repo_name
stringlengths 7
111
| __id__
int64 16.6k
19,705B
| blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 5
151
| content_id
stringlengths 40
40
| detected_licenses
sequence | license_type
stringclasses 2
values | repo_url
stringlengths 26
130
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
42
| visit_date
timestamp[ns] | revision_date
timestamp[ns] | committer_date
timestamp[ns] | github_id
int64 14.6k
687M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 12
values | gha_fork
bool 2
classes | gha_event_created_at
timestamp[ns] | gha_created_at
timestamp[ns] | gha_updated_at
timestamp[ns] | gha_pushed_at
timestamp[ns] | gha_size
int64 0
10.2M
⌀ | gha_stargazers_count
int32 0
178k
⌀ | gha_forks_count
int32 0
88.9k
⌀ | gha_open_issues_count
int32 0
2.72k
⌀ | gha_language
stringlengths 1
16
⌀ | gha_archived
bool 1
class | gha_disabled
bool 1
class | content
stringlengths 10
2.95M
| src_encoding
stringclasses 5
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 10
2.95M
| extension
stringclasses 19
values | num_repo_files
int64 1
202k
| filename
stringlengths 4
112
| num_lang_files
int64 1
202k
| alphanum_fraction
float64 0.26
0.89
| alpha_fraction
float64 0.2
0.89
| hex_fraction
float64 0
0.09
| num_lines
int32 1
93.6k
| avg_line_length
float64 4.57
103
| max_line_length
int64 7
931
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
txazo/txazodevelop | 7,069,516,192,335 | 9c426c6732ce582c769c3c76b7ec757b97e74dc2 | ac9b510bcc73d41646da53f7a12c3f15dab744bf | /python/test/4.py | 4f22b113022c4d0043ff14130d372bc70101c3a9 | [] | no_license | https://github.com/txazo/txazodevelop | 5eb73e12f8b2f2de58808a3c594d5e1724fbdbdf | c07eebf832b34172b807b9124bd5a81a390b1b05 | refs/heads/master | 2020-03-25T22:44:25.477523 | 2018-08-10T05:16:06 | 2018-08-10T05:16:06 | 29,594,975 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# tuple:不可变更
s1 = (12, 12.5, True, "hello")
print s1, type(s1)
print s1[0]
print s1[-1] # 最后一个
print s1[-2] # 倒数第二个
print s1[:3] #(0, 1, 2)
print s1[1:] #1到最后
print s1[1:3] #(1, 2)
print s1[0:4:2] #(0, 2)
print s1[3:1:-1] #(3, 2)
# list:可以变更
s2 = [12, 12.5, True, "hello"]
print s2, type(s2)
print s2[0]
s2[1] = False
print s2[1]
# 字符串(tuple)
str = "abcdefg"
print str[2]
| UTF-8 | Python | false | false | 449 | py | 803 | 4.py | 640 | 0.568922 | 0.431078 | 0 | 24 | 15.625 | 30 |
gaoyan10/server-sdk-python | 5,214,090,313,927 | cdcae6704a4565480beed61d73236f679ab7620d | 692b8244918908c1763c21c0764c7a73b862b24c | /rongcloud/api.py | 739606631b25990d3cbde1beb08d2ad0eef11daa | [
"MIT"
] | permissive | https://github.com/gaoyan10/server-sdk-python | 880017c754dcb09ce6509d2c89c6b0f0e3d037bb | 0090b6cae47ee6fb0174a022a1185cedde957bd8 | refs/heads/master | 2020-12-11T04:00:28.431776 | 2014-12-26T10:07:09 | 2014-12-26T10:07:09 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #! /usr/bin/env python
# coding=utf-8
import os
import json
import logging
import random
import datetime
import hashlib
import platform
import requests
import util
import exceptions
from version import __version__
class ApiClient(object):
api_host = "https://api.cn.rong.io"
response_type = "json"
library_details = "python %s" % platform.python_version()
user_agent = "RongCloudSdk/RongCloud-Python-Sdk %s (%s)" % \
(library_details, __version__)
ACTION_USER_TOKEN = "/user/getToken"
ACTION_MESSAGE_PUBLISH = "/message/publish"
ACTION_MESSAGE_SYSTEM_PUBLISH = "/message/system/publish"
ACTION_MESSAGE_GROUP_PUBLISH = "/message/group/publish"
ACTION_MESSAGE_CHATROOM_PUBLISH = "/message/chatroom/publish"
ACTION_GROUP_SYNC = "/group/sync"
ACTION_GROUP_CREATE = "/group/create"
ACTION_GROUP_JOIN = "/group/join"
ACTION_GROUP_QUIT = "/group/quit"
ACTION_GROUP_DISMISS = "/group/dismiss"
ACTION_CHATROOM_CREATE = "/chatroom/create"
ACTION_CHATROOM_DESTROY = "/chatroom/destroy"
ACTION_CHATROOM_QUERY = "/chatroom/query"
def __init__(self, app_key=None, app_secret=None, verify=True):
""" API 客户端
Usage::
>>> from rongcloud.api import ApiClient
>>> client = ApiClient('xxxxx', 'xxxx')
建议您将APPKEY, APPSECRET 保存在系统的环境变量中
环境变量的键值分别为:rongcloud-app-key, rongcloud-app-secret
>>> from rongcloud.api import ApiClient
>>> client = ApiClient()
:param app_key: 开发者平台分配的 App Key
:param app_secret: 开发者平台分配的 App Secret。
:param verify: 发送请求时是否验证SSL证书的有效性
"""
self.app_key = app_key or os.environ.get('rongcloud-app-key')
self.app_secret = app_secret or os.environ.get('rongcloud-app-secret')
self.verify = verify
def make_common_signature(self):
"""生成通用签名
一般情况下,您不需要调用该方法
文档详见 http://docs.rongcloud.cn/server.html#_API_调用签名规则
:return: {'app-key':'xxx','nonce':'xxx','timestamp':'xxx','signature':'xxx'}
"""
nonce = str(random.random())
timestamp = str(
int(datetime.datetime.now().strftime("%s")) * 1000
)
signature = hashlib.sha1(
self.app_secret + nonce + timestamp
).hexdigest()
return {
"rc-app-key": self.app_key,
"rc-nonce": nonce,
"rc-timestamp": timestamp,
"rc-signature": signature
}
def headers(self):
"""Default HTTP headers
"""
return util.merge_dict(
self.make_common_signature(),
{
"content-type": "application/x-www-form-urlencoded",
"user-agent": self.user_agent
}
)
def http_call(self, url, method, **kwargs):
"""Makes a http call. Logs response information.
"""
logging.info("Request[%s]: %s" % (method, url))
start_time = datetime.datetime.now()
response = requests.request(method,
url,
verify=self.verify,
**kwargs)
duration = datetime.datetime.now() - start_time
logging.info("Response[%d]: %s, Duration: %s.%ss." %
(response.status_code, response.reason,
duration.seconds, duration.microseconds))
return self.handle_response(response,
response.content.decode("utf-8"))
def handle_response(self, response, content):
"""Validate HTTP response
"""
status = response.status_code
if status in (301, 302, 303, 307):
raise exceptions.Redirection(response, content)
elif 200 <= status <= 299:
return json.loads(content) if content else {}
elif status == 400:
raise exceptions.BadRequest(response, content)
elif status == 401:
raise exceptions.UnauthorizedAccess(response, content)
elif status == 403:
raise exceptions.ForbiddenAccess(response, content)
elif status == 404:
raise exceptions.ResourceNotFound(response, content)
elif status == 405:
raise exceptions.MethodNotAllowed(response, content)
elif status == 409:
raise exceptions.ResourceConflict(response, content)
elif status == 410:
raise exceptions.ResourceGone(response, content)
elif status == 422:
raise exceptions.ResourceInvalid(response, content)
elif 401 <= status <= 499:
raise exceptions.ClientError(response, content)
elif 500 <= status <= 599:
raise exceptions.ServerError(response, content)
else:
raise exceptions.ConnectionError(response, content, "Unknown response code: #{response.code}")
def post(self, action, params=None):
"""POST 应用参数到接口地址
所有http请求由此处理,方法内部封装统一的签名规则及 API URL
当有新的接口推出,而SDK未更新时,您可用该方法
Usage::
>>> from rongcloud.api import ApiClient
>>> client = ApiClient()
>>> client.post('/user/getToken', {})
:param action: 接口地址,例如:/message/chatroom/publish
:param params: 应用级别参数,{"fromUserId":"xxxx", "content":"xxxxx"}
:return: {"code":200, "userId":"jlk456j5", "token":"sfd9823ihufi"}
"""
return self.http_call(
url=util.join_url(self.api_host, "%s.%s" % (action, self.response_type)),
method="POST",
data=params,
headers=self.headers()
)
def user_get_token(self, user_id, name, portrait_uri):
""" 获取token
http://docs.rongcloud.cn/server.html#_获取_Token_方法
:param user_id:
:param name:
:param portrait_uri:
:return: {"code":200, "userId":"jlk456j5", "token":"sfd9823ihufi"}
"""
return self.post(
action=self.ACTION_USER_TOKEN,
params={
"userId": user_id,
"name": name,
"portraitUri": portrait_uri
}
)
def message_publish(self, from_user_id, to_user_id,
object_name, content,
push_content=None, push_data=None):
""" 发送会话消息
http://docs.rongcloud.cn/server.html#_融云内置消息类型表
http://docs.rongcloud.cn/server.html#_发送会话消息_方法
:param from_user_id:发送人用户 Id
:param to_user_id:接收用户 Id,提供多个本参数可以实现向多人发送消息。
:param object_name:消息类型,目前包括如下类型 ["RC:TxtMsg","RC:ImgMsg","RC:VcMsg","RC:LocMsg"]
:param content:发送消息内容,参考融云消息类型表.示例说明;如果 objectName 为自定义消息类型,该参数可自定义格式。(必传)
:param push_content:如果为自定义消息,定义显示的 Push 内容(可选)
:param push_data:针对 iOS 平台,Push 通知附加的 payload 字段,字段名为 appData。(可选)
:return:{"code":200}
"""
return self.post(
action=self.ACTION_MESSAGE_PUBLISH,
params={
"fromUserId": from_user_id,
"toUserId": to_user_id,
"objectName": object_name,
"content": content,
"pushContent": push_content if push_content is not None else "",
"pushData": push_data if push_data is not None else ""
}
)
def message_system_publish(self, from_user_id, to_user_id,
object_name, content,
push_content=None, push_data=None):
"""发送系统消息
http://docs.rongcloud.cn/server.html#_发送系统消息_方法
:param from_user_id:发送人用户 Id
:param to_user_id:接收用户 Id,提供多个本参数可以实现向多人发送消息。
:param object_name:消息类型,目前包括如下类型 ["RC:TxtMsg","RC:ImgMsg","RC:VcMsg","RC:LocMsg"]
:param content:发送消息内容,参考融云消息类型表.示例说明;如果 objectName 为自定义消息类型,该参数可自定义格式。(必传)
:param push_content:如果为自定义消息,定义显示的 Push 内容(可选)
:param push_data:针对 iOS 平台,Push 通知附加的 payload 字段,字段名为 appData。(可选)
:return:{"code":200}
"""
return self.post(
action=self.ACTION_MESSAGE_SYSTEM_PUBLISH,
params={
"fromUserId": from_user_id,
"toUserId": to_user_id,
"objectName": object_name,
"content": content,
"pushContent": push_content if push_content is not None else '',
"pushData": push_data if push_data is not None else ''
}
)
def message_group_publish(self, from_user_id, to_group_id, object_name,
content, push_content=None, push_data=None):
"""以一个用户身份向群组发送消息
http://docs.rongcloud.cn/server.html#_发送群组消息_方法
:param from_user_id:发送人用户 Id
:param to_group_id:接收群Id,提供多个本参数可以实现向多群发送消息。(必传)
:param object_name:消息类型,目前包括如下类型 ["RC:TxtMsg","RC:ImgMsg","RC:VcMsg","RC:LocMsg"]
:param content:发送消息内容,参考融云消息类型表.示例说明;如果 objectName 为自定义消息类型,该参数可自定义格式。(必传)
:param push_content:如果为自定义消息,定义显示的 Push 内容(可选)
:param push_data:针对 iOS 平台,Push 通知附加的 payload 字段,字段名为 appData。(可选)
:return:{"code":200}
"""
return self.post(
action=self.ACTION_MESSAGE_GROUP_PUBLISH,
params={
"fromUserId": from_user_id,
"toGroupId": to_group_id,
"objectName": object_name,
"content": content,
"pushContent": push_content if push_content is not None else '',
"pushData": push_data if push_data is not None else ''
}
)
def message_chatroom_publish(self, from_user_id,
to_chatroom_id,
object_name,
content):
"""一个用户向聊天室发送消息
http://docs.rongcloud.cn/server.html#_发送聊天室消息_方法
:param from_user_id:发送人用户 Id。(必传)
:param to_chatroom_id:接收聊天室Id,提供多个本参数可以实现向多个聊天室发送消息。(必传)
:param object_name:消息类型,参考融云消息类型表.消息标志;可自定义消息类型。(必传)
:param content:发送消息内容,参考融云消息类型表.示例说明;如果 objectName 为自定义消息类型,该参数可自定义格式。(必传)
:return:{"code":200}
"""
return self.post(
action=self.ACTION_MESSAGE_GROUP_PUBLISH,
params={
"fromUserId": from_user_id,
"toGroupId": to_chatroom_id,
"objectName": object_name,
"content": content
}
)
def group_sync(self, user_id, groups):
"""同步用户所属群组
融云当前群组的架构设计决定,您不需要调用融云服务器去“创建”群组
也就是告诉融云服务器哪些群组有哪些用户。
您只需要同步当前用户所属的群组信息给融云服务器
即相当于“订阅”或者“取消订阅”了所属群组的消息。
融云会根据用户同步的群组数据,计算群组的成员信息并群发消息。
:param user_id:用户Id
:param groups: groupId 和 groupName 的对应关系.例如:{10001:'group1',10002:'group2'}
:return:{"code":200}
"""
group_mapping = {"group[%s]" % k:v for k, v in groups.items()}
group_mapping.setdefault("userId", user_id)
return self.post(action=self.ACTION_GROUP_SYNC, params=group_mapping)
def group_create(self, user_id_list, group_id, group_name):
"""创建群组,并将用户加入该群组,用户将可以收到该群的消息。
注:其实本方法是加入群组方法 /group/join 的别名。
http://docs.rongcloud.cn/server.html#_创建群组_方法
:param user_id_list:要加入群的用户 Id ,可以传递多个值:[userid1,userid2]
:param group_id:要加入的群 Id。
:param group_name:要加入的群 Id 对应的名称。
:return:{"code":200}
"""
return self.post(action=self.ACTION_GROUP_CREATE, params={
"userId":user_id_list,
"groupId":group_id,
"groupName":group_name
})
def group_join(self, user_id_list, group_id, group_name):
"""将用户加入指定群组,用户将可以收到该群的消息
http://docs.rongcloud.cn/server.html#_加入群组_方法
:param user_id_list:要加入群的用户 [userid1,userid2 ...]
:param group_id:要加入的群 Id。
:param group_name:要加入的群 Id 对应的名称。
:return:{"code":200}
"""
return self.post(action=self.ACTION_GROUP_JOIN, params={
"userId":user_id_list,
"groupId":group_id,
"groupName":group_name
})
def group_dismiss(self, user_id, group_id):
"""将该群解散,所有用户都无法再接收该群的消息。
http://docs.rongcloud.cn/server.html#_解散群组_方法
:param user_id: 操作解散群的用户 Id。
:param group_id:要解散的群 Id。
:return:{"code":200}
"""
return self.post(action=self.ACTION_GROUP_DISMISS, params={
"userId":user_id,
"groupId":group_id,
})
def chatroom_create(self, chatrooms):
"""创建聊天室 方法
http://docs.rongcloud.cn/server.html#_创建聊天室_方法
:param chatrooms: {'r001':'room1'} id:要创建的聊天室的id;name:要创建的聊天室的name
:return:{"code":200}
"""
chatroom_mapping = {'chatroom[%s]' % k:v for k, v in chatrooms.items()}
return self.post(action=self.ACTION_CHATROOM_CREATE, params=chatroom_mapping)
def chatroom_destroy(self, chatroom_id_list=None):
"""销毁聊天室 方法
当提交参数chatroomId多个时表示销毁多个聊天室
http://docs.rongcloud.cn/server.html#_销毁聊天室_方法
:param chatroom_id_list:要销毁的聊天室 Id。
:return:{"code":200}
"""
params={
"chatroomId":chatroom_id_list
} if chatroom_id_list is not None else {}
return self.post(action=self.ACTION_CHATROOM_DESTROY, params=params)
def chatroom_query(self, chatroom_id_list=None):
"""查询聊天室信息 方法
http://docs.rongcloud.cn/server.html#_查询聊天室信息_方法
:param chatroom_id_list:当提交多个时表示查询多个聊天室, 如果为None ,则查询所有聊天室
:return:{"code":200,"chatRooms":[{"chatroomId":"id1001","name":"name1","time":"2014-01-01 1:1:1"},{"chatroomId":"id1002","name":"name2","time":"2014-01-01 1:1:2"}]}
"""
params={
"chatroomId":chatroom_id_list
} if chatroom_id_list is not None else {}
return self.post(action=self.ACTION_CHATROOM_QUERY, params=params) | UTF-8 | Python | false | false | 16,328 | py | 5 | api.py | 4 | 0.569677 | 0.557634 | 0 | 406 | 33.362069 | 172 |
xuanxin-L/Dissertation_Work | 14,920,716,424,928 | dd9e64a2bb0ab270d3b367ec7b19cb18ec27d999 | 27f2ee8c92b32a4ef2915148c4886f1da45774ee | /Chapter8/walking_data/gait_separation.py | 0cb426b95c1cd7f988ec7834dc4d6d6f6e835b01 | [] | no_license | https://github.com/xuanxin-L/Dissertation_Work | 5589e3c4cfb363c22312e54375df85aeeb487d93 | 2cefebeeb04e48419c78d2a7753665c93456b65c | refs/heads/master | 2022-06-14T14:34:44.522936 | 2020-05-03T21:58:13 | 2020-05-03T21:58:13 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
Created on Thu Jul 26 18:39:41 2018
@author: Huawei
"""
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
from hip_ankle_points_calculation import get_hip_point, get_ankle_point
def sep_gait_by_force(motion, grf, st_walking, ed_walking, num_nodes, ext_nodes, ext_gait, delta, const_dicts, plot_sign=False,
write_sign=False, store_path=''):
every_node = int(delta/0.01)
b, a = signal.butter(2, 2.0*8/(50), 'low', analog=False)
LFy = signal.filtfilt(b, a, grf[:, 1])
RFy = signal.filtfilt(b, a, grf[:, 7])
Lthigh = const_dicts['ThighLen']
Lshank = const_dicts['ShankLen']
signL = np.zeros(num_nodes)
signR = np.zeros(num_nodes)
for indL in range(len(LFy)):
if LFy[indL] > 100:
signL[indL] = 1
for indR in range(len(RFy)):
if RFy[indR] > 100:
signR[indR] = 1
DsignL = np.diff(signL)
DsignR = np.diff(signR)
Lhs = (np.where(DsignL==1)[0]).astype(int)
Lto = (np.where(DsignL==-1)[0]).astype(int)
Rhs = (np.where(DsignR==1)[0]).astype(int)
Rto = (np.where(DsignR==-1)[0]).astype(int)
Lgait = np.min([len(Lhs), len(Lto)])
Rgait = np.min([len(Rhs), len(Rto)])
Lswingx = np.zeros((Lgait, 100))
Lswingy = np.zeros((Lgait, 100))
Lswingt = np.zeros((Lgait, 100))
Lstancex = np.zeros((Lgait, 100))
Lstancey = np.zeros((Lgait, 100))
Lstancet = np.zeros((Lgait, 100))
Rswingx = np.zeros((Rgait, 100))
Rswingy = np.zeros((Rgait, 100))
Rswingt = np.zeros((Rgait, 100))
Rstancex = np.zeros((Rgait, 100))
Rstancey = np.zeros((Rgait, 100))
Rstancet = np.zeros((Rgait, 100))
InitialDataL = np.zeros((num_nodes, 9))
InitialDataR = np.zeros((num_nodes, 9))
if Lto[0] < Lhs[0]:
for k in range(Lgait-1):
for j in range(Lto[k], Lhs[k]):
InitialDataL[j, 0] = 0
InitialDataL[j, 1] = (j-Lto[k])*delta
InitialDataL[j, 2] = (Lhs[k]-Lto[k])*delta
InitialDataL[j, 3:5] = get_ankle_point(motion[Lto[k], 2], motion[Lto[k], 3], motion[Lto[k], 4], Lthigh, Lshank)
InitialDataL[j, 5:7] = get_ankle_point(motion[j, 2], motion[j, 3], motion[j, 4], Lthigh, Lshank)
InitialDataL[j, 7:9] = get_ankle_point(motion[Lhs[k], 2], motion[Lhs[k], 3], motion[Lhs[k], 4], Lthigh, Lshank)
for i in range(Lhs[k], Lto[k+1]):
InitialDataL[i, 0] = 1
InitialDataL[i, 1] = (i-Lhs[k])*delta
InitialDataL[i, 2] = (Lto[k+1]-Lhs[k])*delta
InitialDataL[i, 3:5] = get_hip_point(motion[Lhs[k], 2], motion[Lhs[k], 3], motion[Lhs[k], 4], Lthigh, Lshank)
InitialDataL[i, 5:7] = get_hip_point(motion[i, 2], motion[i, 3], motion[i, 4], Lthigh, Lshank)
InitialDataL[i, 7:9] = get_hip_point(motion[Lto[k+1], 2], motion[Lto[k+1], 3], motion[Lto[k+1], 4], Lthigh, Lshank)
time_sw = np.linspace(0, (Lhs[k]-Lto[k])*delta, Lhs[k]-Lto[k])
time_st = np.linspace(0, (Lto[k+1]-Lhs[k])*delta, Lto[k+1]-Lhs[k])
time_swn = np.linspace(0, (Lhs[k]-Lto[k])*delta, 100)
time_stn = np.linspace(0, (Lto[k+1]-Lhs[k])*delta, 100)
Lswingx[k, :] = np.interp(time_swn, time_sw, InitialDataL[Lto[k]:Lhs[k], 5])
Lswingy[k, :] = np.interp(time_swn, time_sw, InitialDataL[Lto[k]:Lhs[k], 6])
Lswingt[k, :] = time_swn
Lstancex[k, :] = np.interp(time_stn, time_st, InitialDataL[Lhs[k]:Lto[k+1], 5])
Lstancey[k, :] = np.interp(time_stn, time_st, InitialDataL[Lhs[k]:Lto[k+1], 6])
Lstancet[k, :] = time_stn
else:
for k in range(Lgait-1):
for i in range(Lhs[k], Lto[k]):
InitialDataL[i, 0] = 1
InitialDataL[i, 1] = (i-Lhs[k])*delta
InitialDataL[i, 2] = (Lto[k]-Lhs[k])*delta
InitialDataL[i, 3:5] = get_hip_point(motion[Lhs[k], 2], motion[Lhs[k], 3], motion[Lhs[k], 4], Lthigh, Lshank)
InitialDataL[i, 5:7] = get_hip_point(motion[i, 2], motion[i, 3], motion[i, 4], Lthigh, Lshank)
InitialDataL[i, 7:9] = get_hip_point(motion[Lto[k], 2], motion[Lto[k], 3], motion[Lto[k], 4], Lthigh, Lshank)
for j in range(Lto[k], Lhs[k+1]):
InitialDataL[j, 0] = 0
InitialDataL[j, 1] = (j-Lto[k])*delta
InitialDataL[j, 2] = (Lhs[k+1]-Lto[k])*delta
InitialDataL[j, 3:5] = get_ankle_point(motion[Lto[k], 2], motion[Lto[k], 3], motion[Lto[k], 4], Lthigh, Lshank)
InitialDataL[j, 5:7] = get_ankle_point(motion[j, 2], motion[j, 3], motion[j, 4], Lthigh, Lshank)
InitialDataL[j, 7:9] = get_ankle_point(motion[Lhs[k+1], 2], motion[Lhs[k+1], 3], motion[Lhs[k+1], 4], Lthigh, Lshank)
time_sw = np.linspace(0, (Lhs[k+1]-Lto[k])*delta, Lhs[k+1]-Lto[k])
time_st = np.linspace(0, (Lto[k]-Lhs[k])*delta, Lto[k]-Lhs[k])
time_swn = np.linspace(0, (Lhs[k+1]-Lto[k])*delta, 100)
time_stn = np.linspace(0, (Lto[k]-Lhs[k])*delta, 100)
Lswingx[k, :] = np.interp(time_swn, time_sw, InitialDataL[Lto[k]:Lhs[k+1], 5])
Lswingy[k, :] = np.interp(time_swn, time_sw, InitialDataL[Lto[k]:Lhs[k+1], 6])
Lswingt[k, :] = time_swn
Lstancex[k, :] = np.interp(time_stn, time_st, InitialDataL[Lhs[k]:Lto[k], 5])
Lstancey[k, :] = np.interp(time_stn, time_st, InitialDataL[Lhs[k]:Lto[k], 6])
Lstancet[k, :] = time_stn
if Rto[0] < Rhs[0]:
for p in range(Rgait-1):
for j in range(Rto[p], Rhs[p]):
InitialDataR[j, 0] = 0
InitialDataR[j, 1] = (j-Rto[p])*delta
InitialDataR[j, 2] = (Rhs[p]-Rto[p])*delta
InitialDataR[j, 3:5] = get_ankle_point(motion[Rto[p], 2], motion[Rto[p], 6], motion[Rto[p], 7], Lthigh, Lshank)
InitialDataR[j, 5:7] = get_ankle_point(motion[j, 2], motion[j, 6], motion[j, 7], Lthigh, Lshank)
InitialDataR[j, 7:9] = get_ankle_point(motion[Rhs[p], 2], motion[Rhs[p], 6], motion[Rhs[p], 7], Lthigh, Lshank)
for i in range(Rhs[p], Rto[p+1]):
InitialDataR[i, 0] = 1
InitialDataR[i, 1] = (i-Rhs[p])*delta
InitialDataR[i, 2] = (Rto[p+1]-Rhs[p])*delta
InitialDataR[i, 3:5] = get_hip_point(motion[Rhs[p], 2], motion[Rhs[p], 6], motion[Rhs[p], 7], Lthigh, Lshank)
InitialDataR[i, 5:7] = get_hip_point(motion[i, 2], motion[i, 6], motion[i, 7], Lthigh, Lshank)
InitialDataR[i, 7:9] = get_hip_point(motion[Rto[p+1], 2], motion[Rto[p+1], 6], motion[Rto[p+1], 7], Lthigh, Lshank)
time_sw = np.linspace(0, (Rhs[p]-Rto[p])*delta, Rhs[p]-Rto[p])
time_st = np.linspace(0, (Rto[p+1]-Rhs[p])*delta, Rto[p+1]-Rhs[p])
time_swn = np.linspace(0, (Rhs[p]-Rto[p])*delta, 100)
time_stn = np.linspace(0, (Rto[p+1]-Rhs[p])*delta, 100)
Rswingx[p, :] = np.interp(time_swn, time_sw, InitialDataR[Rto[p]:Rhs[p], 5])
Rswingy[p, :] = np.interp(time_swn, time_sw, InitialDataR[Rto[p]:Rhs[p], 6])
Rswingt[p, :] = time_swn
Rstancex[p, :] = np.interp(time_stn, time_st, InitialDataR[Rhs[p]:Rto[p+1], 5])
Rstancey[p, :] = np.interp(time_stn, time_st, InitialDataR[Rhs[p]:Rto[p+1], 6])
Rstancet[p, :] = time_stn
else:
for p in range(Rgait-1):
for i in range(Rhs[p], Rto[p]):
InitialDataR[i, 0] = 1
InitialDataR[i, 1] = (i-Rhs[p])*delta
InitialDataR[i, 2] = (Rto[p]-Rhs[p])*delta
InitialDataR[i, 3:5] = get_hip_point(motion[Rhs[p], 2], motion[Rhs[p], 6], motion[Rhs[p], 7], Lthigh, Lshank)
InitialDataR[i, 5:7] = get_hip_point(motion[i, 2], motion[i, 6], motion[i, 7], Lthigh, Lshank)
InitialDataR[i, 7:9] = get_hip_point(motion[Rto[p], 2], motion[Rto[p], 6], motion[Rto[p], 7], Lthigh, Lshank)
for j in range(Rto[p], Rhs[p+1]):
InitialDataR[j, 0] = 0
InitialDataR[j, 1] = (j-Rto[p])*delta
InitialDataR[j, 2] = (Rhs[p+1]-Rto[p])*delta
InitialDataR[j, 3:5] = get_ankle_point(motion[Rto[p], 2], motion[Rto[p], 6], motion[Rto[p], 7], Lthigh, Lshank)
InitialDataR[j, 5:7] = get_ankle_point(motion[j, 2], motion[j, 6], motion[j, 7], Lthigh, Lshank)
InitialDataR[j, 7:9] = get_ankle_point(motion[Rhs[p+1], 2], motion[Rhs[p+1], 6], motion[Rhs[p+1], 7], Lthigh, Lshank)
time_sw = np.linspace(0, (Rhs[p+1]-Rto[p])*delta, Rhs[p+1]-Rto[p])
time_st = np.linspace(0, (Rto[p]-Rhs[p])*delta, Rto[p]-Rhs[p])
time_swn = np.linspace(0, (Rhs[p+1]-Rto[p])*delta, 100)
time_stn = np.linspace(0, (Rto[p]-Rhs[p])*delta, 100)
Rswingx[p, :] = np.interp(time_swn, time_sw, InitialDataR[Rto[p]:Rhs[p+1], 5])
Rswingy[p, :] = np.interp(time_swn, time_sw, InitialDataR[Rto[p]:Rhs[p+1], 6])
Rswingt[p, :] = time_swn
Rstancex[p, :] = np.interp(time_stn, time_st, InitialDataR[Rhs[p]:Rto[p], 5])
Rstancey[p, :] = np.interp(time_stn, time_st, InitialDataR[Rhs[p]:Rto[p], 6])
Rstancet[p, :] = time_stn
if write_sign == True:
with open(store_path+'InitialDataL_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(0, num_nodes-2*ext_nodes):
for g in range(9):
StringP += str(InitialDataL[r + ext_nodes, g])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'InitialDataR_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(0, num_nodes-2*ext_nodes):
for g in range(9):
StringP += str(InitialDataR[r + ext_nodes, g])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
Lhs_s = Lhs[(Lhs >= ext_nodes) & (Lhs <= num_nodes-ext_nodes)]
Lto_s = Lto[(Lto >= ext_nodes) & (Lto <= num_nodes-ext_nodes)]
if Lhs_s[0] < Lto_s[0]:
with open(store_path+'Lhs_Lto_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(np.min([len(Lhs_s), len(Lto_s)])):
StringP += str(Lhs_s[r]-ext_nodes)
StringP += ' '
StringP += str(Lto_s[r]-ext_nodes)
StringP += ' '
StringP += '\n'
outfile.write(StringP)
else:
with open(store_path+'Lto_Lhs_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(np.min([len(Lhs_s), len(Lto_s)])):
StringP += str(Lto_s[r]-ext_nodes)
StringP += ' '
StringP += str(Lhs_s[r]-ext_nodes)
StringP += ' '
StringP += '\n'
outfile.write(StringP)
Rhs_s = Rhs[(Rhs >= ext_nodes) & (Rhs <= num_nodes-ext_nodes)]
Rto_s = Rto[(Rto >= ext_nodes) & (Rto <= num_nodes-ext_nodes)]
if Rhs_s[0] < Rto_s[0]:
with open(store_path+'Rhs_Rto_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(np.min([len(Rhs_s), len(Rto_s)])):
StringP += str(Rhs_s[r]-ext_nodes)
StringP += ' '
StringP += str(Rto_s[r]-ext_nodes)
StringP += ' '
StringP += '\n'
outfile.write(StringP)
else:
with open(store_path+'Rto_Rhs_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(np.min([len(Rhs_s), len(Rto_s)])):
StringP += str(Rto_s[r]-ext_nodes)
StringP += ' '
StringP += str(Rhs_s[r]-ext_nodes)
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lswingx_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lswingx[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lswingy_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lswingy[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lswingt_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lswingt[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lstancex_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lstancex[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lstancey_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lstancey[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Lstancet_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Lgait-2*ext_gait):
for q in range(100):
StringP += str(Lstancet[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rswingx_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rswingx[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rswingy_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rswingy[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rswingt_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rswingt[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rstancex_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rstancex[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rstancey_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rstancey[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
with open(store_path+'Rstancet_'+str(st_walking)
+'_'+str(ed_walking)+'_'+str(int(100/every_node))+'HZ.txt', 'w') as outfile:
StringP = ''
for r in range(Rgait-2*ext_gait):
for q in range(100):
StringP += str(Rstancet[r+ext_gait, q])
StringP += ' '
StringP += '\n'
outfile.write(StringP)
if plot_sign ==True:
Gait_info = np.zeros(6)
Gait_info_std = np.zeros(6)
Gait_info[0] = np.mean(np.diff(Lhs))*delta
Gait_info_std[0] = np.std(np.diff(Lhs))*delta
Gait_info[1] = np.mean(Lto[2:-2] - Lhs[1:-3])*delta
Gait_info_std[1] = np.std(Lto[2:-2] - Lhs[1:-3])*delta
Gait_info[2] = np.mean(Lhs[2:-2] - Lto[2:-2])*delta
Gait_info_std[2] = np.std(Lhs[2:-2] - Lto[2:-2])*delta
Gait_info[3] = np.mean(np.diff(Rhs))*delta
Gait_info_std[3] = np.std(np.diff(Rhs))*delta
Gait_info[4] = np.mean(Rto[1:] - Rhs[:-1])*delta
Gait_info_std[4] = np.std(Rto[1:] - Rhs[:-1])*delta
Gait_info[5] = np.mean(Rhs - Rto)*delta
Gait_info_std[5] = np.std(Rhs - Rto)*delta
num_par = 3
index = np.arange(num_par)
fig2 = plt.figure(figsize=(8, 6))
ax = fig2.add_subplot(1, 1, 1)
width = 0.3
p1 = ax.bar(index, Gait_info[:3], width, color='r', bottom=0, yerr=Gait_info_std[:3])
p2 = ax.bar(index+width, Gait_info[3:6], width, color='y', bottom=0, yerr=Gait_info_std[3:6])
ax.set_title('Gait Period Info (s)', fontsize=14)
ax.set_xticks(index + width / 2)
ax.set_xticklabels(('Full Gait', 'Stance', 'Swing'), fontsize=14)
ax.legend((p1[0], p2[0]), ('Left', 'Right'), fontsize=14)
plt.show()
Lstance_ind = np.where(InitialDataL[:, 0] == 1)[0]
Lswing_ind = np.where(InitialDataL[:, 0] == 0)[0]
Rstance_ind = np.where(InitialDataR[:, 0] == 1)[0]
Rswing_ind = np.where(InitialDataR[:, 0] == 0)[0]
fig4 = plt.figure(figsize=(14, 8))
ax1 = fig4.add_subplot(2, 2, 1)
plt.ylabel('Pelvis x (m)', fontsize = 14)
ax2 = fig4.add_subplot(2, 2, 2)
plt.ylabel('Pelvis y (m)', fontsize = 14)
ax3 = fig4.add_subplot(2, 2, 3)
plt.ylabel('Ankle x (m)', fontsize = 14)
plt.xlabel('Gait period (s)', fontsize = 14)
ax4 = fig4.add_subplot(2, 2, 4)
plt.ylabel('Ankle y (m)', fontsize = 14)
plt.xlabel('Gait period (s)', fontsize = 14)
ax1.plot(InitialDataL[Lstance_ind, 1], InitialDataL[Lstance_ind, 5], '.', label='Left Leg')
ax1.plot(InitialDataR[Rstance_ind, 1], InitialDataR[Rstance_ind, 5], '.', label='Right Leg')
ax2.plot(InitialDataL[Lstance_ind, 1], InitialDataL[Lstance_ind, 6], '.', label='Left Leg')
ax2.plot(InitialDataR[Rstance_ind, 1], InitialDataR[Rstance_ind, 6], '.', label='Right Leg')
ax3.plot(InitialDataL[Lswing_ind, 1], InitialDataL[Lswing_ind, 5], '.', label='Left Leg')
ax3.plot(InitialDataR[Rswing_ind, 1], InitialDataR[Rswing_ind, 5], '.', label='Right Leg')
ax4.plot(InitialDataL[Lswing_ind, 1], InitialDataL[Lswing_ind, 6], '.', label='Left Leg')
ax4.plot(InitialDataR[Rswing_ind, 1], InitialDataR[Rswing_ind, 6], '.', label='Right Leg')
plt.legend(fontsize=14)
plt.show() | UTF-8 | Python | false | false | 21,839 | py | 998 | gait_separation.py | 58 | 0.475434 | 0.448647 | 0 | 463 | 46.170626 | 133 |
smunix/brickv | 1,108,101,577,842 | 3cadc54ec3fe01e9174eefaf6b89117aa0e4cb45 | 076015f6a45d65818d5c700a8896ed6df780a47a | /src/brickv/build_pkg.py | 115cd2aa8e9ae78c4218cfa7bf2a5c80d932e875 | [] | no_license | https://github.com/smunix/brickv | 0e0c6e995c50c467b63ec4131ea9904b3e6d8f83 | 2d78a242bc25131e5c5122245e43caa33e1fbb0b | refs/heads/master | 2021-01-16T18:53:50.629090 | 2011-12-09T12:23:26 | 2011-12-09T12:23:26 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
brickv (Brick Viewer)
Copyright (C) 2011 Olaf Lüke <olaf@tinkerforge.com>
2011 Bastian Nordmeyer <bastian@tinkerforge.com>
build_pkg.py: Package builder for Brick Viewer
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public
License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
"""
# Windows:
# dependencies:
# pythonxy (2.6)
# py2exe
# nsis
# win redistributables vcredist under winxp
#
# run build scripts in all folders
# run python build_pkg.py win to build the windows exe
# final data is stored in folder "dist"
#
# script copies OpenGL, special libs and plugin_system
# in dist folder
import config
import sys
from distutils.core import setup
import os
import glob
import shutil
import matplotlib
DESCRIPTION = 'Brick Viewer'
NAME = 'Brickv'
def build_windows_pkg():
import py2exe
# os.system("python build_all_ui.py")
# data_files = matplotlib.get_py2exe_datafiles()
data_files = []
def visitor(arg, dirname, names):
for n in names:
if os.path.isfile(os.path.join(dirname, n)):
if arg[0] == 'y': #replace first folder name
data_files.append((os.path.join(dirname.replace(arg[1],"")) , [os.path.join(dirname, n)]))
else: # keep full path
data_files.append((os.path.join(dirname) , [os.path.join(dirname, n)]))
os.path.walk(os.path.normcase("../build_data/Windows/"), visitor, ('y',os.path.normcase("../build_data/Windows/")))
os.path.walk("plugin_system", visitor, ('n',"plugin_system"))
data_files.append( ( os.path.join('.') , [os.path.join('.', 'brickv-icon.png')] ) )
setup(
name = NAME,
description = DESCRIPTION,
version = config.BRICKV_VERSION,
data_files = data_files,
options = {
"py2exe":{
"dll_excludes":["MSVCP90.dll"],
"includes":["PyQt4.QtSvg", "sip","PyQt4.Qwt5", "PyQt4.QtCore", "PyQt4.QtGui","numpy.core.multiarray", "PyQt4.QtOpenGL","OpenGL.GL", "ctypes.util", "plot_widget", "pylab", "matplotlib.backends.backend_qt4agg", "scipy.interpolate"],
"excludes":["_gtkagg", "_tkagg"]
}
},
zipfile=None,
windows = [{'script':'main.py', 'icon_resources':[(0,os.path.normcase("../build_data/Windows/brickv-icon.ico"))]}]
)
# build nsis
run = "\"" + os.path.join("C:\Program Files\NSIS\makensis.exe") + "\""
data = " dist\\nsis\\brickv_installer_windows.nsi"
print "run:", run
print "data:", data
os.system(run + data)
def build_linux_pkg():
import shutil
src_path = os.getcwd()
build_dir = 'build_data/linux/brickv/usr/share/brickv'
dest_path = os.path.join(os.path.split(src_path)[0], build_dir)
if os.path.isdir(dest_path):
shutil.rmtree(dest_path)
shutil.copytree(src_path, dest_path)
build_data_path = os.path.join(os.path.split(src_path)[0], 'build_data/linux')
os.chdir(build_data_path)
os.system('dpkg -b brickv/ brickv-' + config.BRICKV_VERSION + '_all.deb')
if __name__ == "__main__":
if sys.argv[1] == "win":
sys.argv[1] = "py2exe" # rewrite sys.argv[1] for setup(), want to call py2exe
build_windows_pkg()
if sys.argv[1] == "linux":
build_linux_pkg()
| UTF-8 | Python | false | false | 4,135 | py | 35 | build_pkg.py | 29 | 0.601838 | 0.589744 | 0 | 115 | 33.947826 | 254 |
nkapetanas/Deep-Learning-Image-Classifier | 5,093,831,243,365 | 8ce9e1f9a8f4ac6602ab8eaf9b4a2d6be17df00c | 0dc2674d53fa893170079e79795bd1ab711a7076 | /cnnSVHN.py | 0e923273219f5adcd29b8cdc7c80aceb7067d03e | [] | no_license | https://github.com/nkapetanas/Deep-Learning-Image-Classifier | 0dcb509d1d416cac913cad1f9b56a3ad959c6b26 | 5d0cf41625170c9fa799b32fbca0e860ada2d197 | refs/heads/master | 2022-04-07T15:31:25.656205 | 2020-01-27T20:40:43 | 2020-01-27T20:40:43 | 231,837,294 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import numpy as np
from scipy.io import loadmat
from sklearn import metrics
from sklearn.model_selection import StratifiedKFold
np.random.seed(1400)
import itertools
from keras.models import Sequential
from keras.layers import Dense, Flatten, Conv2D, MaxPool2D
from keras.callbacks import EarlyStopping, ModelCheckpoint
from six.moves import urllib
import matplotlib.pyplot as plt
URL_TRAIN_PATH = 'http://ufldl.stanford.edu/housenumbers/train_32x32.mat'
URL_TEST_PATH = 'http://ufldl.stanford.edu/housenumbers/test_32x32.mat'
DOWNLOADED_FILENAME_TRAIN = 'housenumbers_training.mat'
DOWNLOADED_FILENAME_TEST = 'housenumbers_test.mat'
HEIGHT = 32
WIDTH = 32
CHANNELS = 3 # since there are rgb images
N_INPUTS = HEIGHT * WIDTH
N_OUTPUTS = 11
def download_data():
if not os.path.exists(DOWNLOADED_FILENAME_TRAIN):
filename, _ = urllib.request.urlretrieve(URL_TRAIN_PATH, DOWNLOADED_FILENAME_TRAIN)
print('Found and verified file from this path: ', URL_TRAIN_PATH)
print('Download file: ', DOWNLOADED_FILENAME_TRAIN)
if not os.path.exists(DOWNLOADED_FILENAME_TEST):
filename, _ = urllib.request.urlretrieve(URL_TEST_PATH, DOWNLOADED_FILENAME_TEST)
print('Found and verified file from this path: ', URL_TEST_PATH)
print('Download file: ', DOWNLOADED_FILENAME_TEST)
def get_kfold(x_train, y_train, k):
folds = list(StratifiedKFold(n_splits=k, shuffle=True, random_state=1).split(x_train, y_train))
return folds, x_train, y_train
def get_model(x_train):
model = Sequential()
model.add(Conv2D(9, (3, 3), padding='same', activation='relu', input_shape=x_train.shape[1:]))
model.add(MaxPool2D(pool_size=(3, 3)))
model.add(Conv2D(36, (3, 3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(3, 3)))
model.add(Conv2D(49, (3, 3), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(3, 3)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(11, activation="softmax"))
return model
def plot_confusion_matrix(confusion_matrix, target_names, normalize=False, title='Confusion matrix'):
plt.figure(figsize=(8, 6))
plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.get_cmap('Blues'))
plt.title(title)
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
thresh = confusion_matrix.max() / 1.5 if normalize else confusion_matrix.max() / 2
for i, j in itertools.product(range(confusion_matrix.shape[0]), range(confusion_matrix.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(confusion_matrix[i, j]),
horizontalalignment="center",
color="white" if confusion_matrix[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(confusion_matrix[i, j]),
horizontalalignment="center",
color="white" if confusion_matrix[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
def get_random_index_of_images():
indexes_for_ran_chosen_image_each_class = dict()
indexes_for_ran_chosen_image_each_class[1] = 9
indexes_for_ran_chosen_image_each_class[2] = 2
indexes_for_ran_chosen_image_each_class[3] = 3
indexes_for_ran_chosen_image_each_class[4] = 15
indexes_for_ran_chosen_image_each_class[5] = 5
indexes_for_ran_chosen_image_each_class[6] = 21
indexes_for_ran_chosen_image_each_class[7] = 14
indexes_for_ran_chosen_image_each_class[8] = 13
indexes_for_ran_chosen_image_each_class[9] = 1
return indexes_for_ran_chosen_image_each_class
download_data()
# squeeze_me= True -> Unit 1x1 matrix dimensions are squeezed to be scalars
train_data_mat = loadmat(DOWNLOADED_FILENAME_TRAIN, squeeze_me=True)
test_data_mat = loadmat(DOWNLOADED_FILENAME_TEST, squeeze_me=True)
x_train = train_data_mat['X']
y_train = train_data_mat['y']
x_test = test_data_mat['X']
y_test = test_data_mat['y']
# num_images, height, width, num_channels
x_train = np.transpose(x_train, (3, 0, 1, 2))
x_test = np.transpose(x_test, (3, 0, 1, 2))
x_train_validation_data = x_train[:7326]
y_train_validation_data = y_train[:7326]
x_train = x_train[7326:]
y_train = y_train[7326:]
es = EarlyStopping(monitor='val_loss', mode='auto', verbose=1, patience=2)
checkpoint = ModelCheckpoint('/logs/logs.h5',
monitor='val_loss',
mode='min',
save_best_only=True,
verbose=1)
model = get_model(x_train)
model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10, validation_data=(x_train_validation_data, y_train_validation_data),
callbacks=[es])
predicted_values = model.predict_classes(x_test)
matrix = metrics.confusion_matrix(y_test, predicted_values)
print(metrics.accuracy_score(y_test, predicted_values))
print(metrics.f1_score(y_test, predicted_values, average='micro'))
print(metrics.recall_score(y_test, predicted_values, average='micro'))
print(metrics.precision_score(y_test, predicted_values, average='micro'))
target_names = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
plot_confusion_matrix(matrix, target_names)
| UTF-8 | Python | false | false | 5,559 | py | 2 | cnnSVHN.py | 1 | 0.67692 | 0.653535 | 0 | 150 | 36.06 | 106 |
anstepp/junkyardTemplesSolanum | 2,113,123,911,496 | 19f5f755f8baea09d876af9390f6c2c88cdf168e | 8c3bf4b4800ab72666f9add6b66ca628eb319e5d | /testGenePlay.py | 07411673f9d35fcef4f06b8a0db2b43f1f6289eb | [] | no_license | https://github.com/anstepp/junkyardTemplesSolanum | 0b0dee326d33ce70dc2e0961dda56485f383f032 | af4bd0543a633680ae42e10d2eaa6e74fba02cd2 | refs/heads/master | 2020-05-17T11:17:43.642121 | 2017-05-08T14:58:35 | 2017-05-08T14:58:35 | 38,716,606 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from rtcmix import *
import utils, words
import random, sys
rtsetparams(44100, 2)
load("SPECTACLE2")
start = 0
#chosen = random.choice(words.words)
#file = chosen[1]
for thing in words.words:
rtinput(thing[1])
amp = 10
env = maketable("curve", 1000, 0,0,-2, 10,1,2, 1000,0)
dur = DUR()
fftsize = 16384
windowsize = fftsize * 2
winTab = 0
overlap = 2
eqTab = maketable("curve", "nonorm", fftsize, 0,-90,0, 151,-90,2, 152,0,0, 153,0,2,
154,-90,0, 160,-90,2, 161,0,1, 162,0,2, 163,-90,0, 179,-90,2, 180,0,1,
181,0,2, 182,-90,0, 243,-90,2, 244,0,2, 245,-90,0, fftsize,-90)
delayTab = maketable("random", fftsize, 0, 0, 10)
fbTab = .99
pan = random.random()
ringdown = 50
SPECTACLE2(0, 0, dur, amp * env, 1, dur * ringdown, fftsize, windowsize, winTab, overlap,
eqTab, delayTab, fbTab, 0, 22050, 0, 22050, 0, 1, 0, pan)
start += ring
print thing | UTF-8 | Python | false | false | 889 | py | 19 | testGenePlay.py | 18 | 0.626547 | 0.455568 | 0 | 38 | 22.421053 | 91 |
skdonepudi/100DaysOfCode | 5,299,989,666,111 | cdc3b695a5a8f843965a83562593f438aa6e63b0 | 9818262abff066b528a4c24333f40bdbe0ae9e21 | /Day 16/SetNumbers.py | b0da7bb7d42efc289f22494e47d87c54e7658ceb | [
"MIT"
] | permissive | https://github.com/skdonepudi/100DaysOfCode | 749f62eef5826cb2ec2a9ab890fa23e784072703 | af4594fb6933e4281d298fa921311ccc07295a7c | refs/heads/master | 2023-02-01T08:51:33.074538 | 2020-12-20T14:02:36 | 2020-12-20T14:02:36 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | '''
Set numbers
You are given the binary representation of a number. You must consider the highest number of set bits in the binary representation to complete your task. For example, is represented as in binary and it contains four set bits (1-bits).
You are also given a number and your task is to determine the number that is less than or equal to and contains the maximum number of set bits in its binary representation.
In other words, print a number that is less than or equal to such that the number of set bits in the binary representation of must be maximum
Input format
First line: An integer denoting the number of test cases
For each test case:
First line: An integer
Output format
For each test case, print the answer on a new line denoting a number that is less than or equal to such that the number of set bits in the binary representation of must be maximum.
SAMPLE INPUT
1
345
SAMPLE OUTPUT
255
Explanation
The number 255 (< 345) has most number of set bits.
'''
for _ in range(int(input())):
x = bin(int(input()))
if all(i == '1' for i in x[2:]):
print (int(x, 2))
else:
print(int('1' * len(x[3:]), 2)) | UTF-8 | Python | false | false | 1,168 | py | 379 | SetNumbers.py | 282 | 0.725171 | 0.708048 | 0 | 29 | 39.310345 | 236 |
atom015/py_boj | 6,133,213,336,532 | 578b957f56cbd4d38e0ac365cc318b313500eac9 | 592498a0e22897dcc460c165b4c330b94808b714 | /2000번/2309_일곱 난쟁이.py | 0b837fff035012f572d6763c934cbd76d02b85fa | [] | no_license | https://github.com/atom015/py_boj | abb3850469b39d0004f996e04aa7aa449b71b1d6 | 42b737c7c9d7ec59d8abedf2918e4ab4c86cb01d | refs/heads/master | 2022-12-18T08:14:51.277802 | 2020-09-24T15:44:52 | 2020-09-24T15:44:52 | 179,933,927 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | def main(li,s):
for i in range(9):
for j in range(9):
if i != j:
if 100 == s-(li[i]+li[j]):
for k in sorted(li):
if k != li[i] and k != li[j]:
print(k)
return
num_li = []
for i in range(9):
num_li.append(int(input()))
main(num_li,sum(num_li))
#이문제는 백설공주와 일곱난쟁이랑 비슷한 브루트 포스문제이다.
| UTF-8 | Python | false | false | 468 | py | 480 | 2309_일곱 난쟁이.py | 478 | 0.408213 | 0.39372 | 0 | 14 | 28.571429 | 53 |
bigheadG/gardCharge_rpi | 4,183,298,163,513 | 3aa7423ccef1ffd8ffffbf60b11d24f9b4e4eb8e | 73d3ccab5158d4f33d81818eef0b7cd0a5bf3275 | /code/packBTSend.py | b492b5da981c5347a93bb0ccd2b8743f6051bd24 | [
"MIT"
] | permissive | https://github.com/bigheadG/gardCharge_rpi | 15d23af9cd52b45ffedd24cc89ba8843ba7e99fb | 45135cf83ac0daa0114d0409bbcfcbd982071ef1 | refs/heads/master | 2020-04-29T02:15:33.846878 | 2019-04-02T09:46:07 | 2019-04-02T09:46:07 | 175,760,187 | 8 | 2 | null | null | null | null | null | null | null | null | null | null | null | null | null | #
#Code is under develop for control GC101
#
class Gdefine:
CMD_DRIVE = 1,
CMD_CUTOFF_TIME = 2
CMD_TIMER_EN = 3
CMD_READ_MEM = 4
CMD_READ_MEM_A = 4
CMD_FACT_INIT = 5
CMD_SAMPLE_TIME = 6
CMD_READ_CONFIG = 7
CMD_ERASE_QUE = 8
CMD_RUN_TEST = 9
CMD_SET_TRIP_AMP = 11
CMD_SET_OFFTIME = 12
CMD_READ_CONFIG_2 = 14
CMD_OFFLINE_ENABLE = 17
class packBTSend:
flow = 0
def packTXdata(self,mode,data):
outBuf = [0xaa for i in range(20)]
inBuf = [0xaa for i in range(20)]
inBuf[2] = mode
#outBuf no decrypt
outBuf[0] = 40
outBuf[1] = self.flow
outBuf[19] = 41
if mode == 1 or mode == 3 or mode == 4 or mode == 6 or mode == 11 or mode == 17:
inBuf[3] = (data & 0x000000FF)
elif mode == 2: #CMD_CUTOFF_TIME
inBuf[4] = data & 0x000000FF
inBuf[5] = (data & 0x0000FF00) >> 8
inBuf[6] = (data & 0x00FF0000) >> 16
inBuf[7] = (data & 0xFF000000) >> 24
elif mode == 12: #CMD_SETOFF_TIME
inBuf[3] = data & 0x000000FF
inBuf[4] = (data & 0x0000FF00) >> 8
inBuf[5] = (data & 0x00FF0000) >> 16
#print("inBuf:{}".format(inBuf))
# encrypt
i = 2
for x in inBuf[2:17]:
d = x ^ ((i ^ inBuf[18]) ^ 0x38)
outBuf[i] = d
i += 1
self.flow += 1
self.flow = self.flow % 10
#print("flow = {:d}".format(self.flow))
return outBuf
| UTF-8 | Python | false | false | 1,311 | py | 7 | packBTSend.py | 4 | 0.584287 | 0.482075 | 0 | 55 | 22.709091 | 82 |
thelebster/zapret-info-parser | 6,682,969,114,065 | d83e6851ef14c5b867c50e860c0a98f518721b0e | 8cb749f1c834495e0b98da16d45a028dd30c5259 | /updater/update.py | c573edcc4f255a0c79071a998fb9d24ca2be30ef | [] | no_license | https://github.com/thelebster/zapret-info-parser | 187fea5215b2e0a3490318720615bab88c8b01b2 | 1c053b1f38594a05225f130d234551a282c24d23 | refs/heads/master | 2021-01-05T14:11:03.547108 | 2020-03-01T19:23:07 | 2020-03-01T19:23:07 | 241,046,135 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import glob
from pymongo import MongoClient
import ipaddress
from bson.int64 import Int64
MONGODB_URI = os.getenv('MONGODB_URI', 'mongodb://root:root@localhost:27017/blocked?authMechanism=DEFAULT&authSource=admin')
MONGODB_IMPORT_COLLECTION = os.getenv('MONGODB_IMPORT_COLLECTION', 'blocked_new')
MONGODB_PROD_COLLECTION = os.getenv('MONGODB_PROD_COLLECTION', 'blocked')
IMPORT_DIR = os.getenv('IMPORT_DIR', '../data/archive/utf8')
def import_file(filename):
mongodb_client = MongoClient(MONGODB_URI)
db = mongodb_client.get_database()
blocked = db.get_collection(MONGODB_IMPORT_COLLECTION)
with open(filename, 'r') as csv_file:
lines = csv_file.readlines()
inserts = []
inserted = 0
for line in lines:
components = line.strip().split(';')
if len(components) < 6:
continue
ips = components[0].split(' | ')
domain = components[1]
url = components[2].strip('"')
decision_org = components[3]
decision_num = components[4]
decision_date = components[5]
if domain.strip() == '':
domain = None
if url.strip() == '' or url == 'http://' or url == 'https://':
url = None
for ip in ips:
if ip.strip() == '':
if domain is not None and len(domain.split('.')) == 4:
ip = domain
else:
ip = None
ip_first = None
ip_last = None
length = None
if ip is not None:
pair = ip.split('/')
ip_first = ipaddress.ip_address(pair[0])
# Skip ipv6.
if ip_first.version == 6:
continue
ip_first = Int64(ip_first)
if len(pair) > 1:
length = int(pair[1])
ip_last = ip_first | (1 << (32 - length)) - 1
else:
length = 32
ip_last = ip_first
inserts.append({
'ip': ip,
'ip_first': ip_first,
'ip_last': ip_last,
'length': length,
'decision_date': decision_date,
'decision_org': decision_org,
'decision_num': decision_num,
'domain': domain,
'url': url,
})
if len(inserts) == 10000:
result = blocked.insert_many(inserts)
result.inserted_ids
inserted += len(inserts)
inserts = []
pass
if len(inserts) > 0:
result = blocked.insert_many(inserts)
result.inserted_ids
inserted += len(inserts)
pass
if __name__ == '__main__':
files = [f for f in glob.glob(IMPORT_DIR + "/*.csv")]
for f in files:
basename = os.path.basename(f)
print(f'Importing {basename} file...')
import_file(f)
# @todo Run health check somewhere...?
mongodb_client = MongoClient(MONGODB_URI)
db = mongodb_client.get_database()
try:
# Try to drop temporary collection.
blocked_tmp = db.get_collection(f'~{MONGODB_PROD_COLLECTION}')
blocked_tmp.drop()
except Exception as err:
print(err)
try:
# Try to rename current collection.
blocked = db.get_collection(MONGODB_PROD_COLLECTION)
blocked.rename(f'~{MONGODB_PROD_COLLECTION}')
except Exception as err:
print(err)
blocked_new = db.get_collection(MONGODB_IMPORT_COLLECTION)
blocked_new.create_index('domain')
blocked_new.create_index('ip')
blocked_new.create_index('url')
blocked_new.rename(MONGODB_PROD_COLLECTION)
| UTF-8 | Python | false | false | 3,993 | py | 7 | update.py | 4 | 0.498873 | 0.489356 | 0 | 114 | 34.026316 | 124 |
amyc28/Premiere-Pro-Silence-Cutter | 13,786,845,029,431 | 9fe608314030874affd5d54da4c8916be138f402 | 073412f89865e4f726bf14a115630c52a17658e6 | /MouseTracker.py | 94b73dd02f49c68658e2a0193faa58b9b2e811ca | [] | no_license | https://github.com/amyc28/Premiere-Pro-Silence-Cutter | bbe7347b0dc7e74f0bd5a5b56f2d0edd8b2885df | 9787c3648790b2466c11cff1708a78190b0e6794 | refs/heads/master | 2021-02-19T07:38:55.288611 | 2020-02-28T03:20:47 | 2020-02-28T03:20:47 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
from PIL import ImageGrab
import cv2
from directKeys import click, queryMousePosition, PressKey, ReleaseKey, SPACE
import time
import math
from pynput.keyboard import Key, Controller as KeyboardController
from pynput.mouse import Controller, Button as MouseController
import pyautogui
while True:
mouse_pos = queryMousePosition() #sets mouse_pos to the current position of the mouse
print(mouse_pos.x, mouse_pos.y)
time.sleep(.01)
| UTF-8 | Python | false | false | 484 | py | 3 | MouseTracker.py | 2 | 0.762397 | 0.756198 | 0 | 14 | 32.142857 | 89 |
S-boker/Personal-Projects- | 10,015,863,780,553 | 7c7874bfd98986a3de47f095df60da0399e5b71a | 281e4720eab3c1ae339bd0f6c5554e9c35a1fd79 | /Sudoku_Solver.py | f7959557e3ec71e2d2e5e3d7ec18691434e15818 | [] | no_license | https://github.com/S-boker/Personal-Projects- | 869a19282ae357bc884b188cfa1e8ba819596b6c | b03772707981e006b95e90be6b851d6ccf12373d | refs/heads/master | 2021-01-08T03:48:21.486816 | 2020-02-20T14:45:26 | 2020-02-20T14:45:26 | 241,903,557 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Shohum Boker
# 2/19/20
# initializing lists
box0 = [0] * 9
box1 = [0] * 9
box2 = [0] * 9
box3 = [0] * 9
box4 = [0] * 9
box5 = [0] * 9
box6 = [0] * 9
box7 = [0] * 9
box8 = [0] * 9
boxes = [box0, box1, box2, box3, box4, box5, box6, box7, box8]
# Okay function
def okay(b, sq):
# box test
bs = [int(s) for s in b]
for s in b:
if bs.count(s) > 1 and s != 0: return False
# Initializing helper lists lists
rt = []
ct = []
for box in boxes:
tbi = boxes.index(box)
bi = boxes.index(b)
if b is box:
continue
if tbi % 3 == bi % 3: ct.append(box) # Column adjacent Boxes
if tbi // 3 == bi // 3: rt.append(box) # Row adjacent Boxes
sqi = b.index(sq)
ri = [i for i in range(9) if i // 3 == sqi // 3] # Row helper list
ci = [i for i in range(9) if i % 3 == sqi % 3] # Column helper list
# Using helper lists for column and row test
for x in range(6):
y = x // 3
cb = ct[y]
rb = rt[y]
c = ci[x % 3]
r = ri[x % 3]
if int(rb[r]) == sq or int(cb[c]) == sq: return False
return True
# Finding the last integer if the entry goes out of bounds
def lastInt(b, ind):
ind -= 1
while isinstance(b[ind], str) or ind < 0:
if ind < 0:
b = boxes[boxes.index(b) - 1]
ind = 8
if isinstance(b[ind], str):
ind -= 1
return [b, ind]
def printr():
# Checking if the board was Solvable
for box in boxes:
for s in box:
if s ==0:
print("----------------------------------")
print("Unsolvable")
quit()
# Helper list
row = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
s = "----------------------"
for x in range(81):
# Every row has nine entries
if x % 9 == 0:
s += "\n"
# Complex formula taking advantage of the helper list to convert boxes into rows
s += str(boxes[row[x // 27][(x // 3) % 3]][row[(x // 9) % 3][x % 3]])
print(s)
# Instructions for the user to operate the UI system (hopefully in the future the UI will be better)
print("Welcome to Sudoku Solver:")
print("Enter the rows in your Sudoku Board from the top to the bottom and all blank entries should be'0'")
print("For example: 104005007 is a valid row")
row = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
x = 0
boo = False
while x < 9:
n = input("row" + str(x + 1) + ": ")
# Check for proper length
while len(n) != 9:
print("Error: Row is not of size 9")
n = input("row" + str(x + 1) + ": ")
for y in range(9):
if boo:
boo = False
break
try:
# Check for proper data type and have all values as ints
bs = [int(s) for s in n]
except ValueError:
print("Error: Invalid input, characters are not acceptable. ")
# Allows the user to redo the row
x -= 1
break
else:
# Checks that the row is valid
for s in bs:
if bs.count(s) > 1 and s != 0:
print("Error: Repeating value found: " + str(s))
x -= 1
boo = True
break
# Converts all 0's to ints
if n[y] == "0":
r = int(n[y])
else:
r = n[y]
# Complex formula to put to rows in the forms of boxes
boxes[row[x // 3][y // 3]][row[x % 3][y % 3]] = r
x += 1
# Initializing index of "boxes"
q = -1
while True:
# Moving to the next box
q += 1
# If all boxes are filled print
if q == 9:
printr()
break
else:
box = boxes[q]
# Initializing index of "boxes"
p = -1
while True:
# Moving to the next square in the box
p += 1
# If all squares are filled up then move on to the next box
if p == 9:
break
else:
while True:
# Checking if the value was entered by the user
if isinstance(box[p], str):
break
else:
# Add one to the current value in the square
box[p] += 1
# If the value is to big: backtrack
if box[p] == 10:
box[p] = 0
cord = lastInt(box, p)
box = cord[0]
p = cord[1]
q = boxes.index(box)
# Check if the value in the square is valid in rules of Sudoku at its current index
elif okay(box, box[p]):
break
| UTF-8 | Python | false | false | 4,982 | py | 1 | Sudoku_Solver.py | 1 | 0.44159 | 0.414894 | 0 | 156 | 29.935897 | 107 |
LMZimmer/Auto-PyTorch_refactor | 12,429,635,357,991 | ee60ab19dfca60cba566b1683320e744d508d9d0 | 06f8f1b812e6651222bdb8299b840c09f919d89c | /autoPyTorch/search_space/search_space.py | 5587eff15d5947ec47913b42ef7622960b71bd20 | [
"Apache-2.0",
"LicenseRef-scancode-philippe-de-muyter",
"LicenseRef-scancode-unknown-license-reference"
] | permissive | https://github.com/LMZimmer/Auto-PyTorch_refactor | 4cda7658319db4faf894895f046fac49ebd07757 | ac7a9ce35e87a428caca2ac108b362a54d3b8f3a | refs/heads/master | 2023-02-19T02:02:57.256438 | 2020-12-08T14:18:27 | 2020-12-08T14:18:27 | 281,992,226 | 0 | 1 | Apache-2.0 | false | 2021-01-22T14:53:10 | 2020-07-23T15:42:51 | 2020-12-09T14:27:36 | 2021-01-22T14:53:09 | 877 | 0 | 2 | 12 | Python | false | false | import typing
from typing import Optional
import ConfigSpace as cs
class SearchSpace:
hyperparameter_types = {
'categorical': cs.CategoricalHyperparameter,
'integer': cs.UniformIntegerHyperparameter,
'float': cs.UniformFloatHyperparameter,
'constant': cs.Constant,
}
@typing.no_type_check
def __init__(
self,
cs_name: str = 'Default Hyperparameter Config',
seed: int = 11,
):
"""Fit the selected algorithm to the training data.
Args:
cs_name (str): The name of the configuration space.
seed (int): Seed value used for the configuration space.
Returns:
"""
self._hp_search_space = cs.ConfigurationSpace(
name=cs_name,
seed=seed,
)
@typing.no_type_check
def add_hyperparameter(
self,
name: str,
hyperparameter_type: str,
**kwargs,
):
"""Add a new hyperparameter to the configuration space.
Args:
name (str): The name of the hyperparameter to be added.
hyperparameter_type (str): The type of the hyperparameter to be added.
Returns:
hyperparameter (cs.Hyperparameter): The hyperparameter that was added
to the hyperparameter search space.
"""
missing_arg = SearchSpace._assert_necessary_arguments_given(
hyperparameter_type,
**kwargs,
)
if missing_arg is not None:
raise TypeError(f'A {hyperparameter_type} must have a value for {missing_arg}')
else:
hyperparameter = SearchSpace.hyperparameter_types[hyperparameter_type](
name=name,
**kwargs,
)
self._hp_search_space.add_hyperparameter(
hyperparameter
)
return hyperparameter
@staticmethod
@typing.no_type_check
def _assert_necessary_arguments_given(
hyperparameter_type: str,
**kwargs,
) -> Optional[str]:
"""Assert that given a particular hyperparameter type, all the
necessary arguments are given to create the hyperparameter.
Args:
hyperparameter_type (str): The type of the hyperparameter to be added.
Returns:
missing_argument (str|None): The argument that is missing
to create the given hyperparameter.
"""
necessary_args = {
'categorical': {'choices', 'default_value'},
'integer': {'lower', 'upper', 'default', 'log'},
'float': {'lower', 'upper', 'default', 'log'},
'constant': {'value'},
}
hp_necessary_args = necessary_args[hyperparameter_type]
for hp_necessary_arg in hp_necessary_args:
if hp_necessary_arg not in kwargs:
return hp_necessary_arg
return None
@typing.no_type_check
def set_parent_hyperperparameter(
self,
child_hp,
parent_hp,
parent_value,
):
"""Activate the child hyperparameter on the search space only if the
parent hyperparameter takes a particular value.
Args:
child_hp (cs.Hyperparameter): The child hyperparameter to be added.
parent_hp (cs.Hyperparameter): The parent hyperparameter to be considered.
parent_value (str|float|int): The value of the parent hyperparameter for when the
child hyperparameter will be added to the search space.
Returns:
"""
self._hp_search_space.add_condition(
cs.EqualsCondition(
child_hp,
parent_hp,
parent_value,
)
)
@typing.no_type_check
def add_configspace_condition(
self,
child_hp,
parent_hp,
configspace_condition,
value,
):
"""Add a condition on the chi
Args:
child_hp (cs.Hyperparameter): The child hyperparameter to be added.
parent_hp (cs.Hyperparameter): The parent hyperparameter to be considered.
configspace_condition (cs.AbstractCondition): The condition to be fullfilled
by the parent hyperparameter. A list of all the possible conditions can be
found at ConfigSpace/conditions.py.
value (str|float|int|list): The value of the parent hyperparameter to be matched
in the condition. value needs to be a list only for the InCondition.
Returns:
"""
self._hp_search_space.add_condition(
configspace_condition(
child_hp,
parent_hp,
value,
)
)
| UTF-8 | Python | false | false | 4,808 | py | 67 | search_space.py | 62 | 0.571339 | 0.570923 | 0 | 153 | 30.424837 | 93 |
Heisenberg2017/LogColorizer | 171,798,707,333 | 656b568229bc010d68a4a0352c55c979d88abbd5 | 8b968f85f54966924626e7bb89ef73f71f466ba0 | /monitor/api.py | 975711603548e41f655c13002b103fafed0dc7e4 | [
"MIT"
] | permissive | https://github.com/Heisenberg2017/LogColorizer | 31eb0d7e565a574adddfe9ae7d09451c2a49ce9e | 61ac64d1e4e8b1cc4d0e3104d25ff20d7ce39262 | refs/heads/master | 2020-07-23T04:46:00.549544 | 2019-12-09T08:56:27 | 2019-12-09T08:56:27 | 207,447,585 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from monitor.watcher import Watcher
import time
try:
import configparser
except ImportError:
import ConfigParser as configparser
def multi_watch(args):
gens = []
config = configparser.ConfigParser()
config.read('conf/monitor.conf')
for name in config.sections():
print('-----[%s]-----' % name)
watch_dict = {}
for key, value in config[name].items():
print("%s: %s" % (key, value))
watch_dict[key] = value
excludes = watch_dict['excludes'].split('|') if watch_dict.get('excludes') else None
gen = Watcher(watch_dict['path'], excludes=excludes, project=name).auto_reload(watch_dict['action'])
gens.append(gen)
while True:
for g in gens:
next(g)
time.sleep(1)
| UTF-8 | Python | false | false | 787 | py | 13 | api.py | 13 | 0.598475 | 0.597205 | 0 | 25 | 30.48 | 108 |
AlexLSmith/mqtt-app | 3,341,484,590,809 | 7fe1c3d54a4ef1692a755e4c09885b2029961358 | ac219f70f734dbe108cee4612af5c046dfdd5f05 | /mqtt_app/config.py | f204390628cfea120c75b6a73e5f4e8265a8f6fe | [] | no_license | https://github.com/AlexLSmith/mqtt-app | 8cb6a302be6ada8751895867696b6ca64e30ace8 | 31c4f367caadc0c20db41d7e2448b6e98bdc9f15 | refs/heads/master | 2020-06-21T13:52:30.987317 | 2019-07-18T07:20:17 | 2019-07-18T07:20:17 | 197,472,528 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | HOST = "localhost"
PORT = 1883
SENSOR_TOPIC = "sensor/upload"
AGGREGATE_TOPIC = "sensor/aggregate"
AVG_TIME_PERIODS = (1, 5, 30)
| UTF-8 | Python | false | false | 130 | py | 7 | config.py | 4 | 0.7 | 0.638462 | 0 | 6 | 20.666667 | 36 |
yuanhaoz/Python-Scrapy | 15,556,371,573,625 | 1077688a82302b5b94a732cdf593fef3de445273 | 686be27d73e4abbe45d51bfa64c80bcadc89ceb9 | /test/test2.py | 35457996be6ae6f4b1b4cbde13f93d8132f8a373 | [] | no_license | https://github.com/yuanhaoz/Python-Scrapy | 30cbfc7dd9096d02da740e0d3207ba3ae017d964 | 5c9d7b2e83c3fdf88c77792f9ad189b8a2d35905 | refs/heads/master | 2020-12-01T05:41:58.159997 | 2016-08-27T07:53:45 | 2016-08-27T08:09:07 | 66,702,527 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
########################################################################
#
# Copyright (c) 2016 Baidu.com, Inc. All Rights Reserved
#
########################################################################
import md5
import time
import urllib
import re
import scrapy
from scrapy.http import Request
from bs4 import BeautifulSoup
from scrapy import signals
html_doc = """
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="zh-HK" lang="zh-hk">
<head>
<meta name="Keywords" content="保安局禁毒處, 禁毒影音短片">
<meta name="description" content="保安局禁毒處 - 禁毒影音短片">
<meta name="description-2" content="Security Bureau, Narcotics Division Website">
<meta name="author" content="Security Bureau, Narcotics Division">
<script language="JavaScript" src="/js/jquery-1.11.0.min.js" type="text/javascript"></script>
<link href="/css/print.css" rel="stylesheet" type="text/css" media="print">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<script language="JavaScript" src="../js/genLayer.js" type="text/javascript"></script>
<script language="JavaScript" src="../js/common.js" type="text/javascript"></script>
<script language="JavaScript" src="../js/data.js" type="text/javascript"></script>
<script language="JavaScript" src="../js/swf.js" type="text/javascript"></script>
<script language="JavaScript" src="../js/jquery-1.11.0.min.js" type="text/javascript"></script>
<script language="JavaScript" src="../js/reCon.js" type="text/javascript"></script>
<link href="/css/format.css" rel="stylesheet" type="text/css" >
<title>保安局禁毒處 - 禁毒影音短片</title>
<script language="JavaScript" type="text/javascript">
<!--
var currentSection='7,3';
function MM_swapImgRestore() { //v3.0
var i,x,a=document.MM_sr; for(i=0;a&&i<a.length&&(x=a[i])&&x.oSrc;i++) x.src=x.oSrc;
}
function MM_preloadImages() { //v3.0
var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();
var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)
if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=a[i];}}
}
function MM_findObj(n, d) { //v4.01
var p,i,x; if(!d) d=document; if((p=n.indexOf("?"))>0&&parent.frames.length) {
d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p);}
if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i<d.forms.length;i++) x=d.forms[i][n];
for(i=0;!x&&d.layers&&i<d.layers.length;i++) x=MM_findObj(n,d.layers[i].document);
if(!x && d.getElementById) x=d.getElementById(n); return x;
}
function MM_swapImage() { //v3.0
var i,j=0,x,a=MM_swapImage.arguments; document.MM_sr=new Array; for(i=0;i<(a.length-2);i+=3)
if ((x=MM_findObj(a[i]))!=null){document.MM_sr[j++]=x; if(!x.oSrc) x.oSrc=x.src; x.src=a[i+2];}
}
function MM_openBrWindow(theURL,winName,features) { //v2.0
window.open(theURL,winName,features);
}
function openWin(theURL,winName,features,opener) { //v2.0
popUp=window.open(theURL,winName,features);
popUp.opener=opener;
}
//-->
</script>
<style type="text/css">
<!--
.search { span-family: "Arial", "Helvetica", "sans-serif"; span-size: 12px; text-decoration: none}
.sidebar a:visited { span-family: "Arial", "Helvetica", "sans-serif"; span-size: 12px; text-decoration: none ; color: #000099}
.footer { span-size: 10pt; color: #000000; span-family: "Arial", "Helvetica", "sans-serif"}
.header { span-size: 10pt; color: #3333FF ; span-family: "Arial", "Helvetica", "sans-serif"}
-->
.reCon3 .batch {
clear: both;
padding-top: 5px !important;
}
</style>
</head>
<body><h1 style="display:none">Title</h1>
<table border="0" cellpadding="0" cellspacing="0" width="760">
<tr valign="top">
<td>
<script language="JavaScript" type="text/javascript">targetSwitchPage = ""</script>
<script language="JavaScript" src="/js/header.js" type="text/javascript"></script>
</td>
</tr>
</table>
<table id="content" width="760" border="0" align="left" cellpadding="0" cellspacing="0">
<tr>
<td align="left" valign="top" width="153" height="22" > <script language="JavaScript" type="text/javascript">getLeftMenu();</script> </td>
<td align="left" valign="top" bgcolor="#FFFFFF">
<table width="597" border="0" cellpadding="5" cellspacing="5" >
<!-- <tr>
<td>
<script language="JavaScript" type="text/javascript">generateTopMenu();</script>
</td>
</tr> -->
<tr>
<td>
<table border="1">
<Tr valign="middle">
<td width="25%"><a href="druginfo.htm" title="This link will open in new window">毒品資料</a></td>
<td width="25%"><a href="publications.htm" title="This link will open in new window">禁毒刊物</a></td>
<td width="25%"><a href="videos_radio_clips.htm" title="This link will open in new window">禁毒影音短片</a></td>
<td width="25%"><a href="resources_parents.htm" title="This link will open in new window">給家長的禁毒資源</a></td>
</tr>
<Tr valign="middle">
<td width="25%"><a href="resources_teachers.htm" title="This link will open in new window">給教師和社工的禁毒資源</a></td>
<td width="25%"><a href="resources_professionals.htm" title="This link will open in new window">給醫護人員的禁毒資源</a></td>
<td width="25%"><a href="resources_youths.htm" title="This link will open in new window">給青年人的禁毒資源</a></td>
<td width="25%"><a href="druginfocentre.htm" title="This link will open in new window">香港賽馬會藥物資訊天地</a></td>
</tr>
</table>
</td>
</tr>
<tr>
<td valign="top" align="left"><img src="images/top_buttons/top_buttons_dot_line.gif" alt=""> </td>
</tr>
<tr>
<td valign="top" align="left"><a name="top"></a></td>
</tr>
<tr>
<a name="main-content" id="main-content" tabindex="0"></a>
<td valign="top"><span ><strong>禁毒影音短片</strong></span></td>
</tr>
<tr>
<td valign="top">
<table border="0" cellspacing="2" cellpadding="8" >
<Tr valign="top">
<td><strong>禁毒影像短片:</strong></td>
</tr>
<tr>
<td>
<div style="width:100%;" class="reCon3">
<div class="iso">
<a href="http://www.hkayd.org.hk/YourChoice/finalentries.pdf" target="_blank"><img src="/tc/images/finalentries.jpg" alt="" border="0" >
<br>禁 毒 基 金 贊 助 「 Your Choice 」 納 米 電 影 創 作 比 賽</a>
</div>
<div class="iso">
<a href="tv_announcements.htm"><img src="/tc/images/banner_03.gif" alt="" border="0" >
<br>電 視 宣 傳 短 片</a>
</div>
<div class="iso">
<a href="sunproject.htm"><img src="/tc/images/sunlife_icon.gif" alt="" border="0" >
<br>禁 毒 基 金 贊 助 「 路 訊 通 」 節 目 《Sun 生 命》</a>
</div>
<!--div class="iso">
<div class="isopic"><a href="http://www.metroradio.com.hk/Campaign/997/TeensNoDrugs/" target="_blank" title="此連結會於新視窗開啟"><img src="../en/images/antidrug_event_2012.gif" border="0" width="137" height="103"></a></div>
<div class="isotext"><a href="http://www.metroradio.com.hk/Campaign/997/TeensNoDrugs/" target="_blank" title="此連結會於新視窗開啟">打 開 TEEN 窗 愛 @ 無 毒 SHOW</a></div>
</div-->
<!--div class="iso">
<div class="isopic"><a target="_blank" title="此連結會於新視窗開啟" href="http://www.metroradio.com.hk/Campaign997/KnockDrugsOutWithLove/ "><img src="../en/images/teenteenshow.gif" border="0" width="137" height="103"></a></div>
<div class="isotext"><a target="_blank" title="此連結會於新視窗開啟" href="http://www.metroradio.com.hk/Campaign997/KnockDrugsOutWithLove/ ">TEEN TEEN 有 愛 無 毒 Show</a></div>
</div-->
<!--div class="iso">
<div class="isopic"><a href="http://programme.rthk.hk/rthk/tv/programme.php?name=tv/drugbattleforum&p=5923" target="_blank" title="此連結會於新視窗開啟"><img src="../en/images/Drug Battle Forum.png" border="0" width="137" height="103"></a></div>
<div class="isotext"><a href="http://programme.rthk.hk/rthk/tv/programme.php?name=tv/drugbattleforum&p=5923" target="_blank" title="此連結會於新視窗開啟">香 港 電 台 電 視 節 目 《 毒 海 論 浮 生 》 </a></div>
</div-->
<!--div class="iso">
<div class="isopic"><a href="http://programme.rthk.hk/rthk/tv/programme.php?name=tv/drugbattle2013&p=5689" target="_blank" title="此連結會於新視窗開啟"><img src="../en/images/rthk_progam.gif" border="0" width="137" height="103"></a></div>
<div class="isotext"><a href="http://programme.rthk.hk/rthk/tv/programme.php?name=tv/drugbattle2013&p=5689" target="_blank" title="此連結會於新視窗開啟">香 港 電 台 電 視 節 目 《 毒 海 浮 生 》</a></div>
</div-->
<!--div class="iso">
<div class="isopic"><a href="http://programme.tvb.com/drama/beautyofthegame" target="_blank" title="此連結會於新視窗開啟"><img src="../en/images/icon_beautyofthegame.gif" border="0" width="137" height="103"></a></div>
<div class="isotext"><a href="http://programme.tvb.com/drama/beautyofthegame" target="_blank" title="此連結會於新視窗開啟">禁毒電視連續劇《美麗高解像》</a></div>
</div-->
<div class="iso">
<a href="antidrug_themesong_2.htm"><img src="/tc/images/icon_antidrug_song_2.gif" border="0" width="137" height="103" alt="" b>
<br>「不可一.不可再」<br>全港青少年禁毒運動2009 <br>主題曲「天造之材」MTV</a>
</div>
<div class="iso">
<a href="antidrug_themesong.htm"><img src="/tc/images/icon_antidrug_song.gif" border="0" width="137" height="103" alt="" b>
<br>「不可一.不可再」禁毒運動主題曲「不不不」MTV</a>
</div>
</div>
</td>
</tr>
<tr>
<td> </td>
</tr>
</table>
</td>
</tr>
<tr>
<td valign="top">
<table border="0" cellspacing="2" cellpadding="8" >
<Tr valign="top">
<td colspan="3"><strong>禁毒聲音短片:</strong></td>
</tr>
<tr>
<td>
<div style="width:100%;" class="reCon3">
<div class="iso">
<a href="radio_announcements.htm"><img src="/tc/images/icon_antidrug_radio.gif" border="0" width="137" height="103" alt="" >
<br>電台宣傳聲帶</a>
</div>
<div class="iso">
<a href="rs_handstogether_2015.htm"><img src="/tc/images/sqsqkd2015.jpg" border="0" alt="" >
<br>禁毒電台環節「手牽手 齊抗毒」</a>
</div>
<div class="iso">
<a href="adEduSeg.htm"><img src="/tc/images/jjdp_qxkd_s.jpg" border="0" alt="" >
<br>禁毒電台環節「堅拒毒品 齊心抗毒」</a>
</div>
<div class="iso">
<a href="http://www.metroradio.com.hk/Campaign/2013/997/Narcotics/" target="_blank" title="此連結會於新視窗開啟"><img src="/tc/images/jbtc.gif" alt="" b width="137" height="103" border="0">
<br>禁毒廣播劇「戒不太遲」</a>
</div>
<div class="iso">
<a href="antidrug_themesong_2.htm"><img src="/tc/images/icon_antidrug_song_2.gif" border="0" width="137" height="103" alt="" b>
<br>「不可一.不可再」全港青少年禁毒運動2009 主題曲「天造之材」</a>
</div>
<div class="iso">
<a href="antidrug_themesong.htm"><img src="/tc/images/icon_antidrug_song.gif" border="0" width="137" height="103" alt="" b>
<br>「不可一.不可再」禁毒運動主題曲「不不不」</a>
</div>
</div>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
</tr>
</table>
</td>
</tr>
<tr>
<td>
<div align="center"><img src="images/chi/botdot.jpg" alt="" width="602" height="3" style="width:603px;" ></div>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="98%">
<tbody><tr>
<td><script language="JavaScript" src="../js/footer.js" type="text/javascript"></script><script language="JavaScript" type="text/javascript"> footer(); </script></td>
<td>
<div align="right"><span class="footer"><script type="text/javascript">var manual_date ="";lastrevision();</script></span></div>
</td>
</tr>
<!--<script language="JavaScript" type="text/javascript"> footer_wcag(); </script>-->
</tbody></table>
</td>
</tr>
</table>
</td>
</tr>
</table>
<p> </p>
<!-- Use genLayer.js to create the following code -->
<!--
<div id="Layer2" style="position:absolute; left:4px; top:633px; width:146px; height:61px; z-index:2">
<div align="center"><a href="javascript:MM_openBrWindow('NDgame_c/c_game.htm','','width=640,height=480');"><img src="images/chi_beautiful.gif" alt="角色扮演禁毒遊戲 -- 美麗人生" border="0"></a></div>
</div>
<div id="Layer1" style="position:absolute; left:2px; top:550px; width:150px; height:74px; z-index:1">
<div align="center"><a href="javascript:MM_openBrWindow('c_flash.htm','','width=760,height=420');"><img src="images/chi_drug.gif" alt="啪丸--有何結局? 啪丸=玩完" border="0"></a></div>
</div>
-->
<script type="text/javascript">
<!--
genfooterLayer();
//-->
</script>
</body>
</html>
"""
soup = BeautifulSoup(html_doc, "lxml-xml")
# print '---------------------------------'
# all_p = soup.find_all('table')[1].find_all('td')[1].find_all('tr')[1].get_text().strip()
# all_p = all_p.replace('0 cellpadding=0 cellspacing=0>', '')
# all_p = all_p.replace('footer();', '')
# all_p = all_p.replace('''left valign=top width="50">''', '')
# all_p = all_p.replace('left valign=top>', '')
# all_p = all_p.replace('''border="0">''', '')
# all_p = all_p.replace('250>', '')
# all_p = all_p.replace('\n', '')
# all_p = all_p.replace('\t', '')
# print all_p
# print '---------------------------------'
# all_p = soup.find_all('table')[1].find_all('td')[1].find_all('p')
# titles = soup.find_all('h1')
# title = ''
# content = ''
# for i in range(1, len(titles)):
# title += titles[i].get_text().strip()
# for i in range(0, len(all_p)-1):
# content += all_p[i].get_text().strip()
# content = content.replace('\n', '')
# content = content.replace('\t', '')
# content = title + '\n' + content
# print content
print '---------------------------------'
# all_p = soup.find_all('table')[1].find_all('td')[1].find_all('p')
all_p = soup.find_all('table')[1].find_all('td')[1]
titles = soup.find_all('h1')
title = ''
content = ''
for i in range(1, len(titles)):
title += titles[i].get_text().strip()
if all_p:
ex1 = all_p.find_all(['p','h2','h3','h4','strong','a'])
for i in range(0, len(ex1)-1):
content += ex1[i].get_text().strip()
content = re.sub(r'\w+=\"(\w+)?\"', "", content)
content = re.sub(r'\w+=\w+', "", content)
content = re.sub(r'\w+=\"\w+\:#\d+\;\w+\-\w+:\w+;\w+\-\w+:\w+\">', "", content)
content = re.sub(r':#\d+;\w+-\w+:\w+;\w+-\w+:\w+', "", content)
content = re.sub(r'>\"', "", content)
content = re.sub(r'>', "", content)
content = re.sub(r'\"', "", content)
content = re.sub(r'top', "", content)
content = content.replace('\n', '')
content = content.replace('\t', '')
content = title + '\n' + content
print content
print '---------------------------------'
| UTF-8 | Python | false | false | 15,897 | py | 38 | test2.py | 37 | 0.579865 | 0.554997 | 0 | 348 | 41.867816 | 244 |
dangpzanco/disciplina-fala | 240,518,198,735 | 62d8a7408590e1acf65e1a4390595dec684cee5f | 0a84d748400b9c7fc9121b4a76a2bf8d1d75de14 | /experiment/experiment.py | 783fb17d4ab7989bbd10a178b7e20a1beaf43cec | [] | no_license | https://github.com/dangpzanco/disciplina-fala | 3649a103777370fb7a8b15fce37e97446074c9f4 | 04b4213084969304d44efa3adb6198af101cfd83 | refs/heads/master | 2020-07-30T21:35:56.252159 | 2019-12-04T14:19:40 | 2019-12-04T14:19:40 | 210,365,686 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pathlib
import soundfile as sf
import librosa
import librosa.display
import numpy as np
import numpy.random as rnd
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import trange
import shutil
rnd.seed(0)
metadata = pd.read_csv('../analysis/speechmetrics_results.csv')
metadata = metadata.drop(['pesq', 'stoi', 'srmr'], axis=1)
print(metadata.columns)
print(metadata)
technique_list = ['noisy', 'wiener', 'bayes', 'binary']
num_techniques = len(technique_list)
# exit()
snr_values = np.array([-20,-10,0,10,20])
num_snr = snr_values.size # 5
files_per_snr = 4
num_rep = 1
exp_folder = pathlib.Path('exp_data')
exp_folder.mkdir(parents=True, exist_ok=True)
speech_folder = pathlib.Path('../data/speech/')
noisy_folder = pathlib.Path('../data/speech+noise/')
# id_list = []
# filename = []
# speech_name = []
# noise_name = []
# realization = []
# SNR = []
# technique = []
# rep_list = []
# Metadata definitions
num_files = num_snr * (files_per_snr + num_rep) * num_techniques
exp_metadata = pd.DataFrame(index=np.arange(num_files),
columns=['id', 'filename', 'speech_name', 'noise_name', 'realization',
'SNR', 'technique', 'rep'])
file_list = []
exp_index = 0
for k, tech in enumerate(technique_list):
for i in range(num_snr):
ind = metadata['SNR'] == snr_values[i]
rnd_ind = rnd.permutation(ind.sum())[:files_per_snr]
filenames = metadata['filename'].values[ind][rnd_ind]
for j, item in enumerate(filenames):
exp_metadata['filename'][exp_index] = item
exp_metadata['speech_name'][exp_index] = item.split('_')[0]
exp_metadata['noise_name'][exp_index] = item.split('_')[1][:-1]
exp_metadata['realization'][exp_index] = item.split('_')[1][-1]
exp_metadata['SNR'][exp_index] = float(item.split('_')[-1])
exp_metadata['technique'][exp_index] = tech
exp_metadata['rep'][exp_index] = False
exp_index +=1
file_list.append(item)
exp_metadata['rep'][exp_index-1] = True
# Repeated audios
for j in range(num_rep):
exp_metadata['filename'][exp_index] = item
exp_metadata['speech_name'][exp_index] = item.split('_')[0]
exp_metadata['noise_name'][exp_index] = item.split('_')[1][:-1]
exp_metadata['realization'][exp_index] = item.split('_')[1][-1]
exp_metadata['SNR'][exp_index] = float(item.split('_')[-1])
exp_metadata['technique'][exp_index] = tech
exp_metadata['rep'][exp_index] = True
exp_index +=1
file_list.append(item)
num_files = len(file_list)
print(num_files, file_list)
exp_metadata = exp_metadata.sample(frac=1).reset_index(drop=True)
exp_metadata['id'] = np.arange(num_files)
print(exp_metadata)
exp_metadata.to_csv('exp_metadata.csv', index=False)
subject_metadata = exp_metadata.drop([
'filename', 'speech_name', 'noise_name',
'realization', 'SNR', 'technique', 'rep'], axis=1)
subject_metadata['quality'] = -1
print(subject_metadata)
# exit()
for i in range(num_files):
tech = exp_metadata['technique'][i]
if tech is 'noisy':
processed_folder = pathlib.Path('../data/speech+noise/')
else:
processed_folder = pathlib.Path('../data/processed/') / tech
in_filename = exp_metadata['filename'][i]
out_filename = exp_metadata['id'][i]
# print(in_filename, out_filename)
src = processed_folder / f'{in_filename}.wav'
dst = exp_folder / f'{out_filename:03}.wav'
shutil.copy2(str(src), str(dst))
print(src, dst)
# exp_metadata = pd.DataFrame(index=[],columns=['filename', 'quality'])
# exp_metadata['filename'] = sorted(file_list)
# exp_metadata['quality'] = 0
# print(exp_metadata)
subject_metadata.to_csv(exp_folder / 'subject_metadata.csv', index=False)
| UTF-8 | Python | false | false | 3,893 | py | 27 | experiment.py | 16 | 0.621885 | 0.612381 | 0 | 144 | 26.020833 | 75 |
felipediel/django-commerce | 463,856,474,394 | 6e1f1cadcaf9ca3939faeba100d65e749486a4f2 | 47045b7b7ef3c6f67bef89cbbc82a597773eb366 | /commerce/views/cart.py | 738193581c02f6c99871727bb34cb553ad31b954 | [
"Apache-2.0"
] | permissive | https://github.com/felipediel/django-commerce | 06fecdbd302b33c3cce4284ffc9fe9219a57672e | b992bf4c81ca6dfaad9ccd423d25fba9d255f159 | refs/heads/master | 2023-06-16T14:51:49.301650 | 2021-07-12T07:04:39 | 2021-07-12T07:04:39 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.contrib import messages
from django.contrib.auth.mixins import LoginRequiredMixin
from django.contrib.contenttypes.models import ContentType
from django.shortcuts import get_object_or_404, redirect
from django.utils.translation import ugettext_lazy as _
from django.views import View
from django.views.generic import DetailView, UpdateView
from commerce import settings as commerce_settings
from commerce.forms import AddressesForm, ShippingAndPaymentForm, DiscountCodeForm
from commerce.models import Cart, Order, PaymentMethod, Item, Option, ShippingOption
from commerce.templatetags.commerce import discount_for_product
class AddToCartView(LoginRequiredMixin, View):
def get(self, request, *args, **kwargs):
content_type = get_object_or_404(ContentType, id=kwargs['content_type_id'])
product = get_object_or_404(content_type.model_class(), id=kwargs['object_id'])
option = get_object_or_404(Option, slug_i18n=request.GET['option']) if 'option' in request.GET else None
cart = Cart.get_for_user(request.user)
# TODO: settings:
# TODO: check if product can be added multiple times into cart
# TODO: max items in cart
ALLOW_MULTIPLE_SAME_ITEMS = False
MAX_ITEMS = 3
if cart.items_quantity >= MAX_ITEMS:
messages.warning(request, _(f'You can order at most %d items at once') % MAX_ITEMS)
else:
if ALLOW_MULTIPLE_SAME_ITEMS or not cart.has_item(product, option):
# add item into cart
cart.add_item(product, option)
# discount
if cart.discount:
# remove discount if it is not valid anymore
if not cart.discount.is_valid:
cart.discount = None
cart.save(update_fields=['discount'])
if not cart.discount:
# if no discount is applied yet, check if there is a valid discount available for product
self.apply_discount_by_product(cart, product)
messages.info(request, _('%s was added into cart') % product)
else:
messages.warning(request, _('%s is already in cart') % product)
back_url = request.GET.get('back_url', cart.get_absolute_url())
return redirect(back_url)
def apply_discount_by_product(self, cart, product):
discount = discount_for_product({'request': self.request}, product)
if discount and discount.add_to_cart:
cart.discount = discount
cart.save(update_fields=['discount'])
class UnapplyDiscountCartView(LoginRequiredMixin, View):
def get(self, request, *args, **kwargs):
cart = Cart.get_for_user(request.user)
cart.discount = None
cart.save(update_fields=['discount'])
back_url = request.GET.get('back_url', cart.get_absolute_url())
return redirect(back_url)
class RemoveFromCartView(LoginRequiredMixin, View):
def get(self, request, *args, **kwargs):
item = get_object_or_404(Item, id=kwargs['item_id'])
cart = Cart.get_for_user(request.user)
if item in cart.item_set.all():
item.quantity -= 1
item.save(update_fields=['quantity'])
if item.quantity <= 0:
item.delete()
messages.info(request, _('%s removed from cart') % item)
# discount
if cart.discount:
# remove discount if it is not valid anymore
if not cart.discount.is_valid:
cart.discount = None
cart.save(update_fields=['discount'])
# unset loyalty points
if cart.subtotal < 0 < cart.loyalty_points:
cart.update_loyalty_points()
# delete empty cart
if not cart.item_set.exists():
cart.delete()
back_url = request.GET.get('back_url', cart.get_absolute_url())
return redirect(back_url)
class CartMixin(LoginRequiredMixin):
model = Cart
def get_object(self, queryset=None):
return self.model.get_for_user(self.request.user)
class CartDetailView(CartMixin, UpdateView):
form_class = DiscountCodeForm
template_name = 'commerce/cart_detail.html'
def get_context_data(self, **kwargs):
context_data = super().get_context_data(**kwargs)
context_data.update({
'loyalty_program_enabled': commerce_settings.LOYALTY_PROGRAM_ENABLED,
})
return context_data
def get_form_kwargs(self):
form_kwargs = super().get_form_kwargs()
form_kwargs.update({
'user': self.request.user
})
return form_kwargs
class EmptyCartRedirectMixin(object):
def dispatch(self, request, *args, **kwargs):
cart = self.get_object()
if cart.is_empty():
return redirect(cart.get_absolute_url())
return super().dispatch(request, *args, **kwargs)
class CheckoutAddressesView(CartMixin, EmptyCartRedirectMixin, UpdateView):
template_name = 'commerce/checkout_form.html'
form_class = AddressesForm
def get_initial(self):
initial = super().get_initial()
user = self.object.user
last_user_order = user.order_set.last()
# TODO: refactor
if last_user_order:
initial.update({
'delivery_name': self.object.delivery_name or last_user_order.delivery_name,
'delivery_street': self.object.delivery_street or last_user_order.delivery_street,
'delivery_postcode': self.object.delivery_postcode or last_user_order.delivery_postcode,
'delivery_city': self.object.delivery_city or last_user_order.delivery_city,
'delivery_country': self.object.delivery_country or last_user_order.delivery_country,
'billing_name': self.object.billing_name or last_user_order.billing_name,
'billing_street': self.object.billing_street or last_user_order.billing_street,
'billing_postcode': self.object.billing_postcode or last_user_order.billing_postcode,
'billing_city': self.object.billing_city or last_user_order.billing_city,
'billing_country': self.object.billing_country or last_user_order.billing_country,
'reg_id': self.object.reg_id or last_user_order.reg_id,
'tax_id': self.object.tax_id or last_user_order.tax_id,
'vat_id': self.object.vat_id or last_user_order.vat_id,
'email': self.object.email or last_user_order.email,
'phone': self.object.phone or last_user_order.phone,
})
else:
initial.update({
'delivery_name': self.object.delivery_name or user.get_full_name(),
'delivery_street': self.object.delivery_street or user.street,
'delivery_postcode': self.object.delivery_postcode or user.postcode,
'delivery_city': self.object.delivery_city or user.city,
'delivery_country': self.object.delivery_country or user.country,
'billing_name': self.object.billing_name or user.get_full_name(),
'billing_street': self.object.billing_street or user.street,
'billing_postcode': self.object.billing_postcode or user.postcode,
'billing_city': self.object.billing_city or user.city,
'billing_country': self.object.billing_country or user.country,
'email': self.object.email or user.email,
'phone': self.object.phone or user.phone,
})
return initial
def form_valid(self, form):
form.save()
return redirect('commerce:checkout_shipping_and_payment')
class CheckoutShippingAndPaymentView(CartMixin, EmptyCartRedirectMixin, UpdateView):
template_name = 'commerce/checkout_form.html'
form_class = ShippingAndPaymentForm
def form_valid(self, form):
form.save()
return redirect('commerce:checkout_summary')
def get_initial(self):
initial = super().get_initial()
shipping_options = ShippingOption.objects.for_country(self.object.delivery_country)
if shipping_options.count() == 1:
initial.update({
'shipping_option': shipping_options.first()
})
payment_methods = PaymentMethod.objects.all()
if payment_methods.count() == 1:
initial.update({
'payment_method': payment_methods.first()
})
return initial
class CheckoutSummaryView(CartMixin, EmptyCartRedirectMixin, DetailView):
template_name = 'commerce/checkout_summary.html'
def get_context_data(self, **kwargs):
context_data = super().get_context_data(**kwargs)
context_data.update({
'loyalty_program_enabled': commerce_settings.LOYALTY_PROGRAM_ENABLED,
})
return context_data
class CheckoutFinishView(CartMixin, DetailView):
def get(self, request, *args, **kwargs):
cart = self.get_object()
if cart.can_be_finished():
order_status = Order.STATUS_AWAITING_PAYMENT if cart.total > 0 else Order.STATUS_PENDING
order = cart.to_order(status=order_status)
if order.status != Order.STATUS_AWAITING_PAYMENT:
return redirect(order.get_absolute_url())
if not order.payment_method:
messages.error(request, _('Missing payment method'))
return redirect(order.get_absolute_url())
if order.payment_method.method == PaymentMethod.METHOD_ONLINE_PAYMENT:
return redirect(order.get_payment_url())
return redirect(order.get_absolute_url())
else:
messages.warning(request, _('Checkout process can not be finished yet'))
return redirect(cart.get_absolute_url())
| UTF-8 | Python | false | false | 9,968 | py | 4 | cart.py | 3 | 0.626404 | 0.623997 | 0 | 248 | 39.193548 | 112 |
abu-sayem/Data-Structures-Algorithms-And-Databases | 5,085,241,310,017 | b39f55f73025ed2ef605a8f93881610365a9b4d6 | d78a742d4b4109c3af39216edfc3f8fb5706cc36 | /leetcode/653. Two Sum IV - Input is a BST.py | 91ea31c213d9121589b19fca7e7807b8ddbc6318 | [] | no_license | https://github.com/abu-sayem/Data-Structures-Algorithms-And-Databases | d4a39278e1913e758f7515ad2e697d2253a92454 | f593161d912b3521249f9cfd410655d6a5ce4355 | refs/heads/master | 2023-04-20T03:42:27.292639 | 2021-04-27T03:30:24 | 2021-04-27T03:30:24 | 98,731,558 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def findTarget(self, root: TreeNode, k: int) -> bool:
store = set()
list = [root]
while list:
temp = list.pop()
if temp.val in store:
return True
store.add(k-temp.val)
if temp.left:
list.append(temp.left)
if temp.right:
list.append(temp.right)
return False
| UTF-8 | Python | false | false | 581 | py | 33 | 653. Two Sum IV - Input is a BST.py | 33 | 0.487091 | 0.487091 | 0 | 22 | 25.409091 | 57 |
roger3/pom | 15,092,515,123,551 | d2f2fe7ad2efab7b7a647e20570772237b148b22 | 28359230e823d6dc6fbe53f607a12f1b30a74d9e | /pom/game/migrations/0028_auto_20160222_2227.py | 01216c647f4a825a39d0ade3e7c2c8c82bd35b08 | [] | no_license | https://github.com/roger3/pom | 5bd9720adabe7f3338ce0a24756846eac0991bb9 | f3e2227064fade140c24046b054a7f006adc90b3 | refs/heads/master | 2019-07-22T18:33:59.211289 | 2016-05-20T13:37:48 | 2016-05-20T13:37:48 | 55,376,032 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# Generated by Django 1.9.2 on 2016-02-22 22:27
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('game', '0027_auto_20160222_2215'),
]
operations = [
migrations.AlterField(
model_name='inhabitant',
name='workplace',
field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='workplace', to='game.Workplace'),
),
]
| UTF-8 | Python | false | false | 591 | py | 25 | 0028_auto_20160222_2227.py | 20 | 0.64467 | 0.590525 | 0 | 21 | 27.142857 | 154 |
choandrew/Project-Euler-with-Python | 4,183,298,162,528 | ab4bc22415e3110fa4954f239c8863fe2917a7a9 | 233f22c397e78024cdff3d8c8006a829fba34659 | /Project Euler 7.py | 38148192e61c0505cfd46b35fc7173899d642f5b | [] | no_license | https://github.com/choandrew/Project-Euler-with-Python | 96aff8daa57cf84aa8b9a904c0fbaa21ae63b91b | 20f270869dff99d5b3ed651833240d38277b4ea2 | refs/heads/master | 2021-01-01T06:04:57.693954 | 2015-04-23T07:51:18 | 2015-04-23T07:51:18 | 31,481,912 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see
that the 6th prime is 13.
What is the 10 001st prime number?
"""
import math
from datetime import datetime
startTime = datetime.now() #to measure speed
n = 10001
# int(input("What number prime do you want? "))
primes = [2]
m = 3
while len(primes) < n:
a = []
for divisors in range(2,math.floor(math.sqrt(m))+1):
a.append(m % divisors != 0)
if all(a) == True:
primes.append(m)
m += 2
print(primes[-1])
print(datetime.now()-startTime)
| UTF-8 | Python | false | false | 555 | py | 15 | Project Euler 7.py | 14 | 0.625225 | 0.574775 | 0 | 29 | 18.137931 | 74 |
bschnitz/recipes | 11,828,339,942,629 | 5f074f5d619648f5e382267a19cc6b7972c37625 | efcecf1f695e371dfbbc5c58ac7ef7ad33366e90 | /recipes/gui/form/recipe/instructions/instruction_section.py | c1b2d0b6e558a881a9410d7089317c64401d29b2 | [
"MIT"
] | permissive | https://github.com/bschnitz/recipes | 7d584376199f2a2e5c4dfa537106cdf2e3192292 | 8af348774a1edc11ccab3da9753bc456c19f2000 | refs/heads/master | 2022-05-22T21:39:35.309599 | 2022-03-22T08:22:01 | 2022-03-22T08:22:01 | 155,336,136 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import wx
from recipes.gui.fonts import Head2
from recipes.gui.form.framework import TitleBox
from recipes.gui.form.framework import PaddedBox
from recipes.gui.form.framework import AutoResizeMultilineText
from wx.lib.expando import ExpandoTextCtrl, EVT_ETC_LAYOUT_NEEDED
class InstructionSection:
def __init__(self, parent):
self.parent = parent
title = 'Instructions for first meal'
titled_box = TitleBox(self.form(parent), parent, title, Head2())
parent.SetSizer(PaddedBox(titled_box))
def form(self, parent):
sizer = wx.GridBagSizer(10, 10)
label = wx.StaticText(parent, label='Section Title')
input = wx.TextCtrl(parent)
sizer.Add(label, pos=(0,0), flag=wx.ALIGN_LEFT|wx.ALIGN_CENTER_VERTICAL)
sizer.Add(input, pos=(0,1), flag=wx.EXPAND)
instructions_input = AutoResizeMultilineText(parent)
sizer.Add(instructions_input, pos=(1,0), span=(1, 2), flag=wx.EXPAND)
sizer.AddGrowableCol(1)
return sizer
| UTF-8 | Python | false | false | 1,022 | py | 46 | instruction_section.py | 42 | 0.690802 | 0.676125 | 0 | 29 | 34.241379 | 80 |
mhuijsmans/sandbox | 11,201,274,708,525 | 83ef2f9b51371ca26614c716a95fd3df45fe7f9a | 1e5e98034373ac7b58fe11f9b4a3bbb5e2d8acf2 | /c++/scons_hierarchical2/components/comp4/test/SConscript | 4d65b141c7127f3b8a456173aef0d108dc28e859 | [] | no_license | https://github.com/mhuijsmans/sandbox | 9718cb4414975502033abe791d2c2de747c5a04c | eb036140d91ea74af1b0215f5d5899ca070bd26c | refs/heads/master | 2022-12-10T14:33:45.213736 | 2022-12-08T21:57:30 | 2022-12-08T21:57:30 | 44,774,226 | 1 | 1 | null | false | 2022-12-10T06:22:02 | 2015-10-22T21:26:43 | 2022-01-09T00:56:18 | 2022-12-10T06:22:02 | 6,809 | 0 | 1 | 142 | Java | false | false | Import("env")
opt = env.CreateClone('comp4.test')
# COMP4 depends on COMP2
opt.BuildTests('comp4_tests', [ opt.Glob('*.cpp') ] ) | UTF-8 | Python | false | false | 128 | 1,639 | SConscript | 1,364 | 0.679688 | 0.648438 | 0 | 4 | 31.25 | 53 |
|
swopnilnep/kattis | 15,161,234,600,391 | c01f59f5c233efbfb5bdbc73c779779a64814641 | d5919f63f2a0f0f5758be0c9bdcc12b61a1bcd7d | /python3/countingstars/countingstars.py | 123cffc730ece9c5b5465704355d2a9c47ff4c01 | [
"MIT"
] | permissive | https://github.com/swopnilnep/kattis | e7f18f34c6be374aae89c2011155bc0d852d614e | 8e41c83985137fad20e59416a3a0f9c3ed0ae847 | refs/heads/master | 2021-06-20T06:04:33.645790 | 2021-01-28T09:15:37 | 2021-01-28T09:15:37 | 167,257,410 | 0 | 2 | null | null | null | null | null | null | null | null | null | null | null | null | null | from sys import setrecursionlimit, stdin
setrecursionlimit(10 ** 4)
def remove(items, x, y):
if items[x][y]:
items[x][y] = False
for i, j in ((0, 1),(0,-1),(1, 0),(-1, 0)):
x_mod, y_mod = x + i, y + j
if not any((x_mod < 0,\
y_mod < 0,\
x_mod >= len(items),\
y_mod >= len(items[0]))): items = remove(items, x_mod, y_mod)
return items
for row_num, meta in enumerate(stdin):
x_axis, y_axis = map(int, meta.split())
is_star = [[False for x in range(y_axis)] for x in range(x_axis)]
for l in range(x_axis):
line = stdin.readline()
for star in range(y_axis):
if line[star] == "-": is_star[l][star] = True
count = 0
not_visited = list(range(len(is_star)))
while len(not_visited) > 0:
for x in not_visited:
line = is_star[x]
if True in line:
y = line.index(True)
is_star = remove(is_star, x, y)
count += 1
else:
not_visited.remove(x)
continue
print(f"Case {row_num + 1}: {count}") | UTF-8 | Python | false | false | 1,156 | py | 62 | countingstars.py | 31 | 0.479239 | 0.463668 | 0 | 35 | 32.057143 | 77 |
ZakHussain/Python_OOP | 15,693,810,502,465 | a649a2d9e0246762c6971d7a8a9554946912cccb | d517bd40bfe43938dea47b0a815d8d3660e4609e | /Building_Objects_OOP.py | 63d3e8de1f9ebc5eb0507391f8f06c67426df9b4 | [] | no_license | https://github.com/ZakHussain/Python_OOP | 6e943a9d31ad333accaeb353e06bd0d0090bbeb7 | 953285985836b8e05fef8b6178d0541dfc066fbb | refs/heads/master | 2021-01-22T07:27:18.653986 | 2017-02-13T11:15:28 | 2017-02-13T11:15:28 | 81,816,207 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # The Goal of this program is to get practice with Object Oriented Programming (OOP).
# Here we create the 'blueprints' for 4 kind of objects - Cat, Human, Bike, and Car.
# The Cat object requires a color, type, and age parameter to create an instance of a 'Cat'.
class Cat(object):
def __init__(self, color, type, age):
self.color = color
self.type = type
self.age = age
# The Human object requires no user input, and will print "New Human" once initialized.
class Human(object):
def __init__(self, clan=None):
print "New Human!!!"
# The Bike object has an initialization that takes form, prim, max_speed, and miles as input.
# It has a displayinfo(), ride(), and reverse() method to allow for interaction with the object.
class Bike(object):
def __init__(self, form, price, max_speed, miles):
self.form = form
self.price = price
self.max_speed = max_speed
self.miles = 0
def displayinfo(self):
print self.form
print "Price for this is $" + str(self.price)
print "Top speeds for this is "+ str(self.max_speed)+ 'mph'
print "Total miles " + str(self.miles) + " miles "
def ride(self):
print 'driving'
self.miles += 10
def reverse(self):
print 'Reversing'
if self.miles >= 5:
self.miles -= 5
# The car object is initialized with four attributes, price, speed, fuel, and mileage.
# It also contains a display_all method that will show the information about the state of the
#car
class Car(object):
def __init__(self, price, speed, fuel, mileage):
self.price = price
self.speed = speed
self.fuel = fuel
self.mileage = mileage
self.tax = .15
if self.price <= 10000:
self.tax = 0.12
def display_all(self):
print 'the price is ', str(self.price)
print 'the speed of this car is ', str(self.speed)
print 'the current tank is ', str(self.fuel)
print 'the present mileage is ', str(self.mileage)
print self.tax
# here, we create an instance of a Cat, that we named 'garfield.' This
# instance now has all the attributes that make a 'Cat,' (color, type, age, etc)
garfield = Cat('orange', 'fat', 5)
print garfield.color
print garfield.type
print garfield.age
# these following calls create instances of the 'Bike' object
locomotion = Bike('\n locomotion', 100, 200 , 0)
tricycle = Bike('\n trycyle', 2,20, 0)
motorcycle = Bike('\n motorcycle', 1000, 200, 0)
# the following object.method() calls, calls of the methods of the specific object
locomotion.ride()
locomotion.ride()
locomotion.ride()
locomotion.reverse()
locomotion.displayinfo()
tricycle.ride()
tricycle.ride()
tricycle.reverse()
tricycle.reverse()
tricycle.displayinfo
motorcycle.reverse()
motorcycle.reverse()
motorcycle.reverse()
motorcycle.displayinfo()
# the following object 'Kirby' is an instance of a 'Car' object
Kirby1 = Car(10000, 35, 'Full', 15)
# the following print methods call on the 'fields' of the Kirby, Car Object
print Kirby1.speed
print Kirby1.fuel
print Kirby1.mileage
print Kirby1.price
print Kirby1.tax
| UTF-8 | Python | false | false | 3,015 | py | 3 | Building_Objects_OOP.py | 2 | 0.700166 | 0.68325 | 0 | 100 | 28.84 | 96 |
andreas-ibm/mqtt-bridge-websockets-python | 6,674,379,220,142 | e9197f9b46df068933ff379fea588179b843f103 | fa4fe37bd76285ed0cbc1216908c22f43b1af427 | /app.py | 1ca3b2dea51da2e6e8552b381087e4410541095e | [] | no_license | https://github.com/andreas-ibm/mqtt-bridge-websockets-python | 80c62d7805c81733135ba76a7ad3a71f61b84c59 | 362ab7654e9222c8ef54991c9a96b0433690305c | refs/heads/master | 2023-05-15T05:58:22.138023 | 2023-05-02T09:40:58 | 2023-05-02T09:40:58 | 236,773,791 | 0 | 1 | null | false | 2023-05-02T09:41:00 | 2020-01-28T15:53:18 | 2020-01-28T15:53:49 | 2023-05-02T09:40:59 | 2 | 0 | 0 | 0 | Python | false | false | # MQTT Standalone bridge for sending data using WebSockets
import argparse
import paho.mqtt.client as paho
import time
import threading
import uuid
from flask import Flask
parser = argparse.ArgumentParser()
parser.add_argument("-s","--sourcebroker", help="The hostname of the broker to subscribe to")
parser.add_argument("-p","--sourceport", type=int, help="The port of the broker to subscribe to", default=1883)
parser.add_argument("-d","--targetbroker", help="The hostname of the broker to publish to")
parser.add_argument("-o","--targetport", type=int, help="The port of the broker to publish to", default=9001)
parser.add_argument("-e","--endpoint",help="The endpoint to register the edge broker as, defaults to ws://<sourcebroker>:9001")
parser.add_argument("-t","--topic", help="The topic to bridge", default='#')
parser.add_argument("-v","--verbose", help="Be verbose about relaying messages", action="store_true")
args = parser.parse_args()
app = Flask(__name__)
app.debug = False
@app.route('/')
def hello():
return "Bridge config: Bridging {} from {}({}) to {}({})".format(arguments.topic, arguments.sourcebroker, arguments.sourceport, arguments.targetbroker, arguments.targetport)
def on_subscribe(client, userdata, mid, granted_qos): #create function for callback
print("subscribed with qos",granted_qos, "\n")
pass
def on_target_message(client, userdata, message):
## we didn't really expect to receive anything here...
print("message received from target " ,str(message.payload.decode("utf-8")))
def on_publish(client,userdata,mid): #create function for callback
if args.verbose:
print("data published mid=",mid, "\n")
pass
def on_disconnect(client, userdata, rc):
print("client disconnected ok")
def on_source_connect(client, userdata, flags, rc):
print("Connected to source broker with rc={}".format(rc))
print(" subscribing to ",args.topic)
client.subscribe(args.topic)
def main(arguments):
threading.Thread(target=app.run).start()
print("Bridge config: Bridging {} from {}({}) to {}({})".format(arguments.topic, arguments.sourcebroker, arguments.sourceport, arguments.targetbroker, arguments.targetport))
# the function that will do the actual bridging
def on_source_message(client, userdata, message):
## this needs to pass on to the target
if arguments.verbose:
print("message received from source:\n\t{}\n\t{}".format(message.topic,str(message.payload.decode("utf-8"))))
publisher.publish(message.topic, message.payload)
# connect to the target broker
id = str(uuid.uuid4().fields[-1])[:5]
subscriber = paho.Client("mqtt-bridge-source-"+id)
# we want to pass a lot of messages around
subscriber.max_inflight_messages_set(300)
# Use callback functions, pass them in
subscriber.on_subscribe = on_subscribe
subscriber.on_publish = on_publish
subscriber.on_message = on_source_message
subscriber.on_disconnect = on_disconnect
subscriber.on_connect = on_source_connect
print("connecting to broker ",arguments.sourcebroker,"on port ",arguments.sourceport)
subscriber.connect(arguments.sourcebroker,arguments.sourceport)
# connect to the target broker
will = ""
topic_will = "mqtt/edge"
publisher = paho.Client("mqtt-bridge-target-"+id,transport='websockets')
publisher.will_set(topic_will, payload=will, qos=0, retain=False)
publisher.max_inflight_messages_set(300)
# use callback functions, some are the same as the source broker.
publisher.on_subscribe = on_subscribe
publisher.on_publish = on_publish
publisher.on_message = on_target_message
publisher.on_disconnect = on_disconnect
print("connecting to broker ",arguments.targetbroker,"on port ",arguments.targetport)
publisher.connect(arguments.targetbroker,arguments.targetport)
# Tell the broker that there is now an edge broker it's getting data from
endpoint = "ws://"+arguments.sourcebroker+":9001"
if arguments.endpoint is not None:
endpoint = arguments.endpoint
print("publishing edge endpoint "+endpoint+" to broker")
publisher.publish(topic_will, endpoint, retain=True)
publisher.loop_start()
# keep going foverever!
subscriber.loop_forever()
if __name__ == "__main__":
main(args)
| UTF-8 | Python | false | false | 4,318 | py | 3 | app.py | 1 | 0.714451 | 0.707967 | 0 | 103 | 40.854369 | 176 |
GraphicalDot/Assignments | 13,116,830,124,943 | bd7c2ae7710ea045235c97557a0b59128677f464 | c904a0066c22f54c5bdb747bd822e8a522d94808 | /assignment_1_nov_2014.py | c3d4c047cc4f455c5cab4071eb97c7324ad9dcb8 | [] | no_license | https://github.com/GraphicalDot/Assignments | c273f3cf66f2012583e0fc4552f85d914fefaec9 | 9632f9fa1284a00001fad672a2456e3f67379012 | refs/heads/master | 2021-05-28T07:12:04.582583 | 2015-01-13T08:26:03 | 2015-01-13T08:26:03 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
def Upto_you():
"""
Write the most fancier 10 if, else statements, Its upto you
"""
pass
def sort_list():
"""
1.Prepare a list of all alphabets
2.Prepare a list by shuffling them and joining them without spaces
3.From this list which will have 20 elements, prepare a list of dictionaries with key as 1 to 20 and values as the above mentioned randomly
joined alphabets.
4.sort this list in descending order according to the value
Hint: Output is like [{1: 'afmeniyhqvkdxrlocswgjpbtu'}, {2: jdtprombhueifnygskvclwxqa'}, ....so on]
"""
pass
def another_sort_list():
"""
From the update of sort_list()
Step2: Update every dictionary present in the list by removing last three elements from each value
Hint [{1: 'afmeniyhqvkdxrlocswgjp'}, {2: jdtprombhueifnygskvclw'}, ....so on]
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'g': 7, 'f': 6, 'i': 9, 'h': 8, 'k': 11, 'j': 10, 'm': 13, 'l': 12, 'o': 15, 'n': 14, 'q': 17,
'p': 16, 's': 19, 'r': 18, 'u': 21, 't': 20, 'w': 23, 'v': 22, 'y': 25, 'x': 24, 'z': 26}
Then sum the values according to the above mentioned dictionary
The above mentioned dictionary is just for your reference, dont copy that and make your own code
Hint: Output is like [{1: 'afmeniyhqvkdxrlocswgjpbtu', "sum": "282"}, {2: jdtprombhueifnygskvclw', "sum": "283"}, ....so on]
"""
new_dict = dict()
#Preparing the list like this {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'g': 7 and so on
[new_dict.update({element[1]:element[0]})for element in zip(range(1,27), map(chr,range(ord("a"),ord("z")+1)))]
h = lambda x : sum([new_dict[element] for element in x ])
[element.update({"sum": h(element.values()[0])}) for element in shivam_dict]
return shivam_dict
def lambda__():
"""
should returns a output of a list which will not have prime numbers upto 1000
"""
pass
def and_or():
"""
returns a list which will not have any number divisible by [18, 19, 21, 99, 45]
Original list will have 1, 10000
"""
pass
def exception_handling():
"""
Handle exception
After handling this exception raise your own excpetion which should only print the error messege as the output
"""
pass
def open_file(file_path):
"""
Print the contents of the file ying on file_path
Now opena new file in your home directory, Write something in that file and then mv that file into this current directory
Hint: os or subprocess module
"""
def convert_string_to_list(string):
"""
Convert this string into a list
string = "HEY_MAN_WHAT_the_fuck_is_going_on"
output = ["Hey", "man", "what", "the", "fuck", "is"m "going", "on"]
The convert this list into
string = "hey man what the fuck is going on""
Sonvert this string into
string = "hey man, everything is great"
Everything what you have done shall be done in one line with the help of list comprehensions
"""
pass
if __name__ == "__main__":
| UTF-8 | Python | false | false | 2,970 | py | 4 | assignment_1_nov_2014.py | 4 | 0.643771 | 0.610101 | 0 | 120 | 23.708333 | 140 |
tedhtchang/kfserving | 16,389,595,216,730 | 3e53452c7d94319102fe8b3d9bf10cca9ee1cce9 | 7d476ec8de08ccdc4e986faefe0512b205c0d219 | /python/kserve/kserve/storage/test/test_s3_storage.py | c52d52f97a4bfd501d7d97569dfb62c08ea85b73 | [
"Apache-2.0"
] | permissive | https://github.com/tedhtchang/kfserving | 67912db2e7e39805e2048e277b3771b156bfd679 | f2f0717a9d6341b6ec9b939bdd324b2c8c507551 | refs/heads/master | 2023-08-17T22:25:43.120863 | 2023-08-06T21:36:10 | 2023-08-06T21:36:10 | 303,819,073 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Copyright 2021 The KServe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest.mock as mock
from botocore.client import Config
from botocore import UNSIGNED
from kserve.storage import Storage
STORAGE_MODULE = 'kserve.storage.storage'
def create_mock_obj(path):
mock_obj = mock.MagicMock()
mock_obj.key = path
mock_obj.is_dir = False
return mock_obj
def create_mock_boto3_bucket(mock_storage, paths):
mock_s3_resource = mock.MagicMock()
mock_s3_bucket = mock.MagicMock()
mock_s3_bucket.objects.filter.return_value = [create_mock_obj(p) for p in paths]
mock_s3_resource.Bucket.return_value = mock_s3_bucket
mock_storage.resource.return_value = mock_s3_resource
return mock_s3_bucket
def get_call_args(call_args_list):
arg_list = []
for call in call_args_list:
args, _ = call
arg_list.append(args)
return arg_list
def expected_call_args_list_single_obj(dest, path):
return [(
f'{path}'.strip('/'),
f'{dest}/{path.rsplit("/", 1)[-1]}'.strip('/'))]
def expected_call_args_list(parent_key, dest, paths):
return [(f'{parent_key}/{p}'.strip('/'), f'{dest}/{p}'.strip('/'))
for p in paths]
# pylint: disable=protected-access
@mock.patch(STORAGE_MODULE + '.boto3')
def test_parent_key(mock_storage):
# given
bucket_name = 'foo'
paths = ['models/weights.pt', '0002.h5', 'a/very/long/path/config.json']
object_paths = ['bar/' + p for p in paths]
# when
mock_boto3_bucket = create_mock_boto3_bucket(mock_storage, object_paths)
Storage._download_s3(f's3://{bucket_name}/bar', 'dest_path')
# then
arg_list = get_call_args(mock_boto3_bucket.download_file.call_args_list)
assert arg_list == expected_call_args_list('bar', 'dest_path', paths)
mock_boto3_bucket.objects.filter.assert_called_with(Prefix='bar')
@mock.patch(STORAGE_MODULE + '.boto3')
def test_no_key(mock_storage):
# given
bucket_name = 'foo'
object_paths = ['models/weights.pt', '0002.h5', 'a/very/long/path/config.json']
# when
mock_boto3_bucket = create_mock_boto3_bucket(mock_storage, object_paths)
Storage._download_s3(f's3://{bucket_name}/', 'dest_path')
# then
arg_list = get_call_args(mock_boto3_bucket.download_file.call_args_list)
assert arg_list == expected_call_args_list('', 'dest_path', object_paths)
mock_boto3_bucket.objects.filter.assert_called_with(Prefix='')
@mock.patch(STORAGE_MODULE + '.boto3')
def test_full_name_key(mock_storage):
# given
bucket_name = 'foo'
object_key = 'path/to/model/name.pt'
# when
mock_boto3_bucket = create_mock_boto3_bucket(mock_storage, [object_key])
Storage._download_s3(f's3://{bucket_name}/{object_key}', 'dest_path')
# then
arg_list = get_call_args(mock_boto3_bucket.download_file.call_args_list)
assert arg_list == expected_call_args_list_single_obj('dest_path',
object_key)
mock_boto3_bucket.objects.filter.assert_called_with(Prefix=object_key)
@mock.patch(STORAGE_MODULE + '.boto3')
def test_full_name_key_root_bucket_dir(mock_storage):
# given
bucket_name = 'foo'
object_key = 'name.pt'
# when
mock_boto3_bucket = create_mock_boto3_bucket(mock_storage, [object_key])
Storage._download_s3(f's3://{bucket_name}/{object_key}', 'dest_path')
# then
arg_list = get_call_args(mock_boto3_bucket.download_file.call_args_list)
assert arg_list == expected_call_args_list_single_obj('dest_path',
object_key)
mock_boto3_bucket.objects.filter.assert_called_with(Prefix=object_key)
AWS_TEST_CREDENTIALS = {"AWS_ACCESS_KEY_ID": "testing",
"AWS_SECRET_ACCESS_KEY": "testing",
"AWS_SECURITY_TOKEN": "testing",
"AWS_SESSION_TOKEN": "testing"}
def test_get_S3_config():
DEFAULT_CONFIG = Config()
ANON_CONFIG = Config(signature_version=UNSIGNED)
VIRTUAL_CONFIG = Config(s3={"addressing_style": "virtual"})
with mock.patch.dict(os.environ, {}):
config1 = Storage.get_S3_config()
assert vars(config1) == vars(DEFAULT_CONFIG)
with mock.patch.dict(os.environ, {"awsAnonymousCredential": "False"}):
config2 = Storage.get_S3_config()
assert vars(config2) == vars(DEFAULT_CONFIG)
with mock.patch.dict(os.environ, AWS_TEST_CREDENTIALS):
config3 = Storage.get_S3_config()
assert vars(config3) == vars(DEFAULT_CONFIG)
with mock.patch.dict(os.environ, {"awsAnonymousCredential": "True"}):
config4 = Storage.get_S3_config()
assert config4.signature_version == ANON_CONFIG.signature_version
# assuming Python 3.5 or greater for joining dictionaries
credentials_and_anon = {**AWS_TEST_CREDENTIALS, "awsAnonymousCredential": "True"}
with mock.patch.dict(os.environ, credentials_and_anon):
config5 = Storage.get_S3_config()
assert config5.signature_version == ANON_CONFIG.signature_version
with mock.patch.dict(os.environ, {"S3_USER_VIRTUAL_BUCKET": "False"}):
config6 = Storage.get_S3_config()
assert vars(config6) == vars(DEFAULT_CONFIG)
with mock.patch.dict(os.environ, {"S3_USER_VIRTUAL_BUCKET": "True"}):
config7 = Storage.get_S3_config()
assert config7.s3["addressing_style"] == VIRTUAL_CONFIG.s3["addressing_style"]
| UTF-8 | Python | false | false | 5,955 | py | 224 | test_s3_storage.py | 81 | 0.660118 | 0.645844 | 0 | 176 | 32.835227 | 85 |
samd-a/ebshare2.0 | 7,078,106,141,143 | abb6d33646fd1d11d1ae35b73c0824866dd1945b | 9d41222e8e2359d53b3f776a941675f9056cea90 | /books/models.py | 3ee18ec00be525814ef033c40655a31dac5de396 | [] | no_license | https://github.com/samd-a/ebshare2.0 | 40b0a3ecc6e70a1a8f1fbe0653fd7305dabf11bd | ffa4ed4f107281095c796756711b6f57285da8b2 | refs/heads/master | 2021-01-10T04:00:26.210803 | 2015-12-11T11:09:55 | 2015-12-11T11:09:55 | 47,309,176 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.db import models
from django.contrib.auth.models import User
# Create your models here.
class book(models.Model):
user = models.ForeignKey(User)
book_title = models.CharField(max_length=100)
book_author = models.CharField(max_length=60)
cover = models.ImageField(upload_to='book_cover')
alt_text = models.CharField(max_length=20)
description = models.TextField(max_length=750)
details = models.CharField(max_length=200)
genre = models.CharField(max_length=20)
#ideally, these would 1 non-array field with the paragraph text
#current error: "need more than 1 value to unpack"
#description = ArrayField(models.CharField(max_length=500))
#details = ArrayField(models.CharField(max_length=200))
def __unicode__(self):
return self.book_title
#class txtbook(book):
# fixtures = ['books.json']
class review(models.Model):
user = models.ForeignKey(User)
book_review = models.ForeignKey(book)
content = models.CharField(max_length=750)
def __unicode__(self):
return str(self.id) | UTF-8 | Python | false | false | 1,080 | py | 12 | models.py | 8 | 0.700926 | 0.676852 | 0 | 35 | 29.885714 | 67 |
zrq495/OnlineJudge | 11,235,634,463,095 | dca16921fdcbeac0b8272a7ccc61e6ebc515ce80 | 9bd23c46e3f594d9557e3c049f753b05adff2b94 | /oj/core/jinja.py | fee18fd552567518e3859284c884da84db8c0123 | [] | no_license | https://github.com/zrq495/OnlineJudge | 26a5f865734c306f521b922ecf2c46e74d6fe905 | 44be892ed657f462fb441d785c8550fc144f8896 | refs/heads/master | 2021-01-19T22:05:27.492272 | 2015-11-20T09:00:40 | 2015-11-20T09:00:40 | 31,713,677 | 1 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
from __future__ import unicode_literals
from datetime import datetime, timedelta
from jinja2 import Markup
import pygments
from pygments.formatters.html import HtmlFormatter
from pygments.lexers import guess_lexer
from oj import app
def highlight(code):
try:
lexer = guess_lexer(code)
formatter = HtmlFormatter(linenos='table', linenostart=0)
code = pygments.highlight(code, lexer, formatter)
except:
pass
return Markup(code)
def digital_to_letter(value, base='A'):
try:
return chr(value % 26 + ord(base))
except:
return ''
def time_since(dt, default='刚刚', time_format='%Y-%m-%d %H:%M'):
"""将 datetime 替换成字符串 ('3小时前', '2天前' 等等)
的 Jinja filter copy from
https://github.com/tonyblundell/socialdump/blob/master/socialdump.py
sqlite 的 CURRENT_TIMESTAMP 只能使用 UTC 时间, 所以单元测试
看到时间是8小时前的 don't panic, PostgreSQL 是有时区设定的.
"""
# added by jade
if not dt:
return ''
now = datetime.now()
diff = now - dt
total_seconds = diff.total_seconds()
if total_seconds > 0:
if total_seconds < 10800: # 3 小时内
periods = (
(diff.seconds / 3600, '小时'),
(diff.seconds / 60, '分钟'),
(diff.seconds, '秒'),
)
for period, unit in periods:
if period > 0:
return '%d%s前' % (period, unit)
elif total_seconds < 86400 and dt.day == now.day: # 严格的今天内
return '今天' + dt.strftime('%H:%M')
elif (total_seconds < 2 * 86400
and dt.day == (now - timedelta(days=1)).day): # 严格的昨天
return '昨天' + dt.strftime('%H:%M')
else:
return unicode(dt.strftime(time_format))
return default
def convert_timedelta_to_hms(duration):
seconds = int(duration.total_seconds())
sign = '-' if seconds < 0 else ''
seconds = abs(seconds)
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds = (seconds % 60)
return sign + str(hours), str(minutes), str(seconds)
JINJA_FILTERS = {
'digital_to_letter': digital_to_letter,
'time_since': time_since,
'highlight': highlight,
'convert_timedelta_to_hms': convert_timedelta_to_hms,
}
@app.template_global()
def get_headlines():
from oj.models import HeadlineModel
return HeadlineModel.query.filter(
HeadlineModel.is_display.is_(True)).all()
| UTF-8 | Python | false | false | 2,596 | py | 134 | jinja.py | 93 | 0.596906 | 0.577769 | 0 | 87 | 27.229885 | 72 |
hellomeeddie/flask_saverly_api | 15,814,069,603,872 | 8c3aa6f042990f70ef3a58c4f82812c26fdcc304 | 07c51b31eb3a70189ac1be3f9f0b2cef140068cc | /dan/insert.py | 3678d1eb2ec2b2061d89e213ff7aff2daa1fd2d0 | [] | no_license | https://github.com/hellomeeddie/flask_saverly_api | 4433682788c71a10e70147a22ac719cb282962f7 | 0a3a11c76d517a9ccb9dd7e2f237cfebb161330c | refs/heads/master | 2020-12-28T22:02:02.369035 | 2016-07-19T02:45:41 | 2016-07-19T02:45:41 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #Daniel Engelberth
from py2neo import authenticate, Graph, Node, Relationship
#Params: t - String, type of node being inserted (User, Goal, Budget, etc.), info - Array, array of all other info to be used to set up node properties
#Returns: None
#Description: Inserts a new node into the Neo4j database that corresponds with the requested data type as well as any required relationships
def insert(graph, t, info):
if t == "User":
graph.run("CREATE (n:User {userName: {userName},firstName: {firstName},lastName: {lastName},email: {email},password: {password}})",userName=info[0],firstName=info[1],lastName=info[2],email=info[3],password=info[4])
elif t == "Goal":
graph.run("CREATE (n:Goal {name: {name},amount: {amount},downpay: {downpay},term: {term},description: {description}})",name=info[0],amount=info[1],downpay=info[2],term=info[3],description=info[4])
for category in info[5]:
insert(graph, "Category", category)
graph.run("MATCH (a:Goal),(b:Category) WHERE a.name = {name} AND b.name = {category} CREATE (a)-[r:HAS]->(b)",name=info[0],category=category)
graph.run("MATCH (a:User),(b:Goal) WHERE a.userName = {userName} AND b.name = {name} CREATE (a)-[r:HAS]->(b)",userName=info[5],name=info[0])
elif t == "Budget":
graph.run("CREATE (n:Budget {name: {name},amount: {amount},startDate: {startDate},endDate: {endDate},description: {description}})",name=info[0],amount=info[1],startDate=info[2],endDate=info[3],description=info[4])
for category in info[5]:
insert(graph, "Category", category)
graph.run("MATCH (a:Budget),(b:Category) WHERE a.name = {name} AND b.name = {category} CREATE (a)-[r:HAS]->(b)",name=info[0],category=category)
graph.run("MATCH (a:User),(b:Budget) WHERE a.userName = {userName} AND b.name = {name} CREATE (a)-[r:HAS]->(b)",userName=info[6],name=info[0])
elif t == "Wish":
graph.run("CREATE (n:Wish {name: {name},purchaseLink: {purchaseLink},date: {date},description: {description}})",name=info[0],purchaseLink=info[1],date=info[2],description=info[3])
for category in info[4]:
insert(graph, "Category", category)
graph.run("MATCH (a:Wish),(b:Category) WHERE a.name = {name} AND b.name = {category} CREATE (a)-[r:HAS]->(b)",name=info[0],category=category)
graph.run("MATCH (a:User),(b:Wish) WHERE a.userName = {userName} AND b.name = {name} CREATE (a)-[r:HAS]->(b)",userName=info[5],name=info[0])
elif t == "Transaction":
graph.run("CREATE (n:Transaction{name: {name},amount: {amount},date: {date},location: {location}})",name=info[0],amount=info[1],date=info[2],location=info[3])
for category in info[4]:
insert(graph, "Category", category)
graph.run("MATCH (a:Transaction),(b:Category) WHERE a.name = {name} AND b.name = {category} CREATE (a)-[r:HAS]->(b)",name=info[0],category=category)
insert(graph, "Merchant",info[5])
graph.run("MATCH (a:Transaction),(b:Merchant) WHERE a.name = {name} AND b.name = {merchantName} CREATE (a)-[r:HAS]->(b)",name=info[0],merchantName=info[5])
graph.run("MATCH (a:User),(b:Transaction) WHERE a.userName = {userName} AND b.name = {name} CREATE (a)-[r:HAS]->(b)",userName=info[7],name=info[0])
elif t == "Bill":
graph.run("CREATE (n:Bill {name: {name},amount: {amount},startDate: {startDate},endDate: {endDate},description: {description},freq: {freq}})",name=info[0],amount=info[1],startDate=info[2],endDate=info[3],description=info[4],freq=info[5])
for category in info[6]:
insert(graph, "Category", category)
graph.run("MATCH (a:Bill),(b:Category) WHERE a.name = {name} AND b.name = {category} CREATE (a)-[r:HAS]->(b)",name=info[0],category=category)
graph.run("MATCH (a:User),(b:Bill) WHERE a.userName = {userName} AND b.name = {name} CREATE (a)-[r:HAS]->(b)",userName=info[7],name=info[0])
"""elif t == "Tag":
graph.run("MERGE (t:Tag { name: {name} })",name=info)"""
elif t == "Merchant":
graph.run("MERGE (t:Merchant { name: {name} })",name=info)
elif t == "Category":
graph.run("MERGE (c:Category {name: {name})",name=info)
else:
raise ValueError("t must be a type of node {'User','Goal','Transaction', etc.") | UTF-8 | Python | false | false | 4,372 | py | 3 | insert.py | 3 | 0.629918 | 0.617566 | 0 | 50 | 85.48 | 245 |
Nikkuniku/AtcoderProgramming | 9,826,885,179,047 | 550e6f1f75bc4e863673a2cdfa8a915679b2bfd2 | 63b0fed007d152fe5e96640b844081c07ca20a11 | /くじかつ/よるかつ50/C.py | 999de7c70eed8d6057ad3477f79c698c5172ce11 | [] | no_license | https://github.com/Nikkuniku/AtcoderProgramming | 8ff54541c8e65d0c93ce42f3a98aec061adf2f05 | fbaf7b40084c52e35c803b6b03346f2a06fb5367 | refs/heads/master | 2023-08-21T10:20:43.520468 | 2023-08-12T09:53:07 | 2023-08-12T09:53:07 | 254,373,698 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | n=int(input())
h=list(map(int,input().split()))
h_min=min(h)
for i in range(n):
h[i]-=h_min
for j in range(n):
if h[j]==0:
print(h)
| UTF-8 | Python | false | false | 155 | py | 2,078 | C.py | 2,067 | 0.509677 | 0.503226 | 0 | 13 | 10.769231 | 32 |
49ers-DB/Atlanta-Movie | 19,542,101,197,174 | d299880c948280a90a990cc98d0319ca15f61979 | 33ef7d427278c371b101b047459d7c669d5d8eff | /app/http/api/endpoints.py | 0ae14ab032fd9d54570f94d7c158e7234d37e321 | [
"MIT"
] | permissive | https://github.com/49ers-DB/Atlanta-Movie | ac808f7c8f07ca2cc3f28b7f2af877bf7647af74 | 1cff0760ba8b57831dd87f9d216b7b3ae4cac6e2 | refs/heads/master | 2021-07-08T05:09:01.582449 | 2019-11-30T04:06:46 | 2019-11-30T04:06:46 | 221,286,389 | 2 | 0 | MIT | false | 2021-01-05T17:19:22 | 2019-11-12T18:37:12 | 2020-01-10T01:05:52 | 2021-01-05T17:19:20 | 799 | 1 | 0 | 22 | JavaScript | false | false | from middleware import login_required, admin_only
from flask import Flask, json, g, request, render_template
from flask_cors import CORS
import pymysql.cursors
from app.util.custom_jwt import create_access_token
from app.services.LoginService import LoginService
from app.services.ManagerService import ManagerService
from app.services.RegisterService import RegisterService
from app.services.DropDownService import DropDownService
from app.services.UserService import UserService
from app.services.CustomerService import CustomerService
from app.services.AdminService import AdminService
from app.services.DBService import db_reset
from logging.config import dictConfig
import logging
import sys
dictConfig({
'version': 1,
'formatters': {'default': {
'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
}},
'handlers': {'wsgi': {
'class': 'logging.StreamHandler',
'stream': 'ext://flask.logging.wsgi_errors_stream',
'formatter': 'default'
}},
'root': {
'level': 'DEBUG',
'handlers': ['wsgi']
}
})
logging.basicConfig(level=logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
root = logging.getLogger()
root.addHandler(handler)
app = Flask(__name__, static_folder="build/static", template_folder="build")
CORS(app)
app.config['EXPLAIN_TEMPLATE_LOADING'] = True
db_reset()
# create services
login_service = LoginService()
register_service = RegisterService()
manager_service = ManagerService()
drop_down_service = DropDownService()
user_service = UserService()
customer_service = CustomerService()
admin_service = AdminService()
#-----------Main------------
@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def index(path):
return render_template('index.html')
#------------LOGIN------------
@app.route('/userLogin', methods=['POST'])
def userLogin():
data = request.get_json()
user = data['user']
try:
success = login_service.login(user)
if success:
del user['password']
access_token = create_access_token(identity=data)
user['jwt'] = access_token
return json_response({'ok': True, 'data': user})
except Exception as e:
print("Exception", e)
return json_response({'message': 'Bad request parameters'}, 400)
#-------REGISTRATIONS--------
#user
@app.route('/userRegister', methods=['POST'])
def userRegister():
data = request.get_json()
user = data['user']
response = json_response({'message': 'Bad request parameters'}, 400)
try:
success = register_service.registerUser(user)
print(success)
if success:
response = json_response({'ok': True, 'data': user})
else:
response = json_response({'message': 'username taken'}, 401)
except:
response = json_response({'message': 'Bad request parameters'}, 400)
print("Failed to insert record")
return response
#customer
@app.route('/customerRegister', methods=['POST'])
def customerRegister():
data = request.get_json()
user = data
try:
response = register_service.registerCustomer(user)
return json_response(response)
except pymysql.InternalError as e:
print(e)
print("Failed to insert record")
return json_response({'message': 'Bad request parameters'}, 400)
#manager
@app.route('/managerRegister', methods=['POST'])
def managerRegister():
data = request.get_json()
user = data
try:
response = register_service.registerManager(user)
return json_response(response)
except pymysql.InternalError as e:
print(e)
print("Failed to insert record")
return json_response({'message': 'Bad request parameters'}, 400)
#managerCustomer
@app.route('/managerCustomerRegister', methods=['POST'])
def managerCustomerRegister():
data = request.get_json()
user = data
try:
response = register_service.registerManagerCustomer(user)
return json_response(response)
except pymysql.InternalError as e:
print(e)
print("Failed to insert record")
return json_response({'message': 'Bad request parameters'}, 400)
#-------DropDownService---------
@app.route('/getCompanies', methods=['GET'])
def getCompanies():
response = drop_down_service.CompanyDropDown()
return json_response(response)
@app.route('/movies', methods=['GET'])
def getMovies():
response = drop_down_service.MovieDropDown()
return json_response(response)
@app.route('/theaters/<string:comName>', methods=['GET'])
@login_required
def getTheaters(comName):
theaters = drop_down_service.TheaterDropDown()
return json_response({'ok': True, 'theaters': theaters})
@app.route('/creditcard', methods=['GET'])
@login_required
def getCreditCardNumbers():
username = g.user['username']
response = drop_down_service.getCreditCardNumbers(username)
return json_response(response)
@app.route('/managers', methods=['GET'])
@admin_only
def get_managers():
response = drop_down_service.ManagerDropDown()
return json_response(response)
#----------UserService--------------------
@app.route('/exploreTheater', methods=['POST'])
@login_required
def explore_theater():
data = request.get_json()
print(data)
query_data = user_service.ExploreTheater(data)
return json_response({'ok': True, 'theaters': query_data})
@app.route('/logVisit', methods=['POST'])
@login_required
def log_visit():
data = request.get_json()
user = g.user['username']
user_service.LogVisit(user, data)
return json_response({'ok': True})
#--------CustomerService-------------------
@app.route('/exploreMovie', methods=['POST'])
@login_required
def explore_movie():
data = request.get_json()
query_data = customer_service.ExploreMovie(data)
return json_response({'ok': True, 'moviePlays': query_data})
@app.route('/viewMovie', methods=['POST'])
@login_required
def view_movie():
data = request.get_json()
username = g.user['username']
resp = customer_service.ViewMovie(username, data)
if resp is not None:
return json_response({'ok': True, 'data':resp})
return json_response({'ok': True})
#----------ManagerService-----------------
@app.route('/theaterOverview', methods=['POST'])
@login_required
def get_theater_overview():
data = request.get_json()
user = g.user['username']
response = manager_service.TheaterOverview(user, data)
return json_response({'ok': True, "data": response})
@app.route('/GetVisitHistory', methods=['POST'])
@login_required
def get_visit_history():
data = request.get_json()
user = g.user['username']
data = user_service.VisitHistory(user, data)
return json_response({'data': data})
@app.route('/moviePlay', methods=['POST'])
@login_required
def ScheduleMovie():
data=request.get_json()
user=g.user['username']
manager_service.ScheduleMovie(user, data)
return json_response({'ok': True})
#------------Admin Service-------------
@app.route('/manageCompany', methods=['POST'])
@login_required
@admin_only
def manage_company():
data = request.get_json()
response = admin_service.ManageCompany(data)
return json_response(response)
@app.route('/filterUser', methods=['POST'])
@login_required
@admin_only
def filter_user():
data = request.get_json()
response = admin_service.FilterUser(data)
return json_response({"data":response})
@app.route('/approveUser', methods=['POST'])
@login_required
@admin_only
def approve_user():
data = request.get_json()
admin_service.ApproveUser(data)
return json_response({"ok":True})
@app.route('/declineUser', methods=['POST'])
@login_required
@admin_only
def decline_user():
data = request.get_json()
admin_service.DeclineUser(data)
return json_response({"ok":True})
@app.route('/theater', methods=['POST'])
@login_required
@admin_only
def create_theater():
data = request.get_json()
admin_service.CreateTheater(data)
return json_response({"ok":True})
@app.route('/companyDetail/<string:name>', methods=['GET'])
@login_required
@admin_only
def company_detail(name):
response = admin_service.CompanyDetail(name)
return json_response(response)
@app.route("/example/<int:param_1>", methods=['GET'])
@login_required
def example_endpoint(param_1):
print(param_1)
user = g.user
# response = json_response({'userType': 'user'}, 200)
# userType = login_service.findUserType(user['username'])
# response = json_response({'userType': userType}, 200)
return json_response({'ok':True})
@app.route("/user", methods=['GET'])
@login_required
def get_user_type():
user = g.user
response = json_response({'userType': 'user'}, 200)
userType = login_service.findUserType(user['username'])
response = json_response({'userType': userType}, 200)
return response
@app.route('/createMovie', methods=['POST'])
@login_required
@admin_only
def create_movie():
data = request.get_json()
resp = admin_service.CreateMovie(data)
return json_response({"data": resp})
#----------CustomerService--------------------
@app.route('/viewHistory', methods=['POST'])
@login_required
def viewHistory():
user = g.user['username']
print(user)
data = customer_service.ViewHistory(user)
return json_response({'data': data})
def json_response(payload, status_code=200):
return json.dumps(payload), status_code, {'Content-type': 'application/json'}
| UTF-8 | Python | false | false | 9,235 | py | 61 | endpoints.py | 51 | 0.685328 | 0.680996 | 0 | 364 | 24.370879 | 80 |
ogrisel/probability | 2,164,663,550,020 | 6ab68426a4274241e0bbe0ea6f151d41279ea6cd | 3be42b83a15d022f5863c96ec26e21bac0f7c27e | /tensorflow_probability/python/internal/dtype_util.py | 7c855239b7722135d0970333e0ddec8e30f23407 | [
"Apache-2.0"
] | permissive | https://github.com/ogrisel/probability | 846f5c13cddee5cf167b215e651b7479003f15d2 | 8f67456798615f9bf60ced2ce6db5d3dba3515fe | refs/heads/master | 2022-11-09T10:53:23.000918 | 2020-07-01T23:16:03 | 2020-07-01T23:17:25 | 276,580,359 | 2 | 1 | Apache-2.0 | true | 2020-07-02T07:37:58 | 2020-07-02T07:37:57 | 2020-07-01T23:17:33 | 2020-07-02T07:32:26 | 84,976 | 0 | 0 | 0 | null | false | false | # Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Utility functions for dtypes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Dependency imports
import numpy as np
import tensorflow.compat.v2 as tf
__all__ = [
'as_numpy_dtype',
'assert_same_float_dtype',
'base_dtype',
'base_equal',
'common_dtype',
'is_bool',
'is_complex',
'is_floating',
'is_integer',
'max',
'min',
'name',
'real_dtype',
'size',
]
SKIP_DTYPE_CHECKS = False
def as_numpy_dtype(dtype):
"""Returns a `np.dtype` based on this `dtype`."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'as_numpy_dtype'):
return dtype.as_numpy_dtype
return dtype
def base_dtype(dtype):
"""Returns a non-reference `dtype` based on this `dtype`."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'base_dtype'):
return dtype.base_dtype
return dtype
def base_equal(a, b):
"""Returns `True` if base dtypes are identical."""
return base_dtype(a) == base_dtype(b)
def common_dtype(args_list, dtype_hint=None):
"""Returns explict dtype from `args_list` if there is one."""
dtype = None
seen = []
for a in tf.nest.flatten(args_list):
if hasattr(a, 'dtype') and a.dtype:
dt = as_numpy_dtype(a.dtype)
seen.append(dt)
else:
seen.append(None)
continue
if dtype is None:
dtype = dt
elif dtype != dt:
if SKIP_DTYPE_CHECKS:
dtype = (np.ones([2], dtype) + np.ones([2], dt)).dtype
else:
raise TypeError(
'Found incompatible dtypes, {} and {}. Seen so far: {}'.format(
dtype, dt, seen))
return dtype_hint if dtype is None else base_dtype(dtype)
def convert_to_dtype(tensor_or_dtype, dtype=None, dtype_hint=None):
"""Get a dtype from a list/tensor/dtype using convert_to_tensor semantics."""
if tensor_or_dtype is None:
return dtype or dtype_hint
# Tensorflow dtypes need to be typechecked
if tf.is_tensor(tensor_or_dtype):
dt = base_dtype(tensor_or_dtype.dtype)
elif isinstance(tensor_or_dtype, tf.DType):
dt = base_dtype(tensor_or_dtype)
# Numpy dtypes defer to dtype/dtype_hint
elif isinstance(tensor_or_dtype, np.ndarray):
dt = base_dtype(dtype or dtype_hint or tensor_or_dtype.dtype)
elif np.issctype(tensor_or_dtype):
dt = base_dtype(dtype or dtype_hint or tensor_or_dtype)
else:
# If this is a Python object, call `convert_to_tensor` and grab the dtype.
# Note that this will add ops in graph-mode; we may want to consider
# other ways to handle this case.
dt = tf.convert_to_tensor(tensor_or_dtype, dtype, dtype_hint).dtype
if not SKIP_DTYPE_CHECKS and dtype and not base_equal(dtype, dt):
raise TypeError('Found incompatible dtypes, {} and {}.'.format(dtype, dt))
return dt
def is_bool(dtype):
"""Returns whether this is a boolean data type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'is_bool'):
return dtype.is_bool
# We use `kind` because:
# np.issubdtype(np.uint8, np.bool) == True.
return np.dtype(dtype).kind == 'b'
def is_complex(dtype):
"""Returns whether this is a complex floating point type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'is_complex'):
return dtype.is_complex
return np.issubdtype(np.dtype(dtype), np.complexfloating)
def is_floating(dtype):
"""Returns whether this is a (non-quantized, real) floating point type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'is_floating'):
return dtype.is_floating
return np.issubdtype(np.dtype(dtype), np.floating)
def is_integer(dtype):
"""Returns whether this is a (non-quantized) integer type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'is_integer') and not callable(dtype.is_integer):
return dtype.is_integer
return np.issubdtype(np.dtype(dtype), np.integer)
def max(dtype): # pylint: disable=redefined-builtin
"""Returns the maximum representable value in this data type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'max') and not callable(dtype.max):
return dtype.max
use_finfo = is_floating(dtype) or is_complex(dtype)
return np.finfo(dtype).max if use_finfo else np.iinfo(dtype).max
def min(dtype): # pylint: disable=redefined-builtin
"""Returns the minimum representable value in this data type."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'min') and not callable(dtype.min):
return dtype.min
use_finfo = is_floating(dtype) or is_complex(dtype)
return np.finfo(dtype).min if use_finfo else np.iinfo(dtype).min
def name(dtype):
"""Returns the string name for this `dtype`."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'name'):
return dtype.name
if hasattr(dtype, '__name__'):
return dtype.__name__
return str(dtype)
def size(dtype):
"""Returns the number of bytes to represent this `dtype`."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'size') and hasattr(dtype, 'as_numpy_dtype'):
return dtype.size
return np.dtype(dtype).itemsize
def real_dtype(dtype):
"""Returns the dtype of the real part."""
dtype = tf.as_dtype(dtype)
if hasattr(dtype, 'real_dtype'):
return dtype.real_dtype
# TODO(jvdillon): Find a better way.
return np.array(0, as_numpy_dtype(dtype)).real.dtype
def _assert_same_base_type(items, expected_type=None):
r"""Asserts all items are of the same base type.
Args:
items: List of graph items (e.g., `Variable`, `Tensor`, `SparseTensor`,
`Operation`, or `IndexedSlices`). Can include `None` elements, which
will be ignored.
expected_type: Expected type. If not specified, assert all items are
of the same base type.
Returns:
Validated type, or none if neither expected_type nor items provided.
Raises:
ValueError: If any types do not match.
"""
original_expected_type = expected_type
mismatch = False
for item in items:
if item is not None:
item_type = base_dtype(item.dtype)
if expected_type is None:
expected_type = item_type
elif expected_type != item_type:
mismatch = True
break
if mismatch:
# Loop back through and build up an informative error message (this is very
# slow, so we don't do it unless we found an error above).
expected_type = original_expected_type
original_item_str = None
get_name = lambda x: x.name if hasattr(x, 'name') else str(x)
for item in items:
if item is not None:
item_type = base_dtype(item.dtype)
if not expected_type:
expected_type = item_type
original_item_str = get_name(item)
elif expected_type != item_type:
raise ValueError(
'{}, type={}, must be of the same type ({}){}.'.format(
get_name(item),
item_type,
expected_type,
((' as {}'.format(original_item_str))
if original_item_str else '')))
return expected_type # Should be unreachable
else:
return expected_type
def assert_same_float_dtype(tensors=None, dtype=None):
"""Validate and return float type based on `tensors` and `dtype`.
For ops such as matrix multiplication, inputs and weights must be of the
same float type. This function validates that all `tensors` are the same type,
validates that type is `dtype` (if supplied), and returns the type. Type must
be a floating point type. If neither `tensors` nor `dtype` is supplied,
the function will return `dtypes.float32`.
Args:
tensors: Tensors of input values. Can include `None` elements, which will
be ignored.
dtype: Expected type.
Returns:
Validated type.
Raises:
ValueError: if neither `tensors` nor `dtype` is supplied, or result is not
float, or the common type of the inputs is not a floating point type.
"""
if tensors:
dtype = _assert_same_base_type(tensors, dtype)
if not dtype:
dtype = tf.float32
elif not is_floating(dtype):
raise ValueError('Expected floating point type, got {}.'.format(dtype))
return dtype
| UTF-8 | Python | false | false | 8,725 | py | 149 | dtype_util.py | 138 | 0.662235 | 0.660287 | 0 | 275 | 30.727273 | 80 |
Raul-Pinheiro/projetoPessoal-controleDeEstoqueLojaVirtual | 7,327,214,229,338 | 24b2a8cd753446b0ace893d4d053057301eaf720 | 5b5450b16fbde30b6677386cc5b6b54d24cb7bd2 | /apps/controlEstoque/migrations/0009_auto_20200908_1824.py | 5cd4b14b95b6a1f6794d68ad3cc6a646646d42ea | [] | no_license | https://github.com/Raul-Pinheiro/projetoPessoal-controleDeEstoqueLojaVirtual | c82e74fc6f1cbf08a26560171cfc31cd9f8f80cf | 54afb55114e482aaa4e1b4ccbc0c1baddcd448a2 | refs/heads/master | 2023-01-22T16:39:53.818655 | 2020-12-08T16:20:58 | 2020-12-08T16:20:58 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.1.1 on 2020-09-08 21:24
import datetime
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('controlEstoque', '0008_auto_20200908_1823'),
]
operations = [
migrations.AlterField(
model_name='produtos',
name='data_ultima_compra',
field=models.DateTimeField(default=datetime.datetime(2020, 9, 8, 18, 24, 8, 670532)),
),
migrations.AlterField(
model_name='produtos_loja',
name='foto_produto',
field=models.ImageField(blank=True, upload_to='fotos/%d/%m/%Y/loja/'),
),
]
| UTF-8 | Python | false | false | 668 | py | 70 | 0009_auto_20200908_1824.py | 46 | 0.595808 | 0.523952 | 0 | 24 | 26.833333 | 97 |
GianfrancoJara/Exp3Backend_JaraGonzalez_004D | 19,138,374,288,920 | c5cd41ec07ab78ccf8ecdd78ae47ec85f0d9bda8 | 033b5305f992c7e06df8563e1e69c600c94e90bd | /SoporteIT/SoporteIT/core/migrations/0002_solicitud_comentario.py | 95e1f3026e569c2a28f1ed3cd95d8895680d48ae | [] | no_license | https://github.com/GianfrancoJara/Exp3Backend_JaraGonzalez_004D | ac95fa2ec4cfa108a8da647042a93573c38a9795 | b0950e70487269a587c3a53f24aa3cbc2d766a72 | refs/heads/main | 2023-06-07T11:50:07.967530 | 2021-06-22T02:04:14 | 2021-06-22T02:04:14 | 378,295,207 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.2.3 on 2021-06-20 00:29
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('core', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='solicitud',
name='comentario',
field=models.CharField(max_length=512, null=True, verbose_name='Comentario'),
),
]
| UTF-8 | Python | false | false | 416 | py | 12 | 0002_solicitud_comentario.py | 7 | 0.598558 | 0.545673 | 0 | 18 | 22.111111 | 89 |
christofsteel/mtgman | 3,298,534,912,378 | 09a81e6923094022cd5fad1e4ac1afbeef4c1003 | 07ea87b4d3ec31f39452cc95c166b48c2c3abc1a | /mtgman/imports/faces.py | f80c78dfc7a1162f35ee80f400aece2187dc9ab3 | [] | no_license | https://github.com/christofsteel/mtgman | ba5793cebc93cc0eba8d391b57f3b31c98067e6e | acaa2a83f5964845c0273778824c223486f233f0 | refs/heads/master | 2020-09-13T03:31:01.581869 | 2019-12-16T05:40:55 | 2019-12-16T05:40:55 | 222,644,442 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from . import create_dict
from .card import get_card_from_sf
from ..model import CardFacePrinting, CardFaceBase, CardFace
def get_db_card_face(name, session):
return session.query(CardFace).filter(CardFace.name == name).first()
def get_db_card_face_from_sf(face, session):
return get_db_card_face(face["name"], session)
#faces = []
#if "card_faces" in e:
# for face in e["card_faces"]:
# faces.append(get_db_card_face(face["name"], session))
#return faces
def get_card_face_from_sf(face, e, session):
card_face = get_db_card_face_from_sf(face, session)
if card_face is not None:
return card_face
card_face = add_card_face(face, e, session)
session.commit()
return card_face
def add_card_face(face, e, session):
card = get_card_from_sf(e, session)
card_face = create_card_face(face, card)
session.add(card_face)
return card_face
def create_card_face(face, card):
fields = ["name", "mana_cost", "type_line", "oracle_text"]
fields_int = ["power", "toughness"]
lists=["colors", "color_indicator"]
fields_uuid = []
renames = {"power": "power_str", "toughness": "toughness_str"}
if type(card) is int:
custom = {"card_id": card}
else:
custom = {"card": card}
dict_all = create_dict(face, fields=fields, lists=lists, fields_int=fields_int, fields_uuid=fields_uuid, renames=renames, custom=custom)
return CardFace(**dict_all)
def create_card_face_printing(face, card_face_base, printing):
fields = ["printed_name", "printed_text", "printed_type_line"]
objects = { "image_uris": {
"png": ("image_uri_png", lambda x: x)
, "border_crop": ("image_uri_border_crop", lambda x: x)
, "art_crop": ("image_uri_art_crop", lambda x: x)
, "large": ("image_uri_large", lambda x: x)
, "normal": ("image_uri_normal", lambda x: x)
, "small": ("image_uri_small", lambda x: x)
}
}
custom = {}
if type(card_face_base) is int:
custom["card_face_base_id"] = card_face_base
else:
custom["card_face_base"] = card_face_base
if type(printing) is int:
custom["card_printing_id"] = printing
else:
custom["card_printing"] = printing
dict_all = create_dict(face, fields=fields, objects=objects, custom=custom)
return CardFacePrinting(**dict_all)
def makeCardFacePrinting(e, card_base_face, printing, session):
card_face_printing = session.query(CardFacePrinting)\
.filter(CardFacePrinting.card_face_base == card_base_face)\
.filter(CardFacePrinting.card_printing == printing).first()
if card_face_printing is None:
card_face_printing = create_card_face_printing(e, card_base_face, printing)
session.add(card_face_printing)
return card_face_printing
def create_card_face_base(face, card_face, basecard):
fields = ["artist", "flavor_text", "watermark"]
fields_uuid = ["artist_id", "illustration_id"]
custom = {}
if type(card_face) is int:
custom["card_face_id"] = card_face
else:
custom["card_face"] = card_face
if type(basecard) is int:
custom["basecard_id"] = basecard
else:
custom["basecard"] = basecard
dict_all = create_dict(face, fields=fields, fields_uuid=fields_uuid, custom = custom)
return CardFaceBase(**dict_all)
def makeCardBaseFace(face, card_face, basecard, session):
card_base_face = session.query(CardFaceBase)\
.filter(CardFaceBase.card_face == card_face)\
.filter(CardFaceBase.basecard == basecard).first()
if card_base_face is None:
card_base_face = create_card_face_base(face, card_face, basecard)
session.add(card_base_face)
return card_base_face
| UTF-8 | Python | false | false | 3,794 | py | 19 | faces.py | 17 | 0.633105 | 0.633105 | 0 | 107 | 34.383178 | 140 |
Aswin-Sureshumar/Python-Programs | 14,001,593,400,178 | 0103eaec5aed67e745956b0de8df3f3f3b654ff6 | b42c827e57b6c24251dedf0894ba3a97eb876b7c | /list gen.py | f7e04b92baf5fb49a18e00903c340c02df6f359e | [] | no_license | https://github.com/Aswin-Sureshumar/Python-Programs | 77f20bacefc32307b60a00e9345cae95dc14185f | 0387eb732e1b43995d161b5088b49b1155405411 | refs/heads/master | 2022-12-22T11:53:04.864017 | 2020-09-22T10:23:57 | 2020-09-22T10:23:57 | 283,938,006 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | n=int(input(" enter the elements req "))
list=[]
for i in range(0,n):
a=int(input())
list.append(a)
print(list) | UTF-8 | Python | false | false | 124 | py | 76 | list gen.py | 76 | 0.596774 | 0.58871 | 0 | 6 | 19 | 40 |
jjsjann123/cs526_proj2_enhance | 13,554,916,820,038 | 31854d3d854c4e2e93d021763022963544d50b4a | 5b4a2fb592f39e07bf5de619071d3e75b7aa3cb0 | /multiples.py | 61a7bc8d9ab8412158f6ee979b768c6d649466b4 | [] | no_license | https://github.com/jjsjann123/cs526_proj2_enhance | 70dcb6c03410b50bfc059f2ec5dbacd81fd535d7 | 7c661664937d4c056b14bbd62bafe3a0a484f684 | refs/heads/master | 2020-03-28T18:57:39.803999 | 2013-12-09T02:00:25 | 2013-12-09T02:00:25 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from omega import *
from cyclops import *
from math import *
from euclid import *
from fun import *
class multiples(object):
global stellarColorMap
orbitScale = Uniform.create('orbitScale', UniformType.Float, 1)
radiusScale = Uniform.create('radiusScale', UniformType.Float, 1)
orbitRatio = Uniform.create('orbit_ratio', UniformType.Float, 1)
radiusRatio = Uniform.create('radius_ratio', UniformType.Float, 1)
#glowPower = Uniform.create('unif_Glow', UniformType.Float, 1)
#starColor = Uniform.create('star_color', UniformType.Color, 1)
cutOffX = Uniform.create('cutoff_x', UniformType.Float, 1)
cutOffY = Uniform.create('cutoff_y', UniformType.Float, 1)
offPanelSize = Uniform.create('off_size', UniformType.Float, 1)
multipleScale = 0.05
height = 5.0
width = 40.0
offsize = 0.2
orbitRatioFloat = 10.0
radiusRatioFloat = 4.0
ratioRadius = 20.0
fontSize = 0.7
@staticmethod
def getData(str, type, default):
if str == None:
return default
else:
return type(str)
@classmethod
def initialize(cls):
multipleScale = cls.multipleScale
width = cls.width * multipleScale
height = cls.height * multipleScale
cls.orbitScale.setFloat(1.0)
cls.orbitRatio.setFloat(cls.orbitRatioFloat)
cls.radiusRatio.setFloat(cls.radiusRatioFloat)
cls.radiusScale.setFloat(1.0)
#cls.glowPower.setFloat(20)
#cls.starColor.setColor(Color(1, 0, 0, 1))
cls.cutOffX.setFloat(width - cls.offsize*multipleScale)
cls.cutOffY.setFloat(height - cls.offsize*multipleScale)
cls.offPanelSize.setFloat(cls.offsize * cls.multipleScale)
geom = ModelGeometry.create('stellar')
v1 = geom.addVertex(Vector3(0, height/2, -0.01))
geom.addColor(Color(0,1,0,0))
v2 = geom.addVertex(Vector3(0, -height/2, -0.01))
geom.addColor(Color(0,0,0,0))
v3 = geom.addVertex(Vector3(width, height/2, -0.01))
geom.addColor(Color(1,1,0,0))
v4 = geom.addVertex(Vector3(width, -height/2, -0.01))
geom.addColor(Color(1,0,0,0))
geom.addPrimitive(PrimitiveType.TriangleStrip, 0, 4)
getSceneManager().addModel(geom)
shaderPath = "./shaders/"
multipleDraw = ProgramAsset()
multipleDraw.name = "background"
multipleDraw.vertexShaderName = shaderPath + "background.vert"
multipleDraw.fragmentShaderName = shaderPath + "background.frag"
getSceneManager().addProgram(multipleDraw)
starDraw = ProgramAsset()
starDraw.name = "planet"
starDraw.vertexShaderName = shaderPath + "planet.vert"
starDraw.fragmentShaderName = shaderPath + "planet.frag"
starDraw.geometryOutVertices = 4
starDraw.geometryShaderName = shaderPath + "/planet.geom"
starDraw.geometryInput = PrimitiveType.Points
starDraw.geometryOutput = PrimitiveType.TriangleStrip
getSceneManager().addProgram(starDraw)
def setHighlight(self, bool):
if bool:
self.highlight.setInt(2)
else:
self.highlight.setInt(0)
def __init__(self, system):
multiple = StaticObject.create('stellar')
multiple.setEffect("background -t")
self.multiple = multiple
self.multiple.setSelectable(True)
self.starRadius = system['star'][0]['radius']
# This is supposed to be set to the parentNode for it to attach to.
self.parentNode = SceneNode.create('stellar_'+system['stellar']['name'])
self.parentNode.addChild(multiple)
multiple.getMaterial().addUniform('unif_Glow', UniformType.Float).setFloat(1/self.starRadius*self.ratioRadius)
stellar = system['stellar']
distance = self.getData(stellar['distance'], float, 100.0)
name = self.getData(stellar['name'], str, 'anonym')
spectraltype = self.getData(system['star'][0]['spectraltype'], str, 'G')
(min, max) = habitRange[spectraltype]
material = multiple.getMaterial()
self.highlight = Uniform.create('highlight', UniformType.Int, 1)
self.highlight.setInt(0)
material.addUniform('star_color', UniformType.Color).setColor(stellarColorMap[spectraltype])
material.attachUniform(self.orbitScale)
material.attachUniform(self.cutOffX)
material.attachUniform(self.orbitRatio)
material.attachUniform(self.highlight)
material.addUniform('hab_min', UniformType.Float).setFloat(min*self.multipleScale)
material.addUniform('hab_max', UniformType.Float).setFloat(max*self.multipleScale)
multipleScale = self.multipleScale
width = self.width * multipleScale
height = self.height * multipleScale
#info = 'Stellar System: ' + name + ' Distance: ' + str(round(distance,1))
info = name + ' distance from earth ' + str(round(distance,1))
t = Text3D.create( 'fonts/arial.ttf', self.fontSize * self.multipleScale, info )
t.setFixedSize(False)
t.setFontResolution(120)
t.setPosition(Vector3(-0.5, height/2, 0))
t.setPosition(Vector3(-0.5, height/2, 0))
self.parentNode.addChild(t)
planets = system['planets']
numOfPlanets = len(planets)
geom = ModelGeometry.create(name)
index = 0
for planet in planets:
geom.addVertex(Vector3(self.multipleScale * self.getData(planet['semimajoraxis'], float, 1), 0, 0.01))
geom.addColor(Color(discoveryMethod[planet['discoverymethod']], numOfPlanets, index, self.multipleScale * self.getData(planet['radius'], float, 0.1)))
# pName = planet['name']
# print pName
index += 1
# if name in textureMap:
# obj.setEffect("textured -d ./model/" + name + ".jpg")
# else:
# obj.setEffect("textured -d " + randomTextureMap[hash_string(name,len(randomTextureMap))] )
# multiple.getMaterial().setDiffuseTexture(
geom.addVertex(Vector3(width, 0., 0.01))
geom.addColor(Color(10.0, 0.0, 0.0, 0.0))
geom.addPrimitive(PrimitiveType.Points, 0, numOfPlanets+1)
getSceneManager().addModel(geom)
planetSystem = StaticObject.create(name)
planetSystem.setEffect("planet -t")
material = planetSystem.getMaterial()
material.attachUniform(self.orbitScale)
material.attachUniform(self.radiusScale)
material.attachUniform(self.cutOffX)
material.attachUniform(self.cutOffY)
material.attachUniform(self.offPanelSize)
material.attachUniform(self.orbitRatio)
material.attachUniform(self.radiusRatio)
multiple.addChild(planetSystem) | UTF-8 | Python | false | false | 6,007 | py | 34 | multiples.py | 17 | 0.736141 | 0.713334 | 0 | 157 | 37.267516 | 153 |
rogerh2/CryptoNeuralNet | 1,271,310,336,432 | a683168698beccf95893c48afeedde472c167fc8 | a632f8e1faf3ae92608420f697673fc6485d2ef7 | /CryptoBot/CryptoBotUnitTests/CryptoFillsModelUnitTests.py | 497051f71b8d12180f1557eba650a9996ad6b41e | [] | no_license | https://github.com/rogerh2/CryptoNeuralNet | b70a7467d939db8836a04cc516747b780ab1b8eb | e2a14280b06a92d6822c50f53175ae33aad1e8a1 | refs/heads/master | 2022-12-09T08:55:54.592354 | 2020-06-08T02:37:29 | 2020-06-08T02:37:29 | 130,617,552 | 2 | 0 | null | false | 2022-12-08T01:09:08 | 2018-04-22T23:52:13 | 2020-06-08T02:37:55 | 2022-12-08T01:09:07 | 12,759 | 2 | 0 | 26 | Python | false | false | import unittest
import pandas as pd
import numpy as np
import CryptoBot.CryptoForecast as cf
class CryptoFillsModelTestCase(unittest.TestCase):
data_obj = cf.FormattedCoinbaseProData(historical_order_books_path=None, historical_fills_path=None)
def test_does_create_formatted_input_data_with_one_order_book_and_no_fills(self):
# This is needed for live runs and backtests
historical_order_books_path = '/Users/rjh2nd/PycharmProjects/CryptoNeuralNet/CryptoBot/CryptoBotUnitTests/' \
'UnitTestData/SYM_historical_order_books_20entries.csv'
historical_order_books = pd.read_csv(historical_order_books_path)
order_books = historical_order_books.iloc[-1::]
self.data_obj.historical_order_books = order_books.reset_index(drop=True)
data_dict = self.data_obj.format_data('forecast')
data = data_dict['input']
self.assertFalse(np.isnan(data).any())
self.assertEqual(len(data[0, ::]), 120)
if __name__ == '__main__':
unittest.main()
| UTF-8 | Python | false | false | 1,053 | py | 49 | CryptoFillsModelUnitTests.py | 46 | 0.687559 | 0.679962 | 0 | 26 | 39.5 | 117 |
charulagrl/DataStructures-Algorithms | 18,769,007,105,711 | bb58c61a17bc572a519c2302c4096eb06f0a0a37 | 83a6fd80c8dd85824e7fbae07933be9a785ee18d | /CrackingTheCodingInterview/Arrays-and-Strings/check_if_string_contains_unique_characters.py | 852b993e132edd9e8037b4d589ab06dc40883ff8 | [] | no_license | https://github.com/charulagrl/DataStructures-Algorithms | f81b667eefedd24231342c1f11faeee9e94fdc41 | ab97ba1e09488420042946e9655111fa438c94d9 | refs/heads/master | 2016-09-21T14:40:13.248958 | 2016-09-01T10:42:24 | 2016-09-01T10:42:24 | 36,951,364 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: UTF-8 -*-
'''
Problem: Implement an algorithm to determine if a string has all unique characters.
Naive Approach: Loop through each character in the string and check in the entire string if that character is present.
If even one such character found,
return False.
Time complexity: O(n*2) where n is the length of the string.
Approach 2: Sort the string first and loop over the string and compare each character with its next character, if
there is one such character, it returns false.
Time complexity: Sorting O(n*logn) and Looping over string O(n). So the complexity will come down to O(n*logn)
Approach 3: Store each character in a hash_map with key as each character and if any character is already found in
hash_map return false.
Time complexity: O(n) to loop over string
Space Complexity: O(n) to store n characters
'''
# Check if string has unique characters using hash map
def unique_character_string(s):
# Declaring hash_map using python dictionaries
hash_map = {}
for i in s:
if i in hash_map:
return False
else:
hash_map[i] = True
return True
| UTF-8 | Python | false | false | 1,141 | py | 9 | check_if_string_contains_unique_characters.py | 8 | 0.718668 | 0.715162 | 0 | 39 | 28.25641 | 122 |
keerthanakumar/contest | 15,573,551,434,214 | c98879c04bae54ce5d87e3d9db912bf2a6904521 | f25bd4cd35b31289e06159034065d16faf094eaa | /contest/teams/2PacV5_1/factory.py | eddc6816f135b28e67ea34dd8c3b6724edac22c6 | [] | no_license | https://github.com/keerthanakumar/contest | 28dc02609a54f40d36156545f3cf9df18acf6c11 | 3d29c4aa83232ff171051d7197c402323845c526 | refs/heads/master | 2021-01-01T18:17:08.329322 | 2014-04-29T18:47:55 | 2014-04-29T18:47:55 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
from captureAgents import AgentFactory
import distanceCalculator
import random, time, util
from game import Directions
import game
#our code
from agent import *
from offenseRole import *
from defenseRole import *
from inference import *
import search
from myUtil import *
class MSBFactory(AgentFactory):
def __init__(self, isRed, **kwArgs):
AgentFactory.__init__(self, isRed)
print "factory __init__ called"
#for emergency timeout prevention
self.totalRuntime = 0
self.nRuntimeSamples = 0
self.emergencyScale = 1
self.args = kwArgs
self.agents = {}
#this lists which MSBAgentRoles we'll assign to new agents
self.availableRoles = util.Queue()
if not self.args["offenseOnly"]:
self.availableRoles.push(MSBDefensiveAgentRole)
self.availableRoles.push(MSBOffensiveAgentRole)
self.initializeForNewGame()
# this is (annoyingly) separate from __init__ because the factory outlasts a single game when the -n option is used
def initializeForNewGame(self):
print "initializeForNewGame called"
self.distancer = None
self.pathCache = {}
self.walls = []
self.legalPositions = []
self.tracking = None
self.gameTime = -1
self.lastDeath = -1
self.lastSwap = -1
def getAgent(self, index):
print "factory.getAgent called for agent %d" % index
newAgent = MSBAgent(index, self)
# assign this new agent a role
if not self.args["doNothing"]:
newAgentRole = self.availableRoles.pop()
self.availableRoles.push(newAgentRole)
newAgent.role = newAgentRole()
self.agents[index] = newAgent
return newAgent
def removeDeadAgents(self, gameState):
dead = []
for agentIndex in self.agents:
if agentIndex >= gameState.getNumAgents():
dead.append(agentIndex)
for agentIndex in dead:
del self.agents[agentIndex]
def initTracking(self, index, gameState):
"Initializes inference modules for each enemy agent"
#already inited
if self.tracking is not None:
return
agent = self.agents[index]
opponents = agent.getOpponents(gameState)
self.tracking = {}
for opp in opponents:
tracker = ExactInference(MSBSimulatedEnemyAgent(opp, self.getDistancer(gameState), self.args["uniformEnemySimulation"]))
tracker.failOnEmpty = self.args["failOnEmptyDistribution"]
tracker.initialize(gameState)
tracker.initializeSpecific(gameState.getInitialAgentPosition(opp))
self.tracking[opp] = tracker
def notifyEaten(self, gameState, enemyIndex):
tracker = self.tracking[enemyIndex]
tracker.initializeSpecific(gameState.getInitialAgentPosition(enemyIndex))
def maybeSwapRoles(self, index):
# if we don't have exactly 2 agents or we swapped recently, don't swap
if len(self.agents) != 2 or self.gameTime - self.lastSwap < 10:
return
gameState = self.agents[index].getCurrentObservation()
pos1, pos2 = [gameState.getAgentPosition(i) for i in self.agents]
# if either agent is pacman, don't swap
for agentIndex in self.agents:
if gameState.getAgentState(agentIndex).isPacman:
return
# if the agents are far apart, don't swap
if self.getDistancer(gameState).getDistance(pos1, pos2) > 7:
return
optFunc = max if self.agents[index].red else min
closestXToBorder = optFunc(pos1, pos2, key=lambda p: p[0])[0]
# if neither agent is close to the border, don't swap
if abs(gameState.data.layout.width/2 - closestXToBorder) > 3:
return
# TODO: verify one of our agents died recently... not sure if necessary?
for enemyIndex in self.tracking:
# if there is an invader, don't swap
if gameState.getAgentState(enemyIndex).isPacman:
return
# if there is a very imminent threat on the border, don't swap
enemyPos = gameState.getAgentPosition(enemyIndex)
if enemyPos != None and abs(gameState.data.layout.width/2 - enemyPos[0]) < 3:
return
# finally, if we haven't fallen out on any of the above conditions, swap roles
self.lastSwap = self.gameTime
roles = [agent.role for agent in self.agents.values()]
for agent, newRole in zip(self.agents.values(), reversed(roles)):
agent.role = newRole
print "/\\"*100
print "Swapping Roles!"
def updateSharedKnowledge(self, index):
#ideally, this shouldn't happen since we'll call initTracking from registerInitialState
if self.tracking == None:
self.initTracking(index, gameState)
gameState = self.agents[index].getCurrentObservation()
lastGameState = self.agents[index].getPreviousObservation()
dists = gameState.getAgentDistances()
#an annoyance
self.removeDeadAgents(gameState)
#update a timer to know how many moves have occurred before this one -- this includes enemy agents
if self.gameTime == -1:
startFirst = index == 0 #TODO this is incorrect, but it may not be possible to be truly correct.
self.gameTime = 0 if startFirst else 1
else:
self.gameTime += 2
print "Agent %d calling updateSharedKnowledge at time step %d" % (index, self.gameTime)
#check if we died in the last step
if lastGameState != None:
lastPos = lastGameState.getAgentPosition(index)
nowPos = gameState.getAgentPosition(index)
if nowPos == gameState.getInitialAgentPosition(index) and self.getDistancer(gameState).getDistance(lastPos, nowPos) > 4:
self.lastDeath = self.gameTime
#check if the last enemy to move killed itself
prevEnemy = index - 1
prevEnemyEaten = False
if prevEnemy < 0:
prevEnemy += gameState.getNumAgents()
prevAlly = prevEnemy - 1
if prevAlly < 0:
prevAlly += gameState.getNumAgents()
if self.gameTime >= 2:
prevAllyState = self.agents[prevAlly].getCurrentObservation()
prevEnemyLoc = prevAllyState.getAgentPosition(prevEnemy)
if prevEnemyLoc != None and (gameState.getAgentPosition(prevEnemy) == None or gameState.getAgentPosition(prevEnemy) == gameState.getInitialAgentPosition(prevEnemy)):
for agentIndex in self.agents:
if self.getDistancer(gameState).getDistance(prevEnemyLoc, prevAllyState.getAgentPosition(agentIndex)) <= 1:
prevEnemyEaten = True
break
# check if an enemy ate one of our food in the last time step -- if so, we know where it is.
prevEnemyJustAteFood = False
prevEnemyFoodEaten = None
if self.gameTime >= 2 and self.args["foodInference"]:
prevAllyState = self.agents[prevAlly].getCurrentObservation()
prevFood = set(self.agents[index].getFoodYouAreDefending(prevAllyState).asList())
foodNow = set(self.agents[index].getFoodYouAreDefending(gameState).asList())
foodDiff = prevFood - foodNow
if len(foodDiff) == 1:
prevEnemyJustAteFood = True
prevEnemyFoodEaten = foodDiff.pop()
for enemyIndex, tracker in self.tracking.items():
print "Agent %d observes enemy %d at noisyDistance %d (direct reading: %s) from its viewpoint %s" % (index, enemyIndex, dists[enemyIndex], gameState.getAgentPosition(enemyIndex), gameState.getAgentPosition(index))
# if the enemy is close enough for us to know exactly where it is, just update the tracker with that
if gameState.getAgentPosition(enemyIndex) != None:
tracker.initializeSpecific(gameState.getAgentPosition(enemyIndex))
print "- it's close enough we have an exact reading, so ignoring noisyDistance"
continue
# if our check outside the loop indicated the enemy ate, skip observe and elapseTime on it
if enemyIndex == prevEnemy and prevEnemyJustAteFood:
tracker.initializeSpecific(prevEnemyFoodEaten)
print "- enemy just ate food, so we know it's at %s" % tuple([prevEnemyFoodEaten])
continue
# if this enemy was the last enemy to move and killed itself, update beliefs to initial position
if enemyIndex == prevEnemy and prevEnemyEaten:
tracker.initializeSpecific(gameState.getInitialAgentPosition(enemyIndex))
print "- enemy killed itself, resetting to initial position"
continue
# elapse time once per round
if enemyIndex == prevEnemy and self.gameTime != 0:
tracker.elapseTime(gameState.deepCopy())
#debug
# realPos = gameState.true.getAgentPosition(enemyIndex)
# realDistance = util.manhattanDistance(gameState.getAgentPosition(index), realPos)
# print "!!! agent %d's view of enemy %d: noisyDistance=%d, realPos=%s, realDistance=%d (delta %d)" % (index, enemyIndex, dists[enemyIndex], realPos, realDistance, dists[enemyIndex]-realDistance)
# import capture
# assert dists[enemyIndex]-realDistance in capture.SONAR_NOISE_VALUES, "invalid noisyDistance!!!"
# observe
tracker.observe(dists[enemyIndex], gameState.getAgentPosition(index), self.getDistancer(gameState), gameState)
# if the enemy isPacman, then we know it's on our side. If not, we know it's not.
if self.args["pacmanInference"]:
usRed = self.agents[index].red
isPacman = gameState.getAgentState(enemyIndex).isPacman
locRed = isPacman if usRed else not isPacman
beliefs = tracker.beliefs
for loc in beliefs:
if gameState.isRed(loc) != locRed:
beliefs[loc] = 0
beliefs.normalize()
# not sure if I should need to do this, but the belief distribution seems to eventually be empty
if tracker.getBeliefDistribution().totalCount() == 0:
tracker.initializeUniformly(gameState)
#observe again so distribution isn't useless
tracker.observe(dists[enemyIndex], gameState.getAgentPosition(index), self.getDistancer(gameState), gameState)
print "- enemy %d's tracker being reset due to being empty." % enemyIndex
print "- enemy %d now thought to occupy %s" % (enemyIndex,self.getAveragedEnemyLocation(enemyIndex))
self.maybeSwapRoles(index)
def updateDisplay(self, gameState, curIndex):
dists = [self.tracking[i].getBeliefDistribution() if i in self.tracking else None for i in range(gameState.getNumAgents())]
if self.args["showMiscDistributions"]:
for i in range(len(dists)):
if dists[i] == None and i in self.agents:
dists[i] = self.agents[i].miscDistribution
self.agents[curIndex].displayDistributionsOverPositions(dists)
def getBeliefDistribution(self, enemyIndex):
return self.tracking[enemyIndex].getBeliefDistribution()
def getAveragedEnemyLocation(self, enemyIndex):
xavg = 0
yavg = 0
for pos, prob in self.tracking[enemyIndex].getBeliefDistribution().items():
x, y = pos
xavg += x * prob
yavg += y * prob
avgPoint = util.nearestPoint((xavg, yavg))
# annoying thing because mazeDistance doesn't work if one point is a wall
if avgPoint in self.walls:
neighbors = list(getNeighbors(avgPoint))
neighbors = [n for n in neighbors if n in self.legalPositions]
if len(neighbors) > 0:
avgPoint = neighbors[0]
else:
raise Exception("avg enemy location is wall surrounded by walls")
return avgPoint
def getDistancer(self, gameState = None):
if self.distancer != None:
return self.distancer
# this should never happen, since registerInitialState calls this with a gameState
if gameState == None:
raise Exception("getDistancer called without gameState, but no distancer has been inited yet")
distancer = distanceCalculator.Distancer(gameState.data.layout)
distancer.getMazeDistances()
self.distancer = distancer
self.walls = gameState.getWalls().asList()
self.legalPositions = gameState.getWalls().asList(False)
return distancer
def getPath(self, gameState, source, target):
# basic caching of paths
if (source, target) in self.pathCache:
#print "Found path from %s to %s in pathCache" % (source, target)
return self.pathCache[(source, target)]
elif (target, source) in self.pathCache:
#print "Found path from %s to %s in pathCache" % (source, target)
return reversed(self.pathCache[(target, source)])
print "getPath(%s, %s) called, computing using A*" % (source, target)
# compute path using A* search with known optimal maze distance as heuristic
problem = MSBPathfindingSearchProblem(source, target, self.legalPositions)
def heuristic(state, prob):
return self.getDistancer(gameState).getDistance(state, target)
path = search.astar(problem, heuristic)
assert len(path) == self.getDistancer(gameState).getDistance(source, target), "A* found non-optimal path from %s to %s" % (source, target)
# update cache
self.pathCache[(source, target)] = path
for i in range(0,len(path)-1):
self.pathCache[(path[i], target)] = path[i+1:]
print "getPath(%s, %s) returning; len(pathCache)=%d" % (source, target, len(self.pathCache))
return path
def reportRuntime(self, elapsedTime):
self.totalRuntime += elapsedTime
self.nRuntimeSamples += 1
avgRuntime = self.totalRuntime / self.nRuntimeSamples
if avgRuntime > 0.7 and self.emergencyScale >= 0.4:
self.emergencyScale -= 0.25
if "original_maxFoodToPathfind" not in self.args:
self.args["original_maxFoodToPathfind"] = self.args["maxFoodToPathfind"]
self.args["maxFoodToPathfind"] = int(self.args["original_maxFoodToPathfind"] * self.emergencyScale)
print "########################### Emergency timeout prevention: reducing maxFoodToPathfind to %d (last move took %.3f seconds; average is %.3f seconds)" % (self.args["maxFoodToPathfind"], elapsedTime, avgRuntime)
self.totalRuntime = 0
self.nRuntimeSamples = 0
# this is used to come up with a distribution of possible enemy agent successor positions for the elapseTime updates
# TODO: maybe in the future, use a copy of our own agent to predict this?
class MSBSimulatedEnemyAgent:
def __init__(self, index, distancer, uniform = False):
self.index = index
self.distancer = distancer
self.weights = {
"default" : 1
}
if uniform:
self.agent = self
return
#currently, this uses BaselineAgents' agents.
#To use the features/weights in this class, set self.agent = self
try:
from BaselineAgents.baselineAgents import OffensiveReflexAgent, DefensiveReflexAgent
self.agent = OffensiveReflexAgent(index) if index%2==0 else DefensiveReflexAgent(index)
self.agent.distancer = distancer
except: #if BaselineAgents isn't accessible, fallback gracefully
self.agent = self
def getFeatures(self, state, action):
return {"default":1}
def evaluate(self, state, action):
#fall through to another agent if we have one
if self.agent is None:
return 0
elif self.agent != self:
return max(0, self.agent.evaluate(state, action))
features = self.getFeatures(state, action)
amts = [features[i]*self.weights[i] if i in self.weights else 0 for i in features]
return max(sum(amts), 0)
def getDistribution(self, gameState):
#get the utilities from the agent and find the maximum
utilities = {action: self.evaluate(gameState, action) for action in gameState.getLegalActions(self.index)}
maxUtility = max(utilities.values())
#any action that maximizes utility gets equal probability, all else get 0
tbr = util.Counter()
for action in utilities:
if utilities[action] < maxUtility:
continue
tbr[action] = 1
tbr.normalize()
return tbr
class MSBPathfindingSearchProblem(search.SearchProblem):
def __init__(self, source, target, legalPositions):
self.source = source
self.target = target
self.legalPositions = legalPositions
def getStartState(self):
return self.source
def isGoalState(self, state):
return state == self.target
def getSuccessors(self, state):
return [(c, c, 1) for c in getNeighbors(state, includeDiagonals=False) if c in self.legalPositions]
def getCostOfActions(self, actions):
return len(actions) | UTF-8 | Python | false | false | 15,338 | py | 18 | factory.py | 16 | 0.734842 | 0.730017 | 0 | 418 | 35.69378 | 216 |
jaljs/myworkspace | 17,540,646,454,370 | a8cd40d32024a85f52d1c79bca9444da8e774413 | 409d4ad370e25c23691052645ef1eb2b6deaf341 | /car/webcontrol/main.py | c4034c237400056b912a0d97906d65672d0162d4 | [] | no_license | https://github.com/jaljs/myworkspace | 5204de1ebda0ba1657d76ae90690706f89c325bb | c27240a022cccbc0bb52a6dd6d3f61217111b6ed | refs/heads/master | 2021-01-17T15:26:44.217667 | 2018-06-06T10:20:11 | 2018-06-06T10:20:11 | 83,683,768 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
from bottle import get,post,run,request,template
@get("/")
def index():
return template("index")
@post("/cmd")
def cmd():
print("按下了按钮: "+request.body.read().decode())
return "OK"
@post("/mcmd")
def mcmd():
print("pull-------------->"+request.body.read().decode())
run(host="0.0.0.0",post=8080)
| UTF-8 | Python | false | false | 343 | py | 63 | main.py | 6 | 0.60961 | 0.582583 | 0 | 14 | 22.714286 | 58 |
zhuping580/myflaskdemo | 10,505,490,024,520 | ebc4be3c42b24c12527743b87c6dee3720f608e6 | 988eb29092e518638130e53632f2a0910cea0e79 | /app/cases.py | 2c04c30b9c9e887c32ccbe51c6e8f30340b4abd0 | [] | no_license | https://github.com/zhuping580/myflaskdemo | 19515b59e90cfcfceb2fae0c1911caa65748bf26 | 34fa07baae62783d0b8bfe4b0969b4615cb0f74b | refs/heads/master | 2023-07-01T13:44:53.904576 | 2021-08-09T08:16:22 | 2021-08-09T08:16:22 | 388,406,288 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
from datetime import datetime
from flask import Blueprint, request, jsonify
import requests
from common.token_method import login_required, verify_token
from common import db
from common.modelFuntion import CreateCase
# 创建蓝图
cases = Blueprint('cases', __name__)
@cases.route('/cases/update', methods=['POST'])
@login_required
def update_cases():
userid = verify_token()
data = request.get_data()
json_data = json.loads(data)
print(json_data)
priority = json_data['priority']
title = json_data['title']
enter = json_data['enter']
outs = json_data['outs']
updated_by = json_data['updated_by']
if 'id' in json_data.keys():
_id = json_data['id']
if db.query_db("select * from cases where id='{}'".format(_id)) is not None:
_sql = "update cases set priority='%s',title='%s',enter='%s',outs='%s',updated_by=%d where id='%d'" % \
(priority, title, enter, outs, updated_by, userid)
e = db.change_db(_sql)
if e:
return jsonify(code=-1, message=u"操作失败")
return jsonify(code=0, message=u"修改成功")
# 新增
ctime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
_sql = '''insert into cases (priority,title,enter,outs,created,created_by) value ('%s', '%s', '%s', '%s', '%d')'''\
% (priority, title, enter, outs, ctime, userid)
e = db.change_db(_sql)
if e:
return jsonify(code=-1, message=u"操作失败")
return jsonify(code=0, message=u"success")
@cases.route('/cases/list', methods=['GET'])
@login_required
def cases_list():
"""获取模型数据"""
# print('userid:', userid)
print(request.args)
i_id = int(request.args.get("i_id"))
# pageSize = int(request.args.get("pageSize"))
# pageNum = int(request.args.get("currentPage"))
data = []
database = db.query_db("select id,priority,title,enter,outs,result from cases where i_id=%d;" % i_id)
for i in database:
temp = {}
temp['id'] = i[0]
temp['priority'] = i[1]
temp['title'] = i[2]
temp['enter'] = i[3]
temp['outs'] = i[4]
temp['result'] = i[5]
data.append(temp)
return jsonify(code=0, message=u"success", data=data)
@cases.route('/cases/delete', methods=['POST'])
@login_required
def delete_cases():
data = request.get_data()
json_data = json.loads(data)
print(json_data)
_id = json_data['id']
_sql = "delete from cases where id=%d" % _id
e = db.change_db(_sql)
if e:
return jsonify(code=-1, message=u"操作失败")
return jsonify(code=0, message=u"success")
@cases.route('/cases/create', methods=['POST'])
@login_required
def create_case():
userid = verify_token()
data = request.get_data()
json_data = json.loads(data)
i_ids = json_data['i_id']
print(i_ids)
for i_id in i_ids:
db_data = db.query_db(
"select name,case1,maxlength,minlength,required,options from params where i_id=%d" % i_id
)
title = db.query_db("select name from interface where id=%d" % i_id)[0][0]
module_data = []
for i in db_data:
temp = {}
temp['name'] = i[0]
temp['case1'] = i[1]
temp['maxlength'] = i[2]
temp['minlength'] = i[3]
temp['required'] = i[4]
temp['options'] = i[5]
module_data.append(temp)
cases_data = CreateCase(module_data, title).get_case()
db.change_db("delete from cases where i_id=%d" % i_id)
ctime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
insert_datas = []
for k in cases_data:
# print('用例', k)
insert_data = []
insert_data.append(i_id)
for g in k:
insert_data.append(str(k[g]))
insert_data.append(ctime)
insert_data.append(userid)
insert_data.append('auto')
insert_data = tuple(insert_data)
insert_datas.append(insert_data)
insert_datas = tuple(insert_datas)
print('————————', insert_datas)
_sql = "insert into cases (i_id,title,enter,outs,priority,created,created_by,type) " \
"value (%s,%s,%s,%s,%s,%s,%s,%s)"
e = db.change_db(_sql, insert_datas)
print('e', e)
return jsonify(code=0, message=u"success")
@cases.route('/cases/execute', methods=['POST'])
@login_required
def execute_cases():
data = request.get_data()
json_data = json.loads(data)
print(json_data)
if 'id' in json_data.keys:
_id = json_data['id']
cases = db.db_json('cases', 'id='+str(_id), 'title', 'enter', 'outs', 'i_id')
i_id = cases[0]['i_id']
elif 'i_id' in json_data.keys:
i_id = json_data['i_id']
cases = db.db_json('cases', 'id='+str(i_id), 'title', 'enter', 'outs', 'i_id')
else:
return jsonify(code=-1, message=u"参数错误")
interface = db.db_json('interface', 'id='+str(i_id), 'methods', 'url', 'login_required')
interface = interface[0]
systems = db.db_json('systems', None, 's_key', 'val', 'type')
url = ''
headers = {}
for i in systems:
if i['s_key'] == 'url':
url = i['val']
elif i['s_key'] == 'token':
headers['token'] = i['val']
elif i['s_key'] == 'Cookie':
headers['Cookie'] = i['val']
for case in cases:
if interface['methods'] == 'post':
_result = requests.post(url=url+interface['url'], json=json.loads(case["enter"].replace("'", '"')), headers=headers)
elif interface['methods'] == 'get':
_result = requests.get(url=url+interface['url'], params=json.loads(case['enter'].replace("'", '"')), headers=headers)
else:
return jsonify(code=0, message=u"'不支持' + i_data['methods'] + '请求方式'")
sql3 = "update cases set result ='%s' where id=%d" % (_result.text, _id)
db.change_db(sql3)
return jsonify(code=0, message=u"success")
def login():
url = "http://192.168.3.66:9001/user/login/password"
data = {
"mobile": "18111111111",
"password": "Sulongfei@123456",
"mobileAraeCode": "+86",
"regType": 0,
"email": ""
}
response = requests.post(url=url, json=data)
# print('请求头', response.request.headers)
# print('请求体', response.request.body)
# print('响应头', response.headers)
cookie = response.headers['Set-Cookie']
cookie = cookie.split(';', 1)[0]
token = response.json()['data']['token']
_sql = "update systems set val='%s' where s_key='Cookie'" % cookie
db.change_db(_sql)
_sql0 = "update systems set val='%s' where s_key='token'" % token
db.change_db(_sql0)
if __name__ == '__main__':
login()
| UTF-8 | Python | false | false | 6,889 | py | 19 | cases.py | 17 | 0.557508 | 0.547468 | 0 | 201 | 32.696517 | 129 |
Amanikashema/data_type2 | 4,294,967,318,563 | 56b3385eb806bb380b6c9f1318f1f91839a4b457 | 7e959170963990a0d65f322d9f34fc098c65ff03 | /data_type2.py | 312f594894134deb291a1515ac0163806469e272 | [] | no_license | https://github.com/Amanikashema/data_type2 | 7def61cce786fd1858a7e7f631ec8d0c89270132 | 0e6b157de1ece1b94cb7ba4b6d94476dad719a36 | refs/heads/master | 2021-03-08T03:20:57.207886 | 2020-03-10T13:51:50 | 2020-03-10T13:51:50 | 246,313,414 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | my_list=[56,78,34,21,56,34,125,45,89,75,12,56]
my_list.sort()
print(my_list)
total=sum(my_list) #using a function of sum to add the total
print("The sum of all of the element is:", total)
print("The smallest number in the list is:", min(my_list))
print("The largest number in the list is:",max(my_list))
my_list=list(set(my_list))
print("List after removing duplicate elements", my_list)
| UTF-8 | Python | false | false | 397 | py | 1 | data_type2.py | 1 | 0.70529 | 0.642317 | 0 | 13 | 29.153846 | 60 |
iammanoj/PythonML | 8,632,884,313,131 | be85317e906b4b4410000c5ff9368d70bf30e9aa | 71a6d0d09329be51c25b8d10be03ded4dd3f9f02 | /ChkPalindrome.py | b578516dfa4fe981a72672ca0746b3761995b5f8 | [] | no_license | https://github.com/iammanoj/PythonML | 3301f099271a072d6bb8d8ac9b92d3387fae8f88 | 0d0f67dea8c26e2cb389aa157fdc6b41d53f0f1f | refs/heads/master | 2021-01-02T09:01:31.154236 | 2015-05-17T22:34:27 | 2015-05-17T22:34:27 | 34,771,477 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/Users/manoj_mohan/anaconda/bin/python
############################################
# Program Name : Check Palindrome Words
# Description : This program helps determine any combination of words from a given list of words if they can be joined together to form a Palindrome.
# Coder : Manoj Mohan
# Create Date : 05/11/2015
# Mod Log :
#
#
#
############################################
## Import libraries
from copy import deepcopy
list = ["bat","tab","cat","tar","rat", "ough", "stuff"]
for item in list:
for RestEachItem in list:
if item <> RestEachItem:
if item == RestEachItem[::-1]:
print item, RestEachItem
list.remove(item)
| UTF-8 | Python | false | false | 779 | py | 5 | ChkPalindrome.py | 4 | 0.504493 | 0.49294 | 0 | 23 | 32.782609 | 165 |
Karl-Horning/python-3-bootcamp | 5,265,629,927,481 | 421e1b7d38ebef96563b479773d571fae5a8f753 | b1b376358edef6faf1ba1c5559e7ae757c1dd8a9 | /section_16_tuples_and_sets/144_set_comprehension_and_recap.py | 13f08a7198a9b6a7d65a984d94e0db3c6f42273c | [] | no_license | https://github.com/Karl-Horning/python-3-bootcamp | e3894003310f123e9f3e040a490687ee9ff40cc9 | f78d1cc5c6a42539f724735d83bd74f77f6653f6 | refs/heads/master | 2020-03-24T15:22:14.566141 | 2018-07-29T19:23:23 | 2018-07-29T19:23:23 | 142,787,548 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | print({x**2 for x in range(10)})
# {0, 1, 64, 4, 36, 9, 16, 49, 81, 25}
print({char.upper() for char in 'hello'})
# {'E', 'H', 'L', 'O'} | UTF-8 | Python | false | false | 137 | py | 67 | 144_set_comprehension_and_recap.py | 67 | 0.49635 | 0.357664 | 0 | 5 | 26.6 | 41 |
tedneward/Demos | 19,585,050,877,506 | fd4d49000c2090df01db262e57962878697ac037 | 64e3f2b8d6abff582d8dff2f200e0dfc708a5f4b | /2019/VSLiveBoston/Py/demo.py | 9aef065bf91f0261ed203b3181c5326c6667d76c | [] | no_license | https://github.com/tedneward/Demos | a65df9d5a0390e3fdfd100c33bbc756c83d4899e | 28fff1c224e1f6e28feb807a05383d7dc1361cc5 | refs/heads/master | 2023-01-11T02:36:24.465319 | 2019-11-30T09:03:45 | 2019-11-30T09:03:45 | 239,251,479 | 0 | 0 | null | false | 2023-01-07T14:38:21 | 2020-02-09T05:21:15 | 2020-02-10T03:44:36 | 2023-01-07T14:38:20 | 217,845 | 0 | 0 | 74 | Java | false | false | print("Hello Boston")
class Attendee:
def sayHello():
print("Hello")
| UTF-8 | Python | false | false | 87 | py | 462 | demo.py | 289 | 0.574713 | 0.574713 | 0 | 5 | 15.4 | 22 |
linea-it/lna | 19,567,871,022,832 | 0602a6c03af3db06fbdcb7858560a46c73afbd24 | b1ff1b8920f8bee4d9fdaad938b25daedc51f7ad | /backend/lna/migrations/0007_auto_20190211_1324.py | e92ef927d26c21a9666fe3029f3a102e16aa0b87 | [] | no_license | https://github.com/linea-it/lna | 141d051c8b3e3c061ef2016ee48276a4538ddc88 | dd7c82059c41180d584bd8b201ea2d843878ef8e | refs/heads/master | 2022-12-17T12:29:04.291593 | 2020-07-01T19:27:21 | 2020-07-01T19:27:21 | 148,836,030 | 0 | 0 | null | false | 2022-12-09T13:57:18 | 2018-09-14T20:00:05 | 2020-07-01T20:40:59 | 2022-12-09T13:57:17 | 430,971 | 0 | 0 | 26 | JavaScript | false | false | # Generated by Django 2.1.5 on 2019-02-11 13:24
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('lna', '0006_exposure_target'),
]
operations = [
migrations.AddIndex(
model_name='exposure',
index=models.Index(fields=['filename'], name='lna_exposur_filenam_1f8e84_idx'),
),
migrations.AddIndex(
model_name='exposure',
index=models.Index(fields=['date'], name='lna_exposur_date_2a310b_idx'),
),
migrations.AddIndex(
model_name='exposure',
index=models.Index(fields=['date_obs'], name='lna_exposur_date_ob_b3f2c1_idx'),
),
migrations.AddIndex(
model_name='exposure',
index=models.Index(fields=['target'], name='lna_exposur_target_4d256e_idx'),
),
migrations.AddIndex(
model_name='exposure',
index=models.Index(fields=['ra', 'dec'], name='lna_exposur_ra_4a1ba3_idx'),
),
]
| UTF-8 | Python | false | false | 1,047 | py | 45 | 0007_auto_20190211_1324.py | 39 | 0.572111 | 0.536772 | 0 | 33 | 30.727273 | 91 |
kiramishima/csv_pokeapi | 10,857,677,350,067 | 4c55efeb527bf1dccb0783adc71987022f9b1dc2 | 4e0fce17cf26f8661c2bafa70c1b041ac41285f5 | /app.py | 66fa0c74120761ec9b1524a9d251ebb27953f950 | [] | no_license | https://github.com/kiramishima/csv_pokeapi | 3cc69cd00e99c790155bb7ebae1a3c793cc32603 | 1f65e2ddd64ca8545a03039b775a878e7ac95536 | refs/heads/master | 2023-09-03T20:24:29.109257 | 2021-10-15T17:37:02 | 2021-10-15T17:37:02 | 417,278,128 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
import math
from flask import Flask, jsonify, request, render_template
import pandas as pd
app = Flask(__name__)
# Load CSV
app.data = pd.read_csv("./data/pokemon.csv", header=0, sep='\t',
names=['id', 'name', 'type_1', 'type_2', 'total', 'hp', 'atk', 'def', 'sp_atk', 'sp_def', 'speed',
'generation', 'legendary'])
@app.route('/')
def home():
"""
This Endpoint return only the swagger documentation
"""
return render_template('index.html')
@app.route('/api/v1/pokemon')
def all():
"""
This enpoint returns a list of pokemon paginated
"""
page = request.args.get('page', 1, type=int)
per_page = request.args.get('per_page', 10, type=int)
resp = pagination(app.data, page, per_page)
return jsonify(resp)
def pagination(df, start_page = 1, per_page = 15):
"""
Paginate function
"""
pagesize = per_page
page = start_page - 1
max_pages = math.ceil(df.shape[0] / pagesize)
return {
'total_records': df.shape[0],
'current_page': page + 1,
'max_pages': max_pages,
'per_page': pagesize,
'data': json.loads(df.iloc[page * pagesize: (page + 1) * pagesize].to_json(orient='records', force_ascii=False))
}
@app.route('/api/v1/pokemon/<poke_id>', methods=['GET'])
def find(poke_id):
"""
This endpoint filters the dataset by id or by pokemon's name and return one result
"""
pfind = app.data[(app.data['id'] == poke_id) | (app.data['name'] == poke_id)]
dtjson = json.loads(pfind.to_json(orient='records', force_ascii=False))
resp = {'status': True, 'data': dtjson}
return jsonify(resp)
@app.route('/api/v1/pokemon', methods=['POST'])
def create_pokemon():
"""
Endpoint to create a new pokemon in the dataset
"""
form = request.form
print(form)
pokemon = {"id": form.get('id'), "name": form.get('name'), "type_1": form.get('type_1'),
"type_2": form.get('type_2'), "total": form.get('total'), "hp": form.get('hp'), "atk": form.get('atk'),
"def": form.get('def'),
"sp_atk": form.get('sp_atk'), "sp_def": form.get('sp_def'), "speed": form.get('speed'),
"generation": form.get('generation'), "legendary": form.get('legendary')}
# print(pokemon)
new_row = pd.Series(pokemon)
app.data = app.data.append(new_row, ignore_index=True)
resp = {'status': True, 'data': pokemon}
return jsonify(resp)
@app.route('/api/v1/pokemon/<poke_id>', methods=['POST'])
def update_pokemon(poke_id):
"""
Update pokemon endpoint
"""
form = request.form
# build response
pokemon = {"id": form.get('id'), "name": form.get('name'), "type_1": form.get('type_1'),
"type_2": form.get('type_2'), "total": form.get('total'), "hp": form.get('hp'), "atk": form.get('atk'),
"def": form.get('def'),
"sp_atk": form.get('sp_atk'), "sp_def": form.get('sp_def'), "speed": form.get('speed'),
"generation": form.get('generation'), "legendary": form.get('legendary')}
pfind = app.data.loc[(app.data['id'] == poke_id) | (app.data['name'] == poke_id)]
pfind = app.data.loc[pfind.index, :]
pfind.id = form.get('id')
pfind.name = form.get('name')
pfind.type_1 = form.get('type_1')
pfind.type_2 = form.get('type_2')
pfind.total = form.get('total')
pfind.hp = form.get('hp')
pfind.atk = form.get('atk')
pfind['def'] = form.get('def')
pfind.sp_atk = form.get('sp_atk')
pfind.sp_def = form.get('sp_def')
pfind.speed = form.get('speed')
pfind.generation = form.get('generation')
pfind.legendary = form.get('legendary')
# print(pfind)
app.data.update(pfind)
resp = {'status': True, 'message': 'Pokemon has been updated', 'data': pokemon}
return jsonify(resp)
@app.route('/api/v1/pokemon/<poke_id>', methods=['DELETE'])
def delete_pokemon(poke_id):
"""
Endpoint for delete a pokemon
"""
# find the target
pfind = app.data.loc[(app.data['id'] == poke_id) | (app.data['name'] == poke_id)]
# process to delete
app.data.drop(index=pfind.index, inplace=True)
resp = {'status': True, 'message': 'Pokemon has been deleted'}
return jsonify(resp)
if __name__ == '__main__':
app.run()
| UTF-8 | Python | false | false | 4,320 | py | 4 | app.py | 1 | 0.580556 | 0.57338 | 0 | 123 | 34.121951 | 120 |
893202527/JK | 17,343,077,975,191 | ec5dce0013a7402996c251e043c6882a5e3b05af | 326269d5c3740bed8ca5ef65aeab35ada4ced727 | /MyDjango/xycDemo/models.py | aaee15810df7422dc28fa68b4b9b644b8308402b | [] | no_license | https://github.com/893202527/JK | 43115fbc08b119de5c49ac4b470e4cbcbcdc917b | 0080f3d349093ce771df94f70edd6010a9fd3ff7 | refs/heads/master | 2022-11-12T04:48:34.174950 | 2019-09-02T09:12:17 | 2019-09-02T09:12:17 | 180,317,671 | 1 | 1 | null | false | 2022-11-01T23:31:18 | 2019-04-09T08:11:31 | 2019-09-02T09:12:45 | 2019-09-02T09:12:43 | 50,926 | 0 | 1 | 1 | Python | false | false | import datetime
from django.db import models
import json
from django.utils import timezone
# Create your models here.
class User(models.Model):
nickName=models.CharField(max_length=20)
create_time=models.DateTimeField(auto_now_add=True)
Modify_time=models.DateTimeField(auto_now=True)
phoneNumber=models.CharField(max_length=11,unique=True)
username=models.CharField(max_length=20)
age=models.CharField(max_length=3)
sex =(
('male','男'),
('female','女'),)
password=models.CharField(max_length=100)
def __str__(self):
smart = {'phoneNumber':self.phoneNumber,
'nickName':self.nickName,
'age':self.age,
'sex':self.sex,
'username':self.username,
'password':self.password
}
return json.dumps(smart)
class user_info(models.Model):
userid=models.ForeignKey(User,on_delete=models.CASCADE)
ip=models.CharField(max_length=100)
login_time=models.DateTimeField(auto_now=True)
login_times=models.IntegerField(auto_created=True)#实现自增,AUTO_INCREMENT=100从100开始自增
| UTF-8 | Python | false | false | 1,162 | py | 23 | models.py | 20 | 0.652632 | 0.635965 | 0 | 36 | 30.583333 | 86 |
sts-sadr/Hands-of-Machine-Learning | 13,417,477,874,901 | e7c9458e97389ed8156fe3b2628be7c68e0f3ef2 | cefc8caac20ec430265dfbe56b3d9b8ab1acb34d | /MNIST.py | 3d961929ef7ee20b2fcc5f9c0e6e2c162a4a99a6 | [] | no_license | https://github.com/sts-sadr/Hands-of-Machine-Learning | ca9d9bbf12d141928210913ee9567f7f2b436cdf | 16d3c64a43d11170f24ab46f407a987f7fc46623 | refs/heads/master | 2021-01-07T08:16:53.190991 | 2019-09-03T18:55:24 | 2019-09-03T18:55:24 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
Created on Tue Sep 3 13:02:32 2019
@author: jered.willoughby
"""
#Load libraries
from sklearn.datasets import fetch_openml
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score
mnist = fetch_openml('mnist_784',version=1)
mnist.keys()
#Descriptive statistics
X,y = mnist["data"], mnist["target"]
X.shape
y.shape
some_digit = X[0]
some_digit_image = some_digit.reshape(28,28)
#Select 0 indexed image from the mnist data and plot it
plt.imshow(some_digit_image, cmap="binary")
plt.axis("off")
plt.show()
#validate from the target set
y[0] #this is a string value
#Change datatype to integer
y = y.astype(np.uint8)
#Create the testing and training sets
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
#Now we need to determine what classifier to use. Let's start with a binary
#target vector classification
y_train_5 = (y_train == 5)
y_test_5 = (y_test == 5)
#Binary classifier = stochastic gradient descent SGDClassifier
from sklearn.linear_model import SGDClassifier
sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train,y_train_5)
sgd_clf.predict([some_digit])
#Cross Validation
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
clone_clf = clone(sgd_clf)
X_train_folds = X_train[train_index]
y_train_folds = y_train_5[train_index]
X_test_fold = X_train[test_index]
y_test_fold = y_train_5[test_index]
clone_clf.fit(X_train_folds, y_train_folds)
y_pred = clone_clf.predict(X_test_fold)
n_correct = sum(y_pred == y_test_fold)
print(n_correct / len(y_pred))
#Determine cross validation score - 3 folds
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
#Prediction set selection from cross val
y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
#Confusion matrix from prior variable set
confusion_matrix(y_train_5, y_train_pred)
#Performance metric - precision + recall score
precision_score(y_train_5, y_train_pred)
recall_score(y_train_5, y_train_pred)
#We can combine the two into the F1 score - harmonic mean
f1_score(y_train_5, y_train_pred)
#Note that there is a way to get the optimal threshold: decision_function()
#method, which returns a score for each instance, and then use any threshold
#you want to make predictions based on those scores. | UTF-8 | Python | false | false | 2,815 | py | 2 | MNIST.py | 2 | 0.71865 | 0.694139 | 0 | 85 | 31.141176 | 77 |
pydi0415/git_zeroo | 17,145,509,487,499 | f69cf63b9458a5905c410d34f1cb31ddebafc104 | 0f0a2ae1c525a3f6ab4ceb9652e3a95abb42fe0d | /python/assignment/Basic pgms.py | 1b566105fc64540b2ea620e9037fabaa6d2d7dd6 | [] | no_license | https://github.com/pydi0415/git_zeroo | c47a21193f32651a29f10c5fec461bcc6f3868cb | 0d50e29a257041619031a39d7abe252db59ea019 | refs/heads/main | 2023-03-14T13:02:06.166224 | 2021-02-26T14:26:55 | 2021-02-26T14:26:55 | 342,595,855 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | print("prabhakar\nprasu")
print("----------------------------")
print("prabhakar\tprasu")
print("----------------------------")
#print("prabhakar"prabha"prasu" )(error)
print('''Hi\n This is penchala\tprabhakr From Ap''')
print("----------------------------")
print("s@athya\"Techonlogy\"")
print("----------------------------")
print("Heloo 'Prasu' Iam sharing my \"python meterial\" Check once "
"\nIn this\tyear i get a \"job\" ")
print("----------------------------")
print("Prabhakar@0415"+"123456789")
print("----------------------------")
print(20%3)
print("----------------------------")
print("10"+"20")
print("----------------------------")
print("prabhakar","prasu",'BestFriends','''From school standerd to Still know''')
print("----------------------------")
print("python""-""Django")
print("----------------------------")
print("\n","Employee","_","UnEmployee")
print("----------------------------")
#print("prabhakar"+3)
print("3+3+""Prabahakar")
print("----------------------------")
#print("7"-2)
print("----------------------------")
print("Prabhakar\n\t\"Penchala")
print("----------------------------")
print("----------------------------")
print("**\"prabha\"kar**")
print("\n--python--")
print("----------------------------")
print("\t\tPrabhakar\tpydi")
print("\t\t==========\t====")
print("----------------------------")
studentname='Prabhakar'
print("welcome",studentname)
print("----------------------------")
#o1=int(input("Enter first number:"))
#no2=int(input("Enter second number:"))
#print("adition=",no1+no2)
#print("sub=",no1-no2)
#print("mul=",no1*no2)
#print("div=",no1/no2)
#print("mod=",no1%no2)
#print("FlorDiv=",no1//no2)
#print("Exponential=",no1**no2)
#print("----------------------------")
#x='prabha.415'
#print(x)
#print(type(x))
print("----------------------------")
#Fname=input("Enter first name:")
#Lname=input("Enter last name:")
#print(Fname + Lname)
print("----------------------------")
#x=input("Enter no:")
#print(x)
#idno=int(input("Student IDNO:"))
#name=input("Name:")
#m1=int(input("marks1:"))
#m2=int(input("marks2:"))
#m3=int(input("marks3:"))
#print(idno)
#print(name)
#print("Total marks=",m1+m2+m3)
#print("Avgmarks=",m1+m2+m3/3)
print("----------------------------")
x=5
if x>0:
print("+ve number")
if x<0:
print("-ve number")
print("----------------------------")
| UTF-8 | Python | false | false | 2,348 | py | 17 | Basic pgms.py | 16 | 0.456559 | 0.431005 | 0 | 77 | 29.480519 | 81 |
ritwikbera/GazeAtari | 17,884,243,858,487 | a4c31c80d6125de528aee80bd1ebdabcf6736155 | 4cbe3a5dfc11227ac85e77980e3f9eb0cc20aa13 | /train.py | 0d33bdb47f07239159259b6c23716ae48c8ec896 | [] | no_license | https://github.com/ritwikbera/GazeAtari | 42e36ab90b1b3fd9943fa5ad2e1b051731827666 | 7d9840474e91e41422dd551e20c752afe82edd10 | refs/heads/master | 2022-08-21T07:04:14.542815 | 2020-05-26T01:51:36 | 2020-05-26T01:51:36 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import torch
from torch import nn
from torch.optim import Adam, Rprop
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import json
import os
from math import ceil
from ignite.engine import Events, Engine
from ignite.metrics import Loss, RunningAverage, Accuracy, MeanSquaredError
from ignite.utils import setup_logger
from ignite.handlers import ModelCheckpoint
# from ignite.contrib.handlers.tqdm_logger import ProgressBar
from tqdm import tqdm
import models
import utils
from models import *
from utils import *
current_dir = os.getcwd()
torch.manual_seed(0)
np.random.seed(0)
def run(config):
train_loader = get_instance(utils, 'dataloader', config, 'train')
val_loader = get_instance(utils, 'dataloader', config, 'val')
model = get_instance(models, 'arch', config)
model = init_model(model, train_loader)
model, device = ModelPrepper(model, config).out
loss_fn = get_instance(nn, 'loss_fn', config)
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = get_instance(torch.optim, 'optimizer', config, trainable_params)
writer = create_summary_writer(config, model, train_loader)
batch_size = config['dataloader']['args']['batch_size']
if config['mode'] == 'eval' or config['resume']:
model.load_state_dict(torch.load(config['ckpt_path']))
epoch_length = int(ceil(len(train_loader)/batch_size))
desc = "ITERATION - loss: {:.2f}"
pbar = tqdm(initial=0, leave=False, total=epoch_length, desc=desc.format(0))
def process_batch(engine, batch):
inputs, outputs = func(batch)
model.train()
model.zero_grad()
optimizer.zero_grad()
preds = model(inputs)
loss = loss_fn(preds, outputs.to(device))
a = list(model.parameters())[0].clone()
loss.backward()
optimizer.step()
# check if training is happening
b = list(model.parameters())[0].clone()
try:
assert not torch.allclose(a.data, b.data), 'Model not updating anymore'
except AssertionError:
plot_grad_flow(model.named_parameters())
return loss.item()
def predict_on_batch(engine, batch):
inputs, outputs = func(batch)
model.eval()
with torch.no_grad():
y_pred = model(inputs)
return inputs, y_pred, outputs.to(device)
trainer = Engine(process_batch)
trainer.logger = setup_logger("trainer")
evaluator = Engine(predict_on_batch)
evaluator.logger = setup_logger("evaluator")
if config['task'] == 'actionpred':
Accuracy(output_transform=lambda x: (x[1], x[2])).attach(evaluator, 'val_acc')
if config['task'] == 'gazepred':
MeanSquaredError(output_transform=lambda x: (x[1], x[2])).attach(evaluator, 'val_MSE')
RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')
training_saver = ModelCheckpoint(config['checkpoint_dir'],
filename_prefix='checkpoint_'+config['task'],
n_saved=1,
atomic=True,
save_as_state_dict=True,
create_dir=True, require_empty=False)
trainer.add_event_handler(Events.EPOCH_COMPLETED, training_saver,
{'model': model})
@trainer.on(Events.ITERATION_COMPLETED)
def tb_log(engine):
pbar.desc = desc.format(engine.state.output)
pbar.update(1)
writer.add_scalar('training/avg_loss', engine.state.metrics['loss'] ,engine.state.iteration)
@trainer.on(Events.EPOCH_COMPLETED)
def print_trainer_logs(engine):
pbar.refresh()
avg_loss = engine.state.metrics['loss']
tqdm.write('Trainer Results - Epoch {} - Avg loss: {:.2f} \n'.format(engine.state.epoch, avg_loss))
viz_param(writer=writer, model=model, global_step=engine.state.epoch)
pbar.n = pbar.last_print_n = 0
@evaluator.on(Events.EPOCH_COMPLETED)
def print_result(engine):
try:
print('Evaluator Results - Accuracy {} \n'.format(engine.state.metrics['val_acc']))
except KeyError:
print('Evaluator Results - MSE {} \n'.format(engine.state.metrics['val_MSE']))
@evaluator.on(Events.ITERATION_COMPLETED)
def viz_outputs(engine):
visualize_outputs(writer=writer, state=engine.state, task=config['task'])
if config['mode'] == 'train':
trainer.run(train_loader, max_epochs=config['epochs'], epoch_length=epoch_length)
pbar.close()
evaluator.run(val_loader, max_epochs=1, epoch_length=int(ceil(len(val_loader)/batch_size)))
writer.flush()
writer.close()
if __name__ == "__main__":
config = json.load(open('config.json'))
run(config) | UTF-8 | Python | false | false | 4,902 | py | 21 | train.py | 18 | 0.631783 | 0.628519 | 0 | 148 | 32.128378 | 107 |
landont3/GolfLeagueScoring | 7,198,365,228,995 | 4437ae18a2721e62f6726a88cc3119e25e44f560 | 48075e439cb159a1eddc7a637b3e955a012ee214 | /league/admin.py | 5e1423f65df502d5cb49ed6bcad60ab69fb514c2 | [] | no_license | https://github.com/landont3/GolfLeagueScoring | e503154ff84d907597393b86c1d4e4039ddfca9e | c71ac20b1a26c016db33003e87a8f4a8dc64f0f5 | refs/heads/master | 2021-03-22T01:11:36.267737 | 2018-03-08T12:21:26 | 2018-03-08T12:21:26 | 122,187,660 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.contrib import admin
from .models import League, Division, Season, SeasonSettings, Course, Nine, Hole
@admin.register(SeasonSettings)
class SeasonSettingsAdmin(admin.ModelAdmin):
list_display = ('season', 'handicap_method', 'max_score_to_par', 'max_handicap')
list_editable = ('handicap_method', 'max_score_to_par', 'max_handicap')
admin.site.register(League)
admin.site.register(Division)
admin.site.register(Season)
admin.site.register(Course)
admin.site.register(Nine)
admin.site.register(Hole)
| UTF-8 | Python | false | false | 523 | py | 31 | admin.py | 21 | 0.762906 | 0.762906 | 0 | 17 | 29.764706 | 84 |
VR-Scott/practice_team_08 | 10,256,381,926,421 | 0bf8ca6bdc4474f497844ace2645eb0ba8a44097 | 511583a2223f86e5028839763cb867bbc9931ba7 | /encryption.py | cc6984c73aaa934b9ec04d1d93ac30f921c4be32 | [] | no_license | https://github.com/VR-Scott/practice_team_08 | 005384695bd5a84086fbbac651f5e216314951d7 | 4f36ba4cc767e3bf9a77579c1569be1034a4846c | refs/heads/master | 2023-01-30T14:31:08.745287 | 2020-12-11T14:39:46 | 2020-12-11T14:39:46 | 308,270,721 | 0 | 1 | null | false | 2020-11-16T07:18:31 | 2020-10-29T08:58:18 | 2020-11-13T08:30:26 | 2020-11-16T07:18:31 | 7,262 | 0 | 0 | 0 | Python | false | false | import bcrypt
def encrypt_password(password):
"""
Encrypt a password with a randomly generated salt then a hash.
:param password: The password to encrypt in clear text.
:return: The encrypted password as a unicode string.
"""
encoded_password = password.encode('utf8')
cost_rounds = 4
random_salt = bcrypt.gensalt(cost_rounds)
hashed_password = bcrypt.hashpw(encoded_password, random_salt).decode('utf8', 'strict')
return hashed_password
def check_password(password, password_hash):
"""
Check a password against its encrypted hash for a match.
:param password: the password to check in clear text. (Unicode)
:param password_hash: The encrypted hash to check against. (Unicode)
:return: Whether the password and the hash match
"""
encoded_password = password.encode('utf8')
encoded_password_hash = password_hash.encode('utf8')
password_matches = bcrypt.checkpw(encoded_password, encoded_password_hash)
return password_matches
if __name__ == '__main__':
test_password = 'doobeedoo'
hashed_test_password = encrypt_password(test_password)
print(f'hashed_password: {hashed_test_password}')
password_matches_hash = check_password(test_password, hashed_test_password)
print(f'password matches hash? {password_matches_hash}') | UTF-8 | Python | false | false | 1,322 | py | 19 | encryption.py | 12 | 0.711044 | 0.707262 | 0 | 34 | 37.911765 | 91 |
doublevcodes/pyhmrc | 5,574,867,575,817 | 33cc9e74364e9c6a781dcccbae6ae8c1f822d1e7 | 7c5e543762f1a7c9ac134b7e0ce084724e8e113e | /pyhmrc/hello/__init__.py | 1be72be2be386b6f8329c2ea5f26ad858205bd54 | [] | no_license | https://github.com/doublevcodes/pyhmrc | 5ee44ed968357b9db7ae4ce9fb91085651192a28 | fdc5eff0d14332b3f718060fc33316952a0e411b | refs/heads/master | 2023-04-02T22:34:30.769236 | 2021-04-09T21:35:17 | 2021-04-09T21:35:17 | 356,403,147 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from .hello import HelloClient | UTF-8 | Python | false | false | 30 | py | 5 | __init__.py | 4 | 0.866667 | 0.866667 | 0 | 1 | 30 | 30 |
TopologicLogic/Convusing | 2,851,858,284,551 | b9ac8f3a82186ee4c186b6918b5dc76215f9b016 | 63f21c66119a6b3a752a8dcd8377e0c512ec4cc2 | /DataPrep.py | 18c40cf929986974a66f9e97611e4490875bdd62 | [] | no_license | https://github.com/TopologicLogic/Convusing | 3cca2e52a4c141d00988b78bc09630501f544bfc | f8445ea81828f53dd91b9d1cccc0a28ac7f1dbf3 | refs/heads/master | 2022-07-17T04:31:11.199671 | 2022-05-29T03:35:11 | 2022-05-29T03:35:11 | 254,484,222 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
Created on Sat Mar 10 20:19:35 2018
@author: Dev
"""
import random
import pandas as pan
import numpy as np
import os.path
import csv
import sys
#import ctypes # An included library with Python install.
from copy import deepcopy
from stockstats import StockDataFrame as sdf
from googlefinance.client import get_price_data #, get_prices_data, get_prices_time_data
data_lookup = {}
def find_intervals(projection_range, row_start, sdfdata, interval_min, interval_max):
interval_index = []
#tshape = sdfdata.iloc[:,0:].values.shape
#if row_start >= tshape[0]: return interval_index
tdata = sdfdata['close_-' + str(projection_range+1) +'_r'].as_matrix()
# print(str(tdata))
for i in range(row_start, len(tdata)):
if tdata[i] >= interval_min and tdata[i] <= interval_max:
interval_index.append(i)
return interval_index
def get_indicator_data_at_index(index, data_row_count, sdfdata, indicators, intervals, normalize=True):
x_data = np.zeros((len(indicators) * len(intervals), data_row_count))
l = 0
if normalize:
for m in range(0, len(indicators)):
for n in range(0, len(intervals)):
# A one dimensional array with the indicator/interval data
tdata = sdfdata[indicators[m] + '_' + intervals[n]].as_matrix()
dmax = sys.float_info.min
# Check all of tdata for NaNs, Infinities, and get column max
for t in range(0, len(tdata)):
if not np.isfinite(tdata[t]): tdata[t] = 0
if tdata[t] > dmax: dmax = tdata[t]
for t in range(0, len(tdata)):
tdata[t] /= dmax
q = 0
for t in range(index - data_row_count, index):
x_data[l][q] = tdata[t]
q += 1
l += 1
else:
for m in range(0, len(indicators)):
for n in range(0, len(intervals)):
tdata = sdfdata[indicators[m] + '_' + intervals[n]].as_matrix()
q = 0
for t in range(index - data_row_count, index):
x_data[l][q] = tdata[t]
if not np.isfinite(x_data[l][q]): x_data[l][q] = 0
q += 1
l += 1
return x_data
def homogeneous_populate_training(n_classes, batch_count, data_column_count, data_row_count,
projection_range, check_for_zeros=True, track_classes=True,
verbose=True):
global data_lookup
indicators = ['rsi', 'atr', 'wr', 'vr']
intervals = ['2', '5', '10', '15', '20', '30', '60']
x_train = np.zeros((batch_count, data_column_count, data_row_count))
y_train = np.zeros((batch_count, n_classes), dtype=int)
symbols = []
#https://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ&render=download
with open('NASD.csv', newline='') as csvfile:
r = csv.DictReader(csvfile)
for row in r:
symbols.append(row['Symbol'])
class_max = [-50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50, 10000]
class_min = [-10000, -50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50 ]
avg_class_count = np.floor((batch_count) / n_classes)
class_count = np.zeros(n_classes, dtype=int)
class_count.fill(avg_class_count)
diff = batch_count - (avg_class_count * n_classes)
if diff > 0: class_count[10] += diff
if not os.path.exists('StockData/'): os.makedirs('StockData/')
batch_i = 0
for z in range(0, n_classes):
skips = [] # Skiped due to data errors
nics = [] # Not in class
if track_classes:
if os.path.isfile("skips.csv"):
with open('skips.csv', newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: skips.append(row['Symbols'])
else:
with open("skips.csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
if os.path.isfile("nic-" + str(z) + ".csv"):
with open("nic-" + str(z) + ".csv", newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: nics.append(row['Symbols'])
else:
with open("nic-" + str(z) + ".csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
if verbose:
print("\nClass #" + str(z+1) + " of " + str(n_classes) +
", Total skips: " + str(len(skips) + len(nics)) + "\n")
elif verbose:
print("\nClass #" + str(z) + " of " + str(n_classes))
symbols_used = []
k = 0
while k < class_count[z]:
tclass = z
tsymbol = symbols[np.random.randint(0, len(symbols))]
# Went through all the symbols and cound't find enough examples,
# so fill up more default values.
if len(symbols_used) >= len(symbols):
tclass = 10
# Check for stocks to skip
if track_classes:
if tsymbol in skips: continue
if tsymbol in nics: continue
if tsymbol in symbols_used: continue
symbols_used.append(tsymbol)
tshape = object()
if tsymbol in data_lookup:
if verbose:
print("Loading["+ str(class_min[tclass]) + "%:" + str(class_max[tclass]) + "%, " +
"#" + str(k) + "]: " + tsymbol)
df = data_lookup[tsymbol]
elif os.path.isfile("StockData/" + tsymbol + ".csv"):
if verbose:
print("Loading["+ str(class_min[tclass]) + "%:" + str(class_max[tclass]) + "%, " +
"#" + str(k) + "]: " + tsymbol)
data_lookup[tsymbol] = pan.read_csv("StockData/" + tsymbol + ".csv",
sep=',', header=0, index_col=0)
df = data_lookup[tsymbol]
else:
if verbose:
print("Downloading["+ str(class_min[tclass]) + "%:" + str(class_max[tclass]) + "%, " +
"#" + str(k) + "]: " + tsymbol)
param = {
'q': tsymbol, # Stock symbol (ex: "AAPL")
'i': "86400", # Interval size in seconds ("86400" = 1 day intervals)
'x': "NASD", # Stock exchange symbol on which stock is traded (ex: "NASD")
'p': "5Y" # Period (Ex: "1Y" = 1 year)
}
# get price data (return pandas dataframe)
df = get_price_data(param)
df.to_csv("StockData/" + tsymbol + ".csv")
data_lookup[tsymbol] = deepcopy(df)
tshape = df.iloc[:,0:].values.shape
if tshape[0] <= data_row_count:
if verbose:
print("Data error: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
if tshape[0] < 400:
if verbose:
print("Not enough data for: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
# Check for zeros
if check_for_zeros:
zero_flag = False
for row in range(0, tshape[0]):
for column in range(0, tshape[1]):
v = df.iloc[:,column:].values[row][0]
if v <= 0:
zero_flag = True
break
if zero_flag: break
if zero_flag:
if verbose:
print("Zeros in: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
sdfdata = sdf.retype(df)
indicies = find_intervals(projection_range, data_row_count + projection_range,
sdfdata, class_min[tclass], class_max[tclass])
if len(indicies) > 0:
random.shuffle(indicies)
for i in range(0, len(indicies)):
if k < class_count[z] and batch_i < batch_count:
# Add data to the batch array
x_train[batch_i] = get_indicator_data_at_index(indicies[i]-projection_range,
data_row_count, sdfdata, indicators, intervals)
y_train[batch_i][tclass] = 1
k += 1
batch_i += 1
else:
break
elif track_classes:
with open("nic-" + str(z) + ".csv", "a") as text_file:
text_file.write(tsymbol + "\n")
del sdfdata
del df
del symbols_used
del skips
del nics
return x_train, y_train
def homogeneous_populate_training2(n_classes, batch_count, data_column_count, data_row_count,
projection_range, check_for_zeros=True, track_classes=True,
verbose=True):
global data_lookup
indicators = ['rsi', 'atr', 'wr', 'vr']
intervals = ['2', '5', '10', '15', '20', '30', '60']
x_train = np.zeros((batch_count, data_column_count, data_row_count))
y_train = np.zeros((batch_count, n_classes), dtype=int)
symbols = []
#https://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ&render=download
with open('NASD.csv', newline='') as csvfile:
r = csv.DictReader(csvfile)
for row in r:
symbols.append(row['Symbol'])
class_max = [-50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50, 10000]
class_min = [-10000, -50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50 ]
avg_class_count = np.floor((batch_count) / n_classes)
class_count = np.zeros(n_classes, dtype=int)
class_count.fill(avg_class_count)
# If the data is uneven, put it in the center.
diff = batch_count - (avg_class_count * n_classes)
if diff > 0: class_count[10] += diff
if not os.path.exists('StockData/'): os.makedirs('StockData/')
batch_i = 0
for z in range(0, n_classes):
skips = [] # Skiped due to data errors
nics = [] # Not in class
if track_classes:
if os.path.isfile("skips.csv"):
with open('skips.csv', newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: skips.append(row['Symbols'])
else:
with open("skips.csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
if os.path.isfile("nic-" + str(z) + ".csv"):
with open("nic-" + str(z) + ".csv", newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: nics.append(row['Symbols'])
else:
with open("nic-" + str(z) + ".csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
if verbose:
print("\nClass #" + str(z+1) + " of " + str(n_classes) +
", Total skips: " + str(len(skips) + len(nics)) + "\n")
elif verbose:
print("\nClass #" + str(z) + " of " + str(n_classes))
random.shuffle(symbols)
for k in range(0, symbols):
tclass = z
tsymbol = symbols[k]
# Check for stocks to skip
if track_classes:
if tsymbol in skips: continue
if tsymbol in nics: continue
if os.path.isfile("StockData/" + tsymbol + ".csv"):
data_lookup[tsymbol] = pan.read_csv("StockData/" + tsymbol + ".csv",
sep=',', header=0, index_col=0)
if tsymbol in data_lookup:
if verbose:
print("Loading["+ str(class_min[tclass]) + "%:" + str(class_max[tclass]) + "%, " +
"#" + str(k) + "]: " + tsymbol)
df = data_lookup[tsymbol]
else:
if verbose:
print("Downloading["+ str(class_min[tclass]) + "%:" + str(class_max[tclass]) + "%, " +
"#" + str(k) + "]: " + tsymbol)
param = {
'q': tsymbol, # Stock symbol (ex: "AAPL")
'i': "86400", # Interval size in seconds ("86400" = 1 day intervals)
'x': "NASD", # Stock exchange symbol on which stock is traded (ex: "NASD")
'p': "5Y" # Period (Ex: "1Y" = 1 year)
}
# get price data (return pandas dataframe)
df = get_price_data(param)
df.to_csv("StockData/" + tsymbol + ".csv")
data_lookup[tsymbol] = deepcopy(df)
tshape = df.iloc[:,0:].values.shape
if tshape[0] <= data_row_count:
if verbose:
print("Data error: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
if tshape[0] < 400:
if verbose:
print("Not enough data for: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
# Check for zeros
if check_for_zeros:
zero_flag = False
for row in range(0, tshape[0]):
for column in range(0, tshape[1]):
v = df.iloc[:,column:].values[row][0]
if v <= 0:
zero_flag = True
break
if zero_flag: break
if zero_flag:
if verbose:
print("Zeros in: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
sdfdata = sdf.retype(df)
indicies = find_intervals(projection_range, data_row_count + projection_range,
sdfdata, class_min[tclass], class_max[tclass])
if len(indicies) > 0:
random.shuffle(indicies)
for i in range(0, len(indicies)):
if k < class_count[z] and batch_i < batch_count:
# Add data to the batch array
x_train[batch_i] = get_indicator_data_at_index(indicies[i]-projection_range,
data_row_count, sdfdata, indicators, intervals)
y_train[batch_i][tclass] = 1
k += 1
batch_i += 1
else:
break
elif track_classes:
with open("nic-" + str(z) + ".csv", "a") as text_file:
text_file.write(tsymbol + "\n")
del sdfdata
del df
del skips
del nics
return x_train, y_train
def random_normal_populate_training(n_classes, batch_count, data_column_count, data_row_count,
projection_range, mu, sigma, check_for_zeros=True,
track_classes=True, verbose=True):
global data_lookup
indicators = ['rsi', 'atr', 'wr', 'vr']
intervals = ['2', '5', '10', '15', '20', '30', '60']
x_train = np.zeros((batch_count, data_column_count, data_row_count))
y_train = np.zeros((batch_count, n_classes), dtype=int)
symbols = []
#https://www.nasdaq.com/screening/companies-by-industry.aspx?exchange=NASDAQ&render=download
with open('NASD.csv', newline='') as csvfile:
r = csv.DictReader(csvfile)
for row in r:
symbols.append(row['Symbol'])
class_max = [-50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50, 10000]
class_min = [-10000, -50, -20, -15, -10, -5, -4, -3, -2, -1, -0.1, 0, 1, 2, 3, 4, 5, 10, 15, 20, 50 ]
if not os.path.exists('StockData/'): os.makedirs('StockData/')
skips = [] # Skiped due to data errors
nics = {}
if track_classes:
if os.path.isfile("skips.csv"):
with open('skips.csv', newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: skips.append(row['Symbols'])
else:
with open("skips.csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
for z in range(0, n_classes):
nics[z] = []
if os.path.isfile("nic-" + str(z) + ".csv"):
with open("nic-" + str(z) + ".csv", newline='\n') as csvfile:
r = csv.DictReader(csvfile)
for row in r: nics[z].append(row['Symbols'])
else:
with open("nic-" + str(z) + ".csv", "w") as text_file:
text_file.write("""Symbols""" + "\n")
batch_i = 0
while batch_i < batch_count:
tsymbol = symbols[np.random.randint(0, len(symbols))]
tclass = int(np.random.normal(mu, sigma))
if tclass >= n_classes: tclass = n_classes-1
elif tclass < 0: tclass = 0
# Check for stocks to skip
if track_classes:
if tsymbol in skips: continue
if tsymbol in nics[tclass]: continue
if tsymbol in data_lookup:
if verbose: print("Loading: " + tsymbol)
df = data_lookup[tsymbol]
elif os.path.isfile("StockData/" + tsymbol + ".csv"):
if verbose: print("Loading: " + tsymbol)
data_lookup[tsymbol] = pan.read_csv("StockData/" + tsymbol + ".csv",
sep=',', header=0, index_col=0)
df = data_lookup[tsymbol]
else:
if verbose: print("Downloading: " + tsymbol)
param = {
'q': tsymbol, # Stock symbol (ex: "AAPL")
'i': "86400", # Interval size in seconds ("86400" = 1 day intervals)
'x': "NASD", # Stock exchange symbol on which stock is traded (ex: "NASD")
'p': "5Y" # Period (Ex: "1Y" = 1 year)
}
# get price data (return pandas dataframe)
df = get_price_data(param)
df.to_csv("StockData/" + tsymbol + ".csv")
data_lookup[tsymbol] = deepcopy(df)
tshape = df.iloc[:,0:].values.shape
if tshape[0] <= data_row_count:
if verbose:
print("Data error: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
if tshape[0] < 400:
if verbose:
print("Not enough data for: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
# Check for zeros
if check_for_zeros:
zero_flag = False
for row in range(0, tshape[0]):
for column in range(0, tshape[1]):
v = df.iloc[:,column:].values[row][0]
if v <= 0:
zero_flag = True
break
if zero_flag: break
if zero_flag:
if verbose:
print("Zeros in: " + tsymbol +
", continuing to next symbol...")
if track_classes:
with open("skips.csv", "a") as text_file:
text_file.write(tsymbol + "\n")
continue
sdfdata = sdf.retype(df)
indicies = find_intervals(projection_range, data_row_count + projection_range,
sdfdata, class_min[tclass], class_max[tclass])
if len(indicies) > 0:
i = np.random.randint(0, len(indicies))
if batch_i < batch_count:
# Add data to the batch array
x_train[batch_i] = get_indicator_data_at_index(indicies[i]-projection_range,
data_row_count, sdfdata, indicators, intervals)
y_train[batch_i][tclass] = 1
batch_i += 1
else:
break
elif track_classes:
with open("nic-" + str(tclass) + ".csv", "a") as text_file:
text_file.write(tsymbol + "\n")
del sdfdata
del df
del skips
del nics
return x_train, y_train | UTF-8 | Python | false | false | 24,109 | py | 28 | DataPrep.py | 7 | 0.427517 | 0.411216 | 0 | 596 | 38.454698 | 110 |
bettersleepearly/Programming-Beginner-2 | 14,766,097,597,640 | 5592b36b79250beb3b4b2372cdbb1467f1f42ac7 | 34200997a02dc3f6f733c297b48d47ad9566e3d8 | /Shoppinproj.py | 1ecdfaf10f80d3b716c38fb1ae3c97f46ec111c3 | [] | no_license | https://github.com/bettersleepearly/Programming-Beginner-2 | 4396844be3de449017b132fa67042977d2364e19 | 0ef1c4b224716f51a4f47d40f5b5d08bc588d877 | refs/heads/master | 2022-10-14T15:30:26.608237 | 2020-06-09T15:15:14 | 2020-06-09T15:15:14 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | currency = 'USD'
price = {'CB1':139,
'CB2':149,
'CB3':139,
'CB4':139,
'CB5':169,
'CB6':139,
'CB7':139,
'CB8':139,
'CB9':139,
'CB10':149,
'CB11':134,
'CB12':129,
'LB1':174,
'LB2':174,
'LB3':174,
'LB4':199,
'LB5':199,
'LB6':199,
'LB7':189,
'LB8':189,
'LB9':179,
'LB10':244,
'LB11':244,
'LB12':244}
cb1 = 'Dinghy Tiger:'
cb2 = 'Dinghy FG Watercolor:'
cb3 = 'Dinghy Crown Peak:'
cb4 = 'Dinghy BK:'
cb5 = 'Gordito Pantera:'
cb6 = 'Ditchlife:'
cb7 = 'Wrecktangle Lighthouse:'
cb8 = 'Tugboat Captain:'
cb9 = 'Tugboat Chill Cat:'
cb10 = 'Tugboat Midnight Snek:'
cb11 = 'Dinghy Arctic Fox:'
cb12 = 'Mighty Mite:'
lb1 = 'Super Chief Watercolor:'
lb2 = 'Ripper Humanoid:'
lb3 = 'Ripper Watercolor:'
lb4 = 'Drop Carve 40 Fox:'
lb5 = 'Drop Cat 33 Illuminacion:'
lb6 = 'Drop Cat 38 Seeker:'
lb7 = 'Pinner Night Moves:'
lb8 = 'Totem Blaze:'
lb9 = 'Chief Eyes:'
lb10 = 'Switchblade 38 Tropic:'
lb11 = 'Nine Two Five Horror:'
lb12 = 'Hollowtech Switchblade 36 Lizard:'
print("\n _____________")
print("| |")
print("| L A N D |")
print("| Y A T C H Z |")
print("|_____________|")
print('\nWE EXPLORE THE WORLD ON SKATEBOARDS \nWe make vehicles for seeking out adventure, finding joy in self-expression and improving our interactions with the world around us.')
print('\nInterested in our products? Wanna dive in?')
question = input('\nIf yes, type Y. \nType N to exit.')
if question == "N":
print('___________________________________________________________________________________________________________________________________________________')
print('\nWell then... Fuck off mate.')
if question == "Y":
print('___________________________________________________________________________________________________________________________________________________')
print("\nBefore finding you a perfect skateboard, \nLet's create a account")
username = input('\nMay I have your username:')
print("\nOkay" + " " + username + ",")
print("May I have your age? (since our branding and products are not suited for ages under 18):")
age = int(input())
if age < 18:
print('___________________________________________________________________________________________________________________________________________________')
print("\nI am sorry that you can not countinue" + " " + username)
print("\nUnderage usage of our products and contents is illegal...\nSo fuck off kid!")
if age >= 18:
print('___________________________________________________________________________________________________________________________________________________')
print("\nRequirement reached,\nYour access is now granted")
print("\nEnjoy shopping skateboards!")
print("\nWe own a large varieties of skateboards and longboards with different styles and uses.")
print("\nOur 2 main lines are recommended the most,")
boards = "\n(1) Cruiser boards\n(2) Longboards\nPick one (type a number):"
print(boards)
boardpick = str(input())
if boardpick == "1":
print('___________________________________________________________________________________________________________________________________________________')
print("\nThe most fun and capable boards in our line-up, these boards are the best bang for your buck available today.")
print('Whether it’s your first board or your tenth, there’s always room in your quiver for a good cruiser and you’ll quickly find it becoming your go-to in all sorts of situations.')
print('___________________________________________________________________________________________________________________________________________________')
print('\n1.'+cb1+ " "+ str(price.get('CB1')) +" "+ currency+'\n(No Picture LMAO)')
print('\n2.'+cb2+ " "+ str(price.get('CB2')) +" "+ currency+'\n(No Picture LMAO)')
print('\n3.'+cb3+ " "+ str(price.get('CB3')) +" "+ currency+'\n(No Picture LMAO)')
print('\n4.'+cb4+ " "+ str(price.get('CB4')) +" "+ currency+'\n(No Picture LMAO)')
print('\n5.'+cb5+ " "+ str(price.get('CB5')) +" "+ currency+'\n(No Picture LMAO)')
print('\n6.'+cb6+ " "+ str(price.get('CB6')) +" "+ currency+'\n(No Picture LMAO)')
print('\n7.'+cb7+ " "+ str(price.get('CB7')) +" "+ currency+'\n(No Picture LMAO)')
print('\n8.'+cb8+ " "+ str(price.get('CB8')) +" "+ currency+'\n(No Picture LMAO)')
print('\n9.'+cb9+ " "+ str(price.get('CB9')) +" "+ currency+'\n(No Picture LMAO)')
print('\n10.'+cb10+ " "+ str(price.get('CB10')) +" "+ currency+'\n(No Picture LMAO)')
print('\n11.'+cb11+ " "+ str(price.get('CB11')) +" "+ currency+'\n(No Picture LMAO)')
print('\n12.'+cb12+ " "+ str(price.get('CB12')) +" "+ currency+'\n(No Picture LMAO)')
print('\nSo...Pick one (by typing "CB" + the number of the board):')
action = str(input('To return to the menu,\nType "menu"\nType "mycart" to go to your cart and further check-out there.'))
print(action)
print('___________________________________________________________________________________________________________________________________________________')
if boardpick == "2":
print('___________________________________________________________________________________________________________________________________________________')
print('Our Longboards are designed to get you out exploring your environment, no matter what kind of terrain you have surrounding you.\nThe boards in this category come in two deck styles; Top mounted or Drop-through.')
print('\nTop mount boards give you tons of leverage over your trucks, giving you a deeper carving, surfy feel and a lively ride underfoot.')
print('Drop-through boards are lower to the ground, making them driftier, more stable and blurring the lines between longboarding and freeriding.')
print('\n1.'+lb1+ " "+ str(price.get('LB1')) +" "+ currency+'\n(No Picture LMAO)')
print('\n2.'+lb2+ " "+ str(price.get('LB2')) +" "+ currency+'\n(No Picture LMAO)')
print('\n3.'+lb3+ " "+ str(price.get('LB3')) +" "+ currency+'\n(No Picture LMAO)')
print('\n4.'+lb4+ " "+ str(price.get('LB4')) +" "+ currency+'\n(No Picture LMAO)')
print('\n5.'+lb5+ " "+ str(price.get('LB5')) +" "+ currency+'\n(No Picture LMAO)')
print('\n6.'+lb6+ " "+ str(price.get('LB6')) +" "+ currency+'\n(No Picture LMAO)')
print('\n7.'+lb7+ " "+ str(price.get('LB7')) +" "+ currency+'\n(No Picture LMAO)')
print('\n8.'+lb8+ " "+ str(price.get('LB8')) +" "+ currency+'\n(No Picture LMAO)')
print('\n9.'+lb9+ " "+ str(price.get('LB9')) +" "+ currency+'\n(No Picture LMAO)')
print('\n10.'+lb10+ " "+ str(price.get('LB10')) +" "+ currency+'\n(No Picture LMAO)')
print('\n11.'+lb11+ " "+ str(price.get('LB11')) +" "+ currency+'\n(No Picture LMAO)')
print('\n12.'+lb12+ " "+ str(price.get('LB12')) +" "+ currency+'\n(No Picture LMAO)')
print('\nPick one (by typing "LB" + the number of the board):')
action = str(input('To return to the menu,\nType "menu"\nType "mycart" to go to your cart and further check-out there.'))
print(action)
print('___________________________________________________________________________________________________________________________________________________')
instore = True
while action == "menu":
instore = True
print("O U R B O A R D S")
print(boards)
boardpick
print('___________________________________________________________________________________________________________________________________________________')
#if action == "mycart":
#print(AHHA)
if action != "menu":
cart = [int(price.get(action))]
visualcart = ("Your Cart:" + " " + str(cart) +" "+ currency)
print(visualcart)
print('___________________________________________________________________________________________________________________________________________________')
instore = True
while action:
instore = True
action = str(input('Anymore sellection? my friend :)\nType here:'))
print(visualcart)
| UTF-8 | Python | false | false | 8,680 | py | 3 | Shoppinproj.py | 2 | 0.450542 | 0.422527 | 0 | 166 | 50.168675 | 231 |
junk13/fiercecroissant | 4,939,212,400,068 | b87b759aed94b2313d3bd88bf3d2e071301fb827 | 9a18fa277118715e33c68763a98f40b3df0a2448 | /fiercecroissant.py | 04d64756dc190e3efc7fd7a3fa2627ece451df34 | [] | no_license | https://github.com/junk13/fiercecroissant | 64bbe6831143978ccb756e4c93d812bcc1711798 | 26b88dd6f3068f40cc74119611b30a90542ce880 | refs/heads/master | 2020-04-08T16:21:16.296844 | 2018-11-08T20:42:57 | 2018-11-08T20:42:57 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python3
import requests, json, time, sys, os, re, configparser, base64
from pymongo import MongoClient
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
client = MongoClient('localhost:27017')
db = client.fc
coll_pastemetadata = client.fc.pastemetadata
paste_data = ""
save_path = os.getcwd() + '/pastes/' #Where keyword matching pastes get saved
save_path_base64 = save_path + '/base64pastes/'
save_path_hex = save_path + '/hexpastes/'
save_path_binary = save_path + '/binarypastes/'
save_path_php = save_path + '/phppastes/'
save_path_img = save_path + '/imgpastes/'
save_path_ascii = save_path + '/asciipastes/'
save_path_ps = save_path + '/pspastes/'
# Config file for token or key interactions.
config = configparser.ConfigParser()
config.read('config.ini')
if not config.has_section('main'):
print("\nPlease ensure that your 'config.ini' exists and sets the appropriate values.\n")
exit(1)
hip_token = config.get('main','hip_token')
hip_room = config.get('main', 'hip_room')
def scrapebin():
def requests_retry_session(retries=10, backoff_factor=0.3, status_forcelist=(500, 502, 504), session=None, params=None):
session = session or requests.Session()
retry = Retry(total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist)
adapter = HTTPAdapter(max_retries=retry)
session.mount('https://', adapter)
return session
def save_paste(path, data):
with open(path, 'w', encoding='utf-8') as file:
file.write(data)
return file.closed
def save_metadata(paste, encodingtype):
pastemetadata_dict = {'date': [], 'key': [], 'size': [], 'expire': [], 'syntax': [], 'user':[], 'encodingtype':[]}
pastemetadata_dict.update({'date':paste['date'], 'key':paste['key'], 'size':paste['size'], 'expire':paste['expire'], 'syntax':paste['syntax'], 'user':paste['user'], 'encodingtype':encodingtype})
return pastemetadata_dict
def hipchatpost():
#Alerts a HipChat room about a new paste.
headers = {'Content-Type': 'application/json'}
card = {
"style": "link",
"url": paste_url,
"id": "fee4d9a3-685d-4cbd-abaa-c8850d9b1960",
"title": "Pastebin Hit",
"description": {
"format": "html",
"value": "<b>New Paste Seen:</b>" + paste_url + " Encoded as:" + encodingtype
},
"icon": {
"url": "https://pastebin.com/favicon.ico"
},
"date": 1443057955792
}
data_json = {'message': '<b>New Paste<b>', 'card': card, 'message_format': 'html'}
params = {'auth_token': hip_token}
try:
r = requests.post('https://api.hipchat.com/v2/room/' + hip_room + '/notification', data=json.dumps(data_json),headers=headers, params=params)
except:
pass
while True:
hits = 0
r = requests_retry_session().get('https://scrape.pastebin.com/api_scraping.php', params={'limit': 100})
recent_items = None
try:
recent_items = r.json()
except json.decoder.JSONDecodeError as e:
print(('Exception raised decoding JSON: {}').format(e))
continue
for i, paste in enumerate(recent_items):
pb_raw_url = 'https://pastebin.com/raw/' + paste['key']
paste_data = requests.get(pb_raw_url).text
paste_lang = paste['syntax']
paste_size = paste['size']
paste_url = paste['full_url']
stringmatch = re.search(r'(A){20}', paste_data) #Searching for 20 'A's in a row.
stringmatch_76 = re.search(r'(A){76}', paste_data) #Searching for 76 'A's in a row.
nonwordmatch = re.search(r'\w{200,}', paste_data) #Searching for 200 characters in a row to get non-words.
base64match = re.search(r'\A(TV(oA|pB|pQ|qQ|qA|ro|pA))', paste_data) #Searches the start of the paste for Base64 encoding structure for an MZ executable.
base64reversematch = re.search(r'((Ao|Bp|Qp|Qq|Aq|or|Ap)VT)\Z', paste_data) #Searches the end of the paste for reversed Base64 encoding structure for an MZ executable.
binarymatch = re.search(r'(0|1){200,}', paste_data) #Searches for 200 0's or 1's in a row.
hexmatch = re.search(r'(\\x\w\w){100,}', paste_data) #Regex for hex formatted as "\\xDC", "\\x02", "\\xC4"
hexmatch2 = re.search(r'[2-9A-F]{200,}', paste_data) #Regex for Hexadecimal encoding.
hexmatch3 = re.search(r'([0-9A-F ][0-9A-F ][0-9A-F ][0-9A-F ][0-9A-F ]){150,}', paste_data) #Regex for hex formatted as "4D ", "5A ", "00 " in groups of at least 150.
phpmatch = re.search(r'\A(<\?php)', paste_data) #Searches the start of a paste for php structure.
imgmatch = re.search(r'\A(data:image)', paste_data) #Searches the start of a paste for data:image structure.
asciimatch = re.search(r'\A(77 90 144 0 3 0 0 0)', paste_data) #Searches the start of a paste for '77 90 144 0 3 0 0 0' to filter ASCII.
powershellmatch = re.search(r'powershell', paste_data)
if ((((nonwordmatch or stringmatch) or (stringmatch_76 and (base64match or base64reversematch)) or hexmatch3) and int(paste_size) > 40000) or (powershellmatch and int(paste_size) < 10000)) and paste_lang == "text" and coll_pastemetadata.find_one({'key':paste['key']}) is None:
if (binarymatch and paste_data.isnumeric()):
filename = save_path_binary + paste['key']
encodingtype = 'binary'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif (base64match or base64reversematch):
filename = save_path_base64 + paste['key']
encodingtype = 'base64'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif asciimatch:
filename = save_path_ascii + paste['key']
encodingtype = "ASCII"
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif (hexmatch or hexmatch2 or hexmatch3):
filename = save_path_hex + paste['key']
encodingtype = 'hexadecimal'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif phpmatch:
filename = save_path_php + paste['key']
encodingtype = 'php'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif imgmatch:
filename = save_path_img + paste['key']
encodingtype = 'img'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
elif powershellmatch:
filename = save_path_ps + paste['key']
encodingtype = 'powershell'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
else:
filename = save_path + paste['key']
encodingtype = 'other'
save_paste(filename, paste_data)
metadata = save_metadata(paste, encodingtype)
coll_pastemetadata.insert_one(metadata)
hipchatpost()
time.sleep(60)
if __name__ == "__main__":
while True:
scrapebin()
| UTF-8 | Python | false | false | 8,511 | py | 3 | fiercecroissant.py | 1 | 0.569968 | 0.548584 | 0.00047 | 162 | 51.537037 | 288 |
fprimex/lad | 4,355,096,853,786 | 1d394c3a901e45ace142d60e8ab01314f1299677 | a265442582d35030a22a207930bc849c5bd73c9e | /NotebookPage/VarsPage.py | 92c8f7f5b0d28430bf44c6fdcb8e57c3c9ecaef4 | [
"Apache-2.0"
] | permissive | https://github.com/fprimex/lad | 48ebff8f83a82b7ec888c26234466c7f8026ac95 | 493e998eae351252cf78736b803ddc88de6abead | refs/heads/main | 2023-06-09T01:22:45.487011 | 2018-08-26T04:22:35 | 2018-08-26T04:22:35 | 146,149,601 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import wx
import Globals
from ListEditorCtrl import ListEditorCtrl
class VarsPage(wx.Panel):
def __init__(self, parent, id=-1):
wx.Panel.__init__(self, parent, -1)
cols = [u"var", u"val / exp"]
listdata = {}
i = 0
for var in Globals.G.vars.keys():
listdata[i] = (var, Globals.G.var_exps[var])
i += 1
self.vars_ctrl = ExpListCtrl(self, -1, cols, listdata, style=wx.LC_REPORT | wx.BORDER_NONE)
page_sizer = wx.BoxSizer(wx.VERTICAL)
page_sizer.Add(self.vars_ctrl, 1, wx.EXPAND, 0)
self.SetSizer(page_sizer)
Globals.canvas.on_node_create_funcs.append(self.vars_ctrl.RefreshList)
Globals.canvas.on_edge_create_funcs.append(self.vars_ctrl.RefreshList)
Globals.canvas.on_node_delete_funcs.append(self.vars_ctrl.RefreshList)
Globals.canvas.on_edge_delete_funcs.append(self.vars_ctrl.RefreshList)
Globals.canvas.on_drag_end_funcs.append(self.vars_ctrl.RefreshList)
def Reinit(self):
listdata = {}
i = 0
for var in Globals.G.vars.keys():
listdata[i] = (var, Globals.G.var_exps[var])
i += 1
self.vars_ctrl.listctrldata = listdata
self.vars_ctrl.RefreshList()
class ExpListCtrl(ListEditorCtrl):
def __init__(self, parent, ID, headings, listdata, pos=wx.DefaultPosition,
size=wx.DefaultSize, style=0):
ListEditorCtrl.__init__(self, parent, ID, headings, listdata, pos, size, style)
def GetRowValues(self, row):
G = Globals.G
var = self.listctrldata[row][0]
exp = self.listctrldata[row][1]
try:
value = eval(exp)
except:
value = u"ERROR"
Globals.G.var_exps[var] = exp
Globals.G.vars[var] = value
return (var, repr(value))
def GetEditValue(self, row, col):
if col == 1:
return self.listctrldata[row][1]
else:
return self.GetItem(row, col).GetText()
def SetValue(self, row, col, text):
# save exp text back into the expression dict
if col == 0:
del Globals.G.vars[self.listctrldata[row][0]]
del Globals.G.var_exps[self.listctrldata[row][0]]
self.listctrldata[row] = (text, self.listctrldata[row][1])
else:
self.listctrldata[row] = (self.listctrldata[row][0], text)
def PreDelete(self, row):
var = self.GetItem(row, 0).GetText()
del Globals.G.vars[var]
del Globals.G.var_exps[var]
def PostInsert(self, row):
var = self.listctrldata[row][0]
Globals.G.vars[var] = None
Globals.G.var_exps[var] = None
| UTF-8 | Python | false | false | 2,717 | py | 17 | VarsPage.py | 15 | 0.589253 | 0.581524 | 0 | 76 | 34.75 | 99 |
michealbradymahoney/CP1404-2019SP2 | 11,982,958,756,874 | 9873ffb1c7851050c46805bfef2b2a308b08c0da | 13311af3281150ffbdc927ffe7e6b547a1bb0899 | /Practicals/prac_02/password_checker.py | 4376c0efbaf9488b272f10db62e68dbc7bdcbc12 | [] | no_license | https://github.com/michealbradymahoney/CP1404-2019SP2 | 263db4593d8bd5a137e9ba13a0330c8cb566f82a | 02a7c985e0eb4e0d76add18f7541eaee7eeba327 | refs/heads/master | 2020-06-30T08:42:39.520236 | 2019-08-31T01:55:13 | 2019-08-31T01:55:13 | 200,781,949 | 0 | 0 | null | false | 2019-10-08T07:25:35 | 2019-08-06T05:22:40 | 2019-08-31T01:55:17 | 2019-10-08T07:22:43 | 2,446 | 0 | 0 | 2 | Python | false | false | """
CP1404/CP5632 - Practical
Password checker "skeleton" code to help you get started
"""
# Write a program that asks for and validates a person's password.
# The program is not for comparing a password to a known password, but validating the 'strength' of a new password,
# like you see on websites: enter your password and then it tells you if it's valid (matches the required pattern)
# and re-prompts if it's not.
# All passwords must contain at least one each of: number, lowercase and uppercase character.
#
# The starter code uses constants (variables at the top of the code, named in ALL_CAPS) to store:
#
# a. the minimum and maximum length of the password
# b. whether or not a special character (not alphabetical or numerical) is required
#
# Remember when a program has constants, you should use them everywhere you can so that if you change them at the top,
# this change affects the whole program as expected.
# E.g. if you changed the minimum length to 5, the program should print 5 and should check to make sure the
# password is >= 5 characters long.
MIN_LENGTH = 5
MAX_LENGTH = 15
SPECIAL_CHARS_REQUIRED = False
SPECIAL_CHARACTERS = "!@#$%^&*()_-=+`~,./'[]<>?{}|\\"
def main():
"""Program to get and check a user's password."""
print("Please enter a valid password")
print("Your password must be between", MIN_LENGTH, "and", MAX_LENGTH,
"characters, and contain:")
print("\t1 or more uppercase characters")
print("\t1 or more lowercase characters")
print("\t1 or more numbers")
if SPECIAL_CHARS_REQUIRED:
print("\tand 1 or more special characters: ", SPECIAL_CHARACTERS)
password = input("> ")
while not is_valid_password(password):
print("Invalid password!")
password = input("> ")
print("Your {}-character password is valid: {}".format(len(password),
password))
def is_valid_password(password):
"""Determine if the provided password is valid."""
if len(password) < MIN_LENGTH or len(password) > MAX_LENGTH:
return False
count_lower = 0
count_upper = 0
count_digit = 0
count_special = 0
for char in password:
if char.isdigit():
count_digit += 1
elif char.islower():
count_lower += 1
elif char.isupper():
count_upper += 1
elif char in SPECIAL_CHARACTERS:
count_special += 1
if count_lower == 0 or count_upper == 0 or count_digit == 0:
return False
if SPECIAL_CHARS_REQUIRED:
if count_special == 0:
return False
# if we get here (without returning False), then the password must be valid
return True
main()
| UTF-8 | Python | false | false | 2,726 | py | 20 | password_checker.py | 18 | 0.652238 | 0.641233 | 0 | 72 | 36.861111 | 118 |
lanzorg/winup | 4,226,247,843,373 | c4514a58b11ff050792254cccfb14d44646f8bde | beae4c7e27bc10f8f53f7ece6c33e13359936d3b | /winup/helpers/downloaders.py | 028920ed24cc9bbd86fbfac18c70ffc2b705f59e | [] | no_license | https://github.com/lanzorg/winup | 771537d4de6efcc76e0effa059154b2d7871f667 | e2545e10f5caa5d20c24fb756cb6819b345baf9f | refs/heads/master | 2020-05-02T12:14:31.258250 | 2019-06-11T08:30:41 | 2019-06-11T08:30:41 | 177,953,474 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import tempfile
import requests
import rfc6266_parser
def download_from_url(url, cookies=None):
"""Download a file from the direct download url."""
response = requests.get(url=url, cookies=cookies, allow_redirects=True, stream=True)
file_path = os.path.join(
tempfile.mkdtemp(),
rfc6266_parser.parse_requests_response(response).filename_unsafe,
)
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
f.flush()
return file_path
| UTF-8 | Python | false | false | 593 | py | 13 | downloaders.py | 11 | 0.642496 | 0.62226 | 0 | 23 | 24.782609 | 88 |
valexby/text-classification-api | 2,980,707,338,330 | dfd78c37f525c9cd28cf1dd87489ab7536e0cfc7 | c6e73a840037d831b95af3687d592536dccf6dbb | /core/classifier.py | 24e58c9562bea9ce33064cac7ea3768a0cdb4298 | [] | no_license | https://github.com/valexby/text-classification-api | c3c4e18c56b8ef1303f542048f2c590b6cd59f1e | b75d49a7d8f7c20a2c92c1115cf0d6762b23649a | refs/heads/master | 2020-04-29T22:13:49.067198 | 2019-03-20T18:23:48 | 2019-03-20T18:23:48 | 176,439,462 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pickle
from nltk import word_tokenize
from nltk.stem.snowball import SnowballStemmer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
class Stemmer:
def __init__(self):
self.stemmer = SnowballStemmer('english').stem
def __call__(self, text):
return [self.stemmer(i) for i in word_tokenize(text)]
class Classifier:
def __init__(self, model=None):
self.model = model
def load(self, model_path):
with open(model_path, 'rb') as model_file:
self.model = pickle.load(model_file)
self.model.steps[0][1].tokenizer = Stemmer()
def dump(self, model_path):
self.model.steps[0][1].tokenizer = None
with open(model_path, 'wb') as model_file:
pickle.dump(self.model, model_file)
def predict(self, text):
predicted = self.model.predict([text])
return int(predicted[0])
| UTF-8 | Python | false | false | 1,044 | py | 8 | classifier.py | 4 | 0.676245 | 0.671456 | 0 | 33 | 30.636364 | 61 |
minato1203/P8test1 | 266,287,972,815 | 42dfcd123f38a1189026febd63428f8ebf8485c1 | 21640cbd34a2f338fe51a79eb38230d4f2cfa010 | /b.py | 3ae7910eeb3065749fcba27038776875a0014262 | [] | no_license | https://github.com/minato1203/P8test1 | 5d32e5bd8ed3e588794f9e89124e1484eca92d9e | a3b502623ea72209cc5c2c746dafb8873ac473ef | refs/heads/master | 2023-04-09T07:42:05.330646 | 2021-04-28T11:05:45 | 2021-04-28T11:05:45 | 362,369,274 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | print("this is only a test text") | UTF-8 | Python | false | false | 33 | py | 1 | b.py | 1 | 0.727273 | 0.727273 | 0 | 1 | 33 | 33 |
Hoon94/Algorithm | 1,855,425,893,552 | 4c9ebdf11ceab18811cb4bef019f6c7ab36a772a | 73bb9d0d50b96b3d7ee48e2d97b1d8128a5f2b1e | /Leetcode/14 Longest Common Prefix.py | 9158836808691acfe03b97c39c8efcb0801cabe9 | [] | no_license | https://github.com/Hoon94/Algorithm | a0ef211d72a2b78e08249501d197875065392084 | 6f6969214bbb6bacd165313b6d8c0feb1caa8963 | refs/heads/master | 2023-05-11T13:12:11.585285 | 2023-05-08T14:38:47 | 2023-05-08T14:38:47 | 244,936,260 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | class Solution:
def longestCommonPrefix(self, strs: list) -> str:
"""[summary]
Args:
strs (List[str]): words in a list
Returns:
str: return longest common prefix
"""
result = ''
strs = sorted(strs, key=lambda x: len(x))
short = strs[0] if len(strs) > 0 else ''
for i in range(len(short)):
for word in strs:
if short != word[:len(short)]:
short = short[:-1]
break
else:
result = short
if len(result) > 0:
break
return result
| UTF-8 | Python | false | false | 655 | py | 387 | 14 Longest Common Prefix.py | 386 | 0.439695 | 0.433588 | 0 | 28 | 22.392857 | 53 |
aamini/chemprop | 9,844,065,091,729 | 28cc1e5981291e2bac08e7771584ff96ff4f8d47 | 7fec152e2f81c8ce35bed6f357937b2d4fd1ff6c | /scripts/create_train_curves.py | 55d9a9b4e7380400670f87e969d4810344ef8e37 | [
"MIT"
] | permissive | https://github.com/aamini/chemprop | 072d712438dc5b3ba554f2734c03cfc4ae64834a | a7a137a09589474a5c5a83f75fbddbddfb877dc8 | refs/heads/confidence-evidential | 2023-05-23T20:59:52.572809 | 2021-07-29T16:16:26 | 2021-07-29T16:16:26 | 388,299,389 | 85 | 16 | MIT | false | 2021-07-29T16:16:27 | 2021-07-22T02:05:01 | 2021-07-29T15:16:18 | 2021-07-29T16:16:26 | 292,586 | 13 | 1 | 0 | Python | false | false | """Create train curve from log file
Call signatures used:
python scripts/create_train_curves.py --log-dir submission_results/gnn/qm9/evidence/
# Note : for this case, it's worth rescaling the x axis
python scripts/create_train_curves.py --log-dir submission_results_atomsitic_multi/gnn/qm9/evidence/ --verbose-extension fold_0/model_0/verbose.log
"""
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
import argparse
import re
import pandas as pd
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--log-file", help="name of log file")
parser.add_argument("--log-dir", help="name of log dir (eg has diff trials)")
parser.add_argument("--verbose-extension",
help="path from the trial directories to the log",
default="verbose.log") #fold_0/model_0/verbose.log
parser.add_argument("--out-name",
help="Output name",
default="temp.png") #fold_0/model_0/verbose.log
return parser.parse_args()
def get_val_losses(log_file : str):
""" Extract the validation epochs from the log file"""
losses = []
ctr = 0
epoch_re = r"Validation mae = (\d+\.\d+) *\nEpoch (\d+)"
lines = open(log_file, "r").readlines()
for index, line in enumerate(lines[:-1]):
ctr += 1
search_str = "".join([line,lines[index+1]])
examples = re.findall(epoch_re, search_str)
if len(examples) > 0:
loss, epoch = examples[0]
losses.append(float(loss))
return losses
if __name__=="__main__":
args = get_args()
log_dir = args.log_dir
log_file= args.log_file
if log_dir:
trial_files = [os.path.join(log_dir, i) for i in os.listdir(log_dir)]
epoch_loss_list = []
for log_file in [f"{j}/{args.verbose_extension}" for j in trial_files]:
if os.path.isfile(log_file):
print(log_file)
epoch_losses = get_val_losses(log_file)
for index, loss in enumerate(epoch_losses):
loss_entry = {"epoch" : index, "loss" : loss}
epoch_loss_list.append(loss_entry)
df = pd.DataFrame(epoch_loss_list)
g = sns.lineplot(data =df, x="epoch", y="loss")
#plt.ylim([0,0.5])
plt.savefig(f"{args.out_name}")
else:
epoch_losses = get_val_losses(log_file)
| UTF-8 | Python | false | false | 2,463 | py | 65 | create_train_curves.py | 46 | 0.590337 | 0.583435 | 0 | 74 | 32.202703 | 147 |
NickNganga/pyhtontake2 | 17,892,833,760,757 | f5c41d06bb1137f0d1aac5b0f1dbedc9604cc91b | c653a1780fd09621bc543a09043e20b172445cce | /task3.py | b3732f92b2f2c6fcba84b9e1af2e3909c2c94ba4 | [] | no_license | https://github.com/NickNganga/pyhtontake2 | c5f21d4ccdc8375b24d1256a841cbac02a9a35c9 | 8ab3e25fcd596668f097466e8abd327586b65e71 | refs/heads/master | 2020-07-29T13:43:11.857697 | 2019-09-21T19:03:29 | 2019-09-21T19:03:29 | 209,826,409 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | def list_ends(a_list):
return (a_list[0], a_list[len(a_list)-1])
# number of elements
num = int(input("Enter number of elements : "))
# Below line read inputs from user using map() function
put = list(map(int,input("\nEnter the numbers : ").strip().split()))[:num]
# Below Line calls the function created above.
put1 = list_ends(put)
#Outputs the values under indices '0' & '-1' (the last one in the list).
print("\nList is - ", put)
#Outputs the values under indices '0' & '-1' (the last one in the list).
print("\nNew List is - ", put1) | UTF-8 | Python | false | false | 547 | py | 8 | task3.py | 7 | 0.665448 | 0.650823 | 0 | 17 | 31.235294 | 74 |
nimble-robotics/NR_pdf_utils | 8,847,632,648,903 | 3cd1b38bc5678ca7783948073e99137351069d99 | 525ac244cc9c57a113686dcbf0816c06b9c7f026 | /application.py | 10815c22c65dce9b17a7f0bf25e9fa5985802416 | [] | no_license | https://github.com/nimble-robotics/NR_pdf_utils | c9a2f574f976db8ca20d444c703dfb8436bd14c7 | d7796aa3088bb598c1dfb8f58f27f3804a216340 | refs/heads/master | 2021-01-09T01:56:59.067583 | 2020-03-11T19:00:30 | 2020-03-11T19:00:30 | 242,209,366 | 0 | 0 | null | true | 2020-03-11T19:00:31 | 2020-02-21T18:53:46 | 2020-03-11T18:47:09 | 2020-03-11T19:00:30 | 120 | 0 | 0 | 0 | Python | false | false | from flask import Flask,request,render_template
# from utils import upload_to_aws,bucket_name
from healthcheck import HealthCheck
import os
application = app = Flask(__name__,template_folder='templates')
App_path = os.path.dirname(os.path.abspath(__file__))
@app.route('/home')
def home():
return render_template('index.html')
def app_status():
"""
added health check
"""
return True,"App is up and running"
health = HealthCheck(app,"/healthcheck")
health.add_check(app_status)
if __name__ == '__main__':
app.run(debug = True, host='0.0.0.0', port= 5000 ) | UTF-8 | Python | false | false | 591 | py | 8 | application.py | 2 | 0.673435 | 0.659898 | 0 | 26 | 21.769231 | 63 |
jgraniero52/lab-4 | 19,507,741,477,552 | 047a86ff29f23855d0163b2fc3275a5467140a9d | 13bff9eb83069bb94456449b588571b3de08b375 | /searchEngine.py | d339f4911cb61d57d8ef82541c8bccea4136f994 | [] | no_license | https://github.com/jgraniero52/lab-4 | a379c3dcead1c3944805241ea03f86480d4066d0 | e95e86916ddc1080db1ea4ff8bad68c26d6cf344 | refs/heads/master | 2021-05-28T02:25:41.088980 | 2012-10-07T22:34:00 | 2012-10-07T22:34:00 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sqlite3
import pickle
import os
from portStemmer import PorterStemmer
from makeBigDict import scanCleanDir
class Searcher:
def __init__(self):
self.stemmer = PorterStemmer()
try:
f = open(os.getcwd()+"/data/tokensDict.p", "r")
self.tokens = pickle.load(f)
except:
print "Pickle file not found"
print "Creating the Dirctionary"
self.tokens = scanCleanDir()
f = open(os.getcwd()+"/data/tokensDict.p", "w")
pickle.dump(self.tokens, f)
def dbQuery(self, query, args = ()):
conn = sqlite3.connect('/Users/kristofer/comp_490/2lab/data/cache.db')
db = conn.cursor()
#args should be a tuple of the arguments in the query
db.execute(query, args)
rows = db.fetchall()
conn.close()
return rows
def singleToken(self):
print
word = raw_input("Enter your one word query: ")
token = word.lower()
token = self.stemmer.stem(token, 0, len(token) - 1)
try:
wordDict = self.tokens[token]
except:
print word, "does not seem to exist in our files. Please try a different word"
print
return
occurenceTotal = 0
highestFreq = {'freq': 0, 'docs':[]}
i = 1
for doc in wordDict.keys():
freq = len(wordDict[doc])
occurenceTotal += freq
linksQuery = """
SELECT webPage.linkText, item.itemName FROM (
SElECT itemToWebPage.webPageId, itemToWebPage.itemId
FROM itemToWebPage
WHERE webPageId = ?) AS linkItem
JOIN item
ON item.itemId = linkItem.itemId
JOIN webPage
ON webPage.webPageId = linkItem.webPageId;
"""
linksRow = self.dbQuery(linksQuery, (doc,))
print
print i,"\t",linksRow[0][0]
print "\t item: ",linksRow[0][1]
print "\t occured ",freq,"times"
i += 1
if freq > highestFreq['freq']:
highestFreq['freq'] = freq
highestFreq['docs'] = [linksRow[0][0]]
elif freq == highestFreq['freq']:
highestFreq['docs'].append(doc)
print
print "Total occurence of", word, "is", occurenceTotal, "times"
print "Highest frequency: ", highestFreq['freq'], " times in: ",
for i in range(len(highestFreq['docs'])):
if i > 0:
print "and"
print highestFreq['docs'][i]
print
def orQuery(self):
print
word1 = raw_input("Enter the first word of your query: ")
word2 = raw_input("Enter the second word of your query: ")
token1 = word1.lower()
token1 = self.stemmer.stem(token1, 0, len(token1) - 1)
token2 = word2.lower()
token2 = self.stemmer.stem(token2, 0, len(token2) - 1)
try:
docs = self.tokens[token1].keys()
except:
print word1, "does not seem to exist in our files. Please try a different word"
print
return
try:
docs2 = self.tokens[token2].keys()
except:
print word2, "does not seem to exist in our files. Please try a different word"
print
return
#Perform a logical or on the elements of both lists.
#Storing them in keys
for doc in docs2:
if doc not in docs:
docs.append(doc)
occurenceTotal = 0
i = 1
highestFreq = {'freq': 0, 'docs':[]}
for doc in docs:
freq1 = 0
freq2 = 0
try:
freq1 = len(self.tokens[token1][doc])
except:
None
try:
freq2 = len(self.tokens[token2][doc])
except:
None
freq = freq1 + freq2
occurenceTotal += freq
linksQuery = """
SELECT webPage.linkText, item.itemName FROM (
SElECT itemToWebPage.webPageId, itemToWebPage.itemId
FROM itemToWebPage
WHERE webPageId = ?) AS linkItem
JOIN item
ON item.itemId = linkItem.itemId
JOIN webPage
ON webPage.webPageId = linkItem.webPageId;
"""
linksRow = self.dbQuery(linksQuery, (doc,))
print
print i,"\t",linksRow[0][0]
print "\t item: ",linksRow[0][1]
print "\t occured ",freq,"times"
i += 1
if freq > highestFreq['freq']:
highestFreq['freq'] = freq
highestFreq['docs'] = [linksRow[0][0]]
elif freq == highestFreq['freq']:
highestFreq['docs'].append(doc)
print
print "Total occurence of", word1, "or", word2, "is", occurenceTotal, "times"
print "Highest frequency: ", highestFreq['freq'], " times in: ",
for i in range(len(highestFreq['docs'])):
if i > 0:
print "and"
print highestFreq['docs'][i]
print
def andQuery(self):
print
word1 = raw_input("Enter the first word of your query: ")
word2 = raw_input("Enter the second word of your query: ")
token1 = word1.lower()
token1 = self.stemmer.stem(token1, 0, len(token1) - 1)
token2 = word2.lower()
token2 = self.stemmer.stem(token2, 0, len(token2) - 1)
#Get the keys from both lists
docs = []
try:
docs1 = self.tokens[token1].keys()
except:
print word1, "does not seem to exist in our files. Please try a different word"
print
return
try:
docs2 = self.tokens[token2].keys()
except:
print word2, "does not seem to exist in our files. Please try a different word"
print
return
#Perform a logical and on the elements of both lists.
#Storing them in keys
for doc in docs1:
if doc in docs2:
docs.append(doc)
occurenceTotal = 0
i = 1
highestFreq = {'freq': 0, 'docs':[]}
for doc in docs:
freq1 = 0
freq2 = 0
try:
freq1 = len(self.tokens[token1][doc])
except:
None
try:
freq2 = len(self.tokens[token2][doc])
except:
None
freq = freq1 + freq2
occurenceTotal += freq
linksQuery = """
SELECT webPage.linkText, item.itemName FROM (
SElECT itemToWebPage.webPageId, itemToWebPage.itemId
FROM itemToWebPage
WHERE webPageId = ?) AS linkItem
JOIN item
ON item.itemId = linkItem.itemId
JOIN webPage
ON webPage.webPageId = linkItem.webPageId;
"""
linksRow = self.dbQuery(linksQuery, (doc,))
print
print i,"\t",linksRow[0][0]
print "\t item: ",linksRow[0][1]
print "\t occured ",freq,"times"
i += 1
if freq > highestFreq['freq']:
highestFreq['freq'] = freq
highestFreq['docs'] = [linksRow[0][0]]
elif freq == highestFreq['freq']:
highestFreq['docs'].append(doc)
print
print "Total occurence of", word1, "and", word2, "is", occurenceTotal, "times"
print "Highest frequency: ", highestFreq['freq'], " times in: ",
for i in range(len(highestFreq['docs'])):
if i > 0:
print "and"
print highestFreq['docs'][i]
print
def phraseQuery(self):
print
phrase = raw_input("Enter a two word phrase: ")
while len(phrase.split(' ')) != 2:
phrase = raw_input("Make sure your phrase is two words (e.g. 'hello goodbye'): ")
words = phrase.split(' ')
word1 = words[0]
word2 = words[1]
token1 = word1.lower()
token1 = self.stemmer.stem(token1, 0, len(token1) - 1)
token2 = word2.lower()
token2 = self.stemmer.stem(token2, 0, len(token2) - 1)
#Get the keys from both lists
docs = []
try:
docs1 = self.tokens[token1].keys()
except:
print word1, "does not seem to exist in our files. Please try a different word"
print
return
try:
docs2 = self.tokens[token2].keys()
except:
print word2, "does not seem to exist in our files. Please try a different word"
print
return
#Perform a logical and on the elements of both lists.
#Storing them in keys
phraseDict = {}
#Check which documents have both words
for doc in docs1:
if doc in docs2:
doc1Pos = self.tokens[token1][doc]
doc2Pos = self.tokens[token2][doc]
#check which documents have the phrase in the correct order
freq = 0
for pos1 in doc1Pos:
for pos2 in doc2Pos:
if pos2 == pos1 + 1:
freq += 1
if freq > 0:
phraseDict[doc] = freq
occurenceTotal = 0
i = 1
highestFreq = {'freq': 0, 'docs':[]}
for doc in phraseDict.keys():
freq = phraseDict[doc]
occurenceTotal += freq
linksQuery = """
SELECT webPage.linkText, item.itemName FROM (
SElECT itemToWebPage.webPageId, itemToWebPage.itemId
FROM itemToWebPage
WHERE webPageId = ?) AS linkItem
JOIN item
ON item.itemId = linkItem.itemId
JOIN webPage
ON webPage.webPageId = linkItem.webPageId;
"""
linksRow = self.dbQuery(linksQuery, (doc,))
print
print i,"\t",linksRow[0][0]
print "\t item: ",linksRow[0][1]
print "\t occured ",freq,"times"
i += 1
if freq > highestFreq['freq']:
highestFreq['freq'] = freq
highestFreq['docs'] = [linksRow[0][0]]
elif freq == highestFreq['freq']:
highestFreq['docs'].append(doc)
print
print "Total occurence of",phrase, "is", occurenceTotal, "times"
print "Highest frequency: ", highestFreq['freq'], " times in: ",
for i in range(len(highestFreq['docs'])):
if i > 0:
print "and"
print highestFreq['docs'][i]
print
def nearQuery(self):
print
word1 = raw_input("Enter the first word: ")
word2 = raw_input("Enter the second word: ")
distance = input ("Enter the number of positions away you want to look: ")
token1 = word1.lower()
token1 = self.stemmer.stem(token1, 0, len(token1) - 1)
token2 = word2.lower()
token2 = self.stemmer.stem(token2, 0, len(token2) - 1)
#Get the keys from both lists
docs = []
try:
docs1 = self.tokens[token1].keys()
except:
print word1, "does not seem to exist in our files. Please try a different word"
print
return
try:
docs2 = self.tokens[token2].keys()
except:
print word2, "does not seem to exist in our files. Please try a different word"
print
return
#Perform a logical and on the elements of both lists.
#Storing them in keys
phraseDict = {}
#Check which documents have both words
for doc in docs1:
if doc in docs2:
doc1Pos = self.tokens[token1][doc]
doc2Pos = self.tokens[token2][doc]
#check which documents have the words within the allotted distance of each other
freq = 0
for pos1 in doc1Pos:
for pos2 in doc2Pos:
if (pos2 - pos1 >= 0 - distance) and (pos2 - pos1 <= distance):
freq += 1
if freq > 0:
phraseDict[doc] = freq
occurenceTotal = 0
i = 1
highestFreq = {'freq': 0, 'docs':[]}
for doc in phraseDict.keys():
freq = phraseDict[doc]
occurenceTotal += freq
linksQuery = """
SELECT webPage.linkText, item.itemName FROM (
SElECT itemToWebPage.webPageId, itemToWebPage.itemId
FROM itemToWebPage
WHERE webPageId = ?) AS linkItem
JOIN item
ON item.itemId = linkItem.itemId
JOIN webPage
ON webPage.webPageId = linkItem.webPageId;
"""
linksRow = self.dbQuery(linksQuery, (doc,))
print
print i,"\t",linksRow[0][0]
print "\t item: ",linksRow[0][1]
print "\t occured ",freq,"times"
i += 1
if freq > highestFreq['freq']:
highestFreq['freq'] = freq
highestFreq['docs'] = [linksRow[0][0]]
elif freq == highestFreq['freq']:
highestFreq['docs'].append(doc)
print
print "Total occurence of",word1, "within ", distance, "positions of", word2, "was",occurenceTotal, "times"
print "Highest frequency: ", highestFreq['freq'], " times in: ",
for i in range(len(highestFreq['docs'])):
if i > 0:
print "and"
print highestFreq['docs'][i]
print
def searchMenu(self):
print
print "-----------------------------------------------------------"
print "\t Welcome to Stensland-ipedia!"
print "\tWhere you can search to your hearts content!"
print "-----------------------------------------------------------"
print
menu = True
while menu:
print "Choose the number corresponding to the query you would like to perform"
print "---------------------------------------------------------------------"
print "1.\tSingle token query."
print "2.\tAND query."
print "3.\tOR query."
print "4.\t2-Token query."
print "5.\tNear query."
print "6.\tQuit"
choice = raw_input("Enter your choice: ")
if choice == '1':
self.singleToken()
elif choice == '2':
self.andQuery()
elif choice == '3':
self.orQuery()
elif choice == '4':
self.phraseQuery()
elif choice == '5':
self.nearQuery()
elif choice == '6':
menu = False
print "\n"
else:
print "That is not a thing I understand."
print
print
print "Thank you for being my friend!"
print
def main():
#os.chdir('/Users/kristofer/comp_490/2lab')
print "Preparing the search engine..."
stenslandipedia = Searcher()
stenslandipedia.searchMenu()
if __name__ == "__main__":
main()
| UTF-8 | Python | false | false | 16,732 | py | 2 | searchEngine.py | 2 | 0.461511 | 0.447585 | 0 | 504 | 32.196429 | 115 |
Jordan-Camilletti/Project-Euler-Problems | 10,548,439,683,351 | a0ecbd1fc6934fc37a81977a88e715df839602d8 | cdbadf1e63f74911a145c88bb5422da5c1977904 | /python/16. Power digit Sum.py | 3812c1a7024e0528cabf03000b5626d08755a472 | [] | no_license | https://github.com/Jordan-Camilletti/Project-Euler-Problems | 30a93d6130e14e9382ee7e7d86b739ae676aaacf | b3f54004907a5ee4db00ad1e4989e4f239dcbd14 | refs/heads/master | 2021-06-03T19:19:19.612809 | 2020-05-01T04:28:37 | 2020-05-01T04:28:37 | 72,213,187 | 1 | 0 | null | false | 2020-02-23T04:49:10 | 2016-10-28T14:12:12 | 2020-02-21T02:20:09 | 2020-02-23T04:49:09 | 570 | 1 | 0 | 0 | Python | false | false | """2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000?"""
str=str(2**1000)
tot=0
for x in str:
tot=tot+int(x)
print(tot)
| UTF-8 | Python | false | false | 189 | py | 59 | 16. Power digit Sum.py | 58 | 0.624339 | 0.486772 | 0 | 8 | 22.625 | 68 |
MonadWizard/python-basic | 4,303,557,231,441 | ead220a5b4b4901180a0eb2e18cfab39b08e632c | d87d83049f28da72278ca9aa14986db859b6c6d6 | /basic/coreFundamental/tupleDemo/tupleBasic.py | b9ef6768c6dc72d8ef55ec75f859ae48dc8cfb63 | [] | no_license | https://github.com/MonadWizard/python-basic | 6507c93dc2975d6450be27d08fb219a3fd80ed64 | 624f393fcd19aeeebc35b4c2225bb2fe8487db39 | refs/heads/master | 2021-07-21T16:12:58.251456 | 2020-10-12T19:46:21 | 2020-10-12T19:46:21 | 223,625,523 | 1 | 0 | null | false | 2019-11-23T18:01:43 | 2019-11-23T17:14:21 | 2019-11-23T18:00:52 | 2019-11-23T18:01:42 | 0 | 0 | 0 | 3 | HTML | false | false | """
A tuple is a sequence of immutable objects, therefore tuple cannot be changed. It can be used to collect different types of object.
The objects are enclosed within parenthesis and separated by comma.
Tuple is similar to list. Only the difference is that list is enclosed between square bracket, tuple between parenthesis and
List has mutable objects whereas Tuple has immutable objects.
"""
data1=(101,981,1666,12,156,981,15)
data2=(101,981,'abcd','xyz','m')
data3=('aman','shekhar',100.45,98.2)
data4=(101,981,'abcd','xyz','m')
print(data1)
print(data2)
#### There can be an empty Tuple also which contains no object. Lets see an example of empty tuple.
data5 = ()
print(data5)
print("""
""")
#### For a single valued tuple, there must be a comma at the end of the value.
data6 = (10,)
print(data6)
print("""
""")
#### Tuples can also be nested, it means we can pass tuple as an element to create a new tuple.
print("data1 : ",data1)
data7 = data1,(10,20,30,40)
print("data1 : ",data1)
print("data7 : ",data7)
print("""
""")
print("#### Accessing Tuple : ")
print("data2 : ",data2)
print(data2[0])
print(data2[0:2])
print(data2[-3:-1])
print(data2[0:])
print(data2[:2])
print("""
""")
print("#### Elements in a Tuple : ")
data=(1,2,3,4,5,10,19,17)
print(data)
print("""Data[0]=1=Data[-8] , Data[1]=2=Data[-7] , Data[2]=3=Data[-6] ,
Data[3]=4=Data[-5] , Data[4]=5=Data[-4] , Data[5]=10=Data[-3],
Data[6]=19=Data[-2],Data[7]=17=Data[-1] """)
print("""
""")
#### Tuple can be added by using the concatenation operator(+) to join two tuples.
print("data2 : ",data2)
print("data3 : ",data3)
print((data2 + data3))
print("""
""")
#### repeating can be performed by using '*' operator by a specific number of time.
print("data2 : ",data2)
print("data2 * 2", (data2*2))
print("data3 : ",data3)
print("data3 * 3 : ", data3*3)
print("""
""")
#### A subpart of a tuple can be retrieved on the basis of index. This subpart is known as tuple slice.
print (data1[0:2])
print (data1[4])
print (data1[:-1])
print (data1[-5:])
print (data1)
print("""
""")
#### We can create a new tuple by assigning the existing tuple.
print(data3)
print(data4)
print(data3+data4)
print("""
""")
del data3
#print(data3) #this tuple was deleted so seen error
| UTF-8 | Python | false | false | 2,403 | py | 195 | tupleBasic.py | 165 | 0.620474 | 0.556388 | 0 | 114 | 18.95614 | 131 |
chinatszrn/momo_labeltool | 1,614,907,752,572 | 49df60761f06ad4f9c40c681fa87cdbcb07e5f09 | 8eab8ba100521cedb0b8c62059b0000fe04da989 | /mainwin.py | 826f7760fe7f7c0d85a5276d4a6c6bd0c2cd0019 | [] | no_license | https://github.com/chinatszrn/momo_labeltool | b3ffbdba2772050f830322c213611651fede3037 | f3ddb9ff7e526cd224c674c84a7ee4f4e49850ed | refs/heads/master | 2020-12-13T18:08:24.550696 | 2019-05-14T09:43:04 | 2019-05-14T09:43:04 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'mainwin.ui'
#
# Created by: PyQt5 UI code generator 5.11.3
#
# WARNING! All changes made in this file will be lost!
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_main_window(object):
def setupUi(self, main_window):
main_window.setObjectName("main_window")
main_window.resize(1037, 784)
self.centralwidget = QtWidgets.QWidget(main_window)
self.centralwidget.setObjectName("centralwidget")
self.gridLayout_3 = QtWidgets.QGridLayout(self.centralwidget)
self.gridLayout_3.setObjectName("gridLayout_3")
self.canvas = Canvas(self.centralwidget)
self.canvas.setInteractive(True)
self.canvas.setObjectName("canvas")
self.gridLayout_3.addWidget(self.canvas, 1, 0, 1, 1)
self.widget = QtWidgets.QWidget(self.centralwidget)
self.widget.setObjectName("widget")
self.horizontalLayout = QtWidgets.QHBoxLayout(self.widget)
self.horizontalLayout.setObjectName("horizontalLayout")
self.fixitem = QtWidgets.QCheckBox(self.widget)
self.fixitem.setObjectName("fixitem")
self.horizontalLayout.addWidget(self.fixitem)
self.index = QtWidgets.QCheckBox(self.widget)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.index.sizePolicy().hasHeightForWidth())
self.index.setSizePolicy(sizePolicy)
self.index.setObjectName("index")
self.horizontalLayout.addWidget(self.index)
self.control = QtWidgets.QCheckBox(self.widget)
self.control.setChecked(True)
self.control.setObjectName("control")
self.horizontalLayout.addWidget(self.control)
self.keypoint = QtWidgets.QCheckBox(self.widget)
self.keypoint.setChecked(True)
self.keypoint.setObjectName("keypoint")
self.horizontalLayout.addWidget(self.keypoint)
self.contour = QtWidgets.QCheckBox(self.widget)
self.contour.setChecked(True)
self.contour.setObjectName("contour")
self.horizontalLayout.addWidget(self.contour)
self.left_eyebrown = QtWidgets.QCheckBox(self.widget)
self.left_eyebrown.setChecked(True)
self.left_eyebrown.setObjectName("left_eyebrown")
self.horizontalLayout.addWidget(self.left_eyebrown)
self.right_eyebrown = QtWidgets.QCheckBox(self.widget)
self.right_eyebrown.setChecked(True)
self.right_eyebrown.setObjectName("right_eyebrown")
self.horizontalLayout.addWidget(self.right_eyebrown)
self.left_eye = QtWidgets.QCheckBox(self.widget)
self.left_eye.setChecked(True)
self.left_eye.setObjectName("left_eye")
self.horizontalLayout.addWidget(self.left_eye)
self.right_eye = QtWidgets.QCheckBox(self.widget)
self.right_eye.setChecked(True)
self.right_eye.setObjectName("right_eye")
self.horizontalLayout.addWidget(self.right_eye)
self.nose = QtWidgets.QCheckBox(self.widget)
self.nose.setChecked(True)
self.nose.setObjectName("nose")
self.horizontalLayout.addWidget(self.nose)
self.mouth_outter = QtWidgets.QCheckBox(self.widget)
self.mouth_outter.setChecked(True)
self.mouth_outter.setObjectName("mouth_outter")
self.horizontalLayout.addWidget(self.mouth_outter)
self.mouth_inner = QtWidgets.QCheckBox(self.widget)
self.mouth_inner.setChecked(True)
self.mouth_inner.setObjectName("mouth_inner")
self.horizontalLayout.addWidget(self.mouth_inner)
self.gridLayout_3.addWidget(self.widget, 0, 0, 1, 1)
main_window.setCentralWidget(self.centralwidget)
self.menubar = QtWidgets.QMenuBar(main_window)
self.menubar.setGeometry(QtCore.QRect(0, 0, 1037, 18))
self.menubar.setObjectName("menubar")
self.menu = QtWidgets.QMenu(self.menubar)
self.menu.setObjectName("menu")
self.menu_2 = QtWidgets.QMenu(self.menubar)
self.menu_2.setObjectName("menu_2")
main_window.setMenuBar(self.menubar)
self.statusbar = QtWidgets.QStatusBar(main_window)
self.statusbar.setObjectName("statusbar")
main_window.setStatusBar(self.statusbar)
self.dockWidget_2 = QtWidgets.QDockWidget(main_window)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.dockWidget_2.sizePolicy().hasHeightForWidth())
self.dockWidget_2.setSizePolicy(sizePolicy)
self.dockWidget_2.setLayoutDirection(QtCore.Qt.LeftToRight)
self.dockWidget_2.setObjectName("dockWidget_2")
self.dockWidgetContents_2 = QtWidgets.QWidget()
self.dockWidgetContents_2.setObjectName("dockWidgetContents_2")
self.gridLayout = QtWidgets.QGridLayout(self.dockWidgetContents_2)
self.gridLayout.setObjectName("gridLayout")
self.file_list = FileList(self.dockWidgetContents_2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.file_list.sizePolicy().hasHeightForWidth())
self.file_list.setSizePolicy(sizePolicy)
self.file_list.setObjectName("file_list")
self.gridLayout.addWidget(self.file_list, 0, 0, 1, 1)
self.dockWidget_2.setWidget(self.dockWidgetContents_2)
main_window.addDockWidget(QtCore.Qt.DockWidgetArea(2), self.dockWidget_2)
self.actionload = QtWidgets.QAction(main_window)
self.actionload.setObjectName("actionload")
self.actionConvert = QtWidgets.QAction(main_window)
self.actionConvert.setObjectName("actionConvert")
self.actionConvert1k = QtWidgets.QAction(main_window)
self.actionConvert1k.setObjectName("actionConvert1k")
self.actionBrezier = QtWidgets.QAction(main_window)
self.actionBrezier.setObjectName("actionBrezier")
self.menu.addAction(self.actionload)
self.menu_2.addAction(self.actionConvert)
self.menu_2.addAction(self.actionConvert1k)
self.menu_2.addAction(self.actionBrezier)
self.menubar.addAction(self.menu.menuAction())
self.menubar.addAction(self.menu_2.menuAction())
self.retranslateUi(main_window)
QtCore.QMetaObject.connectSlotsByName(main_window)
def retranslateUi(self, main_window):
_translate = QtCore.QCoreApplication.translate
main_window.setWindowTitle(_translate("main_window", "关键点标注"))
self.fixitem.setText(_translate("main_window", "固定图片(F)"))
self.fixitem.setShortcut(_translate("main_window", "F"))
self.index.setText(_translate("main_window", "序号(S)"))
self.index.setShortcut(_translate("main_window", "S"))
self.control.setText(_translate("main_window", "控制点(Q)"))
self.control.setShortcut(_translate("main_window", "Q"))
self.keypoint.setText(_translate("main_window", "关键点(W)"))
self.keypoint.setShortcut(_translate("main_window", "W"))
self.contour.setText(_translate("main_window", "脸轮廓(E)"))
self.contour.setShortcut(_translate("main_window", "E"))
self.left_eyebrown.setText(_translate("main_window", "左眉毛(R)"))
self.left_eyebrown.setShortcut(_translate("main_window", "R"))
self.right_eyebrown.setText(_translate("main_window", "右眉毛(T)"))
self.right_eyebrown.setShortcut(_translate("main_window", "T"))
self.left_eye.setText(_translate("main_window", "左眼睛(Y)"))
self.left_eye.setShortcut(_translate("main_window", "Y"))
self.right_eye.setText(_translate("main_window", "右眼睛(U)"))
self.right_eye.setShortcut(_translate("main_window", "U"))
self.nose.setText(_translate("main_window", "鼻子(I)"))
self.nose.setShortcut(_translate("main_window", "I"))
self.mouth_outter.setText(_translate("main_window", "嘴外轮廓(O)"))
self.mouth_outter.setShortcut(_translate("main_window", "O"))
self.mouth_inner.setText(_translate("main_window", "嘴内轮廓(P)"))
self.mouth_inner.setShortcut(_translate("main_window", "P"))
self.menu.setTitle(_translate("main_window", "文件"))
self.menu_2.setTitle(_translate("main_window", "数据处理"))
self.actionload.setText(_translate("main_window", "载入文件夹"))
self.actionConvert.setText(_translate("main_window", "生成137点"))
self.actionConvert1k.setText(_translate("main_window", "生成1000点"))
self.actionBrezier.setText(_translate("main_window", "生成贝塞尔关键点"))
from canvas import Canvas
from filelist import FileList
| UTF-8 | Python | false | false | 9,099 | py | 9 | mainwin.py | 7 | 0.695371 | 0.686447 | 0 | 166 | 53.006024 | 108 |
radiofarmer/WavetableEditor | 8,959,301,814,077 | 4f18f22d69b81b620c812ed4c63ba488b55ddf0d | 89b5aa59f30f7417c19b8300a4da100fc6d8205b | /WavetableEditor/Wavetable.py | fc980a751cbad126aeb2cd0060953502cac9538f | [
"MIT"
] | permissive | https://github.com/radiofarmer/WavetableEditor | 810bb639165efd0a6ef29f2a7e8fbc95a678e3f3 | 2cee8d773d24978ef3edc52a85b4285a48506f25 | refs/heads/master | 2023-03-11T08:00:15.309139 | 2021-02-26T09:22:35 | 2021-02-26T09:22:35 | 340,004,065 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
from WavetableEditor import IO
from scipy import fft
from scipy import interpolate
import matplotlib.pyplot as plt
import math
def quantize_to_fraction(x, f):
return np.floor(f * x) / f
def make_shift_function(x, shift_step, max_shift=1., noise=0.):
func = interpolate.interp1d(np.linspace(0, 1, x.shape[0]), x / np.max(x))
return lambda h: h + max_shift * quantize_to_fraction(
func(np.linspace(0, 1., h.shape[0])) + np.random.random(h.shape[0]) * noise,
shift_step
)
def window(k, length):
t = np.linspace(0, 1, length)
fact = -np.abs((k - np.floor(k)) - 0.5) + 0.5
return (-np.cos(2 * np.pi * t) / 2 + 0.5) ** fact
def oscillating_signs(harmonics):
signs = np.ones(harmonics.shape[0])
for i, h in enumerate(harmonics):
if h <= 1.:
continue
else:
num = h / (h - np.floor(h)) if h != int(h) else h
signs[i] *= 1. if num % 2 else -1.
return signs
def square_coeffs(harmonics):
coeffs = np.zeros(harmonics.shape[0])
for i, h in enumerate(harmonics):
if h == 0:
coeffs[i] = 0
elif h % 2 == 0:
coeffs[i] = 0
else:
coeffs[i] = 1 / h
return coeffs
def saw_coeffs(harmonics):
coeffs = np.zeros(harmonics.shape[0])
for i, h in enumerate(harmonics):
if h == 0:
coeffs[i] = 0
else:
coeffs[i] = 1 / h
return coeffs
def zero_phase(h, *args, **kwargs):
return np.zeros(h.shape[0])
class HarmonicSeries:
def __init__(self, start, end, period, amp_func, phase_func=None, h_shift_func=None, **kwargs):
if phase_func is None:
phase_func = zero_phase
if h_shift_func is None:
h_shift_func = lambda x: x
# Array of harmonic numbers
self.harmonics = np.arange(start, end, period)
h = h_shift_func(self.harmonics)
self.harmonics = h
# Array of amplitudes
self._amplitudes = amp_func(self.harmonics)
self._scale = 1.
# Array of phases
self._phases = phase_func(self.harmonics)
self._step_size = period
if "normalize" in kwargs:
self.normalize(kwargs["normalize"])
def __mul__(self, other):
"""Multiplying the HarmonicSeries object multiplies the amplitudes"""
self._scale = other
return self
def normalize(self, h_target):
"""Normalizes all amplitudes to the indicated harmonic"""
if np.max(np.abs(self._amplitudes)) != 0.:
self._amplitudes /= self._amplitudes[int(h_target - 1)]
if np.max(np.abs(self._phases)) != 0.:
self._phases /= self._phases[int(h_target - 1)]
self._phases *= 2 * np.pi
def evaluate(self, samprate, cycles=1, os_level=8, bandlimit=None, window=True):
# t = np.arange(0, samprate * cycles)
t = np.linspace(0., cycles * 2 * np.pi, samprate * cycles, endpoint=False)
series = np.zeros(t.shape[0])
# adj = np.cos(self.harmonics - 1) ** 2 * (np.pi / (2 * self.harmonics[-1])) # gibbs
adj = np.sinc(self.harmonics * np.pi / (2 * np.max(self.harmonics))) # sigma factor
for a, p, h, g in zip(self.amplitudes, self.phases, self.harmonics, adj):
if h <= bandlimit / os_level if bandlimit is not None else samprate / (4 * os_level):
# Harmonics whose waveforms do not have an integer-number of cycles within
# the rendered region are windowed to prevent aliasing. Increasing the number
# of cycles allows more inharmonic frequencies to fit evenly into the wavetable.
if not window or np.abs(h * cycles - np.round(h * cycles)) < 1e-3:
partial = a * np.sin(float(h) * t + p)
else:
print("Harmonic {} does not fit into {} cycles".format(h, cycles))
wnd1 = np.concatenate([(np.cos(np.pi * t[:int(samprate)] / samprate) + 1) / 2,
np.zeros(int(samprate * (cycles - 1)))])
wnd2 = np.concatenate([np.ones(int(samprate * (cycles - 1))),
wnd1[int(samprate) - 1::-1]])
t_ext = np.arange(0, np.floor(samprate * cycles * (1 + h - np.floor(h))))
wave_full = np.sin(2 * np.pi * h * t_ext / samprate + p)
wave1 = wave_full[:int(samprate * cycles)]
wave2 = wave_full[len(wave_full) - int(samprate * cycles):]
partial = a * (wave1 * wnd1 + wave2 * wnd2)
series += partial * g
return series
@property
def amplitudes(self):
return self._amplitudes
@property
def phases(self):
return self._phases
@property
def scale(self):
return self._scale
@property
def max_harmonic(self):
return self.harmonics[-1]
@property
def num_harmonics(self):
return self.harmonics.shape[0]
@property
def step_size(self):
return self._step_size
class Waveform():
def __init__(self):
self.series_ = []
def add_series(self, *args, **kwargs):
new_series = HarmonicSeries(*args, **kwargs)
self.append_series(new_series)
def append_series(self, new_series):
self.series_.append(new_series)
def normalize(self):
"""Normalizes all series so that the (summed) maximum harmonic (not necessarily the fundamental) is one"""
fund_sum = np.sum([np.max(s.amplitudes) for s in self.series_])
for s in self.series_:
s.normalize(fund_sum)
def generate_series(self, samprate, **kwargs):
if "cycles" in kwargs:
num_cycles = kwargs['cycles']
else:
num_cycles = 1
length = int(samprate * num_cycles)
sum_sines = np.zeros(length)
# Sum sinusoids of all harmonic series
for s in self.series_:
s_wave = s.evaluate(samprate, **kwargs)
s_wave /= np.max(np.abs(s_wave)) if np.max(s_wave) else 1.
sum_sines += s_wave * s.scale
# Normalize to the highest value
if np.max(np.abs(sum_sines)) != 0.:
self.waveform = sum_sines / np.max(np.abs(sum_sines))
# self.waveform = sum_sines / (sum_sines ** 2).sum() * num_cycles
else:
self.waveform = sum_sines
return self.waveform
def generate_ifft(self, samprate):
freq_domain = np.zeros(samprate // 2)
for s in self.series_:
offset = s.harmonics[0]
top_harmonic = s.max_harmonic + offset
amp_interp_func = interpolate.interp1d(s.harmonics, s.amplitudes)
phase_interp_func = interpolate.interp1d(s.harmonics, s.phases)
a_resampled = amp_interp_func(np.arange(offset, top_harmonic, s.step_size))
p_resampled = phase_interp_func(np.arange(offset, top_harmonic, s.step_size))
# Pad the amplitude and phase arrays with zeros if the fundamental frequency of
# the series is not the wavetable fundamental
if top_harmonic >= samprate // 2:
a = a_resampled[:math.floor(samprate // 2 - np.ceil(offset))]
p = p_resampled[:math.floor(samprate // 2 - np.ceil(offset))]
else:
a = np.concatenate([a_resampled, np.zeros(math.floor(samprate // 2 - top_harmonic))])
p = np.concatenate([p_resampled, np.zeros(math.floor(samprate // 2 - top_harmonic))])
if offset > 1:
a = np.concatenate([np.zeros(offset), a])
p = np.concatenate([np.zeros(offset), p])
# Interpolate amplitude and phase values
s_complex = a + 1.0j * p
# Pad with the DC offset value
s_complex = np.concatenate([[0], s_complex])
# Add to the frequency-domain representation
freq_domain = np.add(freq_domain, s_complex[:samprate // 2])
# Add negative frequencies
freq_domain = np.concatenate([freq_domain, np.conj(freq_domain[::-1])]) * samprate
self.waveform = fft.ifft(freq_domain)
return self.waveform
def from_sample(self, samples, samprate, cycles=1):
fft_length = min(samprate * cycles, samples.shape[0])
transform = fft.fft(samples[:fft_length])
amps = np.real(transform)
phases = np.imag(transform)
# Shift the fundamental frequency to bin [cycles]
clip_region = np.argmax(np.abs(transform))
transform = np.concatenate([np.zeros(cycles), transform[clip_region:], np.zeros(clip_region)])
self.waveform = transform
return self.waveform
class Wavetable():
def __init__(self):
self.waves_ = []
def freq_spec(x):
return np.abs(fft.fft(x))
def plot_freqs(x, freq_max=None):
if freq_max is None:
freq_max = x.shape[0]
fourier_transform = fft.fft(x)
plt.plot(np.abs(fourier_transform[:freq_max]))
plt.show()
def plot_fft(x, freq_max=None):
if freq_max is None:
freq_max = x.shape[0]
fourier_transform = fft.fft(x)
plt.plot(np.real(fourier_transform[:freq_max]))
plt.plot(np.imag(fourier_transform[:freq_max]))
plt.show()
if __name__ == "__main__":
wt1 = Waveform()
wt1.add_series(1, 2, 1, saw_coeffs)
# wave = wt1.generate_series(48000, cycles=3)
# plt.plot(np.abs(fft.fft(wave)[:100]))
wt2 = Waveform()
wt2.add_series(1, 200, 1, saw_coeffs)
# wave = wt2.generate_series(48000, cycles=3)
# wave = np.tile(wave, 10)
# plt.plot(np.abs(fft.fft(wave)[:100]))
# plt.show()
IO.export_mipmap([wt1, wt2], "", "Sine-Saw", 2 ** 14, cycles_per_level=1)
| UTF-8 | Python | false | false | 9,839 | py | 5 | Wavetable.py | 4 | 0.568249 | 0.55402 | 0 | 286 | 33.402098 | 114 |
Saumay-Agrawal/GSOC-Explorer | 8,443,905,714,839 | 9c81268fdb2348ddbbb8e1607b1e4af6810bfc69 | b39074034e46a57753cd22a9ea147dafc158c26d | /data-extractor.py | c48f3f82cf9cf49af0d647d4f73a39aef1d878da | [] | no_license | https://github.com/Saumay-Agrawal/GSOC-Explorer | 2590aa6bea9f792633cb51ed3983840df5ac6d3a | 6c82c7b9ecdede5d13c87fcae621a2731cbf94ef | refs/heads/master | 2020-04-10T23:01:28.683316 | 2019-02-22T09:51:26 | 2019-02-22T09:51:26 | 161,339,391 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pymongo
import json
from pprint import pprint
client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client['gsoc-data']
col = db['flat_data']
file = open('gsoc-data.json', mode='w', encoding='utf-8')
file.write('[')
count = 0
for doc in col.find():
del doc['_id']
file.write(json.dumps(doc, sort_keys=True) + ',')
count += 1
pprint('{} documents written to the file.'.format(count))
file.write(']')
file.close() | UTF-8 | Python | false | false | 448 | py | 10 | data-extractor.py | 5 | 0.654018 | 0.636161 | 0 | 20 | 21.45 | 61 |
vasu4982/flask-apps-with-blueprints | 4,844,723,153,112 | 8b762bea4713ac191cd00c66a508ee9d6604a3fa | 70d59ad4466a6eea0ea4bca03a7786921476353d | /blueprints/__init__.py | dbe334a55577633f3ae71d63ea77888fedd2a5f4 | [] | no_license | https://github.com/vasu4982/flask-apps-with-blueprints | 0b295e40f6ef89216ff0d49c1a98e15c70b5bcc1 | b8cab7683100f87b813abdbac09ac9695c8b93a6 | refs/heads/master | 2021-09-13T10:21:44.081675 | 2018-04-28T05:49:40 | 2018-04-28T05:49:40 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from flask import Flask
from blueprints.home.views import home
from blueprints.about.views import about
app = Flask(__name__)
app.register_blueprint(home, url_prefix='/home')
app.register_blueprint(about, url_prefix='/about')
| UTF-8 | Python | false | false | 227 | py | 2 | __init__.py | 1 | 0.77533 | 0.77533 | 0 | 7 | 31.428571 | 50 |
jan-g/psh | 9,680,856,329,124 | 0a312f88f484230dea3ccbf1119bdaf7bfa68393 | 39729564419ed0c233d2fe2c215214e52e3c4a10 | /test/test_model_case.py | 0bbd37b0577985b71e84b5dd314e113c55fec4a9 | [
"Apache-2.0"
] | permissive | https://github.com/jan-g/psh | b4ec8aae7e394ccbf85b97fa0e71482296e03974 | c2641c9d2d7051dacb41474123889dd04bdd2989 | refs/heads/master | 2020-09-14T16:22:57.988393 | 2019-12-07T22:41:00 | 2019-12-07T22:41:00 | 223,183,178 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pytest
from psh.model import Word, Id, CommandSequence, Command, Case, VarRef, ConstantString
from psh.glob import STAR
from psh.local import make_env
w = lambda w: Word([Id(w)])
a = Word([VarRef(Id("a"))])
echo = lambda out: CommandSequence([Command([Word([Id("echo")]), Word([ConstantString(out)])])])
x = w("x")
cmd = lambda *cs: CommandSequence([Command([*cs])])
star = Word([STAR])
@pytest.mark.parametrize(("cmd", "variable", "expected"), (
(CommandSequence([Case(a)]), "", ""),
(CommandSequence([Case(a).with_case(x, echo("foo"))]), "", ""),
(CommandSequence([Case(a).with_case(x, echo("foo"))]), "y", ""),
(CommandSequence([Case(a).with_case(x, echo("foo"))]), "x", "foo"),
(CommandSequence([Case(a).with_case(x, echo("foo")).with_case(star, echo("bar"))]), "", "bar"),
(CommandSequence([Case(a).with_case(x, echo("foo")).with_case(star, echo("bar"))]), "y", "bar"),
(CommandSequence([Case(a).with_case(x, echo("foo")).with_case(star, echo("bar"))]), "x", "foo"),
), ids=lambda x: x.replace(" ", "_") if isinstance(x, str) else x)
def test_basic(cmd, variable, expected):
env = make_env()
env["a"] = variable
assert cmd.evaluate(env) == expected
| UTF-8 | Python | false | false | 1,206 | py | 31 | test_model_case.py | 30 | 0.615257 | 0.615257 | 0 | 28 | 42.071429 | 100 |
andrisole92/VectorAI | 18,717,467,489,324 | 946540bc473e1d5b42db8ea31ddd242198c3f070 | b18b340f7d27b349ed8f344f1827331d1812249b | /src/__init__.py | 9f678db9c3b941ae8e79443bb0cec983662d336c | [] | no_license | https://github.com/andrisole92/VectorAI | 42917758cb305d562a48b7f64ab18c824ab487fb | 03e6a8e5d6ff76a03c9108f6f507f47dfe7fd04f | refs/heads/master | 2021-01-05T22:09:46.285959 | 2020-02-22T18:33:26 | 2020-02-22T18:33:26 | 241,149,928 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from src.db.Engine import Engine
from src.db.SessionManager import SessionManager
| UTF-8 | Python | false | false | 83 | py | 14 | __init__.py | 12 | 0.843373 | 0.843373 | 0 | 2 | 40 | 48 |
iaasci-ibm/python-zvm-sdk | 10,857,677,372,748 | a320a32d2f4c4953df50939aef8d1c8cdba90914 | 516e5ad7aa37dee9c6f6602dc63b66bf3d361f37 | /zvmsdk/tests/unit/base.py | a0bd874f1c8a5a8a3b4e12410bc52544d6e37d65 | [
"CC-BY-4.0",
"Apache-2.0"
] | permissive | https://github.com/iaasci-ibm/python-zvm-sdk | 3eec5b82d5e28c19e5213626102a237070e54e7c | c39d4522b2311da0bb06910b6bb3b20ad32a8ae4 | refs/heads/master | 2022-02-13T04:37:50.098878 | 2022-01-28T18:17:44 | 2022-01-28T18:17:44 | 227,066,210 | 0 | 2 | Apache-2.0 | true | 2021-04-09T00:33:39 | 2019-12-10T08:26:36 | 2021-04-08T15:32:19 | 2021-04-09T00:33:38 | 6,790 | 0 | 0 | 0 | C | false | false | # Copyright 2017 IBM Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import unittest
from zvmsdk import config
CONF = config.CONF
def set_conf(section, opt, value):
CONF[section][opt] = value
class SDKTestCase(unittest.TestCase):
@classmethod
def setUpClass(cls):
# This can be used to set up confs before running all cases
super(SDKTestCase, cls).setUpClass()
cls.old_db_dir = CONF.database.dir
set_conf('database', 'dir', '/tmp/')
set_conf('zvm', 'disk_pool', 'ECKD:TESTPOOL')
set_conf('image', 'sdk_image_repository', '/tmp/')
set_conf('zvm', 'namelist', 'TSTNLIST')
@classmethod
def tearDownClass(cls):
super(SDKTestCase, cls).tearDownClass()
# Restore the original db path
CONF.database.dir = cls.old_db_dir
def setUp(self):
super(SDKTestCase, self).setUp()
def _fake_fun(self, value=None):
return lambda *args, **kwargs: value
| UTF-8 | Python | false | false | 1,502 | py | 308 | base.py | 121 | 0.665113 | 0.659787 | 0 | 50 | 29.04 | 78 |
vineetsingh065/30_days_of_problem_solving | 1,082,331,796,878 | 9456c4ad4b3f9f67af05bf8cbf07f9a27872d3ab | b8f68d68c49a191b06d0c83ebd7be0a7bde0cc28 | /day_6_total_set_bits.py | 1f3292920266b522d40a6053ead627093e6d5910 | [] | no_license | https://github.com/vineetsingh065/30_days_of_problem_solving | 485f6033e5785ae365d14728cbadd5f44158afb0 | 40014080b135378359742b9493334f4079309862 | refs/heads/master | 2023-08-25T01:00:53.208219 | 2021-10-10T15:23:37 | 2021-10-10T15:23:37 | 403,340,800 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
You are given a number N. Find the total count of set bits for all numbers from 1 to N(both inclusive).
Example 1:
Input: N = 4
Output: 5
Explanation:
For numbers from 1 to 4.
For 1: 0 0 1 = 1 set bits
For 2: 0 1 0 = 1 set bits
For 3: 0 1 1 = 2 set bits
For 4: 1 0 0 = 1 set bits
Therefore, the total set bits is 5.
"""
def countSetBits(n):
count=0
i=1
while(i<=n):
i=i*2
q=(n+1)//i
r=(n+1)%i
t=q*(i//2)
if r>(i//2):
t+=r-i//2
count+=t
return count
if __name__=='__main__':
n = 17
print(countSetBits(n))
| UTF-8 | Python | false | false | 613 | py | 14 | day_6_total_set_bits.py | 14 | 0.522023 | 0.461664 | 0 | 36 | 16.027778 | 103 |
kongqiuchuipin/UsedCar | 15,513,421,918,185 | 640db27271cd5ac733f759af392877446d731314 | 22e585820e19df8d28eb164db1b02d6832e09f63 | /youxin/youXin.py | 476bdfca5fe65619052f8f4322745c2f12807e9b | [] | no_license | https://github.com/kongqiuchuipin/UsedCar | f15100ff8f62790fe67835f72a7eb3914053d9ab | b6938c88b2edb6c7d783946e41aece5304b83235 | refs/heads/master | 2021-01-25T09:44:36.910714 | 2018-03-01T07:52:04 | 2018-03-01T07:52:04 | 123,316,549 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # _*_ coding:utf-8 _*_
from link import Link, get_all_city_name
from info import info
from pymongo import MongoClient
from shelve_method_ import shelve_open, shelve_add, shelve_save
def all_city_links():
all_city = shelve_open('all_city_name') # 如果已经有城市列表
if not all_city:
all_city = get_all_city_name() # 如果没有
shelve_save('all_city_name', all_city)
return all_city
def get_link():
all_city = all_city_links()
done = shelve_open('city_done_link') # 采集过的
doing = [i for i in all_city if i not in done]
for city in doing:
if city not in done: # 未采集的
link_spider = Link(city)
link_spider.get_links()
shelve_add('city_done_link', city) # 在这里设置记录, 下一次采集在这之后
def get_info(): # 针对全部城市的采集
collection = MongoClient()['youXin']['all']
city_links = set(shelve_open('all_link'))
city_invalid_links = set(shelve_open('invalid_link'))
if city_links: # 如果文件里存在链接
in_database = {i['链接'][8:] for i in collection.find()}
l_i_d = len(in_database)
link_for_catch = city_links - in_database - city_invalid_links
l_f_c = len(link_for_catch)
print('数据库:{}, 待采集{}, 共{}条'.format(l_i_d, l_f_c, l_i_d + l_f_c))
for i, link in enumerate(link_for_catch):
print(i + l_i_d, 'of', l_i_d + l_f_c) # # 页面不存在这种情况也计算在内
doc = info(link)
if doc:
collection.insert_one(doc)
print('完成'.center(30, '*'))
if __name__ == '__main__':
# get_link()
get_info()
| UTF-8 | Python | false | false | 1,714 | py | 15 | youXin.py | 14 | 0.574742 | 0.572165 | 0 | 49 | 30.673469 | 72 |
mberrens/IceContinuum | 6,717,328,890,219 | 42171544d81c325c031f89fed30c8d8cf9e89c6a | c65ac5b9fd6a679a9837b455b0eaeb74171b66bc | /netcdfstuff/loader.py | 87fe3751a1b39c54e44afb69d04da66e6c926af5 | [] | no_license | https://github.com/mberrens/IceContinuum | 7705b01f9762647ff5e3d0f808108d0f6ed64514 | 10f2ed23cb93c1e212aef4689e90d8ff4fda0225 | refs/heads/master | 2021-05-06T11:33:12.599154 | 2019-08-12T02:42:05 | 2019-08-12T02:42:05 | 114,292,998 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
# .. Built-in modules
import pickle
import numpy as np
import scipy.io as spio
from netCDF4 import Dataset, num2date, date2index
from scipy.io.netcdf import NetCDFFile as DS
from scipy.interpolate import interp2d
import array
def load_ssp_nu(datafile, nu):
# Load the moments from a netcdf file & return the unbundled arrays
dnu = nu[1] - nu[0]
with DS(datafile,'r') as nc:
inu = np.where(np.logical_and(\
nc.variables['wnum_list'][:] > nu[0]-2*dnu,
nc.variables['wnum_list'][:] < nu[-1]+2*dnu))[0]
Npmomarray = nc.variables['Npmomarray'][:,inu].astype('int32')
w0_mesh = nc.variables['w0_mesh'][:,inu].astype('float64')
qext_mesh = nc.variables['qext_mesh'][:,inu].astype('float64')
reff = nc.variables['reff_list'][:].astype('float64'); reff = reff[:,0]
wnum_vec = nc.variables['wnum_list'][inu].astype('float64')
# wnum_mesh = nc.variables['wnum_mesh'][:,inu].astype('float64')
# reff_mesh = nc.variables['reff_mesh'][:,inu].astype('float64')
# Set up empty output arrays
Nnu = nu.size
Nreff = reff.size
qext = np.zeros((Nreff, Nnu))
w0 = np.zeros((Nreff, Nnu))
NPmom_fp = np.zeros((Nreff, Nnu))
# Interpolate qext, w0, get an interpolated number of moments!
fq = interp2d(reff, wnum_vec, qext_mesh.T)
fw = interp2d(reff, wnum_vec, w0_mesh.T)
fNP = interp2d(reff, wnum_vec, Npmomarray.T)
for i in range(Nreff):
qext[i,:] = fq(reff[i], nu)[:,0]
w0[i,:] = fw(reff[i], nu)[:,0]
NPmom_fp[i,:] = fNP(reff[i], nu)[:,0]
# Use floor so we never interpolate between a moment and 0.
NPmom = np.floor(NPmom_fp).astype(int)
NPmom_max = np.max(NPmom)
pmomarray = nc.variables['pmomarray'][:,inu,:NPmom_max]
pmomarray = pmomarray.astype('float64')
# Loop over all the moments to do the same
Pmom = np.zeros((Nreff, Nnu, NPmom_max));
for j in range( NPmom_max):
f = interp2d(reff, wnum_vec, pmomarray[:,:,j].T)
for i in range(Nreff):
Pmom[i,:,j] = f(reff[i], nu)[:,0]
return (NPmom, Pmom, reff, w0, qext)
def getsolarbeam_IR (wnum=None, solarbeam_IR_file=None):
#print solarbeam_IR_file
kurucz = np.loadtxt(solarbeam_IR_file) #'kurucz.dat')
beam = np.interp(wnum,kurucz[:,0],kurucz[:,1])/1000;
return (beam)
# # # # # # # # LOAD SURFACE ALBEDO # # # # # # # # # # # # # #
def get_surface_albedo_from_file(surfEmissDataFile):
albedoData = np.loadtxt(surfEmissDataFile, comments='%')
nu_surf_albedo = albedoData[:, 1]
surf_albedo = 1-albedoData[:, 2]
return nu_surf_albedo, surf_albedo
def get_surface_albedo_IR(wnum = None, surfEmissDataFile = None):
Mammoth = np.loadtxt(surfEmissDataFile) #'Mammoth.dat')
emissivity = np.interp(wnum, Mammoth[:,1], Mammoth[:,2])
emissivity[emissivity>1.] = 1.
emissivity[emissivity<0.] = 0.
#for i in range(len(emissivity)):
# if emissivity[i]>1.:
# emissivity[i] = 1.
# elif emissivity[i]<0.:
# emissivity[i] = 0.
#emissivity = min(interp1(Mammoth(:,2),Mammoth(:,3),wnum,'linear','extrap'),1);
#emissivity = max(emissivity,0);
surface_albedo = 1. - emissivity;
return surface_albedo
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def load_od_gas(odfile):
'''
Purpose:
Load in the matlab generated file because python is
too slow for cubic interp and gives small differences
But the python way is saved for reference in extras.py
'''
odinfo = spio.loadmat(odfile)
date = odinfo['date']
nu = odinfo['nu'][0]
rads = odinfo['rads']
rad_above = odinfo['rad_above'][0]
tsc = odinfo['tsc']
view_angle = odinfo['view_angle']
date_above_bef = odinfo['date_above_bef']
date_above_aft = odinfo['date_above_aft']
Bctc = odinfo['Bc_tsc']
dt_dtau = odinfo['dt_dtau']
# radClr = odinfo['radClr'];
# odlyr = odinfo['odlyr']
# print('Loaded od file ' + odfile)
return date, view_angle, nu, rads, tsc, rad_above, \
date_above_bef, date_above_aft, Bctc, dt_dtau
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def load_profiles(prof_file):
'''
Load in the profile file
'''
# .. Load in the profile
with Dataset(prof_file, 'r', format='NETCDF4_CLASSIC') as nc:
z = np.double(nc['z'][:].data)
P = np.double(nc['P'][:].data)
T = np.double(nc['T'][:].data)
h2o = np.double(nc['h2o'][:].data)
return z, P, T, h2o
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def load_surface_temperatures(metfname, beg_datetime, end_datetime):
'''
Load the surface temperatures from a file
'''
with Dataset(metfname, 'r', format= "NETCDF4") as nc:
itime = np.logical_and( \
date2index(beg_datetime, nc.variables['time'], select='after'), \
date2index(end_datetime, nc.variables['time'], select='before'))
surf_time = num2date(nc.variables['time'][itime],
nc.variables['time'].units)
surf_temp = nc.variables['temp_mean'][itime] + 273.15
#ikeep = np.logical_and(np.where(surf_time>=beg_datetime)[0],
# np.where(surf_time<=end_datetime)[0])
return surf_time, surf_temp # surf_time[ikeep], surf_temp[ikeep]
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def load_surface_temperatures_for_datetime(metfname, thisdatetime, z, T):
'''
Load the surface temperatures from a file
'''
with Dataset(metfname, 'r', format= "NETCDF4") as nc:
itime = date2index(thisdatetime, nc.variables['time'],
select='after')
surf_time = num2date(nc.variables['time'][:],
nc.variables['time'].units)
dd = surf_time[itime-1:itime+1] - thisdatetime
dmin = [d.days*24*60 + d.seconds/60 for d in dd]
wt = np.flipud(np.abs(dmin))
wt = wt/np.sum(wt)
surf_temp = wt[0] * nc.variables['temp_mean'][itime-1] + \
wt[1] * nc.variables['temp_mean'][itime] + 273.15
i1km = np.where(z<=1)[0][-1]
Tnew = np.zeros(i1km)
Tnew[0] = surf_temp # + 0 m
Tnew[1:i1km] = np.interp(z[1:i1km], [z[0], z[i1km]], [Tnew[0], T[i1km]])
return Tnew
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def get_prof_obsolete(prof_dir, prof_file, dir_lblrtm, z_toa, bwn, ewn):
'''
Load in the profile file
'''
# .. Load in the profile
nc = Dataset(prof_dir + prof_file, 'r', format='NETCDF4_CLASSIC')
zm = nc['z'][:]
nlyr_toa = (np.abs(zm - z_toa)).argmin()
itop = nlyr_toa + 1
# .. Units for ozone are jchar = C for g/kg
units = dict({('tm','km'), ('pm','mb'), ('h2o','ppmv'),
('co2','ppmv'), ('o3','gm_kg'), ('hno3','ppmv')})
# .. Set prof values from prof_file, as well as inputs bwn and ewn
# viewing angle set to zenith. To output optical depths from LBLRTM,
# iemit is set to 0 and imrg to 1.
prof = {
"v1": bwn,
"v2": ewn,
"zm": zm[:itop],
"pm": nc['P'][:itop],
"tm": nc['T'][:itop],
"h2o": nc['h2o'][:itop],
"co2": nc['co2'][:itop],
"o3": nc['o3'][:itop],
"hno3": nc['hno3'][:itop],
"f11": nc['f11'][:itop],
"f12": nc['f12'][:itop],
"f113": nc['f113'][:itop],
"units": units,
"zangle": 0,
"fnametape5": dir_lblrtm + "TAPE5" ,
"model": 0,
"modelExtra": 3,
"iod": 0 ,
"iatm": 1,
"ipunch": 1,
"iemit": 0,
"imrg": 1,
}
# .. Add this later?
# if do_refl
# prof.surf_refl = surf_refl ;
return prof, nlyr_toa
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def get_prof_pickle(prof_dir, prof_file, dir_lblrtm, z_toa, bwn, ewn):
'''
Load in the profile file that was pickled.
'''
# .. Load in the profile
pstuff = pickle.load(open(prof_dir + prof_file, 'rb'))
zm = pstuff.zm
nlyr_toa = (np.abs(zm - z_toa)).argmin()
itop = nlyr_toa + 1
# .. Set prof values from prof_file, as well as inputs bwn and ewn
# viewing angle set to zenith. To output optical depths from LBLRTM,
# iemit is set to 0 and imrg to 1.
prof = {
"v1": bwn,
"v2": ewn,
"zm": pstuff.zm[:itop],
"pm": pstuff.pm[:itop],
"tm": pstuff.tm[:itop],
"h2o": pstuff.h2o[:itop],
"co2": pstuff.co2[:itop],
"o3": pstuff.o3[:itop],
"hno3": pstuff.hno3[:itop],
"f11": pstuff.f11[:itop],
"f12": pstuff.f12[:itop],
"f113": pstuff.f113[:itop],
"units": pstuff.units,
"zangle": 0,
"fnametape5": dir_lblrtm + "TAPE5" ,
"model": 0,
"modelExtra": 3,
"iod": 0 ,
"iatm": 1,
"ipunch": 1,
"iemit": 0,
"imrg": 1,
}
# .. Add this later?
# if do_refl
# prof.surf_refl = surf_refl ;
return prof, nlyr_toa
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def load_profiles_pickle(prof_file):
pstuff = pickle.load(open(prof_file, 'rb'))
return pstuff.zm, pstuff.pm, pstuff.tm, pstuff.h2o
def load_cloud_layers(cloud_layer_file, z, thisdatetime):
with Dataset(cloud_layer_file, 'r', format = "NETCDF4") as nc:
cloud_mask = nc['cloud_mask'][:].T
height = nc['range'][:].data
alt0 = nc['altitude'][0].data
# .. Get the times
mask_date = num2date(nc['time'][:], nc['time'].Description)
imask = (np.abs(mask_date - thisdatetime)).argmin()
# 0=>no cloud, 1=>ice, 2=>liquid, 3=>unknown, probably ice
# Ice below 120 m is probably an artifact if there is not ice above,
# so if there is cloud below 120 m, we will ignore it, unless
# there is also cloud betwen 120 and 200 m
icld_all = cloud_mask[:,imask].data != 0
# .. If no cloud, set variables and return them now
if not np.any(icld_all):
cloud_layer = array.array('i')
has_ice = array.array('i')
has_liq = array.array('i')
return cloud_layer, has_liq, has_ice
alt = alt0 + height[icld_all]
mask = cloud_mask[icld_all,imask].data
alt_liq = alt[mask==2]
alt_ice = alt[np.logical_or(mask==1, mask==3)]
if not np.all(alt[alt<=200] >= 120):
alt_ice = alt_ice[alt_ice>=120]
alt_liq = alt_liq[alt_liq>=120]
alt = alt[alt>=120]
# .. To make things easy, if there is any cloud within
# a model atmospheric layer, set the entire layer to cloudy
# Remember we are going top down
# Only try the range with cloud (+/- 30 m)
alt = alt/1000; alt_liq = alt_liq/1000; alt_ice = alt_ice/1000
iz1 = np.where(z >= alt[-1])[0]
if np.any(iz1):
iz1 = iz1[-1]
else:
iz1 = 0
iz2 = np.where(z <= alt[0])[0]
if np.any(iz2):
iz2 = iz2[0]+1
else:
iz2 = len(z)-3
if iz2 >= len(z)-2:
iz2 = len(z)-3
if iz2 < iz1:
print('pause here!')
Npossible = iz2 - iz1 + 1
cloud_layer = array.array('i',(0 for i in range(Npossible)))
has_ice = array.array('i',(0 for i in range(Npossible)))
has_liq = array.array('i',(0 for i in range(Npossible)))
i = 0
for iz in range(iz1,iz2+1):
if np.any((alt > z[iz+1]) * (alt <= z[iz])):
cloud_layer[i] = iz
if np.any((alt_liq > z[iz+1]) * (alt_liq <= z[iz])):
has_liq[i] = 1
if np.any((alt_ice > z[iz+1]) * (alt_ice <= z[iz])):
has_ice[i] = 1
i += 1
cloud_layer = cloud_layer[:i]
has_ice = has_ice[:i]
has_liq = has_liq[:i]
return cloud_layer, has_liq, has_ice
| UTF-8 | Python | false | false | 12,736 | py | 247 | loader.py | 3 | 0.498822 | 0.47566 | 0 | 384 | 32.161458 | 83 |
animebing/course | 13,537,736,926,573 | 0d1b2ecfd620c52d2af83afed391f6ad09391e6d | acd55085d1004e62c8b10fd5255779ee3d4a00ec | /deep_learning/cs231n/assignment1/cs231n/classifiers/PCA.py | 3aec20e1fb8f60f3f7f1793cc8891d8aee84c738 | [] | no_license | https://github.com/animebing/course | 129e8084787e64dd9d373b6fee3ac3e5874281c9 | c079dfa498a24c6aca5660105caaee24de97ff60 | refs/heads/master | 2021-01-02T08:25:12.961247 | 2017-08-01T16:28:18 | 2017-08-01T16:28:18 | 99,007,085 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | def PCA(train, val, test, output_dim):
n, dim = train.shape
cov_matrix = np.dot(train.T, train)/n
w, v = np.linalg.eig(cov_matrix)
new_train = train.dot(w[:, :output_dim])
new_val = val.dot(w[:, :output_dim])
new_test = test.dot(w[:, :output_dim])
return new_test, new_val, new_test | UTF-8 | Python | false | false | 289 | py | 76 | PCA.py | 25 | 0.647059 | 0.647059 | 0 | 8 | 35.25 | 41 |
Mariia-Pinda/codereview | 10,539,849,752,399 | 446836c615fc7d5fd9159b22a00e42ed9224b429 | ff8040dd6518918f60f5c52147fa02e0ab7c1d57 | /pindamv/first/task3.py | 68090e2d498a44ede96ab7e8efe20c650ef3b517 | [] | no_license | https://github.com/Mariia-Pinda/codereview | ade55d0a36b647d19389224d8719ee340142687d | 9d04bcbf6ad3f140a3b19858d87c6d590c0c97fd | refs/heads/master | 2020-11-27T06:13:46.918788 | 2019-12-22T10:15:00 | 2019-12-22T10:15:00 | 229,334,952 | 0 | 0 | null | true | 2019-12-20T20:55:29 | 2019-12-20T20:55:28 | 2019-12-20T20:36:50 | 2019-12-20T20:36:48 | 0 | 0 | 0 | 0 | null | false | false | '''
Дано 2 дійсних числа. Вивести середнє значення усіх цілих чисел, що знаходяться між цими двома дійсними числами.
'''
the_first_float = float(input('enter the first float: '))
the_second_float = float(input('enter the second float: '))
range_1 = int(the_first_float)
range_2 = int(the_second_float)
for number in range(range_1, range_2+1):
my_list = list(' '.join(number))
middle = sum(my_list)/len(my_list)
print(middle) | UTF-8 | Python | false | false | 529 | py | 4 | task3.py | 4 | 0.700229 | 0.686499 | 0 | 12 | 35.5 | 112 |
openshift-eng/art-tools | 5,411,658,831,104 | 4f18a9ae97e24640c77f471f7adb1376d96cb324 | b73c58adc20bde3cf0f212012f3fc76d39ea2a6f | /elliott/functional_tests/test_find_builds.py | 95a08b1508d594058f9af55d88a487c38e9d06b8 | [
"LGPL-3.0-only",
"Apache-2.0"
] | permissive | https://github.com/openshift-eng/art-tools | a4cef268cb7a8c0f74c96db787a72f41dcef7255 | d24b5c78337d1fe73fa83e8d099809cbe9d9ed42 | refs/heads/main | 2023-09-01T17:32:25.906575 | 2023-09-01T15:36:09 | 2023-09-01T15:36:09 | 144,891,479 | 1 | 5 | Apache-2.0 | false | 2023-09-14T13:35:34 | 2018-08-15T18:52:23 | 2023-08-11T13:00:23 | 2023-09-14T13:35:33 | 7,209 | 2 | 12 | 7 | Python | false | false | import unittest
import subprocess
from functional_tests import constants
# This test may start failing once this version is EOL and we either change the
# ocp-build-data bugzilla schema or all of the non-shipped builds are garbage-collected.
version = "4.3"
class FindBuildsTestCase(unittest.TestCase):
def test_find_rpms(self):
out = subprocess.check_output(
constants.ELLIOTT_CMD
+ [
"--assembly=stream", f"--group=openshift-{version}", "find-builds", "--kind=rpm",
]
)
self.assertIn("may be attached to an advisory", out.decode("utf-8"))
def test_find_images(self):
out = subprocess.check_output(
constants.ELLIOTT_CMD
+ [
f"--group=openshift-{version}", "-i", "openshift-enterprise-cli", "find-builds", "--kind=image",
]
)
self.assertIn("may be attached to an advisory", out.decode("utf-8"))
def test_change_state(self):
"""To attach a build to an advisory, it will be attempted to set the
advisory to NEW_FILES. This advisory is already SHIPPED_LIVE, and the
attempted change should fail"""
command = constants.ELLIOTT_CMD + [
f'--group=openshift-{version}',
'--images=openshift-enterprise-cli',
'find-builds',
'--kind=image',
'--attach=57899'
]
result = subprocess.run(command, capture_output=True)
self.assertEqual(result.returncode, 1)
self.assertIn('Cannot change state', result.stdout.decode())
if __name__ == '__main__':
unittest.main()
| UTF-8 | Python | false | false | 1,649 | py | 318 | test_find_builds.py | 271 | 0.602183 | 0.596119 | 0 | 48 | 33.354167 | 112 |
akshaymawale/code | 5,205,500,388,564 | a4b35e0d92b33ca693ea2d8b0a54b26c67f89fe8 | b7073b9ded97b44e1df00dc17df66166778eb25f | /pull.py | 0115ed58c8457ae302f5f7a3730e48f7c54ffd91 | [] | no_license | https://github.com/akshaymawale/code | 0efd10821bfbe91ae76372209c28f4bc72792721 | 13ad7406873dd553a98267969b91f226569f9cbd | refs/heads/master | 2020-12-02T02:43:15.415456 | 2019-12-30T09:07:46 | 2019-12-30T09:07:46 | 230,861,729 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | print(" pull from local ")
| UTF-8 | Python | false | false | 27 | py | 1 | pull.py | 1 | 0.666667 | 0.666667 | 0 | 1 | 26 | 26 |
jtdub/hier_config | 14,413,910,285,754 | 915514efdb5ab7f189e2e61ea0e4f39e1a8e483b | f4ebd2324a649132ca9f44c08c42e1a4f48deacd | /tests/test_host.py | 9b4dd8b2ad63756ca3158a94ae770f512a099221 | [
"MIT"
] | permissive | https://github.com/jtdub/hier_config | 85e2c4ff48edf6c1a4cc339441b96cf169f0dae7 | cdc0f62ec207126d197bf4c38d7befd7e1a215a4 | refs/heads/master | 2021-06-03T15:07:25.641573 | 2021-04-21T15:26:49 | 2021-04-21T15:26:49 | 134,483,698 | 0 | 0 | null | true | 2018-05-22T22:44:02 | 2018-05-22T22:44:02 | 2018-05-22T20:09:05 | 2018-05-22T19:57:48 | 2,701 | 0 | 0 | 0 | null | false | null | import pytest
from hier_config.host import Host
class TestHost:
@pytest.fixture(autouse=True)
def setup(self, options_ios):
self.host = Host("example.rtr", "ios", options_ios)
def test_load_config_from(self, running_config, generated_config):
self.host.load_running_config(running_config)
self.host.load_generated_config(generated_config)
assert len(self.host.generated_config) > 0
assert len(self.host.running_config) > 0
def test_load_remediation(self, running_config, generated_config):
self.host.load_running_config(running_config)
self.host.load_generated_config(generated_config)
self.host.remediation_config()
assert len(self.host.remediation_config().children) > 0
def test_load_tags(self, tags_ios):
self.host.load_tags(tags_ios)
assert len(self.host.hconfig_tags) > 0
def test_filter_remediation(self, running_config, generated_config, tags_ios):
self.host.load_running_config(running_config)
self.host.load_generated_config(generated_config)
self.host.load_tags(tags_ios)
rem1 = self.host.remediation_config_filtered_text(set(), set())
rem2 = self.host.remediation_config_filtered_text({"safe"}, set())
assert rem1 != rem2
| UTF-8 | Python | false | false | 1,305 | py | 4 | test_host.py | 2 | 0.678927 | 0.672797 | 0 | 37 | 34.27027 | 82 |
nickhester/basic_io_python | 6,373,731,508,896 | 5d852093236ca7b12089a5f603db5ea806f429f6 | 224fc1e9192adeb1a3105e09845196790e42ce02 | /CallApiAndLogPracticeProject.py | 1ff1d797eea769df997298f4e33f167ef184078f | [] | no_license | https://github.com/nickhester/basic_io_python | 6eb2f20b33518ed6edbca162813b151c3b9de589 | 0253124f0d6c10f1c5a8e39f3a661945af92f9a5 | refs/heads/master | 2022-04-22T08:04:30.154058 | 2020-04-21T02:32:32 | 2020-04-21T02:32:32 | 257,459,511 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sys
import requests
# read from file
reader = open(sys.argv[1])
inputText = reader.read()
reader.close()
# call API
response = requests.get("http://numbersapi.com/" + inputText, { 'Content-Type': 'application/json' })
if response.status_code != 200:
raise Exception("API failed to return a successful response")
responseText = response.content.decode('utf-8')
# write to file
writer = open(sys.argv[2], "w")
writer.write(responseText)
writer.close()
| UTF-8 | Python | false | false | 464 | py | 1 | CallApiAndLogPracticeProject.py | 1 | 0.721983 | 0.709052 | 0 | 18 | 24.777778 | 101 |
dftidft/RecMe | 11,416,023,116,746 | ed31549e6836d922b939deac5f8e7ac21d1888b6 | 84c5983bdc93732a17a65f28e2db3668cb9a9457 | /getCorners.py | 33593c0a5dd7732cc30cb5eb7b87ad1113de8fb1 | [] | no_license | https://github.com/dftidft/RecMe | 47284524ba025ffcef2b82d490352e4b772e1d3d | 48d83c28d151818fba1c71a7d8a116eebd64cbf0 | refs/heads/master | 2020-04-04T19:26:22.559260 | 2015-03-18T03:41:26 | 2015-03-18T03:41:26 | 32,023,678 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # coding=gbk
import cv2
img = cv2.imread('g:/dataset/gochessboard/test1/00001.jpg')
size = img.shape
print size
gray = cv2.cvtColor(img, cv2.cv.CV_RGB2GRAY)
corners = cv2.goodFeaturesToTrack(gray, 500, 0.05, 10)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), criteria)
for i in range(corners.shape[0]):
# print corners[i][0, 0]
pt = (corners[i][0, 0], corners[i][0, 1])
cv2.circle(img, pt, 2, cv2.cv.RGB(0, 0, 255), 2)
cv2.imshow('', img)
cv2.waitKey()
| UTF-8 | Python | false | false | 549 | py | 9 | getCorners.py | 9 | 0.661202 | 0.566485 | 0 | 20 | 26.45 | 75 |
rougier/gl-agg | 18,236,431,157,639 | 5447b3bd47e90aebfb8d4246694a39d646971b71 | efbe29a32d533d992d082ebcacb714731d9885d4 | /demos/demo-graph.py | 3991b9edc9f604b02fbdaa9627148ab38b1b3bd3 | [] | no_license | https://github.com/rougier/gl-agg | d11cb793712fb150cd8146b6d4d3da1dbbdf2e65 | f2f8297afcd63e8e396ba7d710e257e14c7fd25e | refs/heads/master | 2023-08-30T15:00:53.589140 | 2022-08-31T08:15:44 | 2022-08-31T08:15:44 | 8,599,292 | 54 | 9 | null | false | 2022-08-31T08:15:45 | 2013-03-06T08:39:27 | 2022-06-29T05:10:25 | 2022-08-31T08:15:44 | 2,974 | 82 | 16 | 2 | Python | false | false | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (C) 2013 Nicolas P. Rougier. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY NICOLAS P. ROUGIER ''AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL NICOLAS P. ROUGIER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Nicolas P. Rougier.
# -----------------------------------------------------------------------------
import sys
import numpy as np
import OpenGL.GL as gl
import OpenGL.GLUT as glut
from scipy.spatial import cKDTree
from scipy.spatial.distance import cdist
def graph(links = [(0,1), (1,2), (2,3), (3,0), (0,2), (1,3),
(3,4), (4,5), (5,6), (6,7),
(7,8), (8,9), (9,10), (10,7), (8,10), (7,9) ]):
ntype = np.dtype( [('position', 'f4', 2),
('previous', 'f4', 2),
('weight', 'f4', 1),
('charge', 'f4', 1),
('fixed', 'b', 1)] )
ltype = np.dtype( [('source', 'i4', 1),
('target', 'i4', 1),
('strength', 'f4', 1),
('distance', 'f4', 1)] )
L = np.array(links).reshape(len(links),2)
L -= L.min()
n = L.max()+1
nodes = np.zeros(n, ntype)
nodes['position'] = np.random.uniform(256-32, 256+32, (n,2))
nodes['previous'] = nodes['position']
nodes['fixed'] = False
nodes['weight'] = 1
nodes['charge'] = 1
l = len(L)
links = np.zeros( n+l, ltype)
links[:n]['source'] = np.arange(0,n)
links[:n]['target'] = np.arange(0,n)
links[n:]['source'] = L[:,0]
links[n:]['target'] = L[:,1]
links['distance'] = 25
links['strength'] = 5
I = np.argwhere(links['source']==links['target'])
links['distance'][I] = links['strength'][I] = 0
return nodes,links
# -----------------------------------------------------------------------------
def relaxation(nodes, links):
""" Gauss-Seidel relaxation for links """
sources_idx = links['source']
targets_idx = links['target']
sources = nodes[sources_idx]
targets = nodes[targets_idx]
distances = links['distance']
strengths = links['strength']
D = (targets['position'] - sources['position'])
L = np.sqrt((D*D).sum(axis=1))
# This avoid to test L != 0 (I = np.where(L>0))
L = np.where(L,L,np.NaN)
L = strengths * (L-distances) /L
# Replace nan by 0, i.e. where L was 0
L = np.nan_to_num(L)
D *= L.reshape(len(L),1)
K = sources['weight'] / (sources['weight'] + targets['weight'])
K = K.reshape(len(K),1)
# Note that a direct nodes['position'][links['source']] += K*D*(1-F)
# would't work as expected because of repeated indices
F = nodes['fixed'][sources_idx].reshape(len(links),1)
W = K*D*(1-F) * 0.1
nodes['position'][:,0] += np.bincount(sources_idx, W[:,0], minlength=len(nodes))
nodes['position'][:,1] += np.bincount(sources_idx, W[:,1], minlength=len(nodes))
F = nodes['fixed'][targets_idx].reshape(len(links),1)
W = (1-K)*D*(1-F) * 0.1
nodes['position'][:,0] -= np.bincount(targets_idx, W[:,0], minlength=len(nodes))
nodes['position'][:,1] -= np.bincount(targets_idx, W[:,1], minlength=len(nodes))
# -----------------------------------------------------------------------------
def repulsion(nodes, links):
P = nodes['position']
n = len(P)
X,Y = P[:,0],P[:,1]
dX,dY = np.subtract.outer(X,X), np.subtract.outer(Y,Y)
dist = cdist(P,P)
dist = np.where(dist, dist, 1)
D = np.empty((n,n,2))
D[...,0] = dX/dist
D[...,1] = dY/dist
D = np.nan_to_num(D)
R = D.sum(axis=1)
L = np.sqrt(((R*R).sum(axis=0)))
R /= L
F = nodes['fixed'].reshape(len(nodes),1)
P += 5*R*(1-F)
# -----------------------------------------------------------------------------
def attraction(nodes, links):
P = nodes['position']
F = nodes['fixed'].reshape(len(nodes),1)
P += 0.01*((256,256) - P) * (1-F)
# -----------------------------------------------------------------------------
def integration(nodes, links):
P = nodes['position'].copy()
F = nodes['fixed'].reshape(len(nodes),1)
nodes['position'] -= ((nodes['previous']-P)*.9) * (1-F)
nodes['previous'] = P
# -------------------------------------
def on_display():
gl.glClearColor(1,1,1,1);
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
lines.draw()
circles.draw()
glut.glutSwapBuffers()
# -------------------------------------
def on_reshape(width, height):
gl.glViewport(0, 0, width, height)
# -------------------------------------
def on_keyboard(key, x, y):
if key == '\033': sys.exit()
# -------------------------------------
def on_mouse(button, state, x, y):
global drag, index
drag = False
nodes['fixed'] = False
nodes['weight'] = 1
if state == 0:
_,_,w,h = gl.glGetIntegerv( gl.GL_VIEWPORT )
P = nodes['position'] - (x,h-y)
D = np.sqrt((P**2).sum(axis=1))
index = np.argmin(D)
if D[index] < 10:
nodes['fixed'][index] = True
nodes['weight'][index] = 0.01
drag = True
# -------------------------------------
def on_motion(x, y):
global drag, mouse, index
if drag:
_,_,w,h = gl.glGetIntegerv( gl.GL_VIEWPORT )
nodes['position'][index] = x,h-y
P = nodes['position']
circles.vertices.data['a_center'] = np.repeat(P,4,axis=0)
circles._vbuffer._dirty = True
src = nodes[links['source']]['position']
tgt = nodes[links['target']]['position']
src = np.repeat(src,4,axis=0)
lines.vertices.data['a_p0'] = src
tgt = np.repeat(tgt,4,axis=0)
lines.vertices.data['a_p1'] = tgt
lines._vbuffer._dirty = True
glut.glutPostRedisplay()
# -------------------------------------
def on_timer(fps):
relaxation(nodes,links)
repulsion(nodes,links)
attraction(nodes,links)
integration(nodes,links)
# Update collection
P = nodes['position']
circles.vertices.data['a_center'] = np.repeat(P,4,axis=0)
circles._vbuffer._dirty = True
src = nodes[links['source']]['position']
tgt = nodes[links['target']]['position']
src = np.repeat(src,4,axis=0)
lines.vertices.data['a_p0'] = src
tgt = np.repeat(tgt,4,axis=0)
lines.vertices.data['a_p1'] = tgt
lines._vbuffer._dirty = True
glut.glutTimerFunc(1000/fps, on_timer, fps)
glut.glutPostRedisplay()
# -----------------------------------------------------------------------------
if __name__ == '__main__':
from glagg import LineCollection, CircleCollection
glut.glutInit(sys.argv)
glut.glutInitDisplayMode(glut.GLUT_DOUBLE | glut.GLUT_RGB | glut.GLUT_DEPTH)
glut.glutInitWindowSize(512, 512)
glut.glutCreateWindow("Dynamic graph")
glut.glutDisplayFunc(on_display)
glut.glutReshapeFunc(on_reshape)
glut.glutKeyboardFunc(on_keyboard)
glut.glutMouseFunc(on_mouse)
glut.glutMotionFunc(on_motion)
nodes,links = graph( )
circles = CircleCollection()
lines = LineCollection()
for node in nodes:
position = node['position']
circles.append(center = position, radius=5, linewidth=2,
fg_color=(1,1,1,1), bg_color=(1,.5,.5,1))
src = nodes[links['source']]['position']
tgt = nodes[links['target']]['position']
V = np.array(zip(src,tgt)).reshape(2*len(src),2)
lines.append(V, linewidth=1.5, color=(0.75,0.75,0.75,1.00))
drag,index = False, -1
fps = 60
glut.glutTimerFunc(1000/fps, on_timer, fps)
glut.glutMainLoop()
| UTF-8 | Python | false | false | 8,989 | py | 37 | demo-graph.py | 29 | 0.548226 | 0.524975 | 0 | 260 | 33.573077 | 84 |
GennadiiTurutin/nadiakochstore.com | 11,587,821,806,810 | c71c51c1ce98f45ebd072833258e67554dd6532e | 7ec128cb017995d3bb875adcdaec86da7751cd2c | /store/accounts/models.py | 68477a87bb573b4b6ad9c3a8c652ecdf27d026ee | [
"Apache-2.0"
] | permissive | https://github.com/GennadiiTurutin/nadiakochstore.com | edd12dc8579636176c8c4bdcd03beae5244b8082 | 4fad5cac3c9fffef9427ac787c6528fb2751dc6d | refs/heads/master | 2020-04-26T01:50:03.182942 | 2019-03-03T03:57:51 | 2019-03-03T03:57:51 | 173,216,179 | 0 | 0 | Apache-2.0 | false | 2020-02-11T23:48:34 | 2019-03-01T01:46:08 | 2019-03-03T03:57:05 | 2020-02-11T23:48:32 | 5,988 | 0 | 0 | 3 | Tcl | false | false | from django.db import models
# Create your models here.
class Account(models.Model):
title = models.CharField(max_length=120) | UTF-8 | Python | false | false | 127 | py | 15 | models.py | 11 | 0.779528 | 0.755906 | 0 | 5 | 24.6 | 41 |
thebe111/commander | 3,461,743,652,632 | 161fe26cb0deaefb7963515bc4390a6b13705102 | addccd666a95b4df1d33a3bb4995fc8be4b74185 | /src/commander/core/exceptions.py | 1bf79e4013bd1527b7fa64783867c56dc22d79f0 | [
"MIT"
] | permissive | https://github.com/thebe111/commander | a1929b49b66473b778e96c398b816fbc2ab66f6f | b6ebd2ddfd1792b1db4012eb5917f478c48928d1 | refs/heads/master | 2023-07-02T16:14:15.732648 | 2021-07-05T21:14:08 | 2021-07-28T21:32:29 | 390,511,647 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sys
class CustomException(Exception):
def __init__(self, msg: str):
super().__init__(f"custom message here")
def exceptions_resolver(instance):
if "message" in instance:
return sys.exit(f"Commander: {instance.message}")
else:
return sys.exit(f"Commander: {instance}")
| UTF-8 | Python | false | false | 315 | py | 11 | exceptions.py | 7 | 0.644444 | 0.644444 | 0 | 13 | 23.230769 | 57 |
Project-Franchise/client-service | 7,885,559,986,115 | 36b86ac5e411031f7eb1260dbc16fec87f7af339 | 47fca5bce8ee0bef7de27e63241b7b1052bfae20 | /service_api/utils/__init__.py | 2becf011e4e87676fee72211dadcd49cd54a8553 | [] | no_license | https://github.com/Project-Franchise/client-service | 30bac295be2717aaa5ba9368cbf0021e130bf0b8 | 80cd627f47e0499ddcb2c3313dbd67f1a90145c9 | refs/heads/main | 2023-05-02T13:15:18.829177 | 2021-05-25T06:28:38 | 2021-05-25T06:28:38 | 346,783,231 | 1 | 0 | null | false | 2021-05-25T06:28:39 | 2021-03-11T17:28:07 | 2021-05-25T05:39:13 | 2021-05-25T06:28:38 | 523 | 1 | 0 | 28 | Python | false | false | """
Utilities for creating models and saving them in DB
"""
import datetime
import json
from functools import singledispatch
from typing import Dict
from marshmallow import ValidationError
from marshmallow.schema import Schema
from requests import Session
from sqlalchemy.orm import make_transient
from sqlalchemy import func
from service_api import LOGGER, Base, session_scope
from ..exceptions import (MetaDataError, ModelNotFoundException, ObjectNotFoundException)
from ..models import Realty, RealtyDetails
from ..schemas import RealtyDetailsSchema, RealtySchema
@singledispatch
def load_data(model_schema: Schema, data: Dict, model: Base) -> Base:
"""
Stores data in a database according to a given scheme
"""
try:
valid_data = model_schema.load(data)
record = model(**valid_data)
except ValidationError as error:
LOGGER.error("Error message:%s, data for validation %s", error, valid_data)
raise
with session_scope() as session:
existing_record = session.query(model).filter_by(**valid_data).first()
if existing_record is None:
session.add(record)
return existing_record or record
@load_data.register
def _(model_schema: RealtyDetailsSchema, data: Dict, model: RealtyDetails):
try:
valid_data = model_schema.load(data)
realty_details_record = model(**valid_data)
except ValidationError as error:
LOGGER.error(error)
raise
with session_scope() as session:
realty_details = session.query(model).filter_by(
original_url=realty_details_record.original_url, version=realty_details_record.version).first()
if realty_details is not None:
incoming_data = model_schema.dump(realty_details_record)
db_data = model_schema.dump(realty_details)
incoming_data.pop("id")
db_data.pop("id")
if incoming_data == db_data:
return realty_details
with session_scope() as session:
session.expire_on_commit = False
session.query(model).filter_by(
original_url=realty_details.original_url, version=realty_details.version).update(
{"version": datetime.datetime.now()})
session.add(realty_details_record)
session.commit()
realty_record = session.query(Realty).filter_by(
realty_details_id=realty_details.id).first()
new_realty_details_id = session.query(model).filter_by(
original_url=realty_details_record.original_url, version=realty_details_record.version).first().id
make_transient(realty_record)
realty_record.realty_details_id = new_realty_details_id
realty_record.id = None
del realty_record.id
session.add(realty_record)
with session_scope() as session:
session.query(Realty).filter_by(
realty_details_id=model_schema.dump(realty_details).get("id")).update(
{"version": datetime.datetime.now()})
with session_scope() as session:
session.add(realty_details_record)
return realty_details_record
@load_data.register
def _(model_schema: RealtySchema, data: Dict, model: Realty):
try:
valid_data = model_schema.load(data)
realty_record = model(**valid_data)
LOGGER.debug("record.realty_details_id: %s", str(realty_record.realty_details_id))
except ValidationError as error:
LOGGER.error(error)
raise
with session_scope() as session:
realty = session.query(model).filter_by(realty_details_id=realty_record.realty_details_id).first()
if realty is None:
with session_scope() as session:
session.add(realty_record)
return realty or realty_record
def open_metadata(path: str) -> Dict:
"""
Open file with metadata and return content
"""
try:
with open(path, encoding="utf-8") as meta_file:
metadata = json.load(meta_file)
except json.JSONDecodeError as error:
LOGGER.error(error)
raise MetaDataError from error
except FileNotFoundError as error:
LOGGER.error("Invalid metadata path, or metadata.json file does not exist")
raise MetaDataError from error
return metadata
def recognize_by_alias(model: Base, alias: str, set_=None):
"""
Finds model record by alias. If set param is passed that alias is searched in that set
:param model: Base
:param alias: str
:param set_: optional
:returns: model instance
:raises: ModelNotFoundException, ObjectNotFoundException
"""
try:
table_of_aliases = model.aliases.mapper.class_
except AttributeError as error:
LOGGER.error(error)
raise ModelNotFoundException(desc="Model {} doesn't have aliases attribute".format(model)) from error
with session_scope() as session:
set_ = set_ or session.query(model)
obj = set_.join(table_of_aliases, table_of_aliases.entity_id == model.id).filter(
func.lower(table_of_aliases.alias) == alias.lower()).first()
if obj is None:
raise ObjectNotFoundException(message="Record for alias: {} not found".format(alias))
return obj
def send_request(method: str, url: str, request_session: Session = None, *args, **kwargs):
"""
Wrapper for sending requests
"""
request_session = request_session or Session()
response = request_session.request(method, url, *args, **kwargs)
from ..services.limitation import LimitationSystem
LimitationSystem().mark_token_after_request(response.url)
return response
def chunkify(number, pieces):
"""
Devide number on almost equal pieces
"""
return [number//pieces]*(pieces-1) + [sum(divmod(number, pieces))]
| UTF-8 | Python | false | false | 5,814 | py | 101 | __init__.py | 70 | 0.666495 | 0.666151 | 0 | 165 | 34.236364 | 114 |
mohammedjasam/Competitive-Programming | 1,949,915,170,711 | dbfcbe8e51c2bd7bef1307b614a4741a27783bdf | fa1277b6939fbc1de8795a2c6e7c253637992f9e | /Unsolved!/GameOfThrowns.py | bb3d4a4c60ddeb738961299bb753c67d52350f6c | [] | no_license | https://github.com/mohammedjasam/Competitive-Programming | bb83171535c5d8626a94c5e0d3b3d37e9e3f1de8 | 4a5ab3c12693b50eea139f0bb2040fd5676ed069 | refs/heads/master | 2021-01-19T20:22:59.026871 | 2018-04-27T14:56:24 | 2018-04-27T14:56:24 | 83,748,705 | 4 | 2 | null | null | null | null | null | null | null | null | null | null | null | null | null | n, k = map(int, input().split())
actions = input()
actions = actions.replace("undo ", "*")
actions = actions.split()
# print(actions)
childQueue = []
for x in range(n):
childQueue.append(x)
revchildQueue = list(reversed(childQueue))
# print(childQueue, revchildQueue)
current = [0]
# print('a, index location, value at index, current array')
for a in actions:
try:
if int(a) > 0:
current.append(childQueue[(current[-1] + int(a)) % n])
# print(a, (current[-1] + int(a)) % n, childQueue[(current[-1] + int(a)) % n], current)
# print(current)
elif int(a) < 0:
current.append(revchildQueue[(current[-1] + int(a)) % n])
# print(a, (current[-1] + int(a)) % n, revchildQueue[(current[-1] + int(a)) % n], current)
# print(current)
except:
if a[0] == "*":
if int(a[1]) == 0:
pass
# print(current)
else:
current = current[:-int(a[1])]
# print(a[1], current)
# print(Undo)
# print("\n\nFinal Solution")
print(current[-1])
| UTF-8 | Python | false | false | 1,120 | py | 97 | GameOfThrowns.py | 91 | 0.521429 | 0.508036 | 0 | 38 | 28.473684 | 102 |
n8sty/dowhy | 11,974,368,861,048 | c024d05f36ac0c62523572cabc0c6e88c0933592 | 8a564da3207f01e1827eac5396ab12068cd06663 | /tests/test_causal_model.py | d2cc4ef035a059a891a4483854ca3d5e94f9436b | [
"MIT"
] | permissive | https://github.com/n8sty/dowhy | 09478cbf0694da7f6d4d6ce4f67baaa5de06b964 | 0b5e2c3efa348ca232ecc6355f0fc6ec4458241a | refs/heads/main | 2023-06-10T00:10:03.085219 | 2023-05-27T01:46:08 | 2023-05-27T01:46:08 | 333,647,965 | 0 | 0 | MIT | true | 2021-01-28T04:44:40 | 2021-01-28T04:44:40 | 2021-01-27T22:23:42 | 2021-01-27T21:57:02 | 20,540 | 0 | 0 | 0 | null | false | false | import pandas as pd
import pytest
from flaky import flaky
from pytest import mark
from sklearn import linear_model
import dowhy
import dowhy.datasets
from dowhy import CausalModel
class TestCausalModel(object):
@mark.parametrize(
["beta", "num_samples", "num_treatments"],
[
(10, 100, 1),
],
)
def test_external_estimator(self, beta, num_samples, num_treatments):
num_common_causes = 5
data = dowhy.datasets.linear_dataset(
beta=beta,
num_common_causes=num_common_causes,
num_samples=num_samples,
num_treatments=num_treatments,
treatment_is_binary=True,
)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
proceed_when_unidentifiable=True,
test_significance=None,
)
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True)
estimate = model.estimate_effect(
identified_estimand,
method_name="backdoor.tests.causal_estimators.mock_external_estimator.PropensityScoreWeightingEstimator",
control_value=0,
treatment_value=1,
target_units="ate", # condition used for CATE
confidence_intervals=True,
method_params={"propensity_score_model": linear_model.LogisticRegression(max_iter=1000)},
)
assert estimate.estimator.propensity_score_model.max_iter == 1000
@mark.parametrize(
["beta", "num_instruments", "num_samples", "num_treatments"],
[
(10, 1, 100, 1),
],
)
def test_graph_input(self, beta, num_instruments, num_samples, num_treatments):
num_common_causes = 5
data = dowhy.datasets.linear_dataset(
beta=beta,
num_common_causes=num_common_causes,
num_instruments=num_instruments,
num_samples=num_samples,
num_treatments=num_treatments,
treatment_is_binary=True,
)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
proceed_when_unidentifiable=True,
test_significance=None,
)
# removing two common causes
gml_str = 'graph[directed 1 node[ id "{0}" label "{0}"]node[ id "{1}" label "{1}"]node[ id "Unobserved Confounders" label "Unobserved Confounders"]edge[source "{0}" target "{1}"]edge[source "Unobserved Confounders" target "{0}"]edge[source "Unobserved Confounders" target "{1}"]node[ id "X0" label "X0"] edge[ source "X0" target "{0}"] node[ id "X1" label "X1"] edge[ source "X1" target "{0}"] node[ id "X2" label "X2"] edge[ source "X2" target "{0}"] edge[ source "X0" target "{1}"] edge[ source "X1" target "{1}"] edge[ source "X2" target "{1}"] node[ id "Z0" label "Z0"] edge[ source "Z0" target "{0}"]]'.format(
data["treatment_name"][0], data["outcome_name"]
)
print(gml_str)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=gml_str,
proceed_when_unidentifiable=True,
test_significance=None,
missing_nodes_as_confounders=True,
)
common_causes = model.get_common_causes()
assert all(node_name in common_causes for node_name in ["X1", "X2"])
@mark.parametrize(
["beta", "num_instruments", "num_samples", "num_treatments"],
[
(10, 1, 100, 1),
],
)
def test_graph_input2(self, beta, num_instruments, num_samples, num_treatments):
num_common_causes = 5
data = dowhy.datasets.linear_dataset(
beta=beta,
num_common_causes=num_common_causes,
num_instruments=num_instruments,
num_samples=num_samples,
num_treatments=num_treatments,
treatment_is_binary=True,
)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
proceed_when_unidentifiable=True,
test_significance=None,
)
# removing two common causes
gml_str = """graph[
directed 1
node[ id "{0}"
label "{0}"
]
node [
id "{1}"
label "{1}"
]
node [
id "Unobserved Confounders"
label "Unobserved Confounders"
]
edge[
source "{0}"
target "{1}"
]
edge[
source "Unobserved Confounders"
target "{0}"
]
edge[
source "Unobserved Confounders"
target "{1}"
]
node[
id "X0"
label "X0"
]
edge[
source "X0"
target "{0}"
]
node[
id "X1"
label "X1"
]
edge[
source "X1"
target "{0}"
]
node[
id "X2"
label "X2"
]
edge[
source "X2"
target "{0}"
]
edge[
source "X0"
target "{1}"
]
edge[
source "X1"
target "{1}"
]
edge[
source "X2"
target "{1}"
]
node[
id "Z0"
label "Z0"
]
edge[
source "Z0"
target "{0}"
]]""".format(
data["treatment_name"][0], data["outcome_name"]
)
print(gml_str)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=gml_str,
proceed_when_unidentifiable=True,
test_significance=None,
missing_nodes_as_confounders=True,
)
common_causes = model.get_common_causes()
assert all(node_name in common_causes for node_name in ["X1", "X2"])
@mark.parametrize(
["beta", "num_instruments", "num_samples", "num_treatments"],
[
(10, 1, 100, 1),
],
)
def test_graph_input3(self, beta, num_instruments, num_samples, num_treatments):
num_common_causes = 5
data = dowhy.datasets.linear_dataset(
beta=beta,
num_common_causes=num_common_causes,
num_instruments=num_instruments,
num_samples=num_samples,
num_treatments=num_treatments,
treatment_is_binary=True,
)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
proceed_when_unidentifiable=True,
test_significance=None,
)
# removing two common causes
gml_str = """dag {
"Unobserved Confounders" [pos="0.491,-1.056"]
X0 [pos="-2.109,0.057"]
X1 [adjusted, pos="-0.453,-1.562"]
X2 [pos="-2.268,-1.210"]
Z0 [pos="-1.918,-1.735"]
v0 [latent, pos="-1.525,-1.293"]
y [outcome, pos="-1.164,-0.116"]
"Unobserved Confounders" -> v0
"Unobserved Confounders" -> y
X0 -> v0
X0 -> y
X1 -> v0
X1 -> y
X2 -> v0
X2 -> y
Z0 -> v0
v0 -> y
}
"""
print(gml_str)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=gml_str,
proceed_when_unidentifiable=True,
test_significance=None,
missing_nodes_as_confounders=True,
)
common_causes = model.get_common_causes()
assert all(node_name in common_causes for node_name in ["X1", "X2"])
all_nodes = model._graph.get_all_nodes(include_unobserved=True)
assert all(
node_name in all_nodes for node_name in ["Unobserved Confounders", "X0", "X1", "X2", "Z0", "v0", "y"]
)
all_nodes = model._graph.get_all_nodes(include_unobserved=False)
assert "Unobserved Confounders" not in all_nodes
@mark.parametrize(
["beta", "num_instruments", "num_samples", "num_treatments"],
[
(10, 1, 100, 1),
],
)
def test_graph_input4(self, beta, num_instruments, num_samples, num_treatments):
num_common_causes = 5
data = dowhy.datasets.linear_dataset(
beta=beta,
num_common_causes=num_common_causes,
num_instruments=num_instruments,
num_samples=num_samples,
num_treatments=num_treatments,
treatment_is_binary=True,
)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
proceed_when_unidentifiable=True,
test_significance=None,
)
# removing two common causes
gml_str = "tests/sample_dag.txt"
print(gml_str)
model = CausalModel(
data=data["df"],
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=gml_str,
proceed_when_unidentifiable=True,
test_significance=None,
missing_nodes_as_confounders=True,
)
common_causes = model.get_common_causes()
assert all(node_name in common_causes for node_name in ["X1", "X2"])
all_nodes = model._graph.get_all_nodes(include_unobserved=True)
assert all(
node_name in all_nodes for node_name in ["Unobserved Confounders", "X0", "X1", "X2", "Z0", "v0", "y"]
)
all_nodes = model._graph.get_all_nodes(include_unobserved=False)
assert "Unobserved Confounders" not in all_nodes
@mark.parametrize(
["num_variables", "num_samples"],
[
(5, 5000),
],
)
@flaky(max_runs=3)
def test_graph_refutation(self, num_variables, num_samples):
data = dowhy.datasets.dataset_from_random_graph(num_vars=num_variables, num_samples=num_samples)
df = data["df"]
model = CausalModel(
data=df,
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
)
graph_refutation_object = model.refute_graph(
k=1,
independence_test={
"test_for_continuous": "partial_correlation",
"test_for_discrete": "conditional_mutual_information",
},
)
assert graph_refutation_object.refutation_result == True
@mark.parametrize(
["num_variables", "num_samples"],
[
(10, 5000),
],
)
def test_graph_refutation2(self, num_variables, num_samples):
data = dowhy.datasets.dataset_from_random_graph(num_vars=num_variables, num_samples=num_samples)
df = data["df"]
gml_str = """
graph [
directed 1
node [
id 0
label "a"
]
node [
id 1
label "b"
]
node [
id 2
label "c"
]
node [
id 3
label "d"
]
node [
id 4
label "e"
]
node [
id 5
label "f"
]
node [
id 6
label "g"
]
node [
id 7
label "h"
]
node [
id 8
label "i"
]
node [
id 9
label "j"
]
edge [
source 0
target 1
]
edge [
source 0
target 3
]
edge [
source 3
target 2
]
edge [
source 7
target 4
]
edge [
source 6
target 5
]
edge [
source 7
target 8
]
edge [
source 9
target 2
]
edge [
source 9
target 8
]
]
"""
model = CausalModel(
data=df,
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=gml_str,
)
graph_refutation_object = model.refute_graph(
k=2,
independence_test={
"test_for_continuous": "partial_correlation",
"test_for_discrete": "conditional_mutual_information",
},
)
assert graph_refutation_object.refutation_result == False
def test_unobserved_graph_variables_log_warning(self, caplog):
data = dowhy.datasets.linear_dataset(
beta=10,
num_common_causes=3,
num_instruments=1,
num_effect_modifiers=1,
num_samples=3,
treatment_is_binary=True,
stddev_treatment_noise=2,
num_discrete_common_causes=1,
)
df = data["df"]
# Remove graph variable with name "W0" from observed data.
df = df.drop(columns=["W0"])
expected_warning_message_regex = (
"1 variables are assumed unobserved because they are not in the "
"dataset. Configure the logging level to `logging.WARNING` or "
"higher for additional details."
)
with pytest.warns(
UserWarning,
match=expected_warning_message_regex,
):
_ = CausalModel(
data=df,
treatment=data["treatment_name"],
outcome=data["outcome_name"],
graph=data["gml_graph"],
)
# Ensure that a log record exists that provides a more detailed view
# of observed and unobserved graph variables (counts and variable names.)
expected_logging_message = (
"The graph defines 7 variables. 6 were found in the dataset "
"and will be analyzed as observed variables. 1 were not found "
"in the dataset and will be analyzed as unobserved variables. "
"The observed variables are: '['W1', 'W2', 'X0', 'Z0', 'v0', 'y']'. "
"The unobserved variables are: '['W0']'. "
"If this matches your expectations for observations, please continue. "
"If you expected any of the unobserved variables to be in the "
"dataframe, please check for typos."
)
assert any(
log_record
for log_record in caplog.records
if (
(log_record.name == "dowhy.causal_model")
and (log_record.levelname == "WARNING")
and (log_record.message == expected_logging_message)
)
), (
"Expected logging message informing about unobserved graph variables "
"was not found. Expected a logging message to be emitted in module `dowhy.causal_model` "
f"and with level `logging.WARNING` and this content '{expected_logging_message}'. "
f"Only the following log records were emitted instead: '{caplog.records}'."
)
if __name__ == "__main__":
pytest.main([__file__])
| UTF-8 | Python | false | false | 15,723 | py | 289 | test_causal_model.py | 184 | 0.511989 | 0.494817 | 0 | 502 | 30.320717 | 623 |
carlcarl/lazyhub | 11,123,965,316,962 | f5dc21479acc08ddec70480bfe07936e70857cba | 9e278eeb8a05ec25a657b11a9bf7b6f7fa6ca7b3 | /lazyhub/views.py | a81cf2d3afd6ade2de3aa60b091f3d67a1d68bb7 | [
"MIT"
] | permissive | https://github.com/carlcarl/lazyhub | 7b3aef3fa267b863a23367bc4a79b909edfabdf9 | b98c86f2845d0b3b07d97885cead9506e9d71453 | refs/heads/master | 2023-07-12T18:06:46.400114 | 2015-09-01T03:52:45 | 2015-09-01T03:52:45 | 15,317,402 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.shortcuts import render
from django.views.decorators.http import require_http_methods
import json
from django.http import HttpResponse
from libs import github_query, date_filter
from forms import QueryForm
def index(request):
return render(request, 'lazyhub/index.html')
@require_http_methods(['GET'])
def query(request, account, days):
data = {'error': {'account': False, 'days': False}}
if request.is_ajax():
form = QueryForm({'account': account, 'days': days})
if form.is_valid():
account = form.cleaned_data['account']
days = form.cleaned_data['days']
data['data'] = github_query(account)
data['data'] = date_filter(data['data'], days)
else:
for k, v in data['error'].iteritems():
if k in form.errors:
data['error'][k] = True
data = json.dumps(data)
return HttpResponse(data, content_type='application/json')
| UTF-8 | Python | false | false | 973 | py | 13 | views.py | 6 | 0.622816 | 0.622816 | 0 | 28 | 33.75 | 62 |
ypolaris-com/module_publish_test | 3,770,981,303,813 | 98bb697f37a122a69284c0d2b1d779423c03a327 | 16a1aa1fdc154ae166a54b491884d878ac01e22e | /Print_module/__init__.py | b745968536a0857facbfcf3d95216ff17bce6afb | [] | no_license | https://github.com/ypolaris-com/module_publish_test | e3ebde2b0a09c05522f72aaae9f4b0358bc6d211 | 6ee3cc95236733719fe277718df3e6808400c247 | refs/heads/main | 2023-08-31T18:39:20.685596 | 2021-11-10T13:30:11 | 2021-11-10T13:30:11 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from Print_module.Star_print import * | UTF-8 | Python | false | false | 37 | py | 4 | __init__.py | 3 | 0.810811 | 0.810811 | 0 | 1 | 37 | 37 |
Rafaelbarr/100DaysOfCodeChallenge | 15,358,803,059,082 | de6a728a823c08dc660dac70e2e79c78fcc3a46d | c2c89df45a6640498bf9d292ef8c054e60633b52 | /day006/001_100_years_old.py | 2c7283d12c23dfe96a4dd1b22d9cf2c301a03e30 | [] | no_license | https://github.com/Rafaelbarr/100DaysOfCodeChallenge | 8841f70fd03a64f1a6c53f302b830baa16821d81 | db75fd45dda2485fd52cbcbff4473d66514cc578 | refs/heads/master | 2022-01-07T10:23:34.474085 | 2018-04-27T05:36:22 | 2018-04-27T05:36:22 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
#This program asks te user for his/her name and age
#Then return the year he/she will be 100 years old
def run():
#Data input
name = raw_input('What\'s your name?: ')
age = int(raw_input('What\'s your age?: '))
#Result calculation
older = (2018 - age) + 100
#Result output
print('You\'ll be 100 years old in the {} year!'.format(older))
if __name__ == '__main__':
run() | UTF-8 | Python | false | false | 447 | py | 57 | 001_100_years_old.py | 55 | 0.57047 | 0.53915 | 0 | 18 | 22.944444 | 67 |
mindspore-ai/mindspore | 5,042,291,634,900 | de7e93515c94f00cb06aa1ab51330e8ffdb5bde8 | ffdc77394c5b5532b243cf3c33bd584cbdc65cb7 | /tests/st/hcom/hcom_sparsetensor.py | 1bce2fa712b889e157fad1c7d4cf808cbaac9c2a | [
"Apache-2.0",
"LicenseRef-scancode-proprietary-license",
"MPL-1.0",
"OpenSSL",
"LGPL-3.0-only",
"LicenseRef-scancode-warranty-disclaimer",
"BSD-3-Clause-Open-MPI",
"MIT",
"MPL-2.0-no-copyleft-exception",
"NTP",
"BSD-3-Clause",
"GPL-1.0-or-later",
"0BSD",
"MPL-2.0",
"LicenseRef-scancode-free-unknown",
"AGPL-3.0-only",
"Libpng",
"MPL-1.1",
"IJG",
"GPL-2.0-only",
"BSL-1.0",
"Zlib",
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-python-cwi",
"BSD-2-Clause",
"LicenseRef-scancode-gary-s-brown",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"Python-2.0",
"LicenseRef-scancode-mit-nagy",
"LicenseRef-scancode-other-copyleft",
"LicenseRef-scancode-unknown-license-reference",
"Unlicense"
] | permissive | https://github.com/mindspore-ai/mindspore | ca7d5bb51a3451c2705ff2e583a740589d80393b | 54acb15d435533c815ee1bd9f6dc0b56b4d4cf83 | refs/heads/master | 2023-07-29T09:17:11.051569 | 2023-07-17T13:14:15 | 2023-07-17T13:14:15 | 239,714,835 | 4,178 | 768 | Apache-2.0 | false | 2023-07-26T22:31:11 | 2020-02-11T08:43:48 | 2023-07-26T10:48:16 | 2023-07-26T22:31:11 | 769,725 | 3,608 | 645 | 143 | C++ | false | false | # Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
from mindspore.communication.management import get_rank
from mindspore import Tensor
from mindspore import Parameter
from mindspore import context
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.communication.management import init
from mindspore.communication.management import get_group_size
class FakeDataInitMode:
RandomInit = 0
OnesInit = 1
UniqueInit = 2
ZerosInit = 3
class FakeData:
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_class=10,
random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit):
self.size = size
self.rank_batch_size = batch_size
self.total_batch_size = self.rank_batch_size
self.random_offset = random_offset
self.image_size = image_size
self.num_class = num_class
self.rank_size = 1
self.rank_id = 0
self.batch_index = 0
self.image_data_type = np.float32
self.label_data_type = np.float32
self.is_onehot = True
self.fakedata_mode = fakedata_mode
if use_parallel:
if 'CONTEXT_DEVICE_TARGET' in os.environ and os.environ['CONTEXT_DEVICE_TARGET'] == 'GPU':
init(backend_name='nccl')
else:
init(backend_name='hccl')
self.rank_size = get_group_size()
self.rank_id = get_rank()
self.total_batch_size = self.rank_batch_size * self.rank_size
assert self.size % self.total_batch_size == 0
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
def get_dataset_size(self):
return int(self.size / self.total_batch_size)
def get_reeat_count(self):
return 1
def set_image_data_type(self, data_type):
self.image_data_type = data_type
def set_label_data_type(self, data_type):
self.label_data_type = data_type
def set_label_onehot(self, is_onehot=True):
self.is_onehot = is_onehot
def create_tuple_iterator(self, num_epochs=-1, do_copy=False):
return self
def __getitem__(self, batch_index):
if batch_index * self.total_batch_size >= len(self):
raise IndexError("{} index out of range".format(self.__class__.__name__))
rng_state = np.random.get_state()
np.random.seed(batch_index + self.random_offset)
if self.fakedata_mode == FakeDataInitMode.OnesInit:
img = np.ones(self.total_batch_data_size)
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
img = np.zeros(self.total_batch_data_size)
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
total_size = 1
for i in self.total_batch_data_size:
total_size = total_size* i
img = np.reshape(np.arange(total_size)*0.0001, self.total_batch_data_size)
else:
img = np.random.randn(*self.total_batch_data_size)
target = np.random.randint(0, self.num_class, size=(self.rank_size, self.rank_batch_size))
np.random.set_state(rng_state)
img = img[self.rank_id]
target = target[self.rank_id]
img_ret = img.astype(self.image_data_type)
target_ret = target.astype(self.label_data_type)
if self.is_onehot:
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_class))
target_onehot[np.arange(self.rank_batch_size), target] = 1
target_ret = target_onehot.astype(self.label_data_type)
return Tensor(img_ret), Tensor(target_ret)
def __len__(self):
return self.size
def __iter__(self):
self.batch_index = 0
return self
def reset(self):
self.batch_index = 0
def __next__(self):
if self.batch_index * self.total_batch_size < len(self):
data = self[self.batch_index]
self.batch_index += 1
return data
raise StopIteration
class NetWithSparseGatherV2(nn.Cell):
def __init__(self, strategy=None, sparse=True):
super(NetWithSparseGatherV2, self).__init__()
self.axis = 0
self.sparse = sparse
if sparse:
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
self.gather = P.SparseGatherV2()
else:
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
self.gather = P.Gather()
if strategy is not None:
self.gather.shard(strategy)
def construct(self, indices):
x = self.gather(self.weight, indices, self.axis)
return x
def train_mindspore_impl(self, indices, epoch, batch_size, use_parallel=True):
ds = FakeData(size=8, batch_size=batch_size, num_class=8, image_size=(), use_parallel=use_parallel)
ds.set_image_data_type(np.int32)
net = self
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = nn.Adam(net.trainable_params())
optimizer.target = "CPU"
model = Model(net, loss, optimizer)
for _ in range(epoch):
model.train(1, ds, dataset_sink_mode=False)
output = net(indices)
return output
def test_allreduce_sparsegatherv2_adam_auto_parallel():
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
init(backend_name='hccl')
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8, gradients_mean=True)
indices = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]).astype(np.int32))
epoch = 3
batch_size = 1
net = NetWithSparseGatherV2(sparse=True)
output_sparse = net.train_mindspore_impl(indices, epoch, batch_size)
net = NetWithSparseGatherV2(sparse=False)
output = net.train_mindspore_impl(indices, epoch, batch_size)
assert np.allclose(output.asnumpy(), output_sparse.asnumpy(), 0.001, 0.001)
| UTF-8 | Python | false | false | 6,736 | py | 15,926 | hcom_sparsetensor.py | 11,911 | 0.636283 | 0.622922 | 0 | 172 | 38.162791 | 114 |
huanhuan077/python_1 | 1,400,159,371,452 | 96510c29811c2fe4dabc719ce1e8136182676e34 | 1da84e2c2818542f21e045be620df7c13f878225 | /test_items/mianshi/socket_server.py | b9dff90514a2b3f8833b155e311a1e1a63176323 | [] | no_license | https://github.com/huanhuan077/python_1 | 3ea0f1978a3c9f67e86e036fcfaf06dbbc7d8730 | f3d6371e95e05b4c5e306bdaf04ef1535dbbbe2e | refs/heads/master | 2020-04-03T11:27:26.640285 | 2020-04-01T03:08:37 | 2020-04-01T03:08:37 | 155,222,218 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # coding:utf-8
import socket
# 服务端
s = socket.socket()
s.bind(('127.0.0.1', 6666))
s.listen(5)
while True:
c,addr = s.accept()
print('连接地址',addr)
c.send('welcome')
c.close() | UTF-8 | Python | false | false | 205 | py | 114 | socket_server.py | 74 | 0.591623 | 0.528796 | 0 | 13 | 13.769231 | 27 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.