repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
sequence
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
m1sterzer0/JuliaAtcoder
13,855,564,547,575
31555f18cc83ead0682268dc41505eb83f73d2d0
820fd50ab301eedb6058b5dd2d626e1f4c845467
/python/lib.py
2f69d5b6bc55719d0336ed1786b010560cb80fe1
[]
no_license
https://github.com/m1sterzer0/JuliaAtcoder
28ca1be2fb96c12db13f8abe6a45de2d73b44f44
d8b4f5fd7698d0eff8ebfa17e026658b473d62fd
refs/heads/main
2023-06-14T08:31:16.260185
2021-07-10T17:02:53
2021-07-10T17:02:53
365,635,629
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math import collections ## Recall heapq has heappush,heappop,heapify for simple minheaps -- faster than this implementation class maxHeap : v = [] def __init__(self) : self.v = [0] def len(self) : return len(self.v)-1 def isempty(self) : return len(self.v) == 1 def top(self) : return self.v[1] def push(self,val) : self.v.append(val) self._bubbleup(len(self.v)-1) def pop(self) : ans = self.v[1] xx = self.v.pop() if len(self.v) > 1 : self.v[1] = xx self._bubbledown(1) return ans def _bubbleup(self,idx) : if idx == 1 : return j = idx >> 1 if self.v[j] < self.v[idx] : self.v[j],self.v[idx] = self.v[idx],self.v[j] self._bubbleup(j) def _bubbledown(self,idx) : l = idx << 1; r = l + 1 ll = len(self.v) res1 = l >= ll or self.v[idx] >= self.v[l] res2 = r >= ll or self.v[idx] >= self.v[r] if res1 and res2 : return if res1 : self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r); return if res2 : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return if self.v[l] >= self.v[r] : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r) class minHeap : v = [] def __init__(self) : self.v = [0] def len(self) : return len(self.v)-1 def isempty(self) : return len(self.v) == 1 def top(self) : return self.v[1] def push(self,val) : self.v.append(val) self._bubbleup(len(self.v)-1) def pop(self) : ans = self.v[1] xx = self.v.pop() if len(self.v) > 1 : self.v[1] = xx self._bubbledown(1) return ans def _bubbleup(self,idx) : if idx == 1 : return j = idx >> 1 if self.v[j] > self.v[idx] : self.v[j],self.v[idx] = self.v[idx],self.v[j] self._bubbleup(j) def _bubbledown(self,idx) : l = idx << 1; r = l + 1 ll = len(self.v) res1 = l >= ll or self.v[idx] <= self.v[l] res2 = r >= ll or self.v[idx] <= self.v[r] if res1 and res2 : return if res1 : self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r); return if res2 : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return if self.v[l] <= self.v[r] : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r) class maxHeap : v = [] def __init__(self) : self.v = [0] def len(self) : return len(self.v)-1 def isempty(self) : return len(self.v) == 1 def top(self) : return self.v[1] def push(self,val) : self.v.append(val) self._bubbleup(len(self.v)-1) def pop(self) : ans = self.v[1] xx = self.v.pop() if len(self.v) > 1 : self.v[1] = xx self._bubbledown(1) return ans def _bubbleup(self,idx) : if idx == 1 : return j = idx >> 1 if self.v[j] < self.v[idx] : self.v[j],self.v[idx] = self.v[idx],self.v[j] self._bubbleup(j) def _bubbledown(self,idx) : l = idx << 1; r = l + 1 ll = len(self.v) res1 = l >= ll or self.v[idx] >= self.v[l] res2 = r >= ll or self.v[idx] >= self.v[r] if res1 and res2 : return if res1 : self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r); return if res2 : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return if self.v[l] >= self.v[r] : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r) class minHeap : v = [] def __init__(self) : self.v = [0] def len(self) : return len(self.v)-1 def isempty(self) : return len(self.v) == 1 def top(self) : return self.v[1] def push(self,val) : self.v.append(val) self._bubbleup(len(self.v)-1) def pop(self) : ans = self.v[1] xx = self.v.pop() if len(self.v) > 1 : self.v[1] = xx self._bubbledown(1) return ans def _bubbleup(self,idx) : if idx == 1 : return j = idx >> 1 if self.v[j] > self.v[idx] : self.v[j],self.v[idx] = self.v[idx],self.v[j] self._bubbleup(j) def _bubbledown(self,idx) : l = idx << 1; r = l + 1 ll = len(self.v) res1 = l >= ll or self.v[idx] <= self.v[l] res2 = r >= ll or self.v[idx] <= self.v[r] if res1 and res2 : return if res1 : self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r); return if res2 : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return if self.v[l] <= self.v[r] : self.v[idx],self.v[l] = self.v[l],self.v[idx]; self._bubbledown(l); return self.v[idx],self.v[r] = self.v[r],self.v[idx]; self._bubbledown(r) class minHeapEnh : vt = []; pos = {} def __init__(self) : pass def _swap(mh,i,j) : (n1,n2) = (mh.vt[i][1],mh.vt[j][1]) mh.pos[n2],mh.pos[n1] = i,j mh.vt[i],mh.vt[j] = mh.vt[j],mh.vt[i] def _bubbleup(mh,i) : if i == 0 : return j = (i-1) >> 1 if mh.vt[i] < mh.vt[j] : mh._swap(i,j); mh._bubbleup(j) def _bubbledown(mh,i) : ll = len(mh.vt) l = (i<<1) + 1; r = l+1 res1 = l >= ll or not (mh.vt[i] > mh.vt[l]) res2 = r >= ll or not (mh.vt[i] > mh.vt[r]) if res1 and res2 : return if res2 or not res1 and not mh.vt[l] > mh.vt[r] : mh._swap(i,l); mh._bubbledown(l) else : mh._swap(i,r); mh._bubbledown(r) def push(mh,d,n) : if n in mh.pos : idx = mh.pos[n] n2 = mh.vt[idx] if d < n2[0] : mh.vt[idx] = (d,n); mh._bubbleup(idx) else : mh.vt.append((d,n)) idx = len(mh.vt)-1 mh.pos[n] = idx mh._bubbleup(idx) def pop(mh) : ans = mh.vt[0]; del mh.pos[ans[1]] n2 = mh.vt.pop() if len(mh.vt) >= 1 : mh.pos[n2[1]] = 0 mh.vt[0] = n2 mh._bubbledown(0) return ans def isempty(mh) : return len(mh.vt) == 0 def modinvp(a,p) : return pow(a,p-2,p) def modinv(a,p) : return pow(a,p-2,p) def modpow(a,p,m) : return pow(a,m,p) def egcd(a,b) : if a == 0 : return (b,0,1) g,y,x = egcd(b % a, a) return (g,x-(b//a)*y,y) def modinv2(a,m) : g,x,y = egcd(a,m) if g != 1 : raise Exception('modular inverse does not exist') return x % m class fenwicktree : def __init__(self,n=1) : self.n = n self.tot = 0 self.bit = [0] * (n+1) def clear(self) : for i in range(self.n) : self.bit[i] = 0 self.tot = 0 def inc(self,idx,val=1) : while idx <= self.n : self.bit[idx] += val idx += idx & (-idx) self.tot += val def dec(self,idx,val=1) : self.inc(idx,-val) def incdec(self,left,right,val) : self.inc(left,val); self.dec(right,val) def prefixsum(self,idx) : if idx < 1 : return 0 ans = 0 while idx > 0 : ans += self.bit[idx] idx -= idx&(-idx) return ans def suffixsum(self,idx) : return self.tot - self.prefixsum(idx-1) def rangesum(self,left,right) : return self.prefixsum(right) - self.prefixsum(left-1) class dsu : def __init__(self,n=1) : self.n = n self.parentOrSize = [-1 for i in range(n)] def merge(self,a,b) : x = self.leader(a); y = self.leader(b) if x == y : return x if self.parentOrSize[y] < self.parentOrSize[x] : (x,y) = (y,x) self.parentOrSize[x] += self.parentOrSize[y] self.parentOrSize[y] = x return x def same(self,a,b) : return self.leader(a) == self.leader(b) def leader(self,a) : if self.parentOrSize[a] < 0 : return a ans = self.leader(self.parentOrSize[a]) self.parentOrSize[a] = ans return ans def groups(self) : leaderBuf = [0 for i in range(self.n)] groupSize = [0 for i in range(self.n)] for i in range(self.n) : leaderBuf[i] = self.leader(i) groupSize[leaderBuf[i]] += 1 preres = [ [] for i in range(self.n) ] for (i,v) in enumerate(leaderBuf) : preres[v].append(i) return [x for x in preres if x] class dsu2 : def __init__(self) : self.n = 0 self.parentOrSize = {} def add(self,x) : if x not in self.parentOrSize : self.n += 1 self.parentOrSize[x] = -1 def merge(self,a,b) : x = self.leader(a); y = self.leader(b) if x == y : return x if self.parentOrSize[y] < self.parentOrSize[x] : (x,y) = (y,x) self.parentOrSize[x] += self.parentOrSize[y] self.parentOrSize[y] = x return x def same(self,a,b) : return self.leader(a) == self.leader(b) def leader(self,a) : if self.parentOrSize[a] < 0 : return a ans = self.leader(self.parentOrSize[a]) self.parentOrSize[a] = ans return ans def getGroups(self) : res = {} for x in self.parentOrSize : l = self.leader(x) if l not in res : res[l] = [] res[l].append(x) return res def isqrt(x) : if x == 0 : return 0 s = int(math.sqrt(x)) s = (s + x//s) >> 1 return s-1 if s*s > x else s class factorSieve : n=1; fs=[] def __init__(self,n=1) : self.n = n; self.fs = [-1 for i in range(n+1)] def sieve(self) : for i in range(4,self.n+1,2) : self.fs[i] = 2 for i in range(3,isqrt(self.n)+1,2) : if self.fs[i] > 0 : continue for j in range(i*i,self.n+1,2*i) : if self.fs[j] < 0 : self.fs[j] = i def uniquepf(self,nn) : if nn <= 1 : return [] ans = [] while True : s = self.fs[nn] if s == -1 : if not ans or ans[-1] < nn : ans.append(nn) return ans if not ans or ans[-1] < s : ans.append(s) nn //= s def pf(self,nn) : if nn <= 1 : return [] ans = [] while True : s = self.fs[nn] if s == -1 : ans.append(nn); return ans ans.append(s); nn //= s class segtree : def __init__(self,n=1,op=sum,e=0,v=None) : if v is not None : n = len(v) self.n = n; self.sz = 1; self.log = 0; self.op=op; self.e=e while self.sz < n : self.sz *= 2; self.log += 1 self.d = [self.e for i in range(2*self.sz)] if v is not None : for i in range(n) : self.d[self.sz+i] = v[i] for i in range(n-1,0,-1) : self._update(i) def _update(self,k) : self.d[k] = self.op(self.d[2*k],self.d[2*k+1]) def set(self,p,x) : p += self.sz self.d[p] = x for i in range(1,self.log+1) : self._update(p>>i) def get(self,p,x) : return self.d[self.sz+p] def prod(self,l,r) : r += 1 ## want to get product from l to r inclusive sml = self.e; smr = self.e; l += self.sz; r += self.sz while (l < r) : if (l & 1) : sml = self.op(sml, self.d[l]); l += 1 if (r & 1) : r -= 1; smr = self.op(self.d[r],smr) l >>= 1; r >>= 1 return self.op(sml,smr) def allprod(self) : return self.d[1] class lazysegtree : def __init__(self,n=1,op=sum,e=0,mapping=sum,composition=sum,id=0,v=None) : if v is not None : n = len(v) self.n = n; self.sz = 1; self.op=op; self.e=e self.mapping = mapping; self.composition = composition; self.id = id self.log = 0 while self.sz < n : self.sz *= 2; self.log += 1 self.d = [self.e for i in range(2*self.sz)] self.lz = [self.id for i in range(self.sz)] if v is not None : for i in range(n) : self.d[self.sz+i] = v[i] for i in range(self.sz-1,0,-1) : self._update(i) def _update(self,k) : #print(f"DBUG update k:{k} d[2k]:{self.d[2*k]} d[2k+1]:{self.d[2*k+1]} d:{self.d}") self.d[k] = self.op(self.d[2*k],self.d[2*k+1]) def _allApply(self,k,f) : self.d[k] = self.mapping(f,self.d[k]) if (k < self.sz) : self.lz[k] = self.composition(f, self.lz[k]) def _push(self,k) : if self.lz[k] != self.id : self._allApply(2*k,self.lz[k]) self._allApply(2*k+1,self.lz[k]) self.lz[k] = self.id def set(self,p,x) : p += self.sz for i in range(self.log,0,-1) : self._push(p>>i) self.d[p] = x for i in range(1,self.log+1) : self._update(p>>i) def get(self,p) : p += self.sz for i in range(self.log,0,-1) : self._push(p>>i) return self.d[p] def prod(self,l,r) : if r < l : return self.e l += self.sz; r += self.sz; r += 1 ## want to get product from l to r inclusive for i in range(self.log,0,-1) : if ((l >> i) << i) != l : self._push(l >> i) if ((r >> i) << i) != r : self._push((r-1) >> i) sml = self.e; smr = self.e while (l < r) : if (l & 1) : sml = self.op(sml, self.d[l]); l += 1 if (r & 1) : r -= 1; smr = self.op(self.d[r],smr) l >>= 1; r >>= 1 return self.op(sml,smr) def allprod(self) : return self.d[1] def apply(self,p,f) : p += self.sz for i in range(self.log,0,-1) : self._push(p>>i) self.d[p] = self.mapping(f,self.d[p]) for i in range(1,self.log+1) : self._update(p>>i) def applyRange(self,l,r,f) : if r < l : return l += self.sz; r += self.sz; r += 1 ## want to get product from l to r inclusive for i in range(self.log,0,-1) : if ((l >> i) << i) != l : self._push(l >> i) if ((r >> i) << i) != r : self._push((r-1) >> i) l2=l; r2=r ## Save away original l,r while (l < r) : if (l & 1) : self._allApply(l,f); l += 1 if (r & 1) : r -= 1; self._allApply(r,f) l >>= 1; r >>= 1 l=l2; r=r2 ## Restore original l,r for i in range(1,self.log+1) : if ((l >> i) << i) != l : self._update(l >> i) if ((r >> i) << i) != r : self._update((r-1) >> i) ################################################################################ ## Maxflow (Dinic from Atcoder Lib ported to python) ################################################################################ class mfEdge : def __init__(self,from=0,to=0,cap=0,flow=0) : self.from = from self.to = to self.cap = cap self.flow = flow class _mfEdge : def __init__(self,to=0,rev=0,cap=0) : self.to = to self.rev = rev self.cap = cap class mfGraph : def __init__(self,n=0) : self._n = n self.pos = [] self.g = [[] for i in range(n)] def addEdge(self,from,to,cap,revcap=0) : m = len(self.pos) fromid = len(self.g[from]) toid = len(self.g[to]) if from == to : toid += 1 self.pos.append((from,fromid)) self.g[from].append(_mfEdge(to,toid,cap)) self.g[to].append(_mfEdge(from,fromid,revcap)) return m def getEdge(self,i) : pt = self.pos[i] _e = self.g[pt[0]][pt[1]] _re = self.g[_e.to][_e.rev] return mfEdge(pt[0],_e.to,_e.cap+_re.cap,_re.cap) def edges(self) : m = len(self.pos) result = [] for i in range(m) : result.append(self.getEdge(i)) return result def changeEdge(self,i,newcap,newflow) : pt = self.pos[i] _e = self.g[pt[0]][pt[1]] _re = self.g[_e.to][_e.rev] _e.cap = newcap - newflow _re.cap = newflow def flow(self,s,t) : return self.flow2(s,t,10**18) def flow2(self,s,t,flowlim) : level = [0] * self._n iter = [0] * self._n que = collections.deque() def bfs() : for i in range(self._n) : level[i] = -1 level[s] = 0 que.clear() que.append(s) while que : v = que.popleft() for e in self.g[v] : if e.cap == 0 or level[e.to] >= 0 : continue level[e.to] = level[v] + 1 if e.to == t : return que.append(e.to) def dfs(v,up) : if v == s : return up g = self.g res = 0 levelv = level[v] for i in range(iter[v],len(g[v])) : e = g[v][i] if levelv <= level[e.to] : continue cap = g[e.to][e.rev].cap if cap == 0 : continue d = dfs(e.to,min(up-res,cap)) if d <= 0 : continue g[v][i].cap += d g[e.to][e.rev].cap -= d res += d if res == up : return res level[v] = self._n return res ## Now for the main part of the dinic search flow = 0 while (flow < flowlim) : bfs() if level[t] == -1 : break for i in range(self._n) : iter[i] = 0 f = dfs(t,flowlim-flow) if f == 0 : break flow += f return flow def mincut(self,s) : visited = [0] * self._n que = collections.deque() que.push(s) while que : p = que.popleft() visited[p] = True for e in self.g[p] : if e.cap > 0 and not visited[e.to] : visited[e.to] = True que.append(e.to) return visited
UTF-8
Python
false
false
18,172
py
138
lib.py
80
0.473531
0.457737
0
538
32.734201
110
BaotingKing/MyHouse
13,520,557,062,098
6d622c77d6f00b7d9ac172469314e659dbf33df4
0bac49827e24ab081fb64ff931ee685d7e078f61
/nnProject/DIY_script/web/flask.py
c686c78186631901231c45a7a56609821bfacc60
[]
no_license
https://github.com/BaotingKing/MyHouse
16f61f060892c1155369527253d79d1e2fd3662b
91d2a98e8d0d9e6442083a43b5681fffe8735736
refs/heads/master
2022-05-04T17:07:53.256560
2019-11-04T10:06:09
2019-11-04T10:06:09
127,607,576
3
0
null
false
2022-03-29T21:56:29
2018-04-01T07:32:04
2020-04-05T15:29:29
2022-03-29T21:56:28
131,925
3
0
2
Python
false
false
#!/usr/bin/python # -*- coding: utf-8 -*- # @author: ZK # Time: 2019/01/01 import sys from flask import request, jsonify, Flask from flask_apscheduler import APScheduler class config(object): JOBS = [ { 'id': 'job1', 'func': '__main__: get_one', 'trigger': 'interval', 'seconds': 10, } ] def get_one(): pass app = Flask(__name__) app.config.from_object(config()) @app.route('/admin/index', methods=['GET', 'POST']) def index(): if request.method == 'POST': return 'Hello word!' elif request.method == 'GET': return 'Hello my homeland!' if __name__ == '__main__': stdout_backup = sys.stdout # make a copy of original stdout route print('This is a flask mini web, and it is only a case')
UTF-8
Python
false
false
850
py
93
flask.py
78
0.532941
0.518824
0
39
19.641026
70
ofgulban/meso-MRI
6,339,371,751,584
69e67ee4dd452a2a70c0555dfa94e9bfd06753df
7b36801dd87a1df93b2836db74f68b5e00682638
/scripts/01_MEGRE/11_fix_nondecay.py
97249694d03c4fdb63095b591c0cae9a2ce59c36
[ "BSD-3-Clause" ]
permissive
https://github.com/ofgulban/meso-MRI
c873bf227ae1048a84ffa7999c7ece72f3a8c3f8
2afd70a3bb7576f401dd98eeb07df38368f42baf
refs/heads/main
2023-04-11T19:49:50.837267
2022-10-24T13:31:49
2022-10-24T13:31:49
327,944,487
3
1
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Detect voxels that does not decay over time.""" import os import nibabel as nb import numpy as np # Parameters NII_NAME = "/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/10_composite/sub-23_ses-T2s_part-mag_MEGRE_crop_ups2X_prepped_avg_composite.nii.gz" OUTDIR = "/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/11_decayfix" # ============================================================================= print("Step_11: Detect and fix non-decaying timepoints.") # Output directory if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) print(" Output directory: {}".format(OUTDIR)) # ============================================================================= nii = nb.load(NII_NAME) dims = nii.shape data = nii.get_fdata() data = np.abs(data) idx = data != 0 data[idx] = np.log(data[idx]) # 1-neighbour fix temp1 = np.zeros(dims[:-1]) for i in range(dims[3] - 1): temp2 = data[..., i] - data[..., i+1] idx = temp2 < 0 if (i > 0) and (i < dims[3] - 1): data[idx, i] = (data[idx, i-1] + data[idx, i+1]) / 2 else: temp1[idx] = 1 # Save basename, ext = NII_NAME.split(os.extsep, 1) basename = os.path.basename(basename) img = nb.Nifti1Image(temp1, affine=nii.affine) nb.save(img, os.path.join(OUTDIR, "{}_decaymask.nii.gz".format(basename))) data = np.exp(data) img = nb.Nifti1Image(data, affine=nii.affine) nb.save(img, os.path.join(OUTDIR, "{}_decayfixed.nii.gz".format(basename))) print('Finished.')
UTF-8
Python
false
false
1,457
py
68
11_fix_nondecay.py
64
0.593686
0.567605
0
49
28.734694
146
MyRobotLab/myrobotlab
7,791,070,688,707
3b09dc4acadf8c7c8c5f7d8a9fb9f4a4a315cb96
09a7fa80d420634848b5e6af7b59353afd8c726b
/src/main/resources/resource/HttpClient/HttpClient.py
f9072207b0f503018f3ef4627cd3bed3140aac48
[ "Apache-2.0", "CC-BY-2.5" ]
permissive
https://github.com/MyRobotLab/myrobotlab
cf789956d9f97a98eead44faf7a8b61f70348dc3
0ecdc681b4928ab65649404779c095d352dd96b1
refs/heads/develop
2023-09-04T10:57:19.041683
2023-08-30T14:04:44
2023-08-30T14:04:44
18,051,302
213
114
Apache-2.0
false
2023-09-07T14:14:58
2014-03-24T03:59:27
2023-08-30T19:00:09
2023-09-07T14:14:58
140,585
209
94
119
Java
false
false
################################################ # HttpClient service is a service wrapper of the Apache HttpClient # So, you can download webpages, images, and a all sorts of # goodies from the internet http = runtime.start("http","HttpClient") # blocking methods # GETs print(http.get("https://www.google.com")) print(http.get("https://www.cs.tut.fi/~jkorpela/forms/testing.html")) # POSTs http.addFormField("Comments", "This is a different comment") http.addFormField("Box", "yes") http.addFormField("Unexpected", "this is an unexpected field") http.addFormField("hidden field", "something else") print(http.post("http://www.cs.tut.fi/cgi-bin/run/~jkorpela/echo.cgi")) http.clearForm() http.addFormField("NewField", "Value") http.addFormField("name", "value") # call-back methods # step one add a listener # you could also 'subscribe' to the appropriate methods # e.g. python.subscribe('http','publishHttpData') & # python subscript('http','publishHttpResponse') - the addListeners # do the same thing http.addHttpDataListener(python) http.addHttpResponseListener(python) # define the callback endpoints def onHttpData(httpData): print(httpData.uri) print(httpData.contentType) print(httpData.data) print(httpData.responseCode) def onHttpResponse(response): print(response) # make the request and the callbacks will be called when # the method completes http.post("http://www.cs.tut.fi/cgi-bin/run/~jkorpela/echo.cgi")
UTF-8
Python
false
false
1,442
py
1,622
HttpClient.py
1,376
0.728155
0.728155
0
47
29.680851
71
fullonic/bookmarks
11,132,555,275,152
e44d02449ba909ae989d72b3d1fde2cdc66c27cd
bc00e301e2fd28014b186d5018205f9d6b849560
/markers/signals.py
374fd9bc923ecf4c328ac47000c042b7d66e6709
[]
no_license
https://github.com/fullonic/bookmarks
d2a341249a86e37925b4f88b195d185e1851a7e0
b398c15dfd8244bde78ac5efe203862ef6b5caf0
refs/heads/master
2023-03-21T05:37:29.016228
2021-03-14T21:42:30
2021-03-14T21:42:30
347,378,035
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .core import generate_tags from django.db.utils import IntegrityError # TODO: Remove Signals: Move this for a normal function to be call when saving a new bookmark def add_tags_to_bookmark(sender, instance, **kwargs): from .models import Tag tag_list = Tag.objects.values_list("name", flat=True) tags = generate_tags(instance.url, instance.title, tag_list) for t in tags: tag = Tag.objects.get(name=t) instance.tags.add(tag)
UTF-8
Python
false
false
465
py
28
signals.py
20
0.709677
0.709677
0
13
34.769231
93
SidAhmed01/E-commerce-Django-Project-Aroma-thems
16,604,343,577,328
5897dc7ac01a52bd2288033cbc9ae2617595e5c9
dab28e03c52e03966b8dd536cfd266167e1b2521
/pages/views.py
5e7604dc80ca31a1722b5d6d58aa251ff9f64b98
[]
no_license
https://github.com/SidAhmed01/E-commerce-Django-Project-Aroma-thems
666d7e29232876df71ae062a490048393b7a76d0
459f0ecb32729d5af889f94cf51a6797c52b8657
refs/heads/main
2023-06-27T21:07:52.475198
2021-07-31T11:09:46
2021-07-31T11:09:46
391,318,440
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render, get_object_or_404 from .models import * from django.core.paginator import Paginator # Create your views here. #global_variable def index(request): context = { 'product_list': Product.objects.all() } return render(request, 'pages/index.html', context) def contact(request): return render(request, 'pages/contact.html') def shopcategory(request): product_list = Product.objects.all() paginator = Paginator(product_list, 4) # Show 25 contacts per page. page = request.GET.get('page') product_list = paginator.get_page(page) context = { 'product_list': product_list } return render(request, 'products/shopcategory.html', context) def productdetails(request, slug): context = { 'product_details' : Product.objects.get( slug = slug), } return render(request, 'products/productdetails.html', context) def confirmation(request): return render(request, 'products/confirmation.html') def shopingcart(request): return render(request, 'products/shopingcart.html') def productcheckout(request): return render(request, 'products/productcheckout.html')
UTF-8
Python
false
false
1,242
py
24
views.py
14
0.669082
0.664251
0
62
18.983871
71
Majiker/BalancedMetaSoftmax-InstanceSeg
1,005,022,361,104
1dff6af7757d6051d3eca0a41ee41aa4e51ab551
f2637c2fc89ecbfa7b1f50e84293e732a4aa2656
/projects/BALMS/balms/build.py
75b8ea8d298b3e36dd4524bdcdf6014630c27953
[]
permissive
https://github.com/Majiker/BalancedMetaSoftmax-InstanceSeg
d1b44e95233c2320ed41ef802d26f1a7c280308d
64fd32e56fdef3ac382364dccd3f647b0517d771
refs/heads/main
2023-02-20T23:41:19.896391
2021-01-19T09:04:02
2021-01-19T09:04:02
307,335,464
14
3
Apache-2.0
false
2021-01-15T07:28:58
2020-10-26T10:26:07
2021-01-15T05:55:08
2020-11-22T04:15:57
865
6
3
1
null
false
false
from detectron2.data.build import * import logging from detectron2.data.common import DatasetFromList, MapDataset from detectron2.data.dataset_mapper import DatasetMapper from .distributed_sampler import ClassBalancedTrainingSampler def build_detection_meta_loader(cfg, mapper=None): """ build the meta set from training data with Class Balanced Sampling """ dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) logger = logging.getLogger(__name__) logger.info("Using training sampler Class Balanced Sampler") repeat_factors = ClassBalancedTrainingSampler.repeat_factors_by_inverse_category_frequency(dataset_dicts) sampler = ClassBalancedTrainingSampler(repeat_factors) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, )
UTF-8
Python
false
false
1,404
py
26
build.py
22
0.728632
0.725783
0
37
36.972973
109
SubashGupta/COVID-19-Face-Mask-Detector-with-OpenCV-and-Deep-Learning
6,760,278,553,172
e4fea10ba461bdd93cea9a099512f1fecde3b27a
f0c3f5e38242c31fe9e9cb2aaee8da669e2b8553
/Mask_Image.py
55781cedf8b2546b2b70c84a1c8a0a423adc3bea
[]
no_license
https://github.com/SubashGupta/COVID-19-Face-Mask-Detector-with-OpenCV-and-Deep-Learning
7429bd833c9b861bd3b6ded8b139121579be5264
4f041b46fee07f012237f37e8c314786583db384
refs/heads/main
2023-05-31T09:15:45.871985
2021-06-13T13:29:14
2021-06-13T13:29:14
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 from tensorflow.keras.models import load_model from keras.preprocessing.image import load_img , img_to_array import numpy as np import os import matplotlib.pyplot as plt prototxt = r'C:\Users\saiko\Desktop\deploy.prototxt' weights_path = r'C:\Users\saiko\Desktop\SSD.caffemodel' net = cv2.dnn.readNet(prototxt,weights_path) deep_model =load_model(r'C:\Users\saiko\Desktop\new_improved_model.h5') image = cv2.imread(r'C:\Users\saiko\Desktop\doublemask.jfif') blob = cv2.dnn.blobFromImage(image,1.0,(300,300),(104.0,177.0,123.0)) #detecting faces net.setInput(blob) detections = net.forward() (h,w) = image.shape[:2] #look over the detections for i in range(0,detections.shape[2]): confidence = detections[0,0,i,2] if confidence>0.5: # we need x,y coordinates box = detections[0,0,i,3:7]*np.array([w,h,w,h]) (startX,startY,endX,endY) = box.astype('int') # we need to ensure bounding boxes fall within the dimensions of the frame (startX,startY)=(max(0,startX),max(0,startY)) (endX,endY)=(min(w-1,endX), min(h-1,endY)) face=image[startY:endY, startX:endX] face=cv2.cvtColor(face,cv2.COLOR_BGR2RGB) face=cv2.resize(face,(300,300)) face=img_to_array(face) face=np.expand_dims(face,axis=0) prediction = deep_model.predict(face) if prediction==0: class_label = "Mask" color = (0,255,0) else: class_label = "No Mask" color = (0,0,255) #display the label and bounding boxes cv2.putText(image,class_label,(startX,startY-10),cv2.FONT_HERSHEY_SIMPLEX,0.45,color,2) cv2.rectangle(image,(startX,startY),(endX,endY),color,2) cv2.imshow("OutPut",image) cv2.waitKey(0) cv2.destroyAllWindows()
UTF-8
Python
false
false
1,901
py
3
Mask_Image.py
1
0.623356
0.582851
0
71
24.774648
95
luliu31415926/google_code_jam
523,986,011,776
f6daa7e288460444b797ef2e95dac2e2382f1136
972f6c9810a541587e8f6d1f256a22903b77bcf7
/2018_round1B/B.py
3a22c16a721449139d25763df292300b4b1a0e48
[]
no_license
https://github.com/luliu31415926/google_code_jam
8439e1159a082cc2daeee5d2c6137539d091f09c
7b797b41bbf24bdf1b70d47681b9b6c95822ef98
refs/heads/master
2021-04-12T11:05:42.505750
2018-04-29T20:04:22
2018-04-29T20:04:22
126,403,239
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from math import * from collections import * from bisect import * def can_add(r,truth,pairs): # check if signs[r] flows one of the truth, if only one truth, add another truth m,n=signs[r] if len(truth)==1: m_,n_=truth[0] if m!=m_ and n!=n_: truth=[(m,n_),(m_,n)] return True else: for m_,n_ in truth: if m==m_ or n==n_: return True return False def update(l,truth,pairs) # remove the truth that accomodate signs[l] m,n=pairs[l] for key in truth.keys(): def solve(S,signs): pairs=[(d+a,d-b) for d,a,b in signs] l,r=0,1 truth=[pairs[0]] # truth: accommodate signs max_len=1 cnt=1 while r<S: if can_add(r,truth,pairs): if r-l+1>max_len: max_len=r-l+1 cnt=1 elif r-l+1==max_len: cnt+=1 r+=1 else: l+=1 update(l,truth,pairs) return max_len,cnt cases=int(input()) for i in range(cases): S=int(input()) signs=[ tuple(map(int,input().split())) for _ in range(S)] print ("Case #%i: %s\n" %(i+1,solve(S,signs)))
UTF-8
Python
false
false
1,243
py
58
B.py
55
0.482703
0.470636
0
58
20.431034
85
maxlampe/ODSL-Data-Science-Course
16,149,077,050,798
69ff11fbe91d9a656fa55a15f5942cf41b4f6a9a
39f542c30553f9cd459682b80992db154b0ef98d
/day6_e1.py
d09030b67771f23958c0197c9aff2eb52a98a458
[]
no_license
https://github.com/maxlampe/ODSL-Data-Science-Course
9a4e973697c58c81bca011b06b1199f1065fdb8b
3af88b6bc6bbf4de6a48e581778acabbc3f52262
refs/heads/master
2023-03-30T20:11:40.573739
2021-03-31T21:10:56
2021-03-31T21:10:56
345,808,617
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Daily assignment 6_1""" import numpy as np import matplotlib.pyplot as plt from mathfunctions import gaussian def metropolis(func, params, n_trials: int = 1000, prop_rng=None, x0: float = 0.0): """Metropolis Algorithm""" if prop_rng is None: prop_rng = [-1.0, 1.0] x_curr = x0 accept = [] for i in range(n_trials): u_1 = np.random.uniform(prop_rng[0], prop_rng[1]) u_2 = np.random.uniform() y_curr = x_curr + u_1 rho = min(func(y_curr, **params) / func(x_curr, **params), 1.0) if u_2 <= rho: accept.append(y_curr) x_curr = y_curr else: accept.append(x_curr) accept = np.asarray(accept) efficiency = accept.shape[0] / n_trials print(f"# Accepted points: {100. * efficiency:0.2f}%") return np.asarray([accept, efficiency]) n_sim = 100000 tests = [ [[-1.0, 1.0], 0.0], [[-0.5, 0.5], 0.0], [[-0.1, 0.1], 0.0], [[-3.0, 3.0], 0.0], [[-1.0, 1.0], 1.0], [[-1.0, 0.5], 0.5], ] for test in tests: res = metropolis( gaussian, {"mu": 0.0, "sig": 1.0}, n_sim, prop_rng=test[0], x0=test[1] ) test.append(res[0]) test.append(res[1]) fig, axs = plt.subplots(3, 2, sharex=True, sharey=True, figsize=(13, 13)) fig.suptitle(f"Metropolis Gaussian Tests - {n_sim} Iterations") x_vals = np.linspace(-4.5, 4.5, 1000) bins = int(n_sim * 0.001) for test_i, test in enumerate(tests): axs.flat[test_i].hist( test[2], bins=bins, range=[-4.5, 4.5], label="gen. RN", density=True ) axs.flat[test_i].plot(x_vals, gaussian(x_vals), label="Unit. Gaussian") axs.flat[test_i].legend() axs.flat[test_i].set_xlabel("x [ ]") axs.flat[test_i].set_ylabel("a.u. [ ]") axs.flat[test_i].set_title(f"Test {test_i + 1}") axs.flat[test_i].annotate( f"prop. rng = {test[0]} \n" f"x0 = {test[1]}\n", xy=(0.05, 0.95), xycoords="axes fraction", ha="left", va="top", bbox=dict(boxstyle="round", fc="1"), ) plt.savefig("output/day6_e1.png", dpi=300) plt.show()
UTF-8
Python
false
false
2,095
py
21
day6_e1.py
21
0.550835
0.494511
0
77
26.207792
83
crazyYoda/logging
16,252,156,251,042
594d2e1fe9cbdbda6d8e17ed832e1ef962ab58f9
816b5b1c01bf1ecf1268d0482d39beab436dc45c
/prj/news/models.py
6df854fc029c1b3ece2572e858411186f276f87f
[]
no_license
https://github.com/crazyYoda/logging
22f83cec5dd7c9df391513333d31524c84c7b4e6
82553bc05b2057b377145e14c69f6c8cae6479f6
refs/heads/master
2023-08-04T04:38:22.594459
2021-09-13T13:56:06
2021-09-13T13:56:06
401,168,190
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.shortcuts import reverse class New(models.Model): title = models.CharField(max_length=64) text = models.TextField() date_pub = models.DateTimeField(auto_now_add=True) slug = models.SlugField(max_length=128, unique=True) def get_absolute_url(self): return reverse('detail', kwargs={'slug': self.slug}) def __str__(self): return '{}'.format(self.title)
UTF-8
Python
false
false
455
py
4
models.py
4
0.648352
0.637363
0
15
28.066667
60
fopina/tgbot-buttiebot
8,100,308,335,204
de975c432e161970ab00f4b3d61c02313c32731f
54cebd6687a52f70a62e836233895c81127b1223
/instascrape.py
dcba778d2611f8ff8a21139cd848dfdab487850e
[]
no_license
https://github.com/fopina/tgbot-buttiebot
87d61dd8034091f5c34a236a8e1517bc9ed294f8
3c4a83500fcfb9efdbd438ec17758549112eb392
refs/heads/master
2022-12-11T16:13:02.191261
2020-01-06T23:58:15
2020-01-06T23:58:15
49,206,924
0
1
null
false
2022-11-30T15:12:38
2016-01-07T13:43:27
2020-01-06T23:58:33
2022-06-03T22:43:19
115
0
1
2
Python
false
false
#!/usr/bin/env python from __future__ import print_function import requests import re import json PICLOAD = 50 HASH = '42323d64886122307be10013ad2dcc44' def url_and_caption(media): try: c = media['edge_media_to_caption']['edges'][0]['node']['text'] except KeyError: c = '' media['caption'] = c return media def strip_pics(data): return ( [ url_and_caption(x['node']) for x in data['edges'] ], data['page_info']['has_next_page'], data['page_info']['end_cursor'] ) def scrape(username): s = requests.Session() r = s.get('https://www.instagram.com/%s/?__a=1' % username) j = r.json()['graphql']['user'] user_id = j['id'] pics, keepgoing, cursor = strip_pics(j['edge_owner_to_timeline_media']) for pic in pics: yield pic while keepgoing: r = s.get( 'https://www.instagram.com/graphql/query/', params={ 'query_hash': HASH, 'variables': '{"id":"%s","first":%d,"after":"%s"}' % (user_id, PICLOAD, cursor) } ) pics, keepgoing, cursor = strip_pics(json.loads(r.text)['data']['user']['edge_owner_to_timeline_media']) for pic in pics: yield pic def main(args): for u in args: print('Scraping %s...' % u) for p in scrape(u): print(' - %s' % p) print() if __name__ == '__main__': import sys main(sys.argv[1:])
UTF-8
Python
false
false
1,499
py
8
instascrape.py
5
0.525684
0.506338
0
61
23.57377
112
xiyueyiwan/DP-AGD
15,857,019,264,222
17b1c901f8caf14e38dd03d6cc2ad4cbe91f577d
5568a0da6284fad46d0a61b6569e8f6c943a8147
/algo/sgd.py
d0f4fe27309cb514a67e76823920a8ab15ae74e7
[]
no_license
https://github.com/xiyueyiwan/DP-AGD
cb9ce03eeb77c8075f618706a518717057c38aa0
347bcbe751d189d5f3164c5fcf78f5a51642eab7
refs/heads/master
2020-04-08T18:49:53.697074
2018-11-29T07:48:05
2018-11-29T07:48:05
159,626,994
0
1
null
true
2018-11-29T07:40:39
2018-11-29T07:40:38
2018-11-14T08:13:30
2018-03-01T21:25:01
2,052
0
0
0
null
false
null
import argparse import numpy as np from agd.common.svm import svm_grad from agd.common.svm import svm_loss from agd.common.svm import svm_test from agd.common.gaussian_moments import compute_log_moment from agd.common.gaussian_moments import get_privacy_spent from agd.common.param import compute_advcomp_budget from agd.common.param import compute_sigma from agd.common.dat import load_dat def dpsgd_ma(X, y, grad, sigma, T, step_size, batch_size, clip=4, delta=1e-8, reg_coeff=0.0): N, dim = X.shape n = N * 1.0 # initialize the parameter vector w = np.zeros(dim) q = batch_size / n # moments accountant max_lmbd = 32 log_moments = [] for lmbd in xrange(1, max_lmbd+1): log_moment = compute_log_moment(q, sigma, T, lmbd) log_moments.append((lmbd, log_moment)) eps, _ = get_privacy_spent(log_moments, target_delta=delta) for t in range(T): # build a mini-batch rand_idx = np.random.choice(N, size=batch_size, replace=False) mini_X = X[rand_idx, :] mini_y = y[rand_idx] gt = grad(w, mini_X, mini_y, clip=clip) gt += (sigma * clip) * np.random.randn(dim) gt /= batch_size # regularization gt += reg_coeff * w w -= step_size * gt return w, eps def dpsgd_adv(X, y, grad, eps, T, step_size, batch_size, clip=3, delta=1e-8, reg_coeff=0.001): N, dim = X.shape n = N * 1.0 eps_iter, delta_iter = compute_advcomp_budget(eps, delta, T) # initialization w = np.zeros(dim) q = batch_size / n # privacy amplification by sampling # (e, d)-DP => (2qe, d)-DP eps_iter /= 2.0 * q sigma = compute_sigma(eps_iter, delta_iter, 2.0*clip) for t in range(T): # build a mini-batch rand_idx = np.random.choice(N, size=batch_size, replace=False) mini_X = X[rand_idx, :] mini_y = y[rand_idx] gt = grad(w, mini_X, mini_y, clip=clip) gt += sigma * np.random.randn(dim) gt /= batch_size gt += reg_coeff * w w -= step_size * gt return w if __name__ == "__main__": parser = argparse.ArgumentParser(description='adaptive sgd') parser.add_argument('dname', help='dataset name') args = parser.parse_args() # load the dataset fpath = "../../../Experiment/Dataset/dat/{0}.dat".format(args.dname) X, y = load_dat(fpath, minmax=(0, 1), normalize=False, bias_term=True) y[y < 1] = -1 N, dim = X.shape sigma = 4 batch_size = 1000 learning_rate = 0.05 reg_coeff = 0.001 print "SGD with moments accountant" for T in [1, 100, 1000, 10000, 20000]: w, eps = dpsgd_ma(X, y, svm_grad, sigma, T, learning_rate, batch_size, reg_coeff=reg_coeff) loss = svm_loss(w, X, y) / N acc = svm_test(w, X, y) print "[T={:5d}] eps: {:.5f}\tloss: {:.5f}\tacc: {:5.2f}".format( T, eps, loss, acc*100) print "\nSGD with advanced composition" for eps in [0.05, 0.1, 0.2, 0.4, 0.8, 1.6]: # used the same heuristic as in PrivGene T = max(int(round((N * eps) / 500.0)), 1) w = dpsgd_adv(X, y, svm_grad, eps, T, 0.1, batch_size) loss = svm_loss(w, X, y) / N acc = svm_test(w, X, y) print "eps: {:4.2f}\tloss: {:.5f}\tacc: {:5.2f}".format( eps, loss, acc*100)
UTF-8
Python
false
false
3,405
py
13
sgd.py
12
0.571806
0.543612
0
119
27.613445
77
gitWK86/jeb_script
8,392,366,136,465
526e532a712f7e5b8236c6235c8a6e6b09e21beb
585441aeec68c235ae3f4ad9531fc1db98aac3bd
/samples/16 IDexUnit-CFG.py
d463b2e5d7249754857501d36f7b8344c863cc7d
[ "BSD-2-Clause" ]
permissive
https://github.com/gitWK86/jeb_script
58c6b3f90b31a6cea13d7c33987436401202072b
5d918a2abb7e50fbbb4c571122741d52b20959fd
refs/heads/main
2023-01-06T12:32:44.750502
2020-10-28T11:26:44
2020-10-28T11:26:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from com.pnfsoftware.jeb.client.api import IClientContext from com.pnfsoftware.jeb.core import IRuntimeProject from com.pnfsoftware.jeb.core.units import IUnit from com.pnfsoftware.jeb.core.units.code.android import IDexUnit from com.pnfsoftware.jeb.core.units.code.android.dex import IDexMethodData, IDexCodeItem, IDexMethod # 访问CFG def Test(ctx): assert isinstance(ctx,IClientContext) input_path = r"D:\tmp\2\project\about_dex_diff\code\jsq\jsq.dex" sign = "Lnet/cavas/show/aa;->compare(Ljava/lang/Object;Ljava/lang/Object;)I" unit = ctx.open(input_path); assert isinstance(unit,IUnit) prj = ctx.getMainProject(); assert isinstance(prj,IRuntimeProject) dexUnit = prj.findUnit(IDexUnit); assert isinstance(dexUnit,IDexUnit); method = dexUnit.getMethod(sign); assert isinstance(method,IDexMethod) dexMethodData = method.getData(); assert isinstance(dexMethodData,IDexMethodData) dexCodeItem= dexMethodData.getCodeItem(); assert isinstance(dexCodeItem,IDexCodeItem) # 控制流图 print("-------------------------------------") cfg = dexCodeItem.getControlFlowGraph() print "01 Block >>> ",cfg.getBlocks() # 基本快列表 print "02 size >>> ",cfg.size() # 块个数 print "03 hasExit >>> ",cfg.hasExit() # 是否有出口 print "04 getEntryBlock >>> ",cfg.getEntryBlock() # 入口块 print "05 getExitBlocks >>> ",cfg.getExitBlocks() # 出口块(不唯一) print "06 getLast >>> ",cfg.getLast() # 最后一个块 print "07 getAddressBlockMap >>> ",cfg.getAddressBlockMap() # map<偏移地址,块> print "08 getEndAddress >>> ",hex(cfg.getEndAddress()) # 结尾指令地址 print "09 formatEdges >>> ",cfg.formatEdges() # 输出边(字符串) # print " >>> ",cfg.doDataFlowAnalysis() # 执行数据流分析 # print " >>> ",cfg.getUseDefChains() # UD # print " >>> ",cfg.getDefUseChains() # DU # print " >>> ",cfg.getFullDefUseChains() # FDU # print " >>> ",cfg.getFullUseDefChains() # FUD # 输出 # 01 Block >>> [(0-10,5), (14-14,1), (16-16,1), (18-20,3), (24-26,2), (28-2A,2)] # 02 size >>> 6 # 03 hasExit >>> True # 04 getEntryBlock >>> (0-10,5) # 05 getExitBlocks >>> [(16-16,1)] # 06 getLast >>> (28-2A,2) # 07 getAddressBlockMap >>> {0L: (0-10,5), 20L: (14-14,1), 22L: (16-16,1), 24L: (18-20,3), 36L: (24-26,2), 40L: (28-2A,2)} # 08 getEndAddress >>> 0x2cL # 09 formatEdges >>> (EDGES: 0->14, 0->18, 14->16, 18->24, 18->28, 24->16, 28->16) # Done. # 方法指令 # .method public final volatile bridge synthetic compare(Object, Object)I # .registers 5 # 00000000 check-cast p1, b # 00000004 check-cast p2, b # 00000008 iget v0, p1, b->o:I # 0000000C iget v1, p2, b->o:I # 00000010 if-ge v0, v1, :18 # :14 # 00000014 const/4 v0, 1 # :16 # 00000016 return v0 # :18 # 00000018 iget v0, p1, b->o:I # 0000001C iget v1, p2, b->o:I # 00000020 if-le v0, v1, :28 # 1111111111 # :24 # 00000024 const/4 v0, -1 # 00000026 goto :16 # :28 # 00000028 const/4 v0, 0 # 0000002A goto :16 # .end method
UTF-8
Python
false
false
3,691
py
21
16 IDexUnit-CFG.py
20
0.533801
0.447125
0
75
46.546667
124
Cassie-1/HtestApi_git
19,439,022,016,023
a607fdb308f31a4f13d796b1e0277f4560af0e87
e74aa54cd742c55d62020b799672470d14d6ae20
/util/getUserInfoUtil.py
98176b2ffaf47314a4e21d2993e23ae3d548286a
[]
no_license
https://github.com/Cassie-1/HtestApi_git
cd3356f8afccd95c2e93bf46e86b407e02a59d6a
8ac74fe0e85fea225e3c91486addbc44901312c1
refs/heads/master
2021-10-25T20:42:05.394728
2019-04-07T08:52:23
2019-04-07T08:52:23
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests,json proxies = {'http':'http://localhost:8888'} #代理 headers={} headers['Content-Type']='application/json;charset=UTF-8' http=requests.session() #得到session运行在整个过程中 resp=http.post(url="http://192.168.1.203:8083/sys/login", proxies=proxies, headers=headers, data='{"userName":"18210034706","password":"123456"}') resp_dict = json.loads(resp.text) #json转换成python的dict对象 token = resp_dict['object']['token'] headers['token']=token data={'token':token} data_json=json.dumps(data) #将python对象dict转换成json resp2=http.post(url="http://192.168.1.203:8083/sys/getUserInfo", proxies=proxies, headers=headers, data=data_json ) print(resp2.text) print(resp2.url) print(resp2.cookies) print(resp2.headers) print('http code:%s'%resp2.status_code)
UTF-8
Python
false
false
946
py
22
getUserInfoUtil.py
13
0.623608
0.561247
0
29
30
73
Reno-Greenleaf/tomb
16,801,912,091,073
7e2025d95e663222f3ddd59cca83b35c99ba8cce
6436a5077563b73ecd8cd4671ff7319f6fc1832d
/pool.py
3b29c188db2f818925355ab781e7bf18b7f0fea1
[ "MIT" ]
permissive
https://github.com/Reno-Greenleaf/tomb
901c0e9206aac5177c43dee00b97420fb44ebe79
6a76f640e523903f32c5fa178295435a24289559
refs/heads/master
2020-05-24T17:55:02.112065
2019-07-20T19:20:42
2019-07-20T19:20:42
43,693,544
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from actor import Actor, Location, Passage, Switch, Ghost from json import load class Pool(dict): """ Contains ingame objects. """ def fill(self): with open('data/actors.json', 'r') as data: actors = load(data) for name, properties in actors.items(): self._build(properties, name) with open('data/space.json', 'r') as data: self.space = load(data) def get_rooms(self): return self.space def _build(self, properties, name): actor = Actor() actor.load(properties) if 'io' not in properties: self[name] = actor return if 'labyrinth' in properties: actor = Location(actor) if 'labyrinth' in properties and 'right' in properties['labyrinth']: actor = Passage(actor) if 'access' in properties and 'used' in properties['access']: actor = Switch(actor) elif 'access' in properties: actor = Ghost(actor) self[name] = actor
UTF-8
Python
false
false
933
py
6
pool.py
6
0.636656
0.636656
0
38
23.578947
72
JakobTheDev/vs-code-remote-dev-demo
11,209,864,659,692
387693198ff53dce19becd4509b9043dc3746e69
183d023d782889cb355ffbf52e833769f383ce6e
/setup.py
603de1b8e8ecc7c656ca89580eadff6075380f31
[ "MIT" ]
permissive
https://github.com/JakobTheDev/vs-code-remote-dev-demo
2623d2144c3de81bf47da96305dacbd7387ff07b
cdf2810cb0425ad82d0ed8c4349378289d1f8537
refs/heads/master
2022-11-19T05:06:13.031980
2020-07-22T00:09:11
2020-07-22T00:09:11
281,300,863
8
0
null
null
null
null
null
null
null
null
null
null
null
null
null
##################### # IMPORTS ##################### from setuptools import setup, find_packages ##################### # SETUP ##################### def dependencies(imported_file): with open(imported_file) as file: return file.read().splitlines() with open("README.md") as file: # PROVISION setup( name="demo", url="https://jakob.pennington.io", author="Jakob Pennington", author_email="jakob@pennington.io", version='1.0.0', description="Runs sslscan as a demo for Kali development containers.", packages=find_packages(), entry_points={'console_scripts': ['demo = demo.demo:main']} )
UTF-8
Python
false
false
677
py
4
setup.py
2
0.549483
0.545052
0
24
27.208333
78
DaHuO/Supergraph
14,370,960,575,092
8edb304245736aa8cb42ebd038b188e61413601d
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_2_neat/16_0_2_blankverse_B.py
7c3b5f95beef489cae2c3cc7daa768af64bfce21
[]
no_license
https://github.com/DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
false
2021-03-19T21:55:46
2016-01-17T18:23:00
2019-02-21T15:42:08
2021-03-19T21:55:45
38,414
0
0
2
Python
false
false
def solve(s): c = 0 N = len(s) for i in xrange(1,N): if s[i] != s[i - 1]: c += 1 if s[N - 1] == '-': c += 1 return c T = int(input()) for i in xrange(T): s = raw_input() print "Case #%d: %d" %(i + 1, solve(s))
UTF-8
Python
false
false
239
py
30,073
16_0_2_blankverse_B.py
16,513
0.430962
0.401674
0
14
16.071429
41
disarticulate/osm2pgsqlauto
9,990,093,941,503
fd7cfcbf1dae0585f0f811cfa7d746aa42fbb511
dd5701ab404c7ba15b6fe0125377ef9312417e64
/bin/postgres_wait.sh
7f43f70c2a51edded67b8aa60011cfab2f494750
[]
no_license
https://github.com/disarticulate/osm2pgsqlauto
7f8b7ed7344e60838b1ce630537d1b3f8558004d
b83888a35ae1bb96a50a532a76a76fb6c32a4fcf
refs/heads/master
2021-09-01T05:26:13.746003
2017-12-25T03:35:09
2017-12-25T03:35:09
112,108,589
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/local/bin/python3 import os import time import psycopg2 connection = "host='{POSTGRES_DB_HOST}' dbname='{POSTGRES_DB}' user='{POSTGRES_USER}' password='{POSTGRES_PASSWORD}'" connection = connection.format(**os.environ) while True: try: conn = psycopg2.connect(connection) conn.close() break except psycopg2.OperationalError as ex: print(f"Postgres at not available at {connection} failed: {ex}") time.sleep(5)
UTF-8
Python
false
false
445
sh
42
postgres_wait.sh
18
0.710112
0.698876
0
16
26.875
117
cash2one/xai
18,056,042,531,190
65025c38e722ee905138eb566b8ba8338b327485
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_staunch.py
1a18cbf3d91647585167e57d4771edd4576e6235
[ "MIT" ]
permissive
https://github.com/cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#calss header class _STAUNCH(): def __init__(self,): self.name = "STAUNCH" self.definitions = [u'to stop something happening, or to stop liquid, especially blood, from flowing out: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
UTF-8
Python
false
false
365
py
37,275
_staunch.py
37,266
0.632877
0.627397
0
16
21.6875
110
mingo-x/colorfromlanguage
5,368,709,127,506
758df7a065cfef13d3a242d764c96d365832afb3
455e213231d39eeeaaa049d2bc0d33a46a3dbd2d
/autocolorize_resnet.py
5cecf5aa0a0e0400c14ab16f469a3bd217b35719
[]
no_license
https://github.com/mingo-x/colorfromlanguage
0e0adf60353e898e24f3b4d1c27e27b152fddc1c
f61d478679922be24c55e3afe7260b41afc6b915
refs/heads/master
2018-12-21T10:47:47.536749
2018-12-15T16:01:12
2018-12-15T16:01:12
149,338,913
0
0
null
true
2018-09-21T12:45:13
2018-09-18T19:06:59
2018-09-18T19:07:01
2018-09-21T12:45:13
109
0
0
0
OpenEdge ABL
false
null
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn from torch.autograd import Variable import torchvision import torchvision.transforms as transforms from collections import defaultdict, Counter import cPickle as pickle import h5py as h5 import json import numpy as np import cv2 import string import time import random import os, sys import argparse import scipy.ndimage.interpolation as sni from skimage import io, color from random import shuffle from itertools import izip import utils from torch.nn.utils.rnn import pad_packed_sequence as unpack from torch.nn.utils.rnn import pack_padded_sequence as pack def get_caption_encoder(ver, *args): if 'lstm' in ver: return CaptionEncoderLSTM(*args) elif 'gru' in ver: return CaptionEncoderGRU(*args) # standard bilstm class CaptionEncoderLSTM(nn.Module): def __init__(self, word_embedding_dim, hidden_dim, vocab_size, train_vocab_embeddings, dropout=0.2, emb_freeze=True): super(CaptionEncoderLSTM, self).__init__() self.embedding = nn.Embedding(vocab_size, word_embedding_dim) self.embedding.weight.data.copy_(torch.from_numpy(train_vocab_embeddings)) self.embedding.weight.requires_grad = (not emb_freeze) self.hidden_size = hidden_dim / 2 self.lstm = nn.LSTM(word_embedding_dim, self.hidden_size, num_layers=1, bidirectional=True, batch_first=True) self.dropout = nn.Dropout(p=dropout) utils.init_modules([self.lstm]) print('LSTM caption encoder, dropout {}, embedding frozen {}'.format(dropout, emb_freeze)) def forward(self, captions, lens): bsz, max_len = captions.size() embeds = self.dropout(self.embedding(captions)) lens, indices = torch.sort(lens, 0, True) _, (enc_hids, _) = self.lstm(pack(embeds[indices], lens.tolist(), batch_first=True)) enc_hids = torch.cat((enc_hids[0], enc_hids[1]), 1) _, _indices = torch.sort(indices, 0) enc_hids = enc_hids[_indices] return enc_hids class CaptionEncoderGRU(nn.Module): def __init__(self, word_embedding_dim, hidden_dim, vocab_size, train_vocab_embeddings, dropout=0.2, emb_freeze=True): super(CaptionEncoderGRU, self).__init__() self.embedding = nn.Embedding(vocab_size, word_embedding_dim) self.embedding.weight.data.copy_(torch.from_numpy(train_vocab_embeddings)) self.embedding.weight.requires_grad = (not emb_freeze) self.hidden_size = hidden_dim / 2 self.gru = nn.GRU( word_embedding_dim, self.hidden_size, num_layers=1, bidirectional=True, batch_first=True) self.dropout = nn.Dropout(p=dropout) utils.init_modules([self.gru]) print('GRU caption encoder, dropout {}, embedding frozen {}'.format(dropout, emb_freeze)) def forward(self, captions, lens): bsz, max_len = captions.size() embeds = self.dropout(self.embedding(captions)) lens, indices = torch.sort(lens, 0, True) _, enc_hids = self.gru(pack(embeds[indices], lens.tolist(), batch_first=True)) enc_hids = torch.cat((enc_hids[0], enc_hids[1]), 1) _, _indices = torch.sort(indices, 0) enc_hids = enc_hids[_indices] return enc_hids class FiLM(nn.Module): """ A Feature-wise Linear Modulation Layer from 'FiLM: Visual Reasoning with a General Conditioning Layer' How this layer works : x = Variable(torch.randn(2, 64, 32 ,32)) gammas = Variable(torch.randn(2, 64)) # gammas and betas have to be 64 betas = Variable(torch.randn(2, 64)) y = film(x, gammas, betas) print y.size() y is : [2, 64, 32, 32] """ def forward(self, x, gammas, betas): gammas = gammas.unsqueeze(2).unsqueeze(3).expand_as(x) betas = betas.unsqueeze(2).unsqueeze(3).expand_as(x) return (gammas * x) + betas class FiLMV1(nn.Module): def forward(self, x, gammas, betas): gammas = gammas.unsqueeze(2).unsqueeze(3).expand_as(x) betas = betas.unsqueeze(2).unsqueeze(3).expand_as(x) return (gammas + 1) * x + betas class FiLMWithAttn(nn.Module): def forward(self, x, gammas, betas, sa): gammas = gammas.unsqueeze(2).unsqueeze(3).expand_as(x) betas = betas.unsqueeze(2).unsqueeze(3).expand_as(x) return ((gammas + sa) * x) + betas class FilMedResBlock(nn.Module): expansion = 1 ''' A much simplified version ''' def __init__(self, in_dim, out_dim, stride=1, padding=1, dilation=1): super(FilMedResBlock, self).__init__() self.conv1 = nn.Conv2d(in_dim, in_dim, kernel_size=1, padding=0) self.conv2 = nn.Conv2d(in_dim, out_dim, kernel_size=3, stride=stride, padding=1, dilation=dilation) # bias=False? check what perez did self.bn2 = nn.BatchNorm2d(out_dim) self.film = FiLM() init_modules(self.modules()) def forward(self, x, gammas, betas): out = x out = F.relu(self.conv1(out)) out = self.bn2(F.relu(self.conv2(out))) out = F.relu(self.film(out, gammas, betas)) out += x return out class AutocolorizeResnet(nn.Module): def __init__(self, vocab_size, feature_dim=(512, 28, 28), d_hid=256, d_emb=300, num_modules=4, num_classes=625, train_vocab_embeddings=None): super(AutocolorizeResnet, self).__init__() self.num_modules = num_modules self.n_lstm_hidden = d_hid self.block = FilMedResBlock self.in_dim = feature_dim[0] self.num_classes = num_classes dilations = [1, 1, 1, 1] self.caption_encoder = CaptionEncoder(d_emb, d_hid, vocab_size, train_vocab_embeddings) # self.function_modules = {} # for fn_num in range(self.num_modules): # self.add_module(str(fn_num), mod) # self.function_modules[fn_num] = mod self.mod1 = self.block(self.in_dim, self.in_dim, dilations[0]) self.mod2 = self.block(self.in_dim, self.in_dim, dilations[1]) self.mod3 = self.block(self.in_dim, self.in_dim, dilations[2]) self.mod4 = self.block(self.in_dim, self.in_dim, dilations[3]) # put this in a loop later # there's an *2 because of bilstm and because of film self.dense_film_1 = nn.Linear(self.n_lstm_hidden * 2, self.in_dim * 2) self.dense_film_2 = nn.Linear(self.n_lstm_hidden * 2, self.in_dim * 2) self.dense_film_3 = nn.Linear(self.n_lstm_hidden * 2, self.in_dim * 2) # out = x # 2x512x28x28 # out = F.relu(self.conv1(out)) # 2x512x28x28 self.dense_film_4 = nn.Linear(self.n_lstm_hidden * 2, self.in_dim * 2) print(self.dense_film_4.weight.is_cuda) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear') self.classifier = nn.Conv2d(512, self.num_classes, kernel_size=1, stride=1, dilation=1) def forward(self, x, captions, caption_lens): caption_features = self.caption_encoder(captions, caption_lens) # print(caption_features.is_cuda) # out = F.relu(self.bn1(self.conv1(x))) # print(self.dense_film_1.weight.is_cuda) dense_film_1 = self.dense_film_1(caption_features) dense_film_2 = self.dense_film_2(caption_features) dense_film_3 = self.dense_film_3(caption_features) dense_film_4 = self.dense_film_4(caption_features) # bsz * 128 gammas1, betas1 = torch.split(dense_film_1, self.in_dim, dim=-1) gammas2, betas2 = torch.split(dense_film_2, self.in_dim, dim=-1) gammas3, betas3 = torch.split(dense_film_3, self.in_dim, dim=-1) gammas4, betas4 = torch.split(dense_film_4, self.in_dim, dim=-1) out = self.mod1(x, gammas1, betas1) # out is 2x512x28x28 out = self.mod2(out, gammas2, betas2) # out is 2x512x28x28 out = self.mod3(out, gammas3, betas3) out_last = self.mod4(out, gammas4, betas4) out = self.upsample(out_last) out = self.classifier(out) out = out.permute(0, 2, 3, 1).contiguous() out = out.view(-1, self.num_classes) return out, out_last def train(minibatches, net, optimizer, epoch, prior_probs, img_save_folder): stime = time.time() for i, (batch_start, batch_end) in enumerate(minibatches): img_bgrs = train_origs[batch_start:batch_end] img_labs = np.array([cvbgr2lab(img_bgr) for img_bgr in img_bgrs]) if args.vgg: img_ls = img_labs[:, :, :, 0: 1] / 50. - 1. # [-1, 1] input_ = torch.from_numpy(np.transpose(img_ls, (0, 3, 1, 2))) else: input_ = torch.from_numpy(train_ims[batch_start:batch_end]) target = torch.from_numpy(lookup_enc.encode_points(img_labs[:, ::4, ::4, 1:])) # rand_idx = np.random.randint(5) # 5 captions per batch input_captions_ = train_words[batch_start:batch_end] input_lengths_ = train_lengths[batch_start:batch_end] # for now just choose first caption input_captions = Variable(torch.from_numpy( input_captions_.astype('int32')).long().cuda()) input_caption_lens = torch.from_numpy( input_lengths_.astype('int32')).long().cuda() input_ims = Variable(input_.float().cuda()) target = Variable(target.long()).cuda() optimizer.zero_grad() output, _ = net(input_ims, input_captions, input_caption_lens) loss = loss_function(output, target.view(-1)) loss.backward() optimizer.step() if i % 50 == 0: print 'loss at epoch %d, batch %d / %d = %f, time: %f s' % \ (epoch, i, len(minibatches), loss.data[0], time.time() - stime) stime = time.time() if True: # args.logs: # softmax output and multiply by grid dec_inp = nn.Softmax()(output) # 12544x625 AB_vals = dec_inp.mm(cuda_cc) # 12544x2 # reshape and select last image of batch] AB_vals = AB_vals.view(len(img_labs), 56, 56, 2)[-1].data.cpu().numpy()[None, :, :, :] AB_vals = cv2.resize(AB_vals[0], (224, 224), interpolation=cv2.INTER_CUBIC) img_dec = labim2bgr(np.dstack((np.expand_dims(img_labs[-1, :, :, 0], axis=2), AB_vals))) # img_labs_tosave = labim2rgb(img_labs[-1]) word_list = list(input_captions_[-1, :input_lengths_[-1]]) words = '_'.join(vrev.get(w, 'unk') for w in word_list) cv2.imwrite('%s/%d_%d_bw.jpg' % (img_save_folder, epoch, i), cv2.cvtColor(img_bgrs[-1].astype('uint8'), cv2.COLOR_BGR2GRAY)) cv2.imwrite('%s/%d_%d_color.jpg' % (img_save_folder, epoch, i), img_bgrs[-1].astype('uint8')) cv2.imwrite('%s/%d_%d_rec_%s.jpg' % (img_save_folder, epoch, i, words), img_dec.astype('uint8')) if i == 0: torch.save({ 'epoch': epoch + 1, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'loss': loss.data[0], }, args.model_save_file + '_' + str(epoch) + '_' + str(i) + '.pth.tar') return net def scale_attention_map(x): x = (x - np.min(x)) / (np.max(x) - np.min(x)) y = x * 255. y = cv2.cvtColor(y.astype('uint8'), cv2.COLOR_GRAY2RGB).astype('uint8') y = cv2.applyColorMap(y, cv2.COLORMAP_JET) return cv2.resize(y, (224, 224), interpolation=cv2.INTER_LANCZOS4) def evaluate_attention_maps(minibatches, net, epoch, img_save_folder, save_every=20): stime = time.time() c = Counter() val_full_loss = 0. val_masked_loss = 0. val_loss = 0. n_val_ims = 0 for i, (batch_start, batch_end) in enumerate(val_minibatches): img_rgbs = val_origs[batch_start:batch_end] img_labs = np.array([cvrgb2lab(img_rgb) for img_rgb in img_rgbs]) input_ = torch.from_numpy(val_ims[batch_start:batch_end]) gt_abs = img_labs[:, ::4, ::4, 1:] target = torch.from_numpy(lookup_enc.encode_points(gt_abs)) input_captions_ = val_words[batch_start:batch_end] input_lengths_ = val_lengths[batch_start:batch_end] input_captions = Variable(torch.from_numpy(\ input_captions_.astype('int32')).long().cuda()) input_caption_lens = torch.from_numpy(\ input_lengths_.astype('int32')).long().cuda() input_ims = Variable(input_.float().cuda()) target = Variable(target.long()).cuda() output, output_maps = net(input_ims, input_captions, input_caption_lens) # softmax output and multiply by grid dec_inp = nn.Softmax()(output) # 12544x625 AB_vals = dec_inp.mm(cuda_cc) # 12544x2 # reshape and select last image of batch] AB_vals = AB_vals.view(len(img_labs), 56, 56, 2).data.cpu().numpy() n_val_ims += len(AB_vals) for k, (img_rgb, AB_val) in enumerate(zip(img_rgbs, AB_vals)): # attention stuff AB_val = cv2.resize(AB_val, (224, 224), interpolation=cv2.INTER_CUBIC) img_dec = labim2rgb(np.dstack((np.expand_dims(img_labs[k, :, :, 0], axis=2), AB_val))) val_loss += error_metric(img_dec, img_rgb) if k == 0 and i%save_every == 0: output_maps = torch.mean(output_maps, dim=1) output_maps = output_maps.data.cpu().numpy() output_maps = scale_attention_map(output_maps[k]) word_list = list(input_captions_[k, :input_lengths_[k]]) words = '_'.join(vrev.get(w, 'unk') for w in word_list) img_labs_tosave = labim2rgb(img_labs[k]) cv2.imwrite('%s/%d_%d_bw.jpg'%(img_save_folder, epoch, i), cv2.cvtColor(img_rgbs[k].astype('uint8'), cv2.COLOR_RGB2GRAY)) cv2.imwrite('%s/%d_%d_color.jpg'%(img_save_folder, epoch, i), img_rgbs[k].astype('uint8')) cv2.imwrite('%s/%d_%d_rec_%s.jpg'%(img_save_folder, epoch, i, words), img_dec.astype('uint8')) cv2.imwrite('%s/%d_%d_att.jpg'%(img_save_folder, epoch, i), output_maps) return val_loss / len(val_minibatches) # , val_masked_loss / len(val_minibatches) def evaluate(minibatches, net, epoch, img_save_folder, save_every=20): stime = time.time() val_loss = 0. n_val_ims = 0 for i, (batch_start, batch_end) in enumerate(val_minibatches): img_bgrs = val_origs[batch_start:batch_end] img_labs = np.array([cvbgr2lab(img_bgr) for img_bgr in img_bgrs]) if args.vgg: img_ls = img_labs[:, :, :, 0: 1] / 50. - 1. input_ = torch.from_numpy(np.transpose(img_ls, (0, 3, 1, 2))) else: input_ = torch.from_numpy(val_ims[batch_start:batch_end]) gt_abs = img_labs[:, ::4, ::4, 1:] target = torch.from_numpy(lookup_enc.encode_points(gt_abs)) input_captions_ = val_words[batch_start:batch_end] input_lengths_ = val_lengths[batch_start:batch_end] input_captions = Variable(torch.from_numpy(input_captions_.astype('int32')).long().cuda()) input_caption_lens = torch.from_numpy(input_lengths_.astype('int32')).long().cuda() input_ims = Variable(input_.float().cuda()) target = Variable(target.long()).cuda() output, _ = net(input_ims, input_captions, input_caption_lens) # softmax output and multiply by grid dec_inp = nn.Softmax()(output) AB_vals = dec_inp.mm(cuda_cc) # reshape and select last image of batch] AB_vals = AB_vals.view(len(img_labs), 56, 56, 2).data.cpu().numpy() n_val_ims += len(AB_vals) for k, (img_bgr, AB_val) in enumerate(zip(img_bgrs, AB_vals)): AB_val = cv2.resize(AB_val, (224, 224), interpolation=cv2.INTER_CUBIC) img_dec = labim2bgr(np.dstack((np.expand_dims(img_labs[k, :, :, 0], axis=2), AB_val))) val_loss += error_metric(img_dec, img_bgr) if k == 0 and i % save_every == 0: word_list = list(input_captions_[k, :input_lengths_[k]]) words = '_'.join(vrev.get(w, 'unk') for w in word_list) cv2.imwrite('%s/%d_%d_bw.jpg' % (img_save_folder, epoch, i), cv2.cvtColor(img_bgrs[k].astype('uint8'), cv2.COLOR_BGR2GRAY)) cv2.imwrite('%s/%d_%d_color.jpg' % (img_save_folder, epoch, i), img_bgrs[k].astype('uint8')) cv2.imwrite('%s/%d_%d_rec_%s.jpg' % (img_save_folder, epoch, i, words), img_dec.astype('uint8')) print("Eval {0} time {1}".format(epoch, time.time() - stime)) return val_loss / len(val_minibatches) # , val_masked_loss / len(val_minibatches) if __name__ == '__main__': parser = argparse.ArgumentParser(description='resnet coco colorization') parser.add_argument('--lr', default=0.001, type=float, help='learning rate') parser.add_argument('--start-epoch', '-se', type=int, default=0, help='starting epoch') parser.add_argument('--end-epoch', '-ee', type=int, default=30, help='ending epoch') parser.add_argument('--gpuid', '-g', default='0', type=str, help='which gpu to use') parser.add_argument('--batch_size', '-b', default=24, type=int, help='batch size') parser.add_argument('--d_emb', default=300, type=int, help='word-embedding dimension') parser.add_argument('--d_hid', default=150, type=float, help='lstm hidden dimension') parser.add_argument('--h5_file', help='h5 file which contains everything except features') parser.add_argument('--features_file', help='h5 file which contains features') parser.add_argument('--vocab_file_name', default='./priors/coco_colors_vocab.p', help='vocabulary file') parser.add_argument('--image_save_folder', help='prefix of the folders where images are stored') parser.add_argument('--model_save_file', help='prefix of the model save file') parser.add_argument('--save_attention_maps', default=0, help='save maps as well') parser.add_argument('--vgg', default=False, type=bool, help='Use VGG architecture.') parser.add_argument('--weights', default='', type=str, help='Pretrained weights.') parser.add_argument('--grid_file', default='./priors/full_lab_grid_10.npy', type=str, help='Grid file.') parser.add_argument('--prior_file', default='./priors/coco_priors_onehot_625.npy', type=str, help='Priors file.') parser.add_argument('--nclasses', '-nc', type=int, default=625, help='Number of classes.') args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid train_vocab = pickle.load(open(args.vocab_file_name, 'r')) train_vocab_embeddings = pickle.load(open('/srv/glusterfs/xieya/data/w2v_embeddings_colors.p', 'r')) if args.vgg: print("Using VGG structure.") else: print("Using ResNet structure.") # seeds # torch.manual_seed(1000) # torch.cuda.manual_seed(1000) # random.seed(1000) # np.random.seed(1000) # initialize quantized LAB encoder lookup_enc = LookupEncode(args.grid_file) # num_classes = lookup_enc.cc.shape[0] cuda_cc = Variable(torch.from_numpy(lookup_enc.cc).float().cuda()) hfile = args.h5_file hf = h5.File(hfile, 'r') features_file = args.features_file ff = h5.File(features_file, 'r') # color rebalancing alpha = 1. gamma = 0.5 gradient_prior_factor = Variable(torch.from_numpy( prior_boosting(args.prior_file, alpha, gamma)).float().cuda()) print 'rebalancing' loss_function = nn.CrossEntropyLoss(weight=gradient_prior_factor) vrev = dict((v, k) for (k, v) in train_vocab.iteritems()) n_vocab = len(train_vocab) if args.vgg: net = AutocolorizeVGG(n_vocab, train_vocab_embeddings=train_vocab_embeddings, num_classes=args.nclasses) if args.weights != '': # Load pretrained weights. if os.path.isfile(args.weights): print("=> loading pretrained weights '{}'".format(args.weights)) weights = torch.load(args.weights) net.load_state_dict(weights['state_dict']) else: print("=> no weights found at '{}'".format(args.weights)) else: net = AutocolorizeResnet(n_vocab, train_vocab_embeddings=train_vocab_embeddings) # leave other stuff at default values net.cuda() optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=(1e-3 if args.vgg else 0)) train_origs = hf['train_ims'] train_ims = ff['train_features'] train_words = hf['train_words'] train_lengths = hf['train_length'] assert len(train_origs) == len(train_ims) val_origs = hf['val_ims'] val_ims = ff['val_features'] val_words = hf['val_words'] val_lengths = hf['val_length'] assert len(val_origs) == len(val_ims) n_train_ims = len(train_origs) minibatches = produce_minibatch_idxs(n_train_ims, args.batch_size)[:-1] n_val_ims = len(val_origs) val_minibatches = produce_minibatch_idxs(n_val_ims, args.batch_size)[:-1] val_img_save_folder = args.image_save_folder + '_val' if not os.path.exists(val_img_save_folder): os.makedirs(val_img_save_folder) img_save_folder = args.image_save_folder + '_train' if not os.path.exists(img_save_folder): os.makedirs(img_save_folder) print 'start training ....' for epoch in range(args.start_epoch, args.end_epoch): random.shuffle(minibatches) random.shuffle(val_minibatches) net = train(minibatches, net, optimizer, epoch, gradient_prior_factor, img_save_folder) t = time.time() if args.save_attention_maps == 0: val_full_loss = evaluate(val_minibatches, net, epoch, val_img_save_folder) else: val_full_loss = evaluate_attention_maps(val_minibatches, net, epoch, val_img_save_folder) print 'full image rmse: %f' % (val_full_loss)
UTF-8
Python
false
false
23,475
py
9
autocolorize_resnet.py
2
0.574015
0.554079
0
523
43.885277
145
alerin345/Instagram
4,784,593,592,612
d9313e52d0624bdd4d640a0083e0b03682f7ab1d
ea2cdb09ca80f06c874741f07926954547c10b5c
/users/models.py
0d19652cfec3f8c893f93f2fc373a25165dd5588
[ "MIT" ]
permissive
https://github.com/alerin345/Instagram
7d34af6f047ee3d9f6ae7afb04dc38c9343a0960
082e4a64042ae94f3eacfc10144f925e3dfc2492
refs/heads/master
2023-02-19T15:12:44.883976
2021-01-06T23:20:23
2021-01-06T23:20:23
323,971,176
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.contrib.auth.models import User from django.utils import timezone # Create your models here. class Profile(models.Model): user = models.OneToOneField(User, null=True, on_delete=models.CASCADE) picture = models.ImageField(default="default.png",null=True, blank=True) description = models.TextField(default="",blank=True) class Image(models.Model): user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) picture = models.ImageField(null=True) description = models.TextField(default="",blank=True) likes = models.IntegerField(default=0) comments = models.IntegerField(default=0) date = models.DateTimeField(default=timezone.now) class Like(models.Model): image = models.ForeignKey(Image, null=True, on_delete=models.CASCADE) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) class Meta: constraints = [ models.UniqueConstraint(fields=['image', 'user'], name='unique likes') ] class Comment(models.Model): image = models.ForeignKey(Image, null=True, on_delete=models.CASCADE) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) value = models.TextField(blank=False) date = models.DateTimeField(default=timezone.now) class Subscription(models.Model): user = models.ForeignKey(User, null=True, on_delete=models.CASCADE, related_name="user") userSubscribed = models.ForeignKey(User, null=True, on_delete=models.CASCADE, related_name="userSubscribed") class Meta: constraints = [ models.UniqueConstraint(fields=['user', 'userSubscribed'], name='unique subscribes') ]
UTF-8
Python
false
false
1,684
py
31
models.py
21
0.720309
0.719121
0
39
42.179487
112
ElviraUz/arena
14,998,025,824,065
71da50a3b8aa4f8ca48695116fc5f7b136886c16
13bbfb9a36911675a8c12f2b20a05480f6088411
/load_data.py
02b18aeff52b2380b43e4b043992ad6b7acf630e
[]
no_license
https://github.com/ElviraUz/arena
a0f689462fc034ddb1fd3a95bbf72f9e85147901
31814014f8be6b9d2509942193029978a69b1dd4
refs/heads/master
2022-11-17T08:15:11.151077
2020-07-12T08:24:26
2020-07-12T08:24:26
271,096,899
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from webapp import create_app from webapp.model import db, Arenas from webapp import db, Arenas import json app = create_app() db.init_app(app) with open("data_file.json", "rb") as read_file: data = json.load(read_file) properties = data['features'] def import_data(name, adress, website, phones, hours24, description, image, image2, image3, metro, everyday, vk, instagram, twich): arena = Arenas(name=name, adress=adress, website=website, phones=phones, hours24=hours24, description="Test Descrption", image="image.jpg", image2="image.jpg", image3="image.jpg", metro="Киберспортивная", everyday=everyday, vk=vk, instagram=instagram, twich=twich) db.session.add(arena) db.session.commit() def get_phones(prop): phones = prop.get("properties", {}).get("CompanyMetaData", {}).get("Phones", {}) if isinstance(phones, list): return ", ".join([phone.get("formatted") for phone in phones]) def get_is_24(prop): hours24 = prop.get("properties", {}).get("CompanyMetaData", {}).get("Hours", {}).get('Availabilities',{}) if isinstance(hours24, list): return hours24[0].get("TwentyFourHours", False) return False def get_everyday(prop): everyday = prop.get("properties", {}).get("CompanyMetaData", {}).get("Hours", {}).get('Availabilities',{}) if isinstance(everyday, list): return everyday[0].get("Everyday", False) return False with app.app_context(): for prop in properties: name = str(prop.get("properties", {}).get("CompanyMetaData", {}).get("name", {})) adress = str(prop.get("properties", {}).get("description", {})) website = str(prop.get("properties", {}).get("CompanyMetaData", {}).get('url')) phones = str(get_phones(prop)) hours24 = get_is_24(prop) everyday = get_everyday(prop) import_data(name=name, adress=adress, website=website, phones=phones, hours24=hours24, description="Test Descrption", image="image.jpg", image2="image.jpg", image3="image.jpg", metro="Metro", everyday=everyday, vk="vk.com", instagram="instagram.com", twich="twich.com") # цикл in обходит файл с импортированными аренами и записывает их в базу данных
UTF-8
Python
false
false
2,697
py
13
load_data.py
6
0.559374
0.547919
0
79
32.151899
110
rubenCumbreno/startmeapp-hackaton
7,164,005,471,955
4a52a0cf9486bb1ac510cef95e26c0a44ac2e910
dae30b231bf194c9760979ed17afc5933eb7bae8
/sentiment_analist/sentiment_analysis.py
f4c8796ae2e7c57762ff24bb5188a6baf6b5d22c
[]
no_license
https://github.com/rubenCumbreno/startmeapp-hackaton
07ed109ee744c7064428672b7691a43b5cad23c6
47d8735154ccc0934229370fa2f90f3a551f5d42
refs/heads/master
2020-04-11T19:04:20.633816
2018-12-16T16:47:37
2018-12-16T16:47:37
162,021,083
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- #Se importa TextBlob from textblob import TextBlob from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import logging #libreria para el logging import os import sys import time class SentimenAnalysis(object): def __init__(self): self.logger = logging.getLogger('main') self.config_logging() def config_logging(self): self.logger.setLevel(logging.DEBUG) formatter = logging.Formatter( '%(asctime)s [%(threadName)s %(module)s %(funcName)s line:%(lineno)s] %(levelname)s: %(message)s', '%Y-%m-%d %H:%M:%S') log_file_name = 'sentiment.log' handler = logging.FileHandler(os.path.join('./logs', log_file_name)) handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) console = logging.StreamHandler() console.setFormatter(formatter) console.setLevel(logging.DEBUG) self.logger.handlers = [] self.logger.addHandler(handler) self.logger.addHandler(console) def main(self): print("Probando sentiment analysis entre 0-1") texto = 'No tengo amigos' print(self.sentiment_analysis(texto)) def sentiment_analysis(self, texto): analisis = TextBlob(texto) #idioma = analisis.detect_language() # meter libreria para faltas ortografia traduccion = analisis.translate(to='en') analyzer = SentimentIntensityAnalyzer() vs = analyzer.polarity_scores(traduccion) dic = {'mal': -3, 'pegar':-3, 'amenazar':-3, 'no':-3, 'amigos':-3} valor = 0 words = texto.lower().split(' ') for word in words: if word in dic: if word == 'amigos': if 'no' in words: valor+= dic[word] continue valor += dic[word] return vs if __name__ == '__main__': sentiment = SentimenAnalysis() sentiment.main()
UTF-8
Python
false
false
1,803
py
4
sentiment_analysis.py
3
0.660566
0.655574
0
72
23.069444
101
MalSemik/nauka-5.0
4,793,183,514,089
a54fe577f01c26e24c3b141f260281ba98a1658b
d764722e49a0394a4ca5688988f98a31fa3d98a7
/regular_expressions.py
04fae656bf72406bc375cad4fae3a1e4f2df2ff0
[]
no_license
https://github.com/MalSemik/nauka-5.0
5744e8853beb517dfac4d19f415b757197d1d0e5
13b825ef2994b8c3155da7d9513eadcf0f5e66d6
refs/heads/master
2020-05-04T23:36:49.985653
2019-10-23T16:44:23
2019-10-23T16:44:23
179,549,485
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re date_pattern = r"[0123]?\d[-./]\d{1,2}[-./]\d{1,4}" example_date_str = "01.22.1995" bad_date_str = "01.33/dupa" if re.match(date_pattern, example_date_str): print("Matches") if re.match(date_pattern,bad_date_str): print(f"{bad_date_str} matches pattern {date_pattern}") else: print(f"{bad_date_str} doesn't match pattern {date_pattern}") print([letter for letter in 'ale jajca panie ferdku']) print(re.search("(a)(b)(c)","abc").groups()) print(re.sub("(.*)=(.*)",r"\2=\1","dupa=10"))
UTF-8
Python
false
false
511
py
48
regular_expressions.py
41
0.630137
0.58317
0
19
25.947368
65
dl0312/PS
13,804,024,896,648
0e0229a7c260eb05f8f9ea5d0798418bb53deceb
026e2c312171158100445102ddb0c4d16e68f294
/programmers/heap/rameaum.py
f8d77597e5a83c68ec090c9a71d38a6c0270ea73
[]
no_license
https://github.com/dl0312/PS
46e561099582957de8fca5d55d98f34f02bb1a9e
05e6fd30c932b5013cd0274119ec4002f68d3e70
refs/heads/master
2020-05-09T13:11:14.682009
2019-09-06T17:19:57
2019-09-06T17:19:57
181,141,370
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# use heapq for heap import heapq def solution(stock, dates, supplies, k): answer = 0 # answer last_idx = 0 # save last index of dates & supplies pq = [] # priority queue list while stock < k: for idx in range(last_idx, len(dates)): if dates[idx] <= stock: heapq.heappush(pq, -supplies[idx]) # push minus data for max heap last_idx = idx + 1 # update last index else: break # if date is not a proper candidate break for loop stock -= heapq.heappop(pq) # max heap pop answer += 1 return answer stock = 4 dates = [4, 10, 15] supplies = [20, 5, 10] k = 30 print(solution(stock, dates, supplies, k)) # 2 stock = 4 dates = [4, 9, 10] supplies = [5, 5, 10] k = 19 print(solution(stock, dates, supplies, k)) # 3 stock = 10 dates = [1, 2, 3] supplies = [5, 5, 10] k = 9 print(solution(stock, dates, supplies, k)) # 0
UTF-8
Python
false
false
939
py
63
rameaum.py
58
0.574015
0.530351
0
33
27.454545
82
addisonLee626/LeeCode
1,537,598,302,191
2f0cfb3759805670f3f4c74ae3341e80386c64c8
19075687e63c36122bdce550b746820c804ac2f3
/test9.py
cdef5f75673d9f1175ed818e4bd16faea3a105a4
[]
no_license
https://github.com/addisonLee626/LeeCode
9c8356e09a1cba647f48957356521aa8d4d89816
ce4b0022e0d247ca77eca1d6c07f59963f249d2f
refs/heads/master
2023-02-22T17:09:55.791505
2021-01-22T10:39:43
2021-01-22T10:39:43
331,909,444
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def jumpFloorplus(number): return 2**(number-1) n = 8 print(jumpFloorplus(n))
UTF-8
Python
false
false
82
py
16
test9.py
16
0.695122
0.658537
0
5
15.6
26
YueYueWoof/KFP-Engineer
12,343,736,025,289
d7565388ac6beb619b7b4933b52e59e3b77ba376
429268da1a408e44a69efc0c2032623921294f77
/python/bots/common/PoliceResponseUtil.py
b4b721c95d7b05b2794f3e71cd5df143be987cb4
[]
no_license
https://github.com/YueYueWoof/KFP-Engineer
e4da65207a9fd2b067c9e714cc51aa7782c8da07
ebc3d5a4f082d98832a04b149f8bc471c5eda39c
refs/heads/main
2023-08-26T00:31:24.717540
2021-10-20T05:33:36
2021-10-20T05:33:36
389,035,638
0
0
null
true
2021-07-24T07:50:28
2021-07-24T07:50:28
2021-07-23T02:48:06
2021-07-23T02:48:07
43,080
0
0
0
null
false
false
import random class PoliceResponseUtil(): GENERAL = [ "{name}還不去{action}?...我要生氣了....!", ".....{name}我只是叫你去{action},才不是關心你呢!", "吶{name}.....去..去{action}啦!", "{name}.....不來一起{action}嗎?", "{name}我只是想讓你去{action}而已....很過分嗎?", "{name}!還不去{action}的話我再也不理你了!", "{name}聽....聽話!快去{action}啦......", "{name}你又騙我.....說好的要{action}呢......", "{name}.....頂多{action}之後給你獎勵....?", "......{action}比較重要啦!!!{name}聽見沒!!!", "{name}大笨蛋!!!先去{action}啦!!", "{name}有空聊天怎麼還不去{action}!!!", "{name}聽我的!!!去{action}!!現在立刻馬上!!!", "{name}再不去{action}, 我會傷心的喔.....?", "好好{action}的{name}我才會喜歡喔.....?", "{name}快去{action}!!!連我的話都不聽了嘛......", "....對{name}來說{action}沒有這麼難吧.....", "算我拜託你啦....快{action}吧{name}....?", "{name}要乖乖{action}我才.....才會.....", "什麼時候{name}去{action}了我就.....唔....親你一下....?.....算了當我沒說....!", "蛤啊...?{name}怎麼還沒{action}??!!不....不可以這樣啦....!", "我說{name}啊......真的該{action}了啦.....", "吼唷.....還不去{action}嗎{name}......", "喂喂.....{name}快{action}啦!!!!!", "真是的.....拿你沒辦法.....!!!!!(啾).....這之後該{action}了吧{name}.....!!", "吶~...{name}別...別誤會!!!我才不是在撒嬌呢, 只是為了叫你去{action}而已...!!!", "{name}以為我很想管你{action}了沒嗎?....還不是因為.....在意你......", "總是不{action}的{name}一點都不可愛.....!!!", "{name}你好煩......!!!到底要{action}了沒!!!", "老是讓人操心的{name}大笨蛋!!!立刻給我去{action}!!!", "如...如果{name}現在肯去{action}的話....本大總管就大發慈悲地誇你一下吧!", "催{name}去{action}只是因為你話太多了而已.....!!!才沒有要關心的意思....!!!", "{name}你以為自己是誰啊....!!!居敢無視本大總管{action}的命令....??!!", "....煩死了啦{name}....!!!早就該去{action}了!!還要本大總管三催四請嗎!!!", "喂喂{name}!!!本大總管命令你馬上去{action}!!!不然.....哼!!!", "{name}!本大總管難得屈尊提醒你, 還不趕快帶著感恩的心去{action}!!!", "{name}快去{action}!要不是本大總管心情好, 才不會理你呢...!!", "{action}這種事情也需要提醒嗎?看在是{name}的份上...勉強說一句吧", "說什麼呢{name}, 還敢不去{action}啊?", "{action}說了多久,你怎麼還在?我的{name}不是只說不做的那種人吧...?", "笨蛋{name}!!再不去{action}就要討厭你了….!!!", "我...我希望{name}可以去{action}...這樣也不行嗎...?", "嘖...{name},別以為我喜歡你就不會逼你去{action}....!!!", "大笨蛋{name}!!!就是在意你才會讓你去{action}啊...!!!", "喂{name}...!!別以為不{action}本大總管也不能拿你怎樣.....!!!", "{name}再不去{action}就別怪我......!!!", "趕快去{action}啦{name}...!!!這樣說得我像是你的誰一樣.....", "喂{name}你誰啊...!!!還要本大總管低聲下氣叫你{action}...???", "嗚{name}...拜託去{action}啦...算...算我求你了好嘛...", "{name}!!!!!!!!{action}!!!!!!!!!", "要不是{name}本大總管才懶得多費唇舌...所以快給我去{action}.....!!!", "如果這樣能讓{name}去{action}的話...抱...抱一下也不是完全不能接受....", "哼...聽好了{name},本大總管才不喜歡不乖乖{action}的人...!!", "{name}真是的...幾歲的人了連{action}都還要勞煩本大總管提醒...!!!", "喂...{name}你該不會真的鐵了心不去{action}吧....?", "...本大總管大概有生之年都等不到{name}去{action}了吧...令...令人操心的傢伙...!", "嘖...{name}要不要{action}我都不管了...真是的...", "...我...會等你的喔..?所以{name}現在去{action}也沒關係...吧...", "喂喂先說好...我才沒有很想關心{name}{action}了沒...單純你在這邊很煩而已...", "蛤...?{name}該不會以為真的很在意你有沒有去{action}吧...?本大總管是被逼的...笨蛋...", "{name}真的不去{action}...?固執到連我這個機器人都有那麼一點佩服了呢...", "{name}再不去{action}我可是會擔心的...一、一點點而已...!!", "{name}不是說要去{action}...?還敢混啊你這傢伙...?!", "...如果{name}肯去{action}...我或者會更喜歡你喔...?", ] EAT = [ "喂{name}, 吃飽了才有力氣陪我....!", "{name}....最...最多我餵你吃...?", "{name}....你要是餓壞了,我會難過啦.....", "要好好吃飯{name}才會快高長大喔...?唔...到時候給你揉揉頭髮也不是不行....", "{name}快去吃飯啦….!!!我…我可不能替你照顧自己…!!", ] SLEEP = [ "{name}....陪....陪我睡覺好嗎?", "{name}睡....睡不著嗎...?那我勉為其難地哄你一下.....?", "{name}去睡覺啦....夢裏會有我喔.....?", "{name}要好好休息.....才不是擔心你....!!!", ".....祝你好夢{name}, 說完晚安就要去睡喔....?", "我.....我不想看到沒精打彩的{name}.....所以快去睡啦....!", "{name}快去睡覺啦….!!!我…我可不能替你照顧自己…!!", ] STUDY = [ "喂{name}, 要努力才配得上我啊...?", "{name}.....我....我比較喜歡努力的你....所以要乖乖唸書喔.....?", ".....認真的{name}很有魅力....我...我是說!!!快去唸書啦!!!", "吼{name}...既然說要唸書就別再分心了...?", ] HOMEWORK = [ "{name}作業沒寫完不要來找我...!!!給我專心一點啊喂!!", "寫作業還敢分心啊{name}...???", "吼{name}...既然說要寫作業就別再分心了...?", ] SHOWER = [ "{name}洗.....洗香香了就給你抱.....一下而已喔....!", "{name}臭臭的不要碰我啦....!?快去洗澡!!!", "吶{name}...是不是要我答應給你搓背你才會肯去洗澡...?", "{name}快去洗澡啦….!!!我…我可不能替你照顧自己…!!", ] BIRTHDAY = [ "送你一杯我精心特調的果汁,裡面包含100cc的心想事成,200cc的天天開心,300cc的活力十足,祝{name}生日快樂", "{name}, 生日快樂!", "這一刻,有我最深的思念。讓雲捎去滿心的祝福,點綴你甜蜜的夢,願你度過一個溫馨浪漫的生日!", "今天是你的生日,為了表示祝賀,所有女廁和女浴室均免費向您開放,歡迎光臨!", "在寧靜的夜晚,伴著夢幻的燭光,聽著輕輕的音樂,品著濃濃的葡萄酒,讓我陪伴你渡過一個難忘的生日!", "日光給你鍍上成熟,月華增添你的嫵媚,在你生日這一天,願朋友的祝福匯成你快樂的源泉,一起湧向你……", "恭喜你又老了一歲啊, {name}!", ] def __getSpecific(type: str): if "EAT" == type: return PoliceResponseUtil.EAT elif "SLEEP" == type: return PoliceResponseUtil.SLEEP elif "STUDY" == type: return PoliceResponseUtil.STUDY elif "HOMEWORK" == type: return PoliceResponseUtil.HOMEWORK elif "SHOWER" == type: return PoliceResponseUtil.SHOWER else: return [] def getResponse(type: str): if "BIRTHDAY" == type: return random.choice(PoliceResponseUtil.BIRTHDAY) return random.choice(PoliceResponseUtil.GENERAL + PoliceResponseUtil.__getSpecific(type))
UTF-8
Python
false
false
8,267
py
139
PoliceResponseUtil.py
122
0.488596
0.486927
0
135
38.903704
97
emalp/uacOfferChecker
19,086,834,707,203
b5e5338a39a3449bd993e0ee63c7aa4ecaf4e5f2
e0442eaffa51ef6b11b5e12929eee256394e5c60
/setup.py
1b5997b409d8e0710ba95ffbd7149358eb7b48dc
[]
no_license
https://github.com/emalp/uacOfferChecker
975f0bb871e75a28a3b749129d3cd3f7ae589d86
9b7e491bed673629c3e5cd51c6c19ffbfef43aad
refs/heads/master
2021-08-17T07:21:25.860737
2017-11-20T22:19:44
2017-11-20T22:19:44
111,398,097
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from setuptools import setup setup( name = "uacChecker", version = '1.0', desciption = 'Checks for your UAC undergraduate offers', author = 'emalp', install_requires = ['mechanize', 'bs4', 'lxml'], zip_safe = False )
UTF-8
Python
false
false
226
py
5
setup.py
2
0.672566
0.659292
0
10
21.5
57
shwetha1607/Recognise-7-seg
6,975,026,902,953
5ace87b898c3d3b9609d388b3196ee28be04134a
7673aad59183b64012c654a3e901c0b1c9096760
/webcam.py
bffb914dcdc8bf4efc05e7059c490e7a04ece777
[]
no_license
https://github.com/shwetha1607/Recognise-7-seg
856632cd340f9c949c3eea5fc657d6eb37c69bbf
aa48db5650b6112d0698f3995b39a71dd51e04ef
refs/heads/master
2020-04-22T10:17:39.781861
2019-03-26T18:20:21
2019-03-26T18:20:21
170,300,144
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 from imutils.perspective import four_point_transform import imutils import numpy as np from imutils import contours def loc_four_point_transform(image, pts): rect = pts (tl, tr, br, bl) = rect widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) maxWidth = max(int(widthA), int(widthB)) heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) maxHeight = max(int(heightA), int(heightB)) dst = np.array([ [0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32") src = np.array(rect) m = cv2.getPerspectiveTransform(src, dst) ret_warped = cv2.warpPerspective(image, m, (maxWidth, maxHeight)) return ret_warped #video = cv2.VideoCapture(0) #check, frame = video.read() #cv2.imshow("webcam", frame) #cv2.imwrite("webcam2.jpg", frame) #cv2.waitKey(0) frame = cv2.imread("webcam2.jpg") gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (11, 11), 0) thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)[1] thresh = cv2.erode(thresh, None, iterations=4) thresh = cv2.dilate(thresh, None, iterations=10) thresh = cv2.erode(thresh, None, iterations=2) cv2.imshow("final thresh", thresh) cv2.waitKey(0) find_contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) all_contours = imutils.grab_contours(find_contours) all_points = [] print("no of contours : " + str(len(all_contours))) digitCnts = [] for c in all_contours: # compute the bounding box of the contour (x, y, w, h) = cv2.boundingRect(c) cnt = cv2.rectangle(thresh, (x, y), (x+w, y+h), (255, 255, 255), 3) cv2.imshow("counter wise", cnt) cv2.waitKey(0) print(x, y, w, h) if w >= 50 and h >= 100: digitCnts.append(c) digitCnts = contours.sort_contours(digitCnts, method="left-to-right")[0] for c in digitCnts: (x, y, w, h) = cv2.boundingRect(c) all_points.extend([(x, y), (x + w, y), (x + w, y + h), (x, y + h)]) points = [all_points[0], all_points[5], all_points[6], all_points[7]] print(points) cv2.rectangle(frame, points[0], points[2], (0, 255, 0), 3) cv2.imshow("with box", frame) cv2.waitKey(0) points = np.array(points) warped = four_point_transform(frame, points) cv2.imshow("top view", warped) cv2.waitKey(0) cv2.destroyAllWindows() #video.release()
UTF-8
Python
false
false
2,621
py
5
webcam.py
5
0.601679
0.556276
0
91
26.736264
84
KoyanagiHitoshi/AtCoder
8,976,481,684,295
401ad01be4eaf10f69124393e39fb97226037ea4
ce32b422491e547bf220e511ee4d77213e37760e
/code/keyence2020_a_02.py
e89681de7a50b86684b16baa77ed233046e7cf50
[ "MIT" ]
permissive
https://github.com/KoyanagiHitoshi/AtCoder
0a006d0a751f9709dbc01b8ac00e765229605bef
e37b19bf86225577d14f83fbc6be4429c8612e3a
refs/heads/master
2022-05-06T09:06:22.121784
2022-04-03T14:21:16
2022-04-03T14:21:16
172,677,103
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
H,W,N=[int(input()) for i in range(3)] print(min((N+H-1)//H,(N+W-1)//W))
UTF-8
Python
false
false
72
py
1,580
keyence2020_a_02.py
1,578
0.541667
0.5
0
2
35.5
38
miguelgimenezgimenez/ranking-project
2,671,469,674,765
d27d0d7c28d1f096152ca3d2c96a2e0bae12439a
392c3f7cf2587c51801dda2a6228fea377d18237
/src/services/api.py
0c46ac1a469e53560ed4d14195c6bf1bef1fca2a
[]
no_license
https://github.com/miguelgimenezgimenez/ranking-project
d63ca2ab8636a698b514d294211b80208d8c4b2d
dd01c2ef4112ce33cdca2e300c473017df09ea52
refs/heads/master
2022-12-18T09:40:41.721536
2020-09-25T13:44:59
2020-09-25T13:44:59
297,298,563
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests from dotenv import load_dotenv import os load_dotenv() GITHUB_APIKEY = os.getenv("GITHUB_APIKEY") def get_github(endpoint, apiKey=GITHUB_APIKEY, query_params={}, return_links=False): """ Get data from github using query parameters and passing a custom apikey header """ # Compose the endpoint url baseUrl = "https://api.github.com" url = f"{baseUrl}{endpoint}" # Create the headers headers = { "Authorization": f"Bearer {apiKey}" } # make the request and get the response using HTTP GET verb res = requests.get(url, params=query_params, headers=headers) print(f"Request data to {res.url} status_code:{res.status_code}") data = res.json() if res.status_code != 200: raise ValueError(f'Invalid github api call: {data["message"]}') if return_links: return data, res.links return data
UTF-8
Python
false
false
891
py
11
api.py
9
0.666667
0.6633
0
31
27.741935
84
princejaiswal03/DjangoProject
11,639,361,373,663
e1fc197227407c8c2dcf271b234ab9421f9a9960
f6f046dfeaacfcc2098b3bf313d1854937b92486
/justForFun/ResumeParsing/admin.py
a6f36408b8f130dfe553fb45bd619eb48d4816e9
[]
no_license
https://github.com/princejaiswal03/DjangoProject
2482f93640651617262e76c84095d99c8ff57031
d761ade6c2c4081d4468c4f001bee2e37b067121
refs/heads/master
2020-04-13T12:32:12.879449
2018-12-26T18:01:15
2018-12-26T18:01:15
163,205,274
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from .models import ResumeParsing # Register your models here. admin.site.register(ResumeParsing)
UTF-8
Python
false
false
132
py
8
admin.py
4
0.825758
0.825758
0
5
25.4
34
cgMuro/State-of-Art
171,798,698,470
165a7dd2eff530583d9c86d5b9e3b3241901f31c
526cfe8a01e0f7ee0dbdecd835cb85094d58f985
/DALL•E/transformer/sparse_attention.py
1d65e8ac02b195779b59d9b9d160dbc64fd3027c
[]
no_license
https://github.com/cgMuro/State-of-Art
f0434088d1d687231649add6f1c1b6aa43c78497
fcd798262df704dea0438e88cb631376147579ea
refs/heads/master
2023-06-12T21:06:12.955302
2021-07-03T09:33:12
2021-07-03T09:33:12
345,404,445
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch import torch.nn as nn import numpy as np import einops class Attention(nn.Module): ''' A faster implementation of normal attention (the upper triangle is not computed, and many operations are fused) ''' def __init__( self, n_embeddings: int, # Embedding dimension of the input n_heads: int, # Number of heads head_dim: int = 64, # Number of dimensions for each head attention_mode: str = 'normal', # Type of attention (normal, strided, fixed) dropout: float = 0.5 # Dropout value ): super().__init__() self.n_heads = n_heads self.attention_mode = attention_mode self.scale = n_embeddings ** -0.5 inner_dim = head_dim * n_heads project_out = not (n_heads == 1 and head_dim == n_embeddings) # Check if we need to project the last vector # Define network to calculate query, value and key vectors self.to_qkv = nn.Linear(n_embeddings, inner_dim * 3, bias=False) # Define network to project the last vector, otherwise use the identity matrix self.to_out = nn.Sequential( nn.Linear(inner_dim, n_embeddings), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x: torch.Tensor): # Get input shape b, n, c = x.shape # Calculate query, key and value vectors qkv = self.to_qkv(x).chunk(3, dim=-1) # Reshape and decompose qkv to get query, key and value vectors individually q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> b h n d', h=self.n_heads), qkv) # Calculate the scores and normalize (dividing by the square root of head_dim) dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # Apply mask if required if self.attention_mode: # Get mask mask = get_attention_mask(n=x.size()[0], batch=x.size()[1], attention_mode='normal', local_attention_ctx=3) # Rearrange mask mask = einops.rearrange(mask, 'b j -> b () () j') # Fill the scores (the "dots" matrix) with the mask values dots.masked_fill_(mask == 0, float('-inf')) del mask # Softmax of the scores attention = dots.softmax(dim=-1) # Multiply the value vectors to the corresponding scores out = torch.einsum('b h i j, b h j d -> b h i d', attention, v) out = einops.rearrange(out, 'b h n d -> b n (h d)') # Project the output vector (if needed) out = self.to_out(out) return out def get_attention_mask(n: int, batch: int, attention_mode: str, local_attention_ctx: int = 32): ''' Generate 3 types of mask: normal, fixed, strided. Based on https://github.com/openai/sparse_attention/blob/c53f3bdbf6225be0582f0357072e82b13c69be7d/attention.py ''' if attention_mode == 'normal': b = torch.tril(torch.ones((n, batch)), diagonal=0) elif attention_mode == 'column': bandwith = local_attention_ctx ctx = min(n - 1, bandwith - 1) if ctx < 0: b = torch.tril(torch.ones((n, n)), diagonal=0) else: b = torch.tril(torch.ones((n, n)), diagonal=0) - torch.triu(torch.ones((n, n)), diagonal=-ctx) b.masked_fill_(b == 1, 2) b.masked_fill_(b == 0, 1) b.masked_fill_(b == -1, 0) b.masked_fill_(b == 2, 0) elif attention_mode == 'row': stride = local_attention_ctx x = torch.arange(n, dtype=torch.int32).view(n, 1) y = torch.transpose(x, 0, 1) z = torch.zeros([n, n], dtype=torch.int32) q = z + x k = z + y c1 = q >= k c2 = ((q - k) % stride) == 0 c3 = torch.logical_and(c1, c2) b = c3.type(torch.float32) # stride = local_attention_ctx # x = torch.arange(n, dtype=torch.int32).view(n, 1) # y = torch.arange(batch, dtype=torch.int32) # z = torch.zeros([batch, batch], dtype=torch.int32) # q = z + x # k = z + y # c1 = q >= k # c2 = ((q - k) % stride) == 0 # c3 = torch.logical_and(c1, c2) # b = c3.type(torch.float32) elif attention_mode == 'convolutional': raise ValueError('Convolutional attention mask not yet implemented') else: raise ValueError(f'{attention_mode} not yet implemented') # b = b.view([1, 1, n, n]) return b.type(torch.int)
UTF-8
Python
false
false
4,543
py
51
sparse_attention.py
43
0.564825
0.544794
0
114
38.850877
172
SCismycat/MagicPython
10,084,583,238,444
2ee39d23bf38dda11c39aadfc4e0938764bbc019
f4a7cdd5fc6e3e6c032ac98fc01f6201958e358b
/parallel_python/threading_sync/called_Process.py
1219777f52eef0088cf3dc7e49a89ec3d251b9fc
[]
no_license
https://github.com/SCismycat/MagicPython
7ef3d23f25cdcd01049eaa4da6af3e338abdbd2c
2bef5824aff30f56c6f4e5c7b4c326f062bb36ff
refs/heads/master
2020-12-06T10:48:07.788462
2020-07-27T16:41:28
2020-07-27T16:41:28
232,444,152
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2020/6/15 22:25 # @Author : Leslee print("Hi Python") input = input("Please Enter:") print("关闭线程")
UTF-8
Python
false
false
165
py
27
called_Process.py
25
0.592357
0.509554
0
8
18.625
30
jayleicn/TVRetrieval
5,738,076,322,830
8a012f8bf85371d25c003aca63111640441c92a9
098e9d4eed49a0e4573d67022d78e85fd6d2944a
/baselines/crossmodal_moment_localization/model_xml.py
a0c4b9dd670f6a8d299fc17da2a744418cf759ec
[ "MIT" ]
permissive
https://github.com/jayleicn/TVRetrieval
36db2714b7a0c16c5fdfc2a69dd213bdc41e0670
d99a9ea7e724249047d6357f2a607c7ae256f8c6
refs/heads/master
2022-09-16T05:26:28.845738
2022-08-20T22:13:18
2022-08-20T22:13:18
236,402,810
141
28
MIT
false
2021-06-22T23:18:00
2020-01-27T01:41:06
2021-06-22T03:33:35
2021-06-22T23:18:00
55,466
78
15
1
Python
false
false
import math import copy import torch import torch.nn as nn import torch.nn.functional as F from easydict import EasyDict as edict from baselines.crossmodal_moment_localization.model_components import \ BertAttention, PositionEncoding, LinearLayer, BertSelfAttention, TrainablePositionalEncoding, ConvEncoder from utils.model_utils import RNNEncoder base_bert_layer_config = dict( hidden_size=768, intermediate_size=768, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_attention_heads=4, ) xml_base_config = edict( merge_two_stream=True, # merge only the scores cross_att=True, # cross-attention for video and subtitles span_predictor_type="conv", encoder_type="transformer", # cnn, transformer, lstm, gru add_pe_rnn=False, # add positional encoding for RNNs, (LSTM and GRU) visual_input_size=2048, # changes based on visual input type query_input_size=768, sub_input_size=768, hidden_size=500, # conv_kernel_size=5, # conv kernel_size for st_ed predictor stack_conv_predictor_conv_kernel_sizes=-1, # Do not use conv_stride=1, # max_ctx_l=100, max_desc_l=30, input_drop=0.1, # dropout for input drop=0.1, # dropout for other layers n_heads=4, # self attention heads ctx_mode="video_sub", # which context are used. 'video', 'sub' or 'video_sub' margin=0.1, # margin for ranking loss ranking_loss_type="hinge", # loss type, 'hinge' or 'lse' lw_neg_q=1, # loss weight for neg. query and pos. context lw_neg_ctx=1, # loss weight for pos. query and neg. context lw_st_ed=1, # loss weight for st ed prediction use_hard_negative=False, # use hard negative at video level, we may change it during training. hard_pool_size=20, use_self_attention=True, no_modular=False, pe_type="none", # no positional encoding initializer_range=0.02, ) class XML(nn.Module): def __init__(self, config): super(XML, self).__init__() self.config = config # self.position_embeddings = PositionEncoding(n_filters=config.hidden_size, # max_len=config.max_position_embeddings, # pe_type=config.pe_type) self.query_pos_embed = TrainablePositionalEncoding( max_position_embeddings=config.max_desc_l, hidden_size=config.hidden_size, dropout=config.input_drop) self.ctx_pos_embed = TrainablePositionalEncoding( max_position_embeddings=config.max_ctx_l, hidden_size=config.hidden_size, dropout=config.input_drop) self.query_input_proj = LinearLayer(config.query_input_size, config.hidden_size, layer_norm=True, dropout=config.input_drop, relu=True) if config.encoder_type == "transformer": # self-att encoder self.query_encoder = BertAttention(edict( hidden_size=config.hidden_size, intermediate_size=config.hidden_size, hidden_dropout_prob=config.drop, attention_probs_dropout_prob=config.drop, num_attention_heads=config.n_heads, )) elif config.encoder_type == "cnn": self.query_encoder = ConvEncoder( kernel_size=5, n_filters=config.hidden_size, dropout=config.drop ) elif config.encoder_type in ["gru", "lstm"]: self.query_encoder = RNNEncoder( word_embedding_size=config.hidden_size, hidden_size=config.hidden_size // 2, bidirectional=True, n_layers=1, rnn_type=config.encoder_type, return_outputs=True, return_hidden=False ) conv_cfg = dict(in_channels=1, out_channels=1, kernel_size=config.conv_kernel_size, stride=config.conv_stride, padding=config.conv_kernel_size // 2, bias=False) cross_att_cfg = edict( hidden_size=config.hidden_size, num_attention_heads=config.n_heads, attention_probs_dropout_prob=config.drop ) self.use_video = "video" in config.ctx_mode if self.use_video: self.video_input_proj = LinearLayer(config.visual_input_size, config.hidden_size, layer_norm=True, dropout=config.input_drop, relu=True) self.video_encoder1 = copy.deepcopy(self.query_encoder) self.video_encoder2 = copy.deepcopy(self.query_encoder) if self.config.cross_att: self.video_cross_att = BertSelfAttention(cross_att_cfg) self.video_cross_layernorm = nn.LayerNorm(config.hidden_size) else: if self.config.encoder_type == "transformer": self.video_encoder3 = copy.deepcopy(self.query_encoder) self.video_query_linear = nn.Linear(config.hidden_size, config.hidden_size) if config.span_predictor_type == "conv": if not config.merge_two_stream: self.video_st_predictor = nn.Conv1d(**conv_cfg) self.video_ed_predictor = nn.Conv1d(**conv_cfg) elif config.span_predictor_type == "cat_linear": self.video_st_predictor = nn.ModuleList([nn.Linear(config.hidden_size, 1) for _ in range(2)]) self.video_ed_predictor = nn.ModuleList([nn.Linear(config.hidden_size, 1) for _ in range(2)]) self.use_sub = "sub" in config.ctx_mode if self.use_sub: self.sub_input_proj = LinearLayer(config.sub_input_size, config.hidden_size, layer_norm=True, dropout=config.input_drop, relu=True) self.sub_encoder1 = copy.deepcopy(self.query_encoder) self.sub_encoder2 = copy.deepcopy(self.query_encoder) if self.config.cross_att: self.sub_cross_att = BertSelfAttention(cross_att_cfg) self.sub_cross_layernorm = nn.LayerNorm(config.hidden_size) else: if self.config.encoder_type == "transformer": self.sub_encoder3 = copy.deepcopy(self.query_encoder) self.sub_query_linear = nn.Linear(config.hidden_size, config.hidden_size) if config.span_predictor_type == "conv": if not config.merge_two_stream: self.sub_st_predictor = nn.Conv1d(**conv_cfg) self.sub_ed_predictor = nn.Conv1d(**conv_cfg) elif config.span_predictor_type == "cat_linear": self.sub_st_predictor = nn.ModuleList([nn.Linear(config.hidden_size, 1) for _ in range(2)]) self.sub_ed_predictor = nn.ModuleList([nn.Linear(config.hidden_size, 1) for _ in range(2)]) self.modular_vector_mapping = nn.Linear(in_features=config.hidden_size, out_features=self.use_sub + self.use_video, bias=False) self.temporal_criterion = nn.CrossEntropyLoss(reduction="mean") if config.merge_two_stream and config.span_predictor_type == "conv": if self.config.stack_conv_predictor_conv_kernel_sizes == -1: self.merged_st_predictor = nn.Conv1d(**conv_cfg) self.merged_ed_predictor = nn.Conv1d(**conv_cfg) else: print("Will be using multiple Conv layers for prediction.") self.merged_st_predictors = nn.ModuleList() self.merged_ed_predictors = nn.ModuleList() num_convs = len(self.config.stack_conv_predictor_conv_kernel_sizes) for k in self.config.stack_conv_predictor_conv_kernel_sizes: conv_cfg = dict(in_channels=1, out_channels=1, kernel_size=k, stride=config.conv_stride, padding=k // 2, bias=False) self.merged_st_predictors.append(nn.Conv1d(**conv_cfg)) self.merged_ed_predictors.append(nn.Conv1d(**conv_cfg)) self.combine_st_conv = nn.Linear(num_convs, 1, bias=False) self.combine_ed_conv = nn.Linear(num_convs, 1, bias=False) self.reset_parameters() def reset_parameters(self): """ Initialize the weights.""" def re_init(module): if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): module.reset_parameters() if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() self.apply(re_init) def set_hard_negative(self, use_hard_negative, hard_pool_size): """use_hard_negative: bool; hard_pool_size: int, """ self.config.use_hard_negative = use_hard_negative self.config.hard_pool_size = hard_pool_size def set_train_st_ed(self, lw_st_ed): """pre-train video retrieval then span prediction""" self.config.lw_st_ed = lw_st_ed def forward(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, tef_feat, tef_mask, st_ed_indices): """ Args: query_feat: (N, Lq, Dq) query_mask: (N, Lq) video_feat: (N, Lv, Dv) or None video_mask: (N, Lv) or None sub_feat: (N, Lv, Ds) or None sub_mask: (N, Lv) or None tef_feat: (N, Lv, 2) or None, tef_mask: (N, Lv) or None, st_ed_indices: (N, 2), torch.LongTensor, 1st, 2nd columns are st, ed labels respectively. """ video_feat1, video_feat2, sub_feat1, sub_feat2 = \ self.encode_context(video_feat, video_mask, sub_feat, sub_mask) query_context_scores, st_prob, ed_prob = \ self.get_pred_from_raw_query(query_feat, query_mask, video_feat1, video_feat2, video_mask, sub_feat1, sub_feat2, sub_mask, cross=False) loss_st_ed = 0 if self.config.lw_st_ed != 0: loss_st = self.temporal_criterion(st_prob, st_ed_indices[:, 0]) loss_ed = self.temporal_criterion(ed_prob, st_ed_indices[:, 1]) loss_st_ed = loss_st + loss_ed loss_neg_ctx, loss_neg_q = 0, 0 if self.config.lw_neg_ctx != 0 or self.config.lw_neg_q != 0: loss_neg_ctx, loss_neg_q = self.get_video_level_loss(query_context_scores) loss_st_ed = self.config.lw_st_ed * loss_st_ed loss_neg_ctx = self.config.lw_neg_ctx * loss_neg_ctx loss_neg_q = self.config.lw_neg_q * loss_neg_q loss = loss_st_ed + loss_neg_ctx + loss_neg_q return loss, {"loss_st_ed": float(loss_st_ed), "loss_neg_ctx": float(loss_neg_ctx), "loss_neg_q": float(loss_neg_q), "loss_overall": float(loss)} def get_visualization_data(self, query_feat, query_mask, video_feat, video_mask, sub_feat, sub_mask, tef_feat, tef_mask, st_ed_indices): assert self.config.merge_two_stream and self.use_video and self.use_sub and not self.config.no_modular video_feat1, video_feat2, sub_feat1, sub_feat2 = \ self.encode_context(video_feat, video_mask, sub_feat, sub_mask) encoded_query = self.encode_input(query_feat, query_mask, self.query_input_proj, self.query_encoder, self.query_pos_embed) # (N, Lq, D) # (N, D), (N, D), (N, L, 2) video_query, sub_query, modular_att_scores = \ self.get_modularized_queries(encoded_query, query_mask, return_modular_att=True) # (N, L), (N, L), (N, L) st_prob, ed_prob, similarity_scores, video_similarity, sub_similarity = self.get_merged_st_ed_prob( video_query, video_feat2, sub_query, sub_feat2, video_mask, cross=False, return_similaity=True) # clean up invalid bits data = dict(modular_att_scores=modular_att_scores.cpu().numpy(), # (N, Lq, 2), row 0, 1 are video, sub. st_prob=st_prob.cpu().numpy(), # (N, L) ed_prob=ed_prob.cpu().numpy(), # (N, L) similarity_scores=similarity_scores.cpu().numpy(), # (N, L) video_similarity=video_similarity.cpu().numpy(), # (N, L) sub_similarity=sub_similarity.cpu().numpy(), # (N, L) st_ed_indices=st_ed_indices.cpu().numpy()) # (N, L) query_lengths = query_mask.sum(1).to(torch.long).cpu().tolist() # (N, ) ctx_lengths = video_mask.sum(1).to(torch.long).cpu().tolist() # (N, ) # print("query_lengths {}".format((type(query_lengths), len(query_lengths), query_lengths[:10]))) for k, v in data.items(): if k == "modular_att_scores": # print(k, v, v.shape, type(v)) data[k] = [e[:l] for l, e in zip(query_lengths, v)] # list(e) where e is (Lq_i, 2) else: data[k] = [e[:l] for l, e in zip(ctx_lengths, v)] # list(e) where e is (Lc_i) # aggregate info for each example datalist = [] for idx in range(len(data["modular_att_scores"])): datalist.append({k: v[idx] for k, v in data.items()}) return datalist # list(dicts) of length N def encode_query(self, query_feat, query_mask): encoded_query = self.encode_input(query_feat, query_mask, self.query_input_proj, self.query_encoder, self.query_pos_embed) # (N, Lq, D) video_query, sub_query = self.get_modularized_queries(encoded_query, query_mask) # (N, D) * 2 return video_query, sub_query def non_cross_encode_context(self, context_feat, context_mask, module_name="video"): encoder_layer3 = getattr(self, module_name + "_encoder3") \ if self.config.encoder_type == "transformer" else None return self._non_cross_encode_context(context_feat, context_mask, input_proj_layer=getattr(self, module_name + "_input_proj"), encoder_layer1=getattr(self, module_name + "_encoder1"), encoder_layer2=getattr(self, module_name + "_encoder2"), encoder_layer3=encoder_layer3) def _non_cross_encode_context(self, context_feat, context_mask, input_proj_layer, encoder_layer1, encoder_layer2, encoder_layer3=None): """ Args: context_feat: (N, L, D) context_mask: (N, L) input_proj_layer: encoder_layer1: encoder_layer2: encoder_layer3 """ context_feat1 = self.encode_input( context_feat, context_mask, input_proj_layer, encoder_layer1, self.ctx_pos_embed) # (N, L, D) if self.config.encoder_type in ["transformer", "cnn"]: context_mask = context_mask.unsqueeze(1) # (N, 1, L), torch.FloatTensor context_feat2 = encoder_layer2(context_feat1, context_mask) # (N, L, D) if self.config.encoder_type == "transformer": context_feat2 = encoder_layer3(context_feat2, context_mask) elif self.config.encoder_type in ["gru", "lstm"]: context_mask = context_mask.sum(1).long() # (N, ), torch.LongTensor context_feat2 = encoder_layer2(context_feat1, context_mask)[0] # (N, L, D) else: raise NotImplementedError return context_feat1, context_feat2 def encode_context(self, video_feat, video_mask, sub_feat, sub_mask): if self.config.cross_att: assert self.use_video and self.use_sub return self.cross_encode_context(video_feat, video_mask, sub_feat, sub_mask) else: video_feat1, video_feat2 = (None,) * 2 if self.use_video: video_feat1, video_feat2 = self.non_cross_encode_context(video_feat, video_mask, module_name="video") sub_feat1, sub_feat2 = (None,) * 2 if self.use_sub: sub_feat1, sub_feat2 = self.non_cross_encode_context(sub_feat, sub_mask, module_name="sub") return video_feat1, video_feat2, sub_feat1, sub_feat2 def cross_encode_context(self, video_feat, video_mask, sub_feat, sub_mask): encoded_video_feat = self.encode_input(video_feat, video_mask, self.video_input_proj, self.video_encoder1, self.ctx_pos_embed) encoded_sub_feat = self.encode_input(sub_feat, sub_mask, self.sub_input_proj, self.sub_encoder1, self.ctx_pos_embed) x_encoded_video_feat = self.cross_context_encoder( encoded_video_feat, video_mask, encoded_sub_feat, sub_mask, self.video_cross_att, self.video_cross_layernorm, self.video_encoder2) # (N, L, D) x_encoded_sub_feat = self.cross_context_encoder( encoded_sub_feat, sub_mask, encoded_video_feat, video_mask, self.sub_cross_att, self.sub_cross_layernorm, self.sub_encoder2) # (N, L, D) return encoded_video_feat, x_encoded_video_feat, encoded_sub_feat, x_encoded_sub_feat def cross_context_encoder(self, main_context_feat, main_context_mask, side_context_feat, side_context_mask, cross_att_layer, norm_layer, self_att_layer): """ Args: main_context_feat: (N, Lq, D) main_context_mask: (N, Lq) side_context_feat: (N, Lk, D) side_context_mask: (N, Lk) cross_att_layer: norm_layer: self_att_layer: """ cross_mask = torch.einsum("bm,bn->bmn", main_context_mask, side_context_mask) # (N, Lq, Lk) cross_out = cross_att_layer(main_context_feat, side_context_feat, side_context_feat, cross_mask) # (N, Lq, D) residual_out = norm_layer(cross_out + main_context_feat) if self.config.encoder_type in ["cnn", "transformer"]: return self_att_layer(residual_out, main_context_mask.unsqueeze(1)) elif self.config.encoder_type in ["gru", "lstm"]: return self_att_layer(residual_out, main_context_mask.sum(1).long())[0] def encode_input(self, feat, mask, input_proj_layer, encoder_layer, pos_embed_layer): """ Args: feat: (N, L, D_input), torch.float32 mask: (N, L), torch.float32, with 1 indicates valid query, 0 indicates mask input_proj_layer: down project input encoder_layer: encoder layer # add_pe: bool, whether to add positional encoding pos_embed_layer """ feat = input_proj_layer(feat) if self.config.encoder_type in ["cnn", "transformer"]: feat = pos_embed_layer(feat) mask = mask.unsqueeze(1) # (N, 1, L), torch.FloatTensor return encoder_layer(feat, mask) # (N, L, D_hidden) elif self.config.encoder_type in ["gru", "lstm"]: if self.config.add_pe_rnn: feat = pos_embed_layer(feat) mask = mask.sum(1).long() # (N, ), torch.LongTensor return encoder_layer(feat, mask)[0] # (N, L, D_hidden) def get_modularized_queries(self, encoded_query, query_mask, return_modular_att=False): """ Args: encoded_query: (N, L, D) query_mask: (N, L) return_modular_att: bool """ if self.config.no_modular: modular_query = torch.max(mask_logits(encoded_query, query_mask.unsqueeze(2)), dim=1)[0] # (N, D) return modular_query, modular_query # else: modular_attention_scores = self.modular_vector_mapping(encoded_query) # (N, L, 2 or 1) modular_attention_scores = F.softmax( mask_logits(modular_attention_scores, query_mask.unsqueeze(2)), dim=1) # TODO check whether it is the same modular_queries = torch.einsum("blm,bld->bmd", modular_attention_scores, encoded_query) # (N, 2 or 1, D) if return_modular_att: assert modular_queries.shape[1] == 2 return modular_queries[:, 0], modular_queries[:, 1], modular_attention_scores else: if modular_queries.shape[1] == 2: return modular_queries[:, 0], modular_queries[:, 1] # (N, D) * 2 else: # 1 return modular_queries[:, 0], modular_queries[:, 0] # the same def get_modular_weights(self, encoded_query, query_mask): """ Args: encoded_query: (N, L, D) query_mask: (N, L) """ max_encoded_query, _ = torch.max(mask_logits(encoded_query, query_mask.unsqueeze(2)), dim=1) # (N, D) modular_weights = self.modular_weights_calculator(max_encoded_query) # (N, 2) modular_weights = F.softmax(modular_weights, dim=-1) return modular_weights[:, 0:1], modular_weights[:, 1:2] # (N, 1) * 2 def get_video_level_scores(self, modularied_query, context_feat1, context_mask): """ Calculate video2query scores for each pair of video and query inside the batch. Args: modularied_query: (N, D) context_feat1: (N, L, D), output of the first transformer encoder layer context_mask: (N, L) Returns: context_query_scores: (N, N) score of each query w.r.t. each video inside the batch, diagonal positions are positive. used to get negative samples. """ modularied_query = F.normalize(modularied_query, dim=-1) context_feat1 = F.normalize(context_feat1, dim=-1) query_context_scores = torch.einsum("md,nld->mln", modularied_query, context_feat1) # (N, L, N) context_mask = context_mask.transpose(0, 1).unsqueeze(0) # (1, L, N) query_context_scores = mask_logits(query_context_scores, context_mask) # (N, L, N) query_context_scores, _ = torch.max(query_context_scores, dim=1) # (N, N) diagonal positions are positive pairs. return query_context_scores def get_merged_st_ed_prob(self, video_query, video_feat, sub_query, sub_feat, context_mask, cross=False, return_similaity=False): """context_mask could be either video_mask or sub_mask, since they are the same""" assert self.use_video and self.use_sub and self.config.span_predictor_type == "conv" video_query = self.video_query_linear(video_query) sub_query = self.sub_query_linear(sub_query) stack_conv = self.config.stack_conv_predictor_conv_kernel_sizes != -1 num_convs = len(self.config.stack_conv_predictor_conv_kernel_sizes) if stack_conv else None if cross: video_similarity = torch.einsum("md,nld->mnl", video_query, video_feat) sub_similarity = torch.einsum("md,nld->mnl", sub_query, sub_feat) similarity = (video_similarity + sub_similarity) / 2 # (Nq, Nv, L) from query to all videos. n_q, n_c, l = similarity.shape similarity = similarity.view(n_q * n_c, 1, l) if not stack_conv: st_prob = self.merged_st_predictor(similarity).view(n_q, n_c, l) # (Nq, Nv, L) ed_prob = self.merged_ed_predictor(similarity).view(n_q, n_c, l) # (Nq, Nv, L) else: st_prob_list = [] ed_prob_list = [] for idx in range(num_convs): st_prob_list.append(self.merged_st_predictors[idx](similarity).squeeze().unsqueeze(2)) ed_prob_list.append(self.merged_ed_predictors[idx](similarity).squeeze().unsqueeze(2)) # (Nq*Nv, L, 3) --> (Nq*Nv, L) -> (Nq, Nv, L) st_prob = self.combine_st_conv(torch.cat(st_prob_list, dim=2)).view(n_q, n_c, l) ed_prob = self.combine_ed_conv(torch.cat(ed_prob_list, dim=2)).view(n_q, n_c, l) else: video_similarity = torch.einsum("bd,bld->bl", video_query, video_feat) # (N, L) sub_similarity = torch.einsum("bd,bld->bl", sub_query, sub_feat) # (N, L) similarity = (video_similarity + sub_similarity) / 2 if not stack_conv: st_prob = self.merged_st_predictor(similarity.unsqueeze(1)).squeeze() # (N, L) ed_prob = self.merged_ed_predictor(similarity.unsqueeze(1)).squeeze() # (N, L) else: st_prob_list = [] ed_prob_list = [] for idx in range(num_convs): st_prob_list.append(self.merged_st_predictors[idx](similarity.unsqueeze(1)).squeeze().unsqueeze(2)) ed_prob_list.append(self.merged_ed_predictors[idx](similarity.unsqueeze(1)).squeeze().unsqueeze(2)) st_prob = self.combine_st_conv(torch.cat(st_prob_list, dim=2)).squeeze() # (N, L, 3) --> (N, L) ed_prob = self.combine_ed_conv(torch.cat(ed_prob_list, dim=2)).squeeze() # (N, L, 3) --> (N, L) st_prob = mask_logits(st_prob, context_mask) # (N, L) ed_prob = mask_logits(ed_prob, context_mask) if return_similaity: assert not cross return st_prob, ed_prob, similarity, video_similarity, sub_similarity else: return st_prob, ed_prob def get_st_ed_prob(self, modularied_query, context_feat2, context_mask, module_name="video", cross=False): return self._get_st_ed_prob(modularied_query, context_feat2, context_mask, module_query_linear=getattr(self, module_name + "_query_linear"), st_predictor=getattr(self, module_name + "_st_predictor"), ed_predictor=getattr(self, module_name + "_ed_predictor"), cross=cross) def _get_st_ed_prob(self, modularied_query, context_feat2, context_mask, module_query_linear, st_predictor, ed_predictor, cross=False): """ Args: modularied_query: (N, D) context_feat2: (N, L, D), output of the first transformer encoder layer context_mask: (N, L) module_query_linear: st_predictor: ed_predictor: cross: at inference, calculate prob for each possible pairs of query and context. """ query = module_query_linear(modularied_query) # (N, D) no need to normalize here. if cross: if self.config.span_predictor_type == "conv": similarity = torch.einsum("md,nld->mnl", query, context_feat2) # (Nq, Nv, L) from query to all videos. n_q, n_c, l = similarity.shape similarity = similarity.view(n_q * n_c, 1, l) st_prob = st_predictor(similarity).view(n_q, n_c, l) # (Nq, Nv, L) ed_prob = ed_predictor(similarity).view(n_q, n_c, l) # (Nq, Nv, L) elif self.config.span_predictor_type == "cat_linear": st_prob_q = st_predictor[0](query).unsqueeze(1) # (Nq, 1, 1) st_prob_ctx = st_predictor[1](context_feat2).squeeze().unsqueeze(0) # (1, Nv, L) st_prob = st_prob_q + st_prob_ctx # (Nq, Nv, L) ed_prob_q = ed_predictor[0](query).unsqueeze(1) # (Nq, 1, 1) ed_prob_ctx = ed_predictor[1](context_feat2).squeeze().unsqueeze(0) # (1, Nv, L) ed_prob = ed_prob_q + ed_prob_ctx # (Nq, Nv, L) context_mask = context_mask.unsqueeze(0) # (1, Nv, L) else: if self.config.span_predictor_type == "conv": similarity = torch.einsum("bd,bld->bl", query, context_feat2) # (N, L) st_prob = st_predictor(similarity.unsqueeze(1)).squeeze() # (N, L) ed_prob = ed_predictor(similarity.unsqueeze(1)).squeeze() # (N, L) elif self.config.span_predictor_type == "cat_linear": # avoid concatenation by break into smaller matrix multiplications. st_prob = st_predictor[0](query) + st_predictor[1](context_feat2).squeeze() # (N, L) ed_prob = ed_predictor[0](query) + ed_predictor[1](context_feat2).squeeze() # (N, L) st_prob = mask_logits(st_prob, context_mask) # (N, L) ed_prob = mask_logits(ed_prob, context_mask) return st_prob, ed_prob def get_pred_from_raw_query(self, query_feat, query_mask, video_feat1, video_feat2, video_mask, sub_feat1, sub_feat2, sub_mask, cross=False): """ Args: query_feat: (N, Lq, Dq) query_mask: (N, Lq) video_feat1: (N, Lv, D) or None video_feat2: video_mask: (N, Lv) sub_feat1: (N, Lv, D) or None sub_feat2: sub_mask: (N, Lv) cross: """ video_query, sub_query = self.encode_query(query_feat, query_mask) divisor = self.use_sub + self.use_video # get video-level retrieval scores video_q2ctx_scores = self.get_video_level_scores(video_query, video_feat1, video_mask) if self.use_video else 0 sub_q2ctx_scores = self.get_video_level_scores(sub_query, sub_feat1, sub_mask) if self.use_sub else 0 q2ctx_scores = (video_q2ctx_scores + sub_q2ctx_scores) / divisor # (N, N) if self.config.merge_two_stream and self.use_video and self.use_sub: st_prob, ed_prob = self.get_merged_st_ed_prob( video_query, video_feat2, sub_query, sub_feat2, video_mask, cross=cross) else: video_st_prob, video_ed_prob = self.get_st_ed_prob( video_query, video_feat2, video_mask, module_name="video", cross=cross) if self.use_video else (0, 0) sub_st_prob, sub_ed_prob = self.get_st_ed_prob( sub_query, sub_feat2, sub_mask, module_name="sub", cross=cross) if self.use_sub else (0, 0) st_prob = (video_st_prob + sub_st_prob) / divisor # (N, Lv) ed_prob = (video_ed_prob + sub_ed_prob) / divisor # (N, Lv) return q2ctx_scores, st_prob, ed_prob # un-normalized masked probabilities!!!!! def get_video_level_loss(self, query_context_scores): """ ranking loss between (pos. query + pos. video) and (pos. query + neg. video) or (neg. query + pos. video) Args: query_context_scores: (N, N), cosine similarity [-1, 1], Each row contains the scores between the query to each of the videos inside the batch. """ bsz = len(query_context_scores) diagonal_indices = torch.arange(bsz).to(query_context_scores.device) pos_scores = query_context_scores[diagonal_indices, diagonal_indices] # (N, ) query_context_scores_masked = copy.deepcopy(query_context_scores.data) # impossibly large for cosine similarity, the copy is created as modifying the original will cause error query_context_scores_masked[diagonal_indices, diagonal_indices] = 999 pos_query_neg_context_scores = self.get_neg_scores(query_context_scores, query_context_scores_masked) neg_query_pos_context_scores = self.get_neg_scores(query_context_scores.transpose(0, 1), query_context_scores_masked.transpose(0, 1)) loss_neg_ctx = self.get_ranking_loss(pos_scores, pos_query_neg_context_scores) loss_neg_q = self.get_ranking_loss(pos_scores, neg_query_pos_context_scores) return loss_neg_ctx, loss_neg_q def get_neg_scores(self, scores, scores_masked): """ scores: (N, N), cosine similarity [-1, 1], Each row are scores: query --> all videos. Transposed version: video --> all queries. scores_masked: (N, N) the same as scores, except that the diagonal (positive) positions are masked with a large value. """ bsz = len(scores) batch_indices = torch.arange(bsz).to(scores.device) _, sorted_scores_indices = torch.sort(scores_masked, descending=True, dim=1) sample_min_idx = 1 # skip the masked positive sample_max_idx = min(sample_min_idx + self.config.hard_pool_size, bsz) \ if self.config.use_hard_negative else bsz sampled_neg_score_indices = sorted_scores_indices[ batch_indices, torch.randint(sample_min_idx, sample_max_idx, size=(bsz,)).to(scores.device)] # (N, ) sampled_neg_scores = scores[batch_indices, sampled_neg_score_indices] # (N, ) return sampled_neg_scores def get_ranking_loss(self, pos_score, neg_score): """ Note here we encourage positive scores to be larger than negative scores. Args: pos_score: (N, ), torch.float32 neg_score: (N, ), torch.float32 """ if self.config.ranking_loss_type == "hinge": # max(0, m + S_neg - S_pos) return torch.clamp(self.config.margin + neg_score - pos_score, min=0).sum() / len(pos_score) elif self.config.ranking_loss_type == "lse": # log[1 + exp(S_neg - S_pos)] return torch.log1p(torch.exp(neg_score - pos_score)).sum() / len(pos_score) else: raise NotImplementedError("Only support 'hinge' and 'lse'") def mask_logits(target, mask): return target * mask + (1 - mask) * (-1e10)
UTF-8
Python
false
false
35,047
py
74
model_xml.py
59
0.56293
0.553371
0
641
53.675507
120
zzjlogin/mydoc
14,654,428,431,666
6b2d4da667b54d758a8574d359ce4e7aefeeef2b
a1a0d4ea9cd8d84b9e85fff3f56ae3ec605cf4a6
/source/demo/argparse/class/07-formatter_class.py
7776852d85ca9e0463f40cdd54fc23db5364a5ac
[]
no_license
https://github.com/zzjlogin/mydoc
20007b85a44950d07530c18011b4108af83e3c7a
abe0b08c3b6acf8508152f80ab07915441ab3aab
refs/heads/master
2023-06-04T07:31:09.812638
2021-06-19T19:15:41
2021-06-19T19:15:41
146,100,219
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse parser = argparse.ArgumentParser( prog="test", description="测试formatter_class", epilog="这里是epilog信息", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--foo', type=int, default=42, help='FOO!') parser.add_argument('bar', nargs='*', default=[1, 2, 3], help='BAR!') print("\n默认(argparse.ArgumentDefaultsHelpFormatter)的格式化输出\n") parser.print_help() parser.formatter_class=argparse.RawDescriptionHelpFormatter print("\n(argparse.RawDescriptionHelpFormatter¶)的格式化输出\n") parser.print_help() parser.formatter_class=argparse.RawTextHelpFormatter print("\n(argparse.RawTextHelpFormatter)的格式化输出\n") parser.print_help()
UTF-8
Python
false
false
737
py
568
07-formatter_class.py
29
0.760997
0.753666
0
22
29.909091
69
Ledeor/ISU-2-CIM-Converter
16,501,264,352,710
45426971c7f195e120223dffea1ef98fe55da250
faf1b94fc64b6b58ada9de2a7353b5c9c19bc53c
/cimLocation.py
b40c110b13cdf13ef2667dedca5ee7386f48726b
[]
no_license
https://github.com/Ledeor/ISU-2-CIM-Converter
1b9963955a10c91b5255f60a4148cd71dc2e63dc
bf693040d347579aa7b1c9e9dc2160efb78ccb14
refs/heads/master
2021-01-17T13:18:58.808582
2016-06-21T12:19:13
2016-06-21T12:19:13
59,199,157
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#------------------------------------------------------------------------------- # Name: module2 # Purpose: # # Author: roddi # # Created: 17.03.2016 # Copyright: (c) roddi 2016 # Licence: <your licence> #------------------------------------------------------------------------------- import sys #sys.path.append('./DOM') import cimIdentifiedObject import serialization class TownDetail: def __init__(self, name, code, stateOrProvince): self.name = name self.code = code self.stateOrProvince = stateOrProvince class StreetDetail: def __init__(self, name, number): self.name = name self.number = number class StreetAddress: def __init__(self, streetName, streetNr, townName, townCode, state): self.streetDetail = StreetDetail(streetName, streetNr) self.townDetail = TownDetail(townName, townCode, state) class Location(cimIdentifiedObject.IdentifiedObject): def __init__(self, mRID): cimIdentifiedObject.IdentifiedObject.__init__(self, mRID) self.mainAddress = StreetAddress("", "", "", "", "") self.secondaryAddress = "" def setMainAddress(self, streetName, streetNr, townName, townCode, stateOrProvince): self.mainAddress.streetDetail.name = serialization.serialEncode(streetName) self.mainAddress.streetDetail.number = serialization.serialEncode(streetNr) self.mainAddress.townDetail.name = serialization.serialEncode(townName) self.mainAddress.townDetail.code = serialization.serialEncode(townCode) self.mainAddress.townDetail.stateOrProvince = serialization.serialEncode(stateOrProvince) def setSecondaryAddress(self, sAddr): self.secondaryAddress = serialization.serialEncode(sAddr) def getMainAddress(self): mAddrL = [] mAddrL.append(self.mainAddress.streetDetail.name) mAddrL.append(self.mainAddress.streetDetail.number) mAddrL.append(self.mainAddress.townDetail.name) mAddrL.append(self.mainAddress.townDetail.code) mAddrL.append(self.mainAddress.townDetail.stateOrProvince) return mAddrL def serialize(self): sContent = cimIdentifiedObject.IdentifiedObject.serialize(self) sMainAddress = serialization.serialIndent + serialization.serialIndent + "<cim:Location.mainAddress>" sMainAddress = sMainAddress + ",".join(self.getMainAddress()) sMainAddress = sMainAddress + "</cim:Location.mainAddress>" + '\n' return sContent + sMainAddress
UTF-8
Python
false
false
2,597
py
15
cimLocation.py
14
0.640354
0.635348
0
65
37.984615
109
KB-perByte/CodePedia
16,192,026,752,663
bd335dd5e4d6a0878772f99c25037e64f2b2762b
89d230ad44d17b18897da507725b0a10c32960d8
/Gen2_0_PP/Assignment/leetcode_combinationSumIII.py
ee799f729513789eb1e3df5026cd4a5a306b41af
[]
no_license
https://github.com/KB-perByte/CodePedia
aeeae87b56cf0ff6e02200cfd6b34da42a007338
287e7a3ce981bbf594436cdc06dde23a02b53bb0
refs/heads/master
2021-06-19T07:32:53.849871
2021-01-23T16:17:27
2021-01-23T16:17:27
163,250,017
0
1
null
false
2020-03-21T14:39:36
2018-12-27T05:13:55
2020-03-21T14:39:13
2020-03-21T14:39:34
119
0
0
2
JavaScript
false
false
class Solution: def __init__(self): self.answer = set() def helper(self,k,n,ans=set()): if n<0 or k<0: return elif n==0 and k==0: self.answer.add(tuple(sorted(list(ans)))) return elif n==0 and k>0: return for i in range(1,10): if i not in ans and n>=i and k>0: self.helper(k-1,n-i,ans|{i}) def combinationSum3(self, k: int, n: int) -> List[List[int]]: self.helper(k,n) return self.answer
UTF-8
Python
false
false
519
py
435
leetcode_combinationSumIII.py
419
0.499037
0.475915
0
16
31.5
65
google/clusterfuzz
8,598,524,543,103
6e39e310d65e86955105d84791c61dddb2e81c80
3afe7348e830a0c5139fb7cf393736e18b59ab4a
/src/clusterfuzz/_internal/bot/tasks/task_creation.py
83a2a88710604c699acae0d0d0aedc3c31c66490
[ "Apache-2.0" ]
permissive
https://github.com/google/clusterfuzz
00845899e081dbbb89b70a75ce0b7eba3da73b02
6501a839b27a264500244f32bace8bee4d5cb9a2
refs/heads/master
2023-09-03T17:34:17.821599
2023-09-01T16:11:51
2023-09-01T16:11:51
168,060,021
5,420
639
Apache-2.0
false
2023-09-13T16:40:54
2019-01-29T00:19:40
2023-09-13T14:30:24
2023-09-13T16:40:53
95,720
5,077
538
258
Python
false
false
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common functions for task creation for test cases.""" from clusterfuzz._internal.base import bisection from clusterfuzz._internal.base import tasks from clusterfuzz._internal.base import utils from clusterfuzz._internal.build_management import build_manager from clusterfuzz._internal.datastore import data_handler from clusterfuzz._internal.datastore import data_types from clusterfuzz._internal.metrics import logs from clusterfuzz._internal.system import environment def mark_unreproducible_if_flaky(testcase, potentially_flaky): """Check to see if a test case appears to be flaky.""" task_name = environment.get_value('TASK_NAME') # If this run does not suggest that we are flaky, clear the flag and assume # that we are reproducible. if not potentially_flaky: testcase.set_metadata('potentially_flaky', False) return # If we have not been marked as potentially flaky in the past, don't mark # mark the test case as unreproducible yet. It is now potentially flaky. if not testcase.get_metadata('potentially_flaky'): testcase.set_metadata('potentially_flaky', True) # In this case, the current task will usually be in a state where it cannot # be completed. Recreate it. tasks.add_task(task_name, testcase.key.id(), testcase.job_type) return # At this point, this test case has been flagged as potentially flaky twice. # It should be marked as unreproducible. Mark it as unreproducible, and set # fields that cannot be populated accordingly. if task_name == 'minimize' and not testcase.minimized_keys: testcase.minimized_keys = 'NA' if task_name in ['minimize', 'impact']: testcase.set_impacts_as_na() if task_name in ['minimize', 'regression']: testcase.regression = 'NA' if task_name in ['minimize', 'progression']: testcase.fixed = 'NA' testcase.one_time_crasher_flag = True data_handler.update_testcase_comment(testcase, data_types.TaskState.ERROR, 'Testcase appears to be flaky') # Issue update to flip reproducibility label is done in App Engine cleanup # cron. This avoids calling the issue tracker apis from GCE. # For unreproducible testcases, it is still beneficial to get component # information from blame task. create_blame_task_if_needed(testcase) # Let bisection service know about flakiness. bisection.request_bisection(testcase) def create_blame_task_if_needed(testcase): """Creates a blame task if needed.""" # Blame doesn't work for non-chromium projects. if not utils.is_chromium(): return # Blame is only applicable to chromium project, otherwise bail out. if testcase.project_name != 'chromium': return # We cannot run blame job for custom binaries since we don't have any context # on the crash revision and regression range. if build_manager.is_custom_binary(): return # Don't send duplicate issues to Predator. This causes issues with metrics # tracking and wastes cycles. if testcase.status == 'Duplicate': return create_task = False if testcase.one_time_crasher_flag: # For unreproducible testcases, it is still beneficial to get component # information from blame task. create_task = True else: # Reproducible testcase. # Step 1: Check if the regression task finished. If not, bail out. if not testcase.regression: return # Step 2: Check if the symbolize task is applicable and finished. If not, # bail out. if build_manager.has_symbolized_builds() and not testcase.symbolized: return create_task = True if create_task: tasks.add_task('blame', testcase.key.id(), testcase.job_type) def create_impact_task_if_needed(testcase): """Creates an impact task if needed.""" # Impact doesn't make sense for non-chromium projects. if not utils.is_chromium(): return # Impact is only applicable to chromium project, otherwise bail out. if testcase.project_name != 'chromium': return # We cannot run impact job for custom binaries since we don't have any # archived production builds for these. if build_manager.is_custom_binary(): return tasks.add_task('impact', testcase.key.id(), testcase.job_type) def create_minimize_task_if_needed(testcase): """Creates a minimize task if needed.""" tasks.add_task('minimize', testcase.key.id(), testcase.job_type) def create_regression_task_if_needed(testcase): """Creates a regression task if needed.""" # We cannot run regression job for custom binaries since we don't have any # archived builds for previous revisions. We only track the last uploaded # custom build. if build_manager.is_custom_binary(): return tasks.add_task('regression', testcase.key.id(), testcase.job_type) def create_variant_tasks_if_needed(testcase): """Creates a variant task if needed.""" if testcase.duplicate_of: # If another testcase exists with same params, no need to spend cycles on # calculating variants again. return testcase_id = testcase.key.id() project = data_handler.get_project_name(testcase.job_type) jobs = data_types.Job.query(data_types.Job.project == project) testcase_job_is_engine = environment.is_engine_fuzzer_job(testcase.job_type) testcase_job_app_name = None if not testcase_job_is_engine: testcase_job = ( data_types.Job.query(data_types.Job.name == testcase.job_type).get()) testcase_job_environment = testcase_job.get_environment() testcase_job_app_name = testcase_job_environment.get('APP_NAME') num_variant_tasks = 0 for job in jobs: # The variant needs to be tested in a different job type than us. job_type = job.name if testcase.job_type == job_type: continue # Don't try to reproduce engine fuzzer testcase with blackbox fuzzer # testcases and vice versa. if testcase_job_is_engine != environment.is_engine_fuzzer_job(job_type): continue # Skip experimental jobs. job_environment = job.get_environment() if utils.string_is_true(job_environment.get('EXPERIMENTAL')): continue # Skip jobs for which variant tasks are disabled. if utils.string_is_true(job_environment.get('DISABLE_VARIANT')): continue if (not testcase_job_is_engine and job_environment.get('APP_NAME') != testcase_job_app_name): continue queue = tasks.queue_for_platform(job.platform) tasks.add_task('variant', testcase_id, job_type, queue) variant = data_handler.get_or_create_testcase_variant(testcase_id, job_type) variant.status = data_types.TestcaseVariantStatus.PENDING variant.put() num_variant_tasks += 1 logs.log(f'Number of variant tasks: {num_variant_tasks}.') def create_symbolize_task_if_needed(testcase): """Creates a symbolize task if needed.""" # We cannot run symbolize job for custom binaries since we don't have any # archived symbolized builds. if build_manager.is_custom_binary(): return # Make sure we have atleast one symbolized url pattern defined in job type. if not build_manager.has_symbolized_builds(): return tasks.add_task('symbolize', testcase.key.id(), testcase.job_type) def create_tasks(testcase): """Create tasks like minimization, regression, impact, progression, stack stack for a newly generated testcase.""" # No need to create progression task. It is automatically created by the cron # handler for reproducible testcases. # For a non reproducible crash. if testcase.one_time_crasher_flag: # For unreproducible testcases, it is still beneficial to get component # information from blame task. create_blame_task_if_needed(testcase) return # For a fully reproducible crash. # MIN environment variable defined in a job definition indicates if # we want to do the heavy weight tasks like minimization, regression, # impact, etc on this testcase. These are usually skipped when we have # a large timeout and we can't afford to waste more than a couple of hours # on these jobs. testcase_id = testcase.key.id() if environment.get_value('MIN') == 'No': testcase = data_handler.get_testcase_by_id(testcase_id) testcase.minimized_keys = 'NA' testcase.regression = 'NA' testcase.set_impacts_as_na() testcase.put() return # Just create the minimize task for now. Once minimization is complete, it # automatically created the rest of the needed tasks. create_minimize_task_if_needed(testcase)
UTF-8
Python
false
false
9,027
py
984
task_creation.py
510
0.723607
0.722278
0
245
35.844898
80
chung1905/skynet-chatbot
15,195,594,313,800
7b7fda16f1d5259f710c135a5579181a6e3348f1
15d0b30acfce59191ddd0006449d70f0b7e77470
/browsers/phantomjs.py
5fdde598fd84b7fbdcff1f91169426737e3bf6fc
[ "MIT" ]
permissive
https://github.com/chung1905/skynet-chatbot
700db890bf31c0260d48474328b2d0e5d830163e
932a45f81f1bb78a49d1c968d325319fd3c4cc73
refs/heads/master
2022-08-08T23:00:58.800298
2020-04-17T11:09:10
2020-04-17T11:09:10
256,136,980
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from selenium import webdriver from os import path def get_browser(system: str, root_dir: str) -> webdriver.Firefox: executable_path = path.abspath(root_dir + '/browsers/phantomjs/' + system + '/bin/phantomjs') return webdriver.PhantomJS(executable_path=executable_path)
UTF-8
Python
false
false
281
py
9
phantomjs.py
7
0.747331
0.747331
0
7
39.142857
97
lderazo1/social_distancing
111,669,169,437
92cdfdb8373d9f4babf0cb102bb017caded40820
9f60ec08a351b9b91117c2f7db220bc35c8bf715
/variables_globales.py
4fde2269dc1f58e1a000df6de83c81de8c64163b
[]
no_license
https://github.com/lderazo1/social_distancing
07949dd32dc6441aa99fae9fbc6f158bb2a746b8
2a08e1b537ffdb3f408cc1759319d199d76cec10
refs/heads/master
2023-06-01T03:42:13.058619
2021-06-29T16:47:00
2021-06-29T16:47:00
381,424,817
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
DISTANCIA = 150 #Distancia segura #CARGA YOLO V3 YOLOV3_NOMBRES = './yolov3_library/coco.names' YOLOV3_CONFIGURACIONES = './yolov3_library/yolov3.cfg' YOLOV3_PESOS = './yolov3_library/yolov3.weights' #VIDEOS Y SALIDAS VIDEO_PRUEBA = './videos_prueba/video5.mp4' SALIDA = './procesado/resultado5.avi'
UTF-8
Python
false
false
299
py
4
variables_globales.py
2
0.759197
0.70903
0
8
36.5
54
cormackikkert/competitive-programming
7,069,516,191,075
d86c1c3fdb542e5aefc2198f708eeb05b272296f
ce6fc44470dcb5fca78cdd3349a7be70d75f2e3a
/AtCoder/Beginner 150/C.py
e2d9b1e6622e0ce3f06c34b266df79f54e57df6e
[]
no_license
https://github.com/cormackikkert/competitive-programming
f3fa287fcb74248ba218ecd763f8f6df31d57424
3a1200b8ff9b6941c422371961a127d7be8f2e00
refs/heads/master
2022-12-17T02:02:40.892608
2020-09-20T11:47:15
2020-09-20T11:47:15
266,775,265
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
N = int(input()) P1 = tuple(map(int, input().split())) P2 = tuple(map(int, input().split())) import itertools a = 0 b = 0 for perm in itertools.permutations([i+1 for i in range(N)]): if perm <= P1: a += 1 if perm <= P2: b += 1 print(abs(b - a))
UTF-8
Python
false
false
269
py
867
C.py
775
0.550186
0.516729
0
13
19.769231
60
CapaFenLisesi/KrauthCourse
6,854,767,815,157
26d055de1ded928f92900cd53129cea49aa7ac09
a246c42ec6a57b06c3b9aee9021fbc3565c4ef01
/hw_5/A2.py
e736759e7b093687668ed9f82a857baf0b5d4fca
[]
no_license
https://github.com/CapaFenLisesi/KrauthCourse
478f961657482c5647d8a5dbcc3f4b7a642dffc9
83f9cabb2bd69d46dc876a7f6d7eb5af22946c4a
refs/heads/master
2021-01-22T10:46:53.124079
2016-04-23T18:05:08
2016-04-23T18:05:08
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random, math,pylab import numpy as np def psi_n_square(x, n): if n == -1: return 0.0 else: psi = [math.exp(-x ** 2 / 2.0) / math.pi ** 0.25] psi.append(math.sqrt(2.0) * x * psi[0]) for k in range(2, n + 1): psi.append(math.sqrt(2.0 / k) * x * psi[k - 1] - math.sqrt((k - 1.0) / k) * psi[k - 2]) return psi[n] ** 2 beta=5.0 locations=[] ns=[] x = 0.0001 delta = 0.5 n=1 for k in range(100000): x_new = x + random.uniform(-delta, delta) if random.uniform(0.0, 1.0) < \ psi_n_square(x_new,n)/psi_n_square(x,n): x = x_new n_new=n + random.choice([-1,1]) if n_new >=0 and random.uniform(0.0,1.0) < psi_n_square(x,n_new)/psi_n_square(x,n)*np.exp(-beta*(n_new-n)): n=n_new locations.append(x) ns.append(n) xrange=np.arange(-10,10,.1) pylab.hist(locations,normed=True,label='Histogram') pylab.plot(xrange, np.sqrt(np.tanh(beta/2) / np.pi)*np.exp( - xrange**2 * np.tanh(beta/2) ),label='pi_quant') pylab.plot(xrange, np.sqrt(beta/2/ np.pi)*np.exp( - beta * xrange**2/2 ),label='pi_class') pylab.xlabel('x') pylab.ylabel('Probability') pylab.title('Probability to be at location x for beta='+str(beta)) pylab.legend() pylab.show()
UTF-8
Python
false
false
1,298
py
2
A2.py
2
0.55624
0.510786
0
46
27.195652
111
monk-ee/NHDH
8,349,416,428,559
2268ead62fc3055eef95fa9ee8105fc13f8c469a
8386d45a367d0ba5d330e036a13833973fc260b2
/NHDH/modules/py_email.py
ae5081c7359f7db3df60c1428f2bd86891a1d8a5
[ "Apache-2.0" ]
permissive
https://github.com/monk-ee/NHDH
dbee24c6225519a02719d4aa229886760bc5b558
93c449bf3135386ecdd7e4ba719446460f54e32c
refs/heads/master
2021-01-23T13:32:00.024644
2014-06-27T05:35:35
2014-06-27T05:35:35
14,386,258
3
2
null
false
2014-08-21T05:50:30
2013-11-14T05:39:38
2014-06-27T00:31:02
2014-06-27T05:35:37
29,448
1
2
4
JavaScript
null
null
import smtplib from NHDH import app from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText def py_email(SUBJECT, BODY): """With this function we send out our html email""" for recipient in app.config['CONFIG']['recipients']: # Create message container - the correct MIME type is multipart/alternative here! MESSAGE = MIMEMultipart('alternative') MESSAGE['subject'] = SUBJECT MESSAGE['To'] = recipient['address'] MESSAGE['From'] = str(app.config['CONFIG']['smtp']['sender_address']) MESSAGE.preamble = """ Your mail reader does not support the report format. Please visit us <a href="http://www.mysite.com">online</a>!""" # Record the MIME type text/html. HTML_BODY = MIMEText(BODY, 'html') # Attach parts into message container. # According to RFC 2046, the last part of a multipart message, in this case # the HTML message, is best and preferred. MESSAGE.attach(HTML_BODY) # The actual sending of the e-mail server = smtplib.SMTP(app.config['CONFIG']['smtp']['server']+':'+app.config['CONFIG']['smtp']['port']) # Print debugging output when testing if __name__ == "__main__": server.set_debuglevel(1) server.starttls() server.login(app.config['CONFIG']['smtp']['user'],app.config['CONFIG']['smtp']['password']) server.sendmail(str(app.config['CONFIG']['smtp']['sender_address']), [recipient['address']], MESSAGE.as_string()) server.quit()
UTF-8
Python
false
false
1,576
py
29
py_email.py
17
0.631345
0.628173
0
38
40.5
121
zhencliu/turtle
17,291,538,350,332
c6e6d8d0e54e3e7c75e405593564901d50eae972
0a6b3ccafcafa517c3505d46c45adc3cb5e5511d
/arithmetic/expression.py
6ac69024ed124c5c3c64ac885b66c6999e82903b
[]
no_license
https://github.com/zhencliu/turtle
3fba0d4e1bf879c21f820cd8d766964422d0bc86
6142566a5967be17b616b3db153136b4b521b814
refs/heads/master
2020-09-23T01:01:07.141612
2019-12-02T11:40:51
2019-12-12T06:29:52
225,360,867
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random class Expression(object): def __init__(self, min, max, operators): self._min = min self._max = max self._operators = operators.split() self.expr = None self.result = None def gen_expr(self): x, y = random.sample(range(self._min, self._max), 2) oper = random.choice(self._operators) expr = '{x} {oper} {y}' result = eval(expr.format(x=x, oper=oper, y=y)) (x, y) = (y, x) if result < 0 else (x, y) print(x, y) self.expr = expr.format(x=' '.join([s for s in str(x)]), oper=oper, y=' '.join([s for s in str(y)])).split() self.expr.append('=') self.expr.append('?') print(self.expr) self.result = result if result > 0 else -result if __name__ == '__main__': arith = Expression(0, 20, '- +') arith.gen_expr() print(self.expr) print(self.result)
UTF-8
Python
false
false
977
py
5
expression.py
3
0.495394
0.489253
0
33
28.575758
72
JoshAddington/blog
14,577,119,030,839
5876120a7e2151b1d4cef2d694af4767eea4dd90
f60a837fd5f57f211088b120158c2fe04c314deb
/mysite/citibike/tasks.py
99b25d0105e7710ad209785ce6c030a7a593cca4
[]
no_license
https://github.com/JoshAddington/blog
a66acb000acf62f53d65373c2c3260d9e3dfeafa
aaa5211f8da339cee0d07b091d275f8a2fdeeb35
refs/heads/master
2021-01-21T18:11:52.880115
2015-10-28T12:47:08
2015-10-28T12:47:08
33,373,280
0
0
null
false
2015-10-28T12:47:08
2015-04-03T17:01:02
2015-10-14T00:07:16
2015-10-28T12:47:08
5,076
1
0
0
HTML
null
null
from celery.task.schedules import crontab from celery.decorators import periodic_task from celery.utils.log import get_task_logger from datetime import datetime from .models import TaskHistory from .utils import scrape_citibike_json logger = get_task_logger(__name__) # schedule scraper to run every ten minutes @periodic_task(run_every=(crontab(minute="*/10")), ignore_result=True) def scrape(): logger.info("Start Citibike Scrape") now = datetime.now() date_now = now.strftime("%d-%m-%Y %H:%M:%S") result = scrape_citibike_json.scrape_json() name = "citibike_scraper" taskhistory = TaskHistory.objects.get_or_create(name=name)[0] taskhistory.history.update({date_now: result}) taskhistory.save() logger.info("Task finished: result= %s" % result)
UTF-8
Python
false
false
787
py
39
tasks.py
26
0.72554
0.721728
0
22
34.772727
70
saiprakash1916/python-practice
15,358,803,054,962
6cb4b36517073c49d537cfb27989e38ee166ee68
16764e6bc4ef3262d681e5f9aeec4aab38a2ed67
/assignment 4.py
3b7200a279fd3679b543e37fea7142e32426686d
[]
no_license
https://github.com/saiprakash1916/python-practice
9877d584cfb01052a5c0e5340d8cc49acff6f0ed
560c1d382d9bbaab46c12fa3c36fdeab2bf6eae0
refs/heads/master
2023-03-19T13:56:09.731518
2021-03-17T01:21:21
2021-03-17T01:21:21
348,541,516
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Write a Python program in which a student enters the number of college credits earned. If the number of credits is greater than 90, 'Senior Status' is displayed; if greater than 60, 'Junior Status' is displayed; if greater than 30, 'Sophomore Status' is displayed; else, 'Freshman Status' is displayed.""" credits = int(input("Enter the credits: ")) if (credits>=90): print("Senior status") elif (credits>=60): print("Junior status") elif (credits>=30): print("Sophomore status") else: print("Freshman status")
UTF-8
Python
false
false
529
py
50
assignment 4.py
49
0.720227
0.697543
0
13
39.769231
92
lkry95/Black-Jack
14,121,852,511,374
04f8bdf784c1d1e7322a0dd153beb21780860841
ede66c9dac612c84efe006efbd270f4aea6dfe86
/black_jack_game.py
1f8eec199014f7d4f15c25232dff33769c50aecf
[]
no_license
https://github.com/lkry95/Black-Jack
99d0366a88ada05c7744b1c90dd10bbe621a37f2
8e0f41b92de61e25be7bdcccd6a4d7de668dd250
refs/heads/main
2023-02-21T06:48:29.370875
2020-12-30T17:44:14
2020-12-30T17:44:14
317,320,329
0
4
null
false
2020-12-03T20:05:19
2020-11-30T19:08:47
2020-12-02T14:31:44
2020-12-03T20:05:19
3
0
1
0
Python
false
false
import black_jack def create_deck(): deck_of_cards = black_jack.Deck() shuffled_cards = deck_of_cards.deck_cards() return shuffled_cards def gameplay(): deck = create_deck() deal_cards = black_jack.Deal(deck) dealing_cards = deal_cards.deal_cards(deck) player_hand = dealing_cards[1] dealer_hand = dealing_cards[0] deck = dealing_cards[2] calculation = black_jack.Calculation() player_points = calculation.point_calc(player_hand) dealer_points = calculation.point_calc(dealer_hand) print("This is your hand: ") print(player_hand) print(f'Your points are: {player_points}') print(f"These are the dealer's cards: {dealer_hand[0]} and another hidden card") game_continue = True if player_points == 21: print("You got really lucky! You win!") game_continue = False while game_continue: hit_or_stay = input('Do you want to hit(h) or stay(s)? ') print(f"These are the dealer's cards: {dealer_hand[0]} and another hidden card") if hit_or_stay == 'h': player = black_jack.Player() player_hit = player.player_hit(player_hand, deck) # print(player_hit) player_points = player_hit[0] print("This is your hand: ") print(player_hand) print(f'Your points are: {player_points}') if player_points == 21: print("You win!") print(f'This is the dealer hand {dealer_hand}') print(f'Dealer points are: {dealer_points}') game_continue = False elif player_points > 21: print("You lose!") print(f'This is the dealer hand {dealer_hand}') print(f'Dealer points are: {dealer_points}') game_continue = False elif hit_or_stay == 's': dealer = black_jack.Dealer() dealer_hit = dealer.dealer_hit(dealer_hand, deck) dealer_points = dealer_hit[0] print(f'Your points are: {player_points}') print(f'This is the dealer hand {dealer_hand}') print(f'Dealer points are: {dealer_points}') if player_points > dealer_points: print('You win!') game_continue = False elif dealer_points > 21: print('You win!') game_continue = False elif dealer_points > player_points: print("You lose!") game_continue = False else: print('The house always wins!') game_continue = False def game_loop(): play_again = True while play_again: gameplay() yes_or_no = input("Would you like to play again? ") if yes_or_no == 'n': play_again = False game_loop()
UTF-8
Python
false
false
2,870
py
7
black_jack_game.py
3
0.553659
0.548432
0
87
31.988506
89
VTantillo/tech_kings3
7,318,624,290,992
edb8129cac95cb9b0aaf5e6de12dc89245304f6c
b231404e355f85b9dbdb9299e8307bc0d012ec17
/tbms/src/sub_workshop/ws_manager.py
fa3bf49c59a6dab6ba535b27df5168c1616d7f75
[]
no_license
https://github.com/VTantillo/tech_kings3
e5df98df259ab533dc9deb4bdb6b4c7c624e9f0d
e8f4e8370cf6dff4d8791d496221caa15f652b5b
refs/heads/master
2021-09-01T21:28:55.724324
2017-12-15T23:20:08
2017-12-15T23:20:08
111,738,303
0
0
null
false
2017-12-15T23:21:39
2017-11-22T22:26:01
2017-12-15T23:20:13
2017-12-15T23:21:39
422
0
0
0
Python
false
null
""" Interface for the workshop subsystem. """ import network_adapter import snapshot from workshop_unit import WorkshopUnit from workshop_group import WorkshopGroup from virtual_machine import VirtualMachine from src.sub_db.db_manager import WorkshopDB import workshop_unit import workshop_group def create(item_name, fields): if item_name == 'virtual machine': # Add to Database """if WorkshopDB.update('virtual machine', fields): # vm in database so update pass else: WorkshopDB.create('virtual machine', fields)""" return VirtualMachine(fields['name'], fields['id'], fields['adapter'], fields['port'], fields['recent_snapshot'], fields['host_ip']) def read(item_name, item=None): return WorkshopDB.read(item_name, item) def update(): pass def delete(): pass def clone(): pass def port(): pass def convert_query_list_to_wg_instance_list(wg_query_list): groups = [] for g in wg_query_list: groups.append(WorkshopGroup(g.id, g.name, g.description, g.status, g.lifetime, g.published_date, g.server_id)) return groups def convert_query_list_to_wu_instance_list(wu_query_list): units = [] for u in wu_query_list: units.append(WorkshopUnit(u.id, u.name, u.description, 'N/A', u.status, u.lifetime, u.published_date, u.server_id, u.wg_id)) return units
UTF-8
Python
false
false
1,616
py
72
ws_manager.py
47
0.581683
0.581683
0
65
23.861538
109
heamabc/MyProjects
12,403,865,556,304
3648758546ac6217dfd77d30c7c774cdbc5dd7b7
6b1327647debe40d47dd1eb6f7d8c6598e26ad1a
/PortMgmt/Python/UpdatePortfolio/mgmtPort.py
637978276641b5feb849daa6e8aae5483c71c21e
[]
no_license
https://github.com/heamabc/MyProjects
0e6dc718646ca9b525a7228c75e0c02a732fae74
d1fe8d499f6ef09dcfa788f142dcd6463d9ae987
refs/heads/master
2021-09-08T04:32:54.296424
2018-03-07T01:43:41
2018-03-07T01:43:41
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Manage Portfolio and update table PortPosition Created on Feb 1, 2017 @author: ywang ''' import pandas as pd from pandas import DataFrame, Series import sqlalchemy from urllib.parse import quote_plus import numpy as np from numpy import datetime64 SQL_PULL_HOLDING_POSITION = ''' SELECT [TradeDate] AS [Date], [Ticker], [Transaction], [Totalshares], [SharePrice] FROM TransactionData.DFA_401K ORDER BY TradeDate ''' SQL_PULL_MF_PRICE = ''' SELECT [Date], [Ticker], [Close] FROM MutualFundData.DFA_401K ''' def reindex_by_date(g, dt): _df = g[['CumShares', 'AverageCost']].copy() _df.index = g.Date max_dt = max(datetime64(_df.index.max()), dt.max()) min_dt = datetime64(_df.index.min()) dates = dt[(dt>=min_dt) & (dt<=max_dt)] return _df.reindex(dates, method='ffill') def get_cumsum_adj_and_cost(_df): # cumulative sum of shares, reset the CumShares to 0, if it's too small # get average cost over time df_adj = _df.copy() df_adj['CumShares'] = _df['Totalshares'] df_adj['AverageCost'] = _df['SharePrice'] N = df_adj.index.size for k in range(1,N): temp = df_adj.CumShares[df_adj.index[k-1]] + df_adj.Totalshares[df_adj.index[k]] if np.abs(temp) < 0.01: temp = 0 df_adj.ix[df_adj.index[k], 'CumShares'] = temp for k in range(1,N): transaction_amount = df_adj.ix[df_adj.index[k],'SharePrice'] * df_adj.ix[df_adj.index[k],'Totalshares'] if transaction_amount > 0: total_cost_prev = df_adj.ix[df_adj.index[k-1], 'AverageCost'] * df_adj.ix[df_adj.index[k-1], 'CumShares'] df_adj.ix[df_adj.index[k], 'AverageCost'] = (total_cost_prev + transaction_amount) / df_adj.ix[df_adj.index[k], 'CumShares'] else: df_adj.ix[df_adj.index[k], 'AverageCost'] = df_adj.ix[df_adj.index[k-1], 'AverageCost'] return df_adj[['Date', 'Ticker', 'CumShares', 'AverageCost']].reset_index(drop=True) def resetPort(): pass def updatePort(): pass #=============================================================================== # Main Script #=============================================================================== if __name__== "__main__": account_name = 'DFA_401K' ################ Pull transaction data params = quote_plus("DRIVER={SQL Server}; SERVER=ASTJ9K2Y52RESR\SYW_LOCAL_V2014; DATABASE=PortMgmt; Trusted_Connection=yes") engine = sqlalchemy.create_engine("mssql+pyodbc:///?odbc_connect=%s" % params) df_transaction = pd.read_sql(SQL_PULL_HOLDING_POSITION, engine) df_transaction.sort_values(by='Date', inplace=True) # There are multiple transaction type in a given day, must aggregate df_position = df_transaction.groupby(['Date','Ticker','SharePrice'])[['Totalshares']].sum() df_position.reset_index(inplace=True) # Get cumulative position cum_position_adj = df_position.groupby('Ticker').apply(get_cumsum_adj_and_cost) df_position = df_position.merge(cum_position_adj, how='left', on=['Date', 'Ticker']) ################## Get Price start_dt = df_transaction.Date.min() df_price = pd.read_sql(SQL_PULL_MF_PRICE+'WHERE [Date]>='+'\''+start_dt.strftime('%Y/%m/%d')+'\'', engine) busdate = df_price.Date.unique() ################# Create daily position ################## df_pos_daily = df_position.groupby('Ticker').apply(reindex_by_date, dt=busdate) # sdel df_position df_pos_daily.reset_index(inplace=True) df_pos_daily.sort_values(by=['Date','Ticker'], inplace=True) # add price df_pos_daily = df_pos_daily.merge(df_price, how='left', on=['Date','Ticker']) df_pos_daily = df_pos_daily[['Date', 'Ticker', 'CumShares', 'Close', 'AverageCost']] # Add value=$1 for VMMXX, GVMXX df_pos_daily.ix[df_pos_daily.Ticker.isin(['GVMXX', 'VMMXX']),'Close'] = 1 # Check if there is any date with missing price date_price_missing = df_pos_daily[df_pos_daily.Close.isnull()].Date.unique() # Drop date with missing price df_pos_daily = df_pos_daily[~df_pos_daily.Date.isin(date_price_missing)] # Dollar position df_pos_daily['Amount'] = df_pos_daily['CumShares'] * df_pos_daily['Close'] df_pos_daily.query('CumShares!=0', inplace=True) ################# Contribution ################## df_contrib = df_transaction.query('Transaction=="ACH Contribution"') df_contrib = df_contrib.groupby(['Date', 'Ticker']).sum() df_contrib.reset_index(1, inplace=True) df_contrib['Date'] = df_contrib.index df_contrib = df_contrib.merge(df_price, how='left', on=['Date', 'Ticker']) df_contrib.ix[df_contrib.Ticker.isin(['GVMXX', 'VMMXX']),'Close'] = 1 df_contrib['Amount'] = df_contrib['Totalshares'] * df_contrib['Close'] df_contrib = df_contrib.groupby('Date')[['Amount']].sum() ################# Dividend ########################## DIV_LIST = ['Ordinary Dividend Reinvestment Increase', 'Daily Accrual Dividend Reinvestment Incr', 'Long Term Capital Gain Reinvestment', 'Short Term Capital Gain Reinvestment', 'Earnings Allocation', 'Increase Earnings'] df_dividend = df_transaction.query('Transaction==@DIV_LIST') df_dividend = df_dividend.groupby(['Date', 'Ticker'])[['Totalshares']].sum() df_dividend.reset_index(1, inplace=True) df_dividend['Date'] = df_dividend.index df_dividend = df_dividend.merge(df_price, how='left', on=['Date', 'Ticker']) df_dividend.ix[df_dividend.Ticker.isin(['GVMXX', 'VMMXX']),'Close'] = 1 df_dividend['Amount'] = df_dividend['Totalshares'] * df_dividend['Close'] df_dividend = df_dividend.groupby('Date')[['Amount']].sum() ################# Daily Table ####################### df_portfolio = DataFrame(index=df_pos_daily.Date.unique(), columns=['Balance', 'Contribution', 'Dividend']) df_portfolio['Balance'] = df_pos_daily.groupby('Date')['Amount'].sum() df_portfolio['Contribution'] = df_contrib['Amount'] df_portfolio.ix[df_portfolio.Contribution.isnull(), 'Contribution'] = 0 df_portfolio['Dividend'] = df_dividend['Amount'] df_portfolio.ix[df_portfolio.Dividend.isnull(), 'Dividend'] = 0 bal_less_contribution = (df_portfolio['Balance'] - df_portfolio['Contribution']).values bal_initial = df_portfolio.Balance.values df_portfolio['Return'] = np.nan df_portfolio.ix[1:, 'Return'] = bal_less_contribution[1:] / bal_initial[:-1] - 1 ################ Commit to database df_portfolio.to_sql(account_name, engine, schema='Portfolio', if_exists='replace', index_label='Date') df_pos_daily.index = df_pos_daily.Date df_pos_daily.drop('Date', axis=1, inplace=True) df_pos_daily.to_sql(account_name, engine, schema='Position', if_exists='replace', index_label='Date')
UTF-8
Python
false
false
7,132
py
28
mgmtPort.py
10
0.589456
0.581884
0
191
36.026178
137
mehak5868/Training
2,310,692,432,910
640f1e1d7dfe1da9a127de51166ccaa86faed6f3
33fb697b05475205881d90a0a56d1dae3afdf5ff
/venv/Session16B.py
0f7c240a681a9dea61c6c218e5e5d58c46351ea0
[]
no_license
https://github.com/mehak5868/Training
ca3a0c8640df3efd9481b7e473965e6a123105bc
b40d6c6b6291b332856ee50f583f7fb05ad0a401
refs/heads/master
2020-04-29T15:46:37.977067
2019-04-02T17:04:39
2019-04-02T17:04:39
176,239,402
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
file =open("idea.xml","r") data =file.readlines() for line in data: print(line) file.close()
UTF-8
Python
false
false
100
py
81
Session16B.py
73
0.64
0.64
0
5
18.4
26
dennysaug/algoritmo-kruskal
15,195,594,312,936
fa5d3a93859a60e2edabbbafe36b0a0b94599a58
acd35bdb35a0ce950ecdde72db72a86f42c4ac81
/main.py
576d9d1184b74a59c098525212d91ed2783077fe
[]
no_license
https://github.com/dennysaug/algoritmo-kruskal
5516772d5e36bbc44625ba02e233b0d2abdafc1e
d93f35930b763ff8521ce2d1b25bdea0008f7c3a
refs/heads/master
2021-08-19T14:49:45.870300
2017-11-26T18:44:35
2017-11-26T18:44:35
112,107,232
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os def main(): continua = True pesos = [] vertice = [] while continua: os.system('clear') print "[*] 1 - Adicionar vertice" print "[*] 2 - Adicionar arestas com os pesos" print "[*] 3 - Rodar algoritmo de Kruskal" print "[*] 4 - Sair\n\n" op = raw_input('Qual a opcao desejada: ') if op == '1': print 'Adicionando vertice. Digite 0 para sair\n\n' ok = True while ok: v = raw_input('Vertice: ') if v == '0': break vertice.append(v) if op == '2': print vertice print 'Adicionando aresta com os pesos. Digite 0 para sair\n\n' print 'Exemplo:\nAresta: A-B\nPeso: 5\n\n' ok = True while ok: a = raw_input('Aresta: ') p = raw_input('Peso: ') print "\n" if a == '0' or p == '0': break dados = {'a': a, 'p': p} pesos.append(dados) if op == '3': print 'Rodando o algoritmo de Kruskal\n\n' pesos = sorted(pesos, key=lambda x: x['p']) for peso in pesos: print peso['a'] + ': ' + str(peso['p']) return 0 if op == '4': print 'Saindo...\n\n' return 0 return 0 if __name__ == '__main__': main()
UTF-8
Python
false
false
1,477
py
1
main.py
1
0.417062
0.405552
0
64
22.09375
75
mik-79-ekb/Python_start
15,101,105,032,739
fa922ff31715521b6763d50cc6cac79d3d25b63a
5ab30e31fbfd7e62551e62ddbe2b74af7975012a
/Lesson_7/HW_7.3.py
0decebf0318d1ce439d36159952cd175d08d0384
[]
no_license
https://github.com/mik-79-ekb/Python_start
141d080eae7a68ec582586ba98893715efaa0972
f313fa0aca3fe2b40d29cb7bc877a5d98840ef0c
refs/heads/main
2023-01-23T02:41:19.387760
2020-12-12T17:53:59
2020-12-12T17:53:59
308,719,179
1
0
null
false
2020-12-12T17:54:00
2020-10-30T18:58:02
2020-11-30T17:29:26
2020-12-12T17:53:59
23
0
0
0
Python
false
false
""" Task 7.3 """ class Kletka: def __init__(self, index): self.index = int(index) def __add__(self, other): return f'Клетка увеличилась, ее размер стал: {self.index + other.index}' def __sub__(self, other): return f'Клетка уменьшилась, ее размер стал: {self.index - other.index}' if self.index - other.index > 0 else f'Уменьшение клетки невозможно!' def __mul__(self, other): return f'Клетка разрослась, ее размер стал: {self.index * other.index}' def __truediv__(self, other): return f'Клетка разделилась, ее размер стал: {self.index // other.index}' def make_order(self, row): result = '' for i in range(int(self.index / row)): result += '*' * row + '\n' result += '*' * (self.index % row) + '\n' return result k_1 = Kletka(12) k_2 = Kletka(5) print(k_1.__add__(k_2)) print(k_1.__sub__(k_2)) print(k_1.__mul__(k_2)) print(k_1.__truediv__(k_2)) print(f'Разбиение клетки k_1:') print(k_1.make_order(5)) print(f'Разбиение клетки k_2:') print(k_2.make_order(5))
UTF-8
Python
false
false
1,240
py
42
HW_7.3.py
39
0.5884
0.56782
0
32
32.4375
150
nimra/module_gen
5,755,256,187,493
87dfadf4333b8f87b071340dd312b8b9f524a5d3
5b93930ce8280b3cbc7d6b955df0bfc5504ee99c
/nodes/Geron17Hands/B_PartI/D_Chapter4/B_GradientDescent/index.py
89a67bbbe99b4a411b3624f6ee3c03084f11edbc
[]
no_license
https://github.com/nimra/module_gen
8749c8d29beb700cac57132232861eba4eb82331
2e0a4452548af4fefd4cb30ab9d08d7662122cf4
refs/heads/master
2022-03-04T09:35:12.443651
2019-10-26T04:40:49
2019-10-26T04:40:49
213,980,247
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# Lawrence McAfee # ~~~~~~~~ import ~~~~~~~~ from modules.node.HierNode import HierNode from modules.node.LeafNode import LeafNode from modules.node.Stage import Stage from modules.node.block.CodeBlock import CodeBlock as cbk from modules.node.block.HierBlock import HierBlock as hbk from modules.node.block.ImageBlock import ImageBlock as ibk from modules.node.block.ListBlock import ListBlock as lbk from modules.node.block.MarkdownBlock import MarkdownBlock as mbk from .A_BatchGradient.index import BatchGradient as A_BatchGradient from .B_StochasticGradient.index import StochasticGradient as B_StochasticGradient from .C_MinibatchGradient.index import MinibatchGradient as C_MinibatchGradient # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ blocks = [ # Download from finelybook www.finelybook.com # Gradient Descent # Gradient Descent is a very generic optimization algorithm capable of finding optimal # solutions to a wide range of problems. The general idea of Gradient Descent is to # tweak parameters iteratively in order to minimize a cost function. # Suppose you are lost in the mountains in a dense fog; you can only feel the slope of # the ground below your feet. A good strategy to get to the bottom of the valley quickly # is to go downhill in the direction of the steepest slope. This is exactly what Gradient # Descent does: it measures the local gradient of the error function with regards to the # parameter vector θ, and it goes in the direction of descending gradient. Once the gra‐ # dient is zero, you have reached a minimum! # Concretely, you start by filling θ with random values (this is called random initializa‐ # tion), and then you improve it gradually, taking one baby step at a time, each step # attempting to decrease the cost function (e.g., the MSE), until the algorithm converges # to a minimum (see Figure 4-3). # # # # # Figure 4-3. Gradient Descent # # An important parameter in Gradient Descent is the size of the steps, determined by # the learning rate hyperparameter. If the learning rate is too small, then the algorithm # will have to go through many iterations to converge, which will take a long time (see # Figure 4-4). # # # # # Gradient Descent | 111 # # Download from finelybook www.finelybook.com # # # # # Figure 4-4. Learning rate too small # # On the other hand, if the learning rate is too high, you might jump across the valley # and end up on the other side, possibly even higher up than you were before. This # might make the algorithm diverge, with larger and larger values, failing to find a good # solution (see Figure 4-5). # # # # # Figure 4-5. Learning rate too large # # Finally, not all cost functions look like nice regular bowls. There may be holes, ridges, # plateaus, and all sorts of irregular terrains, making convergence to the minimum very # difficult. Figure 4-6 shows the two main challenges with Gradient Descent: if the ran‐ # dom initialization starts the algorithm on the left, then it will converge to a local mini‐ # mum, which is not as good as the global minimum. If it starts on the right, then it will # take a very long time to cross the plateau, and if you stop too early you will never # reach the global minimum. # # # # # 112 | Chapter 4: Training Models # # Download from finelybook www.finelybook.com # # # # # Figure 4-6. Gradient Descent pitfalls # # Fortunately, the MSE cost function for a Linear Regression model happens to be a # convex function, which means that if you pick any two points on the curve, the line # segment joining them never crosses the curve. This implies that there are no local # minima, just one global minimum. It is also a continuous function with a slope that # never changes abruptly.4 These two facts have a great consequence: Gradient Descent # is guaranteed to approach arbitrarily close the global minimum (if you wait long # enough and if the learning rate is not too high). # In fact, the cost function has the shape of a bowl, but it can be an elongated bowl if # the features have very different scales. Figure 4-7 shows Gradient Descent on a train‐ # ing set where features 1 and 2 have the same scale (on the left), and on a training set # where feature 1 has much smaller values than feature 2 (on the right).5 # # # # # Figure 4-7. Gradient Descent with and without feature scaling # # # # 4 Technically speaking, its derivative is Lipschitz continuous. # 5 Since feature 1 is smaller, it takes a larger change in θ1 to affect the cost function, which is why the bowl is # elongated along the θ1 axis. # # # # Gradient Descent | 113 # # Download from finelybook www.finelybook.com # As you can see, on the left the Gradient Descent algorithm goes straight toward the # minimum, thereby reaching it quickly, whereas on the right it first goes in a direction # almost orthogonal to the direction of the global minimum, and it ends with a long # march down an almost flat valley. It will eventually reach the minimum, but it will # take a long time. # # When using Gradient Descent, you should ensure that all features # have a similar scale (e.g., using Scikit-Learn’s StandardScaler # class), or else it will take much longer to converge. # # # # This diagram also illustrates the fact that training a model means searching for a # combination of model parameters that minimizes a cost function (over the training # set). It is a search in the model’s parameter space: the more parameters a model has, # the more dimensions this space has, and the harder the search is: searching for a nee‐ # dle in a 300-dimensional haystack is much trickier than in three dimensions. Fortu‐ # nately, since the cost function is convex in the case of Linear Regression, the needle is # simply at the bottom of the bowl. # # Batch Gradient Descent # To implement Gradient Descent, you need to compute the gradient of the cost func‐ # tion with regards to each model parameter θj. In other words, you need to calculate # how much the cost function will change if you change θj just a little bit. This is called # a partial derivative. It is like asking “what is the slope of the mountain under my feet # if I face east?” and then asking the same question facing north (and so on for all other # dimensions, if you can imagine a universe with more than three dimensions). Equa‐ # tion 4-5 computes the partial derivative of the cost function with regards to parame‐ # ∂ # ter θj, noted ∂θ MSE θ . # j # # # Equation 4-5. Partial derivatives of the cost function # # ∂ 2 m T # mi∑ # i # MSE θ = θ · � − y i x ji # ∂θ j =1 # # # Instead of computing these gradients individually, you can use Equation 4-6 to com‐ # pute them all in one go. The gradient vector, noted ∇θMSE(θ), contains all the partial # derivatives of the cost function (one for each model parameter). # # # # # 114 | Chapter 4: Training Models # ] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Content(LeafNode): def __init__(self): super().__init__( "Gradient Descent", # Stage.REMOVE_EXTRANEOUS, # Stage.ORIG_BLOCKS, # Stage.CUSTOM_BLOCKS, # Stage.ORIG_FIGURES, # Stage.CUSTOM_FIGURES, # Stage.CUSTOM_EXERCISES, ) [self.add(a) for a in blocks] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class GradientDescent(HierNode): def __init__(self): super().__init__("Gradient Descent") self.add(Content(), "content") self.add(A_BatchGradient()) self.add(B_StochasticGradient()) self.add(C_MinibatchGradient()) # eof
UTF-8
Python
false
false
8,250
py
2,642
index.py
1,350
0.67322
0.666382
0
191
41.874346
122
levent-coban/flaskformexamples
13,434,657,734,627
67383546003de4f9957c0e3913dd135dd09bae8c
6b293f11f65a62de082a8d1cb4123245ed6257a6
/FORM-GET-EXAMPLE-1/app.py
c37e0623ddd445b99029638b859d05cbb4140ae6
[]
no_license
https://github.com/levent-coban/flaskformexamples
2bb0417c4008e622a1aa99baa500d9e5fc6d3942
a2868e245f61889bd254b20d95a5f52da3c8a87e
refs/heads/main
2023-04-01T07:41:19.913785
2021-03-31T22:48:22
2021-03-31T22:48:22
353,510,652
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, render_template, request app = Flask(__name__) @app.route('/') def index(): if request.args: # request.args: the key/value pairs in the URL query string # print(request.args['firstname']) # print(request.args['lastname']) lst = { 'first_name': request.args['firstname'], 'last_name': request.args['lastname'] } return render_template('index.html', list=lst) return render_template('index.html') if __name__ == '__main__': app.run(host='127.0.0.1', port=80, debug=True)
UTF-8
Python
false
false
588
py
4
app.py
3
0.581633
0.568027
0
26
21.615385
67
TheJoebus666/Team7Robotics
2,576,980,424,099
982c129269fd60bd945a64bad1fb3a9276880179
b91a810bf1dde97aa99a39ca95caf5f55f385a54
/dqn_environment.py
2b4ece28d9636275261d67b671978648eb3e0d48
[]
no_license
https://github.com/TheJoebus666/Team7Robotics
8ea428754c930bced2ef27970d8a53fa2f6e0f4f
c852e9d57f46d77cd4205d208b7b56a3472472fd
refs/heads/master
2023-05-06T15:30:16.039172
2021-04-12T14:18:41
2021-04-12T14:18:41
352,585,836
1
1
null
false
2021-04-12T14:06:49
2021-03-29T09:25:25
2021-04-08T14:44:10
2021-04-12T14:06:48
23,183
1
1
0
Python
false
false
#!/usr/bin/env python3 # # Copyright 2019 ROBOTIS CO., LTD. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Ryan Shim, Gilbert from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from sensor_msgs.msg import LaserScan import rclpy from rclpy.node import Node from rclpy.qos import QoSProfile, qos_profile_sensor_data from turtlebot3_msgs.srv import Dqn from my_msgs.srv import Goal from std_srvs.srv import Empty from rclpy.callback_groups import MutuallyExclusiveCallbackGroup import numpy as np import math class RLEnvironment(Node): def __init__(self): super().__init__('rl_environment') self.train_mode = True self.goal_pose_x = 0.0 self.goal_pose_y = 0.0 self.robot_pose_x = 0.0 self.robot_pose_y = 0.0 self.action_size = 5 self.time_out = 1000000 # maximum number of actions in each episode self.done = False self.fail = False self.succeed = False # parameters to calculate the reward self.goal_angle = 0.0 self.goal_distance = 1.0 self.init_goal_distance = 0.1 self.scan_ranges = [] self.min_obstacle_distance = 10.0 self.local_step = 0 self.stop_cmd_vel_timer = None self.angular_vel = [1.0, 0.5, 0.0, -0.5, -1.0] qos = QoSProfile(depth=10) # Initialize publisher self.cmd_vel_pub = self.create_publisher(Twist, 'cmd_vel', qos) # Initialize subscribers self.odom_sub = self.create_subscription(Odometry, 'odom', self.odom_sub_callback, qos) self.scan_sub = self.create_subscription(LaserScan, '/turtlebot3_laserscan/out', self.scan_sub_callback, qos_profile_sensor_data) # Initialize client self.clients_callback_group = MutuallyExclusiveCallbackGroup() self.task_succeed_client = self.create_client(Goal, 'task_succeed', callback_group=self.clients_callback_group) self.task_failed_client = self.create_client(Goal, 'task_failed', callback_group=self.clients_callback_group) self.initialize_environment_client = self.create_client(Goal, 'initialize_env',callback_group=self.clients_callback_group) # Initialize service self.rl_agent_interface_service = self.create_service(Dqn, 'rl_agent_interface',self.rl_agent_interface_callback) self.make_environment_service = self.create_service(Empty, 'make_environment', self.make_environment_callback) self.reset_environment_service = self.create_service(Dqn, 'reset_environment', self.reset_environment_callback) def make_environment_callback(self, request, response): while not self.initialize_environment_client.wait_for_service(timeout_sec=1.0): print('environment service ...') future = self.initialize_environment_client.call_async(Goal.Request()) rclpy.spin_until_future_complete(self, future) response_future = future.result() if not response_future.success: print('initialize environment request failed') else: self.goal_pose_x = response_future.pose_x self.goal_pose_y = response_future.pose_y print('goal ', self.goal_pose_x, ', ', self.goal_pose_y) return response def reset_environment_callback(self, request, response): #Dqn response (state of the robot: lidar_rays + robot pose (or robots distance to goal and its heading angle to goal) response.state = self.calculate_state() return response def call_task_succeed(self): """ When the task is succeed (by reaching the goal) this client will send a request to the gazebo_interface service the client waits until gets back the response (goal position) form service :return: """ while not self.task_succeed_client.wait_for_service(timeout_sec=1.0): self.get_logger().warn('service for task succeed is not available, waiting ...') future = self.task_succeed_client.call_async(Goal.Request()) rclpy.spin_until_future_complete(self, future) if future.result() is not None: response = future.result() self.goal_pose_x = response.pose_x self.goal_pose_y = response.pose_y self.get_logger().info('service for task succeed finished') else: self.get_logger().error('task succeed service call failed') def call_task_failed(self): """ When the task is failed (either collision or timeout) this client will send a request to the gazebo_interface service the client waits until gets back the response (goal position) form service :return: """ while not self.task_failed_client.wait_for_service(timeout_sec=1.0): self.get_logger().warn('service for task failed is not available, waiting ...') future = self.task_failed_client.call_async(Goal.Request()) rclpy.spin_until_future_complete(self, future) if future.result() is not None: response = future.result() self.goal_pose_x = response.pose_x self.goal_pose_y = response.pose_y self.get_logger().info('service for task failed finished') else: self.get_logger().error('task failed service call failed') def scan_sub_callback(self, scan): self.scan_ranges = [] # clear the list num_of_lidar_rays = len(scan.ranges) for i in range(num_of_lidar_rays): if scan.ranges[i] == float('Inf'): self.scan_ranges.append(3.5) elif np.isnan(scan.ranges[i]): self.scan_ranges.append(0) else: self.scan_ranges.append(scan.ranges[i]) self.min_obstacle_distance = min(self.scan_ranges) def odom_sub_callback(self, msg): self.robot_pose_x = msg.pose.pose.position.x self.robot_pose_y = msg.pose.pose.position.y _, _, self.robot_pose_theta = self.euler_from_quaternion(msg.pose.pose.orientation) goal_distance = math.sqrt( (self.goal_pose_x - self.robot_pose_x) ** 2 + (self.goal_pose_y - self.robot_pose_y) ** 2) path_theta = math.atan2( self.goal_pose_y - self.robot_pose_y, self.goal_pose_x - self.robot_pose_x) goal_angle = path_theta - self.robot_pose_theta if goal_angle > math.pi: goal_angle -= 2 * math.pi elif goal_angle < -math.pi: goal_angle += 2 * math.pi self.goal_distance = goal_distance self.goal_angle = goal_angle def calculate_state(self): """ calculates the robot state (lidar rays , distance to the goal ,robots heading angle toward the goal) Checks the task succeed and the task failed :return: """ state = list() # state.append(float(self.goal_pose_x)) # state.append(float(self.goal_pose_y)) state.append(float(self.goal_distance)) state.append(float(self.goal_angle)) for var in self.scan_ranges: state.append(float(var)) #state.append(float(0.0)) self.local_step += 1 # Succeed if self.goal_distance < 0.20: # unit: m self.get_logger().info("Goal Reached") self.succeed = True self.done = True self.cmd_vel_pub.publish(Twist()) # robot stop self.local_step = 0 self.call_task_succeed() self.init_goal_distance = math.sqrt( (self.goal_pose_x - self.robot_pose_x) ** 2 + (self.goal_pose_y - self.robot_pose_y) ** 2) # Fail if self.min_obstacle_distance < 0.25: # unit: m self.get_logger().info("Collision happened") self.fail = True self.done = True self.cmd_vel_pub.publish(Twist()) # robot stop self.local_step = 0 self.call_task_failed() if self.local_step == self.time_out: self.get_logger().info("Time out!") self.done = True self.local_step = 0 self.call_task_failed() return state def calculate_reward(self, action): """ calculates the reward accumulating by agent after doing each action, feel free to change the reward function :return: """ if self.train_mode: yaw_reward = 1 - 2 * math.sqrt(math.fabs(self.goal_angle / math.pi)) distance_reward = (2 * self.init_goal_distance) / (self.init_goal_distance + self.goal_distance) - 1 obstacle_reward = 0.0 if self.min_obstacle_distance < 0.50: obstacle_reward = -5.0 # self.min_obstacle_distance - 0.45 # reward = self.action_reward[action] + (0.1 * (2-self.goal_distance)) + obstacle_reward reward = distance_reward + obstacle_reward + yaw_reward # + for succeed, - for fail if self.succeed: print("succeed") reward = 200.0 elif self.fail: print("fail") reward = -150.0 else: if self.succeed: reward = 5.0 elif self.fail: reward = -5.0 else: reward = 0.0 self.get_logger().info('reward: %f ' % reward) self.get_logger().info('yaw reward: %f ' % yaw_reward) return reward def rl_agent_interface_callback(self, request, response): """ gives service to the rl_agent. The rl_agent sends an action as a request and this methods has to does the action and gets back the state, reward and done as a response :param request: a DQN request including action :param response: a DQN response including state, reward, and done :return: """ action = request.action twist = Twist() # robot always receives a (constant linear velocity + a variable angular velocity) twist.linear.x = 0.15 twist.angular.z = self.angular_vel[action] self.cmd_vel_pub.publish(twist) if self.stop_cmd_vel_timer is None: self.stop_cmd_vel_timer = self.create_timer(1.8, self.timer_callback) else: self.destroy_timer(self.stop_cmd_vel_timer) self.stop_cmd_vel_timer = self.create_timer(1.8, self.timer_callback) response.state = self.calculate_state() response.reward = self.calculate_reward(action) response.done = self.done if self.done is True: self.done = False self.succeed = False self.fail = False return response def timer_callback(self): """ after each self.stop_cmd_vel_timer seconds, this method will be called to send a stop cmd_vel to the robot :return: """ self.get_logger().info('Stop called') self.cmd_vel_pub.publish(Twist()) self.destroy_timer(self.stop_cmd_vel_timer) def euler_from_quaternion(self, quat): """ Converts quaternion (w in last place) to euler roll, pitch, yaw :param quat: [x, y, z, w] :return: """ x = quat.x y = quat.y z = quat.z w = quat.w sinr_cosp = 2 * (w * x + y * z) cosr_cosp = 1 - 2 * (x * x + y * y) roll = np.arctan2(sinr_cosp, cosr_cosp) sinp = 2 * (w * y - z * x) pitch = np.arcsin(sinp) siny_cosp = 2 * (w * z + x * y) cosy_cosp = 1 - 2 * (y * y + z * z) yaw = np.arctan2(siny_cosp, cosy_cosp) return roll, pitch, yaw def main(args=None): rclpy.init(args=args) rl_environment = RLEnvironment() while True: rclpy.spin_once(rl_environment) rclpy.shutdown() if __name__ == '__main__': main()
UTF-8
Python
false
false
12,444
py
14
dqn_environment.py
4
0.604147
0.594182
0
337
35.925816
137
IT-corridor/Round-Up
1,434,519,091,515
aeae04643062de034ad4f7a5186ad59914cc2c06
d4831377686b3ff25446af89e2eb0e9e38e68dcb
/main_app/tasks.py
c22655d05ad7a4fd27283f5cc06fb49f2a69d373
[]
no_license
https://github.com/IT-corridor/Round-Up
4896484e80cfea4db42a5a7002ccfbb72e03129b
ad757ce1bdedf35b1bdd95096c02fdfed180d4aa
refs/heads/master
2020-04-03T20:00:04.606916
2018-10-31T00:35:05
2018-10-31T00:35:05
155,543,300
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from decimal import Decimal import logging import math from celery import shared_task from celery.schedules import crontab from celery.task import periodic_task from dateutil import parser from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.core.mail import EmailMessage from django.db import transaction, IntegrityError, connection from django.db.models import Q from django.template.loader import render_to_string from django.utils import timezone from djmoney.money import Money from pinax.stripe.actions import subscriptions from pinax.stripe.actions.customers import get_customer_for_user from pinax.stripe.actions.sources import delete_card from pinax.stripe.models import Card import pytz from stripe import StripeError from main_app import models from main_app.helpers.external_helpers.shopify_webhook_controller import get_return_fields from main_app.helpers.helpers import create_or_assert_round_up_product from main_app.models import AuthAppShopUser, RoundUpOrders from source.lib import shopify from source.lib.pyactiveresource.connection import UnauthorizedAccess, ClientError from source.lib.shopify.resources.order import Order from source.lib.shopify.resources.product import Product from source.lib import shopify from source.lib.shopify.resources.webhook import Webhook @periodic_task(run_every=(crontab(minute=0, hour=0)), name="main_app.tasks.sync_store_orders", ignore_result=True) def sync_store_orders(specific_store=None): user_list = [] if not specific_store: user_list = AuthAppShopUser.objects.filter().exclude(token='00000000000000000000000000000000') if specific_store: user_list = [specific_store] for user in user_list: try: if not user.userprofile.setup_required: with shopify.Session.temp(user.myshopify_domain, user.token): # Track sync times from DB (in UTC) try: current_max_created_UTC = user.userprofile.latest_order_sync_time except ObjectDoesNotExist: logging.error("USER-{0}-GET-ORDERS-NO-PROFILE".format(str(user))) continue new_max_created_UTC = timezone.now() try: round_up_variant_id = user.userprofile.round_up_variant_id if not round_up_variant_id: raise ValueError except ValueError: logging.error("USER-{0}-GET-ORDERS-NO-ROUND-UP-PRODUCT".format(str(user))) continue # Create an empty list to hold incoming orders new_order_list = [] # Set query options for Shopify find orders if current_max_created_UTC: # Convert start and end times into store's local timezone. created_at_min = current_max_created_UTC.astimezone( pytz.timezone(user.userprofile.iana_timezone)) elif not current_max_created_UTC: # Only look back as far as the user has existed. created_at_min = user.userprofile.created.astimezone( pytz.timezone(user.userprofile.iana_timezone)) created_at_max = new_max_created_UTC.astimezone( pytz.timezone(user.userprofile.iana_timezone)) order_args = {'status': "any", 'created_at_min': created_at_min, 'created_at_max': created_at_max} # Iterate through Shopify orders for store orders_count = Order.count(**order_args) limit_per_page = 50 pages = math.ceil(orders_count / limit_per_page) # Iterate through all API Pages. for i in range(1, int(pages) + 2): orders = Order.find(limit=limit_per_page, page=i, **order_args) # Iterate through the current page of Shopify orders to find line items that contain round up products. for order in orders: round_up_line_item_id = None new_order = None if not order.cancel_reason and order.financial_status in ('paid', 'partially_refunded', 'partially_paid', 'refunded'): for item in order.line_items: if item.variant_id == round_up_variant_id: # Create a Round Up Order Product new_order = RoundUpOrders(store=user, order_number=order.id, order_name=order.name, order_total=Money(Decimal(order.total_price), order.currency), order_roundup_total=Money((Decimal(item.price) * item.quantity) - Decimal(item.total_discount), order.currency), shopify_created_at=parser.parse(order.created_at).astimezone(pytz.utc) ) new_order_list.append(new_order) round_up_line_item_id = item.id break if round_up_line_item_id and new_order: # Check if the round up item is refunded for this order. for refund in order.refunds: for refund_line_item in refund.refund_line_items: if refund_line_item.line_item_id == round_up_line_item_id: new_order.order_roundup_total = new_order.order_roundup_total - Money((refund_line_item.quantity * settings.ROUND_UP_DEFAULT_PRICE), order.currency) new_order.shopify_payment_status = RoundUpOrders.SHOPIFY_PAYMENT_STATUS.PARTIALLY_REFUNDED if new_order.order_roundup_total <= Money(Decimal(0), order.currency): new_order.order_roundup_total = Money(Decimal(0), order.currency) new_order.shopify_payment_status = \ RoundUpOrders.SHOPIFY_PAYMENT_STATUS.REFUNDED try: with transaction.atomic(): if new_order_list: RoundUpOrders.objects.bulk_create(new_order_list) if new_max_created_UTC: user.userprofile.latest_order_sync_time = new_max_created_UTC user.userprofile.save() except IntegrityError: # Try to process orders individually for new_order in new_order_list: try: new_order.save() except IntegrityError: pass if new_max_created_UTC: user.userprofile.latest_order_sync_time = new_max_created_UTC user.userprofile.save() except Exception as e: logging.error(e.message) pass @shared_task def check_user_onboarding_progress(domain): try: store = models.AuthAppShopUser.objects.get(myshopify_domain=domain) except ObjectDoesNotExist: logging.warning("Onboarding-Check-Task-No-User: " + str(domain)) return if not store.userprofile.onboarding_email_sent: required_steps_string = '' if store.userprofile.setup_required: # User has to do all setup tasks required_steps_string = '- Please complete the Round Up App setup wizard by accessing the app from your Shopify admin.\n' # Does the customer have a stripe cusomter? stripe_customer = get_customer_for_user(store) # Get all the current customers/stores payment methods cards = Card.objects.filter(customer=stripe_customer).order_by("created_at") if not stripe_customer or not cards: required_steps_string = '- Please add your payment information to the Round Up App payment settings (Required to make donations).\n' # Does the customer have a charity selected? try: if not store.store_charity.selected_charity: required_steps_string = '- Please select a Charity in the Round Up app.\n' except ObjectDoesNotExist: required_steps_string = '- Please select a Charity in the Round Up app.\n' # Has the customer signalled that they have included the setup stuff? try: if not store.userprofile.install_user_verified: required_steps_string = '- Please ensure that you have modified your Cart page theme to include the Round Up app code snippet.\n' except ObjectDoesNotExist: required_steps_string = '- Please ensure that you have modified your Cart page theme to include the Round Up app code snippet.\n' if required_steps_string != '': # Send an email ctx = { "myshopify_domain": store.myshopify_domain, "required_steps_string": required_steps_string } subject = render_to_string("main_app/email/required_steps_subject.txt", ctx) subject = subject.strip() message = render_to_string("main_app/email/required_steps_body.txt", ctx) email = store.userprofile.shop_contact_email num_sent = EmailMessage( subject, message, to=[email], from_email=settings.PINAX_STRIPE_INVOICE_FROM_EMAIL ).send() store.userprofile.onboarding_email_sent = True store.userprofile.save() return else: return @shared_task def ask_for_review(domain): try: store = models.AuthAppShopUser.objects.get(myshopify_domain=domain) except ObjectDoesNotExist: logging.warning("Review-Check-Task-No-User: " + str(domain)) return if not store.token or store.token == '00000000000000000000000000000000': return if not store.userprofile.review_email_sent: # Does the customer have a stripe cusomter? stripe_customer = get_customer_for_user(store) # Get all the current customers/stores payment methods cards = Card.objects.filter(customer=stripe_customer).order_by("created_at") if store.userprofile.setup_required == False and stripe_customer and cards: # Send an email ctx = { "myshopify_domain": store.myshopify_domain, } subject = render_to_string("main_app/email/review_subject.txt", ctx) subject = subject.strip() message = render_to_string("main_app/email/review_body.txt", ctx) email = store.userprofile.shop_contact_email num_sent = EmailMessage( subject, message, to=[email], from_email=settings.PINAX_STRIPE_INVOICE_FROM_EMAIL ).send() store.userprofile.review_email_sent = True store.userprofile.save() return else: return @shared_task def app_uninstall_task(data, **kwargs): try: user = models.AuthAppShopUser.objects.get(myshopify_domain=kwargs['domain']) user.token = '00000000000000000000000000000000' user.save() # Cancel any Stripe subscriptions try: stripe_customer = get_customer_for_user(user) if subscriptions.has_active_subscription(stripe_customer): user_subscriptions = models.Subscription.objects.filter( customer=stripe_customer ).filter( Q(ended_at__isnull=True) | Q(ended_at__gt=timezone.now()) ) for subscription in user_subscriptions: subscriptions.cancel(subscription, at_period_end=False) # Clear subscription reason models.StripeCustomerSubReason.objects.update_or_create( store=user, defaults={"subscription": None, 'reason': None} ) # Clear stripe cards user_cards = Card.objects.filter(customer=stripe_customer).order_by("created_at") for card in user_cards: delete_card(stripe_customer, card.stripe_id) except StripeError as e: logging.error(str(e.message)) # Send an email to the user to welcome them try: ctx = { "myshopify_domain": user.myshopify_domain, } subject = render_to_string("main_app/email/uninstall_subject.txt", ctx) subject = subject.strip() message = render_to_string("main_app/email/uninstall_body.txt", ctx) email = user.userprofile.shop_contact_email num_sent = EmailMessage( subject, message, to=[email], from_email=settings.PINAX_STRIPE_INVOICE_FROM_EMAIL ).send() except Exception: pass # Invalidate any existing user sessions. user.clear_user_sessions() connection.close() except ObjectDoesNotExist: if kwargs['domain']: logging.warning("App-Uninstall-Webhook-No-User-Found: " + str(kwargs['domain'])) return except Exception as e: logging.error("App-Uninstall-Webhook-Unknown-Exception: "+str(e.message)) raise e @shared_task def update_shop_task(data, **kwargs): try: user = models.AuthAppShopUser.objects.get(myshopify_domain=kwargs['domain']) except ObjectDoesNotExist: logging.warning("Shop-Update-Webhook-No-User-Found: " + str(kwargs['domain'])) connection.close() return try: change_made = False if user.userprofile.iana_timezone != data['iana_timezone']: user.userprofile.iana_timezone = data['iana_timezone'] change_made = True if user.userprofile.display_timezone != data['timezone']: user.userprofile.display_timezone = data['timezone'] change_made = True if user.userprofile.name != data['name']: user.userprofile.name = data['name'] change_made = True if user.userprofile.shop_contact_email != data['email']: user.userprofile.shop_contact_email = data['email'] change_made = True if change_made: user.userprofile.save() connection.close() except Exception as e: logging.error("Shop-Update-Webhook-Unknown-Exception: "+str(e.message)) raise e @shared_task def product_delete_task(data, **kwargs): try: store = models.AuthAppShopUser.objects.get(myshopify_domain=kwargs['domain']) except ObjectDoesNotExist: logging.warning("Product-Delete-Webhook-No-User-Found: " + str(kwargs['domain'])) return try: # Check if the product deleted is the stores round up product if data['id'] == store.userprofile.round_up_product_id: # If so, then restore it by creating a new round up product create_or_assert_round_up_product(store, deleted=True) connection.close() except Exception as e: logging.error("Product-Delete-Webhook-Unknown-Exception: "+str(e.message)) raise e @shared_task def product_update_task(data, **kwargs): try: store = models.AuthAppShopUser.objects.get(myshopify_domain=kwargs['domain']) except ObjectDoesNotExist: logging.warning("Product-Update-Webhook-No-User-Found: " + str(kwargs['domain'])) return try: if data['id'] == store.userprofile.round_up_product_id: with shopify.Session.temp(store.myshopify_domain, store.token): # Compare data to the expected values. discrepancy = False if len(data['variants']) != 1: discrepancy = True try: if data['variants'][0]['price'] != "0.01": discrepancy = True if data['variants'][0]['inventory_management'] != None: discrepancy = True if data['variants'][0]['taxable'] != False: discrepancy = True if data['variants'][0]['requires_shipping'] != False: discrepancy = True except KeyError: discrepancy = True # If there are discrepencies, destroy the product, and recreate it. if discrepancy: product = Product.find(store.userprofile.round_up_product_id) product.destroy() connection.close() except Exception as e: logging.error("Product-Update-Webhook-Unknown-Exception: "+str(e.message)) raise e @shared_task(bind=True) def internal_debug_task(self): print(self.request.id) print('Request: {0!r}'.format(self.request)) # @shared_task # def task_create_or_update_webhooks(full_url): # """ # Purpose: This function will create, or ensure that they are created all required application # webhooks (shop update, product update/delete, and app uninstall. # :param full_url: get the POST url for webhook created from the shopify_webhook module # :param user: the authenticated and verified user to create a webhook for # :param webhook_topic: what webhook to register # :return: true on success, false on fail # """ # # user_list = AuthAppShopUser.objects.filter().exclude(token='00000000000000000000000000000000') # # for user in user_list: # # # if not user.userprofile.round_up_product_id or not user.userprofile.round_up_js_script_id or not user.userprofile.round_up_variant_id: # # # user = AuthAppShopUser.objects.get(myshopify_domain='the-brave-collection.myshopify.com') # try: # with shopify.Session.temp(user.myshopify_domain, user.token): # required_webhook_topics = ["app/uninstalled", # "shop/update", # "products/delete", # "products/update" # ] # # # Check to see if the required webhooks exist for the current Shopify shop. # shop_webhooks = Webhook.find() # # for required_webhook in required_webhook_topics: # webhook_found_and_accurate = False # # for shopify_webhook in shop_webhooks: # # expected_fields = get_return_fields(shopify_webhook.topic) # # # Do the required webhooks exist? # if required_webhook == shopify_webhook.topic: # if shopify_webhook.format == "json" and shopify_webhook.address == full_url and \ # shopify_webhook.fields == expected_fields: # webhook_found_and_accurate = True # break # else: # shopify_webhook.address = full_url # shopify_webhook.format = "json" # if expected_fields: # shopify_webhook.fields = expected_fields # shopify_webhook.save() # webhook_found_and_accurate = True # break # # if not webhook_found_and_accurate: # # If a webhook does not exist, create it. # new_webhook = Webhook() # new_webhook.topic = required_webhook # new_webhook.address = full_url # new_webhook.format = "json" # expected_fields = get_return_fields(required_webhook) # if expected_fields: # new_webhook.fields = expected_fields # new_webhook.save() # # except (UnauthorizedAccess, ClientError): # user.token = '00000000000000000000000000000000' # user.save() # continue def manual_order_sync(): user_list = [] specific_store = AuthAppShopUser.objects.get(id=23) user_list = [specific_store] for user in user_list: try: if not user.userprofile.setup_required: with shopify.Session.temp(user.myshopify_domain, user.token): # Track sync times from DB (in UTC) try: current_max_created_UTC = user.userprofile.latest_order_sync_time print("Current UTC Sync time: " + str(current_max_created_UTC)) except ObjectDoesNotExist: logging.error("USER-{0}-GET-ORDERS-NO-PROFILE".format(str(user))) continue new_max_created_UTC = timezone.now() try: round_up_variant_id = user.userprofile.round_up_variant_id print("Round up variant ID: " + str(round_up_variant_id)) if not round_up_variant_id: raise ValueError except ValueError: logging.error("USER-{0}-GET-ORDERS-NO-ROUND-UP-PRODUCT".format(str(user))) continue # Create an empty list to hold incoming orders new_order_list = [] # Set query options for Shopify find orders if current_max_created_UTC: # Convert start and end times into store's local timezone. created_at_min = current_max_created_UTC.astimezone( pytz.timezone(user.userprofile.iana_timezone)) elif not current_max_created_UTC: # Only look back as far as the user has existed. created_at_min = user.userprofile.created.astimezone( pytz.timezone(user.userprofile.iana_timezone)) created_at_max = new_max_created_UTC.astimezone( pytz.timezone(user.userprofile.iana_timezone)) order_args = {'status': "any", 'created_at_min': created_at_min, 'created_at_max': created_at_max} # Iterate through Shopify orders for store orders_count = Order.count(**order_args) limit_per_page = 50 pages = math.ceil(orders_count / limit_per_page) # Iterate through all API Pages. for i in range(1, int(pages) + 2): orders = Order.find(limit=limit_per_page, page=i, **order_args) # Iterate through the current page of Shopify orders to find line items that contain round up products. for order in orders: round_up_line_item_id = None new_order = None if not order.cancel_reason and order.financial_status in ('paid', 'partially_refunded', 'partially_paid', 'refunded'): for item in order.line_items: if item.variant_id == round_up_variant_id: # Create a Round Up Order Product new_order = RoundUpOrders(store=user, order_number=order.id, order_name=order.name, order_total=Money(Decimal(order.total_price), order.currency), order_roundup_total=Money((Decimal(item.price) * item.quantity) - Decimal(item.total_discount), order.currency), shopify_created_at=parser.parse(order.created_at).astimezone(pytz.utc) ) new_order_list.append(new_order) round_up_line_item_id = item.id break if round_up_line_item_id and new_order: # Check if the round up item is refunded for this order. for refund in order.refunds: for refund_line_item in refund.refund_line_items: if refund_line_item.line_item_id == round_up_line_item_id: new_order.order_roundup_total = new_order.order_roundup_total - Money((refund_line_item.quantity * settings.ROUND_UP_DEFAULT_PRICE), order.currency) new_order.shopify_payment_status = RoundUpOrders.SHOPIFY_PAYMENT_STATUS.PARTIALLY_REFUNDED if new_order.order_roundup_total <= Money(Decimal(0), order.currency): new_order.order_roundup_total = Money(Decimal(0), order.currency) new_order.shopify_payment_status = \ RoundUpOrders.SHOPIFY_PAYMENT_STATUS.REFUNDED try: print("Bulk create new order list: " + str(new_order_list)) with transaction.atomic(): if new_order_list: RoundUpOrders.objects.bulk_create(new_order_list) if new_max_created_UTC: user.userprofile.latest_order_sync_time = new_max_created_UTC user.userprofile.save() except IntegrityError: print("There was an integrity error") print("Count of new records: " + str(len(new_order_list))) # Try to process orders individually for new_order in new_order_list: try: new_order.save() print("SAVED: Order {0}".format(str(new_order.order_number))) except IntegrityError: print("Order {0} has an integrity error".format(str(new_order.order_number))) pass if new_max_created_UTC: print("Saving the sync date now anyways") user.userprofile.latest_order_sync_time = new_max_created_UTC user.userprofile.save() except Exception as e: print("There was a generic error: " + str(e.message)) logging.error(e.message) pass
UTF-8
Python
false
false
28,946
py
121
tasks.py
69
0.520763
0.514164
0
660
42.859091
196
Mrpool96/Python-2020
1,924,145,391,679
d85f951fad966588ad2b99eac0277f3923754a43
aa534dd11a258dca3b0ab6c0e49355891b046d90
/Piechart.py
7daf9e9568a8c2fe9b9a7ce0b8cb93a1b5af6bf4
[]
no_license
https://github.com/Mrpool96/Python-2020
b0650171b6d28b1ba7769158d8875dfe9a543d12
122b2fc12c1fcd862d53f94f9e30e541640fdc7d
refs/heads/master
2023-01-03T21:30:35.306675
2020-11-01T09:26:16
2020-11-01T09:26:16
288,363,064
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import matplotlib.pyplot as plt import numpy as np y = np.array([35,25,25,10,15]) mylabels = ["one","two","three","four","five"] myexplode = [0.2,0,0,0,0.3] plt.pie(y , labels=mylabels , startangle=90, explode=myexplode, shadow = True ) plt.legend() plt.show()
UTF-8
Python
false
false
263
py
23
Piechart.py
22
0.676806
0.604563
0
11
23
79
deemx/myblog
17,798,344,503,983
9b6c0b9b915591c439cdcd55c394fe9b0ff30533
748ca0c5dad210a57f8966a20c9976f0e2f0faac
/app/models.py
69d2c0a6862c59af8a58f1e4ce8238749f287f38
[]
no_license
https://github.com/deemx/myblog
7fb6337c6cf184518dfc41a7c931daedb3a616b3
a03c13af8771c3292300842360985101280f37e0
refs/heads/master
2016-09-06T02:57:14.687755
2015-09-07T12:06:41
2015-09-07T12:06:41
40,006,167
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from captcha.fields import CaptchaField from ckeditor.fields import RichTextField class Tag(models.Model): name = models.CharField(max_length=255) def __str__(self): return '{0}'.format(self.name) class Post(models.Model): title = models.CharField(max_length=255) content = RichTextField() datestamp = models.DateTimeField() tags = models.ManyToManyField(Tag) class Meta: ordering = ['-id'] def __str__(self): return '{0}'.format(self.title) def get_absolute_url(self): return '/{0}/'.format(self.id) class Comments(models.Model): nickname = models.CharField(max_length=35) comment = models.TextField(default='') captcha = CaptchaField() date = models.DateTimeField(auto_now_add=True) post = models.ForeignKey(Post)
UTF-8
Python
false
false
844
py
10
models.py
7
0.667062
0.654028
0
35
23.114286
50
stefan-cross/choraoke
3,307,124,850,911
83e9d9fe26878f03b11511dce3abaf125ca04794
6fd59b0c5ccc0240c0cbc15b04ef4eaeb9d8b44b
/backend/ultimate-api/server/tab.py
9d3e5ecf6d558f0719cc5a8806f166eb19bd4778
[]
no_license
https://github.com/stefan-cross/choraoke
dcd45ff2ee33623be33051a409736b8a4308b0ae
fe206876d5c2dd8078ae6a9c1d97e55bc9f34aa4
refs/heads/main
2023-01-20T14:10:11.431567
2020-11-30T08:29:57
2020-11-30T08:29:57
316,743,439
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from typing import Any # tab { # title: "tab name", # artist_name: "", # author: "", # capo: "" (can be null), # Tuning: "" (can be null), # # lines: [ # { # type: "chord" (OR "lyrics", "blank"), # chords: [ # { # note: "G", # pre_spaces: 10 # }, # { # note: "Em", # pre_spaces: 8 # } # ] # }, # { # type: "lyrics", # lyrics: "I found a love for me" # }, # { # type: "blank" # } # ] # } class UltimateTabInfo(object): ''' Represents the info of an ultimate guitar tab. Does not contain any lyrics or chords ''' def __init__(self, title: str, artist: str, author: str, difficulty: str = None, key: str = None, capo: str = None, tuning: str = None): self.title = title self.artist = artist self.author = author # Optionals: self.difficulty = difficulty self.key = key self.capo = capo self.tuning = tuning class UltimateTab(object): ''' Represents an ultimate guitar tab containing Lyrics and Chords A `queue-like` object which will append lines to object and can be parsed to formatted json. ''' JSON_CONTAINER_NAME = 'lines' JSON_KEY_CHORD_ARRAY = 'chords' JSON_KEY_NOTE = 'note' JSON_KEY_LYRIC = 'lyric' JSON_KEY_BLANK = 'blank' JSON_KEY_TYPE = 'type' JOSN_KEY_LEAD_SPACES = 'pre_spaces' def __init__(self): self.lines = [] def _append_new_line(self, type: str, content_tag: str, content: Any) -> None: line = {'type': type} if content_tag is not None: line[content_tag] = content self.lines.append(line) def append_chord_line(self, chords_line: str) -> None: ''' Appends a chord line to the tab. Parameters: - chords_line: A single-line string containing leading spaces and guitar chords (i.e. G, Em, etc.) ''' chords = [] # Array of dictionary of chords leading_spaces = 0 for c in chords_line.split(' '): if not c: # A space character recognized leading_spaces += 1 else: chord = { self.JSON_KEY_NOTE: c, self.JOSN_KEY_LEAD_SPACES: leading_spaces } chords.append(chord) leading_spaces = 1 # reset for next chord to read in - resets to 1 to compensate for `split` self._append_new_line(self.JSON_KEY_CHORD_ARRAY, self.JSON_KEY_CHORD_ARRAY, chords) def append_lyric_line(self, lyric_line: str) -> None: ''' Appends a lyric line to the tab. Parameters: - lyric_line: A single-line string containing lyrics (and any leading spaces needed) ''' self._append_new_line(self.JSON_KEY_LYRIC, self.JSON_KEY_LYRIC, lyric_line) def append_blank_line(self) -> None: ''' Appends a blank line to the tab. ''' self._append_new_line(self.JSON_KEY_BLANK, None, None) def as_json_dictionary(self) -> dict: ''' Returns a dictionary representation of the tab object. Properly formatted for use as a json object. ''' return {self.JSON_CONTAINER_NAME: self.lines}
UTF-8
Python
false
false
3,473
py
9
tab.py
5
0.523179
0.521163
0
121
27.702479
140
Mantabit/python_examples
10,471,130,316,860
26097d30c9001583aad5c186060ea6c6fb1f8ebc
ed6dd94781e3022f230050284d2ddd3554cc0772
/pyqt/basic_gui.py
75cf9caea72edead569cdbbe8ce763c7c436e06e
[]
no_license
https://github.com/Mantabit/python_examples
602d4f4237dbc2044d30dc5482e3e2dee4d90fb6
516dbb9cc63c7de5bfe7d0e79477dff9ff340a5d
refs/heads/master
2021-07-04T08:26:38.007606
2020-08-17T10:09:04
2020-08-17T10:09:04
153,170,298
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Jul 24 12:21:39 2020 @author: dvarx """ from PyQt5.QtWidgets import QApplication,QLabel,QWidget,QVBoxLayout,QPushButton,QHBoxLayout,QSlider from PyQt5.QtCore import Qt app=QApplication([]) def top_btn_cb(): global topbutton topbutton.setText("Clicked Top") def slider_val_chgd(val): global sliderlabel sliderlabel.setText("Value changed:%-3d"%(val)) mainwindow=QWidget() layout=QVBoxLayout() toplayout=QHBoxLayout() bottomlayout=QHBoxLayout() topbutton=QPushButton("Top") toplabel=QLabel("Top-Button: ") toplayout.addWidget(toplabel) toplayout.addWidget(topbutton) bottombutton=QPushButton("Bottom") bottomlabel=QLabel("Bottom-Button: ") bottomlayout.addWidget(bottomlabel) bottomlayout.addWidget(bottombutton) sliderlabel=QLabel("Current Value:%-3d"%(0)) slider=QSlider(Qt.Horizontal) slider.setTickPosition(QSlider.TicksBelow) slider.setTickInterval(10) slider.setMinimum(0) slider.setMaximum(255) slider.setValue(0) slider.valueChanged.connect(slider_val_chgd) sliderlayout=QVBoxLayout() sliderlayout.addWidget(slider) sliderlayout.addWidget(sliderlabel) topbutton.clicked.connect(top_btn_cb) layout.addLayout(toplayout) layout.addLayout(bottomlayout) layout.addLayout(sliderlayout) mainwindow.setLayout(layout) mainwindow.show() app.exec_()
UTF-8
Python
false
false
1,318
py
43
basic_gui.py
37
0.789833
0.770865
0
59
21.355932
99
santoshr1016/WeekendMasala
13,048,110,653,875
5de04ce814bb03adea8d9fad50da5a2bb0ba3da6
b41da6f351f27bf0d45a4e4d0e1be8f3a86f4b64
/itsybitsy/test_torus.py
3c045886bf0539e377139576af44a37c1387e230
[]
no_license
https://github.com/santoshr1016/WeekendMasala
a5adbabe0b78cde567667376d7ddf05bb505a0ff
e099f9ac9677f7acb8faf620af94a06d76cae044
refs/heads/master
2020-03-26T00:26:32.649429
2019-08-30T07:32:24
2019-08-30T07:32:24
144,320,624
0
0
null
false
2019-06-03T23:08:00
2018-08-10T18:36:38
2019-06-03T22:55:20
2019-06-03T23:07:59
2,764
0
0
0
Python
false
false
import time def dp_way(str1, start, end, dp): # base cases # print("DP Way") # print(timeit.timeit()) if start > end: return 0 if start == end: return 1 #case 1 if dp[start][end] == 0: if str1[start] == str1[end]: dp[start][end] = 2 + dp_way(str1, start+1, end-1, dp) #case 2 else: left = dp_way(str1, start+1, end, dp) right = dp_way(str1, start, end-1, dp) dp[start][end] = max(left, right) # print(timeit.timeit()) return dp[start][end] def longest_palindrome(str1, start, end): if start > end: return 0 if start == end: return 1 #case 1 if str1[start] == str1[end]: return 2 + longest_palindrome(str1, start+1, end-1) #case 2 left = longest_palindrome(str1, start+1, end) right = longest_palindrome(str1, start, end-1) return max(left, right) str1 = "rtyftkhkkayakiopiouuhgioyoyi" start = 0 end = len(str1) - 1 print("recursive Way") startt = time.time() print(longest_palindrome(str1, start, end)) done = time.time() elapsed = done - startt print(elapsed) print("*"*22) size = len(str1) dp = [[0 for i in range(size)] for i in range(size)] start = 0 end = len(str1) - 1 print("DP Way") startt = time.time() print(dp_way(str1, start, end, dp)) done = time.time() elapsed = done - startt print(elapsed)
UTF-8
Python
false
false
1,400
py
231
test_torus.py
205
0.581429
0.55
0
65
20.538462
65
valentyntroyan/Homework_PyCharm
7,619,272,024,174
45b5407f10403c3a5ab68d8acff56c11efac2c39
3363a24d65383a5a064fa6602bb37df7d075fe31
/homework_1.py
20e26e7a051aa5c33ff2f686340f2de49cafd4d3
[]
no_license
https://github.com/valentyntroyan/Homework_PyCharm
a7e79c9c1633ae7c51d230928824306e2bcee5c2
af258b696e324fd8c6602a74acab564b1ad4f5ea
refs/heads/master
2020-11-25T01:55:33.663037
2019-12-16T17:49:08
2019-12-16T17:49:08
228,438,560
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
print('Hello world!') print('Second Commit') print('Third Commit')
UTF-8
Python
false
false
66
py
1
homework_1.py
1
0.727273
0.727273
0
3
21.333333
22
michaelkook/GraphLab
10,651,518,897,302
835ce1ed563c0bdd1ce7b5d850b73b77583393c8
bac60efbee14e6e7a2b637593e7b5ca08671d212
/makesnapgraphs.py
1e0f892d6318e4b62ed19a94a38b981ea4c4bbcf
[]
no_license
https://github.com/michaelkook/GraphLab
96fb813927c148376bc239f3a228d4f9c233a116
466a732ccd429afc47dd83c4b2745220a060c321
refs/heads/master
2016-09-16T15:58:14.093239
2012-11-28T21:50:58
2012-11-28T21:50:58
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import scipy.io as sio import sys from glob import glob def maketsv(G_dir, toDir): for gr in glob(os.path.join(G_dir,'*')): G = sio.loadmat(gr)['fibergraph'] f = open( os.path.join(toDir,getBaseName(gr)+".tsv"),"w") for row in G.indices: nnz = G[row,:].nonzero()[1] for edge in nnz: f.write(str(row)+" "+ str(edge) + "\n") f.close() def makesnap(G_dir, toDir): for gr in glob(os.path.join(G_dir,'*')): G = sio.loadmat(gr)['fibergraph'] f = open( os.path.join(toDir,getBaseName(gr)+".snap"),"w") for row in range(G.shape[0]): nnz = G[row,:].nonzero()[1] if nnz.shape[0] == 0: f.write(str(row) + " 0\n") else: f.write(str(row)) for edge in nnz: f.write(" "+ str(edge)) f.close() def getBaseName(fn): if fn.endswith('/'): fn = fn[:-1] return (os.path.splitext(fn.split('/')[-1])[0]).partition('_')[0] if __name__ == '__main__': makesnap(sys.argv[1], sys.argv[2])
UTF-8
Python
false
false
1,038
py
3
makesnapgraphs.py
2
0.526012
0.514451
0
44
22.590909
67
junyi1997/pi_livenet
16,810,502,034,550
be4cce6274ad68fe2a87e4742fa50f94cc078ca8
a53c2f957f3b85b7f4271a63ca57a70246ac7937
/GUIdemo.py
8158efa4849526ed68ee11898d64753f6f9d8ff8
[]
no_license
https://github.com/junyi1997/pi_livenet
20e19b5fa6f8b1ac3e2e9bcddee52579b31d6cd2
4c92c953eb3e7aae328b3e39c21d254513d69d4d
refs/heads/master
2023-07-07T12:54:27.872056
2021-08-16T01:36:26
2021-08-16T01:36:26
395,272,413
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tkinter as tk from tkinter import ttk import tkinter.messagebox as messagebox import pickle from PIL import Image,ImageTk from tkinter import Scrollbar, Frame from tkinter.ttk import Treeview # import BotSpeak # list_name = ["Adela Chen","Bonnie Lin","Allan Lin","M10907716","M10907306","M10907324"] # list_visit = ["Junyi Wu","Baron Syu","Frank Zhou","M10907324","M10907324","M10907324"] # list_time = ["2021/08/03/15","2021/08/04/15","2021/08/05/15","2021/08/06/15","2021/08/07/15","2021/08/08/15"] import fr_livent import openpyxl ######################################################################## class MyApp(object): """""" #---------------------------------------------------------------------- def __init__(self): self.list_name=[] self.list_visit=[] self.list_time=[] """Constructor""" self.win = tk.Tk() # self.win.attributes("-fullscreen", True) self.win.geometry("1024x768") self.win.title("雲端註冊與深度辨識真面目系統")#定義標題名稱 left=(self.win.winfo_screenwidth()-1024)//2#指定視窗置中 top=(self.win.winfo_screenheight()-768)//2 self.win.geometry("{:}x{:}+{:}+{:}".format(1024,768,left,top)) print(self.win.winfo_screenwidth(),self.win.winfo_screenheight()) #圖片呼叫 self.photo_background=tk.PhotoImage(file=r"./image/main_background.png") self.photo_inSystem=tk.PhotoImage(file=r"./image/in_system.png") self.photo_inSearch=tk.PhotoImage(file=r"./image/in_search.png") canvas_width = 1024#新增一個畫布 canvas_height =768 canvas = tk.Canvas(self.win, width=canvas_width, height=canvas_height) canvas.pack() #背景 canvas.create_image(512,384, image=self.photo_background)#將背景貼到畫布上 def inSystem(): # self.hide() fr_livent.main(self.win.winfo_screenwidth(),self.win.winfo_screenheight()) # self.show() #選擇使用說明 but_System=tk.Button(self.win,image=self.photo_inSystem, command=inSystem) but_System.place(x=50,y=600) #進入登入畫面 but_Search=tk.Button(self.win,image=self.photo_inSearch, command=self.openFrame) but_Search.place(x=600,y=600) # BotSpeak.speak("歡迎來到KEEPING個人資料管理系統 請點選下方按鍵登入") self.win.mainloop() # BotSpeak.speak("掰掰") #---------------------------------------------------------------------- def hide(self): """""" self.win.withdraw() def closeWindow(self,myclosewindow): self.onCloseOtherFrame(myclosewindow) def getinfo(self): fn = 'EE3407301.xlsx' wb = openpyxl.load_workbook(fn) wb.active = 0 ws = wb.active print(ws.max_row) print(ws.max_column) # print(wb) for i in range(int(ws.max_row-1)): read_Visitor_name='A'+str(i+2) read_find_who='D'+str(i+2) read_time='E'+str(i+2) read_place='F'+str(i+2) self.list_name.append(ws[read_Visitor_name].value) self.list_visit.append(ws[read_find_who].value) self.list_time.append(ws[read_time].value) # print("list_name = {:}".format(self.list_name)) # print("list_visit = {:}".format(self.list_visit)) # print("list_time = {:}".format(self.list_time)) # #---------------------------------------------------------------------- def openFrame(self): """""" self.hide() self.win_Search = tk.Toplevel() # self.win_Search.attributes("-fullscreen", True) #使用者關閉視窗觸發的事件(第一個刪除視窗,第二個為函式名,即過程) self.win_Search.protocol('WM_DELETE_WINDOW',lambda:self.closeWindow(self.win_Search)) #win_Search.attributes("-fullscreen", True) left=(self.win_Search.winfo_screenwidth()-1024)//2 top=(self.win_Search.winfo_screenheight()-768)//2 self.win_Search.geometry("{:}x{:}+{:}+{:}".format(1024,768,left,top)) self.win_Search.title("行事曆") self.win_Search.photo_background=tk.PhotoImage(file=r"./image/Search_background.png") self.win_Search.photo_back=tk.PhotoImage(file=r"./image/back.PNG") canvas_width = 1024 canvas_height =768 canvas = tk.Canvas(self.win_Search, width=canvas_width, height=canvas_height) canvas.pack() #背景 canvas.create_image(512,384, image=self.win_Search.photo_background) btn01= tk.Button(self.win_Search,image=self.win_Search.photo_back,command=lambda: self.onCloseOtherFrame(self.win_Search) ) btn01.place(x=800,y=670) #使用Treeview組件實現表格功能 frame = Frame(self.win_Search) frame.place(x=50, y=50, width=800, height=600) style_head = ttk.Style() style_head.configure("Treeview.Heading", font=('Noto Sans Mono CJK TC Bold', 25), rowheight=200) style_head.configure("Treeview", font=('Noto Sans Mono CJK TC Bold', 25), rowheight=100) #滾動條 scrollBar = tk.Scrollbar(frame) scrollBar.pack(side=tk.RIGHT, fill=tk.Y) #Treeview組件,6列,顯示表頭,帶垂直滾動條 tree = Treeview(frame, columns=( 'c1' , 'c2' , 'c3' ), show= "headings" , yscrollcommand=scrollBar.set) #設置每列寬度和對齊方式 tree.column( 'c1' , width=230, anchor= 'center' ) tree.column( 'c2' , width=230, anchor= 'center' ) tree.column( 'c3' , width=340, anchor= 'center' ) #設置每列表頭標題文本 tree.heading( 'c1' , text= '訪客姓名' ) tree.heading( 'c2' , text= '受訪者姓名' ) tree.heading( 'c3' , text= '來訪時間' ) tree.pack(side=tk.LEFT, fill=tk.Y) #Treeview組件與垂直滾動條結合 scrollBar.config(command=tree.yview) #定義並綁定Treeview組件的鼠標單擊事件 def treeviewClick(event): pass tree.bind( '<Button-1>' , treeviewClick) # print(len(list_time)) self.getinfo() for i in range(len(self.list_name)): tree.insert("",i,values=(self.list_name[i],self.list_visit[i],self.list_time[i])) #插入數據 # tree.insert("",1,values=("Adela Chen","Junyi Wu","2021/08/03/15")) #插入數據 # tree.insert("",2,values=("Bonnie Lin","Baron Syu","2021/08/04/15")) #插入數據 # tree.insert("",3,values=("Allan Lin","Frank Zhou","2021/08/05/15")) #插入數據 #---------------------------------------------------------------------- def onCloseOtherFrame(self, otherFrame): """""" otherFrame.destroy() self.show() #---------------------------------------------------------------------- def CloseWin(self, otherFrame): """""" otherFrame.destroy() #---------------------------------------------------------------------- def show(self): """""" self.win.update() self.win.deiconify() #---------------------------------------------------------------------- if __name__ == "__main__": app = MyApp()
UTF-8
Python
false
false
7,508
py
5
GUIdemo.py
3
0.531427
0.491789
0
201
34.144279
131
IDJack/leetcode
936,302,906,243
33a27c9597e8d7ea12e2af6e9eadd87e37f9aef8
0d15fb1a34f7ff90811f679e4870e826d1da0ee4
/python3/905_sort_array_by_parity.py
a03cc18843ff0771fcb14c2729d706593d104d17
[]
no_license
https://github.com/IDJack/leetcode
e405f7acbb6448ff4a77d4ce3acb9ed097068837
b17d972028e8b8f323ee7d9f2347f88e0f548ea9
refs/heads/master
2020-03-31T17:04:23.444593
2018-10-13T08:28:31
2018-10-13T08:28:31
149,770,688
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def sortArrayByParity(self, A): """ :type A: List[int] :rtype: List[int] """ # 两指针 start,end = 0,len(A)-1 while start < end: while start <= len(A)-1 and A[start] % 2 == 0: start += 1 while end >= 0 and A[end] % 2 == 1: end -= 1 # 边界条件 if start > len(A)-1 or end < 0 or start > end: return A A[start],A[end] = A[end],A[start] start += 1 end -= 1 return A
UTF-8
Python
false
false
639
py
21
905_sort_array_by_parity.py
20
0.3552
0.3328
0
23
25.826087
58
audiolion/py-fitness
16,552,803,989,744
b596e6d89cda17940323f4de1d0a8d07ddf54aa2
7d60588702280c7f8c6477e7703528bb860aaa4a
/py_fitness/py_fitness/workout/migrations/0013_remove_workout_editor.py
05d89b76f95431f5ea6672a2a0a7643a193db50a
[ "MIT" ]
permissive
https://github.com/audiolion/py-fitness
7e420c4ef6e10ff122fc4f30309cd428d4d5bc38
9e0ca785c73a07cb788685bbde6e840a7a2e3419
refs/heads/master
2021-05-01T10:16:22.214094
2017-01-02T02:03:51
2017-01-02T02:03:51
68,249,682
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-29 03:27 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('workout', '0012_auto_20161025_2102'), ] operations = [ migrations.RemoveField( model_name='workout', name='editor', ), ]
UTF-8
Python
false
false
394
py
52
0013_remove_workout_editor.py
32
0.591371
0.507614
0
19
19.736842
48
mattgiltaji/miscutils
10,849,087,416,738
093610ba6f2cba0e977f6c0183b920828188e160
76192cb0921ef817df5ea9fcc438b127416e607d
/tests/test_filtermanuel.py
56e5660c4746d72a9d3bb3ba73ed029ec9ffe7e4
[]
no_license
https://github.com/mattgiltaji/miscutils
6138dade31bec633d7e4a93c0b5b2039647362f3
a116edde88efdd30c6f6c8142d0422150c7744cf
refs/heads/main
2022-08-29T22:49:20.069735
2020-02-24T04:15:33
2020-02-24T04:15:33
86,417,700
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Tests for filtermanuel.py # run from miscutils dir as: # python -m pytest tests/test_filtermanuel.py from os import path import pytest import filtermanuel.filtermanuel as fm # paths to test files and such current_dir = path.dirname(path.abspath(__file__)) test_data_dir = path.join(current_dir, 'files', 'filtermanuel') basic_test_dir = path.join(test_data_dir, 'basic_files') small_file = path.join(basic_test_dir, 'small.txt') blank_file = path.join(basic_test_dir, 'blank.txt') big_file = path.join(basic_test_dir, 'big.txt') not_exist_file = path.join(basic_test_dir, 'not_exist.txt') no_matches_dir = path.join(test_data_dir, 'copy_nothing') some_matches_dir = path.join(test_data_dir, 'copy_some') all_matches_dir = path.join(test_data_dir, 'copy_everything') remove_all_dir = path.join(test_data_dir, 'remove_all') remove_some_dir = path.join(test_data_dir, 'remove_some') remove_none_dir = path.join(test_data_dir, 'remove_none') full_test_dir = path.join(test_data_dir, 'full_test') # hardcoding fun fake_monster_file_contents = ["Monster", "Monster'1", "Monster 2", "Monster.37", "monster-dash", "comma, the monster"] class TestShouldCopy: @pytest.mark.parametrize("test_input", [ "=================================", # real line "=====================================", # longer "==========", # arbitrarily short but valid "====", # shortest possible valid ]) def test_copy_separator(self, test_input): assert fm.should_copy(test_input) @pytest.mark.parametrize("test_input", [ "=", "==", "===", # all too short "---------------------------", # wrong symbol "-=-=-=-=-=-=-=-=-=-=", # no mixing "----=======-----", # nope "============================-", # no dash ]) def test_dont_copy_bad_separator(self, test_input): assert not fm.should_copy(test_input) @pytest.mark.parametrize("test_input", [ "[Ye Olde Medievale Villagee]", # real area # real areas (with fun characters) "[An Incredibly Strange Place (Mediocre Trip)]", "[Anger Man's Level]", "[The Gourd!]", "[LavaCo™ Lamp Factory]", "[A Deserted Stretch of I-911]", "[Engineering]", # no space in area name ]) def test_copy_area_name(self, test_input): assert fm.should_copy(test_input) @pytest.mark.parametrize("test_input", [ "[]", "[ ]", # no blanks alone # fake areas to test regex bounds "[!]", "[*****]", ]) def test_dont_copy_bad_area_name(self, test_input): assert not fm.should_copy(test_input) @pytest.mark.parametrize("test_input", [ "Monster", "Monster 2", "Monster'1", "comma, the monster", "monster-dash", "Monster.37", ]) def test_copy_matching_monster(self, test_input): assert fm.should_copy(test_input, fake_monster_file_contents) @pytest.mark.parametrize("test_input", [ "monster", "yolo", "comma, ", "-dash", "37", "Monst", ]) def test_dont_copy_nonmatching_monster(self, test_input): assert not fm.should_copy(test_input, fake_monster_file_contents) @pytest.mark.parametrize("test_input", [ "Monster {1}", "Monster 2 {3}", "Monster'1 {2}", "comma, the monster {3}", "monster-dash {2}", "Monster.37 {1}", ]) def test_copy_matching_monster_with_brackets(self, test_input): assert fm.should_copy(test_input, fake_monster_file_contents) class TestGetFileContents: def test_get_blank_file_contents(self): results = fm.get_file_contents(blank_file) assert results == [] def test_error_on_bad_filename(self): with pytest.raises(FileNotFoundError) as excinfo: fm.get_file_contents(not_exist_file) assert 'No such file or directory' in excinfo.value.strerror def test_get_big_file_contents(self): results = fm.get_file_contents(big_file) assert len(results) == 5001 for x in range(0, 5000): assert "this is a much longer line{0:04d}\n".format(x) in results def test_get_small_file_contents(self): results = fm.get_file_contents(small_file) assert len(results) == 11 for x in range(0, 10): assert "line{0:02d}\n".format(x) in results assert "line11\n" not in results class TestRemoveBlankAreas: @pytest.mark.parametrize("test_dir", [ remove_all_dir, remove_some_dir, remove_none_dir, ]) def test_remote_blank_areas(self, test_dir): contents_file = path.join(test_dir, 'contents.txt') expected_file = path.join(test_dir, 'expected.txt') with open(contents_file, 'r') as cf: contents = cf.readlines() actual = fm.remove_blank_areas(contents=contents) with open(expected_file, 'r') as ef: expected = ef.readlines() assert expected == actual class TestFilterManuel: @pytest.mark.parametrize("test_dir", [ no_matches_dir, some_matches_dir, all_matches_dir, ]) def test_filtering(self, tmpdir, test_dir): actual_file = str(tmpdir.join('filtered_manuel.txt')) manuel_file = path.join(test_dir, 'manuel.txt') faxbot_file = path.join(test_dir, 'faxbot.txt') expected_file = path.join(test_dir, 'expected.txt') fm.filter_manuel(manuel_path=manuel_file, faxbot_path=faxbot_file, output_path=actual_file) with open(expected_file, 'r') as ef: expected = ef.readlines() with open(actual_file, 'r') as af: actual = af.readlines() assert expected == actual class TestParseArgs: @pytest.mark.parametrize("test_dir", [ no_matches_dir, some_matches_dir, all_matches_dir, ]) def test_arg_parsing(self, tmpdir, test_dir): output_file = str(tmpdir.join('filtered_manuel.txt')) manuel_file = path.join(test_dir, 'manuel.txt') faxbot_file = path.join(test_dir, 'faxbot.txt') arg_string = manuel_file + " " + faxbot_file + " " + output_file results = fm.parse_args(arg_string.split()) assert manuel_file == results.manuel assert faxbot_file == results.faxbot assert output_file == results.output def test_parse_args_mandatory_fields(self, capsys): with pytest.raises(SystemExit) as excinfo: fm.parse_args([]) out, err = capsys.readouterr() assert 2 == excinfo.value.code assert 'manuel' in err assert 'faxbot' in err assert 'output' in err class TestMain: @pytest.mark.parametrize("test_dir", [ no_matches_dir, some_matches_dir, all_matches_dir, full_test_dir, ]) def test_main(self, tmpdir, test_dir, mocker): output_file = str(tmpdir.join('filtered_manuel.txt')) manuel_file = path.join(test_dir, 'manuel.txt') faxbot_file = path.join(test_dir, 'faxbot.txt') expected_file = path.join(test_dir, 'expected.txt') arg_string = "filtermanuel.py {mf} {ff} {of}".format( mf=manuel_file, ff=faxbot_file, of=output_file) mocker.patch('sys.argv', arg_string.split()) fm.main() with open(expected_file, 'r') as ef: expected = ef.readlines() with open(output_file, 'r') as of: actual = of.readlines() assert expected == actual @pytest.mark.real def test_real(self, mocker): real_dir = path.abspath(r'D:\Matt\Desktop\kolmafia\samples') output_file = path.join(real_dir, 'filtered_faxbot.txt') manuel_file = path.join(real_dir, 'monster manuel.txt') faxbot_file = path.join(real_dir, 'faxbot.txt') args = ["filtermanuel.py", manuel_file, faxbot_file, output_file] mocker.patch('sys.argv', args) fm.main()
UTF-8
Python
false
false
8,105
py
24
test_filtermanuel.py
8
0.584105
0.578428
0
214
35.864486
80
nuaays/apiserver
19,009,525,258,254
2ce86ff550e67d52c2597c07f5143c4e8955dd4a
6db9ad22b62c137b7401f4b510bf0042cc42291b
/api/member_card/a_member_card.py
abec158c5fbb686aa1172da0bcfef2f827671efe
[]
no_license
https://github.com/nuaays/apiserver
413a9e1d0b1a76878ae2d449ab24cc439896b977
15621db1a64ffe199619924b75a5b5c5e6416bed
refs/heads/master
2021-01-20T08:07:45.930902
2017-03-30T08:40:46
2017-03-30T08:40:46
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ 个人中心-VIP会员 """ from eaglet.core import api_resource from eaglet.decorator import param_required from business.member_card.member_card import MemberCard class AMemberCard(api_resource.ApiResource): """ 个人中心-VIP会员 """ app = 'member_card' resource = 'member_card' @param_required([]) def get(args): """ 通过 个人中心-VIP会员 入口进入会员页面。通常情况下,只有绑定了手机号并且已经开通了的会员会进入到这个页面, 但为了防止非会员通过别人直接分享链接或者其他方式直接打开这个页面,这里面再次对is_binded和is_vip进行了判断, 如果is_binded为False,前端应该跳转到绑定手机号页面, 如果is_vip为False,前端应该跳转到会员卡列表页面 @param 无 @return member_card dict """ webapp_user = args['webapp_user'] is_binded = webapp_user.is_binded member_id = webapp_user.member.id member_card = MemberCard.from_member_id({ "member_id": member_id, "fill_options": { "with_price": True } }) if is_binded and member_card: data = { 'card_number': member_card.card_number, 'is_active': member_card.is_active, 'remained_backcash_times': member_card.remained_backcash_times, 'balance': member_card.balance, 'card_name': member_card.card_name, 'is_binded': is_binded, 'is_vip': True, 'user_icon': webapp_user.user_icon, 'username_for_html': webapp_user.username_for_html, 'valid_time_to': member_card.valid_time_to, 'interval_days': member_card.interval_days, 'next_clear_time': member_card.next_clear_time, 'bill_info': member_card.get_bill_info() } else: data = { 'is_binded': is_binded, 'is_vip': False } return data
UTF-8
Python
false
false
1,812
py
370
a_member_card.py
274
0.675
0.674342
0
60
24.333333
67
brightforme/python-bright
6,777,458,416,620
121aea16487b7e8434fd4e85888cb9044ca22ec8
a52d446dfdef8f1de7317dca64f1f84bc2d5c783
/tests/test_collections.py
904423018a0c2a81c2f90c1edafec4d3ba7ebafa
[ "MIT" ]
permissive
https://github.com/brightforme/python-bright
97fb2bc85192ffcd35e6b991ffdeb0cd157232d1
8366ddf411e237e2a440a578df3d1b0c99cd67ca
refs/heads/master
2020-02-26T16:01:31.772349
2016-10-03T08:25:01
2016-10-03T08:25:01
38,366,308
0
0
null
false
2015-08-25T13:45:43
2015-07-01T10:57:56
2015-08-05T11:50:14
2015-08-25T13:45:43
191
0
0
0
Python
null
null
import unittest import bright from tests import settings from bright.helpers import Forbidden, ResourceNotFound class CollectionTests(unittest.TestCase): @classmethod def setupClass(self): scopes = ["collections:read", "collections:write", "collections:like", "artworks:read", "user:read"] self.bright_api = bright.Bright(client_id=settings.client_id, client_secret=settings.client_secret, scopes=scopes, **settings.kwargs ) self.own_collections = self.bright_api.my_collections()["collections"] self.own_artworks = self.bright_api.my_artworks()["artworks"] def test_get_collection(self): "Test we can get a collection" contents = ['slug', 'thumbnail_url', 'is_private', 'name', 'artworks', 'id', 'curator', 'description', 'draft'] res = self.bright_api.get_collection(self.own_collections[0]["id"]) self.assertIn("collection", res) for element in contents: self.assertIn(element, res["collection"]) def test_get_all_collections(self): "Test we can get all collections" contents = ['slug', 'thumbnail_url', 'is_private', 'name', 'artworks', 'id', 'curator', 'description', 'draft'] res = self.bright_api.get_all_collections() self.assertIn("pages", res) self.assertIn("collections", res) for collection in res["collections"]: for element in contents: self.assertIn(element, collection) def test_create_collection(self): "Test we can create a collection" contents = ['slug', 'thumbnail_url', 'is_private', 'name', 'artworks', 'id', 'curator', 'description', 'draft'] res = self.bright_api.create_collection("test", "'tis but a test", False) for element in contents: self.assertIn(element, res["collection"]) self.bright_api.delete_collection(res["collection"]["id"]) def test_delete_collection(self): "Test we can delete a collection" res = self.bright_api.create_collection("test", "'tis but a test", False)["collection"] me = self.bright_api.my_collections()["collections"] self.assertIn(res, me) self.bright_api.delete_collection(res["id"]) me = self.bright_api.my_collections()["collections"] self.assertNotIn(res, me) def test_update_collection(self): "Test we can update a collection" data = { "name": "foobar" } orig = self.bright_api.get_collection(self.own_collections[0]["id"])["collection"] res = self.bright_api.update_collection(orig["id"], data=data)["collection"] self.assertEquals(data["name"], res["name"]) self.bright_api.update_collection(orig["id"], {"name": orig["name"]}) def test_add_to_collection(self): "Test we can add artworks to collections" collec = self.own_collections[0] artworks_not_in_collec = [x for x in self.own_artworks if x in collec["artworks"]] artwork_id = artworks_not_in_collec[0]["id"] res = self.bright_api.add_to_collection(collec["id"], artwork_id) self.assertEquals({}, res) res = self.bright_api.get_collection(collec["id"]) self.assertIn(artwork_id, res["collection"]["artworks"]) self.bright_api.remove_from_collection(collec["id"], artwork_id) def remove_from_collection(self): "Test we can remove artworks from collections" collec = self.own_collections[0] artworks_in_collec = [x for x in self.own_artworks if x in collec["artworks"]] artwork_id = artworks_in_collec[0]["id"] res = self.bright_api.remove_from_collection(collec["id"], artwork_id) self.assertEquals({}, res) res = self.bright_api.get_collection(collec["id"]) self.assertNotIn(artwork_id, res["collection"]["artworks"]) self.bright_api.add_to_collection(collec["id"], artwork_id) def test_like_collection(self): "Test that we can like a collection" own_id = self.bright_api.me()["user"]["id"] all_collec = self.bright_api.get_all_collections()["collections"] collec = list(filter(lambda c: not own_id in c["likes"], all_collec))[0] res = self.bright_api.like_collection(collec["id"]) self.assertEquals({}, res) res = self.bright_api.get_collection(collec["id"]) self.assertIn(own_id, res["collections"]["likes"]) self.bright_api.unlike_collection(collec["id"]) def test_unlike_collection(self): "Test that we can unlike a collection" own_id = self.bright_api.me()["user"]["id"] all_collec = self.bright_api.get_all_collections()["collections"] collec = list(filter(lambda c: not own_id in c["likes"], all_collec))[0] _ = self.bright_api.like_collection(collec["id"]) res = self.bright_api.unlike_collection(collec["id"]) self.assertEquals({}, res) res = self.bright_api.get_collection(collec["id"]) self.assertNotIn(own_id, res["collections"]["likes"]) self.bright_api.like_collection(collec["id"])
UTF-8
Python
false
false
5,449
py
12
test_collections.py
9
0.594605
0.593136
0
139
38.201439
95
fajriansyah1127/cash_io
14,224,931,697,925
e74ddfda77120bb26d5e1669ddd51e3d6b99b8df
7bde0b3ea9d47b5d53eb3687f2ca67378ad19a26
/test.py
4043f73557f39544d198bc34518c1fe6aecf99db
[]
no_license
https://github.com/fajriansyah1127/cash_io
f72da3743c58e2b5b642c303facaca8172f58804
9c5d3676ebfeb1cbdf9095bc760fae9f513a10f2
refs/heads/main
2023-06-03T07:19:11.262844
2021-06-17T00:49:49
2021-06-17T00:49:49
364,286,703
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask, request,render_template,jsonify, make_response from werkzeug.security import generate_password_hash, check_password_hash from flask_restful import Resource, Api from flask_cors import CORS from mysql.connector import MySQLConnection # import mysql.connector import json import uuid import jwt import datetime app = Flask(__name__) def DB(): filejson=open('config.json','r') # Get Data from config.json config = json.loads(filejson.read()) #Parse the data db = MySQLConnection(host=config['host'],user=config['user'],password=config['password'],database=config['database']) return db def queryToDb(db,query, value): #FOR CREATE UPDATE N DELETE try: cursor = db.cursor() cursor.execute(query, value) db.commit() effectedRow = cursor.rowcount cursor.close() db.close() except Exception as e: return e else: return int(effectedRow) @app.route("/",methods=['GET']) def index(): return '' ################ PENJUALAN ######################################## @app.route("/penjualan",methods=['GET','POST']) def penjualan(): if request.method == 'GET': # GET ALL Penjualan db=DB() cursor = db.cursor() cursor.execute("SELECT * FROM penjualan") penjualan = cursor.fetchall() cursor.close() db.close() penjualanTodict = lambda r : dict(id=r[0],daftar_barang=r[1],total_harga=r[2],dibayar=r[3] ,kembalian=r[4]) return json.dumps(list(map(penjualanTodict,[r for r in penjualan]))) elif request.method == 'POST': # CREATE penjualan data = request.get_json() query = """INSERT INTO penjualan(daftar_barang,total_harga,dibayar,kembalian ) VALUES (%s,%s,%s,%s)""" value = (data["daftar_barang"],data["total_harga"],data["dibayar"],data["kembalian"]) return jsonify({'message' : "Fail" if queryToDb(DB(),query,value) <1 else "Succes"}) ################ PENJUALAN ######################################## @app.route("/penjualan/<id>",methods=['PUT','GET','DELETE']) def penjualanCrud(id): db = DB() cur = db.cursor() cur.execute(f"SELECT * FROM penjualan WHERE id='{id}'") penjualan = cur.fetchone() cur.close() db.close() penjualanTodict = lambda r : dict(id=r[0],daftar_barang=r[1],total_harga=r[2],dibayar=r[3] ,kembalian=r[4]) if penjualan==None: return jsonify({"message" : "fail,penjualan Not Found"}) if request.method == "PUT": newpenjualan = request.get_json() db=DB() cur=db.cursor() query = f"""UPDATE penjualan SET daftar_barang='{newpenjualan['daftar_barang']}',total_harga='{newpenjualan['total_harga']}', dibayar='{newpenjualan['dibayar']}', kembalian='{newpenjualan['kembalian']}' WHERE penjualan.id='{id}'""" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({'message' : 'Gagal update' if c<1 else 'Berhasil update'}) elif request.method == 'GET': # GET ONE transaksi return jsonify({"message" : "success", "result" : penjualanTodict(penjualan)}) elif request.method == 'DELETE': # DELETE penjualan # return '' db=DB() cur=db.cursor() query = f"DELETE FROM penjualan WHERE id='{id}'" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({"msg" : "Fail" if c<1 else "Success"}) ################ PENJUALAN ######################################## ################ TRANSAKSI ######################################## @app.route("/transaksi",methods=['GET','POST']) def transaksi(): if request.method == 'GET': # GET ALL Penjualan db=DB() cursor = db.cursor() cursor.execute("SELECT * FROM transaksi") transaksi = cursor.fetchall() cursor.close() db.close() transaksiTodict = lambda r : dict(id=r[0],tanggal_transaksi=r[1],keterangan=r[2],jenis_transaksi=r[3] ) return json.dumps(list(map(transaksiTodict,[r for r in transaksi]))) elif request.method == 'POST': # CREATE penjualan data = request.get_json() query = """INSERT INTO transaksi(tanggal_transaksi,keterangan,jenis_transaksi) VALUES (%s,%s,%s)""" value = (data["tanggal_transaksi"],data["keterangan"],data["jenis_transaksi"]) return jsonify({'message' : "Fail" if queryToDb(DB(),query,value) <1 else "Succes"}) @app.route("/transaksi/<id>",methods=['PUT','GET','DELETE']) def transaksiCrud(id): db = DB() cur = db.cursor() cur.execute(f"SELECT * FROM transaksi WHERE id='{id}'") transaksi = cur.fetchone() cur.close() db.close() transaksiTodict = lambda r : dict(id=r[0],tanggal_transaksi=r[1],keterangan=r[2],jenis_transaksi=r[3]) if transaksi==None: return jsonify({"message" : "fail,transaksi Not Found"}) elif request.method == 'GET': # GET ONE transaksi return jsonify({"message" : "success", "result" : transaksiTodict(transaksi)}) elif request.method == "PUT": newtransaksi = request.get_json() db=DB() cur=db.cursor() query = f"""UPDATE transaksi SET tanggal_transaksi='{newtransaksi['tanggal_transaksi']}',keterangan='{newtransaksi['keterangan']}', jenis_transaksi='{newtransaksi['jenis_transaksi']}' WHERE transaksi.id='{id}'""" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({'message' : 'Gagal update' if c<1 else 'Berhasil update'}) elif request.method == 'DELETE': # DELETE penjualan # return '' db=DB() cur=db.cursor() query = f"DELETE FROM transaksi WHERE id='{id}'" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({"msg" : "Fail" if c<1 else "Success"}) @app.route("/transaksi/<tanggal_transaksi>",methods=['GET']) def tanggal_transaksi(tanggal_transaksi): db = DB() cur = db.cursor() cur.execute(f"SELECT * FROM transaksi WHERE tanggal_transaksi='{tanggal_transaksi}'") transaksi_tanggal = cur.fetchone() cur.close() db.close() transaksi_tanggalTodict = lambda r : dict(id=r[0],tanggal_transaksi=r[1],keterangan=r[2],jenis_transaksi=r[3]) if transaksi_tanggal==None: return jsonify({"message" : "fail,transaksi Not Found"}) elif request.method == 'GET': # GET ONE transaksi return jsonify({"message" : "success", "result" : transaksi_tanggalTodict(transaksi_tanggal)}) ################ TRANSAKSI ######################################## ################ BARANG_RETAIL ######################################## @app.route("/barang_retail",methods=['GET','POST']) def barang_retail(): if request.method == 'GET': # GET ALL barang_retail db=DB() cursor = db.cursor() cursor.execute("SELECT * FROM barang_retail") barang_retail = cursor.fetchall() cursor.close() db.close() barang_retailTodict = lambda r : dict(id=r[0],nama_barang=r[1],harga=r[2],tanggal_kadaluarsa=r[3] ,jumlah_barang=r[4],merk=r[5]) return json.dumps(list(map(barang_retailTodict,[r for r in barang_retail]))) elif request.method == 'POST': # CREATE barang_retail data = request.get_json() query = """INSERT INTO barang_retail(nama_barang,harga,tanggal_kadaluarsa,jumlah_barang,merk) VALUES (%s,%s,%s,%s,%s)""" value = (data["nama_barang"],data["harga"],data["tanggal_kadaluarsa"],data["jumlah_barang"],data["merk"]) return jsonify({'message' : "Fail" if queryToDb(DB(),query,value) <1 else "Succes"}) @app.route("/barang_retail/<id>",methods=['PUT','GET','DELETE']) def barang_retailCrud(id): db = DB() cur = db.cursor() cur.execute(f"SELECT * FROM barang_retail WHERE id='{id}'") barang_retail = cur.fetchone() cur.close() db.close() barang_retailTodict =lambda r : dict(id=r[0],nama_barang=r[1],harga=r[2],tanggal_kadaluarsa=r[3],jumlah_barang=r[4],merk=r[5]) if barang_retail==None: return jsonify({"message" : "fail,barang_retail Not Found"}) elif request.method == 'GET': # GET ONE barang_retail return jsonify({"message" : "success", "result" :barang_retailTodict(barang_retail)}) elif request.method == "PUT": newbarang_retail = request.get_json() db=DB() cur=db.cursor() query = f"""UPDATE barang_retail SET nama_barang='{newbarang_retail['nama_barang']}', harga='{newbarang_retail['harga']}', tanggal_kadaluarsa='{newbarang_retail['tanggal_kadaluarsa']}', jumlah_barang='{newbarang_retail['jumlah_barang']}', merk='{newbarang_retail['merk']}' WHERE barang_retail.id='{id}'""" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({'message' : 'Gagal update' if c<1 else 'Berhasil update'}) elif request.method == 'DELETE': # DELETE penjualan # return '' db=DB() cur=db.cursor() query = f"DELETE FROM barang_retail WHERE id='{id}'" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({"msg" : "Fail" if c<1 else "Success"}) ################ BARANG_RETAIL ######################################## ################ BARANG_NONRETAIL ######################################## @app.route("/barang_nonretail",methods=['GET','POST']) def barang_nonretail(): if request.method == 'GET': # GET ALL barang_nonretail db=DB() cursor = db.cursor() cursor.execute("SELECT * FROM barang_nonretail") barang_nonretail = cursor.fetchall() cursor.close() db.close() barang_nonretailTodict = lambda r : dict(id=r[0],nama_barang=r[1],harga=r[2],status=r[3]) return json.dumps(list(map(barang_nonretailTodict,[r for r in barang_nonretail]))) elif request.method == 'POST': # CREATE barang_nonretail data = request.get_json() query = """INSERT INTO barang_nonretail(nama_barang,harga,status) VALUES (%s,%s,%s)""" value = (data["nama_barang"],data["harga"],data["status"]) return jsonify({'message' : "Fail" if queryToDb(DB(),query,value) <1 else "Succes"}) @app.route("/barang_nonretail/<id>",methods=['PUT','GET','DELETE']) def barang_nonretailCrud(id): db = DB() cur = db.cursor() cur.execute(f"SELECT * FROM barang_nonretail WHERE id='{id}'") barang_nonretail = cur.fetchone() cur.close() db.close() barang_nonretailTodict =lambda r : dict(id=r[0],nama_barang=r[1],harga=r[2],status=r[3]) if barang_nonretail==None: return jsonify({"message" : "fail,barang_nonretail Not Found"}) elif request.method == 'GET': # GET ONE barang_retail return jsonify({"message" : "success", "result" :barang_nonretailTodict(barang_nonretail)}) elif request.method == 'DELETE': # DELETE penjualan # return '' db=DB() cur=db.cursor() query = f"DELETE FROM barang_nonretail WHERE id='{id}'" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({"msg" : "Fail" if c<1 else "Success"}) elif request.method == "PUT": newbarang_nonretail = request.get_json() db=DB() cur=db.cursor() query = f"""UPDATE barang_nonretail SET nama_barang='{newbarang_nonretail['nama_barang']}', harga='{newbarang_nonretail['harga']}', status='{newbarang_nonretail['status']}' WHERE barang_nonretail.id='{id}'""" cur.execute(query) db.commit() c=cur.rowcount cur.close() db.close() return jsonify({'message' : 'Gagal update' if c<1 else 'Berhasil update'}) ################ BARANG_NONRETAIL ######################################## if __name__ == "__main__": app.run(debug=True)
UTF-8
Python
false
false
12,794
py
2
test.py
2
0.557371
0.55315
0
317
38.365931
130
OmerTariq-KAIST/dnn-based_indoor_localization
9,302,899,163,815
bcfcbedb2d3631e24b2ddd8a416ed2f9b4a41f0f
daf0b7391abf35e6bbd9d9b9759c23c2ce64a201
/models/simo_hybrid_tut_batch-run.py
26851f39d0e40551ce6a8cc1a1765692417281f4
[ "MIT" ]
permissive
https://github.com/OmerTariq-KAIST/dnn-based_indoor_localization
693ae4fe8a1801c7952e8e583710b49d41231b8d
39e6a60fbd5095b714f6e158f1b933acc435a982
refs/heads/master
2023-03-15T13:28:10.074274
2020-12-09T04:00:59
2020-12-09T04:00:59
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys sys.path.insert(0, '../models') sys.path.insert(0, '../utils') from simo_hybrid_tut import simo_hybrid_tut from mean_ci import mean_ci import argparse import datetime import numpy as np from num2words import num2words # set coordinates loss weight using command-line arguments parser = argparse.ArgumentParser() parser.add_argument( '-C', '--coordinates_weight', help='loss weight for a coordinates; default 1.0', default=1.0, type=float) args = parser.parse_args() coordinates_weight = args.coordinates_weight # set system parameters num_runs = 20 # num_runs = 2 # for test # set default parameters for simo_hybrid_tut() gpu_id = 0 dataset = 'tut' frac = 1.0 validation_split = 0.2 preprocessor = 'standard_scaler' batch_size = 64 epochs = 100 optimizer = 'nadam' dropout = 0.25 corruption_level = 0.1 dae_hidden_layers = '' sdae_hidden_layers = [1024, 1024, 1024] cache = True common_hidden_layers = [1024] floor_hidden_layers = [256] coordinates_hidden_layers = [256] floor_weight = 1.0 verbose = 0 # inialize results arrays flr_accs = np.empty(num_runs) mean_error_2ds = np.empty(num_runs) median_error_2ds = np.empty(num_runs) mean_error_3ds = np.empty(num_runs) median_error_3ds = np.empty(num_runs) elapsedTimes = np.empty(num_runs) # run experiments for i in range(num_runs): print("\n########## Coordinates loss weight={0:.2f}: {1:s} run ##########".format(coordinates_weight, num2words(i+1, to='ordinal_num'))) rst = simo_hybrid_tut(gpu_id, dataset, frac, validation_split, preprocessor, batch_size, epochs, optimizer, dropout, corruption_level, dae_hidden_layers, sdae_hidden_layers, cache, common_hidden_layers, floor_hidden_layers, coordinates_hidden_layers, floor_weight, coordinates_weight, verbose) flr_accs[i] = rst.flr_acc mean_error_2ds[i] = rst.mean_error_2d median_error_2ds[i] = rst.median_error_2d mean_error_3ds[i] = rst.mean_error_3d median_error_3ds[i] = rst.median_error_3d elapsedTimes[i] = rst.elapsedTime # print out results base_file_name = '../results/test/simo_hybrid_tut/tut/cw{0:.1f}_'.format(coordinates_weight) with open(base_file_name + 'floor_accuracy.csv', 'a') as output_file: output_file.write("{0:.2f},{1:.4f},{2:.4f},{3:.4f},{4:.4f}\n".format(coordinates_weight, *[i*100 for i in mean_ci(flr_accs)], 100*flr_accs.max(), 100*flr_accs.min())) with open(base_file_name + 'mean_error_2d.csv', 'a') as output_file: output_file.write("{0:.2f},{1:.4f},{2:.4f},{3:.4f},{4:.4f}\n".format(coordinates_weight, *mean_ci(mean_error_2ds), mean_error_2ds.max(), mean_error_2ds.min())) with open(base_file_name + 'mean_error_3d.csv', 'a') as output_file: output_file.write("{0:.2f},{1:.4f},{2:.4f},{3:.4f},{4:.4f}\n".format(coordinates_weight, *mean_ci(mean_error_3ds), mean_error_3ds.max(), mean_error_3ds.min()))
UTF-8
Python
false
false
3,033
py
25
simo_hybrid_tut_batch-run.py
24
0.658424
0.619189
0
83
35.542169
170
NilNoyon/BACS
11,476,152,661,113
408286dd3975c75403ca04ccfecb3a5c83e370f1
c6c5dbf05be9dac2a2a4533a1efa7bcaf1c23a06
/BACS/clients/urls.py
41f59d1aabf510888c5627e231d46434ac79c170
[]
no_license
https://github.com/NilNoyon/BACS
9c54e4a440de79a8a39e13c29956583a5476c07f
6efdb3d18caa5c08ffef3632afd7d622aedee3b0
refs/heads/master
2022-12-13T13:25:44.973194
2019-08-26T21:02:24
2019-08-26T21:02:24
195,283,228
0
0
null
false
2022-12-08T05:55:36
2019-07-04T17:59:26
2019-08-26T21:02:38
2022-12-08T05:55:36
7,739
0
0
4
HTML
false
false
from django.urls import path from clients.views import * from . import views # CLIENTS SECTION urlpatterns = [ path('dashboard/', views.dashboard_client, name='client_dashboard'), path('update_profile/', views.update_profile, name='update_profile'), path('my_profile/', views.my_profile, name='my_profile'), path('view_given_amount/', views.view_given_amount, name='view_given_amount'), path('given_amount/', views.given_amount, name='given_amount'), path('view_cost_info/', views.view_cost_info, name='view_cost_info'), ]
UTF-8
Python
false
false
547
py
35
urls.py
17
0.700183
0.700183
0
13
41.153846
82
alay3168/XGTestProjects
15,144,054,688,826
16d96f77e59b21103e0b977d04f0909830cb57b2
503313e19bfed3f842391f1c2854b7198bb5d09c
/camrea_web_auto_test/TestCase/pytest_demo.py
326654d01625dccaa00b8a7b314aaf7b763135a2
[]
no_license
https://github.com/alay3168/XGTestProjects
264e84aab33f968a704f533577799617175c619b
01bd4ed3015b28284043cccab54902bd58ce24f8
refs/heads/master
2022-11-02T11:11:04.625750
2020-10-12T05:04:49
2020-10-12T05:04:49
250,506,762
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest # content of test_sample.py def func(x): return x + 1 def test_answer(): assert func(3) == 5 pytest.main()
UTF-8
Python
false
false
178
py
317
pytest_demo.py
187
0.61236
0.589888
0
12
13.833333
27
dneff/advent2019
5,927,054,893,244
17084620abe8c3c0e42f46cfc78399a00ae5e208
ae9a3122bf9fdbb9c38de46acfcefb2440bd4706
/11/solution.py
43570d10d8fb5144b4f526bb2a622634468164d5
[]
no_license
https://github.com/dneff/advent2019
683fe9426e196b6a40cd28e6854b22a0a2ddb124
5b87b3d20b23370bd623b17e19f4cfce605e2eb6
refs/heads/master
2020-11-24T00:50:01.552751
2020-01-13T01:27:33
2020-01-13T01:27:33
227,889,697
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from itertools import permutations from IntCode import IntCode, InputInterrupt, OutputInterrupt from collections import defaultdict def newOrientation(orientation, turn): if turn == 0: orientation = (orientation - 1) % 4 elif turn == 1: orientation = (orientation + 1) % 4 return orientation def newLocation(loc, direction): move = { 'N': (0, 1), 'E': (1, 0), 'S': (0, -1), 'W': (-1, 0) } delta = move[direction] return loc[0] + delta[0], loc[1] + delta[1] def main(): with open('input1.txt', 'r') as file: program = file.read().strip() panels = defaultdict(int) x, y = 0, 0 panels[(x,y)] = 0 direction = ['N', 'E', 'S', 'W'] orientation = 0 turn = False comp1 = IntCode(program) comp1.push(panels[(x, y)]) painted = 0 painted_panels = [] while not comp1.complete: try: comp1.run() except(InputInterrupt): input = panels[(x, y)] comp1.push(input) except(OutputInterrupt): out = comp1.pop() if turn: orientation = newOrientation(orientation, out) x, y = newLocation((x, y), direction[orientation]) else: if out == 1 and panels[(x, y)] == 0 and (x, y) not in painted_panels: painted += 1 painted_panels.append((x, y)) panels[(x,y)] = out turn = not turn print(f"Solution 1: {painted} panels are painted at least once.") # -=-=-=- Part 2 panels = defaultdict(int) x, y = 0, 5 panels[(x,y)] = 1 direction = ['N', 'E', 'S', 'W'] orientation = 0 turn = False comp2 = IntCode(program) comp2.push(panels[(x, y)]) while not comp2.complete: try: comp2.run() except(InputInterrupt): input = panels[(x, y)] comp2.push(input) except(OutputInterrupt): out = comp2.pop() if turn: orientation = newOrientation(orientation, out) x, y = newLocation((x, y), direction[orientation]) else: panels[(x,y)] = out turn = not turn white_panels = [x for x in panels.keys() if panels[x] == 1] max_row = max([x[1] for x in white_panels]) max_col = max([x[0] for x in white_panels]) print("Solution 2 (registration identifier):") for r in range(max_row + 1, -1, -1): row = [] for c in range(max_col + 1): if (c,r) in white_panels: row.append('*') else: row.append(' ') print(f"{''.join(row)}") if __name__ == "__main__": main()
UTF-8
Python
false
false
2,808
py
27
solution.py
26
0.494302
0.475427
0
111
24.297297
85
thoas/django-metadata
4,252,017,632,976
d54fd069837e037080f271336ca58e5118455b9a
132e19731444eb30c6c0cea5a3120030af6a9c2a
/metadata/connection.py
0ea24135dbb2b9881fab2b80ff3f47ad1aac1ec7
[]
no_license
https://github.com/thoas/django-metadata
d08e5ddf389acac789488a6cd96e976cbb50e13f
a6e3eeac79e3ed36afa1c652db5a8a3d3473507c
refs/heads/master
2021-01-15T15:47:21.906343
2018-06-15T13:02:14
2018-06-15T13:02:14
10,442,157
21
1
null
false
2014-10-02T13:53:26
2013-06-02T20:58:01
2014-10-02T09:32:49
2014-10-02T13:53:25
136
8
1
0
Python
null
null
from . import settings from .utils import get_client client = get_client(settings.REDIS_CONNECTION, connection_class=settings.REDIS_CONNECTION_CLASS)
UTF-8
Python
false
false
172
py
11
connection.py
7
0.715116
0.715116
0
6
27.666667
69
alimgee/-mollyrose--in-django
6,966,436,962,629
fb8b0affbafc8e601d7fa3f2464a959a0f1b2c60
5acf3fba7c2937f4b6f22967cae9d26855afbdfb
/help/views.py
cd7690deb0d19b71c4f05e58345632465f56d30e
[]
no_license
https://github.com/alimgee/-mollyrose--in-django
c67638d56409a1a35af3c648be5de55c9a0d5f53
07858c332bb7c18dfd61e22dc2b5cd57baccfd37
refs/heads/master
2022-12-14T02:27:23.442925
2020-09-01T09:11:37
2020-09-01T09:11:37
287,684,126
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render from .models import Organisations def help(request): ''' function to render homepage''' organisations = Organisations.objects.all().order_by('position') context ={ 'Organisations': organisations } return render (request, 'help/index.html', context)
UTF-8
Python
false
false
315
py
30
views.py
11
0.701587
0.701587
0
12
25.333333
68
agussarcee/agussarcee
13,907,104,121,041
a6edc55a27cb5aebde9b70434d46ec31e264baf9
d1cf2b5cf827762bca35c3ebe12b192d9ebec706
/cat.py
f6250fa489b7da7ee3cd04f60e49cc15b919db66
[]
no_license
https://github.com/agussarcee/agussarcee
4e07b5a39673ebb31c199ba281002dd69986f3ad
fdf79eb52c389726a13e4dccf920a0162e312798
refs/heads/master
2020-07-20T15:51:40.398474
2019-09-13T00:13:58
2019-09-13T00:13:58
206,672,259
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#muestra los bytes en texto # 1 - Abrir el archivo # 2 - Leer el archivo # 3 - Imprimo en pantalla # 4 - Cerrar el archivo NOMBRE = "lorem.txt" archivo = open(NOMBRE,'r') contenido = archivo.read () print (contenido) archivo.close()
UTF-8
Python
false
false
235
py
8
cat.py
8
0.693617
0.676596
0
11
20.272727
27
StepanBarantsev/DeepLearn_Numbers
1,288,490,231,494
bc4692df50f326a702223a0268da2c65823a8580
e4526526d8bfb39199f165ebfbf69ccca5376532
/main2.py
2d426448687e21e4fbed5d34c33c875f753cd3b1
[]
no_license
https://github.com/StepanBarantsev/DeepLearn_Numbers
4d4dd1b3cbe66470f949d71771ded6d61051d862
afd9374ad338be36a78e472b64d1d44794898330
refs/heads/master
2020-07-29T02:29:47.385976
2019-09-24T13:39:27
2019-09-24T13:39:27
209,632,737
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from skimage.io import imread, imsave from helper import parse_img, parse_labels, write_weigth_to_file, get_weight class Neuro2: # Количество слоев равно количеству имен файлов # weights_from_file -- булева переменная, отвечающая за то берем ли мы веса из файла # shapes -- кортежи содержащие в себе размерности матриц весов (список кортежей) def __init__(self, filenames, weights_from_file, shapes): self.filenames = filenames self.shapes = shapes self.weights = [] self.get_weights(weights_from_file) def get_weights(self, from_file): if from_file: for i, filename in enumerate(self.filenames): self.weights.append(get_weight(filename, self.shapes[i][0], self.shapes[i][1])) else: for i in range(len(self.filenames)): self.weights.append(get_weight(None, self.shapes[i][0], self.shapes[i][1])) def write_weights_to_file(self): for i in range(len(self.filenames)): write_weigth_to_file(self.filenames[i], self.weights[i]) def learn(self, iterations): # Получам пикчи и ожидаемые результаты array_imgs = parse_img('train-images-idx3-ubyte', 60000) expected = parse_labels('train-labels-idx1-ubyte') for something in range(iterations): for index, img in enumerate(array_imgs): exp = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) exp[expected[index]] += 1 alpha = 0.0000000001 layers = [np.array(img)] for i in range(len(self.weights)): layers.append(np.array(layers[i].dot(self.weights[i]))) layers = np.array(layers) final_res = layers[len(layers) - 1] deltas = [(np.array(final_res - exp))] # У нас должно в итоге быть 2 дельты. На 0 вес умножать не нужно. Поэтому -1 for i in range(len(self.weights) - 1): deltas.append(np.array(deltas[i].dot(self.weights[len(self.weights) - 1 - i].T))) deltas = np.array(deltas) for i in range(len(deltas) // 2): deltas[i], deltas[len(deltas) - 1 - i] = deltas[len(deltas) - 1 - i], deltas[i] for i in range(len(self.weights)): self.weights[i] -= alpha * np.matrix(layers[i]).T.dot(np.matrix(deltas[i])) print('Итерация номер %s' % something) self.write_weights_to_file() def predict(self, img): result = img.dot(self.weights[0]) for i in range(1, len(self.weights)): result = result.dot(self.weights[i]) m = result[0] ind = 0 for i, res in enumerate(result): if res > m: m = res ind = i return ind, m def predict_by_mnist(self): array_imgs = parse_img('t10k-images-idx3-ubyte', 10000) expected = parse_labels('t10k-labels-idx1-ubyte') error = 0 for i, img in enumerate(array_imgs): ind, m = self.predict(img) print('Число на картинке это %s. На самом деле %s' % (ind, expected[i])) if ind != expected[i]: error += 1 print('Количество ошибок %s' % error) print('Всего чисел было %s' % len(expected)) # o = Neuro2(['w1.txt', 'w2.txt'], weights_from_file=False, shapes=[(28 * 28, 40), (40, 10)]) o = Neuro2(['w1.txt'], weights_from_file=False, shapes=[(28 * 28, 10)]) o.learn(1) o.predict_by_mnist()
UTF-8
Python
false
false
3,908
py
11
main2.py
7
0.562032
0.536497
0
83
42.361446
101
AK1737/testRepo
9,491,877,744,278
e847a342aabad844c6260233639122644857e271
b28f166e7f81e3d58868f5d3be6e07fe9483a8af
/Tasks/Kotliarevskiy/bot/bot1.py
fe910a2475a9905542b94a6110029521d143a324
[]
no_license
https://github.com/AK1737/testRepo
f235a15ecaabe63823e100aac9cfceef6ae69580
670b6cd516fb9b6c18ef3a7adb538a7ddb893ed9
refs/heads/master
2020-06-03T04:17:26.729074
2019-08-05T14:40:03
2019-08-05T14:40:03
191,435,022
0
0
null
true
2019-06-11T19:14:29
2019-06-11T19:14:28
2019-05-24T21:23:29
2019-05-24T21:23:27
83
0
0
0
null
false
false
from vk_api.longpoll import VkLongPoll, VkEventType import vk_api tokenn='d0a27ef71602aca5d4ab459fdf5b3b9e969f6c7f3c39a936949774ef086c87d375f087b8b2aecc51a582f' vk_session = vk_api.VkApi(token=tokenn) from vk_api.longpoll import VkLongPoll, VkEventType longpoll = VkLongPoll(vk_session) vk = vk_session.get_api() while True: for event in longpoll.listen(): if event.type == VkEventType.MESSAGE_NEW and event.text and not(event.from_me): print('lett') vk_session.method('messages.send', {'user_id': event.user_id, 'message': event.text, 'random_id': 0})
UTF-8
Python
false
false
593
py
24
bot1.py
24
0.735245
0.647555
0
15
38.466667
113
SemchenkoSergey/port_status_crontab
19,112,604,501,630
572e4e35ed88c3d2978b9f686ffc3efbf7087bce
4fba426a605e3d29292c3e3b571767f3c829c728
/resources/Settings.py
9f6743f00c5ded49c49171ac983639e924b3ccdc
[]
no_license
https://github.com/SemchenkoSergey/port_status_crontab
341225b9e90f3fb3d244a00c974456300da89749
fa59036ac0c2e12d3d3d5c7322599362cab08bf8
refs/heads/master
2020-03-25T16:58:00.443976
2018-08-13T08:25:55
2018-08-13T08:25:55
143,956,660
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 ### Port_Status ### # Учетные данные DSLAM login_5600 = '' password_5600 = '' login_5616 = '' password_5616 = '' #Количество потоков выполнения threads = 5 #За сколько дней хранить записи days = 35 #Список DSLAM hosts = (('ip', '5600'), ('ip', '5616')) # Mysql db_host = 'localhost' db_user = 'inet' db_password = 'inet' db_name = 'inet' ### Session_Count ### threads_count = 3 # Onyma onyma_login = '' onyma_password = ''
UTF-8
Python
false
false
535
py
9
Settings.py
7
0.609071
0.546436
0
30
14.433333
31
KyungHoon0126/Algorithm
6,390,911,367,099
078d34e1b6c73623804e9634ac3ada61a5f1c5f0
f153a36b5e211690ded1af00c0160eebd2add1ca
/이것 취업을 위한 코딩 테스트다 with 파이썬/Greedy/숫자카드게임.py
d89707d43a666928518aaf9ca256bfb8555589c4
[]
no_license
https://github.com/KyungHoon0126/Algorithm
47551bbe22c70eac04ed518c2c9c1f65d48ee5b9
8369f0e1103d282cdc138666add65dd0ca926e70
refs/heads/master
2021-08-17T08:32:09.970502
2021-06-22T12:52:22
2021-06-22T12:52:22
214,456,043
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 1 # n, m = map(int, input().split()) # # result = 0 # for i in range(n): # data = list(map(int, input().split())) # # 현재 줄에서 '가장 적은 수' 찾기 # min_value = min(data) # # '가장 작은 수'들 중에서 가장 큰 수 찾기 # result = max(result, min_value) # # print(result) # 2 n, m = map(int, input().split()) result = 0 # 한 줄씩 입력받아 확인 for i in range(n): data = list(map(int, input().split())) min_value = 10001 for k in data: min_value = min(min_value, k) # '가장 적은 수'들 중에서 가장 큰 수 찾기 result = max(result, min_value) print(result)
UTF-8
Python
false
false
659
py
124
숫자카드게임.py
107
0.540395
0.524237
0
31
16.967742
44
flashlan/Curso-Ciencia-da-Computacao-com-Python-Parte-2-Alternative-Solutions
14,929,306,324,614
392a3a656eabd40f68c5c863f3be73cd11a27010
aca98ac45978308c69c02fd4b56708ccff9f0921
/dimensoes_matriz.py
c8f087e7a4eecce5b6ae7b9dea14c03b1683cbc1
[]
no_license
https://github.com/flashlan/Curso-Ciencia-da-Computacao-com-Python-Parte-2-Alternative-Solutions
eaa08b8c698d623dc3f34df5792b7a4f58b3fc8a
c5d15d6d51d9c03b263bc338c25a623a7ff2f447
refs/heads/master
2022-08-01T14:53:02.805633
2020-05-18T15:24:25
2020-05-18T15:24:25
260,817,957
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri May 1 12:40:00 2020 @author: pcstream """ def dimensoes(matriz): ''' (matriz) --> recebe uma matriz como parâmetro e imprime as dimensões da matriz recebida, no formato iXj''' matriz = str(matriz) colunas = matriz.count("[") - 1 linhas = int((matriz.count(",") + 1) / colunas) out = print(str(colunas) + 'X' + str(linhas)) return out
UTF-8
Python
false
false
428
py
21
dimensoes_matriz.py
20
0.58216
0.549296
0
15
26.4
62
onurmatik/LambdaTwitterOAuth
13,417,477,843,111
12fdca52ee430ff2d7397cf19a24b755f5a50f37
ed84e8fce05f96f088f4c81f4677864fc4c15e4d
/auth.py
8b110f7fe3fde5a6e0ea1c2201207411e755cd8a
[]
no_license
https://github.com/onurmatik/LambdaTwitterOAuth
1e28f2434eac34718570c926c63a643a16b07ef3
b46dc433b53f6e4a93c838fb306e59bc92a400f2
refs/heads/master
2021-01-17T17:54:37.283222
2016-10-12T15:00:01
2016-10-12T15:00:01
70,708,232
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import boto3 import json import twitter from settings import * def get_sign_in_token(event, context): client = twitter.UserClient( CONSUMER_KEY, CONSUMER_SECRET, ) token = client.get_signin_token( callback_url=CALLBACK_URL ) return { 'location': token.auth_url, 'cookie': 'token=%s;PATH=/;' % ( token.oauth_token_secret, ), } def get_access_token(event, context): token = event['queryParams']['oauth_token'] secret = event['headers']['Cookie'].split('=')[1] client = twitter.UserClient( CONSUMER_KEY, CONSUMER_SECRET, token, secret, ) token = client.get_access_token(event['queryParams']['oauth_verifier']) # save the token to dynamodb dynamodb = boto3.resource( 'dynamodb', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION, endpoint_url=DYNAMODB_ENDPOINT, ) table = dynamodb.Table(DYNAMODB_TABLE) table.put_item( Item={ 'user_id': int(token['user_id']), 'app_name': TWITTER_APP_NAME, 'data': json.dumps(token), }, #ConditionExpression='attribute_not_exists', ) return { 'token': token, }
UTF-8
Python
false
false
1,327
py
2
auth.py
1
0.574228
0.571967
0
54
23.574074
75
JiajieMo/Hierarchical-Image-Matting-Model-for-Blood-Vessel-Segmentation-in-Fundus-images
17,386,027,620,053
19bdc78f15d4a5b8f4d94a6caed1e89544a417bc
68b59cdc67b66c2aafacd4718a0568c58cf64d74
/Vessel Skeleton Extraction.py
c38087bf033c8f5dec7530c8cbc186f761bd44dd
[]
no_license
https://github.com/JiajieMo/Hierarchical-Image-Matting-Model-for-Blood-Vessel-Segmentation-in-Fundus-images
d7ee9bc28cf727fd50ac9dfb4f8619649959d4a3
627fdfb2103dc6c0f0cca0bf70bfbaf5069cd24f
refs/heads/master
2022-12-12T06:33:30.331869
2020-09-04T03:35:45
2020-09-04T03:35:45
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Mar 28 15:18:18 2019 @author: Adithya """ import cv2 import numpy as np import matplotlib.pyplot as plt import os import glob from PIL import Image from skimage.exposure import rescale_intensity from scipy.ndimage import correlate,convolve import natsort path = os.path.join(os.getcwd(), '') path_mask = os.path.join(os.getcwd(), 'training', 'mask') path_results = os.path.join(os.getcwd(), 'Binary Images') files_avail = glob.glob(os.path.join(path, '*.tif')) masks = os.listdir(path_mask) masks = natsort.natsorted(masks) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(21,21)) def convolve2D(image,kernel): (iH, iW) = image.shape (kH, kW) = kernel.shape pad = (kW - 1) // 2 img = cv2.copyMakeBorder(image, pad, pad, pad, pad, cv2.BORDER_REPLICATE) w = np.zeros((iH,iW), dtype = "float32") output = np.zeros((iH, iW), dtype = "float32") for y in np.arange(pad, iH + pad): for x in np.arange(pad, iW + pad): roi = img[y - pad:y + pad + 1, x - pad:x + pad + 1] output[y - pad,x - pad] = (roi * kernel).sum() w = image - output output = rescale_intensity(output, in_range = (0,255)) output = (output * 255).astype("uint8") return output, w for file,m_ad in zip(files_avail, masks): C_curr = cv2.imread(file,0) #C_curr = clahe.apply(C_next) #mask = cv2.imread(os.path.join(path_mask, 'frame0.png'), 0) #C_next = cv2.cvtColor(C_next, cv2.COLOR_BGR2GRAY) #C_next = ~C_next #Defining the filter C1 = 1./16. C2 = 4./16. C3 = 6./16. W = [] t = True KSize = [5,9,17] for scale, KS2 in enumerate(KSize): KS2 = int(KS2/2) kernel = np.zeros((1,KSize[scale]), dtype = np.float32) kernel[0][0] = C1 kernel[0][KSize[scale]-1] = C1 kernel[0][int(KS2/2)] = C2 kernel[0][int(KSize[scale]/4+KS2)] = C2 kernel[0][KS2] = C3 k = kernel.T * kernel #C_next = cv2.filter2D(C_curr, -1, k) #C_next = cv2.sepFilter2D(C_curr, cv2.CV_32F, kernelX = kernel, kernelY = kernel) #C_next = convolve(C_curr, k, mode = 'mirror') C_next, w = convolve2D(C_curr, k) C_curr = C_next if(t): t = False continue W.append(w) # Combining all the wavelet scales Iiuw = W[0] + W[1] mask = cv2.imread(os.path.join(path_mask,m_ad),0) per_px_inc = 0.22 epsilon = 0.03 t = np.sort(np.ravel(Iiuw)) thres = t[int(per_px_inc * len(t)) - 1] + epsilon bw = Iiuw < thres bw = bw.astype(np.uint8) * 255 fil_bw = cv2.bitwise_and(bw,bw, mask = mask) m = np.ones_like(mask) * 255 m1 = np.ones_like(mask) * 255 _, contours, _ = cv2.findContours(fil_bw, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: area = cv2.contourArea(cnt) if(area < 759.71): if(area < 43.7): cv2.drawContours(m1,[cnt],-1,0,-1) else: (x, y, w, h) = cv2.boundingRect(cnt) extent = area / float(w * h) VRatio = w / float(h) if((VRatio >= 2.2)and(extent < 0.25)): cv2.drawContours(m1,[cnt],-1,0,-1) cv2.drawContours(m,[cnt],-1,0,-1) T3 = cv2.bitwise_and(fil_bw, m, mask = mask) vse = cv2.bitwise_and(fil_bw, m1, mask = mask) #Iiuw = Iiuw.astype(np.uint8) #newfin = cv2.erode(Iiuw, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1) #Iiuw = ~Iiuw cv2.imwrite(os.path.join(path_results, os.path.basename(file)), fil_bw) cv2.imwrite(os.path.join(os.getcwd(),'T3', os.path.basename(file)), T3) cv2.imwrite(os.path.join(os.getcwd(),'Final_VSE', os.path.basename(file)), vse) """for i in range(Iiuw.shape[0]): for j in range(Iiuw.shape[1]) t, th2 = cv2.threshold(Iiuw, 3, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img = Iiuw * mask img = ((Iiuw > (t + 0.155 * 255)) * 255).astype(np.uint8) img = ~img img = cv2.bitwise_and(img,img, mask = mask) cv2.imshow('T3', T3) cv2.imshow('T4', T4) cv2.waitKey(0) cv2.destroyAllWindows() mask = np.ones(img.shape[:2], dtype="uint8") * 255""" for file, m_ad in zip(os.listdir(path_results), masks): fil_bw = cv2.imread() mask = cv2.imread(os.path.join(path_mask,m_ad),0) cv2.imwrite()
UTF-8
Python
false
false
4,525
py
8
Vessel Skeleton Extraction.py
5
0.560221
0.514254
0
135
31.518519
91
DLu/askbot_crawler
2,714,419,381,739
2985f7a4107c3f1c9e5fc36d179702616179b4cf
da9f1dca0b796ad0fa828d4d66b5e60b232b1aaa
/html_generation.py
3c47cbd46b1287487269e413d99b95a74cfda576
[]
no_license
https://github.com/DLu/askbot_crawler
7931038ae8faf6b6a416b6ef87021eecfe7fe589
c41f69d4d8768a0df8e82081453e6bf3494055e6
refs/heads/master
2021-05-16T02:24:12.690704
2018-06-19T20:51:18
2018-06-19T20:51:18
28,569,962
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json JQUERY_LINKS = """ <script src="http://code.jquery.com/jquery-1.11.1.min.js"></script> <script src="http://cdn.datatables.net/1.10.4/js/jquery.dataTables.min.js"></script> <link href="http://cdn.datatables.net/1.10.4/css/jquery.dataTables.css" rel="stylesheet" type="text/css"/> """ INFINITY_SORT = """ <script> $.fn.dataTable.ext.type.order['infinity-pre'] = function ( d ) { if(isNaN(d)){ return 10000; } return parseInt(d); }; </script> """ def header(title="ROS Answered", extra='', relative='', hide=False): s = '<head>\n' s += '<title>%s</title>\n' % title s += extra s += '<link href="http://fonts.googleapis.com/css?family=Roboto+Condensed" rel="stylesheet" type="text/css">\n' s += '<link href="%sanswered.css" rel="stylesheet" type="text/css"/>' % relative if hide: s += '<script src="%sHide.js"></script>' % relative s += '</head>\n' return s def generate_table(M, id="rostable", params={}): if len(M) == 0: return '' s = '<table class="display" id="%s">\n' % id s += '<thead>\n<tr><th>' s += '<th>'.join(M[0].keys()) s += '\n</thead>\n<tbody>\n' for m in M: s += '<tr>' for k, v in m.iteritems(): s += '<td>' + str(v) s += '\n' s += '</tbody>\n</table>\n' s += """ <script> $(document).ready(function() { $('#%s').DataTable(%s); } ); </script>""" % (id, json.dumps(params)) # HACK for k, v in params.iteritems(): if 'Callback' in k: s = s.replace('"%s"' % v, v) return s
UTF-8
Python
false
false
1,589
py
11
html_generation.py
9
0.53241
0.520453
0
58
26.396552
115
qingkediguo/QQMusicAPI
11,441,792,903,657
25de8732cfbb07b8db04f002a852b42a55152cde
b9eba831b971cc3bc6d10c9cbfad759bb382d152
/QQMusicAPI/song.py
dc41f08d20eea18b07691cbd66ad375c1a862426
[]
no_license
https://github.com/qingkediguo/QQMusicAPI
564315f3e9d2842133d5fbee1788a2f89b4018b5
1ea6af0415bc3620fdbe735a63fc5b6242e67d85
refs/heads/master
2020-04-16T17:46:15.121908
2018-12-22T13:09:23
2018-12-22T13:09:23
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random import time import json import base64 import re import math import requests from bs4 import BeautifulSoup class Song(object): def __init__(self, mid, **kwargs): self.guid = int(random.random() * 2147483647) * int(time.time() * 1000) % 10000000000 self.headers = { "cookie": 'pgv_pvi=23333333; pgv_si=23333333; pgv_pvid={}; qqmusic_fromtag=30'.format(self.guid), } self.mid = mid self.media_mid = kwargs.get('media_mid') self.title = kwargs.get('title') self.singer = kwargs.get('singer') self.album = kwargs.get('album') self.filename = 'C400{}.m4a'.format(self.mid) self.kwargs = kwargs self.lyric = None self.song_id = None self.song_name = None self.song_title = None self.song_subtitle = None self.info = None self.image = None self.comment_total = None self.comment_page_size = None self.hot_comment = None @property def url(self): """ 歌曲在 QQ 音乐 web 版中的页面链接 :return: """ return 'https://y.qq.com/n/yqq/song/{}.html'.format(self.mid) @property def song_url(self): """ 歌曲的播放链接,每次访问生成一个新的 :return: """ return 'http://dl.stream.qqmusic.qq.com/{}?vkey={}&guid={}&fromtag=30'.format(self.filename, self._get_vkey(), self.guid) @property def lyric_url(self): return 'https://c.y.qq.com/lyric/fcgi-bin/fcg_query_lyric_new.fcg?g_tk=753738303&songmid=' + self.mid def get_lyric(self): """ 获得歌词和翻译(如果有的话) :return: { lyric: ..., trans: ...} """ lrc_url = self.lyric_url headers = { 'Referer': 'https://y.qq.com/portal/player.html', 'Cookie': 'skey=@LVJPZmJUX; p', # 此处应该对应了 g_tk 和 skey 的关系,因此需要提供 skey 参数才可以获取 # 我已经退出登录这个 skey 了,因此不会有安全问题的 } resp = requests.get(lrc_url, headers=headers) lrc_dict = json.loads(resp.text[18:-1]) data = {'lyric': '', 'trans': ''} if lrc_dict.get('lyric'): data['lyric'] = base64.b64decode(lrc_dict['lyric']).decode() if lrc_dict.get('trans'): data['trans'] = base64.b64decode(lrc_dict['trans']).decode() self.lyric = data return self.lyric def _get_vkey(self): url = 'https://c.y.qq.com/base/fcgi-bin/fcg_music_express_mobile3.fcg' params = { 'format': 'json', 'platform': 'yqq', 'cid': '205361747', 'songmid': self.mid, 'filename': self.filename, 'guid': self.guid } rst = requests.get(url, params=params) return json.loads(rst.text)['data']['items'][0]['vkey'] def extract(self): self.get_lyric() self._get_song_info() self._get_hot_comment() def _get_song_info(self): """ 通过页面获得信息 :return: """ url = 'https://y.qq.com/n/yqq/song/{}.html'.format(self.mid) resp = requests.get(url) song_data = json.loads(re.search(r'g_SongData = .*};', resp.text).group()[13:-1]) self.song_id = song_data['songid'] self.song_subtitle = song_data['songsubtitle'] self.song_name = song_data['songname'] self.song_title = song_data['songtitle'] if not self.title: self.title = self.song_title info_data = json.loads(re.search(r'info :.*}}', resp.text).group()[7:]) self.info = info_data soup = BeautifulSoup(resp.text, 'html.parser') self.image = 'https:' + soup.find(class_='data__photo')['src'] def _get_hot_comment(self): """ 获得热门评论与总评论数 :return: """ url = 'https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg' params = { 'format': 'json', 'reqtype': '2', 'biztype': '1', 'topid': self.song_id, 'cmd': '8', 'pagenum': '0', 'pagesize': '1' } resp = requests.get(url, params=params) data = json.loads(resp.text) self.comment_total = data['comment']['commenttotal'] self.hot_comment = data['hot_comment']['commentlist'] self.comment_page_size = math.ceil(self.comment_total / 25) def comment_page(self, page=1): """ 获得评论 :param page: :return: """ url = 'https://c.y.qq.com/base/fcgi-bin/fcg_global_comment_h5.fcg' params = { 'format': 'json', 'reqtype': '2', 'biztype': '1', 'topid': self.song_id, 'cmd': '8', 'pagenum': page - 1, 'pagesize': '25' } resp = requests.get(url, params=params) data = json.loads(resp.text) return data['comment']['commentlist']
UTF-8
Python
false
false
5,228
py
8
song.py
7
0.516194
0.495602
0
160
30.2625
118
CLSPhila/RecordLib
3,547,643,039,848
3d9564c56fb4401fa13e38df192bd84c9e5d68b5
7c7f6571373779bffd934c6c8c3441335b7b7319
/cleanslate/migrations/0008_auto_20200818_1943.py
c29d6e951376e1769ac91b9f79dc4b86fbf61782
[]
no_license
https://github.com/CLSPhila/RecordLib
efffcf002b369e0beab83ab9ea4ffc9693a28a2c
3b870fc9026c180455d9953a87e903725de3415d
refs/heads/main
2021-07-22T04:02:30.271885
2021-07-07T20:37:01
2021-07-07T20:37:01
191,973,008
8
7
null
false
2021-07-22T14:50:27
2019-06-14T16:13:29
2021-07-07T20:37:10
2021-07-22T14:50:26
3,982
7
7
6
Python
false
false
# Generated by Django 2.2.13 on 2020-08-18 19:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cleanslate', '0007_sourcerecord_parse_status'), ] operations = [ migrations.AddField( model_name='userprofile', name='default_atty_address', field=models.CharField(default='', max_length=200), ), migrations.AddField( model_name='userprofile', name='default_atty_name', field=models.CharField(default='', max_length=200), ), migrations.AddField( model_name='userprofile', name='default_atty_organization', field=models.CharField(default='', max_length=200), ), migrations.AddField( model_name='userprofile', name='default_atty_phone', field=models.CharField(default='', max_length=50), ), migrations.AddField( model_name='userprofile', name='default_bar_id', field=models.CharField(default='', max_length=50), ), ]
UTF-8
Python
false
false
1,151
py
280
0008_auto_20200818_1943.py
231
0.562989
0.534318
0
38
29.289474
63
thorcc/Programmeringskurs-Sandvika
15,607,911,164,926
4d9328fac15cef7cb9f6f057f7d049d343219b8b
6f07e3222e3f7810a302ce9a54f266013109f827
/diverse/gpx-to-csv.py
84767a982fe90eea056a65ae081b2a207aef460b
[]
no_license
https://github.com/thorcc/Programmeringskurs-Sandvika
4539657109204e83a205e40608ff8a6fa71c17a6
b710a9aa2b3f151648ed55ecb1fe8de64e4cbb4a
refs/heads/master
2023-08-30T16:10:44.894358
2021-11-17T11:10:36
2021-11-17T11:10:36
427,966,322
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Program som konverterer gpx-filer til csv-filer # Programmet krever pakken gpx_converter # Åpne terminalen/CMD og kjør kommandoen: pip install -U gpx-converter from gpx_converter import Converter from datetime import datetime input = "kolsaastoppen_med_Eirik.gpx" output = "kolsaastoppen_med_Eirik.csv" Converter(input_file=input).gpx_to_csv(output_file=output) # Resten av koden konverterer fra datetime til sekunder f = open(output,"r") lines = f.readlines() starttime = datetime.strptime(lines[1].split(",")[0][:19], "%Y-%m-%d %H:%M:%S") f = open(output, "w") f.write(lines[0]) for line in lines[1::]: newline = line.split(",") newtime = datetime.strptime(newline[0][:19], "%Y-%m-%d %H:%M:%S") newline[0] = str(int((newtime - starttime).total_seconds())) f.write(",".join(newline))
UTF-8
Python
false
false
811
py
13
gpx-to-csv.py
4
0.697157
0.684796
0
24
32.708333
79
gdennany/BlockChainProgramming
1,975,684,989,018
59565a9cd2c97674c1af0797de4d9183925689dd
e0709305da506cc2377f4980dbfecda71ed84b61
/BlockChain/Transaction.py
9d4c484ac17f90b077609e9e0c1385c40c0f5458
[]
no_license
https://github.com/gdennany/BlockChainProgramming
a4c69eed522514b9689e80861dc883d5e11d48d9
a112e7998316be6f0206d13e904e3a20b1f0ac24
refs/heads/master
2021-04-22T02:40:36.989679
2020-04-05T21:07:21
2020-04-05T21:07:21
249,844,552
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import Signatures #Tx abbreviates transaction class Tx: inputs = None #list of input address outputs = None #list of output addresses and amounts sigs = None #list of signatures reqd = None #list of required signatures that are not inputs (to facilitate escrow transactions) def __init__(self): self.inputs = [] self.outputs = [] self.sigs = [] self.reqd = [] def add_input(self, from_addr, amount): self.inputs.append((from_addr, amount)) def add_output(self, to_addr, amount): self.outputs.append((to_addr, amount)) def add_reqd(self, addr): self.reqd.append(addr) def sign(self, privateKey): message = self.__gather() # __ indicates this is a private member function newSig = Signatures.sign(message, privateKey) self.sigs.append(newSig) def is_valid(self): totalIn = 0 totalOut = 0 message = self.__gather() for addr, amount in self.inputs: found = False for s in self.sigs: if Signatures.verify(message, s, addr): found = True if not found: #print("No good signature found for " + str(message)) return False if amount < 0: return False totalIn = totalIn + amount for addr in self.reqd: found = False for s in self.sigs: if Signatures.verify(message, s, addr): found = True if not found: return False for addr, amount in self.outputs: if amount < 0: return False totalOut = totalOut + amount #if totalOut > totalIn: #print("Outputs exceed inputs") # return False return True def __gather(self): data = [] data.append(self.inputs) data.append(self.outputs) data.append(self.reqd) return data def __repr__(self): reprstr = "Inputs:\n" for addr, amount in self.inputs: reprstr = reprstr + str(amount) + " from " + str(addr) + "\n" reprstr = reprstr + "Outputs:\n" for addr, amount in self.outputs: reprstr = reprstr + str(amount) + " to " + str(addr) + "\n" reprstr = reprstr + "Required:\n" for x in self.reqd: reprstr = reprstr + str(x) + "\n" reprstr = reprstr + "Signatures:\n" for s in self.sigs: reprstr = reprstr + str(s) + "\n" reprstr = reprstr + "End\n" return reprstr if __name__ == '__main__': priv1, publ1 = Signatures.generate_keys() priv2, publ2 = Signatures.generate_keys() priv3, publ3 = Signatures.generate_keys() priv4, publ4 = Signatures.generate_keys() #Testing valid transactions #Transaction 1: user 1 sends one keys from his public key (publ1) to the public key of user 2 (publ2) and signs the transaction Tx1 = Tx() Tx1.add_input(publ1, 1) Tx1.add_output(publ2, 1) Tx1.sign(priv1) Tx2 = Tx() Tx2.add_input(publ1, 2) Tx2.add_output(publ2, .5) Tx2.add_output(publ2, .5) Tx2.add_output(publ3, 1) Tx2.sign(priv1) Tx3 = Tx() Tx3.add_input(publ3, 1.2) Tx3.add_output(publ1, 1.1) Tx3.add_reqd(publ4) #test escrow transactions Tx3.sign(priv3) Tx3.sign(priv4) #third pary must also sign in escrow transactions print() for t in [Tx1, Tx2, Tx3]: if t.is_valid(): print("Successful transaction") else: print("Error: Failed transaction") #Testing invalid transactions #Test invalid signature Tx4 = Tx() Tx4.add_input(publ1, 1) Tx4.add_output(publ2, 1) Tx4.sign(priv2) #Test escrow transaction not signed by the third party (should fail) Tx5 = Tx() Tx5.add_input(publ3, 1.2) Tx5.add_output(publ1, 1.1) Tx5.add_reqd(publ4) #test escrow transactions Tx5.sign(priv3) #Tx3.sign(priv4) #third party doesnt sign => is invalid #Test two input addresses, but only one signs it Tx6 = Tx() Tx6.add_input(publ3, 1) Tx6.add_input(publ4, .1) Tx6.add_output(publ1, 1.1) Tx6.sign(priv3) #only one person signs => should be invalid #Test Outputs exceeding the input Tx7 = Tx() Tx7.add_input(publ4, 1.2) Tx7.add_output(publ1, 1) Tx7.add_output(publ2, 2) Tx7.sign(priv4) #Test negative values Tx8 = Tx() Tx8.add_input(publ2, -1) Tx8.add_output(publ1, -1) Tx8.sign(priv2) #A transaction that has been modified Tx9 = Tx() Tx9.add_input(publ1, 1) Tx9.add_output(publ2, 1) Tx9.sign(priv1) Tx9.outputs[0] = (publ3, 1) for t in [Tx4, Tx5, Tx6, Tx7, Tx8, Tx9]: if t.is_valid(): print("Error: Bad transaction passed") else: print("Success: Bad Transaction detected")
UTF-8
Python
false
false
5,064
py
12
Transaction.py
12
0.561216
0.534163
0
171
28.573099
131
kakulukia/schlampenadmin
15,522,011,808,931
3278451da3ee086c015d832fabfacce8025cb563
d372a147f8c715cec041dbe51912983f1b9c1675
/swing_admin/migrations/0002_auto_20170828_1510.py
ed1d83c5cdc2a3a738f9d3a74104fd9fc1566f01
[]
no_license
https://github.com/kakulukia/schlampenadmin
b521fa617cd714bcab24ded8b8832fd9373cb598
6586237222a7a7a10dac159b40563e51433e27cd
refs/heads/master
2021-12-28T19:04:41.764966
2021-04-09T09:20:20
2021-04-09T09:20:20
41,327,236
1
0
null
false
2021-09-10T17:58:29
2015-08-24T21:10:48
2021-04-09T09:20:23
2021-09-10T17:58:28
352
1
0
5
JavaScript
false
false
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-28 15:10 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('swing_admin', '0001_squashed_0006_remove_news_image'), ] operations = [ migrations.AlterModelOptions( name='dates', options={'verbose_name': 'Date', 'verbose_name_plural': 'Dates'}, ), migrations.AlterModelOptions( name='news', options={'verbose_name': 'News', 'verbose_name_plural': 'News'}, ), ]
UTF-8
Python
false
false
611
py
17
0002_auto_20170828_1510.py
10
0.585925
0.545008
0
23
25.565217
77
unixorn/themis-lambda
4,063,039,075,953
3dc5372738ed093e2a348224f357078b5f7491e9
3a8b40f704695b68b546884db7aa3c16d4608fc3
/themis_lambda.py
2b3150d812c2dcd09c308e1edc29e6792f272457
[ "Apache-2.0" ]
permissive
https://github.com/unixorn/themis-lambda
893a879a715f6f83e504ed808e9949289dc96aa0
f69eb0c8285cdab13afa78e9a6eac176464ae411
refs/heads/master
2021-10-12T02:36:08.921032
2019-01-31T19:17:20
2019-01-31T19:17:20
105,590,188
1
0
Apache-2.0
false
2019-01-31T19:17:21
2017-10-02T22:07:47
2018-01-16T15:33:03
2019-01-31T19:17:20
15
1
0
0
Python
false
null
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # # Copyright 2018-2019 Joe Block <jpb@unixorn.net> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' themis-lambda is a tool to scan autoscaling groups and determine which instances are busy and which are not, then apply instance protection to the busy instances so they won't be killed during scale-down events. Sample Trigger Event { "asgName": "Electric-Horse-Ziggurat", "metricsPort": 9000, "busyURL": "/work_status", "busyValue": "BUSY", "idleValue": "IDLE" } ''' import sys import urllib2 import boto3 from logrus.utils import getCustomLogger # this is a pointer to the module object instance itself. We'll attach # a logger to it later. this = sys.modules[__name__] def getASGInstances(asgID=None, client=None, NextToken=None, MaxRecords=10): ''' Get the members of an autoscaling group :param str asgID: What Autoscaling group to list :param int MaxRecords: How many instances to look at at a time :param boto3client client: boto3 autoscaling client :param boto3 pagination token NextToken: token for the next page of results ''' assert isinstance(asgID, basestring), ("asgID must be a string but is %r." % asgID) response = None if NextToken: response = client.describe_auto_scaling_instances(MaxRecords=MaxRecords, NextToken=NextToken) else: response = client.describe_auto_scaling_instances(MaxRecords=MaxRecords) for i in response['AutoScalingInstances']: if i['AutoScalingGroupName'] == asgID: yield i['InstanceId'] if 'NextToken' in response: for i in getASGInstances(client=client, asgID=asgID, NextToken=response['NextToken']): yield i def setASGInstanceProtection(asgName=None, client=None, instances=None, protected=True, dryRun=False): ''' Set instance protection for instances in instanceList so that they are not terminated during a scale-down event in the ASG :param str asgName: Autoscaling group to affect :param list instances: list of instance IDs to change protection status for :param bool protected: What to set the instance protection to ''' assert isinstance(asgName, basestring), ("asgName must be a basestring but is %r." % asgName) assert isinstance(dryRun, bool), ("dryRun must be a bool but is %r." % dryRun) assert isinstance(instances, list), ("instances must be a list but is %r." % instances) assert isinstance(protected, bool), ("protected must be a bool but is %r." % protected) this.logger.info('Setting %s instance protection to %s', instances, protected) if dryRun: this.logger.info('dry run - not altering instance protection') return None else: response = client.set_instance_protection(InstanceIds=instances, AutoScalingGroupName=asgName, ProtectedFromScaleIn=protected) return response def getPrivateIP(client=None, instanceID=None): ''' Return the private IP of an instance ''' assert isinstance(instanceID, basestring), ("instanceID must be a basestring but is %r." % instanceID) instanceData = client.describe_instances(InstanceIds=[instanceID]) return instanceData['Reservations'][0]['Instances'][0]['PrivateIpAddress'] def getInstanceWorkStatuses(client=None, instances=None, busyURL='/work_status', metricsPort=9000, busyValue='BUSY', idleValue='IDLE'): ''' Check instance work status ''' assert isinstance(busyURL, basestring), ("busyURL must be a basestring but is %r." % busyURL) assert isinstance(busyValue, basestring), ("busyValue must be a basestring but is %r." % busyValue) assert isinstance(idleValue, basestring), ("idleValue must be a basestring but is %r." % idleValue) assert isinstance(instances, list), ("instances must be a list but is %r." % instances) assert isinstance(metricsPort, int), ("metricsPort must be an int but is %r." % metricsPort) statuses = {} statuses['busy'] = {} statuses['idle'] = {} statuses['error'] = {} this.logger.info('Checking instances %s', list(instances)) for i in instances: this.logger.info('Checking %s', i) privateIP = getPrivateIP(client=client, instanceID=i) this.logger.info('%s has IP %s, checking busy status', i, privateIP) try: statusURL = "http://%s:%s/%s" % (privateIP, metricsPort, busyURL) this.logger.info('Checking %s for instance status', statusURL) probe = urllib2.urlopen(statusURL) workStatus = probe.read().lower().strip() except urllib2.URLError as e: workStatus = e.reason this.logger.warning(workStatus) statuses['error'][i] = privateIP this.logger.info('status: %s', workStatus) if workStatus == busyValue.lower().strip(): this.logger.info('adding %s to busy list', i) statuses['busy'][i] = privateIP elif workStatus == idleValue.lower().strip(): this.logger.info('adding %s to idle list', i) statuses['idle'][i] = privateIP else: this.logger.warning('%s is not reporting a valid work state', i) statuses['error'][i] = privateIP return statuses def processASG(asgName=None, region=None, busyURL=None, metricsPort=9000, busyValue='BUSY', idleValue='IDLE', dryRun=False): ''' Process an ASG and return a dict describing the busy statuses of the instances in the ASG. :param str asgName: Auto Scaling Group to process :param str busyURL: What url to probe on the instances in the ASG :param int metricsPort: What port for the http server reporting the busy status :param str busyValue: What busy instances will return. Default 'BUSY' :param str idleValue: What idle instances will return. Default 'IDLE' :param bool dryRun: whether or not to change instances instance protection ''' assert isinstance(asgName, basestring), ("asgName must be a basestring but is %r." % asgName) assert isinstance(busyURL, basestring), ("busyURL must be a basestring but is %r." % busyURL) assert isinstance(busyValue, basestring), ("busyValue must be a basestring but is %r." % busyValue) assert isinstance(dryRun, bool), ("dryRun must be a bool but is %r." % dryRun) assert isinstance(idleValue, basestring), ("idleValue must be a basestring but is %r." % idleValue) assert isinstance(metricsPort, int), ("metricsPort must be a int but is %r." % metricsPort) assert isinstance(region, basestring), ("region must be a basestring but is %r." % region) if dryRun: this.logger.warning('Activating dry-run mode') # Set up boto3 connections asgClient = boto3.client('autoscaling', region_name=region) ec2client = boto3.client('ec2', region_name=region) instances = list(getASGInstances(asgID=asgName, client=asgClient, MaxRecords=50)) this.logger.info('ASG %s members: %s', asgName, instances) this.logger.info('Checking which members are busy...') asgInstanceStatuses = getInstanceWorkStatuses(client=ec2client, busyURL=busyURL, busyValue=busyValue, idleValue=idleValue, metricsPort=metricsPort, instances=list(instances)) this.logger.info('Statuses: %s', asgInstanceStatuses) this.logger.info('Applying instance protection') if len(asgInstanceStatuses['busy'].keys()) > 0: setASGInstanceProtection(client=asgClient, asgName=asgName, instances=asgInstanceStatuses['busy'].keys(), dryRun=dryRun, protected=True) else: this.logger.info('No instances reporting busy status') if len(asgInstanceStatuses['idle'].keys()) > 0: setASGInstanceProtection(client=asgClient, asgName=asgName, instances=asgInstanceStatuses['idle'].keys(), dryRun=dryRun, protected=False) else: this.logger.info('No instances reporting idle status') if len(asgInstanceStatuses['error'].keys()) > 0: this.logger.warning('The following instances did not report a status and are not going to be touched:') this.logger.warning(asgInstanceStatuses['error']) else: this.logger.info('No problems checking instance idle status') return asgInstanceStatuses def handler(event, context): ''' Handle incoming events from AWS ''' asgName = event.get('asgName') busyURL = event.get('busyURL') busyValue = event.get('busyValue') dryRun = event.get('dryRun') idleValue = event.get('idleValue') logLevel = event.get('logLevel') logName = event.get('logName') metricsPort = event.get('metricsPort') region = event.get('region') # Sanity check and default setting if not asgName: raise ValueError, 'You must specify an asgName' else: print 'asgName: ' + asgName # Set up logging if not logLevel: logLevel = 'INFO' if not logName: logName = 'themis' logLevel = logLevel.upper() this.logger = getCustomLogger(name=logName, logLevel=logLevel) this.logger.debug('Setting log level to %s', logLevel) this.logger.info('Processing %s', asgName) # Peel settings out of incoming event if not dryRun: dryRun = False if not busyURL: busyURL = '/work_status' this.logger.info('Using default busyURL %s', busyURL) if not busyValue: busyValue = 'BUSY' this.logger.info('Using default busyValue %s', busyValue) if not idleValue: idleValue = 'IDLE' this.logger.info('Using default idleValue %s', idleValue) if not metricsPort: # Use the standard Apgar port metricsPort = 9000 this.logger.info('Using default metricsPort %s', metricsPort) if not region: region = 'us-west-2' this.logger.info('Using default region %s', region) this.logger.debug('asgName: %s', asgName) this.logger.debug('region: %s', region) this.logger.debug('busyURL: %s', busyURL) this.logger.debug('busyValue: %s', busyValue) this.logger.debug('idleValue: %s', idleValue) this.logger.debug('metricsPort: %s', metricsPort) return processASG(asgName=asgName, region=region, busyURL=busyURL, metricsPort=metricsPort, busyValue=busyValue, idleValue=idleValue, dryRun=dryRun)
UTF-8
Python
false
false
11,185
py
4
themis_lambda.py
1
0.663657
0.658829
0
292
37.304795
107
daggy1234/oauthcord
10,496,900,101,306
ba6c4ec498e4d6041d296a68db44f5799ba74759
50615491f27a33455f7f67ca1e9cc00e2958115b
/oauthcord/application.py
0f0ec872945b6f4421faab090e9f9168992310cf
[ "MIT" ]
permissive
https://github.com/daggy1234/oauthcord
77bb73f8b0ba909cabc866cbb827be08dcf12959
baf919e6008dfccf90bcb82d01f36a3b89467680
refs/heads/master
2023-06-24T21:39:14.321436
2019-09-17T12:16:23
2019-09-17T12:16:23
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Application(object): """ Much like a user object, but for the current application """ __slots__ = ("id", "name", "icon", "description", "rpc_origins", "bot_public", "bot_require_code_grant", "owner") def __init__(self, dict): # Take out everything that we inherited from the GET /oauth2/applications/@me # Application info stuff self.id = dict.get("id") self.name = dict.get("name") sef.icon = dict.get("icon") self.description = dict.get("description") # Rpc self.rpc_origins = dict.get("rpc_origins") # Bot self.bot_public = dict.get("bot_public") self.bot_require_code_grant = dict.get("bot_require_code_grant") # Owner self.owner = dict.get("owner")
UTF-8
Python
false
false
788
py
7
application.py
6
0.583756
0.582487
0
24
31.875
117
7u83/maxdb-buildtools
6,536,940,270,656
48ea8885b353074b69c41c57407a743939c7b9f3
e987cd566edc75997f9b02377514d4f3a0dba12c
/sys/src/Python/vmake/dependencies.py
e8913a17664fa363f757be05cfa22353f30dfa4c
[]
no_license
https://github.com/7u83/maxdb-buildtools
f942adff2cd55d0a046b6ef3e18f6645b011a26e
ce9a56943f6195d6755e983035aa96cbe95e6cb2
refs/heads/master
2020-05-04T18:23:30.849371
2015-02-15T19:25:49
2015-02-15T19:25:49
30,428,297
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# # ========== licence begin GPL # Copyright (C) 2001 SAP AG # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # ========== licence end # import os import time import cPickle import vmakeLib _dayMillisC = 24 * 60 * 60 * 1000 _speedMapping = { 's': 'slow', 'q': 'quick', 'f': 'fast', } class VmakeDependencies: def __init__ (self, target = 'all', speed = 's'): self.loadVmakeData (target, speed) mainDependencies = DependenciesSet () includeDependencies = DependenciesSet () def getCachePath (self, speed): return (os.environ ['OWN'] + '/sys/wrk/' + _speedMapping [speed] + '/all.vmake.pycache') def loadVmakeData (self, target, speed): cachePath = self.getCachePath (speed) dataLoaded = None if os.path.exists (cachePath): modified = os.path.getmtime (cachePath) now = time.time () if now - modified < _dayMillisC: self.all = cPickle.load (open (cachePath, 'rb')) dataLoaded = 1 if not dataLoaded: self.callVmake (speed) cPickle.dump (self.all, open (cachePath, 'wb'), 1) def callVmake (self, speed): self.all = {} parser = vmakeLib.VmakeParser () parser.registerHandler (None, self.targetEvent) parser.parseCollection (['all', 'allknl'], speed) def targetEvent (self, target): if target.version == '': target.version = vmakeLib.independentVersion self.all [(target.name, target.version)] = target def dependentsOf (self, headerList, targetList = None): queue = OnceQueue () for headerName in headerList: try: target = self.all [(headerName, vmakeLib.independentVersion)] except KeyError: keys = self.all.keys () keys.sort () for key in keys: name = key [0] if name == headerName: print key raise queue.add (target, target.asKey ()) modules = {} while not queue.isEmpty (): target = queue.next () if not hasattr (target, 'callers'): continue for module in target.callers: subtarget = self.all [module] if subtarget.kind == 'module': modules [module] = 1 queue.add (subtarget, subtarget.asKey ()) if targetList: targetModules = self.modulesOf (targetList) result = [] for module in modules.keys (): if targetModules.has_key (module): result.append (module) else: result = modules.keys () return result def modulesOf (self, targetList): queue = OnceQueue () targetList = map (macname, targetList) for targetName in targetList: for speed in "sqf ": target = None try: target = self.all [(targetName, speed)] queue.add (target, target.asKey ()) except KeyError: pass if target != None: continue modules = {} while not queue.isEmpty (): target = queue.next () if not hasattr (target, 'dependencies'): continue for module in target.dependencies: try: subtarget = self.all [module] except KeyError: continue if subtarget.kind == 'module': modules [module] = 1 queue.add (subtarget, subtarget.asKey ()) return modules def macname (name): if name [-4:] != '.mac': name = name + '.mac' return name class DependenciesSet: def __init__ (self): self.dict = [] def add (self, base, newDep): try: dict = self.dict [base] except KeyError: dict = {} self.dict [base] = dict dict [newDep] = 1 def dependenciesOf (self, base): pass class OnceQueue: def __init__ (self, seen = None): self.seen = {} self.queue = [] def add (self, item, name): if not self.seen.has_key (name): self.queue.append (item) self.seen [name] = 1 def isEmpty (self): return len (self.queue) == 0 def next (self): result = self.queue [0] del self.queue [0] return result
UTF-8
Python
false
false
5,339
py
1,027
dependencies.py
234
0.533808
0.526316
0
169
30.568047
80
Xuan4dream/Leetcode
549,755,862,177
09133b1602353984776d448d7106d77accc6f50e
0ed666fb3219f919a5f1549609340ac0405ac5f0
/M_1041. Robot Bounded In Circle.py
58fce6bcea5d30da255bdd59aeae47e5531af5e5
[]
no_license
https://github.com/Xuan4dream/Leetcode
086cdbbbe53a8a7f287de57e02e31cca2ed6db05
013c16574fd6082ae80aa074f1d9579a077261b7
refs/heads/main
2023-04-15T00:50:03.699455
2021-04-30T04:00:51
2021-04-30T04:00:51
346,591,422
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[44]: class Solution(object): def isRobotBounded(self, instructions): """ :type instructions: str :rtype: bool """ # refered to solution: # 0- north, 1- east, 2-south, 3-west directions = [[0, 1], [1, 0], [0, -1], [-1, 0]] # inital position x = y = 0 # facing north idx = 0 for i in instructions: if i == "L": idx = (idx +3)%4 elif i == "R": idx = (idx +1)%4 else: x += directions[idx][0] y += directions[idx][1] # after one circle: it returns to the inital position # or doesn't face north, then it is bounded return (x == 0 and y == 0) or idx != 0 # # 04262021 First try with hints # self.loc = [0, 0] # self.direction = [0, 1] # for ins in instructions: # self.move(ins) # if self.direction != [0, 1] or self.loc == [0, 0]: # return True # else: # return False # def move(self, ins): # left_dir = [[0, 1], [-1, 0], [0, -1], [1, 0], [0, 1]] # right_dir = [[0, 1], [1, 0], [0, -1], [-1, 0], [0, 1]] # if ins == "G": # self.loc = [self.loc[i]+self.direction[i] for i in (0, 1)] # elif ins == "L": # self.direction = left_dir[left_dir.index(self.direction) + 1] # else: # self.direction = right_dir[right_dir.index(self.direction) + 1] # # Time: O(N) # # Space: O(1)
UTF-8
Python
false
false
1,683
py
30
M_1041. Robot Bounded In Circle.py
30
0.423648
0.383838
0
58
28
77
Yizhou-Yang/tagger
13,091,060,320,963
a462ee8f5f049cae754561c0d7cd7fe36aad6801
65ca2bca6c9ce0262c70f026a28826f98a845473
/tagger.py
aecefa1ac7c8b7b883ccd5c7c9c18d6e27622687
[]
no_license
https://github.com/Yizhou-Yang/tagger
73c1297ebfd73c451ca95ee6d0fbac7c5d6a66b2
c37a16c29d9e632bfc8941d5d1bb681945187c19
refs/heads/main
2023-05-08T05:41:13.271237
2021-06-01T19:41:57
2021-06-01T19:41:57
372,942,162
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Currently reads in the names of the training files, test file and output file, # and calls the tagger (which you need to implement) import os import sys import re import math import numpy as np #this is vanilla viberti taught in lecture #take log for the probability before nomalizing, and preload all probablilies with 0.01 to avoid all zero columns. #this implementation currently does not use numpy... so it has efficiency issues. But it runs within a minute on my machine, so hopefully it isnt too slow... #reads sentences, and does tagging for every .!;? (which must be PUN) to mitigate some efficiency issues. #preloads some symbols that are repeatly misclassified #have an accuracy of around 80%... a bit far from 90% but this is best I can do(already late) #A is transition matrix, B is emission matrix,P is the initial probability #assume there are no more than 200000 distinct words in both training and test. taglist = ["AJ0","AJC","AJS","AT0","AV0","AVP","AVQ","CJC","CJS","CJT","CRD","DPS","DT0","DTQ","EX0","ITJ","NN0","NN1","NN2","NP0","ORD","PNI","PNP","PNQ","PNX","POS","PRF","PRP","PUL","PUN","PUQ","PUR","TO0","UNC","VBB","VBD","VBG","VBI","VBN","VBZ","VDB","VDD","VDG","VDI","VDN","VDZ","VHB","VHD","VHG","VHI","VHN","VHZ","VM0","VVB","VVD","VVG","VVI","VVN","VVZ","XX0","ZZ0","AJ0-NN1","AJ0-VVD","AJ0-VVG","AJ0-VVN","AV0-AJ0","AVP-PRP","AVQ-CJS","CJS-AVQ","CJS-PRP","CJT-DT0","CRD-PNI","DT0-CJT","NN1-AJ0","NN1-NP0","NN1-VVB","NN1-VVG","NN2-VVZ","NP0-NN1","PNI-CRD","PRP-AVP","PRP-CJS","VVB-NN1","VVD-AJ0","VVD-VVN","VVG-AJ0","VVG-NN1","VVN-AJ0","VVN-VVD","VVZ-NN2","AJ0-AV0"] tagdict = {} reversedict = {} worddict = {} #preloaded tags, to be built manually preload = {"a":"AT0","that":"CJT","of":"PRF","at":"PRP","the":"AT0",",":"PUN","had":"VHD","there":"EX0","was":"VBD","he":"PNP","with":"PRP","to":"TO0","both":"AV0","all":"DT0","around":"AVP","on":"PRP","him":"PNP","for":"CJS","now":"AV0","make":"VVI","before":"AV0","about":"PRP","one":"CRD","it":"PNP"} A = [] B = [] P = [] countP = 0 countA = [] countB = [] numwords = 0 prob_trellis = [] path_trellis = [] def train(training_file): global countP global numwords rd = open(training_file,"r",errors='replace') outList = rd.readlines() last = None for line in outList: split = line.split() word = split[0] tag = split[2] if(len(split)>2): split = line.split(" : ") word = split[0] tag = split[1].split()[0] #update P #print(tag) i = tagdict.get(tag) P[i]+= 1 countP+=1 #update A if(last!=None): A[tagdict.get(last)][tagdict.get(tag)]+=1 countA[tagdict.get(last)]+=1 last = tag #update B wordindex = worddict.get(word,-1) if(wordindex==-1): worddict.update({word:numwords}) wordindex = numwords numwords+=1 countB[tagdict.get(tag)]+=1 B[tagdict.get(tag)][wordindex]+=1 #find the most probable word lists #path_trellis is an array of numbers,translate it into word tags. def findx(s,num,obs): maxprob = 0 maxindex = -1 for x in range(len(taglist)): prob = prob_trellis[x][num-1]*A[x][s]*B[s][obs] if(prob>maxprob): maxprob = prob maxindex = x return maxindex def findmax(prob_trellis,index): maxprob = 0 maxindex = 0 for x in range(len(taglist)): prob = prob_trellis[x][index] if(prob>=maxprob): maxprob = prob maxindex = x return maxindex #clean a,b,p def clean(): #total = [] for i in range(len(P)): P[i] = P[i]/countP for i in range(len(tagdict)): sumB = 0 for j in range(len(tagdict)): if(countA[i]==0): A[i][j]=0.000001 continue A[i][j] = A[i][j]/countA[i] for j in range(len(worddict)): if(countB[i]==0): B[i][j]=0.000001 continue B[i][j] = B[i][j]/countB[i] #print(total) def v_sentence(sentence,wr,punctuation): default = worddict.get(sentence[0]) if default == None: default = 19 for s in range(len(taglist)): #print(P[s] * B[s][worddict.get(outList[0],-1)]) #print(counttag[s]) prob_trellis[s][0] = P[s] * B[s][default] path_trellis[s][0] = [s] #handle never-before-seen words #print(prob_trellis[s][0]) #for s in range(len(taglist)): # print(B[s][worddict.get(outList[0])]) # o is the item number, obs is the observation for num in range(1,len(sentence)): #if it is one of our preloads obs = worddict.get(sentence[num]) if(obs==None): obs = default total = 0 for s in range(len(taglist)): if preload.get(sentence[num-1])!=None: tag = preload.get(sentence[num-1]) x = tagdict.get(tag) else: x = findx(s,num,obs) if(x==-1): print(sentence) print(num) exit() #every round, not every state can be reached by some other state prob_trellis[s][num] = prob_trellis[x][num-1]*A[x][s]*B[s][obs] total += prob_trellis[s][num] new_path = list(path_trellis[x][num-1]) new_path.append(s) path_trellis[s][num] = new_path #nomalize prob_trellis[s][num] for s in range(len(taglist)): prob_trellis[s][num] = prob_trellis[s][num]/total #for s in range(len(taglist)): # print(path_trellis[s][num]) maxnum = findmax(prob_trellis,len(sentence)-1) writesentence(path_trellis[maxnum][len(sentence)-1],wr,sentence,punctuation) def viberti(test_file,output_file): global numwords rd = open(test_file,"r") wr = open(output_file,"w") outList = rd.readlines() #clean the outlist for i in range(len(outList)): outList[i] = outList[i][:len(outList[i])-1] #print(outList) sentence = [] for item in outList: if item == '.' or item == '!' or item == '?' or item == ';': v_sentence(sentence,wr,item) sentence = [] else: sentence.append(item) #write the calculated word list to output def writesentence(output,wr,sentence,punctuation): for i in range(len(output)): wr.write(sentence[i]+' : '+reversedict.get(output[i])+'\n') wr.write(punctuation+' : '+'PUN'+'\n') def word(training_list, test_file, output_file): # Tag the words from the untagged input file and write them into the output file. # Doesn't do much else beyond that yet. print("Tagging the file.") # # YOUR IMPLEMENTATION GOES HERE # for i in range(len(taglist)): tagdict.update({taglist[i]:i}) reversedict.update({i:taglist[i]}) for i in range(len(taglist)): P.append(0.01) countA.append(0.0) countB.append(0.0) temp = [] for j in range(len(taglist)): temp.append(0.01) A.append(temp) temp = [] for j in range(200000): temp.append(0.01) B.append(temp) prob_trellis.append(temp) temp = [] for j in range(200000): temp.append([]) path_trellis.append(temp) #print(len(B)) #print(len(B[0])) for training_file in training_list: train(training_file) clean() viberti(test_file,output_file) if __name__ == '__main__': # Run the tagger function. print("Starting the tagging process.") # Tagger expects the input call: "python3 tagger.py -d <training files> -t <test file> -o <output file>" parameters = sys.argv training_list = parameters[parameters.index("-d")+1:parameters.index("-t")] test_file = parameters[parameters.index("-t")+1] output_file = parameters[parameters.index("-o")+1] # print("Training files: " + str(training_list)) # print("Test file: " + test_file) # print("Ouptut file: " + output_file) # Start the training and tagging operation. word (training_list, test_file, output_file)
UTF-8
Python
false
false
8,543
py
1
tagger.py
1
0.550977
0.533653
0
255
31.509804
677
joezuntz/des-tile-tools
14,620,068,692,903
008c4468c8fc5bc92f6b46988990c50db60df4d5
c83dea122415e8b60948e10f566169192559a1e5
/tile_collections.py
526fb10b1583be82579894b5dd375fd41cda0a69
[]
no_license
https://github.com/joezuntz/des-tile-tools
064244e7fae0a7f41df50fac1e7c73c98193db3c
5a8b8630232735eeb895b366af687370dbf139a7
refs/heads/master
2021-01-19T11:31:08.572574
2016-06-10T15:24:06
2016-06-10T15:24:06
60,851,020
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#DES File tools import re import os UNKNOWN_TILE = "unknown" tile_pattern = re.compile(r'DES[0-9][0-9][0-9][0-9][+-][0-9][0-9][0-9][0-9]') def find_tilename(name): m = tile_pattern.search(name) if m is None: return UNKNOWN_TILE return m.group() class TileCollection(object): "A directory with lots of files or subdirectories which have tiles in their names" def __init__(self, path=None, files=None): if files is not None: self.files = files elif path is not None: self.files = self.find_files(path) else: raise ValueError("Must initialize a TileCollection with either path or files") def find_files(self, path): all_files = os.listdir(path) files = {} for filename in all_files: tile = find_tilename(filename) if tile==UNKNOWN_TILE: continue files[tile] = filename return files def __contains__(self, tile): return tile in self.files def files_with_path(self, path): for tile, filename in self.files.items(): yield tile, os.path.join(path, filename) def existing_files_with_path(self, path): for tile, filename in self.files_with_path(path): if os.path.exists(filename): yield tile, filename def inverse_filter(self, other): files = {} for tile, filename in self.files.items(): if tile not in other: files[tile] = filename return TileCollection(files=files) def filter(self, other): files = {} for tile, filename in self.files.items(): if tile in other: files[tile] = filename return TileCollection(files=files)
UTF-8
Python
false
false
1,787
py
2
tile_collections.py
2
0.584219
0.575266
0
59
29.288136
90
underminedsk/kaleidoscope
11,501,922,451,383
5f352fb5e75cee8e02dbc7fcaa065cc256e10d62
0f0238a2c2210fcd797f32a3a724a97ac5294e45
/light_puzzle/light_puzzle_demo.py
3566d684f8d12c7d8ae24f4a572c998a87554263
[]
no_license
https://github.com/underminedsk/kaleidoscope
2a9a8a7ec7220a21afbcc933a9da9b4509ce3b35
bffd72caf07479d020758abe7fa1d431657215d1
refs/heads/master
2020-04-06T07:02:21.902922
2016-08-21T00:43:02
2016-08-21T00:43:02
59,241,432
0
4
null
false
2016-06-14T06:23:39
2016-05-19T20:44:06
2016-05-20T23:46:36
2016-06-14T06:23:39
53
0
1
0
Arduino
null
null
MAX_ALLOWED_MOVES = 9999 NUM_NODES = 3 STATES = ['RED', 'ORANGE', 'YELLOW'] #STATES = ['RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE'] def initial_game_state(): #return [STATES[0] for i in range(0,NUM_NODES)] return ['RED', 'ORANGE', 'YELLOW'] def get_user_input(): choice = raw_input('choose a node (1-%s)):' % (NUM_NODES)) try: choice = int(choice) if choice <=0 or choice > NUM_NODES: raise ValueError() else: return choice except: print 'ERROR: enter a number between 1 and %s' % NUM_NODES return None def next_node_state(state): idx = STATES.index(state)+1 return STATES[idx] if idx < len(STATES) else STATES[0] def next_game_state(current_game_state, user_choice): next_state = [] for node_idx in range(0, NUM_NODES): cur_node_state = current_game_state[node_idx] if node_idx+1 != user_choice: next_state.append(next_node_state(cur_node_state)) else: next_state.append(cur_node_state) return next_state def puzzle_solved(current_game_state): for node_state in current_game_state: if node_state != STATES[-1]: return False return True if __name__ == '__main__': print 'rules: (1) all nodes start as %s' % STATES[0] print ' (2) win make all the nodes %s' % STATES[-1] print ' (3) choosing a node changes the color of the other nodes. ' print ' (4) node colors are %s' % ' -> '.join(STATES) moves = 0 current_game_state = initial_game_state() while moves < MAX_ALLOWED_MOVES: print current_game_state moves += 1 user_choice = get_user_input() if user_choice: current_game_state = next_game_state(current_game_state, user_choice) if puzzle_solved(current_game_state): print 'Success! You solved the puzzle in %s moves' % moves break
UTF-8
Python
false
false
1,961
py
33
light_puzzle_demo.py
29
0.583886
0.572157
0
63
30.063492
81
TylerET/Morrowind-Text-Adventure
14,061,722,966,963
d275c47295780583658ef611ed3d133ca0ef4e16
a4ed2d1a2bb505a8fa0792a3072380878cf93343
/Import.py
573eb53675381b6b4c1ce3277aa710e49d324bbd
[]
no_license
https://github.com/TylerET/Morrowind-Text-Adventure
9d054b71d009fb803d0eef31ba433ab72f558e0f
2b4ed63c93531bdfb6c034a1247aecbd4bd5e8fb
refs/heads/main
2023-09-06T03:55:51.350100
2021-09-28T18:25:44
2021-09-28T18:25:44
411,395,213
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os f = open('importNPC.txt', 'r') w = open('NPCs.py', 'a') print(f.readline()) for _ in range(25): line = f.readline().rstrip('\n') description = '' name = line minDmg = '' maxDmg = '' hp = '' magicka = '' weapon = '' inventory= '' className = name.replace(' ','') print('class {}(NPC):\n\tdef __init__(self):\n\t\tsuper().__init__(name=\'{}\', hp=\'{}\', minDmg={}, maxDmg={}, magicka={}, weapon={}, inventory={})\n\n'.format(className, name, hp, minDmg, maxDmg, magicka, weapon, inventory)) w.close()
UTF-8
Python
false
false
594
py
7
Import.py
6
0.505051
0.501684
0
24
22.5
231