method applies a cookie to each response, which avoids an error in Chrome, which looks like: "A cookie associated with a cross-site resource at <URL> was set without the `SameSite`attribute. A f..." :param response: :return: response with cookie set to avoid issues with cross-site resources """ response.headers["Set-Cookie"] = "HttpOnly;Secure;SameSite=Strict"; return response
5c36518f44a7d6952eb964a5c5f0b6ab990d9b0e
173,332
def ssh_preamble(address, key_path): """ Common options to SSH into a conversion host. """ return [ 'ssh', '-i', key_path, '-o', 'BatchMode=yes', '-o', 'StrictHostKeyChecking=no', '-o', 'ConnectTimeout=10', 'cloud-user@' + address ]
deb2de03ac18218cb32387c6f0e4c5fe84eb0005
342,280
import torch def smooth(x, span): """ Moving average smoothing with a filter of size `span`. """ x = torch.nn.functional.pad(x, (span//2, span//2)) x = torch.stack([torch.roll(x, k, -1) for k in range(-span//2, span//2+1)]).sum(dim=0) / span return x
494590de72e78fcbeb11bacf9214bee4ba6efcf3
64,972
from datetime import datetime def ts_to_camli_iso(ts): """ Convert timestamp to UTC iso datetime compatible with camlistore. """ return datetime.utcfromtimestamp(ts).isoformat() + 'Z'
3bf0e1a09764e604d24810e31a5263518f264fac
503,197
def get_indexable_filter_columns(predicate): """ Returns all of the columns in a filter which the operation benefits from an index This creates an list of tuples of (field,value) that we can feed to the index search. """ INDEXABLE_OPS = {"=", "==", "is", "in", "contains"} if predicate is None: return [] if isinstance(predicate, tuple): key, op, value = predicate if op in INDEXABLE_OPS: return [ ( key, value, ) ] if isinstance(predicate, list): if all([isinstance(p, tuple) for p in predicate]): return [ ( k, v, ) for k, o, v in predicate if o in INDEXABLE_OPS ] if all([isinstance(p, list) for p in predicate]): columns = [] for p in predicate: columns += get_indexable_filter_columns(p) return columns return []
61ca254c7ca1372be39868363c2e77c2140e577e
549,003
def get_comparable_location_types(query_metadata_table): """Return the dict of location -> GraphQL type name for each location in the query.""" return { location: location_info.type.name for location, location_info in query_metadata_table.registered_locations }
531ce97731f5d8fc48df9491d8129f244aff2433
248,070
def validate_capacity(vrp, **kwargs): """ Validates vehicle capacities of given individual's solution. :param vrp: An individual subject to validation. :param kwargs: Keyword arguments. The following are expected from it: - (int) 'capacity': Vehicle capacity. - (list<int>) 'demand': List of node demands. :return: True, if solution is capacity-wise valid. False if not. Second return value is a string that provides details about it. """ vehicle_capacity = kwargs["capacity"] node_demands = kwargs["demand"] route_list = vrp.get_route_list() for demand_type in range(node_demands.shape[1]): capacity_type_list = [] for active_route in route_list: if len(active_route) <= 1: continue current_capacity = 0 recent_depot = active_route[0] for i in range(1, len(active_route)): destination_node = active_route[i] current_capacity += node_demands[:, demand_type][destination_node] # Check if capacity constraint is violated. if current_capacity > vehicle_capacity[demand_type]: return False, "Capacity constraint violation (Route Node {} / {}, situated at {}): {} / {}" \ .format( i, len(active_route) + 1, destination_node, current_capacity, vehicle_capacity[demand_type] ) # Traveling back to the depot node. current_capacity += node_demands[:, demand_type][recent_depot] if current_capacity > vehicle_capacity[demand_type]: return False, "Capacity constraint violation (Return to Depot Node {}): {} / {}" \ .format(recent_depot, current_capacity, vehicle_capacity[demand_type]) # Save route capacity for later inspections. capacity_type_list.append(current_capacity) vrp.route_capacities.append(capacity_type_list) return True, "Capacity constraint not violated"
51ba57ac17b28d5ffc8e02abf8bc6a6925960c2a
393,055
def linear_function(m, x, b): """ A linear function of one variable x with slope m and and intercept b. """ return m * x + b
f61b62d36314483029a3f668a8aaa2b98b1a765c
686,692
import requests from bs4 import BeautifulSoup def soupify(url): """ Takes a url and returns parsed html via BeautifulSoup and requests. Used by the scrapers. """ r = requests.get(url) soup = BeautifulSoup(r.text) return soup
39985dc857fc344497589649a6f7aec3443bc7de
76,846
def get_subclasses(cls): """ Get all the (direct and indirect) subclasses of ``cls``. """ subcls_set = {cls} for subcls in cls.__subclasses__(): subcls_set.update(get_subclasses(subcls)) return subcls_set
687f3c4a44f4f22d93454f5243c19f0e3ca84921
153,778
def get_unit_string_from_comment(comment_string): """return unit string from FITS comment""" bstart = comment_string.find("[") bstopp = comment_string.find("]") if bstart != -1 and bstopp != -1: return comment_string[bstart + 1: bstopp] return None
232c1a6446d955be172fb08c1fe0c9e7847f87da
680,739
import re def format_name(name): """ Generate a stack name from class name by converting camel case to dash case. Adapted from https://stackoverflow.com/questions/1175208/. This function is our best effort to provide a good stack name in Cloudformation. However, if you want to have fine-grained control, please specify the name field in DeployOptions in your Stack class. example: format_name("TestStack") == "test-stack" """ name = re.sub("(.)([A-Z][a-z]+)", r"\1-\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1-\2", name).lower()
70938572ad3bed19eb8f6c4db2e7ac828f43c763
479,763
async def uploadHastebin(ctx, text: str) -> str: """Uploads some text to hastebin and returns the URL.""" async with ctx.bot.session.post("https://hastebin.com/documents", data=text.encode("utf-8")) as post: json = await post.json() return f"https://hastebin.com/{json['key']}"
da1c4628d54a568fe7951f4765a870c917b3077a
248,474
def _gp_int(tok): """Get a int from a token, if it fails, returns the string (PRIVATE).""" try: return int(tok) except ValueError: return str(tok)
bfc36405324b8b74a40aec78fce1d795341ce7fe
176,815
import re def get_type_area_parts(type_area): """ Returns a tuple like (type_area_number, type_area_suffix) """ type_area = str(type_area) try: type_area[-1].isalpha() except IndexError: print(type_area) if type_area[-1].isalpha(): suf = type_area[-1] else: suf = '' return re.findall('\d+', type_area)[0], suf
ffa0a3e2d9186e80051978d5fe9ca8305830ee7e
344,625
def trim_data(raw_data) -> bytes: """Removes head and tail from byte string. Args: raw_data: Input bytes to be trimmed. Returns: Trimmed data string. """ return raw_data[5:-2]
926050a519c0d17ee26128c8198b9aa4025d92d2
551,892
def get_string_value(value_format, vo): """Return a string from a value or object dictionary based on the value format.""" if "value" in vo: return vo["value"] elif value_format == "label": # Label or CURIE (when no label) return vo.get("label") or vo["id"] elif value_format == "curie": # Always the CURIE return vo["id"] # IRI or CURIE (when no IRI, which shouldn't happen) return vo.get("iri") or vo["id"]
0efaa0850a63076dd0334bc54f2c96e4f352d6ae
698,546
def get_uncovered_character(number_of_mines : int) -> str: """Gets the correct character for a number tile. Args: number_of_mines (int): The number of mines surrounding the tile. Returns: str: The character representation of the tile. """ if number_of_mines == 0: return "." return str(number_of_mines)
937cde550b1960c4490af6ed18fa6c4645aa0b36
156,028
def score_bridge(bridge): """Score bridge by adding ports in all components.""" return sum(sum(component) for component in bridge)
064e2b71df48f05fd21a79ec1309fb5b446b36d2
160,889
def map_with_obj(f, dct): """ Implementation of Ramda's mapObjIndexed without the final argument. This returns the original key with the mapped value. Use map_key_values to modify the keys too :param f: Called with a key and value :param dct: :return {dict}: Keyed by the original key, valued by the mapped value """ f_dict = {} for k, v in dct.items(): f_dict[k] = f(k, v) return f_dict
414b5f92acabe8621e2865e975b966b3c3bc6879
345,477
def assert_keys_in_form_exist(form, keys): """ Check all the keys exist in the form. :param form: object form :param keys: required keys :return: True if all the keys exist. Otherwise return false. """ if form is None: return False if type(form) is not dict: return False for key in keys: if key not in form.keys(): return False # value = form[key] # if value == None: # return False return True
536ba684669ea58d1342d6478f8d62df419f8231
61,706
import pickle def get_data_or_compute(fname, comp_func, recompute=False, *args, **kwargs): """ A simple pickle_cache for computing stuff. Parameters ---------- fname : str path to where store the data comp_func : callable the function for which to compute values recompute : bool args: positional arguments to be passed to comp_func kwargs: keyword arguments to be passed to comp_func Returns ------- data: object the data object returned by comp_fund """ try: if recompute: raise RuntimeError("Recompute!") with open(fname, "rb") as f: print("Loading data") data = pickle.load(f) except (RuntimeError, TypeError, EOFError, IOError) as e: print("Tried to load data from disk, but failed. This is expected if the data has not been yet computed)") print("The provided error message was: " + str(e)) with open(fname, "wb") as f: data = comp_func(*args, **kwargs) pickle.dump(data, f, -1) return data
b420c91392ec4481ff2c0b59d9794e5713f03e8b
495,058
def _inc_average(count, average, value): """Computes the incremental average, `a_n = ((n - 1)a_{n-1} + v_n) / n`.""" count += 1 average = ((count - 1) * average + value) / count return (count, average)
35d7bc274623031314522631b4039bba0804b383
385,415
def iou(box_a, box_b): """ Calculates Intersection over Union (IoU) metric. :param box_a: First bbox :param box_b: Second bbox :return: Scalar value of metric """ intersect_top_left_x = max(box_a.xmin, box_b.xmin) intersect_top_left_y = max(box_a.ymin, box_b.ymin) intersect_width = max(0.0, min(box_a.xmax, box_b.xmax) - intersect_top_left_x) intersect_height = max(0.0, min(box_a.ymax, box_b.ymax) - intersect_top_left_y) box_a_area = (box_a.xmax - box_a.xmin) * (box_a.ymax - box_a.ymin) box_b_area = (box_b.xmax - box_b.xmin) * (box_b.ymax - box_b.ymin) intersect_area = float(intersect_width * intersect_height) union_area = float(box_a_area + box_b_area - intersect_area) return intersect_area / union_area if union_area > 0.0 else 0.0
08e330c1b059f01761cbb0b58650a7bc4f4b3e4c
391,124
def GetNegativeCachingPolicy(client, args, backend_bucket): """Returns the negative caching policy. Args: client: The client used by gcloud. args: The arguments passed to the gcloud command. backend_bucket: The backend bucket object. If the backend bucket object contains a negative caching policy already, it is used as the base to apply changes based on args. Returns: The negative caching policy. """ negative_caching_policy = None if args.negative_caching_policy: negative_caching_policy = [] for code, ttl in args.negative_caching_policy.items(): negative_caching_policy.append( client.messages.BackendBucketCdnPolicyNegativeCachingPolicy( code=code, ttl=ttl)) else: if (backend_bucket.cdnPolicy is not None and backend_bucket.cdnPolicy.negativeCachingPolicy is not None): negative_caching_policy = backend_bucket.cdnPolicy.negativeCachingPolicy return negative_caching_policy
a7112b71a641a0bf9e2c071aa943604465f6e7ed
214,391
def get_word(word): """Return word text from word/syllable tuple""" return word[0]
9d6630cf1b535f23f360d41df2e830a4f57331ad
115,470
def find_tabs(line: str, start: int = 0) -> int: """return the position of the next non tabs character in the string""" while line[start] == "\t": start += 1 return start
b3e88988534f380c5cec1844e6095325a0131f3e
300,244
def _compute_expected_collisions(keyspace, trials): """Compute the expected number of collisions Uses formula from Wikipedia: https://en.wikipedia.org/wiki/Birthday_problem#Collision_counting :param keyspace: keyspace size :param trials: number of trials :rtype float: Number of expected collisions """ return trials - keyspace + keyspace * ((keyspace - 1) / keyspace) ** trials
8634f38aca0bae22d27bdad5e571d99e9ad26ac0
447,414
def line_split_to_str_list(line): """E.g: 1 2 3 -> [1, 2, 3] Useful to convert numbers into a python list.""" return "[" + ", ".join(line.split()) + "]"
3f06e0f03b22d4dd92939afe7a18d49a1bc236dc
690,299
def calc_percent(per, cent): """Takes the parameters "per" and "cent" and returns the calculated percent.""" return (per / cent) * 100
aeb7cf4a5ba243847ccd638bd8c89dbfa3b5195f
677,944
def map_value(value, min_, max_): """ Map a value from 0-1 range to min_-max_ range. """ return value * (max_ - min_) + min_
9b5e083304d4476b223b156a32105b3bfb776cb5
639,665
import csv import ast def get_paths(path_csv): """ Gets the path coordinates from an output.csv file. """ with open(path_csv, mode='r') as f: reader = csv.reader(f) paths = [] for row in reader: if 'True' in row: paths.append(ast.literal_eval(row[2])) return paths
c2cdfa1f7b3b13a5b962b3840faffc305132548d
178,963
def sorted_cols(orig_df): """ sort columns by name and return df """ cols = sorted(orig_df.columns) return orig_df[cols]
04e8e47c23e81f578387b198903f82ca5f2ee88b
386,394
def verlet(atom_coord,forces,dtstep,old_atom_coord,mass): """ This function gets as input parameters: - `atom_coord`, a vector containing the x and y position and the charge of the i atoms - `old_atom_coord`, a vector containing the x and y positions from the previous MD step - `forces`, a vector containing the x and y components of the force on the atoms - `dtstep`, the integration time step The function returns a list containing the new positions. Implement in the following loop between the arrows the Verlet MD algorithm. A few hints: - Powers in python are given by **, e.g.: x to the square is `x**2` - Squared root x: `sqrt(x)` - Indents are important in python """ new_positions=[] for coord,old_coord,force in zip(atom_coord, old_atom_coord, forces): r0x=coord[0] # Coordinates r0y=coord[1] old_r0x=old_coord[0] # Old coordinates old_r0y=old_coord[1] # Insert below the lines defining the new x and y positions based on the old ones + forces + mass + dtstep. # # Forces are contained in force[0] for the x force component and force[1] for the y force. # The step size for the move is given by dtstep. # # ====>>>>> new_r0x = 2*r0x - old_r0x + force[0]/mass * dtstep**2 new_r0y = 2*r0y - old_r0y + force[1]/mass * dtstep**2 # <<<<<==== new_positions.append([new_r0x,new_r0y,coord[2]]) return new_positions
514fe59f4fa9b8b236ccd3780d6c4a8e4c07e1db
208,360
def get_workflows_in_pipeline(scripts_dict, pipeline): """ IF pipeline == "all": return a dictionary with keys=pipeline names, values=list of workflows in that pipeline ELSE: return a list of workflows in a given pipeline input: scripts_dict: scripts dictionary described in get_scripts_dict function pipeline: name of a supported target pipeline or "all". """ if pipeline == "all": print() return {curr_pipeline:[workflow for workflow in scripts_dict[curr_pipeline] if not workflow == "All Workflows"] for curr_pipeline in scripts_dict if not curr_pipeline == "All Pipelines"} return [workflow for workflow in scripts_dict[pipeline] if not workflow == "All Workflows"]
e0503cc535074a42e5f0975d1a89e2af85a5e600
297,102
def make_iter_method(method_name, *model_names): """Make a page-concatenating iterator method from a find method :param method_name: The name of the find method to decorate :param model_names: The names of the possible models as they appear in the JSON response. The first found is used. """ def iter_method(self, *args, **kwargs): result = getattr(self, method_name)(*args, **kwargs) # Filter the list of model names for those that are a key in the response, then take the first. # Useful for backwards compatability if response keys might change model_name = next((model_name for model_name in model_names if model_name in result), None) # If there are no model names, return None to avoid raising StopIteration if not model_name: return for model in result[model_name]: yield model while True: if 'next' not in result.get('links', {}): return result = self._get(result['links']['next']) for model in result[model_name]: yield model return iter_method
67623ab63930a899a1e6ce91c80e49ec41779079
685,640
def delta_t(delta_v, f): """Compute required increment of velocity.""" return delta_v / f
2a4a42226c472163fb529fcc8182b9cf90924f39
286,518
def get_failure_results(error_repository): """ Returns the appropriate values based on the onError actions for failing steps. Arguments: 1. error_repository = (dict) dictionary containing the onError action, values """ if error_repository['action'] == 'NEXT': return False elif error_repository['action'] in ['GOTO', 'EXECUTE_AND_RESUME']: return error_repository['value'] elif error_repository['action'] in ['ABORT', 'ABORT_AS_ERROR']: return error_repository['action'] return False
65d7661c48efe164c89cbdf73ed0d6fb29b5cd8b
228,086
def is_admin(user): """Check if the given user is admin""" return user.userprofile.is_admin
9798f72981b7eaa68904cbea2915a003a01ae74e
492,045
import re def ckan_legal_name(s: str) -> str: """ CKAN names must be between 2 and 100 characters long and contain only lowercase alphanumeric characters, '-' and '_'. This function makes a reasonable best effort to convert an arbitrary input string. Strings below 2 characters long will raise a ValueError. Longer strings are converted to lower case, stripped of all non-alphanumeric, non underscore or dash, characters, then truncated to 100 characters if necessary. :param s: input string :return: valid CKAN name, as close as possible to the original :raises ValueError: if the string is too short """ if s is None or len(s) < 2: raise ValueError(f'Unable to convert, input string is too short "{s}"') # Convert to lower case and remove all non-word characters except '_' and '-', then truncate to 100 chars return re.sub(r'[^\w_-]', '', s.lower())[:100]
5d17c08755d5b626b438ccdb0cb9699888d35f7a
365,739
def cross_product(vec1, vec2): """Cross product of two 2d vectors is a vector perpendicular to both these vectors. Return value is a scalar representing the magnitude and direction(towards positive/negative z-axis) of the cross product. """ (px1, py1), (px2, py2) = vec1, vec2 return px1 * py2 - px2 * py1
1b112989d7271bc9a56ad3651573a685b3b4dbfc
417,051
def precip_36(code: str, unit: str = 'in') -> str: """ Translates a 5-digit 3 and 6-hour precipitation code """ return ('Precipitation in the last 3 hours: ' f'{int(code[1:3])} {unit}. - 6 hours: {int(code[3:])} {unit}.')
dc8004f41782d936ab9b09feb7db2f9c30b5e5de
159,351
def strip_control(in_bytes: bytes) -> str: """Strip control characters from byte string""" return in_bytes.strip(b"\x00").decode()
4cefa25b58e8ba68a20aca3c10ecc8aebb2697a0
23,209
def _determine_levels(index): """Determine the correct levels argument to groupby.""" if isinstance(index, (tuple, list)) and len(index) > 1: return list(range(len(index))) else: return 0
2eaed820eb45ff17eb4911fe48670d2e3412fb41
7,855
import json def read_template(template): """ Read and return template file as JSON Parameters ------------ template: string template name returns: dictionary JSON parsed as dictionary """ data = None with open(template) as data_file: data = json.load(data_file) return data
9708b1947998301ae2426bf30d375feb915bba3e
651,724
def _return_gene_body_bounds(df): """ Get start/end locations of a gene Parameters: ----------- df df that is subset from reading a GTF file using the GTFparse library. Returns: -------- start, end Notes: ------ (1) This function could be extended to other features though would require an additioanl level of identifying the max/min of feature sets that have multiple rows in a GTF (as opposed to the "gene" feature, which has only a single row / set of values. """ gene_body = df.loc[df["feature"] == "gene"] return gene_body.start.values[0], gene_body.end.values[0]
fd4ba665a609111e9253f20ef30059bf628bed39
120,723
def _get_issue_info_by_issue_id(issue_id, assessment_issues): """Get Issue information by issue id. Args: - issue_id: id of Issue object - assessment_issues: Dictionary with Issue information Returns: - issue_id: id of Issue object convert to string. - issue_info: information by current issue_id """ issue_id = str(issue_id) issue_info = assessment_issues.get(issue_id) return issue_id, issue_info
2e859b9e864f64034e4ceb0369eefe7628161a1f
517,354
def _get_docstring_type_name(var_doc: str) -> str: """ Get the string of argument or return value type's description from docstring. Parameters ---------- var_doc : str Docstring's part of argument or return value. Returns ------- type_name : str Argument or return value's type description. """ type_name: str = var_doc.split('\n')[0] colon_exists: bool = ':' in type_name if not colon_exists: return '' type_name = type_name.split(':')[1] type_name = type_name.split(',')[0] type_name = type_name.strip() return type_name
fe07d6bb9869b4fcac404a3da6cdb0480880076b
62,345
def evlmap(accdfid): """Return ``evlmap`` argument for ``.IterStatsConfig`` initialiser. """ if accdfid: evl = {'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1'} else: evl = {} return evl
41174fe9f18a5361fb2f1846acb0f4dbeb0146c5
371,801
def convert_degrees(deg, tidal_mode=True): """ Converts between the 'cartesian angle' (counter-clockwise from East) and the 'polar angle' in (degrees clockwise from North) Parameters ---------- deg: float or array-like Number or array in 'degrees CCW from East' or 'degrees CW from North' tidal_mode : bool If true, range is set from 0 to +/-180 degrees. If false, range is 0 to 360 degrees Returns ------- out : float or array-like Input data transformed to 'degrees CW from North' or 'degrees CCW from East', respectively (based on `deg`) Notes ----- The same algorithm is used to convert back and forth between 'CCW from E' and 'CW from N' """ out = -(deg - 90) % 360 if tidal_mode: out[out > 180] -= 360 return out
6b8f21342271ffbc2e897d45119762a31090f746
267,156
def nrrcus_stnid(stnid): """ Number of RCUs from station ID Parameters --------- stnid: str Station ID Returns ------- nrrcus: int Number of RCUs """ location_id = stnid[:2] if location_id == 'CS' or location_id == 'RS': nrrcus = 96 else: # EU station nrrcus = 192 return nrrcus
f3c57afaca5d4e85237c4030d69263e3249999c0
379,024
def has_findings(resource, resource_attributes_with_findings): """ Return True if this resource has findings. """ attribs = (getattr(resource, key, None) for key in resource_attributes_with_findings) return bool(any(attribs))
49221eeacc4c627e85432e216f1368cefeb09f3f
508,595
import re def replaceThreeOrMore(word): """ look for 3 or more repetitions of letters and replace with this letter itself only once """ pattern = re.compile(r"(.)\1{3,}", re.DOTALL) return pattern.sub(r"\1", word)
c052a082d74873da1a4c64dc035aeff429b29efd
698,140
def fiscal_to_academic(fiscal): """Converts fiscal year to academic year. Args: fiscal (str): Fiscal year value. Returns: str: Academic year value. """ fiscal_int = int(fiscal) fiscal_str = str(fiscal) return f'{fiscal_int - 1}/{fiscal_str[-2:]}'
03e5376f1d94f214183d02a5a932a64796c370c3
57,468
def autocomplete_getarg(line): """ autocomplete passes in a line like: get_memory arg1, arg2 the arg2 is what is being autocompleted on so return that """ # find last argument or first one is seperated by a space from the command before_arg = line.rfind(',') if(before_arg == -1): before_arg = line.find(' ') assert before_arg >= 0 # assign the arg. it skips the deliminator and any excess whitespace return line[before_arg+1:].lstrip()
91f4773de94259a1026e09ac32d2cb798b6ac5b4
121,788
from typing import List def buy_sell(arr: List[int]) -> int: """ Solution: We traverse the array and keep a record of the index of the highest and lowest value. The curveball being that if we encounter a new lowest value, we need to reset our highest value as well. This is because we must buy before we can sell. Therefore, their is a constraint that `index_low <= index_high`. Time complexity: O(n). We do a single pass over the array. Space complexity: O(1). We are only storing in runtime the indices of low and high. """ index_lowest = 0 index_highest = 0 for i in range(len(arr)): if arr[index_lowest] > arr[i]: index_lowest = i index_highest = i elif arr[index_highest] < arr[i]: index_highest = i return arr[index_highest] - arr[index_lowest]
177f243d7cbc031f164e0e4a344eee803384266e
484,186
def get_snap_statuses(r): """ Description: Helper function for pandas apply() function. Retrieves the associatedInterpretationSnapshots from the provisionalVariant column and parses out the statuses in a format expected in the vciStatus column. Args: r (pandas row): A row in a pandas dataframe of GVC Interpretation item type Retval: retval (dict): A summary of snapshot statuses for the interp in a similar format to: {'i': 0, 'a': 1, 'p': 1} """ tmp = [] if 'provisionalVariant' in r: if 'associatedInterpretationSnapshots' in r['provisionalVariant']: for snap in r.provisionalVariant.get('associatedInterpretationSnapshots', []): tmp.append(snap['approvalStatus']) retval = {} if len(tmp) == 0: retval['i'] = 1 if 'Approved' in tmp: retval['a'] = 1 if 'Provisioned' in tmp: retval['p'] = 1 return retval
63d7bcb50e9244f56ab6cbbf73e6f748af8ef52e
542,601
def nbytes(frame, _bytes_like=(bytes, bytearray)): """Number of bytes of a frame or memoryview""" if isinstance(frame, _bytes_like): return len(frame) else: try: return frame.nbytes except AttributeError: return len(frame)
3ab4b752c2c5c48f0842d876a7bcd6764cebd410
503,569
def bin_bucket_sort(arr): """ Binary bucket sort / 2-Radix sort Time: O(NLog2N) Space: O(N) input: 1D-list array output: 1D-list sorted array """ bucket = [[], []] aux = list(arr) flgkey = 1 while True: for ele in aux: bucket[int(bool(ele & flgkey))].append(ele) if bucket[0] == [] or bucket[1] == []: return aux aux = list(bucket[0]) + list(bucket[1]) flgkey <<= 1 bucket = [[], []]
8945ef31d5705d1462ce71ed6447bcc8d76e4665
702,437
import requests def get_histohour(fsym = 'BTC', tsym = 'USD', e = 'CCCAGG', limit = 1920, optional_params = {}): """Gets hourly pricing info for given exchange Args: Required: fsym (str): From symbol tsym (str): To symbol e (str): Name of exchange Optional: extraParams (str): Name of app sign (bool): if true, server will sign requests tryConvention (bool): if false, get values without conversion aggregate (int): limit (int): default: 168, max: 2000 (new default: 1920 (80 days)) toTs (timestamp): Valid exchanges (e): Cryptsy, BTCChina, Bitstamp, BTER, OKCoin, Coinbase, Poloniex, Cexio, BTCE, BitTrex, Kraken, Bitfinex, Yacuna, LocalBitcoins, Yunbi, itBit, HitBTC, btcXchange, BTC38, Coinfloor, Huobi, CCCAGG, LakeBTC, ANXBTC, Bit2C, Coinsetter, CCEX, Coinse, MonetaGo, Gatecoin, Gemini, CCEDK, Cryptopia, Exmo, Yobit, Korbit, BitBay, BTCMarkets, Coincheck, QuadrigaCX, BitSquare, Vaultoro, MercadoBitcoin, Bitso, Unocoin, BTCXIndia, Paymium, TheRockTrading, bitFlyer, Quoine, Luno, EtherDelta, bitFlyerFX, TuxExchange, CryptoX, Liqui, MtGox, BitMarket, LiveCoin, Coinone, Tidex, Bleutrade, EthexIndia, Bithumb, CHBTC, ViaBTC, Jubi, Zaif, Novaexchange, WavesDEX, Binance, Lykke, Remitano, Coinroom, Abucoins, BXinth, Gateio, HuobiPro, OKEX Returns: history (str) hourly price history from fsym to tsym """ url = "https://min-api.cryptocompare.com/data/histohour" params = {'fsym':fsym, 'tsym':tsym, 'e': e, 'limit': limit} for k,v in optional_params.items(): params[k] = v r = requests.get(url = url, params = params) return r.text
0a40d62685d438d0f2bd896a2b905e8e66d56a87
33,936
def str_to_bool(bool_as_string: str) -> bool: """ A converter that converts a string representation of ``True`` into a boolean. The following (case insensitive) strings will be return a ``True`` result: 'true', 't', '1', 'yes', 'y', everything else will return a ``False``. :param bool_as_string: The string to be converted to a bool. :type bool_as_string: str :rtype: bool :raises TypeError: Raised when any type other than a string is passed. """ if not isinstance(bool_as_string, str): raise TypeError("Only string types supported") return bool_as_string.lower() in ["true", "t", "1", "yes", "y"]
62fef04039d66d3530e4cac42bf3c152d8f891e6
19,056
def evaluate_g1( l, s1 ): """ Evaluate the first constraint equation and also return the jacobians :param float l: The value of the modulus lambda :param float s1: The constraint value """ return l - s1**2, {'lambda':1., 's1':- 2 * s1 }
f270b803cacc3eb02c94f68d3a326750362b607e
132,448