repo_name
stringlengths 7
111
| __id__
int64 16.6k
19,705B
| blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 5
151
| content_id
stringlengths 40
40
| detected_licenses
sequence | license_type
stringclasses 2
values | repo_url
stringlengths 26
130
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
42
| visit_date
timestamp[ns] | revision_date
timestamp[ns] | committer_date
timestamp[ns] | github_id
int64 14.6k
687M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 12
values | gha_fork
bool 2
classes | gha_event_created_at
timestamp[ns] | gha_created_at
timestamp[ns] | gha_updated_at
timestamp[ns] | gha_pushed_at
timestamp[ns] | gha_size
int64 0
10.2M
⌀ | gha_stargazers_count
int32 0
178k
⌀ | gha_forks_count
int32 0
88.9k
⌀ | gha_open_issues_count
int32 0
2.72k
⌀ | gha_language
stringlengths 1
16
⌀ | gha_archived
bool 1
class | gha_disabled
bool 1
class | content
stringlengths 10
2.95M
| src_encoding
stringclasses 5
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 10
2.95M
| extension
stringclasses 19
values | num_repo_files
int64 1
202k
| filename
stringlengths 4
112
| num_lang_files
int64 1
202k
| alphanum_fraction
float64 0.26
0.89
| alpha_fraction
float64 0.2
0.89
| hex_fraction
float64 0
0.09
| num_lines
int32 1
93.6k
| avg_line_length
float64 4.57
103
| max_line_length
int64 7
931
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
realyuyangyang/Python3Michigan | 13,623,636,290,131 | 1c82ed6fb1b4dba47f89c4b66a7cbccb592bcdce | 8aac5a3085d4a7fb1c61bb5ef80984e5bdd2bbef | /CheckMyUnderstanding/ListWithComplexItems17_1_1/ac17_1_5.py | ba4a8c5fd0c58c34389a57006db25e7f34fe5e14 | [] | no_license | https://github.com/realyuyangyang/Python3Michigan | a932d3d237526f84fdbcdcc7b92412086f9c807f | 088244e7cc0e5d0270ab98fb7b5b10197d9f2d98 | refs/heads/master | 2023-08-29T22:47:10.947155 | 2021-11-12T13:22:08 | 2021-11-12T13:22:08 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Below, we have provided a list of lists. Use indexing to assign the element ‘horse’ to the variable name idx1
animals = [['cat', 'dog', 'mouse'], [
'horse', 'cow', 'goat'], ['cheetah', 'giraffe', 'rhino']]
idx1 = animals[1][0]
print(idx1)
| UTF-8 | Python | false | false | 253 | py | 70 | ac17_1_5.py | 69 | 0.630522 | 0.610442 | 0 | 9 | 26.666667 | 111 |
chenwil/API_stuff | 13,563,506,742,919 | 2430842095dc8242fc5350bf83ee09419885fe8e | c35975087b0f5be43f7924e7d219f336df209b9a | /API_lecture.py | 2ba8e5942fedf8ee228792c27614e158d359fbd3 | [] | no_license | https://github.com/chenwil/API_stuff | 849e79b53bd2cf741491818e9df057129e5abe64 | b774bac6dc6528680402fef13c0f221c3abc7bdb | refs/heads/master | 2021-05-04T20:52:09.940727 | 2018-02-01T14:57:58 | 2018-02-01T14:57:58 | 119,848,678 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import requests
import secrets
def get_stories(section):
baseurl = "https://api.nytimes.com/svc/topstories/v2/"
extended_url = baseurl + section + '.json'
params = {'api-key' : secrets.nyt_key}
return requests.get(extended_url, params).json()
section = 'science'
stories = get_stories(section)
print(stories)
| UTF-8 | Python | false | false | 329 | py | 1 | API_lecture.py | 1 | 0.696049 | 0.693009 | 0 | 14 | 22.5 | 58 |
spacearound404/Dudoser | 9,680,856,295,210 | 2b9a3ee08867ced1227ec1533be87ad7f69cd0c3 | ff7315a75d73eb5390f793a8a1d1c4f6f22f352e | /src/print_color.py | d3cf1ae5d5831e92fb6e10d514135394d3acccb5 | [] | no_license | https://github.com/spacearound404/Dudoser | f3b0a39617aadd327b1015d32072f6195d770de7 | b9010568ee94f502210e1b9441cfd140201f863a | refs/heads/master | 2023-03-10T17:30:01.230455 | 2020-08-24T06:29:46 | 2020-08-24T06:29:46 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import ctypes
import random
import string
import colorama
from colorama import Fore, Back, Style
kernel32 = ctypes.windll.kernel32
kernel32.SetConsoleMode(kernel32.GetStdHandle(-11), 7)
colorama.init()
rand = 0
color = ""
def buildblock(size):
return ''.join(random.choice(string.ascii_letters) for _ in range(size))
for i in range(0,200):
for k in range(0,500):
rand = random.random()
rand *= 10
rand = round(rand)
if rand == 1:
print(Fore.RED + buildblock(1), sep='', end='')
if rand == 2:
print(Fore.GREEN + buildblock(1), sep='', end='')
if rand == 3:
print(Fore.YELLOW + buildblock(1), sep='', end='')
if rand == 4:
print(Fore.BLUE + buildblock(1), sep='', end='')
if rand == 5:
print(Fore.MAGENTA + buildblock(1), sep='', end='')
if rand == 6:
print(Fore.CYAN + buildblock(1), sep='', end='')
if rand >= 7:
print(Fore.WHITE + buildblock(1), sep='', end='')
| UTF-8 | Python | false | false | 1,039 | py | 14 | print_color.py | 6 | 0.555342 | 0.520693 | 0 | 35 | 28.685714 | 76 |
duvernea/Computer_Networks | 10,333,691,336,672 | 60b89ba62e1ab322ddcf0d076cb985a8bb09d171 | 28ba38203472d0c533892dba6dfc8d28df49415c | /Project2/test_them_all.py | 94bac191af23b389bbd0685c03c64df10e9624ef | [] | no_license | https://github.com/duvernea/Computer_Networks | 982db25a33e914f364fdee379ace9aef0fd85dfd | 7e947663f3f4f85735c6e55c8d65e11327335f44 | refs/heads/master | 2021-03-27T08:44:59.020177 | 2017-12-03T03:55:21 | 2017-12-03T03:55:21 | 111,327,134 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
for f in os.listdir("."):
if f.endswith(".txt") and f != "out.txt":
fn = f.split(".txt")[0]
print "========= Running test: {} =========".format(fn)
os.system("python run_spanning_tree.py {} out.txt".format(fn))
print "diff: ", os.system("diff -ur out.txt {}.txt".format(fn))
print '================== done ======================'
| UTF-8 | Python | false | false | 385 | py | 313 | test_them_all.py | 31 | 0.45974 | 0.457143 | 0 | 9 | 41.777778 | 71 |
BCHoagland/Decipher | 14,680,198,266,107 | 45ed482010f197e32aa2231ae8b13e1dd3f4b10e | 04f1398e928c0aaecbaa6e15455d2abbce1eed71 | /PPO/main.py | 2dbbfcb72af5d94066f5f39da195562c2bf7c55d | [] | no_license | https://github.com/BCHoagland/Decipher | fbd3da8172b6fcd520e612318877556c3d9a0bc9 | 8f9cd0a54e1c38a6a03582274920cbb2db4cb562 | refs/heads/master | 2018-10-14T02:53:30.533585 | 2018-08-16T21:06:29 | 2018-08-16T21:06:29 | 139,516,804 | 0 | 0 | null | false | 2018-08-13T20:59:52 | 2018-07-03T02:14:57 | 2018-07-31T14:15:10 | 2018-08-13T20:59:52 | 7,212 | 0 | 0 | 0 | Python | false | null | import os
import gym
from gym.spaces.box import Box
from visdom import Visdom
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
import torch.optim as optim
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from model import *
from storage import RolloutStorage
from visualize import update_viz
gamma = 0.99
tau = 0.95
eps = 1e-5
num_mb = 4
num_stack = 4
N = 8
T = 128
total_steps = 1e7
iters = int(total_steps) // N // T
epochs = 4
lr = 2.5e-4
value_loss_coef = 1
entropy_coef = 0.01
max_grad_norm = 0.5
clip = 0.1
viz = Visdom()
xs, medians, first_quartiles, third_quartiles, mins, maxes = [], [], [], [], [], []
graph_colors = ['rgba(249, 166, 2, 0.2)', 'rgba(249, 166, 2, 0.4)', 'rgb(249, 166, 2)']
win_name = 'pong attempt 2'
episode_rewards = torch.zeros([N, 1])
final_rewards = torch.zeros([N, 1])
class WrapPyTorch(gym.ObservationWrapper):
def __init__(self, env=None):
super(WrapPyTorch, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = Box(
self.observation_space.low[0, 0, 0],
self.observation_space.high[0, 0, 0],
[obs_shape[2], obs_shape[1], obs_shape[0]],
dtype=self.observation_space.dtype)
def observation(self, observation):
return observation.transpose(2, 0, 1)
def make_env(name, seed, rank):
def _env():
# env = gym.make(name)
env = make_atari(name)
env.seed(seed + rank)
env = wrap_deepmind(env)
env = WrapPyTorch(env)
return env
return _env
env_name = "PongNoFrameskip-v4"
envs = [make_env(env_name, 42, n) for n in range(N)]
envs = SubprocVecEnv(envs)
obs_shape = envs.observation_space.shape
policy = CNN(obs_shape[0] * num_stack, envs.action_space.n)
rollouts = RolloutStorage()
optimizer = optim.Adam(policy.parameters(), lr=lr, eps=eps)
stacked_s = torch.zeros(N, num_stack * obs_shape[0], *obs_shape[1:])
def update_stacked_s(obs):
obs = torch.from_numpy(obs).float()
dim_shape = obs_shape[0]
stacked_s[:, :-dim_shape] = stacked_s[:, dim_shape:]
stacked_s[:, -dim_shape:] = obs
s = envs.reset()
update_stacked_s(s)
filename = "saved_params/pongMain_params.pkl"
if os.path.isfile(filename):
policy.load_state_dict(torch.load(filename))
for iter in range(iters):
for step in range(T):
with torch.no_grad():
a, log_p, v = policy(stacked_s)
a_np = a.squeeze(1).cpu().numpy()
s2, r, done, _ = envs.step(a_np)
r = torch.from_numpy(r).view(-1, 1).float()
episode_rewards += r
mask = torch.FloatTensor([[0.0] if d else [1.0] for d in done])
if num_stack > 1:
# stacked_s *= mask
stacked_s *= mask.unsqueeze(2).unsqueeze(2)
final_rewards *= mask
final_rewards += (1 - mask) * episode_rewards
episode_rewards *= mask
rollouts.add(deepcopy(stacked_s), log_p, v, a, r, mask)
s = s2
update_stacked_s(s)
with torch.no_grad():
next_v = policy.get_value(stacked_s)
rollouts.compute_adv_and_returns(next_v, gamma, tau, eps)
for epoch in range(epochs):
data = rollouts.get_mb(num_mb, N, T)
for sample in data:
s_mb, log_p_old_mb, a_mb, returns_mb, adv_mb = sample
log_p_mb, v_mb, entropy = policy.eval(s_mb, a_mb)
ratio = torch.exp(log_p_mb - log_p_old_mb)
f1 = ratio * adv_mb
f2 = torch.clamp(ratio, 1 - clip, 1 + clip) * adv_mb
policy_loss = -torch.min(f1, f2).mean()
value_loss = torch.pow(returns_mb - v_mb, 2).mean()
loss = policy_loss + (value_loss * value_loss_coef) - (entropy * entropy_coef)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(policy.parameters(), max_grad_norm)
optimizer.step()
rollouts.reset()
total_num_steps = (iter + 1) * N * T
xs.append(total_num_steps)
graph_rewards = final_rewards.view(1, -1)
mean_r = graph_rewards.mean().item()
median_r = graph_rewards.median().item()
min_r = torch.min(graph_rewards).item()
max_r = torch.max(graph_rewards).item()
medians.append(median_r)
first_quartiles.append(np.percentile(graph_rewards.numpy(), 25))
third_quartiles.append(np.percentile(graph_rewards.numpy(), 75))
mins.append(min_r)
maxes.append(max_r)
update_viz(xs, medians, first_quartiles, third_quartiles, mins, maxes, graph_colors, env_name, win_name)
print("iter", iter, "-> mean:", mean_r, "/ median:", median_r, "/ min:", min_r, "/ max:", max_r)
if iter % 200 == 199:
torch.save(policy.state_dict(), filename)
| UTF-8 | Python | false | false | 4,816 | py | 37 | main.py | 33 | 0.611711 | 0.589286 | 0 | 161 | 28.913043 | 108 |
Xyntax/checkio | 12,111,807,814,292 | 4a34150b97d1fdc07a5276342d5978c37c474b92 | 913b1b3aad5ccabd1e38418414010552c00a056b | /Home/Golden_Pyramid.py | d82ce11ec05d21e2948c8a9deb9909bb4674d228 | [] | no_license | https://github.com/Xyntax/checkio | 67b266597acc37e221ffca6a573e90d1e79a78b3 | ca90bc70589d50f393eac131d76442f495a7f755 | refs/heads/master | 2016-09-11T03:03:49.089944 | 2015-06-25T03:13:27 | 2015-06-25T03:13:27 | 37,975,677 | 1 | 3 | null | null | null | null | null | null | null | null | null | null | null | null | null | '''
edit by xy
'''
# -*- coding: utf-8 -*-
# #blog ans1
# def golden_pyramid_d(triangle):
# tr = [row[:] for row in triangle] # copy
# for i in range(len(tr) - 2, -1, -1):
# for j in range(i + 1):
# tr[i][j] += max(tr[i + 1][j], tr[i + 1][j + 1])
# return tr[0][0]
def count_gold(pyramid):
"""
Return max possible sum in a path from top to bottom
"""
tr = [list(x) for x in pyramid]
i = len(tr) - 2
while i >= 0:
for j in range(i + 1):
tr[i][j] += max(tr[i + 1][j], tr[i + 1][j + 1])
i -= 1
return tr[0][0]
# print count_gold((
# (1,),
# (2, 1),
# (1, 2, 1),
# (1, 2, 1, 1),
# (1, 2, 1, 1, 1),
# (1, 2, 1, 1, 1, 1),
# (1, 2, 1, 1, 1, 1, 9)
# ))
'''c1
===============
Golden Pyramid
===============
Approach
--------
This algorithm is a greedy approach to solving the problem.
Instead of working forward through the pyramid, we will work backwards.
The idea is to start in the second to bottom row and select maxium of the
the next two possible values from the current node and add that value to
the current node.
After that we continue to roll up the rows and repeat the process for each
node in that row. When we reach the starting node we will have the sum
of the maximum path.
*Note*: we are not finding the best path; we are only finding the maxium sum
from that path.
Code
----
I want a mutable copy of the pyramid to work with.
Get the number of rows from the **len** function.
The last row is not in play to start hence **rows-1**
Also we're working backwards so use the **reversed** function.
Need to itertate over each item in the row. Note the plus 1, range(0)
returns an empty list.
The possible nodes to examine are 1) the on directly below i+1,j
and the one below and to the right i+1, j+1. We use the **max**
function to select the largest one and then add it to the current
node.
'''
'''
py = [list(i) for i in pyramid]
for i in reversed(range(len(py)-1)):
for j in range(i+1):
py[i][j] +=(max(py[i+1][j], py[i+1][j+1]))
return py[0][0]
''' | UTF-8 | Python | false | false | 2,312 | py | 19 | Golden_Pyramid.py | 19 | 0.541161 | 0.513865 | 0 | 123 | 17.772358 | 80 |
cschwede/keystone-customauth-sample | 2,937,757,672,517 | ca93f1bb5d51d7bde9aa8e8e1ac2b027ca36760b | c87bd45215f45e73e4ef7d4d5e991e544ce85d55 | /tests/test_customauth.py | d05bc3cc960464c40118431a32f1e3e610d597b6 | [
"Apache-2.0"
] | permissive | https://github.com/cschwede/keystone-customauth-sample | 8e4670a0df7ff2e2fd4dbc308adcf5d9d10124e4 | da68c2cce89c5763229d055c46075d2650555043 | refs/heads/master | 2021-01-19T07:13:11.589890 | 2014-12-31T13:24:33 | 2014-12-31T13:24:33 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""Unit tests for customauth identity behavior."""
import time
import unittest
import mock
from customauth.middleware import HappyHourIdentity
class TestCustomAuth(unittest.TestCase):
class DummyUser(object):
def __init__(self):
self.name = "Username"
self.password = "secret"
@mock.patch('time.localtime')
@mock.patch('keystone.common.utils.check_password')
def test_check_password(self, mock_checkpassword, mock_localtime):
user_ref = self.DummyUser()
cls = HappyHourIdentity()
# Grant access when hour == 22
mock_localtime.return_value = time.strptime("22", "%H")
self.assertTrue(cls._check_password('token', user_ref))
# Fallback to parent check_password otherwise
mock_localtime.return_value = time.strptime("23", "%H")
cls._check_password('token', user_ref)
mock_checkpassword.assert_called_once_with('token', 'secret')
| UTF-8 | Python | false | false | 1,499 | py | 5 | test_customauth.py | 3 | 0.698466 | 0.691795 | 0 | 41 | 35.560976 | 75 |
rafaelcardoso31101995/treinamento_git | 13,030,930,795,065 | 4874bee67c5b9c6b735ff28dd09ea1c88e7493bc | 2ce4c1a6a90cb07e406a143a11d453fcfd64b9a1 | /aula07-desafio11.py | 9638a71426597cb506908772e3b3e9042786dbd7 | [] | no_license | https://github.com/rafaelcardoso31101995/treinamento_git | 0892fdc4ee2de5baeac5bf05c32d113268928572 | b191a0ec139527423de1af6aba129872dd13fe6b | refs/heads/master | 2020-04-22T13:25:03.430478 | 2019-02-19T22:22:06 | 2019-02-19T22:22:06 | 170,408,592 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | width = float(input('Digite a largura: '))
height = float(input('Digite a altura: '))
area = width * height
liters = area/2
print('A quantidade de tinta para pintar uma area de {} metros quadrados é {} litros'.format(area, liters))
| UTF-8 | Python | false | false | 237 | py | 41 | aula07-desafio11.py | 39 | 0.694915 | 0.690678 | 0 | 7 | 32.428571 | 107 |
luke-limpert/Programming_Challenges | 6,038,724,023,792 | 4790035bbdcfa33b9a1f414462ee7cdf228c4c51 | f157610f9adb2b4fadc3ed3ab5cf0126f07e9793 | /3Sum.py | a917178ff75048341ec07b6e84a4323a47d2f37a | [] | no_license | https://github.com/luke-limpert/Programming_Challenges | e48536403910414b98c1831838d758a7b8e47eb3 | 1357173da14bc57a1eb7e6e9c01b8e78c340858a | refs/heads/main | 2023-02-04T19:28:40.935889 | 2020-12-18T21:28:58 | 2020-12-18T21:28:58 | 317,714,661 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0?
#Find all unique triplets in the array which gives the sum of zero.
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
#will allow us to skip duplicate solutions
nums.sort()
length, result = len(nums), []
for i in range(length):
if i > 0 and nums[i] == nums[i-1]:
continue
#multiply by negative one
#this allows for the sum of the other two numbers
#to negate the value of the target
target = nums[i] * -1
#indexer
start, end = i + 1, length - 1
while start < end:
#append list if the numbers negate to 0
if nums[start] + nums[end] == target:
result.append([nums[i], nums[start], nums[end]])
start = start + 1
#skip similar elements to make sure we do not duplicate
#this is why we .sort() in the beginning
while start < end and nums[start] == nums[start - 1]:
start = start + 1
#numbers did not negate - continue
elif nums[start] + nums[end] < target:
start = start + 1
else:
end = end - 1
return result | UTF-8 | Python | false | false | 1,492 | py | 25 | 3Sum.py | 24 | 0.491287 | 0.483244 | 0 | 41 | 35.414634 | 96 |
temp9999gi/projectautomation | 4,501,125,755,864 | 92cdd030bf7f3299fb491ba8a93fc4054554baea | e6e5141787917abdb07308f832a36a467cc664f6 | /source/codegen/codeGenCompFromDb/script/KlassInfoList.py | 08c281b5a84a5468940159fdc3dfcf9eadc63e0f | [] | no_license | https://github.com/temp9999gi/projectautomation | a34ef13dc371c018bbb5808e0d8dec285e396dc9 | 4e1f3eed5fb481956d045019034d5fb4bd5828dd | refs/heads/master | 2020-05-17T10:58:45.758691 | 2007-08-21T14:36:14 | 2007-08-21T14:36:14 | 33,873,113 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
'''애는 뭐하는 얘나? 음 뭐냐면
'''
# start
class KlassInfoList:
def __init__(self):
self.klassList = []
def setKlassList(self, klassList):
self.klassList = klassList
def getKlassList(self):
return self.klassList
def setDaoXmlFileName(self, daoXmlFileName):
self.daoXmlFileName = daoXmlFileName
def setPackagePath(self, packagePath):
self.packagePath = packagePath
def getPackagePath(self):
return self.packagePath
| UTF-8 | Python | false | false | 493 | py | 246 | KlassInfoList.py | 150 | 0.695096 | 0.692964 | 0 | 19 | 22.684211 | 45 |
ArnabBasak/PythonRepository | 12,017,318,512,400 | bf5ba66fa3aad619f2ecbe78dd8ef896c76ec140 | 838d23e9590bc855926628d0f7b4ffe73e108565 | /python programs/RegularExpress on corpus.py | 29c1e6dae2c6f923bf2394dc9d4b17837ce40c5a | [] | no_license | https://github.com/ArnabBasak/PythonRepository | ca475b1bc728ede1e033c54f40392f5b4c3494d4 | 388478fd33c4ed654eb6b1cba5e0cbdcfb90cf0e | refs/heads/master | 2021-07-15T17:05:47.435677 | 2020-07-17T09:09:56 | 2020-07-17T09:09:56 | 84,456,349 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import re
import os
CorpusCheck = os.path.isfile('E:\python programs\progrms nltk\corpus.txt')
if CorpusCheck == False:
print('file does not exist sorry we cannot proceed')
else:
FileOpen = open('E:\python programs\progrms nltk\corpus.txt','r')
FileRead = FileOpen.read()
numbers = re.findall(r'\d{1,9}',FileRead)
names = re.findall(r'[A-Z][a-z]*',FileRead)
print(numbers)
print(names)
print('total number of names found in the corpus is',len(names))
| UTF-8 | Python | false | false | 484 | py | 333 | RegularExpress on corpus.py | 205 | 0.683884 | 0.679752 | 0 | 14 | 33.571429 | 74 |
Fortyseven/ExercismWork | 8,469,675,539,821 | e27cf6075facefa086515efaf33a0b1991f10b26 | a57e23980fefdf8b7a93b37d2cca5ed17739d166 | /python/gigasecond/gigasecond.py | bdd11c831a250c4d8e30f785694890995b80d4f1 | [] | no_license | https://github.com/Fortyseven/ExercismWork | 9ff8baab87735957df5a5fffea2e7401853522b9 | eb0b7680a8eee4029f2619c94353939143aa6e2a | refs/heads/master | 2020-04-02T05:30:36.749103 | 2016-08-12T19:27:58 | 2016-08-12T19:27:58 | 60,718,027 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from datetime import datetime
import sys
import time
def add_gigasecond(start_date):
return start_date.timetuple()
def main():
print add_gigasecond(datetime(2011, 4, 25))
if __name__ == '__main__':
sys.exit(int(main() or 0)) | UTF-8 | Python | false | false | 254 | py | 33 | gigasecond.py | 5 | 0.633858 | 0.602362 | 0 | 13 | 18.615385 | 48 |
shadansari/voltha-lite | 6,786,048,359,969 | f041622806fc3865fe37cd641cd5416776a6c29f | 76eaa1a386d8d62c4e18c02c6705a9f3eb86bd6c | /voltha/adapters/tellabs_openomci_onu/tellabs_openomci_onu.py | 0506606122976da2e7fb8b3180c5ccfc4b85c716 | [
"Apache-2.0"
] | permissive | https://github.com/shadansari/voltha-lite | 5abfd6959927c6d5d40a5379e4775fb95d095e4d | a4501bb7a2c1ae26a792799d8fb966f6230f708c | refs/heads/master | 2020-05-19T15:07:21.018671 | 2019-05-05T20:04:21 | 2019-05-05T20:04:21 | 185,076,787 | 1 | 1 | Apache-2.0 | false | 2019-10-21T18:46:22 | 2019-05-05T20:03:52 | 2019-05-05T20:06:46 | 2019-10-21T18:46:18 | 8,141 | 1 | 1 | 1 | Python | false | false | #
# Copyright 2017-present Tellabs, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Tellabs OpenOMCI OLT/ONU adapter.
"""
from twisted.internet import reactor, task
from zope.interface import implementer
from voltha.adapters.brcm_openomci_onu.brcm_openomci_onu import BrcmOpenomciOnuAdapter
from voltha.adapters.brcm_openomci_onu.brcm_openomci_onu_handler import BrcmOpenomciOnuHandler
from voltha.adapters.interface import IAdapterInterface
from voltha.protos import third_party
from voltha.protos.adapter_pb2 import Adapter
from voltha.protos.adapter_pb2 import AdapterConfig
from voltha.protos.common_pb2 import LogLevel
from voltha.protos.device_pb2 import DeviceType, DeviceTypes, Port, Image
from voltha.protos.health_pb2 import HealthStatus
from common.frameio.frameio import hexify
from voltha.extensions.omci.openomci_agent import OpenOMCIAgent, OpenOmciAgentDefaults
from voltha.extensions.omci.omci_me import *
from voltha.extensions.omci.database.mib_db_dict import MibDbVolatileDict
from voltha.adapters.brcm_openomci_onu.omci.brcm_capabilities_task import BrcmCapabilitiesTask
from voltha.adapters.brcm_openomci_onu.omci.brcm_get_mds_task import BrcmGetMdsTask
from voltha.adapters.brcm_openomci_onu.omci.brcm_mib_sync import BrcmMibSynchronizer
from copy import deepcopy
from omci.omci_entities import onu_custom_me_entities
from voltha.extensions.omci.database.mib_db_ext import MibDbExternal
_ = third_party
log = structlog.get_logger()
@implementer(IAdapterInterface)
class TellabsOpenomciOnuAdapter(BrcmOpenomciOnuAdapter):
name = 'tellabs_openomci_onu'
supported_device_types = [
DeviceType(
id=name,
vendor_ids=['BFWS', 'TSLS', 'IPHO', 'SHGJ'],
adapter=name,
accepts_bulk_flow_update=True
)
]
def __init__(self, adapter_agent, config):
super(TellabsOpenomciOnuAdapter, self).__init__(adapter_agent, config)
self.descriptor = Adapter(
id=self.name,
vendor='Tellabs Inc.',
version='0.1',
config=AdapterConfig(log_level=LogLevel.INFO)
)
log.info('tellabs_openomci_onu.__init__', adapter=self.descriptor)
self.broadcom_omci['mib-synchronizer']['state-machine'] = BrcmMibSynchronizer
#self.broadcom_omci['mib-synchronizer']['database'] = MibDbVolatileDict
self.broadcom_omci['mib-synchronizer']['database'] = MibDbExternal
def device_types(self):
return DeviceTypes(items=self.supported_device_types)
def custom_me_entities(self):
return onu_custom_me_entities()
| UTF-8 | Python | false | false | 3,122 | py | 655 | tellabs_openomci_onu.py | 387 | 0.743113 | 0.738309 | 0 | 84 | 36.154762 | 94 |
cleemputc/python-algorithms | 523,986,060,218 | 9a0831e73febaffc2ceadd3ddfdb0f7fdd024b3c | b73ef6e785b7f411548bc174a96539b55e146df2 | /binarySearchAndInsert.py | 81b881d3425e0c41f7b45721fdaa436289ca62d2 | [] | no_license | https://github.com/cleemputc/python-algorithms | ead17f1465dd37764a333e2c0865fd218ada01d8 | 47043e5819faae718000fcf0514000afa04c95f8 | refs/heads/master | 2020-02-27T18:13:03.785988 | 2015-06-01T14:33:04 | 2015-06-01T14:33:04 | 35,211,001 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
# binary search
def bs_contains(ordered, target):
low = 0
high = len(ordered)-1
while low <= high:
mid = (low + high)/2
if target == ordered[mid]:
return True
elif target < ordered[mid]:
high = mid - 1
else:
low = mid + 1
return False
# binary search combined with binary insert:
def bs_contains(ordered, target):
low = 0
high = len(ordered)-1
while low <= high:
mid = (low + high)/2
if target == ordered[mid]:
return mid
elif target < ordered[mid]:
high = mid - 1
else:
low = mid + 1
return -(low + 1)
def insertInPlace (ordered, target):
idx = bs_contains(ordered, target)
if idx < 0:
ordered.insert(-(idx + 1), target)
return
ordered.insert(idx, target)
| UTF-8 | Python | false | false | 728 | py | 13 | binarySearchAndInsert.py | 12 | 0.618132 | 0.600275 | 0 | 38 | 17.763158 | 44 |
paulyc/rpi-ramdisk | 9,912,784,557,016 | a24704329a12e1bc8e1d38c0d327499c1e5efc4d | 6949e557531dfa2dbbeadcf1226e751fd07dc30c | /configs/infodisplay.config.py | 70e45a6dd33f5fbc8950d3072bfce47fde96a20e | [] | no_license | https://github.com/paulyc/rpi-ramdisk | 36cac144040491603cb1cd36838d50768dc3f0e8 | d9e560f8f371158c24e683183ebb1d610e7237cc | refs/heads/master | 2020-06-17T08:55:13.574912 | 2019-07-06T20:10:24 | 2019-07-06T20:13:02 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | hostname = 'infodisplay'
packages = ['net', 'qmlrss', 'rygel']
| UTF-8 | Python | false | false | 63 | py | 5 | infodisplay.config.py | 5 | 0.650794 | 0.650794 | 0 | 2 | 30.5 | 37 |
silva-thiago/python-3 | 10,685,878,650,077 | b10a6b2a899db0e8833b5e6bdabfa129a3c0532c | e4778882d202ee81d437f0b853662985d78c2c03 | /mundo-1-fundamentos/4-condicoes-python-if-else/ex034-aumentos-multiplos.py | 0fef3049d329678385c5e1f86c541ee9bc1ae486 | [
"MIT"
] | permissive | https://github.com/silva-thiago/python-3 | 5fe36644567319957b0f14c235bf9a8ae21d8710 | be7b4b7c4370064f47936499d08fb86806dcf93a | refs/heads/master | 2020-03-28T19:13:16.618949 | 2019-10-10T03:03:10 | 2019-10-10T03:03:10 | 148,955,808 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | salario = float(input('Quanto você ganha? '))
if salario < 1250:
# aumento = salario + ((15 * salario) / 100)
aumento = salario + ((((1.5 / 10) * 100) * salario) / 100)
print('Parabéns, você acabou de ganhar um aumento! Seu novo salário será R${:.2f}!'.format(aumento))
else:
# aumento = salario + ((10 * salario) / 100)
aumento = salario + ((((1.0 / 10) * 100) * salario) / 100)
print('Parabéns, você acabou de ganhar um aumento! Seu novo salário será R${:.2f}!'.format(aumento))
| UTF-8 | Python | false | false | 496 | py | 39 | ex034-aumentos-multiplos.py | 38 | 0.638604 | 0.564682 | 0 | 9 | 53.111111 | 101 |
abhishekmano/Lung-Sound-Classification | 2,516,850,851,917 | d497f07d99e403107f6dca8bd4206126315e714b | eed90b812d9c858e23a7da78b099a24878397546 | /upload code/loadmodel_2gan.py | 6231cd183143de5db1258389016009a5e30e6376 | [] | no_license | https://github.com/abhishekmano/Lung-Sound-Classification | 7d0806cc90bfc28f208a4663a0f4b1963f95641d | fc371d3d43a3254efc5a6d81d8e4a4f0ecfd1fe4 | refs/heads/main | 2023-05-14T10:42:41.703126 | 2021-06-09T10:07:04 | 2021-06-09T10:07:04 | 317,948,189 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import argparse
from re import X
import torch
from torch.serialization import load
import torchaudio
import joblib
import numpy as np
import librosa
import csv
import torch.nn as nn
import torch.nn.functional as F
def loadmodel_2gan(filename):
torch.backends.cudnn.benchmark = True
def feature_extract(audio, sr):
audio = audio.squeeze()
y = audio.numpy()
stft = librosa.stft(y)
stft = np.abs(stft)
mfcc = librosa.feature.mfcc(y, sr, n_mfcc=40)
mfcc = np.mean(mfcc, axis=1)
chroma = librosa.feature.chroma_stft(S=stft, sr=sr)
chroma = np.mean(chroma, axis=1) # 12 features
mel = librosa.feature.melspectrogram(y, sr)
mel = np.mean(mel, axis=1) # 128
contrast = librosa.feature.spectral_contrast(y, sr)
contrast = np.mean(contrast, axis=1) # 7
tonnetz = librosa.feature.tonnetz(y=librosa.effects.harmonic(y), sr=sr)
tonnetz = np.mean(tonnetz, axis=1) # 6
features = np.hstack([mfcc, chroma, mel, contrast, tonnetz])
features = features.reshape((1, 193))
features = torch.from_numpy(features)
features = features.float()
return features
class Discriminator(nn.Module):
def __init__(self, num_dec_features, num_channels):
super(Discriminator, self).__init__()
#torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
self.main = nn.Sequential(
nn.utils.spectral_norm(
nn.Conv1d(num_channels, 128, 3, bias=False)
),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool1d(3),
nn.utils.spectral_norm(
nn.Conv1d(128, 128, 3, bias=False)
),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool1d(3),
nn.utils.spectral_norm(
nn.Conv1d(
128, 128, 3, bias=False
)
),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool1d(3),
nn.utils.spectral_norm(
nn.Conv1d(
128, 128, 3, bias=False
)
),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool1d(3),
)
self.true_fake = nn.Linear(128, 1) # output(1,3088,158)
self.classifier = nn.Linear(128, 2)
self.sigmoid = nn.Sigmoid()
self.softmax = nn.Softmax(dim=2)
def forward(self, features, case):
hidden = self.main(features)
# print("Hidden-size:",hidden.size())
reshaped_hidden = hidden.view(-1, 1, hidden.size(1)*hidden.size(2))
#print("Reshaped hidden-size:",reshaped_hidden.size())
if(case == 1): # sigmoid
linear = self.true_fake(reshaped_hidden)
# print(linear.size())
out = self.sigmoid(linear)
# print(out.shape)
return out
else: # softmax
linear = self.classifier(reshaped_hidden)
# print(linear.size())
out = F.log_softmax(linear, dim=2)
#out = self.softmax(linear)
# print(out.shape)
return out
def consistency(value):
if(value < 0.65):
return "Moderate"
elif(value < 0.85):
return "High"
else:
return "Very High"
def predict_out():
# model_path = 'savedmodels/cnn_2class.pt' #initial model
model_path = 'savedmodels/GAN_2class_best_discriminator.pt'
discriminator = Discriminator(193, 1)
discriminator.load_state_dict(torch.load(
model_path, map_location=torch.device('cpu')))
path = "./static/uploads/" + filename
print("Going to Process: ", filename)
try:
audio_tensor, sample_rate = torchaudio.load(
path, normalize=True) # [ 1 , 193 ]
except RuntimeError:
print("Couldnt open file")
return "101", "Error", 0
feature = feature_extract(audio_tensor, sample_rate)
with torch.no_grad():
audio_tensor = feature # [1 , 193]
audio_tensor = torch.unsqueeze(audio_tensor, 0) # [1,1,193]
output = discriminator(audio_tensor, 2) # [1,1,2]
output = output.permute(1, 0, 2)[0] # [1,2]
# print(output)
softmax = nn.Softmax(dim=1)
res = softmax(output)
# print(res)
z = res.squeeze(0).numpy()
z = [round(elem, 2)for elem in z]
pred = output.max(1, keepdim=True)[1]
pred = pred.squeeze(0).squeeze(0).item()
x_group = ["Abnormal", "Normal"]
x = x_group[pred]
y = consistency(res[0][pred])
z = round(res[0][pred].item()*100, 2)
#print("predicted:", pred)
return x, y, z
x, y, z = predict_out()
print(x, y, z)
return x, y, z
# for running only comment out when on web
# loadmodel_2gan("crack_1.wav")
# loadmodel_2gan("crack_2.wav")
# loadmodel_2gan("crack_3.wav")
# loadmodel_2gan("crack_4.wav")
# loadmodel_2gan("crack_5.wav")
# loadmodel_2gan("crack_6.wav")
# loadmodel_2gan("crack_7.wav")
# loadmodel_2gan("crack_8.wav")
# loadmodel_2gan("crack_9.wav")
# loadmodel_2gan("crack_10.wav")
# loadmodel_2gan("wheeze1.wav")
# loadmodel_2gan("wheeze2.wav")
# loadmodel_2gan("wheeze3.wav")
# loadmodel_2gan("wheeze4.wav")
# loadmodel_2gan("wheeze5.wav")
| UTF-8 | Python | false | false | 5,764 | py | 28 | loadmodel_2gan.py | 21 | 0.535045 | 0.504511 | 0 | 177 | 31.564972 | 144 |
travisbrodt/CW-Learning | 4,037,269,286,418 | 621d32155ebc80b413ac8b1a96f3fe437291c38a | bea3ad1802ffd30da22ec391a4f3671840a10070 | /Python/Solution_2_2.py | 4228d09c41f5e6fabcc0c95ddd31d6e5b1d951a1 | [] | no_license | https://github.com/travisbrodt/CW-Learning | 6204359f2f33c452cc7fc52061d82aa242ac161b | 3ff0407261da9cef2dd571e59942c13fc4b18a65 | refs/heads/master | 2020-04-16T16:24:25.054151 | 2019-01-14T22:39:56 | 2019-01-14T22:39:56 | 165,735,550 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import win32clipboard
# get clipboard data
win32clipboard.OpenClipboard()
data = win32clipboard.GetClipboardData().split('\r\n')
data = filter(None,data)
data = ','.join(data)
win32clipboard.EmptyClipboard()
win32clipboard.SetClipboardText(data)
win32clipboard.CloseClipboard()
| UTF-8 | Python | false | false | 296 | py | 55 | Solution_2_2.py | 41 | 0.756757 | 0.716216 | 0 | 11 | 24.545455 | 54 |
gnanadeeppallela/220-Assignments | 4,956,392,285,573 | 43ba0099da83f51e83228894b85f92f3f87f2d78 | ac4587e176a01864b160c9171cdbb89ac84612ea | /First Assignment/firstproject_web_django/firstapp/views.py | 963a6d7b71c240485d2a7cc70744e53b2aa30c0d | [] | no_license | https://github.com/gnanadeeppallela/220-Assignments | 64b79025a1eb40653f7c6d67cda3aad18d70c0eb | 375c4cf633a9c84529c313bc4e0a32eb43facdb4 | refs/heads/master | 2020-03-10T03:40:19.087672 | 2018-10-05T08:04:20 | 2018-10-05T08:04:20 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.shortcuts import render,render_to_response
from pylab import *
import timeit
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm
import pandas as pd
from sklearn.model_selection import train_test_split
import psutil
import os
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from django.http import HttpResponse
# Create your views here.
def loic(request):
return render(request, 'firstapp/LOIC-download-Detection.html', context=None)
def postsubmit(request):
if request.method == 'POST':
df = pd.read_csv(request.FILES['loicfile'], sep=",", error_bad_lines=False, index_col=False, dtype='float64')
start = timeit.default_timer()
X_data = np.array(df.ix[0:150, 1:3])
Y_target = np.array(df.ix[0:150, 5:])
validation_size = 0.20
seed = 7
X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_target, test_size=validation_size,
random_state=seed)
# clf=svm.SVR(kernel='rbf', gamma=1,C=1)
clf = svm.SVC(kernel='linear', verbose=True, gamma='auto', C=1.0)
m = clf.fit(X_train, Y_train.ravel())
predictions = clf.predict(X_test)
# print(clf.score(X_test, Y_test))
np.mean((clf.predict(X_test) - Y_test) ** 2)
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
h = (x_max / x_min) / 100
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
plt.subplot(1,1,1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, color='red', alpha=0.8)
plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train, cmap=plt.cm.Paired)
plt.ylabel('sepal-width')
stop = timeit.default_timer()
pid = os.getpid()
py = psutil.Process(pid)
memoryUse = py.memory_info()[0] / 2. ** 30
print("CPU Utilization: ")
print(psutil.cpu_percent())
process = psutil.Process(os.getpid())
mem = process.memory_percent()
print("Memory Utilization for this process: ")
print(mem)
print("Running time: ")
print(stop - start)
s0="sepal-length"
n='\n'
sd=psutil.cpu_percent()
s1="CPU Utilization: "
s2=str(sd)
s3="Memory Utilization: "
s4=str(mem)
s5="Running time: "
s6=str(stop - start)
s=s1+s2+n+s3+s4+","+s5+s6
plt.xlabel('sepal-length')
plt.title(s)
#plt.figure(figsize=(20, 10))
canvas = FigureCanvas(plt.figure(1))
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
#return HttpResponse(buffer.getvalue(), mimetype="image/png")
#return render(request, 'firstapp/result.html', buffer.getvalue(), mimetype="image/png")
#return render(request, 'Home/result.html', context={'sourceaddress': sourceaddress})
| UTF-8 | Python | false | false | 3,216 | py | 7 | views.py | 4 | 0.585821 | 0.566542 | 0 | 102 | 30.529412 | 117 |
rcarino/Kata | 10,539,849,792,107 | c3006f89859782148e9f9f2f49d9838f34fb7f79 | ff8e0fdf537efd696d9db774c01355fad43f0779 | /by_day/8_1_15/8_1_15_stocks.py | f27127b81526463cbe6626ff5c77a2e84231b52b | [] | no_license | https://github.com/rcarino/Kata | 62fa7df730d9b8847d0042d2ad3a0f40a6897474 | cc5753cbe31ca79e718343b6d59cbf7ad3e8a56b | refs/heads/master | 2016-09-07T04:25:02.355569 | 2016-01-24T08:38:51 | 2016-01-24T08:38:51 | 5,977,285 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | __author__ = 'rcarino'
def max_profit(a):
min_so_far = a[0] if len(a) else 0
max_profit = 0
for i in a:
max_profit = max(max_profit, i - min_so_far)
min_so_far = min(i, min_so_far)
return max_profit
assert max_profit([3, 2, 1]) == 0
assert max_profit([2, 4, 5, 1]) == 3
| UTF-8 | Python | false | false | 304 | py | 113 | 8_1_15_stocks.py | 111 | 0.552632 | 0.513158 | 0 | 12 | 24.333333 | 52 |
Andrii-Ishchenko-dp/stepik-auto-tests-course | 5,695,126,654,559 | 64a3b9285e6e63b6d7720ff6619927dff6c679f7 | 597094dd3abadbe0f7f8ed3739049355c1fa80f4 | /les2.4.0.py | 9192b0926fc91a39558c5d08df539d674898f987 | [] | no_license | https://github.com/Andrii-Ishchenko-dp/stepik-auto-tests-course | 05ea5e7c8e7a2ec8c76d9256f9d8c06f224ea363 | 50b448a9e9d9778df68625cb3f205e4dc387f9e9 | refs/heads/main | 2023-02-11T10:19:08.427838 | 2020-12-28T08:12:39 | 2020-12-28T08:12:39 | 324,941,060 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium import webdriver
import time # импортируем время, чтобы использовать time.sleep(n) для остановки работы программы на n секунд
import math
def mat(x):
return str(math.log(abs(12*math.sin(x))))
try: #блок в котором мы указываем прямую ссылку на тестируемую страницу
browser = webdriver.Chrome()
browser.get("http://suninjuly.github.io/explicit_wait2.html")
# говорим Selenium проверять в течение 5 секунд, пока кнопка не станет кликабельной
button = WebDriverWait(browser, 12).until(
EC.text_to_be_present_in_element((By.ID, "price"), "100"))
submit=browser.find_element_by_css_selector ("#book")
submit.click()
num=browser.find_element_by_css_selector ("#input_value")
x=int(num.text)
ans=browser.find_element_by_css_selector ("#answer")
ans.send_keys(mat(x))
sub=browser.find_element_by_css_selector ("#solve")
sub.click()
finally:
time.sleep(10) # ставим выполнене команды на паузу 10 секунд
browser.quit()
| UTF-8 | Python | false | false | 1,544 | py | 9 | les2.4.0.py | 9 | 0.64 | 0.630189 | 0 | 31 | 40.741935 | 136 |
verdog/advent_of_code | 12,910,671,699,206 | 5d5bebb7ff99c336d9f59bda7f8f15542898a294 | e4ce27c95c88826f1e4cf29332e8b16ac6f62a04 | /2018/6/6b.py | bd87c6348385f11836e5e25d74dfddcdf43860de | [] | no_license | https://github.com/verdog/advent_of_code | f9ded80c33bf6ae0948bdfa2bb9b83a8f3a471fc | cccb19880034aadab0f2235e8283ab6f8a3ba40e | refs/heads/master | 2020-04-09T20:03:38.331452 | 2018-12-08T06:48:31 | 2018-12-08T06:48:31 | 160,562,432 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python3
import sys
from collections import defaultdict
def mandist(a, b):
return(abs(b[0] - a[0]) + abs(b[1] - a[1]))
with open(sys.argv[1], "r") as f:
data = f.read().split('\n')[:-1]
minx = None
miny = None
maxx = None
maxy = None
points = []
for coords in data:
points.append((int(coords.split(",")[0]), int(coords.split(",")[1])))
for point in points:
if (minx == None or point[0] < minx):
minx = point[0]
if (maxx == None or point[0] > maxx):
maxx = point[0]
if (miny == None or point[1] < miny):
miny = point[1]
if (maxy == None or point[1] > maxy):
maxy = point[1]
bound = int(sys.argv[2])
cap = int(sys.argv[3])
minx -= bound
miny -= bound
maxx += bound
maxy += bound
totalarea = 0
for y in range(miny-1, maxy+2):
for x in range(minx-1, maxx+2):
total = 0
for point in points:
dist = mandist((x, y), point)
total += dist
if total < cap:
totalarea += 1
print(totalarea)
| UTF-8 | Python | false | false | 1,046 | py | 17 | 6b.py | 16 | 0.537285 | 0.512428 | 0 | 49 | 20.346939 | 73 |
khou22/khou22.github.io | 10,582,799,461,142 | bc9c599dd7d05e0493b0b919acb480faed8fb97b | 509fade8744c59b64d92ec3389efde291ce6fd20 | /photography/imageManager.py | fc37f2174b2c2c71c4a762cf4698331674e96495 | [] | no_license | https://github.com/khou22/khou22.github.io | 06c5a85fb1c7174b3c783dbabd5b9fba16342b72 | c1df6a8a56ab49b0adc016a5c85936b582366dbd | refs/heads/master | 2023-04-27T01:39:54.957427 | 2023-01-25T07:39:08 | 2023-01-25T07:39:08 | 39,487,529 | 5 | 3 | null | false | 2023-04-12T05:44:08 | 2015-07-22T05:31:50 | 2021-11-09T18:25:09 | 2023-04-12T05:44:04 | 3,210,926 | 4 | 2 | 4 | HTML | false | false | # An image manager for a local cache of small images
# Can check whether the image exists already before creating
import glob
import os
from io import BytesIO
import requests
from PIL import Image
'''
Pinned to bottom right corner
'''
def watermark_with_transparency(base_image: Image,
watermark: Image,
size: float, offset: float) -> Image:
width, height = base_image.size
watermark_width, watermark_height = watermark.size
# Configure watermark positioning based on base image
watermarkFinalWidth = int(round(size * width))
watermarkFinalHeight = int(
round((watermarkFinalWidth / watermark_width) * watermark_height))
watermarkX = width - watermarkFinalWidth - int(round(offset * width))
watermarkY = height - watermarkFinalHeight - int(round(offset * height))
watermark_resized = watermark.resize(
(watermarkFinalWidth, watermarkFinalHeight), resample=Image.NEAREST)
watermark_box = (watermarkX, watermarkY, watermarkX +
watermarkFinalWidth, watermarkY + watermarkFinalHeight)
print("Width: %d | Height: %d" %
(watermarkFinalWidth, watermarkFinalHeight))
transparent = Image.new('RGBA', (width, height), (0, 0, 0, 0))
transparent.paste(base_image, (0, 0))
transparent.paste(watermark_resized, watermark_box, mask=watermark_resized)
transparent = transparent.convert("RGB")
return transparent
class ImageManager:
def __init__(self, directory):
if not os.path.exists(directory):
os.makedirs(directory)
self.directory = directory
self.images = {}
self.placeholderImages = {}
self.allFileNames = []
imageList = glob.glob('%s/*.jpg' % directory) # TODO: only jpeg images right now
imagePlaceholderList = glob.glob('%s/*placeholder.jpg' % directory)
for imagePlaceholder in imagePlaceholderList:
if imagePlaceholder in imageList:
imageList.remove(imagePlaceholder) # Prevent duplicates
fileName = self.fileNameWithoutExt(imagePlaceholder)
self.placeholderImages[fileName] = imagePlaceholder
# print("Found placeholder %s" % fileName)
for imagePath in imageList:
fileName = os.path.basename(imagePath)
self.images[fileName] = imagePath
self.allFileNames.append(fileName)
def getAllNames(self):
return self.allFileNames;
def fileNameWithoutExt(self, fileName):
splitFileName = os.path.splitext(os.path.basename(fileName))
if 'Angelo' in fileName:
print(fileName)
print(splitFileName)
return splitFileName[0]
def fileNamePlaceholder(self, fileName):
return "%s.placeholder.jpg" % self.fileNameWithoutExt(fileName)
def exists(self, image):
imageExists = image in self.images.keys()
placeholderImageName = self.fileNameWithoutExt(self.fileNamePlaceholder(image))
placeholderImageExists = placeholderImageName in self.placeholderImages.keys()
return imageExists and placeholderImageExists
def getSrc(self, image):
filePath = self.images[image]
placeholderFileName = self.fileNamePlaceholder(filePath)
img = Image.open(filePath)
return filePath, placeholderFileName, img.width, img.height
# Download the file into the image store using the imageName
def create(self, imageName, src, resizeWidth, placeholderWidth):
imageFileName = self.fileNameWithoutExt(imageName)
imagePath = "%s/%s.jpg" % (self.directory, imageFileName)
imagePlaceholderPath = "%s/%s.placeholder.jpg" % (self.directory, imageFileName)
# Download image
print("Downloading source: %s" % src)
response = requests.get(src)
img = Image.open(BytesIO(response.content))
## Large Image
# Resize to width
width = resizeWidth
widthPercent = (width/float(img.size[0]))
height = int(float(img.size[1]) * float(widthPercent))
if width > height: # If landscape
height = width
heightPercentage = height/float(img.size[1])
width = int(float(img.size[0] * float(heightPercentage)))
# Apply resize
imgResize = img.resize((width, height), Image.ANTIALIAS)
# Watermark the image
watermark = Image.open('watermark.png')
imgResize = watermark_with_transparency(imgResize, watermark, size=0.13, offset=0.01)
# Save the resized image
imgResize.save(imagePath, 'JPEG', quality=100)
# Placeholder image
widthPlaceholder = placeholderWidth
widthPercentPlaceholder = (placeholderWidth/float(imgResize.size[0]))
heightPlaceholder = int(float(imgResize.size[1]) * float(widthPercentPlaceholder))
if widthPlaceholder > heightPlaceholder: # If landscape
heightPlaceholder = widthPlaceholder
heightPlaceholderPercentage = heightPlaceholder/float(img.size[1])
widthPlaceholder = int(float(img.size[0] * float(heightPlaceholderPercentage)))
imgResize = imgResize.resize((widthPlaceholder, heightPlaceholder), Image.ANTIALIAS)
imgResize.save(imagePlaceholderPath, 'JPEG', quality=90)
# Save local mapping
self.images[imageName] = imagePath
self.placeholderImages[self.fileNameWithoutExt(imagePlaceholderPath)] = imagePlaceholderPath
# On success, retrun the local path
return imagePath, imagePlaceholderPath, width, height
| UTF-8 | Python | false | false | 5,642 | py | 1,525 | imageManager.py | 47 | 0.667671 | 0.663063 | 0 | 145 | 37.910345 | 100 |
jarkynashyrova/pythoProject | 695,784,704,221 | 560b3d175fd62a6a6e507dc7f8484228cc636e4d | 74345f6521e4a9be6f1540333d37ce7d2fcb58cc | /if_condition2.py | ea31fdb32acd3ee640dea8e2d761093df0bfe0fb | [] | no_license | https://github.com/jarkynashyrova/pythoProject | c42d44e9c25db4e65538201600417122aa51530c | 27ce31384da611b93f322437228de7ee77e48376 | refs/heads/master | 2023-04-09T17:32:43.298049 | 2021-04-23T02:54:41 | 2021-04-23T02:54:41 | 360,694,085 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #3/14/2021 if ststament continues chapter 5
num = 20
if num >= 1 and num <= 10:
print(f"number is equal or greater than 1 and less than 10")
else:
print(f"number is less than 1 or greater than 10.")
'''
#expression AND/OR expression AND/OR expression
OR: # anything with true is true
True OR True = True
True OR False = True
False OR True = True
False or False = False
AND: # in and case anything with False is false
True OR True = True
True OR False = False
False OR True = False
False or False = False
'''
#expression OR expression = True or False = True
#where country= 'UK or country='USA >> True or False
# The if-elif-else (we going to use alot)
#age =int(input('enter the visitors:'))
age = 3
if 0 <= age <=4:
print("uour admission cost is $0.") # just did unit testing by going each code
elif 4 < age < 18:
print("your admisson cost is $5.")
elif 18 <= age <140:
print("your admisson cost is $10.")
else:
print("invalid age was entered, bye.")
#if I enter string like one I will have a error becouse I converted int
#age = int(input('enter the visitors:'))
#elif checks the condition
#age = int(input('enter the visitors age:'))
price = 0
if age < 4:
price =0
elif age <18:
price = 5
elif age < 140:
price = 10
else:
price =10
print("invalid age was entered, bye.")
print(f"your admission cost is ${price}.")
#n , 0 < n < 2000000
print("---5-3----Aliena colors -------------")
#alien_color = input ('enter the elien color (green/yellow/red): ')
#if alien_color == 'green':
#print(f"You just earned 5 points!!")
#elif alien_color == 'yellow':
#print(f"you just earned 2 points, whee!")
#elif alien_color == 'red':
#print(f" you just earned 10 points, you are killing it, man!!")
#else:
#print("no points, sorry, take a rest, meditate.")
print("--------------------------")
friends = () # ifata structurelidt or tuples is emty the result will be true case
if friends:
print("good for you, can I be your friend.")
else:
print(f"Go out make some friends, only good friends.")
print('--------------Using Multiple list ------------')
# class home work
# // floor division -division ignoring the remainder
# % modulus -gives the remainder
print("Famouse interview question fuzzbzzz------------")
num = int(input("enter the number > 0:"))
#if (num % 3 == 0) and (num % 5 == 0):
#print("Fuzzbuzz")
#elif num % 3 == 0:
#print("fuzz")
#elif num % 5 == 0:
#print("Buzz")
| UTF-8 | Python | false | false | 2,468 | py | 32 | if_condition2.py | 29 | 0.636548 | 0.608185 | 0 | 88 | 27.011364 | 84 |
karthikpappu/pyc_source | 3,143,916,074,267 | fbc2f4a4a25a4c51204541ec10d87219164e24b5 | 91fa095f423a3bf47eba7178a355aab3ca22cf7f | /pycfiles/dez-0.10.9.32-py2.7/get_url.py | 8cd1173f6db3a8ceb29b15a9fbe9596960102acc | [] | no_license | https://github.com/karthikpappu/pyc_source | 0ff4d03e6d7f88c1aca7263cc294d3fa17145c9f | 739e7e73180f2c3da5fd25bd1304a3fecfff8d6e | refs/heads/master | 2023-02-04T11:27:19.098827 | 2020-12-27T04:51:17 | 2020-12-27T04:51:17 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # uncompyle6 version 3.7.4
# Python bytecode 2.7 (62211)
# Decompiled from: Python 3.6.9 (default, Apr 18 2020, 01:56:04)
# [GCC 8.4.0]
# Embedded file name: build/bdist.linux-x86_64/egg/dez/samples/get_url.py
# Compiled at: 2020-04-19 19:55:58
from dez.http.client import HTTPClient
import event
def main(**kwargs):
url = 'http://%s:%s/' % (kwargs['domain'], kwargs['port'])
c = HTTPClient()
c.get_url(url, cb=req_cb, timeout=1)
event.signal(2, event.abort)
event.dispatch()
def req_cb(response):
print response.status_line | UTF-8 | Python | false | false | 552 | py | 114,545 | get_url.py | 111,506 | 0.672101 | 0.583333 | 0 | 19 | 28.105263 | 73 |
GabrielRojas74/Talleres-AyP | 8,495,445,319,679 | d4eae1ffeb0d3502902624760daa0bec2ce92629 | d97be2b7b171f12d4a4b7992893f39f8a97d2b90 | /Taller funciones/punto#6.py | 26e64b5ebcd3b406912e65922c270e294bfc7ee7 | [
"LicenseRef-scancode-other-permissive",
"MIT"
] | permissive | https://github.com/GabrielRojas74/Talleres-AyP | 68032d202bd6b3722c9e115a3811914d76fb3744 | 346b87ddc118b4c8f45fe083f63b4bacb5d01d19 | refs/heads/main | 2023-08-11T20:11:04.325288 | 2021-09-19T18:05:16 | 2021-09-19T18:05:16 | 392,033,005 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | """6.Retorna una lista con las palabras iniciales con la letra que pasa por parametro """
"""
Entradas
lista-list-->lista
elemento-->str-->elemento
Salidas
lista-list-->lista
"""
frutas = open('frutas.txt', 'r')
lista_frutas = []
for i in frutas:
lista_frutas.append(i)
def eliminar_un_caracter(lista, elemento):
auxilar = []
for i in lista:
a = i.replace(elemento, "")
auxilar.append(a)
return auxilar
def letra(lista, elemento):
auxiliar = []
for x in lista:
if(x[0] == "P"):
print(x)
auxiliar.append(x)
return auxiliar
if __name__ == "__main__":
nueva = eliminar_un_caracter(lista_frutas, "\n")
nueva_fin = letra(nueva, "")
print(nueva_fin)
| UTF-8 | Python | false | false | 688 | py | 58 | punto#6.py | 48 | 0.643895 | 0.640988 | 0 | 29 | 22.724138 | 89 |
niranjanh/RegExp | 4,458,176,071,653 | e3fbdc27cdd74ce29545e954b78d8a95c8a82ccb | fb4bbb223e92b7c1777ddde6f3bc70edf133f3b7 | /regexp_08.py | 746c613308349b906fbccab7ebabd95103335e3a | [] | no_license | https://github.com/niranjanh/RegExp | 2b926672970fae47205f6b07e6fcf6deec532b34 | 66cd09c6845e171a94195e67a872e6f25399477a | refs/heads/master | 2022-11-18T20:01:31.402937 | 2020-07-16T06:08:38 | 2020-07-16T06:08:38 | 280,067,084 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | /*
Quantifiers
Description
Check that the pattern ‘ab+’ will not match the string ‘ac’.
You can also play around with the '+' quantifier by using it to match different types of strings.
Execution Time Limit
15 seconds
*/
import re
# input string
string = "ac"
# regex pattern
pattern = "ab+"
# check whether pattern is present in string or not
result = re.search(pattern, string)
# print result
if result != None:
print(True)
else:
print(False)
| UTF-8 | Python | false | false | 475 | py | 17 | regexp_08.py | 16 | 0.708779 | 0.704497 | 0 | 33 | 13.151515 | 97 |
monkey-hjy/LeetCode | 11,141,145,187,306 | aa85cd57e46008d5dfa501ff72192334455c07ad | 0cda467f9295bcc47c316f949479572c0f056f61 | /9-回文数/回文数.py | ebb27756a4508cabad21a219b2a3a7fda2def8c6 | [
"MIT"
] | permissive | https://github.com/monkey-hjy/LeetCode | 8985eba7b9d75205d9265e1c9380ed5083a3ff0c | a7aefcd2a7462bdf60dcc2cea887f37d30d2fb46 | refs/heads/main | 2021-05-19T05:01:07.560728 | 2020-12-24T03:37:36 | 2020-12-24T03:37:36 | 251,538,763 | 0 | 0 | MIT | false | 2020-12-23T03:50:11 | 2020-03-31T08:07:39 | 2020-12-22T09:22:29 | 2020-12-23T03:44:09 | 43 | 0 | 0 | 0 | Python | false | false | # -*- coding: utf-8 -*-
# @Time : 2020/3/14 21:24
# @Author : Monkey
# @File : ClassCreate.py
# @Software: PyCharm
# @Demand :
'''
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
'''
| UTF-8 | Python | false | false | 278 | py | 46 | 回文数.py | 25 | 0.594737 | 0.531579 | 0 | 9 | 20 | 44 |
Sebbl0508/notqickestsort | 8,151,847,937,207 | 872258c4c3eef2c8b719e88ee2154f2aa09b55eb | 7f0647103612ca769656806cebbfaf30395dc895 | /numberdumper.py | 4903d5bd74a9ad9bbb2550da646868f0df060f9f | [] | no_license | https://github.com/Sebbl0508/notqickestsort | a5becd66833d034017b9e7e2dd5dd586cb38fb6f | 513927fece9ad0dbf9c613e0bd0d5f1427b046f0 | refs/heads/master | 2022-11-25T00:50:03.502468 | 2020-07-10T10:07:12 | 2020-07-10T10:07:12 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import sys
import random
def main():
n = int(input("Highest number: "))
b = int(input("How many numbers: "))
f = open('numbers.txt', 'w').close()
f = open('numbers.txt', 'w')
for i in range(b):
f.write(str(random.randrange(0, n)) + ",")
f.close()
f = open("numbers.txt", "r")
k = remove_lastchar("numbers.txt")
f.close()
f = open("numbers.txt", "w")
f.write(''.join(k))
f.close()
def remove_lastchar(f):
fl = open(f).readlines()
return [s.rstrip(",") for s in fl]
main()
| UTF-8 | Python | false | false | 551 | py | 3 | numberdumper.py | 2 | 0.546279 | 0.544465 | 0 | 27 | 19.407407 | 50 |
gombru/LearnFromWebData | 1,537,598,314,684 | 941bdc310f1bcb14786fa476a7932848fdd14a0f | 16f0171b1aecb8d104a208df4953884a9ab97b26 | /googlenet_regression/train.py | f66c8f0ad5c33f229d804b4bfb514d9487470d7a | [] | no_license | https://github.com/gombru/LearnFromWebData | 97538dd91822a0e2a7d12084cde0d9dbf64f3c70 | 163447027c856004836abe40d9f653ec03da0702 | refs/heads/master | 2020-03-24T23:12:43.819864 | 2018-08-01T12:25:10 | 2018-08-01T12:25:10 | 143,123,717 | 13 | 7 | null | null | null | null | null | null | null | null | null | null | null | null | null | caffe_root = '../../caffe-master/' # this file should be run from {caffe_root}/examples (otherwise change this line)
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
from create_solver import create_solver
from do_solve import do_solve
import os
caffe.set_device(0)
caffe.set_mode_gpu()
weights = '../../../datasets/SocialMedia/models/pretrained/bvlc_googlenet.caffemodel'
assert os.path.exists(weights)
niter = 10001111
base_lr = 0.001 #Starting from 0.01 (from quick solver) -- Working 0.001
display_interval = 200 #200
#number of validating images is test_iters * batchSize
test_interval = 1000 #1000
test_iters = 100 #80
#Name for training plot and snapshots
training_id = 'SM_Inception_frozen_word2vec_tfidf'
#Set solver configuration
solver_filename = create_solver('prototxt/train_frozen_word2vec_tfidf_SM.prototxt', 'prototxt/val_frozen_word2vec_tfidf_SM.prototxt', training_id, base_lr=base_lr)
#Load solver
solver = caffe.get_solver(solver_filename)
#Copy init weights
solver.net.copy_from(weights)
print 'Running solvers for %d iterations...' % niter
solvers = [('my_solver', solver)]
_, _, _ = do_solve(niter, solvers, display_interval, test_interval, test_iters, training_id)
print 'Done.'
| UTF-8 | Python | false | false | 1,234 | py | 3 | train.py | 2 | 0.745543 | 0.710697 | 0 | 39 | 30.615385 | 163 |
MikiLauLu/aliexpress-refund-bot | 7,593,502,205,292 | 51c3beb9bf605cde0965d80d495c2f96bd17de11 | 337e5f56827c0e370d96a4cdc231eca2634f6d4e | /bot.py | 7bf0b3f8bbb74ad82cf7725c67df5cf3a9f37d3b | [] | no_license | https://github.com/MikiLauLu/aliexpress-refund-bot | b8f6ce0ac00b1de901a207ce34c121457a198ab1 | cb4f4f08ed638e236f2f2105638160d81f0216f4 | refs/heads/master | 2022-04-25T03:57:11.693990 | 2020-04-21T11:06:58 | 2020-04-21T11:06:58 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | token = "YOURBOTTOKEN"
import telegram
import logging
from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, ConversationHandler, CallbackQueryHandler
from telegram.ext.dispatcher import run_async
import threading, queue
import AliExpress
import sys
import os
import datetime
import sqlite3
import epn_parse
CHAT_LINK = 'https://t.me/ChatAliexpressRefunderBot'
WELCOME_TEXT = 'Дорогие друзья! 👋 Число вопрос по поводу бота растет 📈, и я вижу что не всем хочется писать в личку ✍️, поэтому я хочу предложить вам новый способ задать вопросы по боту 📞, товарам 🛒, поиску 🔍, рефанду 💰 и другим темам! Присоединяйтесь к чату 📝 бота @AliexpressRefunderBot! Здесь я отвечу на ваши вопросы ❓, услышу ваши пожелания 💬 и улучшу бота 🛠, получу ваш фидбек ♥️ и многое другое! Жду вас в чате!\n\n [Зайти в чат!](' + CHAT_LINK + ')\n\nВведите модель товара для поиска (например "клавиатура Motospeed"):'
TIMEOUT = 400
CASHBACK_LINK = 'https://givingassistant.org/?rid=1vT1QGCSmU'
MY_ID = 275413429
vape_filters = 'vs <бренд>,for <бренд>,atomiz,part,case,cover,replac,pcs'
phone_filters = 'case,cover,glass,for <бренд>,vs <бренд>,pcs,replac,motherboard,part'
laptop_filters = 'case,cover,part,replac,motherboard,assembl,glass,bag,pcs'
#conn = sqlite3.connect("mydatabase.db")
#cursor = conn.cursor()
#cursor.execute("""CREATE TABLE users
# (user_id text primary key, user_name text, last_login text,
# total_logins text)
# """)
#conn.commit()
#conn.close()
updater = Updater(token=token, workers=50)
PRODUCT_CHOOSE, BRAND_CHOOSE, PRICE_RANGE_CHOOSE, FILTER_WORDS_CHOOSE, SEARCH_NEXT = range(5)
GET_MESSAGE_TO_POST = range(1)
GET_MESSAGE_TO_PRINT = range(1)
CHOOSE_FILTERS = range(1)
condition_result_ready_dict = {}
condition_user_ready_dict = {}
link_dict = {}
cookie_list = []
reply_keyboard = [['/find', '/test'],
['/start', '/help'],
['/filters', '/cancel']]
markup = telegram.ReplyKeyboardMarkup(reply_keyboard)
def update_db(update):
user_id = str(update.message.chat_id)
user_name = update.message.from_user.username
last_login = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")
total_logins = str(1)
if not os.path.exists("mydatabase.db"):
conn = sqlite3.connect("mydatabase.db")
cursor = conn.cursor()
cursor.execute("""CREATE TABLE users
(user_id text primary key, user_name text, last_login text,
total_logins text)
""")
conn.commit()
conn.close()
conn = sqlite3.connect("mydatabase.db")
cursor = conn.cursor()
count = cursor.execute("SELECT * FROM users WHERE user_id=?", (user_id,)).fetchall()
if len(count) > 0:
total_logins = str(int(count[0][3]) + 1)
conn.execute("INSERT OR REPLACE INTO users values (?, ?, ?, ?)", (user_id, user_name, last_login, total_logins))
conn.commit()
cursor.close()
conn.close()
def get_all_users_from_db():
conn = sqlite3.connect("mydatabase.db")
cursor = conn.cursor()
all_users = cursor.execute("SELECT * FROM users").fetchall()
cursor.close()
conn.close()
return all_users
def delete_user_from_db(user_id):
conn = sqlite3.connect("mydatabase.db")
cursor = conn.cursor()
cursor.execute("DELETE FROM users WHERE user_id=?", (user_id,))
conn.commit()
cursor.close()
conn.close()
def start(bot, update):
update_db(update)
bot.send_message(chat_id=update.message.chat_id, reply_markup=markup, text='Бот ищет товары с неправильным брендом, который можно перевести в подделку и получить 100% рефанд!'
'Чтобы искать товар, введите поиск, как вы искали бы его на Aliexpress. '
'Например, вводить просто "телефон" бессмысленно, нужно вводить, например '
'"телефон Ulefone S7". Искать самые популярные бренды вроде "телефон Xiaomi" '
'так же бессмысленно, так как их продавцов мало, они авторизованные, '
'и заполняют поле "бренд" в описании правильно. Идеальный поиск - '
'ввести что-то содержащее имя бренда, имя модели и тип товара, например '
'"Meizu EP51 Wireless Bluetooth Earphone".'
' По всем вопросам обращайтесь к @simonvorobyov (https://t.me/simonvorobyov)')
def help(bot, update):
update_db(update)
bot.send_message(chat_id=update.message.chat_id, reply_markup=markup, text='Бот ищет товары с неправильным брендом, который можно перевести в подделку и получить 100% рефанд!'
'Чтобы искать товар, введите поиск, как вы искали бы его на Aliexpress. '
'Например, вводить просто "телефон" бессмысленно, нужно вводить, например '
'"телефон Ulefone S7". Искать самые популярные бренды вроде "телефон Xiaomi" '
'так же бессмысленно, так как их продавцов мало, они авторизованные, '
'и заполняют поле "бренд" в описании правильно. Идеальный поиск - '
'ввести что-то содержащее имя бренда, имя модели и тип товара, например '
'"Meizu EP51 Wireless Bluetooth Earphone".'
' По всем вопросам обращайтесь к @simonvorobyov (https://t.me/simonvorobyov)')
@run_async
def iddqd(bot, update):
bot.send_message(chat_id=update.message.chat_id, text="Secret found! Stopping server!")
global updater
updater.stop()
sys.exit(0)
@run_async
def idfa(bot, update):
bot.send_message(chat_id=update.message.chat_id, text="Secret found! Restarting server!")
global updater
updater.stop()
os.execl(sys.executable, 'python3', 'bot.py', *sys.argv[1:])
def text_reply(bot, update, user_data):
bot.send_message(chat_id=update.message.chat_id, text="Введите /find чтобы начать поиск товара для refund'а."
" По всем вопросам обращайтесь к @simonvorobyov (https://t.me/simonvorobyov)")
@run_async
def test_search(bot, update, user_data):
user_data['product'] = 'test'
user_data['min_price'] = ''
user_data['max_price'] = ''
user_data['filter_words'] = []
user_data['brand'] = ['test']
update.message.reply_text('Выполняем тестовый запрос!')
link_dict[update.message.chat_id] = []
condition_result_ready_dict[update.message.chat_id] = threading.Condition()
condition_user_ready_dict[update.message.chat_id] = threading.Condition()
threading.Thread(name='refund_thread',
target=AliExpress.find_refund,
args=(
user_data, link_dict[update.message.chat_id],
condition_result_ready_dict[update.message.chat_id],
condition_user_ready_dict[update.message.chat_id])).start()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif link_dict[update.message.chat_id][0][0] == -1:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Не получилось обойти капчу, попробуйте повторить запрос еще раз позже.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][
0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
@run_async
def repeat(bot, update, user_data):
if ('product' not in user_data) or ('brand' not in user_data):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('В предыдущем поиске не задан бренд или поиск. /find чтобы начать новый поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
update.message.reply_text('Повторяем предыдущий поиск!')
link_dict[update.message.chat_id] = []
condition_result_ready_dict[update.message.chat_id] = threading.Condition()
condition_user_ready_dict[update.message.chat_id] = threading.Condition()
threading.Thread(name='refund_thread',
target=AliExpress.find_refund,
args=(
user_data, link_dict[update.message.chat_id], condition_result_ready_dict[update.message.chat_id],
condition_user_ready_dict[update.message.chat_id])).start()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif link_dict[update.message.chat_id][0][0] == -1:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Не получилось обойти капчу, попробуйте повторить запрос еще раз позже.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][
0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
@run_async
def begin(bot, update, user_data):
if update.callback_query:
query = update.callback_query
update = query
else:
query = ''
if query and query.data == 'repeat':
if ('product' not in user_data) or ('brand' not in user_data):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('В предыдущем поиске не задан бренд или поиск. /find чтобы начать новый поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
update.message.reply_text('Повторяем предыдущий поиск!')
link_dict[update.message.chat_id] = []
condition_result_ready_dict[update.message.chat_id] = threading.Condition()
condition_user_ready_dict[update.message.chat_id] = threading.Condition()
threading.Thread(name='refund_thread',
target=AliExpress.find_refund,
args=(
user_data, link_dict[update.message.chat_id],
condition_result_ready_dict[update.message.chat_id],
condition_user_ready_dict[update.message.chat_id])).start()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif link_dict[update.message.chat_id][0][0] == -1:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Не получилось обойти капчу, попробуйте повторить запрос еще раз позже.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][
0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
else:
update_db(update)
keyboard = [[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, reply_markup=reply_markup, chat_id=update.message.chat_id, text= WELCOME_TEXT)
return PRODUCT_CHOOSE
def product_reply(bot, update, user_data):
if update.callback_query:
if update.callback_query.data == 'cancel':
return cancel(bot, update, user_data)
elif update.callback_query.data == 'repeat_last':
query = update.callback_query
update = query
if 'product' not in user_data:
update.message.reply_text(
'Продукт в прошлом поиске не был задан!')
return cancel(bot, update, user_data)
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Поиск ' + user_data['product'] + '! Введите диапазон цен в формате 10-30 (в долларах) (/skip чтобы пропустить ввод цен):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return PRICE_RANGE_CHOOSE
text = update.message.text
user_data['product'] = text
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск сохранен! Введите диапазон цен в формате 10-30 (в долларах) (/skip чтобы пропустить ввод цен):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return PRICE_RANGE_CHOOSE
def price_range_reply(bot, update, user_data):
if update.callback_query:
if update.callback_query.data == 'cancel':
return cancel(bot, update, user_data)
elif update.callback_query.data == 'repeat_last':
query = update.callback_query
update = query
if 'min_price' not in user_data or 'max_price' not in user_data:
update.message.reply_text(
'Максимальная или минимальная цена не были заданы в прошлом поиске!')
return cancel(bot, update, user_data)
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Диапазон цен ' + user_data['min_price'] + '-' + user_data['max_price'] + '! Введите слова для фильтрации, которые надо исключить из поиска, через запятую (например case,for,glass) (/skip чтобы пропустить ввод фильтров):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return FILTER_WORDS_CHOOSE
text = update.message.text
prices = text.split('-')
if len(prices) < 2:
update.message.reply_text(
'Вы ввели диапазон цен неправильно, диапазон не сохранен. '
'Введите слова для фильтрации, которые надо исключить из поиска, через запятую (например case,for,glass) (/skip чтобы пропустить ввод фильтров):')
user_data['min_price'] = ''
user_data['max_price'] = ''
return FILTER_WORDS_CHOOSE
min_price = prices[0]
if not min_price:
min_price = ''
max_price = prices[1]
if not max_price:
max_price = ''
user_data['min_price'] = min_price
user_data['max_price'] = max_price
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Диапазон цен сохранен! Введите слова для фильтрации, которые надо исключить из поиска, через запятую (например case,for,glass) (/skip чтобы пропустить ввод фильтров):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return FILTER_WORDS_CHOOSE
def skip_price_range_reply(bot, update, user_data):
if update.callback_query:
query = update.callback_query
update = query
if query.data == 'cancel':
return cancel(bot, update, user_data)
elif query.data == 'repeat_last':
if 'min_price' not in user_data or 'max_price' not in user_data:
update.message.reply_text(
'Максимальная или минимальная цена не были заданы в прошлом поиске!')
return cancel(bot, update, user_data)
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Диапазон цен ' + user_data['min_price'] + '-' + user_data[
'max_price'] + '! Введите слова для фильтрации, которые надо исключить из поиска, через запятую (например case,for,glass) (/skip чтобы пропустить ввод фильтров):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return FILTER_WORDS_CHOOSE
user_data['min_price'] = ''
user_data['max_price'] = ''
keyboard = [[telegram.InlineKeyboardButton("Skip", callback_data='skip')],
[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Диапазон не задан. Введите слова для фильтрации через запятую (например case,for,glass) (/skip чтобы пропустить ввод фильтров):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return FILTER_WORDS_CHOOSE
def filter_reply(bot, update, user_data):
if update.callback_query:
if update.callback_query.data == 'cancel':
return cancel(bot, update, user_data)
elif update.callback_query.data == 'repeat_last':
query = update.callback_query
update = query
if 'filter_words' not in user_data:
update.message.reply_text(
'Фильтры не были заданы в прошлом поиске!')
return cancel(bot, update, user_data)
keyboard = [[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Фильтры ' + str(user_data['filter_words']) + '! Введите бренд (можно несколько, через запятую) '
'(например "Xiaomi,Amazfit"):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return BRAND_CHOOSE
text = update.message.text
filter_words = text.split(',')
if not filter_words:
filter_words = []
user_data['filter_words'] = filter_words
keyboard = [[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Фильтры сохранены! Введите бренд (можно несколько, через запятую) '
'(например "Xiaomi,Amazfit"):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return BRAND_CHOOSE
def skip_filter_reply(bot, update, user_data):
if update.callback_query:
query = update.callback_query
update = query
if query.data == 'cancel':
return cancel(bot, update, user_data)
elif query.data == 'repeat_last':
if 'filter_words' not in user_data:
update.message.reply_text(
'Фильтры не были заданы в прошлом поиске!')
return cancel(bot, update, user_data)
keyboard = [[telegram.InlineKeyboardButton("Repeat last", callback_data='repeat_last')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text(
'Фильтры ' + str(user_data['filter_words']) + '! Введите бренд (можно несколько, через запятую) '
'(например "Xiaomi,Amazfit"):',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return BRAND_CHOOSE
user_data['filter_words'] = []
keyboard = [[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Фильтры не заданы. Введите бренд (можно несколько, через запятую) '
'(например "Xiaomi,Amazfit"):', reply_markup=reply_markup)
return BRAND_CHOOSE
@run_async
def brand_reply(bot, update, user_data):
if update.callback_query:
if update.callback_query.data == 'cancel':
return cancel(bot, update, user_data)
elif update.callback_query.data == 'repeat_last':
query = update.callback_query
update = query
if 'brand' not in user_data:
update.message.reply_text(
'Бренды в прошлом поиске не были заданы!')
return cancel(bot, update, user_data)
update.message.reply_text('Бренды ' + str(user_data['brand']) + '! Начинаем поиск!')
else:
text = update.message.text
brand_words = text.lower().split(',')
if not brand_words:
brand_words = []
user_data['brand'] = brand_words
update.message.reply_text('Бренд сохранен! Начинаем поиск!')
link_dict[update.message.chat_id] = []
condition_result_ready_dict[update.message.chat_id] = threading.Condition()
condition_user_ready_dict[update.message.chat_id] = threading.Condition()
threading.Thread(name='refund_thread',
target=AliExpress.find_refund,
args=(user_data, link_dict[update.message.chat_id], condition_result_ready_dict[update.message.chat_id], condition_user_ready_dict[update.message.chat_id])).start()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif link_dict[update.message.chat_id][0][0] == -1:
bot.send_message(chat_id=MY_ID,
text='Seems like bot stopped to work, fix me!', parse_mode=telegram.ParseMode.MARKDOWN)
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Кажется, Алиэкспресс заблокировал поиск каптчой, к сожалению проблема пока неразрешима, попробуйте повторить поиск позже.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
@run_async
def answer_yes(bot, update, user_data):
with condition_user_ready_dict[update.message.chat_id]:
condition_user_ready_dict[update.message.chat_id].notifyAll()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif link_dict[update.message.chat_id][0][0] == -1:
bot.send_message(chat_id=MY_ID,
text='Seems like bot stopped to work, fix me!', parse_mode=telegram.ParseMode.MARKDOWN)
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Кажется, Алиэкспресс заблокировал поиск каптчой, к сожалению проблема пока неразрешима, попробуйте повторить поиск позже.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
@run_async
def answer_no(bot, update, user_data):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Хорошо, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
@run_async
def search_next(bot, update, user_data):
if update.message:
text = update.message.text
else:
text = ''
if update.callback_query:
query = update.callback_query
update = query
else:
query = ''
if text.lower() == 'да' or text.lower() == 'д' or (query and query.data == 'да'):
with condition_user_ready_dict[update.message.chat_id]:
condition_user_ready_dict[update.message.chat_id].notifyAll()
with condition_result_ready_dict[update.message.chat_id]:
if not condition_result_ready_dict[update.message.chat_id].wait(TIMEOUT):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Поиск завершен по таймауту. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
if link_dict[update.message.chat_id][0] is None:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Больше ничего не найдено, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
else:
link = epn_parse.get_cashback_link(cookie_list, link_dict[update.message.chat_id][0][0])
if link:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) + "\n[!](" +
link_dict[update.message.chat_id][
0][0] + ")[Нажми на ссылку чтобы заказать!](" + link + ")")
else:
bot.send_message(parse_mode=telegram.ParseMode.MARKDOWN, chat_id=update.message.chat_id,
text="Неправильный бренд, бренд товара " + link_dict[update.message.chat_id][0][1] +
" не совпадает с брендами " + str(user_data['brand']) +
"\n[Нажми на ссылку чтобы заказать!](" + link_dict[update.message.chat_id][0][0] + ")")
keyboard = [[telegram.InlineKeyboardButton("Да", callback_data='да'),
telegram.InlineKeyboardButton("Нет", callback_data='нет')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Искать дальше? Да/Нет (д/н либо /yes или /no)', reply_markup=reply_markup)
return SEARCH_NEXT
else:
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Хорошо, поиск завершен. /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
def cancel(bot, update, user_data):
if hasattr(update, 'callback_query'):
if update.callback_query:
query = update.callback_query
update = query
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Пока! Продолжим в следующий раз! /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
def conversation_timeout(bot, update, user_data):
keyboard = [[telegram.InlineKeyboardButton("Find", callback_data='find')],
[telegram.InlineKeyboardButton("Repeat", callback_data='repeat')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Ты думаешь слишком долго! Продолжим в следующий раз! /find чтобы начать новый поиск, /repeat чтобы повторить последний поиск.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
def post_message(bot, update):
users = get_all_users_from_db()
for user in users:
try:
bot.forward_message(int(user[0]), update.message.chat_id, update.message.message_id)
except:
delete_user_from_db(user[0])
#bot.send_message(chat_id=int(user[0]), text=update.message.text, parse_mode=ParseMode.MARKDOWN)
update.message.reply_text('Готово! Пост опубликован!')
return ConversationHandler.END
def print_message(bot, update):
bot.send_message(chat_id=update.message.chat_id,
text=update.message.text, parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
def count_users(bot, update):
users = get_all_users_from_db()
bot.send_message(chat_id=update.message.chat_id,
text=('Количество юзеров в базе: ' + str(len(users))))
def begin_post(bot, update):
bot.send_message(chat_id=update.message.chat_id, text='Форвардни мне сообщение которое нужно опубликовать. /cancel для отмены.')
return GET_MESSAGE_TO_POST
def begin_print(bot, update):
bot.send_message(chat_id=update.message.chat_id, text='Напиши мне сообщение которое нужно написать от моего имени. /cancel для отмены.')
return GET_MESSAGE_TO_PRINT
def filters(bot, update):
if update.callback_query:
query = update.callback_query
update = query
keyboard = [[telegram.InlineKeyboardButton("Телефоны", callback_data='телефоны')],
[telegram.InlineKeyboardButton("Вейпы", callback_data='вейпы')],
[telegram.InlineKeyboardButton("Ноутбуки", callback_data='ноутбуки')],
[telegram.InlineKeyboardButton("Cancel", callback_data='cancel')]]
reply_markup = telegram.InlineKeyboardMarkup(keyboard)
update.message.reply_text('Выберите категорию, для которой вы хотите посмотреть фильтры.',
reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN)
return CHOOSE_FILTERS
def choose_filters(bot, update, user_data):
if update.callback_query:
query = update.callback_query
if query.data == 'cancel':
return cancel(bot, update, user_data)
elif query.data == 'вейпы':
query.message.reply_text('Фильтры для вейпов:',
parse_mode=telegram.ParseMode.MARKDOWN)
query.message.reply_text('*' + vape_filters + '*',
parse_mode=telegram.ParseMode.MARKDOWN)
query.message.reply_text('*Замените <бренд> на название бренда вейпа.*',
parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif query.data == 'телефоны':
query.message.reply_text('Фильтры для телефонов:',
parse_mode=telegram.ParseMode.MARKDOWN)
query.message.reply_text('*' + phone_filters + '*',
parse_mode=telegram.ParseMode.MARKDOWN)
query.message.reply_text('*Замените <бренд> на название бренда телефона.*',
parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
elif query.data == 'ноутбуки':
query.message.reply_text('Фильтры для ноутбуков:',
parse_mode=telegram.ParseMode.MARKDOWN)
query.message.reply_text('*' + laptop_filters + '*',
parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
return ConversationHandler.END
else:
update.message.reply_text('Вы не нажали кнопку.',
parse_mode=telegram.ParseMode.MARKDOWN)
return ConversationHandler.END
def main():
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO)
global updater
global cookie_list
dispatcher = updater.dispatcher
start_handler = CommandHandler('start', start)
help_handler = CommandHandler('help', help)
iddqd_handler = CommandHandler('iddqd', iddqd)
idfa_handler = CommandHandler('idfa', idfa)
count_users_handler = CommandHandler('count', count_users)
filters_handler = ConversationHandler(
entry_points=[CommandHandler('filters', filters)],
states={
CHOOSE_FILTERS: [CallbackQueryHandler(choose_filters,
pass_user_data=True)
],
ConversationHandler.TIMEOUT: [MessageHandler(Filters.text,
conversation_timeout,
pass_user_data=True),
]
},
fallbacks=[CommandHandler('cancel', cancel, pass_user_data=True)],
conversation_timeout=TIMEOUT + 5
)
conv_handler = ConversationHandler(
entry_points=[CommandHandler('find', begin, pass_user_data=True), CallbackQueryHandler(begin, pass_user_data=True),
CommandHandler('repeat', repeat, pass_user_data=True),
CommandHandler('test', test_search, pass_user_data=True)],
states={
PRODUCT_CHOOSE: [MessageHandler(Filters.text,
product_reply,
pass_user_data=True),
CommandHandler('yes',
answer_yes,
pass_user_data=True),
CommandHandler('no',
answer_no,
pass_user_data=True),
CallbackQueryHandler(product_reply,
pass_user_data=True)
],
BRAND_CHOOSE: [MessageHandler(Filters.text,
brand_reply,
pass_user_data=True),
CallbackQueryHandler(brand_reply,
pass_user_data=True)
],
PRICE_RANGE_CHOOSE: [MessageHandler(Filters.text,
price_range_reply,
pass_user_data=True),
CommandHandler('skip',
skip_price_range_reply,
pass_user_data=True),
CallbackQueryHandler(skip_price_range_reply,
pass_user_data=True)
],
FILTER_WORDS_CHOOSE: [MessageHandler(Filters.text,
filter_reply,
pass_user_data=True),
CommandHandler('skip',
skip_filter_reply,
pass_user_data=True),
CallbackQueryHandler(skip_filter_reply,
pass_user_data=True)
],
SEARCH_NEXT: [MessageHandler(Filters.text,
search_next,
pass_user_data=True),
CommandHandler('yes',
answer_yes,
pass_user_data=True),
CommandHandler('no',
answer_no,
pass_user_data=True),
CallbackQueryHandler(search_next,
pass_user_data=True)
],
ConversationHandler.TIMEOUT: [MessageHandler(Filters.text,
conversation_timeout,
pass_user_data=True),
]
},
fallbacks = [CommandHandler('cancel', cancel, pass_user_data=True)],
conversation_timeout = TIMEOUT+5
)
conv_post_handler = ConversationHandler(
entry_points=[CommandHandler('post', begin_post)],
states={
GET_MESSAGE_TO_POST: [MessageHandler(Filters.text,
post_message),
],
},
fallbacks=[CommandHandler('cancel', cancel, pass_user_data=True)],
conversation_timeout=TIMEOUT+5
)
conv_print_handler = ConversationHandler(
entry_points=[CommandHandler('print', begin_print)],
states={
GET_MESSAGE_TO_PRINT: [MessageHandler(Filters.text,
print_message),
],
},
fallbacks=[CommandHandler('cancel', cancel, pass_user_data=True)],
conversation_timeout=TIMEOUT+5
)
text_handler = MessageHandler(Filters.text, text_reply, pass_user_data=True)
dispatcher.add_handler(start_handler)
dispatcher.add_handler(help_handler)
dispatcher.add_handler(iddqd_handler)
dispatcher.add_handler(idfa_handler)
dispatcher.add_handler(filters_handler)
dispatcher.add_handler(conv_handler)
dispatcher.add_handler(conv_post_handler)
dispatcher.add_handler(count_users_handler)
dispatcher.add_handler(conv_print_handler)
dispatcher.add_handler(text_handler)
#epn_parse.login_epn()
updater.start_polling(poll_interval = 1.0, timeout=20)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
exit()
| UTF-8 | Python | false | false | 59,442 | py | 4 | bot.py | 4 | 0.592583 | 0.589808 | 0 | 918 | 57.482571 | 533 |
spinoza1791/pi3d_book | 9,285,719,343,027 | 2f164ff9e46db5a6141f549e279d75e9f3af6d69 | ea4d61f1b1e900e0b9d9ca70699eec464f06e9ee | /programs/sprites01.py | 91b691ae60dbcf13c9f51b63807f06572ca209f2 | [] | no_license | https://github.com/spinoza1791/pi3d_book | afe7edc790b40338acd70fefed35e94200c48049 | c2a90ccdf0b39e95b5c416c7f98dd3c5750959b7 | refs/heads/master | 2020-05-03T11:27:12.570207 | 2015-11-13T12:54:22 | 2015-11-13T12:54:22 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python
from __future__ import absolute_import, division, print_function, unicode_literals
import demo
import pi3d
DISPLAY = pi3d.Display.create(x=150, y=150)
shader = pi3d.Shader("uv_flat")
CAMERA = pi3d.Camera(is_3d=False)
tex1 = pi3d.Texture("techy1.jpg")
#tex1 = pi3d.Texture("techy2.png")
tex2 = pi3d.Texture("glassbuilding.jpg")
#tex2 = pi3d.Texture("techy2.png")
z1 = 5.0 # z value of sprite1
a1 = 1.0 # alpha value of sprite1
a2 = 1.0 # alpha value of sprite2
sprite1 = pi3d.Sprite(w=400.0, h=400.0, x=-100.0, y=100.0, z=z1)
sprite1.set_draw_details(shader, [tex1])
sprite2 = pi3d.Sprite(w=400.0, h=400.0, x=100.0, y=-100.0, z=z1 + 0.2)
sprite2.set_draw_details(shader, [tex2])
""" The two Sprites start off overlapping with sprite2 slightly further
away. Both have default alpha value of 1.0
"""
keys = pi3d.Keyboard()
while DISPLAY.loop_running():
sprite1.draw()
sprite2.draw()
""" Keys w,s move sprite1 back,forward a,d decrease,increase sprite1
alpha and z,c decrease,increase sprite2 alpha
NB sprite2 is drawn after sprite1 see what happens if sprite1 is in
front of sprite2 as you reduce the alpha so you can see through it. Now
put sprite2 in front and reduce its alpha.
Try swapping tex1 and tex2 (one at a time) to techy2.png, move them back
and forth and change their alpha values.
"""
k = keys.read()
if k > -1:
if k == 27:
break
elif k == ord('w'): # away
z1 += 0.1
elif k == ord('s'): # nearer
z1 -= 0.1
elif k == ord('a'): # less solid sprite1
a1 -= 0.05
elif k == ord('d'): # more solid sprite1
a1 += 0.05
elif k == ord('z'): # less solid sprite2
a2 -= 0.05
elif k == ord('c'): # more solid sprite2
a2 += 0.05
sprite1.positionZ(z1)
sprite1.set_alpha(a1)
sprite2.set_alpha(a2)
keys.close()
DISPLAY.destroy()
| UTF-8 | Python | false | false | 1,855 | py | 56 | sprites01.py | 28 | 0.657143 | 0.587062 | 0 | 61 | 29.409836 | 82 |
matplotlib/matplotlib.github.com | 5,540,507,862,821 | 0cb002454e031928749b0e11635fc987acd571eb | 7889f7f0532db6a7f81e6f8630e399c90438b2b9 | /_downloads/ac4f86bd93cba659ce07e61072e8ab4a/mathtext_wx_sgskip.py | a5fd58888656b4b91e822adbf2703eaa6425f39e | [] | no_license | https://github.com/matplotlib/matplotlib.github.com | ef5d23a5bf77cb5af675f1a8273d641e410b2560 | 2a60d39490941a524e5385670d488c86083a032c | refs/heads/main | 2023-08-16T18:46:58.934777 | 2023-08-10T05:07:57 | 2023-08-10T05:08:30 | 1,385,150 | 25 | 59 | null | false | 2023-08-30T15:59:50 | 2011-02-19T03:27:35 | 2023-08-19T17:14:35 | 2023-08-30T15:59:49 | 5,051,744 | 22 | 58 | 3 | null | false | false | ../../3.1.3/_downloads/ac4f86bd93cba659ce07e61072e8ab4a/mathtext_wx_sgskip.py | UTF-8 | Python | false | false | 77 | py | 14,250 | mathtext_wx_sgskip.py | 4,420 | 0.805195 | 0.545455 | 0 | 1 | 77 | 77 |
glenMoutrie/PyCast | 8,830,452,774,676 | e1ae6c64603d76b951e0540e6d99faed5450d88c | 39baaddf53bcdf884d85d5e0cf020f161863f250 | /ARIMA/auto_arima.py | c0e28abf621f21d17f7f0b2af931e15f24705a6d | [] | no_license | https://github.com/glenMoutrie/PyCast | b2668c2e29477016352b694fbcb5b5aa7b807924 | f7f57c4b6546653a8b07dd923c5f453d28a8d90e | refs/heads/master | 2021-09-15T21:23:25.293787 | 2018-06-11T05:07:15 | 2018-06-11T05:07:15 | 108,550,890 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from enum import Enum
from TimeSeriesOO.FrequencyEstimator import estimateFrequency
class informationCriteria(Enum):
AICC = 1
AIC = 2
BIC = 3
class testProcedure(Enum):
KPSS = 1
ADF = 2
PP = 3
class seasonalTest(Enum):
SEAS = 1
OCSB = 2
HEGY = 3
CH = 4
def approx(x):
return len(x) > 150 or estimateFrequency(x) > 12
class autoArima:
def __init__(self, x, d = None, D = None, max_p = 5, max_q = 5,
max_P = 2, max_Q = 2, max_order = 5, max_d = 2, max_D = 1,
start_p = 2, start_q = 2, start_P = 1, start_Q = 1,
stationary = False, seasonal = True, ic = informationCriteria.AICC,
stepwise = False, trace = False, approximation = approx,
truncate = None, xreg = None, test = testProcedure.KPSS,
seasonal_test = seasonalTest.SEAS,
allowdrift = True, allowmean = True, lmbd = None, biasadj = False,
parallel = False, num_cores = 2,):
pass
if __name__ == "__main__":
pass | UTF-8 | Python | false | false | 1,069 | py | 15 | auto_arima.py | 10 | 0.549111 | 0.523854 | 0 | 39 | 26.435897 | 84 |
alejandro-robles7/CatsAndDogs | 16,518,444,264,735 | 7d7a87db59ae1382ea352db96a13d008823ad3cf | 4453b1776a2b0e0f503208f3f452aeb059635ebb | /code/classification_testing.py | 14d06fd7ab0e10b327f8dbbcee074321d24c8eae | [] | no_license | https://github.com/alejandro-robles7/CatsAndDogs | fbcdecab8332b2453808e06e6f73577a959c07bc | e206a10090fd81a595e405600a615346bbfbc6e0 | refs/heads/master | 2020-05-17T18:17:27.936688 | 2019-05-06T03:20:32 | 2019-05-06T03:20:32 | 183,879,575 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # This is code to load trained model and test it
from keras.models import load_model
from os import environ
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
def predict_and_plot(model, test_generator, columns=5):
text_labels = []
plt.figure(figsize=(30, 20))
for i, batch in enumerate(test_generator):
pred = model.predict(batch[0])
if pred > 0.5:
text_labels.append('dog')
else:
text_labels.append('cat')
plt.subplot(5 / columns + 1, columns, i + 1)
plt.title('This is a ' + text_labels[i])
imgplot = plt.imshow(batch[0][0])
i += 1
if i % 10 == 0:
break
plt.show()
return text_labels
def load_my_model(modelpath, weightpath):
model = load_model(modelpath)
model.load_weights(weightpath)
return model
def get_generator(data_directory, target_size):
return ImageDataGenerator(rescale=1. / 255).flow_from_directory(
data_directory,
target_size=target_size,
batch_size=1,
class_mode='binary')
if __name__ == '__main__':
# Needed to run model
environ['KMP_DUPLICATE_LIB_OK'] = 'True'
# dimensions of our images.
img_width, img_height = 150, 150
# Path to data
local_path = '/Users/alejandro.robles/PycharmProjects/CatsAndDogs/{}'
test_data_dir = local_path.format('classification testing utility') # Validation and test set are the same here
# Path to model and weights
model_path, model_path_better = 'models/model_keras.h5', 'models/model_keras_full.h5'
model_weights_path, model_weights_path_better = 'models/model_weights.h5', 'models/model_weights_full.h5'
# Loading models
model = load_my_model(model_path, model_weights_path)
model_better = load_my_model(model_path_better, model_weights_path_better)
# Test Generator
test_generator = get_generator(test_data_dir, (img_width, img_height))
# Predictions
predicted_labels = predict_and_plot(model, test_generator)
predicted_labels_better_model = predict_and_plot(model, test_generator)
| UTF-8 | Python | false | false | 2,136 | py | 3 | classification_testing.py | 2 | 0.659644 | 0.644663 | 0 | 63 | 32.809524 | 116 |
ttaylor14/PNation | 6,743,098,686,659 | 1c9510bd6e0e1c23d71d92bbfcfcb01694eaa1bc | 0744122cc12f0fba0929cffc59a8a6ddc90418e1 | /data/YearPoints/Top50.py | f87745f12231cda005bd17c9ce8af69a99bead6c | [
"MIT"
] | permissive | https://github.com/ttaylor14/PNation | a1b60435cd77acfc6569dedd87d69e44fb806c0c | 6c616bc95751ba77e85b22b14bb66e2c8e13142a | refs/heads/master | 2020-05-19T07:38:16.186475 | 2020-01-04T15:54:29 | 2020-01-04T15:54:29 | 184,900,859 | 1 | 0 | null | false | 2019-10-04T15:04:04 | 2019-05-04T13:50:19 | 2019-09-30T01:19:10 | 2019-10-04T15:04:04 | 24,330 | 1 | 0 | 0 | Python | false | false | # Creating Roto Rankings
# last Update : 10.13.19
# Creating Chart to Visually Show how Points are distributed for the top 10 ranked players each year
# libraries
import pandas as pd
import matplotlib.pyplot as plt
from pandas.plotting import parallel_coordinates
import seaborn as sns
currentYear = 2019
AllTeam = pd.DataFrame()
yearRange = list(range(2000, currentYear + 1))
# print(yearRange)
for x in yearRange:
filename = "%s.csv" % x
team = pd.read_csv(filename, sep=',', encoding='utf-8')
team = team[:50]
#print(team)
AllTeam = pd.concat([AllTeam, team])
AllTeam = AllTeam[['Rank', 'Total_Points', 'Season_bat']]
AllTeam.rename(columns={'Season_bat':'Season'}, inplace=True)
AllTeam.rename(columns={'Rank':'Player_Ranking'}, inplace=True)
pkmn_type_colors = ['#78C850', # Grass
'#F08030', # Fire
'#6890F0', # Water
'#A8B820', # Bug
'#A8A878', # Normal
'#A040A0', # Poison
'#F8D030', # Electric
'#E0C068', # Ground
'#EE99AC', # Fairy
'#C03028', # Fighting
'#F85888', # Psychic
'#B8A038', # Rock
'#705898', # Ghost
'#98D8D8', # Ice
'#7038F8', # Dragon
'#78CA50',
'#F08630',
'#6896F0',
'#A87820',
'#A88878',
'#AAA878'
]
sns.lineplot(data= AllTeam, x="Player_Ranking", y="Total_Points", hue="Season", palette=pkmn_type_colors, markers=True, dashes=True, sort=False)
plt.legend(bbox_to_anchor=(1, 1), loc=2)
plt.title('Historical Points Scored by Top 50 Ranked Players Each Year')
plt.show()
| UTF-8 | Python | false | false | 1,874 | py | 113 | Top50.py | 22 | 0.519744 | 0.456777 | 0 | 72 | 25.027778 | 144 |
dwatow/MockKgsDataObjectGenerator | 1,803,886,264,752 | 40c500614736886cadfb004cd7252450b0659ddb | 9ded0c41fc626fbfc9b69d8fb21eb83f85778c4e | /xmlMain.py | 12b833e57bc0d4d3b73c21cc0778d17b53346d37 | [] | no_license | https://github.com/dwatow/MockKgsDataObjectGenerator | dbddfec55d8b3c0b4ccf55c2b30fb919cfcb2d78 | b6b004627d2d4c416a5a472e7be1f8fcb3809448 | refs/heads/master | 2021-01-14T08:23:38.644041 | 2017-02-13T06:31:48 | 2017-02-13T06:31:48 | 41,518,984 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import xml.etree.ElementTree as ET
import XmlObj as XmlTableObj
import XmlKDoMock as XmlKDataObject
from XmlKDoMock import xml2Class as xml2class
from xml2.references import References as xml2ref
from xml2.references import ExtendReferences as xml2extdref
from xml2.references import ExternalReferences as xml2extlref
tree = ET.ElementTree(file='DB.xml')
root = tree.getroot()
kdo_class_list = {}
for class_element in root:
kdo_class_obj = xml2class(class_element.attrib["Name"])
kdo_class_list[ class_element.attrib["Name"] ] = kdo_class_obj
for class_element in root:
#print(class_element.attrib["Name"])
curr_class_name = class_element.attrib["Name"]
kdo_class_obj = kdo_class_list[curr_class_name]
for class_chirld in class_element:
if class_chirld.tag == 'ExternalReferences':
for external_reference_element in class_chirld:
extl_obj = xml2extlref(curr_class_name, external_reference_element.attrib['SourceName'], external_reference_element.attrib['TargetName'], external_reference_element.attrib['ClassName'])
kdo_class_obj.AddBeforeClass(extl_obj.MyBeforeClass())
kdo_class_obj.AddReference(extl_obj.MyDotHCode())
kdo_class_obj.AddCollectionFunction(extl_obj.MyDotHCollectionFunction())
kdo_class_obj.AddRelListFunction(extl_obj.MyDotCppCollectionFunction())
kdo_class_obj.AddInitRef(extl_obj.MyInitDotCppCode())
rel_kdo_class_obj = kdo_class_list[extl_obj.RelClassName()]
rel_kdo_class_obj.AddBeforeClass(extl_obj.RelBeforeClass())
rel_kdo_class_obj.AddReference(extl_obj.RelDotHCode())
rel_kdo_class_obj.AddCollectionFunction(extl_obj.RelDotHCollectionFunction())
rel_kdo_class_obj.AddRelListFunction(extl_obj.RelDotCppCollectionFunction())
rel_kdo_class_obj.AddInitRef(extl_obj.RelInitDotCppCode())
kdo_class_list[extl_obj.RelClassName()] = rel_kdo_class_obj
if class_chirld.tag == 'ExtendReferences':
for extend_reference_element in class_chirld:
extd_obj = xml2extdref(curr_class_name, extend_reference_element.attrib['SourceName'], extend_reference_element.attrib['TargetName'], extend_reference_element.attrib['ClassName'], extend_reference_element.attrib['Relation'])
kdo_class_obj.AddBeforeClass(extd_obj.MyBeforeClass())
kdo_class_obj.AddReference(extd_obj.MyDotHCode())
kdo_class_obj.AddRefField(extd_obj.RelDotHField_Syskey())
kdo_class_obj.AddInitRefField(extd_obj.RelDotCppField_Syskey())
kdo_class_obj.AddInitRef(extd_obj.MyInitDotCppCode())
rel_kdo_class_obj = kdo_class_list[extd_obj.RelClassName()]
rel_kdo_class_obj.AddBeforeClass(extd_obj.RelBeforeClass())
rel_kdo_class_obj.AddReference(extd_obj.RelDotHCode())
rel_kdo_class_obj.AddCollectionFunction(extd_obj.RelDotHCollectionFunction())
rel_kdo_class_obj.AddRelListFunction(extd_obj.RelDotCppCollectionFunction())
kdo_class_list[extd_obj.RelClassName()] = rel_kdo_class_obj
if class_chirld.tag == 'References':
for reference_element in class_chirld:
ref_obj = xml2ref(curr_class_name, reference_element.attrib['Name'], reference_element.attrib['Type'], reference_element.attrib['Relation'])
kdo_class_obj.AddBeforeClass(ref_obj.MyBeforeClass())
kdo_class_obj.AddReference(ref_obj.MyDotHCode())
kdo_class_obj.AddInitRef(ref_obj.MyInitDotCppCode())
if curr_class_name == 'ManufactureProcess':
print(ref_obj.my_class_name)
kdo_class_obj.AddRefField(ref_obj.RelDotHField_Syskey())
kdo_class_obj.AddInitRefField(ref_obj.RelDotCppField_Syskey())
rel_kdo_class_obj = kdo_class_list[ref_obj.RelClassName()]
rel_kdo_class_obj.AddBeforeClass(ref_obj.RelBeforeClass())
rel_kdo_class_obj.AddReference(ref_obj.RelDotHCode())
rel_kdo_class_obj.AddCollectionFunction(ref_obj.RelDotHCollectionFunction())
rel_kdo_class_obj.AddInitRef(ref_obj.RelInitDotCppCode())
rel_kdo_class_obj.AddRelListFunction(ref_obj.RelDotCppCollectionFunction())
kdo_class_list[ref_obj.RelClassName()] = rel_kdo_class_obj
if class_chirld.tag == 'Properties':
for property_element in class_chirld:
#print(' ', property_element.attrib["Type"], property_element.attrib["Name"])
kdo_class_obj.AddMemberVariable(property_element.attrib["Type"], property_element.attrib["Name"])
kdo_class_list[curr_class_name] = kdo_class_obj
print('--------------------------')
for class_name, stub_obj in kdo_class_list.items():
#stub_obj.Write2File('KDataObject\\')
stub_obj.Write2DotHFile('KDataObject\\')
stub_obj.Write2DotCppFile('KDataObject\\')
#stub_obj.Write2DotHFile('')
#stub_obj.Write2DotCppFile('')
print('----------生成TableObj----------')
table_obj_list = []
for class_element in root:
#print(class_element.attrib["Name"])
table_obj_class_obj = XmlTableObj.xml2Class(class_element.attrib["Name"])
for class_chirld in class_element:
#if class_chirld.tag == 'References':
#for reference_element in class_chirld:
##print(' ', reference_element.attrib['Name'], reference_element.attrib['Type'], reference_element.attrib['Relation'])
#table_obj_class_obj.AddReference(reference_element.attrib['Name'], reference_element.attrib['Type'], reference_element.attrib['Relation'])
if class_chirld.tag == 'Properties':
for property_element in class_chirld:
#print(' ', property_element.attrib["Type"], property_element.attrib["Name"])
table_obj_class_obj.AddMemberVariable(property_element.attrib["Type"].lower(), property_element.attrib["Name"])
table_obj_list.append(table_obj_class_obj);
print('--------------------------')
for obj in table_obj_list:
#obj.Write2File('KDataObject')
obj.Write2DotHFile('TableObj')
obj.Write2DotCppFile('TableObj')
report = '生成' + str(len(table_obj_list)) + '個KDataObject.h檔案\n'
report += '生成' + str(len(table_obj_list)) + '個KDataObject.cpp檔案\n'
report += '生成' + str(len(table_obj_list)) + '個TableObj.h檔案\n'
report += '生成' + str(len(table_obj_list)) + '個TableObj.cpp檔案\n'
print(report)
'''檔案生成,資料夾要保留,才會順利生成。''' | UTF-8 | Python | false | false | 6,004 | py | 11 | xmlMain.py | 8 | 0.738771 | 0.735225 | 0 | 117 | 49.623932 | 228 |
snow-stone/python | 12,446,815,253,754 | 7cd154d61911a52035f7b99c46559f622b3a8f45 | bdadee64ca8c143a925ec84736e3966ef0183bce | /python_rsync/rsync.py | 0aad571b18a334729c71e79ce19d9917d8215145 | [] | no_license | https://github.com/snow-stone/python | fcb69950f5984d654f555ca591583c0a0763bef4 | 0e79a0fb265a22a409309b1c0f992f00ef588f95 | refs/heads/master | 2020-03-11T10:51:53.268373 | 2019-10-18T14:24:45 | 2019-10-18T14:24:45 | 129,953,986 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sys
import commands, os
import scipy.io as io
def makeDirectory(directory):
if not os.path.exists(directory):
os.makedirs(directory)
else:
print directory, " exists"
def runJob(cmd):
print "running Job using bash command : %s" % cmd
status, jobOutput = commands.getstatusoutput(cmd)
if status == 0 :
print "Job return value : 0"
print "Job output :"
print jobOutput
else :
print "Job failed"
print "Job output :"
print jobOutput
return status, jobOutput
def tryJob(sourceDir, targetDir):
cmd = "rsync -av %s %s/" % (sourceDir, targetDir)
return runJob(cmd)
def create_write_database_NoSync():
# naming
# begin by D1, D2, D3 : debit min, medium, max
# then : dash
# if NN then NN, if not, directly get into resolution : 1b, 1d, 1j, 1k...
caseByAlias=[
#1b
"D1-1b",
#1d
"D1-1d",
#1d_lR2
"D1-1d_lR2_afterAugust",
#1j
"D2-NN-1j_test_from0",
"D2-NN-1j_test_from0p3_forcingStep_St1_A_eq_0p05",
"D2-NN-1j_test_from0p3_forcingSinus_St3p2_A_eq_0p05",
"D1-1j_mapped", # test_from_0p45_of3
"D2-1j_mapped", # test_from_0p45_of3
"D3-1j_mapped", # test_from_0p45_of3
"D2-1j_syn",
"D2-NN-1j_syn",
#1k_4x4x4.pw : note that this is not "1k.pw"
"D2-NN-1k_syn",
"D2-NN-1k_syn_forcing",
# t_r
"t_r-2a_1_gradP0p703125"
]
caseInfo=dict.fromkeys(caseByAlias)
for case in caseByAlias:
caseInfo[case]={
'sourceDir':[],
'targetDir':[],
'name2plot':[],
'latestTime':[]
}
# IMPORTANT COMMENT HRER :
# sourceDir need to include machie name like "newton:"
# targetDir doesn't need to exit before running
# dirName will be rsync-ed
# IMPORTANT : no backslash at the end
#dirName="/postProcessing"
alias="D1-1b"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/zaurak/caseByGeometry/T/new-mesh/pointwise/postProcessing/1b_mirrorMerge"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1b"+"/"+alias
caseInfo[alias]['name2plot']=alias
makeDirectory(caseInfo[alias]['targetDir'])
alias="D1-1d"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/zaurak/caseByGeometry/T/new-mesh/pointwise/postProcessing/1d_mapped_NearestFace"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1d"+"/"+alias
caseInfo[alias]['name2plot']=alias
makeDirectory(caseInfo[alias]['targetDir'])
alias="D1-1d_lR2_afterAugust"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/zaurak/caseByMachine/occigen/T/passiveScalar/Newtonian/mapped/flowRate/min/1d_lR2/afterAugust"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1d_lR2"+"/"+alias
caseInfo[alias]['name2plot']="D1-1d_{lR2,afterAugust}"
makeDirectory(caseInfo[alias]['targetDir'])
base_1j="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/T/BirdCarreau/synthetic/flowRate/medium/fluctuation_off/1j"
alias="D2-NN-1j_test_from0"
caseInfo[alias]['sourceDir']=base_1j+"/"+"test_from0"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1j_{testFrom0}"
caseInfo[alias]['latestTime']="0.3"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-NN-1j_test_from0p3_forcingStep_St1_A_eq_0p05"
caseInfo[alias]['sourceDir']=base_1j+"/"+"synthetic_phasedStepFrom_test_from_0/From0p3_3_of3"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1j_{testFrom0.3;Step,St=1,A=0.05}"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-NN-1j_test_from0p3_forcingSinus_St3p2_A_eq_0p05"
caseInfo[alias]['sourceDir']=base_1j+"/"+"synthetic_phasedSinusFrom_test_from_0/From0p3_2_of3"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1j_{testFrom0.3;Sinus,St=3.2,A=0.05}"
caseInfo[alias]['latestTime']="0.6"
makeDirectory(caseInfo[alias]['targetDir'])
base_1jN="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/T/Newtonian/mapped/flowRate"
alias="D1-1j_mapped"
caseInfo[alias]['sourceDir']=base_1jN+"/"+"min/test_from_0p45_of3/syntheticMedium_FluctuationOff"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D1-1j_{mapped}"
caseInfo[alias]['latestTime']="0.6"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-1j_mapped"
caseInfo[alias]['sourceDir']=base_1jN+"/"+"medium/test_from_0p45_of3/syntheticMedium_FluctuationOff"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-1j_{mapped}"
caseInfo[alias]['latestTime']="0.9"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D3-1j_mapped"
caseInfo[alias]['sourceDir']=base_1jN+"/"+"max/test_from_0p45_of3/syntheticMedium_FluctuationOff"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D3-1j_{mapped}"
caseInfo[alias]['latestTime']="0.6"
makeDirectory(caseInfo[alias]['targetDir'])
base_1jN="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/T/Newtonian/synthetic/flowRate/medium/fluctuation_off/1j"
alias="D2-1j_syn"
caseInfo[alias]['sourceDir']=base_1jN+"/"+"test_from_0"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-1j_{syn}"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-NN-1j_syn"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/T/BirdCarreau/synthetic/flowRate/medium/fluctuation_on/medium_cmptStream"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1j"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1j_{syn}"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-NN-1k_syn"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/testMesh/T/flux_medium/1k_4x4x4_BC_phasedOff"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1k"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1k_{syn}"
caseInfo[alias]['latestTime']="0.3"
makeDirectory(caseInfo[alias]['targetDir'])
alias="D2-NN-1k_syn_forcing"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/testMesh/T/flux_medium/1k_4x4x4_BC_phasedOn"#+dirName
caseInfo[alias]['targetDir']="/store/T_c/1k"+"/"+alias
caseInfo[alias]['name2plot']="D2-NN-1k_{syn,forcing}"
caseInfo[alias]['latestTime']="0.6"
makeDirectory(caseInfo[alias]['targetDir'])
alias="t_r-2a_1_gradP0p703125"
caseInfo[alias]['sourceDir']="newton:/store/lmfa/fct/hluo/occigen/caseByGeometry/pipes/shape_square/pw/2a_1/Newtonian/CASE_mapFields_From2b/gradP0_0p703125"#+dirName
caseInfo[alias]['targetDir']="/store/t_r/2a_1"+"/"+alias
caseInfo[alias]['name2plot']="2a\_1_{gradP0p703125}"
makeDirectory(caseInfo[alias]['targetDir'])
#for case in caseByAlias:
# print ""
# print "===================="
# print "running Job for case with alias : %s" % case
# stat, output = tryJob(caseInfo[case]['sourceDir'], caseInfo[case]['targetDir'])
#print "--------------------"
#print "print keys : ", caseInfo.keys()
#print "writing database to dataBase.mat"
#print "--------------------"
#io.savemat("dataBase",caseInfo)
import json
print "--------------------"
print "print keys : ", caseInfo.keys()
print "writing database to json"
print "--------------------"
json.dump(caseInfo, open("database.txt",'w'))
def read_database_and_rsync(database, case, dirName):
print ""
print "===================="
print "running Job for case with alias : %s" % case
print "sourceDir : " + database[case]['sourceDir']
stat, output = tryJob(database[case]['sourceDir']+'/'+dirName, database[case]['targetDir'])
def main():
import json
create_write_database_NoSync()
database=json.load(open("/home/hluo/work/git/python/python_rsync/database.txt"))
caseByAlias=[
"D1-1j_mapped", # test_from_0p45_of3
"D2-1j_mapped", # test_from_0p45_of3
"D3-1j_mapped", # test_from_0p45_of3
"D2-NN-1j_test_from0",
"D2-NN-1j_test_from0p3_forcingSinus_St3p2_A_eq_0p05",
"D2-NN-1k_syn",
"D2-NN-1k_syn_forcing",
]
for case in caseByAlias :
read_database_and_rsync(database, case, 'postProcessing')
read_database_and_rsync(database, case, '{'+database[case]['latestTime']+','+'constant,system}')
main()
| UTF-8 | Python | false | false | 8,706 | py | 161 | rsync.py | 134 | 0.644498 | 0.608316 | 0 | 223 | 38.040359 | 169 |
yuanying/remora | 13,297,218,769,012 | d947c3a096c2481b5d81d82c79617beabc2e56d3 | 393881678d95c52a54fdd0c06c32a56de0272cee | /remora/constants.py | f580f9de63879344d8b0be6f458c254068ae208c | [
"Apache-2.0"
] | permissive | https://github.com/yuanying/remora | a4211c8fa2fe6912bdb4408074a60cea73c70455 | b61cfc7c5035d8dc9a887bbdd9da333b05c2f6d3 | refs/heads/master | 2020-03-27T12:29:00.016270 | 2019-12-03T06:44:35 | 2019-12-03T06:44:35 | 82,024,013 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import os
import yaml
__remora_root_dir = os.path.abspath(os.path.dirname(__file__))
DEFAULT_CONFIG_FILE_PATH = os.path.join(__remora_root_dir, 'default.yaml')
DEFAULT_CONFIG = yaml.safe_load(
open(DEFAULT_CONFIG_FILE_PATH).read()
)
| UTF-8 | Python | false | false | 815 | py | 92 | constants.py | 78 | 0.719018 | 0.71411 | 0 | 23 | 34.434783 | 78 |
rbawden/nematus | 7,078,106,113,536 | 79394421161ca0681d023799ca1f67e552c73185 | 8d43e716cc9a7099baa2187d26a73c5feb94627f | /nematus/console.py | 305c4d4a5df57e04f5b37653c71ded74ce2a01d0 | [
"BSD-3-Clause"
] | permissive | https://github.com/rbawden/nematus | 222f75495da65992b032dffa1903e2b392016a83 | 6929149aa297625a92d52215bc0d6ed9bea48d50 | refs/heads/master | 2021-01-01T06:41:06.727912 | 2019-05-10T19:02:29 | 2019-05-10T19:02:29 | 97,483,098 | 2 | 2 | null | true | 2017-07-17T14:03:34 | 2017-07-17T14:03:34 | 2017-07-16T08:22:36 | 2017-07-13T09:01:33 | 1,461 | 0 | 0 | 0 | null | null | null | #!/usr/bin/env python
"""
Parses console arguments.
"""
import sys
import argparse
from abc import ABCMeta, abstractmethod
from settings import DecoderSettings, TranslationSettings, ServerSettings
class ConsoleInterface(object):
"""
All modes (abstract base class)
"""
__metaclass__ = ABCMeta
def __init__(self):
self._parser = argparse.ArgumentParser()
self._add_shared_arguments()
self._add_arguments()
def _add_shared_arguments(self):
"""
Console arguments used in all modes
"""
self._parser.add_argument('--models', '-m', type=str, nargs = '+', required=True, metavar="MODEL",
help="model to use. Provide multiple models (with same vocabulary) for ensemble decoding")
self._parser.add_argument('-p', type=int, default=1,
help="Number of processes (default: %(default)s))")
self._parser.add_argument('--device-list', '-dl', type=str, nargs='*', required=False, metavar="DEVICE",
help="User specified device list for multi-thread decoding (default: [])")
self._parser.add_argument('-v', action="store_true", help="verbose mode.")
@abstractmethod
def _add_arguments(self):
"""
Console arguments used in specific mode
"""
pass # to be implemented in subclass
def parse_args(self):
"""
Returns the parsed console arguments
"""
return self._parser.parse_args()
def get_decoder_settings(self):
"""
Returns a `DecoderSettings` object based on the parsed console
arguments.
"""
args = self.parse_args()
return DecoderSettings(args)
class ConsoleInterfaceDefault(ConsoleInterface):
"""
Console interface for default mode
"""
def _add_arguments(self):
self._parser.add_argument('-k', type=int, default=5,
help="Beam size (default: %(default)s))")
self._parser.add_argument('-n', type=float, default=0.0, nargs="?", const=1.0, metavar="ALPHA",
help="Normalize scores by sentence length (with argument, exponentiate lengths by ALPHA)")
self._parser.add_argument('-c', action="store_true", help="Character-level")
self._parser.add_argument('--input', '-i', type=argparse.FileType('r'),
default=sys.stdin, metavar='PATH',
help="Input file (default: standard input)")
self._parser.add_argument('--output', '-o', type=argparse.FileType('w'),
default=sys.stdout, metavar='PATH',
help="Output file (default: standard output)")
self._parser.add_argument('--output_alignment', '-a', type=argparse.FileType('w'),
default=None, metavar='PATH',
help="Output file for alignment weights (default: standard output)")
self._parser.add_argument('--json_alignment', action="store_true",
help="Output alignment in json format")
self._parser.add_argument('--n-best', action="store_true",
help="Write n-best list (of size k)")
self._parser.add_argument('--suppress-unk', action="store_true",
help="Suppress hypotheses containing UNK.")
self._parser.add_argument('--print-word-probabilities', '-wp',
action="store_true", help="Print probabilities of each word")
self._parser.add_argument('--search_graph', '-sg',
help="Output file for search graph rendered as PNG image")
# added multisource arguments
self._parser.add_argument('--aux_input', type=argparse.FileType('r'),
default=[], metavar='PATH', help="Auxiliary input file", nargs='+')
self._parser.add_argument('--predicted_trg', default=False, action='store_true',
help='Use previous predicted target translation as additional input instead of auxiliary'
'input provided. Overrides any additional input specified on command line.')
def get_translation_settings(self):
"""
Returns a `TranslationSettings` object based on the parsed console
arguments.
"""
args = self.parse_args()
return TranslationSettings(args)
class ConsoleInterfaceServer(ConsoleInterface):
"""
Console interface for server mode
Most parameters required in default mode are provided with each translation
request to the server (see `nematus/server/request.py`).
"""
def _add_arguments(self):
self._parser.add_argument('--style', default='Nematus',
help='API style; see `README.md` (default: Nematus)')
self._parser.add_argument('--host', default='localhost',
help='Host address (default: localhost)')
self._parser.add_argument('--port', type=int, default=8080,
help='Host port (default: 8080)')
def get_server_settings(self):
"""
Returns a `ServerSettings` object based on the parsed console
arguments.
"""
args = self.parse_args()
return ServerSettings(args)
| UTF-8 | Python | false | false | 5,537 | py | 20 | console.py | 17 | 0.568358 | 0.56583 | 0 | 125 | 43.296 | 124 |
patriciamv/eDO_datathon | 1,202,590,864,175 | 954c8d7f157a54b1f92d7697c0aae16dd6be16cd | 0bbf66caa8787c634678754f01175e0a120d8b53 | /code/03_train_keras_IMAGE.py | fa4423fe93505e815eed69abd5ce25ef2f8f4620 | [] | no_license | https://github.com/patriciamv/eDO_datathon | 5c1158f691c70b9336d5975aa32d7050d5f66159 | 5f0365234bed425848fe66ba7a4d7ef4e95fcd0a | refs/heads/master | 2020-04-01T14:56:34.003550 | 2018-11-09T16:30:57 | 2018-11-09T16:30:57 | 153,314,539 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
#one-hot encode target column
y_train_clusters = to_categorical(y_train_clusters)
#create model
model = Sequential()
#add model layers
model.add(Conv2D(64, kernel_size=3, activation="relu", input_shape=(768,1024,1)))
model.add(Conv2D(32, kernel_size=3, activation="relu"))
model.add(Flatten())
model.add(Dense(3, activation="softmax"))
#compile model using accuracy to measure model performance
model.compile(optimizer='adam', loss='categorical_crossentropy')
#train the model
model.fit(x_train_gray[:3], y_train_clusters[:3], validation_data=(x_train_gray[:3], y_train_clusters[:3]), epochs=3)
#predict first 3 images in the test set
model.predict(x_train_gray[:3])
y_train_clusters | UTF-8 | Python | false | false | 813 | py | 13 | 03_train_keras_IMAGE.py | 11 | 0.760148 | 0.729397 | 0 | 26 | 30.307692 | 117 |
feitianyiren/eums | 7,653,631,765,040 | c7fdb8486ff9ba23dba3d1a3f0007a095d498cd5 | e08e0878ee9d85c7515b9fca89dba5a8b9f7417b | /eums/api/distribution_plan/distribution_plan_endpoint.py | b170e5b4f24a8d01ce06a7a24c197884e784e6e7 | [
"MIT"
] | permissive | https://github.com/feitianyiren/eums | e61f0744e4c5e55e4cc98a273f7d8aa57bddb9e8 | 2b67cba8215d0fe67677d9177b252609ad74b0b4 | refs/heads/master | 2020-04-07T11:48:07.082880 | 2017-06-12T08:16:09 | 2017-06-12T08:16:09 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import logging
from django.db import transaction
from django.db.models import Q
from rest_framework import serializers
from rest_framework.decorators import detail_route
from rest_framework.permissions import DjangoModelPermissions
from rest_framework.response import Response
from rest_framework.routers import DefaultRouter
from rest_framework.viewsets import ModelViewSet
from eums.api.filter.filter_mixin import RequestFilterMixin
from eums.models import DistributionPlan, UserProfile, SystemSettings, ReleaseOrderItem, DistributionPlanNode, Runnable
from eums.permissions.distribution_plan_permissions import DistributionPlanPermissions
from eums.services.flow_scheduler import schedule_run_directly_for
logger = logging.getLogger(__name__)
class DistributionPlanSerializer(serializers.ModelSerializer):
distributionplannode_set = serializers.PrimaryKeyRelatedField(many=True, read_only=True)
class Meta:
model = DistributionPlan
fields = ('id', 'programme', 'distributionplannode_set', 'location', 'consignee', 'delivery_date',
'track', 'contact_person_id', 'remark', 'total_value', 'is_received', 'type', 'number',
'number_of_items', 'confirmed', 'shipment_received', 'is_retriggered',
'time_limitation_on_distribution', 'tracked_date', 'is_auto_track_confirmed')
class DistributionPlanViewSet(ModelViewSet, RequestFilterMixin):
permission_classes = (DjangoModelPermissions, DistributionPlanPermissions)
queryset = DistributionPlan.objects.all()
serializer_class = DistributionPlanSerializer
supported_filters = {
'programme': 'programme__name__icontains',
'from': 'delivery_date__gte',
'to': 'delivery_date__lte',
'consignee': 'consignee'
}
@transaction.atomic
def perform_update(self, serializer):
super(DistributionPlanViewSet, self).perform_update(serializer)
distribution_plan_node_for_ip_filter = {
'distribution_plan': serializer.data['id'],
'tree_position': Runnable.IMPLEMENTING_PARTNER,
'location__isnull': True
}
DistributionPlanNode.objects.filter(**distribution_plan_node_for_ip_filter).update(
location=serializer.data['location'], contact_person_id=serializer.data['contact_person_id'])
@detail_route(['GET', ])
def answers(self, request, *args, **kwargs):
delivery = DistributionPlan.objects.get(pk=(kwargs['pk']))
return Response(delivery.answers())
@detail_route(['GET', ])
def node_answers(self, request, *args, **kwargs):
delivery = DistributionPlan.objects.get(pk=(kwargs['pk']))
return Response(delivery.node_answers())
@detail_route(['PATCH', ])
def retrigger_delivery(self, request, *args, **kwargs):
delivery = DistributionPlan.objects.get(pk=(kwargs['pk']))
delivery.is_retriggered = True
delivery.save()
schedule_run_directly_for(delivery, 0)
return Response()
def list(self, request, *args, **kwargs):
logged_in_user = request.user
query = request.GET.get('query')
user_profile, consignee = self.get_user_profile(logged_in_user)
if user_profile and consignee:
filtered_deliveries = self._deliveries_for_ip(request, consignee, query)
return Response(self.get_serializer(filtered_deliveries, many=True).data)
admin_deliveries = self._deliveries_for_admin(request, query)
return Response(self.get_serializer(admin_deliveries, many=True).data)
@staticmethod
def get_user_profile(logged_in_user):
try:
user_profile = UserProfile.objects.get(user=logged_in_user)
consignee = user_profile.consignee
return user_profile, consignee
except:
return None, None
def _deliveries_for_admin(self, request, query):
return DistributionPlanViewSet.__filter_deliveries_by_query(query, DistributionPlan.objects.filter(
**self.build_filters(request.query_params)).distinct())
def _deliveries_for_ip(self, request, consignee, query):
filtered_distribution_plans = DistributionPlanViewSet.__filter_distribution_plans_depends_on_auto_track()
filters = self.build_filters(request.query_params, **{'consignee': consignee})
deliveries = DistributionPlanViewSet.__filter_deliveries_by_query(query, filtered_distribution_plans.filter(
**filters).distinct())
filtered_deliveries = filter(
lambda x: x.is_partially_received() is None or x.is_partially_received() or x.is_retriggered,
deliveries)
return filtered_deliveries
@staticmethod
def __filter_distribution_plans_depends_on_auto_track():
if SystemSettings.objects.first().auto_track:
return DistributionPlan.objects \
.filter(Q(distributionplannode__item__polymorphic_ctype=ReleaseOrderItem.TYPE_CODE) | Q(track=True)) \
.distinct()
return DistributionPlan.objects.filter(Q(track=True) | (Q(track=False) & Q(is_auto_track_confirmed=True)))
@staticmethod
def __filter_deliveries_by_query(query, deliveries):
return filter(lambda delivery: query in str(delivery.number()), deliveries) if query else deliveries
distributionPlanRouter = DefaultRouter()
distributionPlanRouter.register(r'distribution-plan', DistributionPlanViewSet)
| UTF-8 | Python | false | false | 5,483 | py | 689 | distribution_plan_endpoint.py | 585 | 0.693234 | 0.693051 | 0 | 124 | 43.217742 | 119 |
Parthi3610/Learning_with_python3 | 11,089,605,602,396 | 452eb8a16992e67c75a839c9c2551ac317891fc8 | aa39fedbaaad10e8ec69c54e9ebacac2a1473709 | /src/chapter12/range1.py | 2f3a2a5cacb73fae6c2a3d3608ef53880b8b5014 | [] | no_license | https://github.com/Parthi3610/Learning_with_python3 | 1cd32e0fe29d784992e760e3ba2046f771a3010e | 64fa9e7c519d4c164d65640bec7784e30bc7ff01 | refs/heads/master | 2022-12-27T17:13:18.284620 | 2020-10-13T03:12:19 | 2020-10-13T03:12:19 | 298,830,427 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import random
rng = random.Random()
dice_throw = rng.randrange(1,7)
print(dice_throw)
| UTF-8 | Python | false | false | 89 | py | 24 | range1.py | 24 | 0.719101 | 0.696629 | 0 | 7 | 11.714286 | 31 |
Salekya/pythonScripts | 12,910,671,692,549 | 780e434906965708410789ad8e247000a187a393 | fde2a16b27cc93464a28769a2a0047a1bc728d8f | /Multiples.py | dc504c7fde5b3aa8b8dc52d612e80a454676a25e | [] | no_license | https://github.com/Salekya/pythonScripts | 57d2868f914a17df42df3fd786a88cbf6673af61 | fc299db658b5773682cd0f3f07f422944f0533af | refs/heads/master | 2020-07-08T23:51:56.755945 | 2019-08-22T14:42:27 | 2019-08-22T14:42:27 | 203,815,058 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #s=("enter the numbers")
def multiple(var):
#var=range(1,101)
ans = []
for j in range(1, var):
tmp = ""
if j%3==0:
tmp = tmp + 'Fizz'
if j%5==0:
tmp += "Buzz"
ans.append(tmp or j)
return ans
ans = multiple(50)
print(ans)
| UTF-8 | Python | false | false | 305 | py | 15 | Multiples.py | 15 | 0.442623 | 0.406557 | 0 | 20 | 13.95 | 30 |
Ascend/ModelZoo-PyTorch | 3,985,729,689,533 | f24b2658c830a1a4e766b940951ee4762ecbc938 | 2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02 | /PyTorch/dev/cv/multimodality/st-gcn_ID2967_for_PyTorch/feeder/tools.py | 69214786e59feaa6134c3e8a9f146a7b7e68b22b | [
"BSD-2-Clause",
"Apache-2.0",
"MIT",
"BSD-3-Clause",
"LicenseRef-scancode-generic-cla",
"LicenseRef-scancode-unknown-license-reference",
"GPL-1.0-or-later"
] | permissive | https://github.com/Ascend/ModelZoo-PyTorch | 4c89414b9e2582cef9926d4670108a090c839d2d | 92acc188d3a0f634de58463b6676e70df83ef808 | refs/heads/master | 2023-07-19T12:40:00.512853 | 2023-07-17T02:48:18 | 2023-07-17T02:48:18 | 483,502,469 | 23 | 6 | Apache-2.0 | false | 2022-10-15T09:29:12 | 2022-04-20T04:11:18 | 2022-10-10T08:03:54 | 2022-10-15T04:01:18 | 53,470 | 7 | 5 | 2 | Python | false | false | #
# BSD 3-Clause License
#
# Copyright (c) 2017 xxxx
# All rights reserved.
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# ============================================================================
#
import numpy as np
import random
import os
NPU_CALCULATE_DEVICE = 0
if os.getenv('NPU_CALCULATE_DEVICE') and str.isdigit(os.getenv('NPU_CALCULATE_DEVICE')):
NPU_CALCULATE_DEVICE = int(os.getenv('NPU_CALCULATE_DEVICE'))
def downsample(data_numpy, step, random_sample=True):
# input: C,T,V,M
begin = np.random.randint(step) if random_sample else 0
return data_numpy[:, begin::step, :, :]
def temporal_slice(data_numpy, step):
# input: C,T,V,M
C, T, V, M = data_numpy.shape
return data_numpy.reshape(C, T / step, step, V, M).transpose(
(0, 1, 3, 2, 4)).reshape(C, T / step, V, step * M)
def mean_subtractor(data_numpy, mean):
# input: C,T,V,M
# naive version
if mean == 0:
return
C, T, V, M = data_numpy.shape
valid_frame = (data_numpy != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0
begin = valid_frame.argmax()
end = len(valid_frame) - valid_frame[::-1].argmax()
data_numpy[:, :end, :, :] = data_numpy[:, :end, :, :] - mean
return data_numpy
def auto_pading(data_numpy, size, random_pad=False):
C, T, V, M = data_numpy.shape
if T < size:
begin = random.randint(0, size - T) if random_pad else 0
data_numpy_paded = np.zeros((C, size, V, M))
data_numpy_paded[:, begin:begin + T, :, :] = data_numpy
return data_numpy_paded
else:
return data_numpy
def random_choose(data_numpy, size, auto_pad=True):
# input: C,T,V,M
C, T, V, M = data_numpy.shape
if T == size:
return data_numpy
elif T < size:
if auto_pad:
return auto_pading(data_numpy, size, random_pad=True)
else:
return data_numpy
else:
begin = random.randint(0, T - size)
return data_numpy[:, begin:begin + size, :, :]
def random_move(data_numpy,
angle_candidate=[-10., -5., 0., 5., 10.],
scale_candidate=[0.9, 1.0, 1.1],
transform_candidate=[-0.2, -0.1, 0.0, 0.1, 0.2],
move_time_candidate=[1]):
# input: C,T,V,M
C, T, V, M = data_numpy.shape
move_time = random.choice(move_time_candidate)
node = np.arange(0, T, T * 1.0 / move_time).round().astype(int)
node = np.append(node, T)
num_node = len(node)
A = np.random.choice(angle_candidate, num_node)
S = np.random.choice(scale_candidate, num_node)
T_x = np.random.choice(transform_candidate, num_node)
T_y = np.random.choice(transform_candidate, num_node)
a = np.zeros(T)
s = np.zeros(T)
t_x = np.zeros(T)
t_y = np.zeros(T)
# linspace
for i in range(num_node - 1):
a[node[i]:node[i + 1]] = np.linspace(
A[i], A[i + 1], node[i + 1] - node[i]) * np.pi / 180
s[node[i]:node[i + 1]] = np.linspace(S[i], S[i + 1],
node[i + 1] - node[i])
t_x[node[i]:node[i + 1]] = np.linspace(T_x[i], T_x[i + 1],
node[i + 1] - node[i])
t_y[node[i]:node[i + 1]] = np.linspace(T_y[i], T_y[i + 1],
node[i + 1] - node[i])
theta = np.array([[np.cos(a) * s, -np.sin(a) * s],
[np.sin(a) * s, np.cos(a) * s]])
# perform transformation
for i_frame in range(T):
xy = data_numpy[0:2, i_frame, :, :]
new_xy = np.dot(theta[:, :, i_frame], xy.reshape(2, -1))
new_xy[0] += t_x[i_frame]
new_xy[1] += t_y[i_frame]
data_numpy[0:2, i_frame, :, :] = new_xy.reshape(2, V, M)
return data_numpy
def random_shift(data_numpy):
# input: C,T,V,M
C, T, V, M = data_numpy.shape
data_shift = np.zeros(data_numpy.shape)
valid_frame = (data_numpy != 0).sum(axis=3).sum(axis=2).sum(axis=0) > 0
begin = valid_frame.argmax()
end = len(valid_frame) - valid_frame[::-1].argmax()
size = end - begin
bias = random.randint(0, T - size)
data_shift[:, bias:bias + size, :, :] = data_numpy[:, begin:end, :, :]
return data_shift
def openpose_match(data_numpy):
C, T, V, M = data_numpy.shape
assert (C == 3)
score = data_numpy[2, :, :, :].sum(axis=1)
# the rank of body confidence in each frame (shape: T-1, M)
rank = (-score[0:T - 1]).argsort(axis=1).reshape(T - 1, M)
# data of frame 1
xy1 = data_numpy[0:2, 0:T - 1, :, :].reshape(2, T - 1, V, M, 1)
# data of frame 2
xy2 = data_numpy[0:2, 1:T, :, :].reshape(2, T - 1, V, 1, M)
# square of distance between frame 1&2 (shape: T-1, M, M)
distance = ((xy2 - xy1)**2).sum(axis=2).sum(axis=0)
# match pose
forward_map = np.zeros((T, M), dtype=int) - 1
forward_map[0] = range(M)
for m in range(M):
choose = (rank == m)
forward = distance[choose].argmin(axis=1)
for t in range(T - 1):
distance[t, :, forward[t]] = np.inf
forward_map[1:][choose] = forward
assert (np.all(forward_map >= 0))
# string data
for t in range(T - 1):
forward_map[t + 1] = forward_map[t + 1][forward_map[t]]
# generate data
new_data_numpy = np.zeros(data_numpy.shape)
for t in range(T):
new_data_numpy[:, t, :, :] = data_numpy[:, t, :, forward_map[
t]].transpose(1, 2, 0)
data_numpy = new_data_numpy
# score sort
trace_score = data_numpy[2, :, :, :].sum(axis=1).sum(axis=0)
rank = (-trace_score).argsort()
data_numpy = data_numpy[:, :, :, rank]
return data_numpy
def top_k_by_category(label, score, top_k):
instance_num, class_num = score.shape
rank = score.argsort()
hit_top_k = [[] for i in range(class_num)]
for i in range(instance_num):
l = label[i]
hit_top_k[l].append(l in rank[i, -top_k:])
accuracy_list = []
for hit_per_category in hit_top_k:
if hit_per_category:
accuracy_list.append(sum(hit_per_category) * 1.0 / len(hit_per_category))
else:
accuracy_list.append(0.0)
return accuracy_list
def calculate_recall_precision(label, score):
instance_num, class_num = score.shape
rank = score.argsort()
confusion_matrix = np.zeros([class_num, class_num])
for i in range(instance_num):
true_l = label[i]
pred_l = rank[i, -1]
confusion_matrix[true_l][pred_l] += 1
precision = []
recall = []
for i in range(class_num):
true_p = confusion_matrix[i][i]
false_n = sum(confusion_matrix[i, :]) - true_p
false_p = sum(confusion_matrix[:, i]) - true_p
precision.append(true_p * 1.0 / (true_p + false_p))
recall.append(true_p * 1.0 / (true_p + false_n))
return precision, recall | UTF-8 | Python | false | false | 8,348 | py | 11,303 | tools.py | 8,028 | 0.585889 | 0.568759 | 0 | 237 | 34.227848 | 88 |
webclinic017/new_ant | 4,398,046,517,376 | b178edaee8197953fd42bd12dc415e7641fa9ce1 | fe3de107d45887065fecddd2d7a2a55c603e888f | /ant/ergate/migrations/0004_simulation_count.py | 0247a26bf09370560a89ad067569aef0b4263e47 | [] | no_license | https://github.com/webclinic017/new_ant | 9e3fe17d32b078d2fad99c1d07266dd057658019 | 11e7f180541367ea475c75f83239f0946b021765 | refs/heads/master | 2023-01-19T04:22:34.541074 | 2020-11-26T04:03:05 | 2020-11-26T04:03:05 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.1.2 on 2020-11-13 07:49
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('ergate', '0003_auto_20201113_1546'),
]
operations = [
migrations.AddField(
model_name='simulation',
name='count',
field=models.IntegerField(blank=True, null=True),
),
]
| UTF-8 | Python | false | false | 415 | py | 53 | 0004_simulation_count.py | 25 | 0.566265 | 0.491566 | 0 | 18 | 21.055556 | 61 |
dahalbhawan/matific | 19,542,101,200,493 | de61c51943a6bbeb9879d8b64a4b08f642766112 | 8321fb5370726c144615cb94e6b2a322096c5ee6 | /basketball/base/signals.py | 3588d9d2f735894d649f8e9a82ae97cc78e6d16c | [] | no_license | https://github.com/dahalbhawan/matific | da1306f9eac7f34b98b43c6b9d191f9b4ce5d0e9 | 1ec15eccb1b7b9a9fa0a82e20b98f51210ed22a9 | refs/heads/master | 2023-07-03T06:49:53.544253 | 2021-07-28T05:46:31 | 2021-07-28T05:46:31 | 389,497,291 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.utils import timezone
from django.db.models.signals import post_save
from django.contrib.auth.signals import user_logged_in, user_logged_out
from django.conf.global_settings import TIME_ZONE
from django.contrib.auth import get_user_model
from .models import Player, Coach, LeagueAdmin, Usage
from rest_framework.authtoken.models import Token
User = get_user_model()
# Signal receiver to create Player, Coach or LeagueAdmin instance, whichever appropriate, as User instance is created is created
def role_created(sender, instance, **kwargs):
if instance.role == 1:
Player.objects.get_or_create(user=instance)
elif instance.role == 2:
Coach.objects.get_or_create(user=instance)
elif instance.role == 3:
LeagueAdmin.objects.get_or_create(user=instance)
else:
pass
post_save.connect(receiver=role_created, sender=User)
# Signal to automatically trigger Token creation when User instance is created
def create_auth_token(sender, instance, **kwargs):
Token.objects.get_or_create(user=instance)
post_save.connect(receiver=create_auth_token, sender=User)
# Signal to update usage statistics (login_times) upon user login
def update_login_times(sender, user, **kwargs):
try:
usage, created = Usage.objects.get_or_create(user=user)
usage.login_times += 1
usage.save()
except Usage.DoesNotExist:
pass
user_logged_in.connect(receiver=update_login_times)
# Signal to update usage statictics (usage_time) upon user logout
def update_usage_time(sender, user, **kwargs):
try:
usage, created = Usage.objects.get_or_create(user=user)
user.last_logout = timezone.now()
user.save()
recent_usage = -(user.last_login - user.last_logout).total_seconds()/3600 #recent usage duration in hours
print(user.last_logout)
usage.usage_time += recent_usage
usage.save()
except Usage.DoesNotExist:
pass
user_logged_out.connect(receiver=update_usage_time) | UTF-8 | Python | false | false | 2,010 | py | 34 | signals.py | 21 | 0.719403 | 0.715423 | 0 | 56 | 34.910714 | 128 |
steadydoer/problem-solving | 19,353,122,641,349 | c93747ab7e08cf3f98657ab2d79fa73a65618de9 | 3488b7c4ed26ccb0c650711574e8308bc9eacf2e | /programmers/level3/12946/solution.py | 9d519a1dd0d807b6e96211281216c5b144756e0d | [] | no_license | https://github.com/steadydoer/problem-solving | 0d50109d990e82d5204f90e77e34d346cfd69926 | e9f52acad5473afdab4990cb99cceeec3df91b08 | refs/heads/master | 2021-07-16T05:10:52.416451 | 2020-06-10T05:46:54 | 2020-06-10T05:46:54 | 174,530,297 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Programmers Coding Test Practice
# Level 3
#
# https://programmers.co.kr/learn/courses/30/lessons/12946
#
# ==============================================================================
def hanoi(start, layover, end, n, answer):
if n == 1:
answer.append([start, end])
return
else:
hanoi(start, end, layover, n-1, answer)
answer.append([start, end])
hanoi(layover, start, end, n-1, answer)
return
def solution(n):
answer = []
hanoi(1, 2, 3, n, answer)
return answer
if __name__ == "__main__":
assert solution(2) == [[1, 2], [1, 3], [2, 3]]
| UTF-8 | Python | false | false | 624 | py | 70 | solution.py | 62 | 0.485577 | 0.451923 | 0 | 27 | 22.111111 | 80 |
SySS-Research/Seth | 2,954,937,542,390 | ae60f27d36b7c8d46b9ae5bf587ffd57eb1c1efe | 9c2fef12f06d7627ed264c97d23d971d8b14d4e6 | /seth/consts.py | e3fe5e0abeb4cca8a716e1ff8a5e87d5dd7c4279 | [
"MIT",
"LicenseRef-scancode-warranty-disclaimer"
] | permissive | https://github.com/SySS-Research/Seth | 96f2f52a7d6849a0616695c218580b72f0a564b2 | 8b6e36c8437db0a2e1300e2077d7ead41dcf8f9b | refs/heads/master | 2023-02-21T01:06:52.562947 | 2023-02-09T14:27:53 | 2023-02-09T14:27:53 | 84,575,372 | 1,331 | 369 | MIT | false | 2022-11-11T12:24:17 | 2017-03-10T15:46:38 | 2022-11-11T05:29:33 | 2022-11-11T12:24:16 | 2,015 | 1,235 | 335 | 13 | Python | false | false | from binascii import hexlify, unhexlify
TERM_PRIV_KEY = { # little endian, from [MS-RDPBCGR].pdf
"n": [ 0x3d, 0x3a, 0x5e, 0xbd, 0x72, 0x43, 0x3e, 0xc9, 0x4d, 0xbb, 0xc1,
0x1e, 0x4a, 0xba, 0x5f, 0xcb, 0x3e, 0x88, 0x20, 0x87, 0xef, 0xf5,
0xc1, 0xe2, 0xd7, 0xb7, 0x6b, 0x9a, 0xf2, 0x52, 0x45, 0x95, 0xce,
0x63, 0x65, 0x6b, 0x58, 0x3a, 0xfe, 0xef, 0x7c, 0xe7, 0xbf, 0xfe,
0x3d, 0xf6, 0x5c, 0x7d, 0x6c, 0x5e, 0x06, 0x09, 0x1a, 0xf5, 0x61,
0xbb, 0x20, 0x93, 0x09, 0x5f, 0x05, 0x6d, 0xea, 0x87 ],
# modulus
"d": [ 0x87, 0xa7, 0x19, 0x32, 0xda, 0x11, 0x87, 0x55, 0x58, 0x00, 0x16,
0x16, 0x25, 0x65, 0x68, 0xf8, 0x24, 0x3e, 0xe6, 0xfa, 0xe9, 0x67,
0x49, 0x94, 0xcf, 0x92, 0xcc, 0x33, 0x99, 0xe8, 0x08, 0x60, 0x17,
0x9a, 0x12, 0x9f, 0x24, 0xdd, 0xb1, 0x24, 0x99, 0xc7, 0x3a, 0xb8,
0x0a, 0x7b, 0x0d, 0xdd, 0x35, 0x07, 0x79, 0x17, 0x0b, 0x51, 0x9b,
0xb3, 0xc7, 0x10, 0x01, 0x13, 0xe7, 0x3f, 0xf3, 0x5f ],
# private exponent
"e": [ 0x5b, 0x7b, 0x88, 0xc0 ] # public exponent
}
# http://www.millisecond.com/support/docs/v5/html/language/scancodes.htm
SCANCODE = {
0: None,
1: "ESC", 2: "1", 3: "2", 4: "3", 5: "4", 6: "5", 7: "6", 8: "7", 9:
"8", 10: "9", 11: "0", 12: "-", 13: "=", 14: "Backspace", 15: "Tab", 16: "Q",
17: "W", 18: "E", 19: "R", 20: "T", 21: "Y", 22: "U", 23: "I", 24: "O",
25: "P", 26: "[", 27: "]", 28: "Enter", 29: "CTRL", 30: "A", 31: "S",
32: "D", 33: "F", 34: "G", 35: "H", 36: "J", 37: "K", 38: "L", 39: ";",
40: "'", 41: "`", 42: "LShift", 43: "\\", 44: "Z", 45: "X", 46: "C", 47:
"V", 48: "B", 49: "N", 50: "M", 51: ",", 52: ".", 53: "/", 54: "RShift",
55: "PrtSc", 56: "Alt", 57: "Space", 58: "Caps", 59: "F1", 60: "F2", 61:
"F3", 62: "F4", 63: "F5", 64: "F6", 65: "F7", 66: "F8", 67: "F9", 68:
"F10", 69: "Num", 70: "Scroll", 71: "Home (7)", 72: "Up (8)", 73:
"PgUp (9)", 74: "-", 75: "Left (4)", 76: "Center (5)", 77: "Right (6)",
78: "+", 79: "End (1)", 80: "Down (2)", 81: "PgDn (3)", 82: "Ins", 83:
"Del", #91: "LMeta", 92: "RMeta",
}
REV_SCANCODE = dict([(v, k) for k, v in SCANCODE.items()])
REV_SCANCODE[" "] = REV_SCANCODE["Space"]
REV_SCANCODE["LMeta"] = 91
# https://support.microsoft.com/de-de/help/324097/list-of-language-packs-and-their-codes-for-windows-2000-domain-control
KBD_LAYOUT_CNTRY = {
0x436: b"Afrikaans",
0x041c: b"Albanian",
0x401: b"Arabic_Saudi_Arabia",
0x801: b"Arabic_Iraq",
0x0c01: b"Arabic_Egypt",
0x1001: b"Arabic_Libya",
0x1401: b"Arabic_Algeria",
0x1801: b"Arabic_Morocco",
0x1c01: b"Arabic_Tunisia",
0x2001: b"Arabic_Oman",
0x2401: b"Arabic_Yemen",
0x2801: b"Arabic_Syria",
0x2c01: b"Arabic_Jordan",
0x3001: b"Arabic_Lebanon",
0x3401: b"Arabic_Kuwait",
0x3801: b"Arabic_UAE",
0x3c01: b"Arabic_Bahrain",
0x4001: b"Arabic_Qatar",
0x042b: b"Armenian",
0x042c: b"Azeri_Latin",
0x082c: b"Azeri_Cyrillic",
0x042d: b"Basque",
0x423: b"Belarusian",
0x402: b"Bulgarian",
0x403: b"Catalan",
0x404: b"Chinese_Taiwan",
0x804: b"Chinese_PRC",
0x0c04: b"Chinese_Hong_Kong",
0x1004: b"Chinese_Singapore",
0x1404: b"Chinese_Macau",
0x041a: b"Croatian",
0x405: b"Czech",
0x406: b"Danish",
0x413: b"Dutch_Standard",
0x813: b"Dutch_Belgian",
0x409: b"English_United_States",
0x809: b"English_United_Kingdom",
0x0c09: b"English_Australian",
0x1009: b"English_Canadian",
0x1409: b"English_New_Zealand",
0x1809: b"English_Irish",
0x1c09: b"English_South_Africa",
0x2009: b"English_Jamaica",
0x2409: b"English_Caribbean",
0x2809: b"English_Belize",
0x2c09: b"English_Trinidad",
0x3009: b"English_Zimbabwe",
0x3409: b"English_Philippines",
0x425: b"Estonian",
0x438: b"Faeroese",
0x429: b"Farsi",
0x040b: b"Finnish",
0x040c: b"French_Standard",
0x080c: b"French_Belgian",
0x0c0c: b"French_Canadian",
0x100c: b"French_Swiss",
0x140c: b"French_Luxembourg",
0x180c: b"French_Monaco",
0x437: b"Georgian",
0x407: b"German_Standard",
0x807: b"German_Swiss",
0x0c07: b"German_Austrian",
0x1007: b"German_Luxembourg",
0x1407: b"German_Liechtenstein",
0x408: b"Greek",
0x040d: b"Hebrew",
0x439: b"Hindi",
0x040e: b"Hungarian",
0x040f: b"Icelandic",
0x421: b"Indonesian",
0x410: b"Italian_Standard",
0x810: b"Italian_Swiss",
0x411: b"Japanese",
0x043f: b"Kazakh",
0x457: b"Konkani",
0x412: b"Korean",
0x426: b"Latvian",
0x427: b"Lithuanian",
0x042f: b"FYRO Macedonian",
0x043e: b"Malay_Malaysia",
0x083e: b"Malay_Brunei_Darussalam",
0x044e: b"Marathi",
0x414: b"Norwegian_Bokmal",
0x814: b"Norwegian_Nynorsk",
0x415: b"Polish",
0x416: b"Portuguese_Brazilian",
0x816: b"Portuguese_Standard",
0x418: b"Romanian",
0x419: b"Russian",
0x044f: b"Sanskrit",
0x081a: b"Serbian_Latin",
0x0c1a: b"Serbian_Cyrillic",
0x041b: b"Slovak",
0x424: b"Slovenian",
0x040a: b"Spanish_Traditional_Sort",
0x080a: b"Spanish_Mexican",
0x0c0a: b"Spanish_Modern_Sort",
0x100a: b"Spanish_Guatemala",
0x140a: b"Spanish_Costa_Rica",
0x180a: b"Spanish_Panama",
0x1c0a: b"Spanish_Dominican_Republic",
0x200a: b"Spanish_Venezuela",
0x240a: b"Spanish_Colombia",
0x280a: b"Spanish_Peru",
0x2c0a: b"Spanish_Argentina",
0x300a: b"Spanish_Ecuador",
0x340a: b"Spanish_Chile",
0x380a: b"Spanish_Uruguay",
0x3c0a: b"Spanish_Paraguay",
0x400a: b"Spanish_Bolivia",
0x440a: b"Spanish_El_Salvador",
0x480a: b"Spanish_Honduras",
0x4c0a: b"Spanish_Nicaragua",
0x500a: b"Spanish_Puerto_Rico",
0x441: b"Swahili",
0x041d: b"Swedish",
0x081d: b"Swedish_Finland",
0x449: b"Tamil",
0x444: b"Tatar",
0x041e: b"Thai",
0x041f: b"Turkish",
0x422: b"Ukrainian",
0x420: b"Urdu",
0x443: b"Uzbek_Latin",
0x843: b"Uzbek_Cyrillic",
0x042a: b"Vietnamese",
}
RELAY_PORT=13389
SERVER_RESPONSES = [
"030000130ed00000123400020f080001000000",
"0300007e02f0807f66740a0100020100301a020122020103020100020101020100020101020300fff80201020450000500147c00012a14760a01010001c0004d63446e3a010c1000040008000100000003000000030c1000eb030400ec03ed03ee03ef03020c0c000000000000000000040c0600f003080c080005030000",
"0300000b02f0802e000008",
"300da003020104a4060204c000005e",
]
SERVER_RESPONSES = [unhexlify(x.encode()) for x in SERVER_RESPONSES]
| UTF-8 | Python | false | false | 6,621 | py | 10 | consts.py | 8 | 0.60444 | 0.403715 | 0 | 183 | 35.180328 | 259 |
rikkouri/project-a | 9,036,611,195,462 | bfe85d95a4b83e3371eed8fe69536433e05c68ca | 73c5b421321354bab94d2950220c66269bbbf14c | /Exercises/Arithmetic Operators Solution.py | 2952db577926ff64d121fc8cf88b2614e922072d | [] | no_license | https://github.com/rikkouri/project-a | 38554f50992da356c40021ba3f044661afca3505 | 95fe44a8c607ca3716997421645fe605d452ab5a | refs/heads/master | 2021-01-10T05:10:51.374379 | 2016-03-07T11:44:07 | 2016-03-07T11:44:07 | 49,488,889 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #Prompt the user to input two values
operandOne = raw_input('Enter a value: ')
operandTwo = raw_input('Enter another value: ')
#Now perform the sums and output the result
print( operandOne + ' + ' + operandTwo + ' = ' + str( int(operandOne) + int(operandTwo) ) )
print( operandOne + ' - ' + operandTwo + ' = ' + str( int(operandOne) - int(operandTwo) ) )
print( operandOne + ' * ' + operandTwo + ' = ' + str( int(operandOne) * int(operandTwo) ) )
print( operandOne + ' / ' + operandTwo + ' = ' + str( int(int(operandOne) / int(operandTwo)) ) )
print( operandOne + ' % ' + operandTwo + ' = ' + str( int(operandOne) % int(operandTwo) ) )
print( operandOne + ' ** ' + operandTwo + ' = ' + str( int(operandOne) ** int(operandTwo) ) )
| UTF-8 | Python | false | false | 732 | py | 46 | Arithmetic Operators Solution.py | 29 | 0.621585 | 0.621585 | 0 | 11 | 65.454545 | 96 |
dwillis/nicar2019-scraping | 15,659,450,768,360 | e4286ae601dc5b4d69351f8da1d8b59213ca79f1 | cb9841a060c8f487a76c0ec950d9c76fdcee6291 | /scraping_site/form_with_post_request.py | b5f74f73e4a10a9f99f91af6e01661ad87075c57 | [] | no_license | https://github.com/dwillis/nicar2019-scraping | 4c00f17a9fcbb5747e392378de2ff89702294f26 | 0ee91d0f39bda2e979edb07949e4739d3a9f6a78 | refs/heads/master | 2023-03-26T09:37:15.264478 | 2021-03-20T13:47:24 | 2021-03-20T13:47:24 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from flask import Blueprint, render_template, request
from .data_api import get_race_results, get_years_offices
bp = Blueprint('form_with_post_request', __name__)
@bp.route('/5', methods=['GET', 'POST'])
def form_with_post_request():
year = request.values.get('year')
office = request.values.get('office')
if year is not None and office is not None:
results = get_race_results(year, office)
return render_template(
'simple-table-multistep.html',
results=results,
path=request.path
)
years, offices = get_years_offices(year=year)
return render_template(
'results-form-multistep.html',
year=year,
years=years,
offices=offices,
)
| UTF-8 | Python | false | false | 751 | py | 44 | form_with_post_request.py | 25 | 0.624501 | 0.623169 | 0 | 29 | 24.896552 | 57 |
nikblack3/Machine-Learning | 3,556,232,944,720 | 0274f9cb593143f8727877c6d8220d9b0aa78a50 | 0a63fb23f46f6d452514f6962b41bcbbca7172f7 | /A1/Soln/faces.py | 7d8a561d4be7fd6851d068eab32a9ee4b8073d86 | [] | no_license | https://github.com/nikblack3/Machine-Learning | d145be0a94315db5dbce9faa95b947310e432a8f | 039771df03db0a022d649ce2da54ded50e443356 | refs/heads/master | 2020-03-16T15:04:48.367525 | 2018-03-30T21:56:49 | 2018-03-30T21:56:49 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from util import *
import get_data
from pylab import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import random
import time
from scipy.misc import *
import matplotlib.image as mpimg
import os
from scipy.ndimage import filters
import urllib
import itertools
# ----------- HELPER FUNCTIONS -----------
def process_image(im):
"""
Process the given image and output the data
Args:
im (str): path to the image
Returns:
the processed data
"""
data = imread("./cropped/" + im) / 225.
data = reshape(data, 1024)
data = np.insert(data, 0, 1)
return data
# noinspection PyTypeChecker
def predict(im, theta):
"""
Predicts the image using trained theta.
Args:
im (str): the image file name
theta (vector[float]): trained theta
Returns:
prediction based on the trained theta
"""
data = process_image(im)
prediction = np.dot(theta.T, data)
return prediction
# ----------- Answers -----------
# Part 1
# See faces.pdf
# Part 2
def divide_sets(actor, training_size = 0, path = "./cropped"):
"""
Given the downloaded data set and a selected actor, return three randomized list
of training set, validation set and test set.
Args:
actor (str): The selected actor
training_size (int): The size of the training set. return the full training
set if set to 0
path (str): The path to the cropped files
Returns:
([training set], [validation set], [test set])
where |training set| >= 70
|validation set| == 10
|test set| == 10
"""
if actor not in actor_count.keys():
print "Error: actor [{1}] is not included in the data set".format(actor)
raise ValueError("Actor not in the data set")
if actor_count[actor] < 90:
print "Warning: actor [{0}] only has [{1}] of images, which does not have " \
"enough photos to satisfy the training " \
"requirement".format(actor, actor_count[actor])
all_actor_image = [image for image in os.listdir(path) if actor in image]
np.random.shuffle(all_actor_image)
test_set = all_actor_image[0: 10]
validation_set = all_actor_image[10:20]
training_set = all_actor_image[20:]
if training_size != 0:
training_set = training_set[:min([training_size, len(training_set)])]
return training_set, validation_set, test_set
# Part 3
# noinspection PyTypeChecker
def classify(actor1 = "baldwin", actor2 = "carell", training_size = 0,
validate = True, test = True):
"""
Train a linear classifier on actors 1 and 2
Args:
actor1 (str): name of the first actor. We label actor1 as 1
actor2 (str): name of the second actor. We label actor2 as 0
training_size (int): number of elements in the training set. train the full
set if size given is 0.
validate (bool): indicate if the function call validates the validation set
test (bool): indicate if the function call tests on the test set
Returns:
The trained theta vector
"""
if actor1 not in actor_names or actor2 not in actor_names:
print "Error: actor(s) given is not in the data set"
raise ValueError
# divide all sets
actor1_training_set, actor1_validation_set, \
actor1_test_set = divide_sets(actor1, training_size)
actor2_training_set, actor2_validation_set, \
actor2_test_set = divide_sets(actor2, training_size)
training_set = actor1_training_set + actor2_training_set
validation_set = actor1_validation_set + actor2_validation_set
test_set = actor1_test_set + actor2_test_set
print "\n----------- Training on {} data: -----------".format(len(training_set))
# initialize input, output and theta to zeros
# Note: we are removing the bias term by adding a dummy term in x: x_0
# x: N * D matrix
# y: N * 1 vector
# theta: D * 1 vector
x = np.zeros((len(training_set), 1025))
y = np.zeros((len(training_set), 1))
theta = np.zeros((1025, 1))
# fill the data with given data set
i = 0
for image in actor1_training_set:
data = process_image(image)
x[i] = data
y[i] = 1
i += 1
for image in actor2_training_set:
data = process_image(image)
x[i] = data
y[i] = 0
i += 1
# use gradient descent to train theta
if training_size >= 20:
theta = grad_descent(loss, dlossdx, x, y, theta, 0.005)
else:
theta = grad_descent(loss, dlossdx, x, y, theta, 0.001)
# validate on validation set
if validate is True:
print "----------- Validating -----------"
total = len(validation_set)
correct_count = 0
for im in validation_set:
prediction = predict(im, theta)
if im in actor1_validation_set and norm(prediction) > 0.5:
correct_count += 1
elif im in actor2_validation_set and norm(prediction) <= 0.5:
correct_count += 1
print "Result on [Validation Set]: {} / {}\n".format(correct_count, total)
if test is True:
# test on test set
print "----------- Testing -----------"
total = len(test_set)
correct_count = 0
for im in test_set:
prediction = predict(im, theta)
if im in actor1_validation_set and norm(prediction) > 0.5:
correct_count += 1
elif im in actor2_validation_set and norm(prediction) <= 0.5:
correct_count += 1
print "Result on [Test Set]: {} / {}".format(correct_count, total)
return theta
# Part 4
# TODO: save RGB image
# a)
def plot_theta(actor1 = "baldwin", actor2 = "carell", compare_size = 2):
"""
compare the thetas of different number of training sets
Args:
actor1 (str): the first actor's name
actor2 (str): the second actor's name
compare_size (int): the comparing training set's size. train full set if 0.
Returns:
"""
full_theta = classify(actor1, actor2, validate = False, test = False)
# Note: theta contains a bias term as the first element so drop it
full_theta = np.delete(full_theta, 0)
full_theta = np.reshape(full_theta, (32, 32))
# ret = np.empty((full_theta.shape[0], full_theta.shape[1], 3), dtype=np.uint8)
# ret[:, :, 0] = full_theta
# ret[:, :, 1] = full_theta
# ret[:, :, 2] = full_theta
imsave("./Report/images/4/a_full_theta.jpg", full_theta)
# plt.imsave("./Report/images/4/a_full_theta.jpg", ret, cmap = "RdBu")
# toimage(full_theta).save("./Report/images/4/a_full_theta.jpg")
two_theta = classify(actor1, actor2, compare_size, validate = False,
test = False)
# print two_theta.shape
two_theta = np.delete(two_theta, 0)
two_theta = np.resize(two_theta, (32, 32))
# ret = np.empty((two_theta.shape[0], two_theta.shape[1], 3), dtype=np.uint8)
# ret[:, :, 0] = two_theta
# ret[:, :, 1] = two_theta
# ret[:, :, 2] = two_theta
imsave("./Report/images/4/a_two_theta.jpg", two_theta)
# plt.imsave("./Report/images/4/a_two_theta.jpg", ret, cmap = "RdBu")
# toimage(two_theta).save("./Report/images/4/a_two_theta.jpg")
# b)
def visualize_gradient():
pass
# Part 5
act = ['Lorraine Bracco', 'Peri Gilpin', 'Angie Harmon', 'Alec Baldwin',
'Bill Hader', 'Steve Carell']
def overfitting():
"""
Overfit the data
We denote male as 1 and female as 0
Returns:
"""
training_sizes = [5, 10, 20, 50, 100, 150]
thetas = [np.zeros((1025, 1)) for i in range(6)]
training_actor_names = [a.split()[1].lower() for a in act]
actor_genders = {'bracco': 0,
'chenoweth': 0,
'drescher': 0,
'ferrera': 0,
'gilpin': 0,
'harmon': 0,
'baldwin': 1,
'butler': 1,
'carell': 1,
'hader': 1,
'radcliffe': 1,
'vartan': 1}
# test_actor_names = [a for a in actor_names if a not in training_actor_names]
training_result = dict()
validation_result = dict()
for i in range(len(training_sizes)):
print "----------- Training on size {} -----------".format(training_sizes[i])
actor_training_set, actor_validation_set, \
actor_test_set = dict(), dict(), dict()
for a in training_actor_names:
actor_training_set[a], actor_validation_set[a], \
actor_test_set[a] = divide_sets(a, training_sizes[i])
print "[{}]: {}".format(a, len(actor_training_set[a]))
# get all training data
training_set = list(
itertools.chain.from_iterable(actor_training_set.values()))
validation_set = list(
itertools.chain.from_iterable(actor_validation_set.values()))
x = np.zeros((len(training_set), 1025))
y = np.zeros((len(training_set), 1))
# fill the data with given data set
j = 0
for actor in actor_training_set.keys():
for image in actor_training_set[actor]:
data = process_image(image)
x[j] = data
y[j] = actor_genders[actor]
j += 1
thetas[i] = grad_descent(loss, dlossdx, x, y, thetas[i], 0.005)
# test on training set
total = sum(
[len(actor_training_set[actor]) for actor in actor_training_set.keys()])
correct_count = 0
for actor in actor_training_set.keys():
for im in actor_training_set[actor]:
prediction = predict(im, thetas[i])
if actor_genders[actor] == 1 and norm(prediction) > 0.5:
correct_count += 1
elif actor_genders[actor] == 0 and norm(prediction) <= 0.5:
correct_count += 1
correct_rate = 100. * correct_count / total
training_result[training_sizes[i]] = correct_rate
print "Result on [Training Set]: {} / {}\n".format(correct_count, total)
# test on validation set
total = sum(
[len(actor_validation_set[actor]) for actor in
actor_validation_set.keys()])
correct_count = 0
for actor in actor_validation_set.keys():
for im in actor_validation_set[actor]:
prediction = predict(im, thetas[i])
if actor_genders[actor] == 1 and norm(prediction) > 0.5:
correct_count += 1
elif actor_genders[actor] == 0 and norm(prediction) <= 0.5:
correct_count += 1
correct_rate = 100. * correct_count / total
validation_result[training_sizes[i]] = correct_rate
print "Result on [Validation Set]: {} / {}\n".format(correct_count, total)
plt.plot(training_sizes, [training_result[size] for size in training_sizes],
color = "r", linewidth = 2, marker = "o", label = "Training Set")
plt.plot(training_sizes, [validation_result[size] for size in training_sizes],
color = "b", linewidth = 2, marker = "o", label = "Validation Set")
plt.title("Training Set Size VS Performance")
plt.xlabel("Training Set Size / images")
plt.ylabel("Performance / %")
plt.legend()
plt.savefig("./Report/images/5/1.jpg")
# Part 6
# see faces.pdf for calculations and util.py for implementations
# Part 7
def multiclass_classification(test_training = True, validate = True):
# initialize sets
training_actor_names = [a.split()[1].lower() for a in act]
training_set, validation_set, test_set = dict(), dict(), dict()
for actor in training_actor_names:
training_set[actor], validation_set[actor], \
test_set[actor] = divide_sets(actor)
# get input data
x = np.zeros((len(list(itertools.chain.from_iterable(training_set.values()))),
1025))
y = np.zeros((len(list(itertools.chain.from_iterable(training_set.values()))),
len(training_actor_names)))
k = 0
for i in range(len(training_actor_names)):
for im in training_set[training_actor_names[i]]:
x[k] = process_image(im)
y[k][i] = 1
k += 1
# train theta
theta = np.zeros((len(training_actor_names), 1025))
theta = grad_descent_m(loss_m, dlossdx_m, x, y, theta, 0.0000001).T
# validate on training set
if test_training is True:
print "----------- Testing on Training Set -----------"
total = len(list(itertools.chain.from_iterable(training_set.values())))
correct_count = 0
for i in range(len(training_actor_names)):
for im in training_set[training_actor_names[i]]:
prediction = predict(im, theta)
prediction = np.argmax(prediction)
if prediction == i:
correct_count += 1
print "Result on [Training Set]: {} / {}\n".format(correct_count, total)
# validate on validation set
if validate is True:
print "----------- Testing on Validation Set -----------"
total = len(list(itertools.chain.from_iterable(validation_set.values())))
correct_count = 0
for i in range(len(training_actor_names)):
for im in validation_set[training_actor_names[i]]:
prediction = predict(im, theta)
prediction = np.argmax(prediction)
if prediction == i:
correct_count += 1
print "Result on [Validation Set]: {} / {}\n".format(correct_count, total)
return theta
# Part 8
def plot_theta_multiclass():
training_actor_names = [a.split()[1].lower() for a in act]
thetas = multiclass_classification(False, False).T
for i in range(thetas.shape[0]):
theta = np.delete(thetas[i], 0)
theta = np.reshape(theta, (32, 32))
# ret = np.empty((theta.shape[0], theta.shape[1], 3), dtype=np.uint8)
# ret[:, :, 0] = theta
# ret[:, :, 1] = theta
# ret[:, :, 2] = theta
imsave("./Report/images/8/{}.jpg".format(training_actor_names[i]), theta)
# imsave("./Report/images/8/{}.jpg".format(i), theta, cmap="RdBu")
if __name__ == "__main__":
# part 1
# part 2
actor = "baldwin"
a, b, c = divide_sets(actor)
print "{}\n{}\n{}".format(a, b, c)
# part 3
classify()
# part 4
# a)
plot_theta()
# b)
# part 5
overfitting()
# part 6
# part 7
multiclass_classification()
# part 8
plot_theta_multiclass()
| UTF-8 | Python | false | false | 14,804 | py | 26 | faces.py | 14 | 0.572953 | 0.554242 | 0 | 427 | 33.669789 | 85 |
Mrsilent501/req | 15,693,810,513,997 | 7b261322163c43e5beb36406e40b17ba3ab3bec1 | 9a15ef181ea00c00ea24ca5a08dd2e1f56b59118 | /s.py | 1f700a5175c7b7893f0fad09feb5e65d2d8657e3 | [] | no_license | https://github.com/Mrsilent501/req | 7d9b2c63eeb9a6ac6f8aeedadcf247386790d14c | f600edcf2ed7e3022bfbda9331ce15d854f570f9 | refs/heads/main | 2023-07-31T10:36:10.132912 | 2021-09-29T23:39:35 | 2021-09-29T23:39:35 | 411,860,281 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import requests
url = "http://www.ipinfo.io"
print (requests.get(url).text)
| UTF-8 | Python | false | false | 76 | py | 1 | s.py | 1 | 0.723684 | 0.723684 | 0 | 3 | 24.333333 | 30 |
itsolutionscorp/AutoStyle-Clustering | 5,892,695,150,527 | d2e685a7e9084ed75570bdd03fbc02c9c8620ba8 | 781e2692049e87a4256320c76e82a19be257a05d | /all_data/exercism_data/python/difference-of-squares/0e7b0b33e1e343e4a99d5701e2c13ebf.py | 36bcec0e67ea1ccbead38be4f095a48dc86aa4c9 | [] | no_license | https://github.com/itsolutionscorp/AutoStyle-Clustering | 54bde86fe6dbad35b568b38cfcb14c5ffaab51b0 | be0e2f635a7558f56c61bc0b36c6146b01d1e6e6 | refs/heads/master | 2020-12-11T07:27:19.291038 | 2016-03-16T03:18:00 | 2016-03-16T03:18:42 | 59,454,921 | 4 | 0 | null | true | 2016-05-23T05:40:56 | 2016-05-23T05:40:56 | 2016-05-19T22:14:37 | 2016-05-19T22:35:40 | 133,854 | 0 | 0 | 0 | null | null | null | def square_of_sum(n):
return ((n+1)*n/2)**2
def sum_of_squares(n):
total =0
for p in range(1,n+1):
total+=p**2
return total
def difference(n):
return abs(square_of_sum(n) - sum_of_squares(n))
| UTF-8 | Python | false | false | 239 | py | 54,209 | 0e7b0b33e1e343e4a99d5701e2c13ebf.py | 21,653 | 0.535565 | 0.506276 | 0 | 11 | 19.181818 | 52 |
luque/better-ways-of-thinking-about-software | 4,904,852,688,275 | 6b3127a8fcc61a87839247dcc6950dc2343c91a4 | a9e3f3ad54ade49c19973707d2beb49f64490efd | /Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/cms/djangoapps/export_course_metadata/toggles.py | 9eca63c6ef19f335f9fdd107d011095d70cdec6f | [
"AGPL-3.0-only",
"AGPL-3.0-or-later",
"MIT"
] | permissive | https://github.com/luque/better-ways-of-thinking-about-software | 8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d | 5809eaca7079a15ee56b0b7fcfea425337046c97 | refs/heads/master | 2021-11-24T15:10:09.785252 | 2021-11-22T12:14:34 | 2021-11-22T12:14:34 | 163,850,454 | 3 | 1 | MIT | false | 2021-11-22T12:12:31 | 2019-01-02T14:21:30 | 2019-01-02T14:40:26 | 2021-11-22T12:12:30 | 6,548 | 0 | 2 | 0 | JavaScript | false | false | """
Toggles for export_course_metadata app
"""
from edx_toggles.toggles import WaffleFlag
# .. toggle_name: export_course_metadata
# .. toggle_implementation: WaffleFlag
# .. toggle_default: False
# .. toggle_description: Export of course metadata (initially to s3 for use by braze)
# .. toggle_use_cases: temporary
# .. toggle_creation_date: 2021-03-01
# .. toggle_target_removal_date: None
# .. toggle_tickets: AA-461
EXPORT_COURSE_METADATA_FLAG = WaffleFlag('cms.export_course_metadata', __name__) # lint-amnesty, pylint: disable=toggle-missing-annotation
| UTF-8 | Python | false | false | 562 | py | 5,713 | toggles.py | 4,192 | 0.738434 | 0.717082 | 0 | 15 | 36.466667 | 139 |
handsomekiwi/Algorithms | 18,932,215,871,377 | cb45445bb0b8aeb5e58a18c61e05c88e3f9acf8d | b171d3fe11061d780e723438b5366a81ad93f076 | /Algorithms4th/UnionFind/quick_union/quick_union_test.py | a31c3b3a0452473a9f4c59638032164ebadb0887 | [] | no_license | https://github.com/handsomekiwi/Algorithms | bcb0e00591895f2d90f56aced8f83f8087697718 | 742b902b7abb56dd25e935333e32d4b5a708d365 | refs/heads/master | 2021-02-19T07:56:40.513519 | 2016-04-13T12:29:31 | 2016-04-13T12:29:31 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import unittest
from quick_union import QuickUnion
from union_find_test import UnionFindTest
class QuickUnionTest(UnionFindTest, unittest.TestCase):
"""docstring for QuickUnionTest"""
cls = QuickUnion
if __name__ == '__main__':
unittest.main()
| UTF-8 | Python | false | false | 271 | py | 42 | quick_union_test.py | 37 | 0.697417 | 0.697417 | 0 | 11 | 22.909091 | 55 |
atretyak1985/erp_azon5_server | 4,337,916,997,688 | fa103428aca6bc5e56e99000d5a232c85207f2d9 | 3df8bbcba29779527c8da773dffc766e073f2b65 | /parser/offer.py | 1c393490bc6dc404652d45e9b3e9dd16003842ee | [] | no_license | https://github.com/atretyak1985/erp_azon5_server | 32d7fbd1a4baf2cc7b00158074ddde25fb9e70ee | 4470fe2aa6e57f4b73b01081bec71fc29283c06b | refs/heads/master | 2020-03-20T00:47:57.664401 | 2018-10-31T16:16:00 | 2018-10-31T16:16:00 | 137,056,229 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
import datetime as dt
import json
import logging
import re
from bs4 import BeautifulSoup
from models.apartment import ApartamentModel
from parser.utils import get_content_for_url
try:
from __builtin__ import unicode
except ImportError:
unicode = lambda x, *args: x
log = logging.getLogger(__file__)
def get_title(offer_markup):
""" Searches for offer title on offer page
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Title of offer
:rtype: str, None
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
return html_parser.h1.text.strip()
def get_poster_name(offer_markup):
""" Searches for poster name
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Poster name or None if poster name was not found (offer is outdated)
:rtype: str, None
:except: Poster name not found
"""
poster_name_parser = BeautifulSoup(offer_markup, "html.parser").find(class_="offer-user__details")
try:
if poster_name_parser.a is not None:
found_name = poster_name_parser.a.text.strip()
else:
found_name = poster_name_parser.h4.text.strip()
except AttributeError:
return
return found_name
def get_gps(offer_markup):
""" Searches for gps coordinates (latitude and longitude)
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Tuple of gps coordinates
:rtype: tuple
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
if html_parser.find(class_="mapcontainer") is not None:
gps_lat = html_parser.find(class_="mapcontainer").attrs['data-lat']
gps_lon = html_parser.find(class_="mapcontainer").attrs['data-lon']
else:
gps_lat = 0
gps_lon = 0
return gps_lat, gps_lon
def parse_description(offer_markup):
""" Searches for description if offer markup
:param offer_markup: Body from offer page markup
:type offer_markup: str
:return: Description of offer
:rtype: str
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
return html_parser.find(id="textContent").text.replace(" ", "").replace("\n", " ").replace("\r", "").strip()
def get_month_num_for_string(value):
value = value.lower()[:3]
return {
'січ': 1,
'лют': 2,
'бер': 3,
'кві': 4,
'тра': 5,
'чер': 6,
'лип': 7,
'сер': 8,
'вер': 9,
'жов': 10,
'лис': 11,
'гру': 12,
}.get(value)
def get_img_url(offer_markup):
""" Searches for images in offer markup
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Images of offer in list
:rtype: list
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
images = html_parser.find_all(class_="bigImage")
output = []
for img in images:
output.append(img.attrs["src"])
return output
def get_date_added(offer_markup):
""" Searches of date of adding offer
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Date of adding offer
:rtype: str
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
date = html_parser.find(class_="offer-titlebox__details").em.contents
date = date[4] if len(date) > 4 else date[0]
date = date.replace("Dodane", "").replace("\n", "").replace(" ", "").replace("o ", "").replace(", ", " ")
# 'в 19:04 24 серпня 2018 ' # 10:09 04 września 2017
date_parts = date.split(' ')
hour, minute = map(int, date_parts[1].split(':'))
month = get_month_num_for_string(date_parts[3])
year = int(date_parts[4])
day = int(date_parts[2])
date_added = dt.datetime(year=year, hour=hour, minute=minute, day=day, month=month)
return int((date_added - dt.datetime(1970, 1, 1)).total_seconds())
def parse_tracking_data(offer_markup):
""" Parses price and add_id from OLX tracking data script
:param offer_markup: Head from offer page
:type offer_markup: str
:return: Tuple of int price and it's currency or None if this offer page got deleted
:rtype: dict
:except: This offer page got deleted and has no tracking script.
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
scripts = html_parser.find_all('script')
for script in scripts:
if script.string and "pageView" in script.string:
data = script.string
break
try:
split_data = re.split('"pageView":|;', data)
data_dict = json.loads(split_data[3].replace('{', "{").replace("}}'", "}"))
except json.JSONDecodeError as e:
logging.info("JSON failed to parse pageView offer attributes. Error: {0}".format(e))
data_dict = {}
return data_dict
def parse_flat_data(offer_markup):
""" Parses data from script of Google Tag Manager
:param offer_markup: Body from offer page markup
:type offer_markup: str
:return: GPT dict data
:rtype: dict
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
scripts = html_parser.find_all('script')
for script in scripts:
if script.string and "GPT.targeting =" in script.string:
data = script.string
break
try:
split_data = re.split('GPT.targeting = |;', data)
data_dict = json.loads(split_data[2].replace(";", ""))
except json.JSONDecodeError as e:
logging.info("JSON failed to parse GPT offer attributes. Error: {0}".format(e))
data_dict = {}
return data_dict
def parse_region(offer_markup):
""" Parses region information
:param offer_markup: Class "offerbody" from offer page markup
:type offer_markup: str
:return: Region of offer
:rtype: list
"""
html_parser = BeautifulSoup(offer_markup, "html.parser")
region = html_parser.find(class_="show-map-link").text
return region.replace(", ", ",").split(",")
def parse_offer(url):
""" Parses data from offer page url
:param url: Offer page markup
:param url: Url of current offer page
:type url: str
:return: Dictionary with all offer details or None if offer is not available anymore
:rtype: dict, None
"""
log.info(url)
html_parser = BeautifulSoup(get_content_for_url(url).content, "html.parser")
offer_content = str(html_parser.body)
poster_name = get_poster_name(offer_content)
data_track = parse_tracking_data(str(html_parser))
data_dict = parse_flat_data(offer_content)
region = parse_region(offer_content)
if len(region) == 3:
city, area, district = region
else:
city, area = region
district = None
apartment = ApartamentModel()
apartment.add_id = data_track.get("ad_id"),
apartment.title = get_title(offer_content),
apartment.price = data_dict.get("ad_price"),
apartment.currency = data_dict.get("currency"),
apartment.city = city,
apartment.district = district,
apartment.region = area,
apartment.gps = get_gps(offer_content),
apartment.description = parse_description(offer_content),
apartment.poster_name = poster_name,
apartment.url = url,
apartment.date_added = get_date_added(offer_content),
apartment.images = get_img_url(offer_content),
apartment.private_business = data_dict.get("private_business"),
apartment.total_area = data_dict.get("total_area"),
apartment.number_of_rooms = data_dict.get("number_of_rooms"),
return apartment
| UTF-8 | Python | false | false | 7,736 | py | 8 | offer.py | 5 | 0.640406 | 0.632605 | 0 | 237 | 31.455696 | 113 |
serkyron/win-proxy | 13,460,427,548,444 | 9e2a17de42ee628b5bcc6d84b4a7e29b03e66d0d | 68b14d8d07323a01deae201d3f491aefb99f1ed3 | /proxy.py | df2e40c7013c9a39ac67ddb842da428535b13899 | [] | no_license | https://github.com/serkyron/win-proxy | 88ff3f2332942d26764ceed0369789e2fb512e6b | 0f05facf83bb8a4335d528e983c7946f0b9efd36 | refs/heads/master | 2022-12-03T04:25:11.170535 | 2020-08-20T09:57:46 | 2020-08-20T09:57:46 | 263,770,986 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import _winreg as winreg
import ctypes
import sys
import platform
system = platform.system()
if system != "Windows":
raise Exception("OS type not supported")
INTERNET_SETTINGS = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
r'Software\Microsoft\Windows\CurrentVersion\Internet Settings',
0, winreg.KEY_ALL_ACCESS)
def set_key(name, value, type):
winreg.SetValueEx(INTERNET_SETTINGS, name, 0, type, value)
if sys.argv[1] == "off":
set_key('ProxyEnable', 0, winreg.REG_DWORD)
else:
set_key('ProxyEnable', 1, winreg.REG_DWORD)
set_key('ProxyServer', sys.argv[2], winreg.REG_SZ)
INTERNET_OPTION_REFRESH = 37
INTERNET_OPTION_SETTINGS_CHANGED = 39
internet_set_option = ctypes.windll.Wininet.InternetSetOptionW
internet_set_option(0, INTERNET_OPTION_REFRESH, 0, 0)
internet_set_option(0, INTERNET_OPTION_SETTINGS_CHANGED, 0, 0) | UTF-8 | Python | false | false | 843 | py | 1 | proxy.py | 1 | 0.746145 | 0.727165 | 0 | 30 | 27.133333 | 67 |
sundw2014/Learning-Discrepancy | 2,877,628,093,184 | dd2db3e031d54fcab5a61c03b8f313004d4eae86 | e002090450f25923b424ec1a6af79667bd85d3f9 | /examples/quadrotor_LQR/quadrotor_LQR.py | 169e79226c3c3f2f11b81c61b69e23b54082bc2a | [] | no_license | https://github.com/sundw2014/Learning-Discrepancy | 1db20609cec98babcdbac1d4f05266163687c04a | 0daf0344870c83e60a9cb685a8f6b97fb40f33a4 | refs/heads/master | 2023-09-03T23:46:05.502781 | 2021-01-12T04:35:50 | 2021-01-12T04:35:50 | 264,091,299 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # 3D Control of Quadcopter
# based on https://github.com/juanmed/quadrotor_sim/blob/master/3D_Quadrotor/3D_control_with_body_drag.py
# The dynamics is from pp. 17, Eq. (2.22). https://www.kth.se/polopoly_fs/1.588039.1550155544!/Thesis%20KTH%20-%20Francesco%20Sabatino.pdf
# The linearization is from Different Linearization Control Techniques for
# a Quadrotor System (many typos)
import numpy as np
import scipy
import scipy.linalg
# from scipy.integrate import odeint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from .nonlinear_dynamics import g, m, Ix, Iy, Iz, f
import contextlib
waypoints = [[1, 1, 1], [1, 1, 2], [0, 0, 0]]
def odeint(f, x0, t, args=()):
x = [np.array(x0),]
for idx in range(len(t)-1):
dot_x = f(x[-1], t[idx], *args)
x.append(x[-1] + dot_x*(t[idx+1]-t[idx]))
return np.array(x)
@contextlib.contextmanager
def temp_seed(seed):
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
def lqr(A, B, Q, R):
"""Solve the continuous time lqr controller.
dx/dt = A x + B u
cost = integral x.T*Q*x + u.T*R*u
"""
# http://www.mwm.im/lqr-controllers-with-python/
# ref Bertsekas, p.151
# first, try to solve the ricatti equation
X = np.matrix(scipy.linalg.solve_continuous_are(A, B, Q, R))
# compute the LQR gain
K = np.matrix(scipy.linalg.inv(R) * (B.T * X))
eigVals, eigVecs = scipy.linalg.eig(A - B * K)
return np.asarray(K), np.asarray(X), np.asarray(eigVals)
# The control can be done in a decentralized style
# The linearized system is divided into four decoupled subsystems
# X-subsystem
# The state variables are x, dot_x, pitch, dot_pitch
Ax = np.array(
[[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, g, 0.0],
[0.0, 0.0, 0.0, 1.0],
[0.0, 0.0, 0.0, 0.0]])
Bx = np.array(
[[0.0],
[0.0],
[0.0],
[1 / Ix]])
# Y-subsystem
# The state variables are y, dot_y, roll, dot_roll
Ay = np.array(
[[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, -g, 0.0],
[0.0, 0.0, 0.0, 1.0],
[0.0, 0.0, 0.0, 0.0]])
By = np.array(
[[0.0],
[0.0],
[0.0],
[1 / Iy]])
# Z-subsystem
# The state variables are z, dot_z
Az = np.array(
[[0.0, 1.0],
[0.0, 0.0]])
Bz = np.array(
[[0.0],
[1 / m]])
# Yaw-subsystem
# The state variables are yaw, dot_yaw
Ayaw = np.array(
[[0.0, 1.0],
[0.0, 0.0]])
Byaw = np.array(
[[0.0],
[1 / Iz]])
####################### solve LQR #######################
Ks = [] # feedback gain matrices K for each subsystem
for A, B in ((Ax, Bx), (Ay, By), (Az, Bz), (Ayaw, Byaw)):
n = A.shape[0]
m = B.shape[1]
Q = np.eye(n)
Q[0, 0] = 10. # The first state variable is the one we care about.
R = np.diag([1., ])
K, _, _ = lqr(A, B, Q, R)
Ks.append(K)
def TC_Simulate(Mode,initialCondition,time_bound):
######################## simulate #######################
# time instants for simulation
t_max = time_bound
t = np.arange(0., t_max, 0.01)
def cl_nonlinear(x, t, u):
x = np.array(x)
dot_x = f(x, u(x, t) + np.array([m * g, 0, 0, 0]))
noise = np.zeros(12)
# noise[[0,2,4]] = 1e-1*np.random.randn(3)
return dot_x + 0.1*np.random.randn(12)#+ noise
if Mode == 'waypoints':
# waypoints = [[1, 1, 1], [1, 1, 2], [0, 0, 0]]
# follow waypoints
signal = np.zeros([len(t), 3])
num_w = len(waypoints)
for i, w in enumerate(waypoints):
assert len(w) == 3
signal[len(t) // num_w * i:len(t) // num_w *
(i + 1), :] = np.array(w).reshape(1, -1)
# X0 = np.zeros(12)
signalx = signal[:, 0]
signaly = signal[:, 1]
signalz = signal[:, 2]
else:
# Create an random signal to track
num_dim = 3
freqs = np.arange(0.1, 2., 0.1)
with temp_seed(0):
weights = np.random.randn(len(freqs), num_dim) # F x n
weights = weights / \
np.sqrt((weights**2).sum(axis=0, keepdims=True)) # F x n
signal_AC = np.sin(freqs.reshape(1, -1) * t.reshape(-1, 1)
).dot(weights) # T x F * F x n = T x n
with temp_seed(0):
signal_DC = np.random.randn(num_dim).reshape(1, -1) # offset
signal = signal_AC + signal_DC
signalx = signal[:, 0]
signaly = signal[:, 1]
signalz = 0.1 * t
# initial state
# _X0 = 0.1 * np.random.randn(num_dim) + signal_DC.reshape(-1)
# X0 = np.zeros(12)
# X0[[0, 2, 4]] = _X0
signalyaw = np.zeros_like(signalz) # we do not care about yaw
def u(x, _t):
# the controller
dis = _t - t
dis[dis < 0] = np.inf
idx = dis.argmin()
UX = Ks[0].dot(np.array([signalx[idx], 0, 0, 0]) - x[[0, 1, 8, 9]])[0]
UY = Ks[1].dot(np.array([signaly[idx], 0, 0, 0]) - x[[2, 3, 6, 7]])[0]
UZ = Ks[2].dot(np.array([signalz[idx], 0]) - x[[4, 5]])[0]
UYaw = Ks[3].dot(np.array([signalyaw[idx], 0]) - x[[10, 11]])[0]
return np.array([UZ, UY, UX, UYaw])
X0 = np.array(initialCondition)
# simulate
x_nl = odeint(cl_nonlinear, X0, t, args=(u,))
return np.concatenate([t.reshape(-1,1), x_nl], axis=1)
if __name__ == '__main__':
import argparse
import time
######################## plot #######################
fig = plt.figure(figsize=(20, 10))
track = fig.add_subplot(1, 1, 1, projection="3d")
for i in range(10):
# x_nl = TC_Simulate("waypoints", np.random.randn(12), 10)
# for w in waypoints:
# track.plot(w[0:1], w[1:2], w[2:3], 'ro', markersize=10.)
np.random.seed(int(time.time()*1000)%(2**32-1))
x_nl = TC_Simulate("random", 2*(np.random.rand(12) - 0.5), 10)
x_nl = x_nl[:,1:]
track.plot(x_nl[:, 0], x_nl[:, 2], x_nl[:, 4], color="g")
# track.text(x_nl[0,0], x_nl[0,2], x_nl[0,4], "start", color='red')
# track.text(x_nl[-1,0], x_nl[-1,2], x_nl[-1,4], "finish", color='red')
track.set_xlabel('x')
track.set_ylabel('y')
track.set_zlabel('z')
plt.show()
| UTF-8 | Python | false | false | 6,204 | py | 31 | quadrotor_LQR.py | 28 | 0.522888 | 0.471954 | 0 | 203 | 29.561576 | 138 |
felixwsiu/SudoSolve | 16,295,105,937,226 | f71a65a5cfbdbc2232d34ae07d71ecdedccf67dc | 968849bc95d62e2bd8d82c7c23c24846e1254630 | /sudoparser.py | c05b01cfc1aef41a524a948c8970fa4bd37354b0 | [] | no_license | https://github.com/felixwsiu/SudoSolve | ecadac262db3e56347ca12ce6ad27ec526a1f818 | 1b3662644ee80a4a14ea4afffc9ea4445f621bad | refs/heads/master | 2021-07-01T19:02:36.804085 | 2020-09-26T21:24:02 | 2020-09-26T21:24:02 | 168,605,628 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import requests
from bs4 import BeautifulSoup
def parsePuzzle(difficulty):
if difficulty == 3:
URL = "http://www.cs.utep.edu/cheon/ws/sudoku/new/?size=9&level=3"
elif difficulty == 2:
URL = "http://www.cs.utep.edu/cheon/ws/sudoku/new/?size=9&level=2"
elif difficulty == 1:
URL = "http://www.cs.utep.edu/cheon/ws/sudoku/new/?size=9&level=1"
r = requests.get(URL)
soup = BeautifulSoup(r.content,'html5lib')
soup.prettify()
info=[] # a list to store quotes
info = soup.find('body').get_text()
info = info.split('{')
cells = []
for x in info:
text = list(x)
if len(text) < 24 and len(text)!=0:
cells.append([text[4],text[10],text[20]])
return cells
| UTF-8 | Python | false | false | 764 | py | 3 | sudoparser.py | 2 | 0.586387 | 0.561518 | 0 | 30 | 24.466667 | 74 |
cottyard/PythonToolsCollection | 12,189,117,186,183 | 130bbe374e303e0ddc26b391bf813d7393ca4fd9 | 112815b0452074504bd4b9f36fb296a29149a3e2 | /JsObject/jsobject.py | 0d2172d6d209fd9cc3bd9844cd237f0d613f0665 | [] | no_license | https://github.com/cottyard/PythonToolsCollection | bca8c1639782be0c9cb8e16bd37254618a4078b2 | 5605ad818b7ed4ab97c9ecfdfb1f00e40da3d01f | refs/heads/master | 2021-06-06T10:45:33.009065 | 2016-10-24T11:12:03 | 2016-10-24T11:12:03 | 19,297,896 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # a python object that thinks it's a js object
def map_dict(func, dict):
return {k: func(v) for k, v in dict.items()}
class JsObject:
def __init__(self, json={}):
self.from_json(json)
def __getattr__(self, name):
if name.startswith('__') and name.endswith('__'):
raise AttributeError(name)
if name not in self._storage:
raise AttributeError(
'JsObject "%s" has no attribute "%s"' % (str(self), name))
return self._storage[name]
def __setattr__(self, name, value):
if name in ('_storage', '_datatype'):
self.__dict__[name] = value
else:
self._storage[name] = value
def __getitem__(self, index):
return self._storage[index]
def __setitem__(self, index, value):
setattr(self, index, value)
def is_convertible_json(self, data):
""" whether or not some json data can be converted to a JsObject
"""
return isinstance(data, (dict, list))
def from_json(self, json):
self._storage = {}
def construct(data):
return JsObject(data) if self.is_convertible_json(data) else data
if isinstance(json, dict):
self._datatype = dict
for k in json:
self._storage[k] = construct(json[k])
elif isinstance(json, list):
self._datatype = list
for i in range(0, len(json)):
self._storage[i] = construct(json[i])
else:
raise TypeError('not a json object')
def to_json(self):
def construct(jsobj_or_json):
if not isinstance(jsobj_or_json, JsObject):
return jsobj_or_json
else:
return jsobj_or_json.to_json()
json_dict = map_dict(construct, self._storage)
if self.datatype() is dict:
return json_dict
else:
return list(json_dict.values())
def as_tuple(self):
return tuple(self._storage.values())
def as_list(self):
return list(self._storage.values())
def as_dict(self):
return dict(self._storage)
def datatype(self):
return self._datatype
def has_attr(self, name):
return name in self._storage
def remove_attr(self, name):
del self._storage[name]
def attrs(self):
return self._storage.keys()
def values(self):
return self._storage.values()
def __iter__(self):
return iter(self._storage)
def __repr__(self):
return str(self)
def __str__(self):
return "{%s}" % ", ".join(
("%s: %s" % item for item in self._storage.items()))
| UTF-8 | Python | false | false | 2,706 | py | 27 | jsobject.py | 14 | 0.545085 | 0.544715 | 0 | 99 | 26.333333 | 77 |
kobaltkween/python2 | 2,302,102,487,561 | 6e306bc978ebc9bbf9988f68341522590361a2d4 | b65f31d9d273c3d4bb826ff83a805368570bcd4d | /Lesson 04 - File Handling/testLatest.py | b9a1605a194166c6a17769b003975bb88c350905 | [] | no_license | https://github.com/kobaltkween/python2 | 3fde6cc9ca1413b900c87656d8ceb99cb3f34f42 | f7e529abd303b65f0b794c8a9ed87dbf085541a8 | refs/heads/master | 2020-12-31T05:09:39.297693 | 2016-04-13T23:27:10 | 2016-04-13T23:27:10 | 56,192,556 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import unittest
import latest
import time
import os
PATHSTEM = "v:\\workspace\\FileHandling\\src\\"
class TestLatest(unittest.TestCase):
def setUp(self):
self.path = PATHSTEM
self.fileNames = ["file.old", "file.bak", "file.new"]
for fn in self.fileNames:
f = open(self.path + fn, "w")
f.close()
time.sleep(1)
def testLatestNoNumber(self):
"""
Ensure that calling the function with no arguments returns
the single most recently-created file.
"""
expected = [self.path + "file.new"]
latestFile = latest.latest(path = self.path)
self.assertEqual(latestFile, expected, ) \
def testLatestWithArgs(self):
"""
Ensure that calling the function with the arguments of 2 and some
directory returns the two most recently created files in the directory.
"""
expected = set([self.path + "file.new", self.path + "file.bak"])
latestFiles = set(latest.latest(2, self.path))
self.assertEqual(latestFiles, expected)
def tearDown(self):
for fn in self.fileNames:
os.remove(self.path + fn)
if __name__ == "__main__":
unittest.main() | UTF-8 | Python | false | false | 1,270 | py | 40 | testLatest.py | 38 | 0.585039 | 0.582677 | 0 | 41 | 30 | 81 |
sharithomas/more-examples | 16,767,552,362,790 | a79ef2fef377f46f1168deebad8353cb30dcc33c | 4c1f8e7b02cfe60da4be1300c051c6525776cc00 | /function_programs/check_number_inrange_fun.py | a74b581172876e08c34645ace9a69fcd85d5b80a | [] | no_license | https://github.com/sharithomas/more-examples | 04fea9dcc912eb4546dae1d03090b9e89d5bc157 | e0672e2440968cc6041ca8c2567cbd572515fb7c | refs/heads/master | 2021-02-27T11:50:05.103096 | 2020-10-02T11:46:43 | 2020-10-02T11:46:43 | 245,603,890 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Write a Python function to check whether a number is in a given range.
number=int(input("enter number"))
#function definition to check whether given number is in the range of 1 to 10
def test_range(n):
if n in range(1,10):
print( str(n) + " is in the range of (1,10)")
else :
print("The number is outside the given range of (1,10).")
test_range(number)
| UTF-8 | Python | false | false | 380 | py | 241 | check_number_inrange_fun.py | 241 | 0.671053 | 0.639474 | 0 | 10 | 37 | 77 |
24jcarter/lab2 | 19,318,762,932,490 | b5836947b974085642ff8e007adad2072554e5cd | 1ecaebc5abd94bc54c5007a6624501ed1d564c2d | /util.py | 2a6f116789ad5aa20d1b368ea004c25f8254feec | [] | no_license | https://github.com/24jcarter/lab2 | 35e69f2c455553c102bf8d21a3dc327484c06c63 | 040af42339c57659fe436bf3be690e61207aff04 | refs/heads/master | 2023-08-20T07:29:40.666160 | 2021-09-27T23:49:58 | 2021-09-27T23:49:58 | 411,024,120 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import RPi.GPIO as GPIO
from time import sleep
def switchPressed(pin):
ledpwm = GPIO.PWM(pin, 100)
ledpwm.start(0)
for duty in range(101):
ledpwm.ChangeDutyCycle(duty)
sleep(0.01)
for duty in range(100, -1, -1):
ledpwm.ChangeDutyCycle(duty)
sleep(0.01)
| UTF-8 | Python | false | false | 268 | py | 2 | util.py | 2 | 0.708955 | 0.641791 | 0 | 12 | 21.25 | 32 |
cloudfly-group/backendfleio-test | 8,693,013,854,501 | 199f2306539921fd67162dd6add64e2e64ee3471 | 2ae8c06383fc51ba6651760509e8eda9d189dc52 | /project/fleio/openstack/models/image_members.py | 58e544e0db5813bf6ebbc7c330dc1a32183ff0a3 | [] | no_license | https://github.com/cloudfly-group/backendfleio-test | 8d0d2117e11f0400067b04fc28054b92c0bdb811 | ef9d5bc66459380db85ba70e442cfd4d9ed2db5e | refs/heads/master | 2021-03-01T00:06:37.591171 | 2020-01-06T02:53:54 | 2020-01-06T02:53:54 | 245,741,437 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.db import models
from django.utils.translation import ugettext_lazy as _
class ImageMemberStatus:
PENDING = 'pending'
ACCEPTED = 'accepted'
REJECTED = 'rejected'
choices = (
(PENDING, _('Pending')),
(ACCEPTED, _('Accepted')),
(REJECTED, _('Rejected'))
)
class ImageMembers(models.Model):
IMAGE_MEMBER_STATUS = ImageMemberStatus.choices
image = models.ForeignKey('openstack.Image',
db_constraint=False,
null=True, blank=True, on_delete=models.DO_NOTHING,
related_name='members')
# NOTE(tomo): Using a FK to Projects forces the images and images members to use tenant/project ownership
member = models.ForeignKey('openstack.Project', db_constraint=False, null=True, blank=True,
on_delete=models.DO_NOTHING, to_field='project_id')
status = models.CharField(choices=IMAGE_MEMBER_STATUS, max_length=15, default='pending', db_index=True)
created_at = models.DateTimeField(blank=True, null=True)
updated_at = models.DateTimeField(blank=True, null=True)
deleted_at = models.DateTimeField(blank=True, null=True)
sync_version = models.BigIntegerField(default=0)
class Meta:
verbose_name_plural = 'Image members'
| UTF-8 | Python | false | false | 1,333 | py | 1,224 | image_members.py | 1,131 | 0.644411 | 0.642161 | 0 | 33 | 39.393939 | 109 |
scottyyf/Python004 | 12,764,642,839,593 | 44c7dae4af986b3c996d83be98ed9c77c86600b7 | 6316542865d55af5d6fa4565e5a60d6940eabbc9 | /my_test_follow_teacher/week6/testabc.py | 0031dc052bfec3d02d631d93b56da4ef1eb55a5f | [] | no_license | https://github.com/scottyyf/Python004 | e8413c0da7468a06813e4d229e82b81e34fac722 | 2847f4c48f1fc746a166027e46ee238da0d720ed | refs/heads/master | 2023-01-29T07:09:43.781799 | 2020-12-02T07:42:01 | 2020-12-02T07:42:01 | 295,947,174 | 0 | 0 | null | true | 2020-09-29T02:56:57 | 2020-09-16T06:46:32 | 2020-09-16T06:46:34 | 2020-09-29T02:56:56 | 26 | 0 | 0 | 0 | null | false | false | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
File: testabc.py.py
Author: Scott Yang(Scott)
Email: yangyingfa@skybility.com
Copyright: Copyright (c) 2020, Skybility Software Co.,Ltd. All rights reserved.
Description:
"""
# from abc import ABCMeta, abstractmethod, ABC, get_cache_token
#
# class Base(ABC):
# @abstractmethod
# def foo(self):
# pass
#
#
# class Concrete(Base):
# def __init__(self):
# pass
#
# def foo(self):
# pass
#
#
# c = Concrete()
# print(get_cache_token())
class Display():
def display(self, message):
print(message)
class LoggerMixin():
def log(self, message, filename='logfile.txt'):
with open(filename, 'a') as fh:
fh.write(message)
def display(self, message):
super().display(message)
self.log(message)
class MysubClass(LoggerMixin, Display):
def log(self, message):
super().log(message, filename='subclass.txt')
sub_class = MysubClass()
sub_class.display('this is subclass display')
print(MysubClass.mro())
| UTF-8 | Python | false | false | 1,058 | py | 67 | testabc.py | 58 | 0.627599 | 0.622873 | 0 | 55 | 18.236364 | 79 |
hademircii/financial_market_simulator | 17,626,545,797,955 | 6333fec4a696e740799168f5002a9657090abbea | 680d1f15a3f7166367aa8db583b95a9eaf5ddcc8 | /draw.py | 87cccc4603ee4fea25df0445bf658bee4b45fd9a | [] | no_license | https://github.com/hademircii/financial_market_simulator | 19243bec2491ff53d4f30f980359b4c8b1e85b85 | bb8ef1e370c7224baeb4fdfed66aaa2167f84567 | refs/heads/master | 2022-12-09T13:30:18.131168 | 2019-09-08T20:54:42 | 2019-09-08T20:54:42 | 188,909,952 | 4 | 1 | null | false | 2022-12-08T05:18:12 | 2019-05-27T21:15:03 | 2020-07-25T16:38:21 | 2022-12-08T05:18:12 | 922 | 4 | 1 | 16 | Jupyter Notebook | false | false | import numpy as np
from high_frequency_trading.hft.equations import price_grid
import utility
import logging
import settings
log = logging.getLogger(__name__)
class ContextSeed:
"""
context manager to ensure sample draws are
shared among different agents
"""
def __init__(self, seed):
self.seed = seed
def __enter__(self):
np.random.seed(self.seed)
def __exit__(self, *_):
np.random.seed(np.random.randint(0, high=100))
def asof(a, b):
"""
assumes a and b are sorted array of times
return indexes of a
so values of b at such indexes
are 'as of' a, commonly used
when dealing with timeseries data
(so the closest numpy gets to this is via searchsorted,
which is still not the tool, wtf numpy folks ?)
"""
current_index = 0
last_a_index = len(a) - 1
result = np.zeros(b.size, dtype=int)
for ix, t in enumerate(b):
try:
while t >= a[current_index]:
current_index += 1
except IndexError:
current_index = last_a_index + 1
result[ix] = current_index - 1
return result
def draw_arrival_times(size, period_length, distribution=np.random.uniform, **kwargs):
"""
given a distributon, draw a sample of time points
sort and cum sum them so you have arrival times
spread over the period length
"""
arr = distribution(size=size, **kwargs)
arr.sort()
arr.cumsum()
sub_arr = arr[arr < period_length].round(decimals=3)
return sub_arr
def draw_noise(size, period_length, distribution=np.random.normal,
cumsum=False, **kwargs):
arr = distribution(size=size, **kwargs)
if cumsum:
arr.cumsum()
return arr
def _elo_asset_value_arr(initial_price, period_length, loc_delta, scale_delta,
lambdaJ):
"""
generate a sequence of asset values and asset value jump times
"""
f_size = int(lambdaJ * period_length)
f_price_change_times = draw_arrival_times(
f_size, period_length, low=0.0, high=period_length)
num_f_price_changes = f_price_change_times.size
f_prices = np.random.normal(
size=num_f_price_changes, loc=loc_delta,
scale=scale_delta).cumsum() + initial_price
return np.vstack((f_price_change_times, f_prices)).round(3)
def elo_random_order_sequence(
asset_value_arr, period_length, loc_noise, scale_noise, bid_ask_offset,
lambdaI, time_in_force, buy_prob=0.5):
"""
draws bid/ask prices around fundamental value,
generate input sequnce for random orders with arrival times as array
"""
orders_size = np.random.poisson(lam=(1 / lambdaI) * period_length, size=1)
order_times = draw_arrival_times(
orders_size, period_length, low=0.0, high=period_length)
unstacked_asset_values = np.swapaxes(asset_value_arr, 0, 1)
asset_value_jump_times, asset_values = unstacked_asset_values[0], unstacked_asset_values[1]
asset_value_indexes = asof(asset_value_jump_times, order_times)
asset_value_asof = asset_values[asset_value_indexes]
order_directions = np.random.binomial(1, buy_prob, orders_size)
noise_by_order_side = np.vectorize(
lambda x: np.random.normal(loc_noise - bid_ask_offset, scale_noise
) if x == 0 else np.random.normal(loc_noise + bid_ask_offset, scale_noise))
noise_around_asset_value = noise_by_order_side(order_directions)
order_prices = (asset_value_asof + noise_around_asset_value).astype(int)
grid = np.vectorize(price_grid)
gridded_order_prices = grid(order_prices)
orders_tif = np.full(orders_size, time_in_force).astype(int)
convert_to_string = np.vectorize(lambda x: 'B' if x is 0 else 'S')
order_directions = convert_to_string(order_directions)
stacked = np.vstack((
order_times, asset_value_asof, gridded_order_prices, order_directions,
orders_tif))
return stacked
def elo_draw(period_length, conf: dict, seed=np.random.randint(0, high=2 ** 8),
config_num=0):
"""
generates random order sequence as specified in ELO market research plan
first draws fundamental value series or read from a csv file
then pipes this sequence to random order producer function
"""
if conf['read_fundamental_values_from_file']:
path = settings.fundamental_values_config_path
fundamental_values = utility.read_fundamental_values_from_csv(path)
fundamental_values.insert(0, (0, conf['initial_price']))
fundamental_values = np.array(fundamental_values)
log.info('read fundamental value sequence from %s.' % path)
else:
with ContextSeed(seed):
fundamental_values = _elo_asset_value_arr(
conf['initial_price'],
period_length,
conf['fundamental_value_noise_mean'],
conf['fundamental_value_noise_std'],
conf['lambdaJ'])
log.info('drew fundamental value sequence, initial price %s'
'%s jumps per second.' % (
conf['initial_price'],
round(len(fundamental_values) / period_length, 2)))
log.info('fundamental values: %s' % (', '.join('{0}:{1}'.format(t, v)
for t, v in fundamental_values)))
random_orders = elo_random_order_sequence(
fundamental_values,
period_length,
conf['exogenous_order_price_noise_mean'],
conf['exogenous_order_price_noise_std'],
conf['bid_ask_offset'],
conf['lambdaI'][config_num], # so rabbits differ in arrival rate..
conf['time_in_force'])
random_orders = np.swapaxes(random_orders, 0, 1)
log.info(
'%s random orders generated. period length: %s, per second: %s.' % (
random_orders.shape[0],
period_length,
round(random_orders.shape[0] / period_length, 2)))
log.info('random orders (format: [fundamental price]:[order price]:[order direction]:[time in force]): %s' % (
', '.join('{0}:{1}:{2}:{3}'.format(row[1], row[2], row[3], row[4]) for
row in random_orders)))
return random_orders
if __name__ == '__main__':
d = elo_draw(20, utility.get_simulation_parameters())
for r in d:
print(r)
| UTF-8 | Python | false | false | 6,409 | py | 36 | draw.py | 20 | 0.618973 | 0.611172 | 0 | 164 | 38.036585 | 114 |
SirjanK/Multivac | 10,977,936,418,551 | 25824dd4209bf6369bedfc3479e09514e0583e5f | 2fd41fccf46b173da1ab4369beba39f2e91d1dcc | /frontend/frontend_constants.py | c012408c68cfc3ff3efe9851f40836860ac364b5 | [
"MIT"
] | permissive | https://github.com/SirjanK/Multivac | cd64d2c4fbde3556647733fea9fe5833e53deb63 | 27b5d490c015b68e268d4d44a0ff17b8ab519274 | refs/heads/master | 2022-11-26T11:36:39.913140 | 2020-04-15T03:44:21 | 2020-04-15T03:44:21 | 155,824,102 | 0 | 0 | MIT | false | 2022-11-22T04:55:51 | 2018-11-02T06:34:45 | 2020-04-15T03:44:25 | 2022-11-22T04:55:48 | 2,938 | 0 | 0 | 7 | CSS | false | false | # HTML page names
INDEX_HTML = 'index.html'
SESSION_HTML = 'session.html'
# Parameter keys between pages
ENVIRONMENT_NAME_KEY = 'environmentName'
AGENT_NAME_KEY = 'agentName'
NUM_STEPS_KEY = 'numSteps'
OBSERVATION_DELTA_KEY = 'observationDelta'
VIDEO_FPS_KEY = 'videoFps'
# Return values by the / and /session endpoints
SUCCESS_DESIGNATION = "success"
FAILED_DESIGNATION = "failed"
INVALID_POST_PARAMETERS_DESIGNATION = "Invalid POST parameters"
| UTF-8 | Python | false | false | 448 | py | 34 | frontend_constants.py | 28 | 0.763393 | 0.763393 | 0 | 15 | 28.866667 | 63 |
Lucass96/Python-Faculdade | 8,074,538,524,444 | 2952456aaf6a8bfe5b966e47c756ff525bacac79 | 344145de0b0d5ec2ac3b83c92347f12fc1390e9e | /Python-LP/aula05/ParametroExercicio.py | fc478d9d4b0cb60f5e19e1ecddd5e843fdf80696 | [] | no_license | https://github.com/Lucass96/Python-Faculdade | dc405d087393eaf169ad40d13a0d065fb44d1604 | 8abaebd95f0db18d8321062eb04a15894a069901 | refs/heads/master | 2023-06-16T19:55:54.047700 | 2021-07-09T16:58:47 | 2021-07-09T16:58:47 | 384,498,164 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Exercicio 1
def borda(s1):
tam = len(s1)
# so imprime caso exista algum caractere
if tam:
print('+','-' * tam,'+')
print('|',s1,'|')
print('+', '-' * tam, '+')
#Programa Principal
borda('Ola, Mundo!')
borda('Logica de Programacao e Algoritmos') | UTF-8 | Python | false | false | 283 | py | 60 | ParametroExercicio.py | 60 | 0.54417 | 0.530035 | 0 | 12 | 22.666667 | 44 |
sheltowt/data_munging | 4,148,938,437,194 | 49916287b09349f5aa8676970e9c7392812c36db | 51573e14301533cdc5aaea8e67384b57741ca02c | /parallel_textbag.py | 808c6e00b9496b92c2b2cfdcd38d6be3974013d7 | [] | no_license | https://github.com/sheltowt/data_munging | ca790a85cc85cb6db1173e56ae4bb0ddfb6c1255 | 53cf38510eb4e7a448af2918f73059c87bc9219e | refs/heads/master | 2021-01-10T04:18:57.429538 | 2013-03-12T20:40:53 | 2013-03-12T20:40:53 | 8,529,972 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from __future__ import division
import pp
import nltk
import re, pprint
import pandas as pandas
import random
import csv
newt = pandas.read_csv("/home/williamshelton/Desktop/Data/good_test.csv")
header = pandas.read_csv("/home/williamshelton/Desktop/Data/good_test.csv", header= None)
rows1 = range(0,300)
rows2 = range(301,len(newt['FullDescription']))
head = header.ix[0]
print head
newt1 = newt.ix[rows1]
print newt1
#newt21 = newt.ix[rows2]
#newt2 = newt21.reindex(columns=head)
newt2 = newt.ix[rows2]
print newt2
count1 = 0
count2 = 301
def word_process(newt3, count):
new = newt3
new['NN'] = "Hello"
new['NNP'] = "Hello"
new['NNS'] = "Hello"
new['NNPS'] = "Hello"
new['VB'] = "Hello"
new['VBD'] = "Hello"
new['VBG'] = "Hello"
new['VBP'] = "Hello"
new['VBP'] = "Hello"
new['VBZ'] = "Hello"
new['VBN'] = "Hello"
new['JJ'] = "Hello"
new['JJS'] = "Hello"
new['JJR'] = "Hello"
new['CC'] = "Hello"
new['CD'] = "Hello"
new['TO'] = "Hello"
new['MD'] = "Hello"
new['RB'] = "Hello"
new['RBR'] = "Hello"
new['RBS'] = "Hello"
new['FW'] = "Hello"
for x in new['ContractTime']:
if x == None:
x = "Hello"
for x in new['Company']:
if x == None:
x = "Hello"
print new
for x in new['FullDescription']:
clean = []
y = nltk.word_tokenize(x)
y = [nltk.word_tokenize(a) for a in y]
y = [nltk.pos_tag(a) for a in y]
clean.append(y)
for c in clean:
nn = " "
nnp = " "
nns = " "
nnps = " "
vb = " "
vbd = " "
vbg = " "
vbp = " "
vbz = " "
vbn = " "
jj = " "
jjs = " "
jjr = " "
cc = " "
cd = " "
to = " "
md = " "
rb = " "
rbr = " "
rbs = " "
fw = " "
for x in c:
if x[0][1] == 'NN':
nn = nn + " " + x[0][0]
for x in c:
if x[0][1] == 'NNP':
nnp = nnp + " " + x[0][0]
for x in c:
if x[0][1] == 'NNS':
nns = nns + " " + x[0][0]
for x in c:
if x[0][1] == 'NNPS':
nns = nnps + " " + x[0][0]
for x in c:
if x[0][1] == 'VB':
vb = vb + " " + x[0][0]
for x in c:
if x[0][1] == 'VBD':
vbd = vbd + " " + x[0][0]
for x in c:
if x[0][1] == 'VBG':
vbg = vbg + " " + x[0][0]
for x in c:
if x[0][1] == 'VBP':
vbp = vbp + " " + x[0][0]
for x in c:
if x[0][1] == 'VBZ':
vbz = vbz + " " + x[0][0]
for x in c:
if x[0][1] == 'VBN':
vbn = vbn + " " + x[0][0]
for x in c:
if x[0][1] == 'JJ':
jj = jj + " " + x[0][0]
for x in c:
if x[0][1] == 'JJS':
jjs = jjs + " " + x[0][0]
for x in c:
if x[0][1] == 'JJR':
jjr = jjr + " " + x[0][0]
for x in c:
if x[0][1] == 'CC':
if x[0][0] is None:
pass
else:
cc = cc + " " + x[0][0]
for x in c:
if x[0][1] == 'CD':
cd = cd + " " + x[0][0]
for x in c:
if x[0][1] == 'TO':
to = to + " " + x[0][0]
for x in c:
if x[0][1] == 'MD':
md = md + " " + x[0][0]
for x in c:
if x[0][1] == 'RB':
rb = rb + " " + x[0][0]
for x in c:
if x[0][1] == 'RBR':
rbr = rbr + " " + x[0][0]
for x in c:
if x[0][1] == 'RBS':
rbs = rbs + " " + x[0][0]
for x in c:
if x[0][1] == 'FW':
fw = fw + " " + x[0][0]
new['NN'][count] = nn
new['NNP'][count] = nnp
new['NNS'][count] = nns
new['NNPS'][count] = nnps
new['VB'][count] = vb
new['VBD'][count] = vbd
new['VBG'][count] = vbg
new['VBP'][count] = vbp
new['VBZ'][count] = vbz
new['VBN'][count] = vbn
new['JJ'][count] = jj
new['JJS'][count] = jjs
new['JJR'][count] = jjr
new['CC'][count] = cc
new['CD'][count] = cd
new['TO'][count] = to
new['MD'][count] = md
new['RB'][count] = rb
new['RBR'][count] = rbr
new['RBS'][count] = rbs
new['FW'][count] = fw
count+=1
return new
ppservers = ()
job_server = pp.Server(ppservers=ppservers)
f1 = job_server.submit(word_process, (newt1,count1), modules=("nltk","pandas", "re", "pprint", "pp"))
f2 = job_server.submit(word_process, (newt2,count2), modules=("nltk", "pandas", "pp", "re", "pprint"))
r1 = f1()
print "this is r1"
print r1
r2 = f2()
print "this is r2"
print r2
r3 = pandas.concat([r1,r2], axis=0)
r3.to_csv("/home/williamshelton/Desktop/Data/badass3.csv")
| UTF-8 | Python | false | false | 4,185 | py | 7 | parallel_textbag.py | 6 | 0.477419 | 0.444683 | 0 | 189 | 21.126984 | 102 |
dhanya07/project | 15,857,019,289,468 | 0a97dd90cca53e2b33ddce8f6df34d1634063ff8 | da2413bf169509213763444d28156d565dd38b48 | /siteadmin/migrations/0004_auto_20200505_1603.py | 1d3f5c7c1682bd5f05bfb816069926e1d1e5355f | [] | no_license | https://github.com/dhanya07/project | a8028caed596cd617d1d2a8082d97ebd64ad321c | fd4c3e01ca854ada016f0510e6edbfcabb3f8fce | refs/heads/master | 2022-07-04T06:52:29.449386 | 2020-05-15T05:28:52 | 2020-05-15T05:28:52 | 264,094,608 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 2.2.7 on 2020-05-05 10:33
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('siteadmin', '0003_user_tb'),
]
operations = [
migrations.RenameField(
model_name='user_tb',
old_name='contacno',
new_name='contactno',
),
]
| UTF-8 | Python | false | false | 360 | py | 37 | 0004_auto_20200505_1603.py | 20 | 0.563889 | 0.511111 | 0 | 18 | 19 | 47 |
dvserrano/Tribolium | 7,138,235,681,770 | 07f6922c74d3859534ce5a8497f2499bbbc4ed40 | 731398c0be15d825b388a55b62d136ef34575035 | /Tribolium castaneum/imageserver/imageserver_venv/routes.py | 065151020b9797e499f86779e5f3d8ac9f95a407 | [] | no_license | https://github.com/dvserrano/Tribolium | eac78a8cabb45fb02a41d9be75708817d2708e05 | 719dcc97ad0dda3a83de380cc62269ba459291bc | refs/heads/main | 2023-08-22T00:06:33.107533 | 2021-10-30T17:36:39 | 2021-10-30T17:36:39 | 414,007,356 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
from flask.helpers import send_from_directory
from flask import Blueprint, request
api_images = Blueprint('api_images', __name__)
@api_images.route("/upload", methods=['POST'])
def upload_image():
if request.method == "POST":
file = request.files['file']
try:
file.save(os.getcwd() + "/images/" + file.filename)
return "Imagen guardada"
except FileNotFoundError:
return "Folder no existe"
@api_images.route('/images/<string:filename>')
def get_image(filename):
return send_from_directory(os.getcwd() + "/images/", filename = filename, as_attachment=False)
@api_images.route('/download/images/<string:filename>')
def download_image(filename):
return send_from_directory(os.getcwd() + "/images/", filename=filename, as_attachment=True)
@api_images.route('/delete', methods=['POST'])
def remove_image():
filename = request.form['filename']
#Verificamos si es un fichero
if os.path.isfile(os.getcwd() + "/images/" + filename) == False:
return "Esto no es un archivo"
else:
try:
os.remove(os.getcwd() + "/images/" + filename)
return "Imagen eliminada"
except OSError:
return "No se elimino el archivo"
| UTF-8 | Python | false | false | 1,265 | py | 21 | routes.py | 5 | 0.638735 | 0.638735 | 0 | 41 | 29.853659 | 98 |
amakurin/CarND-Capstone | 103,079,237,404 | 1505cb184fd6a843ca1c4605dedc4d597094494f | d5cb96088e2adb23705ece9abd5aa726ca9f7808 | /ros/src/twist_controller/twist_controller.py | 09433058e0e372c7fe5570aac036b06e43db8717 | [] | no_license | https://github.com/amakurin/CarND-Capstone | dc5a0ff34618cb29594c13f9b3e8aeb5db00f81c | a13284ff7f9827cb316ab8d4ef3d9ce70ffa6884 | refs/heads/master | 2021-01-18T16:38:02.494891 | 2017-10-14T19:53:50 | 2017-10-14T19:53:50 | 100,465,295 | 4 | 8 | null | true | 2017-09-22T08:46:06 | 2017-08-16T08:15:58 | 2017-09-17T17:18:56 | 2017-09-22T08:46:06 | 2,332 | 0 | 3 | 0 | Python | null | null | from yaw_controller import YawController
from pid import PID
from lowpass import LowPassFilter
import math
import rospy
from styx_msgs.msg import Lane, Waypoint
from geometry_msgs.msg import PoseStamped, Pose
GAS_DENSITY = 2.858
ONE_MPH = 0.44704
class Controller(object):
def __init__(self, *args, **kwargs):
vehicle_mass = kwargs['vehicle_mass']
fuel_capacity = kwargs['fuel_capacity']
self.brake_deadband = kwargs['brake_deadband']
self.decel_limit = kwargs['decel_limit']
accel_limit = kwargs['accel_limit']
wheel_radius = kwargs['wheel_radius']
wheel_base = kwargs['wheel_base']
steer_ratio = kwargs['steer_ratio']
max_lat_accel = kwargs['max_lat_accel']
max_steer_angle = kwargs['max_steer_angle']
self.brake_tourque_const = (vehicle_mass + fuel_capacity * GAS_DENSITY) * wheel_radius
self.current_dbw_enabled = False
yaw_params = [wheel_base, steer_ratio, max_lat_accel, max_steer_angle]
self.yaw_controller = YawController(*yaw_params)
self.linear_pid = PID(0.9, 0.0005, 0.07, self.decel_limit, accel_limit)
self.tau_correction = 0.2
self.ts_correction = 0.1
self.low_pass_filter_correction = LowPassFilter(self.tau_correction, self.ts_correction)
self.previous_time = None
pass
def update_sample_step(self):
current_time = rospy.get_time()
sample_step = current_time - self.previous_time if self.previous_time else 0.05
self.previous_time = current_time
return sample_step
def control(self, linear_velocity_setpoint, angular_velocity_setpoint, linear_current_velocity, angular_current, dbw_enabled, final_waypoint1, final_waypoint2, current_location):
if (not self.current_dbw_enabled) and dbw_enabled:
self.current_dbw_enabled = True
self.linear_pid.reset()
self.previous_time = None
else:
self.current_dbw_enabled = False
linear_velocity_error = linear_velocity_setpoint - linear_current_velocity
sample_step = self.update_sample_step()
velocity_correction = self.linear_pid.step(linear_velocity_error, sample_step)
velocity_correction = self.low_pass_filter_correction.filt(velocity_correction)
if abs(linear_velocity_setpoint)<0.01 and abs(linear_current_velocity) < 0.1:
velocity_correction = self.decel_limit
throttle = velocity_correction
brake = 0.
if throttle < 0.:
decel = abs(throttle)
#[alexm]NOTE: let engine decelerate the car if required deceleration below brake_deadband
brake = self.brake_tourque_const * decel if decel > self.brake_deadband else 0.
throttle = 0.
#[alexm]::NOTE this lowpass leads to sending both throttle and brake nonzero. Maybe it is better to filter velocity_correction
#brake = self.low_pass_filter_brake.filt(brake)
#steering = self.yaw_controller.get_steering_pid(angular_velocity_setpoint, angular_current, dbw_enabled)
#steering = 0.
#if final_waypoint1 and final_waypoint2 and linear_current_velocity < 1.:
# steering = self.yaw_controller.get_steering_pid_cte(final_waypoint1, final_waypoint2, current_location, dbw_enabled)
#else:
steering = self.yaw_controller.get_steering_calculated(linear_velocity_setpoint, angular_velocity_setpoint, linear_current_velocity)
return throttle, brake, steering
| UTF-8 | Python | false | false | 3,551 | py | 14 | twist_controller.py | 8 | 0.668262 | 0.655872 | 0 | 75 | 46.346667 | 182 |
CamilaTermine/programitas | 10,058,813,416,574 | 064f8b39229be7aaca612e7b4ad829068fe46b3f | 355413de94461705eafd40737fc3f098e85eb056 | /Python/Parte1/14-07-2021/triangulo.py | 0b052590c77db20922b4b01ac67a506028e4238d | [] | no_license | https://github.com/CamilaTermine/programitas | 0972845cbb1a596a33d7b7bac1dce9048b7f5ed6 | 7c1728e280c2ec292a4c8cb4402499952c3ba80c | refs/heads/main | 2023-07-13T02:12:51.908053 | 2021-08-25T02:14:40 | 2021-08-25T02:14:40 | 399,661,602 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | mensaje = "*"
altura = int(input("ingrese la altura deseada: "));
for i in range (0, altura):
for i2 in range (0,i):
mensaje = mensaje + "*"
mensaje = mensaje + '\n'
for i in range (0, altura):
for i2 in range (altura - i):
mensaje = mensaje + "*"
mensaje = mensaje + '\n'
print(f"{mensaje}")
| UTF-8 | Python | false | false | 328 | py | 68 | triangulo.py | 66 | 0.557927 | 0.542683 | 0 | 14 | 22.428571 | 51 |
gnd/smogdance | 9,466,107,950,514 | f92fda03e15a98fb6fbe2129179198102b4db3da | 601122d5067773c7cb07c5799128cd803b3e64b8 | /cleanup-monthly.py | 7fe7c56fd21311b6d92bb20a5357919a285b51d7 | [] | no_license | https://github.com/gnd/smogdance | eb6599e2da59892bf0a105e05a77136f0c69c2b9 | 2221db0a5827ddb85b2bca5afb9a2cb7875f79f2 | refs/heads/master | 2021-05-09T19:42:02.617667 | 2020-03-31T00:14:57 | 2020-03-31T00:14:57 | 118,653,520 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
# # -*- coding: utf-8 -*-
""" Smogdance
An open-source collection of scripts to collect, store and graph air quality data
from publicly available sources.
This runs once daily to remove records older than 30 days
from the DATA_TABLE_MONTH table
gnd, 2017 - 2018
"""
import os
import sys
import time
import shlex
import MySQLdb
import subprocess
import ConfigParser
### load config
settings_file = os.path.join(sys.path[0], 'settings_python')
config = ConfigParser.ConfigParser()
config.readfp(open(settings_file))
### connect to the db
DB_HOST = config.get('database', 'DB_HOST')
DB_USER = config.get('database', 'DB_USER')
DB_PASS = config.get('database', 'DB_PASS')
DB_NAME = config.get('database', 'DB_NAME')
DATA_TABLE_MONTH = config.get('database', 'DATA_TABLE_MONTH')
db = MySQLdb.connect(host=DB_HOST, user=DB_USER, passwd=DB_PASS, db=DB_NAME, use_unicode=True, charset="utf8")
cur = db.cursor()
#####
##### Remove records older than 30 days
#####
query = "DELETE FROM %s where timestamp < DATA_SUB(now() - INTERVAL 30 day)" % (DATA_TABLE_MONTH)
cur.execute(query)
db.commit()
db.close()
| UTF-8 | Python | false | false | 1,145 | py | 31 | cleanup-monthly.py | 30 | 0.700437 | 0.68559 | 0 | 43 | 25.627907 | 110 |
KarthikeyaSarma30/PROJECT_EULER | 8,392,366,121,126 | 4fb093a455f1ea918620a4e2093928de6ebe2b50 | 87571e863a3b0aeec8cf03111ae753107103f70f | /projecteuler6.py | 7e94f07c3f308fb6a1ffdb341ee6eaa652b7e55f | [] | no_license | https://github.com/KarthikeyaSarma30/PROJECT_EULER | 601e4178d68be1b5bfc6ab5b4f84683b17556bec | 6ff70b1f1f267965c5e4378a83936364bac5b9d2 | refs/heads/main | 2023-05-10T08:47:43.944846 | 2021-06-23T14:34:10 | 2021-06-23T14:34:10 | 379,562,421 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | n=100
squ_sum=((n*(n+1))/2)**2
sum_squ=((n*(n+1)*(2*n+1))/6)
print(squ_sum-sum_squ)
| UTF-8 | Python | false | false | 88 | py | 4 | projecteuler6.py | 4 | 0.511364 | 0.397727 | 0 | 4 | 20 | 29 |
tburgin/pycreateuserpkg | 4,080,218,953,955 | 8150b39ec370761d3c8a9b1f34d890c320808007 | b5a8f27a79a618affb7620585d5c07195dbe8be8 | /locallibs/shadowhash.py | 530f8fcaebbb539f6348373da18a08f5906ad3c8 | [
"LicenseRef-scancode-warranty-disclaimer",
"Apache-2.0"
] | permissive | https://github.com/tburgin/pycreateuserpkg | aa175a46f8d7cdc46f81bff6a64385742daa0d50 | e4c1ce5ed718da68e90c6b21d54e5141f5acecb3 | refs/heads/master | 2020-12-18T12:55:08.732819 | 2020-01-24T21:01:44 | 2020-01-24T21:01:44 | 235,390,150 | 1 | 0 | NOASSERTION | true | 2020-01-21T16:38:00 | 2020-01-21T16:37:59 | 2020-01-11T17:39:49 | 2019-11-03T17:41:16 | 76 | 0 | 0 | 0 | null | false | false | # Copyright 2017 Greg Neagle.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''Functions for generating ShadowHashData'''
import hashlib
from . import arc4random
from . import pbkdf2
from . import plistutils
def make_salt(saltlen):
'''Generate a random salt'''
salt = ''
for char in arc4random.randsample(0, 255, saltlen):
salt += chr(char)
return salt
def generate(password):
'''Generate a ShadowHashData structure as used by macOS 10.8+'''
iterations = arc4random.randrange(30000, 50000)
salt = make_salt(32)
keylen = 128
try:
entropy = hashlib.pbkdf2_hmac(
'sha512', password, salt, iterations, dklen=keylen)
except AttributeError:
# old Python, do it a different way
entropy = pbkdf2.pbkdf2_bin(
password, salt, iterations=iterations, keylen=keylen,
hashfunc=hashlib.sha512)
data = {
'SALTED-SHA512-PBKDF2': {
'entropy': buffer(entropy),
'iterations': iterations,
'salt': buffer(salt)
},
}
return plistutils.write_plist(data, plist_format='binary')
| UTF-8 | Python | false | false | 1,635 | py | 9 | shadowhash.py | 5 | 0.670948 | 0.642202 | 0 | 54 | 29.277778 | 74 |
premandfriends/boardfarm-1 | 12,060,268,167,340 | 0de30a5990ed145ec01eec880e4c1faa07a49a2d | 92b6091b6b37d55649aa31c606022923931085ad | /devices/base.py | a62d46fe1b4b4dc59b33a7b05c577988d1bbd5fa | [] | permissive | https://github.com/premandfriends/boardfarm-1 | 043d5db7d5cf09826eb4498f8ce8105fa065f5c2 | 3c952c94507fff25ba9955cad993610ea4a95e2e | refs/heads/master | 2020-04-06T11:09:29.868388 | 2019-04-29T09:12:43 | 2019-04-30T14:10:50 | 157,405,854 | 0 | 0 | BSD-3-Clause-Clear | true | 2018-11-13T15:52:11 | 2018-11-13T15:52:10 | 2018-11-13T09:07:48 | 2018-11-13T15:37:45 | 730 | 0 | 0 | 0 | null | false | null | # Copyright (c) 2015
#
# All rights reserved.
#
# This file is distributed under the Clear BSD license.
# The full text can be found in LICENSE in the root directory.
import pexpect
from datetime import datetime
import re
import os
import time
import common
import error_detect
import ipaddress
from lib.regexlib import LinuxMacFormat, AllValidIpv6AddressesRegex
from lib.logging import LoggerMeta, o_helper
# To Do: maybe make this config variable
BFT_DEBUG = "BFT_DEBUG" in os.environ
class BaseDevice(pexpect.spawn):
__metaclass__ = LoggerMeta
log = ""
log_calls = ""
prompt = ['root\\@.*:.*#', ]
delaybetweenchar = None
def get_interface_ipaddr(self, interface):
self.sendline("\nifconfig %s" % interface)
self.expect('addr:(\d{1,3}.\d{1,3}.\d{1,3}.\d{1,3}).*(Bcast|P-t-P):', timeout=5)
ipaddr = self.match.group(1)
self.expect(self.prompt)
return ipaddr
def get_interface_ip6addr(self, interface):
self.sendline("\nifconfig %s" % interface)
self.expect_exact("ifconfig %s" % interface)
self.expect(self.prompt)
for match in re.findall(AllValidIpv6AddressesRegex, self.before):
ip6addr = ipaddress.IPv6Address(unicode(match))
if not ip6addr.is_link_local:
# TODO: at some point just return ip6addr
return match
raise Exception("Did not find non-link-local ipv6 address")
def get_interface_macaddr(self, interface):
self.sendline('cat /sys/class/net/%s/address' % interface)
self.expect_exact('cat /sys/class/net/%s/address' % interface)
self.expect(LinuxMacFormat)
macaddr = self.match.group()
self.expect(self.prompt)
return macaddr
def get_seconds_uptime(self):
'''Return seconds since last reboot. Stored in /proc/uptime'''
self.sendcontrol('c')
self.expect(self.prompt)
self.sendline('\ncat /proc/uptime')
self.expect('((\d+)\.(\d{2}))(\s)(\d+)\.(\d{2})')
seconds_up = float(self.match.group(1))
self.expect(self.prompt)
return seconds_up
def get_logfile_read(self):
if hasattr(self, "_logfile_read"):
return self._logfile_read
else:
return None
def expect_prompt(self, timeout=30):
self.expect(self.prompt, timeout=timeout)
def check_output(self, cmd, timeout=30):
'''Send a string to device, then return the output
between that string and the next prompt.'''
self.sendline("\n" + cmd)
self.expect_exact(cmd, timeout=5)
try:
self.expect(self.prompt, timeout=timeout)
except Exception as e:
self.sendcontrol('c')
raise Exception("Command did not complete within %s seconds. Prompt was not seen." % timeout)
return self.before.strip()
def write(self, string):
self._logfile_read.write(string)
def set_logfile_read(self, value):
if value == None:
self._logfile_read = None
return
if isinstance(value, o_helper):
self._logfile_read = value
elif value is not None:
self._logfile_read = o_helper(self, value, getattr(self, "color", None))
logfile_read = property(get_logfile_read, set_logfile_read)
def interact(self, escape_character=chr(29),
input_filter=None, output_filter=None):
o = self._logfile_read
self.logfile_read = None
ret = super(BaseDevice, self).interact(escape_character,
input_filter, output_filter)
self.logfile_read = o
return ret
# perf related
def parse_sar_iface_pkts(self, wan, lan):
self.expect('Average.*idle\r\nAverage:\s+all(\s+[0-9]+.[0-9]+){6}\r\n')
idle = float(self.match.group(1))
self.expect("Average.*rxmcst/s.*\r\n")
wan_pps = None
client_pps = None
if lan is None:
exp = [wan]
else:
exp = [wan,lan]
for x in range(0, len(exp)):
i = self.expect(exp)
if i == 0: # parse wan stats
self.expect("(\d+.\d+)\s+(\d+.\d+)")
wan_pps = float(self.match.group(1)) + float(self.match.group(2))
if i == 1:
self.expect("(\d+.\d+)\s+(\d+.\d+)")
client_pps = float(self.match.group(1)) + float(self.match.group(2))
return idle, wan_pps, client_pps
def check_perf(self):
self.sendline('uname -r')
self.expect('uname -r')
self.expect(self.prompt)
self.kernel_version = self.before
self.sendline('\nperf --version')
i = self.expect(['not found', 'perf version'])
self.expect(self.prompt)
if i == 0:
return False
return True
def check_output_perf(self, cmd, events):
perf_args = self.perf_args(events)
self.sendline("perf stat -a -e %s time %s" % (perf_args, cmd))
def parse_perf(self, events):
mapping = self.parse_perf_board()
ret = []
for e in mapping:
if e['name'] not in events:
continue
self.expect("(\d+) %s" % e['expect'])
e['value'] = int(self.match.group(1))
ret.append(e)
return ret
# end perf related
# Optional send and expect functions to try and be fancy at catching errors
def send(self, s):
if BFT_DEBUG:
if 'pexpect/__init__.py: sendline():' in error_detect.caller_file_line(3):
idx = 4
else:
idx = 3
common.print_bold("%s = sending: %s" %
(error_detect.caller_file_line(idx), repr(s)))
if self.delaybetweenchar is not None:
ret = 0
for char in s:
ret += super(BaseDevice, self).send(char)
time.sleep(self.delaybetweenchar)
return ret
return super(BaseDevice, self).send(s)
def expect_helper(self, pattern, wrapper, *args, **kwargs):
if not BFT_DEBUG:
return wrapper(pattern, *args, **kwargs)
if 'base.py: expect():' in error_detect.caller_file_line(3) or \
'base.py: expect_exact():' in error_detect.caller_file_line(3):
idx = 5
else:
idx = 3
common.print_bold("%s = expecting: %s" %
(error_detect.caller_file_line(idx), repr(pattern)))
try:
ret = wrapper(pattern, *args, **kwargs)
frame = error_detect.caller_file_line(idx)
if hasattr(self.match, "group"):
common.print_bold("%s = matched: %s" %
(frame, repr(self.match.group())))
else:
common.print_bold("%s = matched: %s" %
(frame, repr(pattern)))
return ret
except:
common.print_bold("expired")
raise
def expect(self, pattern, *args, **kwargs):
wrapper = super(BaseDevice, self).expect
return self.expect_helper(pattern, wrapper, *args, **kwargs)
def expect_exact(self, pattern, *args, **kwargs):
wrapper = super(BaseDevice, self).expect_exact
return self.expect_helper(pattern, wrapper, *args, **kwargs)
def sendcontrol(self, char):
if BFT_DEBUG:
common.print_bold("%s = sending: control-%s" %
(error_detect.caller_file_line(3), repr(char)))
return super(BaseDevice, self).sendcontrol(char)
def expect_exact_split(self, pattern, nsplit=1, *args, **kwargs):
pass
def enable_ipv6(self, interface):
self.sendline("sysctl net.ipv6.conf."+interface+".accept_ra=2")
self.expect(self.prompt, timeout=30)
self.sendline("sysctl net.ipv6.conf."+interface+".disable_ipv6=0")
self.expect(self.prompt, timeout=30)
def disable_ipv6(self, interface):
self.sendline("sysctl net.ipv6.conf."+interface+".disable_ipv6=1")
self.expect(self.prompt, timeout=30)
def set_printk(self, CUR=1, DEF=1, MIN=1, BTDEF=7):
try:
self.sendline('echo "%d %d %d %d" > /proc/sys/kernel/printk'% (CUR, DEF, MIN, BTDEF))
self.expect(self.prompt, timeout=10)
if not BFT_DEBUG:
common.print_bold("printk set to %d %d %d %d" % (CUR, DEF, MIN, BTDEF))
except:
pass
def prefer_ipv4(self, pref=True):
"""Edits the /etc/gai.conf file
This is to give/remove ipv4 preference (by default ipv6 is preferred)
See /etc/gai.conf inline comments for more details
"""
if pref is True:
self.sendline("sed -i 's/^#precedence ::ffff:0:0\/96 100/precedence ::ffff:0:0\/96 100/' /etc/gai.conf")
else:
self.sendline("sed -i 's/^precedence ::ffff:0:0\/96 100/#precedence ::ffff:0:0\/96 100/' /etc/gai.conf")
self.expect(self.prompt)
| UTF-8 | Python | false | false | 9,126 | py | 5 | base.py | 5 | 0.564541 | 0.552487 | 0 | 271 | 32.671587 | 119 |
ethanjli/onshape-laser-cutting | 4,320,737,150,643 | 3a1d7f4ef19ebfe6eab129bd293aaa00289daaae | a3ea097db7fc228e21ad44f634c18d3158f13dc9 | /preprocess.py | e5cb5a8b26eebbd4527b799202b5257378118548 | [
"BSD-3-Clause"
] | permissive | https://github.com/ethanjli/onshape-laser-cutting | 8355b69f70fad858d06bfa6ba2916bbc076032a9 | c2069154d1bb68c1c494a48cd3a8a3b4fa347eba | refs/heads/master | 2021-05-14T03:56:59.124051 | 2018-01-08T21:51:12 | 2018-01-08T21:51:12 | 116,631,599 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
import os
import subprocess
import argparse
from lxml import etree
# File path utilities
class FileTypeError(ValueError):
"""Exception raised when attempting to process unsupported file types."""
pass
def get_file_ext(file_path: str) -> str:
"""Returns the file extension for the provided file path.
Args:
file_path: a file path with or without a file extension.
Returns:
The file extension, including the leading '.', of file_path. Empty
string when no file extension exists.
"""
return os.path.splitext(os.path.basename(file_path))[1]
def get_svg_name(dxf_path: str) -> str:
"""Returns the path the provided dxf file path renamed to an svg file.
Args:
dxf_path: a file path, such as for a dxf file.
Returns:
A file path which is identical to dxf_path but with a '.svg' file
extension instead of whatever file extension was in dxf_path.
"""
(input_name, __) = os.path.splitext(os.path.basename(dxf_path))
svg_name = input_name + '.svg'
return svg_name
# Preprocessing
def convert(dxf_path: str, svg_path: str) -> None:
"""Runs Inkscape to import a dxf file and save it as an svg file.
Args:
dxf_path: a file path to a dxf file. Must have '.dxf' as its file
extension.
svg_path: a file path to the svg file to create.
"""
subprocess.run(['inkscape', '-l', svg_path, dxf_path])
def style_strokes(svg_path: str, stroke_color: str='#ff0000',
stroke_width: float=0.07559055) -> etree.ElementTree:
"""Modifies a svg file so that all black paths become laser cutting paths.
Args:
svg_path: a file path to the svg file to modify and overwrite.
stroke_color: the color, as a hex code, to set paths to.
stroke_width: the stroke width, in pixels (at 96 pixels per inch), to
set paths to.
Returns:
The modified XML tree.
"""
xml = etree.parse(svg_path)
svg = xml.getroot()
paths = svg.findall('.//{http://www.w3.org/2000/svg}path'
'[@style="stroke:#000000;fill:none"]')
for path in paths:
path.set('style', (
'fill:none;stroke:{};stroke-opacity:1;stroke-width:{};'
'stroke-miterlimit:4;stroke-dasharray:none'
).format(stroke_color, stroke_width))
return xml
def preprocess(dxf_path: str, svg_path: str=None) -> None:
"""Preprocesses the specified dxf file and saves the result.
Args:
dxf_path: the path of the dxf file to preprocess. Must end in '.dxf'.
svg_path: the path of the file to save the preprocessed svg result.
Defaults to dxf_path, but ending in '.svg' instead of '.dxf'.
Raises:
FileTypeError: if dxf_path does not end in '.dxf'.
"""
dxf_ext = get_file_ext(dxf_path)
if dxf_ext != '.dxf':
raise FileTypeError('Unsupported file extension {} on input file {}!'
.format(dxf_ext, dxf_path))
if svg_path is None:
parent_path = os.path.dirname(dxf_path)
svg_path = os.path.join(parent_path, get_svg_name(dxf_path))
elif not get_file_ext(svg_path):
parent_path = svg_path
svg_path = os.path.join(parent_path, get_svg_name(dxf_path))
convert(dxf_path, svg_path)
print('Converted {} to {}.'.format(dxf_path, svg_path))
xml = style_strokes(svg_path)
xml.write(svg_path)
print('Set stroke styles on {}.'.format(svg_path))
def main(input_path: str, output_path: str) -> None:
"""Preprocesses the specified dxf file(s) and saves the result(s).
Args:
dxf_path: the path of the dxf file to preprocess, or the directory
containing the dxf files to preprocess.
svg_path: the path of the file to save the preprocessed svg result, or
the path of the directory of the files to save the preprocessed svg
results. If dxf_path is a single file, defaults to dxf_path, but
with a '.svg' file extension instead of '.dxf'. If dxf_path is a
directory, defaults to dxf_path.
"""
input_ext = get_file_ext(input_path)
if input_ext:
preprocess(input_path, output_path)
return
for filename in os.listdir(input_path):
input_ext = get_file_ext(filename)
try:
preprocess(os.path.join(input_path, filename), output_path)
except FileTypeError:
print('Skipped {}'.format(filename))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Preprocess an Onshape DXF drawing export for laser cutting.'
)
parser.add_argument(
'input', type=str, help=('Path to the DXF file to preprocess, or path to '
'the directory of DXF files to preprocess.')
)
parser.add_argument(
'-o', '--output', type=str, default=None,
help=('Path to the output SVG file to generate, or path to the intended '
'parent directory of the output SVG file. Default for a svg input '
'path: the input path, but with .dxf replaced by .svg. Default '
'for a directory input path: the input directory.')
)
args = parser.parse_args()
main(args.input, args.output)
| UTF-8 | Python | false | false | 5,322 | py | 2 | preprocess.py | 1 | 0.62251 | 0.616873 | 0 | 144 | 35.951389 | 82 |
databand-ai/dbnd | 6,073,083,805,001 | 472202b115c9f0fc10771a32085e549c4b64ca4f | b7163b44b679e082fe97cf7fcd0c73b2fcdb38eb | /modules/dbnd/src/dbnd/_core/utils/dotdict.py | cf8236029bd697b970b97da06b4ae4e5a739e1ad | [
"Apache-2.0"
] | permissive | https://github.com/databand-ai/dbnd | 70c95d95e12bfb8ab471a6dce27691ed658cb92d | d59c99dcdcd280d7eec36a693dd80f8c8c831ea2 | refs/heads/develop | 2023-06-24T18:07:56.524526 | 2023-05-28T07:57:36 | 2023-05-28T07:57:36 | 231,361,064 | 257 | 33 | Apache-2.0 | false | 2023-08-06T08:30:28 | 2020-01-02T10:42:47 | 2023-06-08T05:46:38 | 2023-08-06T08:30:27 | 11,951 | 239 | 33 | 24 | Python | false | false | # © Copyright Databand.ai, an IBM Company 2022
import inspect
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def _as_dotted_dict(**dict_obj):
return dotdict(**dict_obj)
def build_dict_from_instance_properties(class_instance) -> dict:
"""Returns dict of all class properties including @property methods"""
properties = {}
for prop_name in dir(class_instance):
prop_value = getattr(class_instance, prop_name)
if not prop_name.startswith("__") and not inspect.ismethod(prop_value):
properties[prop_name] = prop_value
return properties
class rdotdict(dict):
"""
this is "recursive" dotdict - provides dot-notation access to dict, and recursively
adds itself for internal values (dicts and lists). So this code is valid:
```
d = {"a": [{"b": 42}]}
rdotdict(d).a[0].b == 42
```
"""
def __getattr__(self, item):
return self[item]
def __getitem__(self, item):
return rdotdict.try_create(dict.__getitem__(self, item))
@staticmethod
def try_create(val):
"""Applies rdotdict for rdotdict-able object (i.e dict or list)"""
if isinstance(val, dict):
return rdotdict(**val)
if isinstance(val, list):
return [rdotdict.try_create(x) for x in val]
return val
| UTF-8 | Python | false | false | 1,450 | py | 1,775 | dotdict.py | 1,513 | 0.619048 | 0.612836 | 0 | 51 | 27.411765 | 87 |
bpinkert/portfolio | 9,594,956,974,558 | 721e4c0b91ec491ff9729d374d49bbc67ce0657f | be652b0b1b255df320d244caf115e6fabb60c77d | /savvystripe/checkout/urls.py | bcb8bf4a3155f11f2353aa10d76b6a0c83aa76b7 | [] | no_license | https://github.com/bpinkert/portfolio | 4b505458bbdca3bada05039ea791c6cba3e58ffd | d8ff0582611f9dabaeee6d6ae94113fd17b98ccb | refs/heads/master | 2022-12-05T08:25:10.105766 | 2019-06-24T22:25:59 | 2019-06-24T22:25:59 | 192,994,316 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.conf.urls import url, include
from django.contrib import admin
from django.conf import settings
from django.conf.urls.static import static
from .views import views as checkout_views
from .models import Item, Service
urlpatterns=[
url(r'^add-to-cart/$', checkout_views.add_to_cart, name='add-to-cart' ),
url(r'^add-subscription/$', checkout_views.add_subscription, name='add-subscription'),
url(r'^before-checkout/$', checkout_views.before_checkout, name='before-checkout'),
url(r'^cart/$', checkout_views.get_cart, name='cart'),
url(r'^cart-subscribe/$', checkout_views.cart_subscribe, name='cart-subscribe'),
url(r'^cart-total/$', checkout_views.get_cart_total, name='cart-total'),
url(r'^checkout/$', checkout_views.checkout, name='checkout'),
url(r'^checkout-thanks/$', checkout_views.checkoutThanks, name='checkoutThanks'),
url(r'^remove-from-cart/$', checkout_views.remove_from_cart, name='remove-from-cart'),
url(r'^remove-subscription/$', checkout_views.remove_subscription, name='remove-subscription'),
url(r'^unsubscribe/$', checkout_views.unsubscribe, name='ubsubscribe'),
url(r'^subscribe/$', checkout_views.subscribe, name='subscribe'),
url(r'^subscribe-card/$', checkout_views.subscribe_savecard, name='subscribe-card'),
] | UTF-8 | Python | false | false | 1,302 | py | 200 | urls.py | 117 | 0.718126 | 0.718126 | 0 | 24 | 53.291667 | 99 |
chibi314/2015-soft3 | 12,532,714,610,161 | b9d97ab175ca89e94452ee7142f67527debc652b | 6656ad45508c039cc0b171e76f6808e00803999d | /20151021/src/enshu_20151021/test/check_topic.py | 2432284fbe1b0795e2e94129b756db8c825d0e5d | [] | no_license | https://github.com/chibi314/2015-soft3 | 25a9a016f2ee8e80255ad4fce5dffa6f6a5be095 | bcb5329395e74c8b7612d70347360fabc20c8240 | refs/heads/master | 2020-12-26T02:21:52.297158 | 2016-10-14T09:17:49 | 2016-10-14T09:17:49 | 43,403,433 | 0 | 0 | null | true | 2015-10-07T02:14:01 | 2015-09-30T01:02:00 | 2015-09-29T08:51:37 | 2015-10-07T02:13:01 | 57 | 0 | 0 | 0 | null | null | null | #!/usr/bin/env python
import rospy
import sys, time
import unittest
from rostopic import _rostopic_info
## A sample python unit test
class TestCheckTopic(unittest.TestCase):
def test_check_topic(self):
time.sleep(3)
topic = rospy.get_param("/test/topic")
info = _rostopic_info(topic)
self.assertTrue(not info)
if __name__ == '__main__':
import rostest
rostest.rosrun('enshu_20151021', 'test_check_topic', TestCheckTopic)
| UTF-8 | Python | false | false | 468 | py | 36 | check_topic.py | 11 | 0.675214 | 0.655983 | 0 | 18 | 25 | 72 |
cnxtech/supply-claim | 17,824,114,307,360 | 2f0dda6899cddb3fb4d235b221bac5d2f644add1 | 3aca27d7522fb2ee7ebb31898b9f2785ee0210cc | /backend/epcis_api/routes.py | 3df03ea975305a04494f09a5059b94149aec66f7 | [] | no_license | https://github.com/cnxtech/supply-claim | 62285d578537e96d07d3e9dc525110cfc16dd7b1 | cd3e5894b47ef63887d4fd8ebc1ab9e1a42d420c | refs/heads/master | 2023-05-15T05:04:16.986853 | 2017-10-12T13:20:33 | 2017-10-12T13:20:33 | 190,126,547 | 0 | 0 | null | true | 2023-05-01T20:12:23 | 2019-06-04T04:03:22 | 2019-06-04T04:03:25 | 2023-05-01T20:12:20 | 28 | 0 | 0 | 2 | Python | false | false | # -*- coding: utf-8 -*
from epcis_api import api
from epcis_api.api import EPCISEventAPI
api.add_resource(EPCISEventAPI, '/epcis/', endpoint='epcis')
api.add_resource(EPCISEventAPI, '/epcis/<string:id>', endpoint='epcisId') | UTF-8 | Python | false | false | 225 | py | 15 | routes.py | 7 | 0.733333 | 0.728889 | 0 | 7 | 31.285714 | 73 |
ydimtirov/Personal | 16,664,473,116,023 | ceb24d2de65265dd3b231e9f07c105e2916ae2a4 | fc9d4a6330c771a4b4805b501dcad3fab6128e86 | /python_scripts/kmeans.py | 94b34af3c9bfeb960b29c23b8e53a7401cf52420 | [] | no_license | https://github.com/ydimtirov/Personal | 9f0659f2a1ac3e33bcd85300ed5239c85e8d9a84 | 7ee57a6696cd543b7cd28373149b924dad8100b8 | refs/heads/master | 2021-01-11T11:58:39.857005 | 2017-02-11T08:53:25 | 2017-02-11T08:53:25 | 79,540,729 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
import urllib
# url with dataset
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
# download the file
raw_data = urllib.urlopen(url)
# load the CSV file as a numpy matrix
dataset = np.loadtxt(raw_data, delimiter=",")
# separate the data from the target attributes
X = dataset[:,0:8]
y = dataset[:,8]
from sklearn import preprocessing
# normalize the data attributes
normalized_X = preprocessing.normalize(X)
# standardize the data attributes
standardized_X = preprocessing.scale(X)
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y)
# display the relative importance of each attribute
# print(model.feature_importances_)
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
# create the RFE model and select 3 attributes
rfe = RFE(model, 3)
rfe = rfe.fit(X, y)
# summarize the selection of the attributes
# print(rfe.support_)
# print(rfe.ranking_)
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted)) | UTF-8 | Python | false | false | 1,426 | py | 35 | kmeans.py | 20 | 0.785414 | 0.781907 | 0 | 49 | 28.122449 | 113 |
tensorflow/tensorflow | 5,085,241,294,089 | 39f17e04f76e836cc39d5b419f81914df9f2da5a | 4bcc9806152542ab43fc2cf47c499424f200896c | /tensorflow/python/ops/resources.py | b1afb75d51f9a0308f4b3feff6bc26a94ecbc67b | [
"Apache-2.0",
"LicenseRef-scancode-generic-cla",
"BSD-2-Clause"
] | permissive | https://github.com/tensorflow/tensorflow | 906276dbafcc70a941026aa5dc50425ef71ee282 | a7f3934a67900720af3d3b15389551483bee50b8 | refs/heads/master | 2023-08-25T04:24:41.611870 | 2023-08-25T04:06:24 | 2023-08-25T04:14:08 | 45,717,250 | 208,740 | 109,943 | Apache-2.0 | false | 2023-09-14T20:55:50 | 2015-11-07T01:19:20 | 2023-09-14T19:53:18 | 2023-09-14T20:55:50 | 933,151 | 177,590 | 88,918 | 2,038 | C++ | false | false | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for using generic resources."""
# pylint: disable=g-bad-name
import collections
import os
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import array_ops_stack
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.util import tf_should_use
_Resource = collections.namedtuple("_Resource",
["handle", "create", "is_initialized"])
def register_resource(handle, create_op, is_initialized_op, is_shared=True):
"""Registers a resource into the appropriate collections.
This makes the resource findable in either the shared or local resources
collection.
Args:
handle: op which returns a handle for the resource.
create_op: op which initializes the resource.
is_initialized_op: op which returns a scalar boolean tensor of whether
the resource has been initialized.
is_shared: if True, the resource gets added to the shared resource
collection; otherwise it gets added to the local resource collection.
"""
resource = _Resource(handle, create_op, is_initialized_op)
if is_shared:
ops.add_to_collection(ops.GraphKeys.RESOURCES, resource)
else:
ops.add_to_collection(ops.GraphKeys.LOCAL_RESOURCES, resource)
def shared_resources():
"""Returns resources visible to all tasks in the cluster."""
return ops.get_collection(ops.GraphKeys.RESOURCES)
def local_resources():
"""Returns resources intended to be local to this session."""
return ops.get_collection(ops.GraphKeys.LOCAL_RESOURCES)
def report_uninitialized_resources(resource_list=None,
name="report_uninitialized_resources"):
"""Returns the names of all uninitialized resources in resource_list.
If the returned tensor is empty then all resources have been initialized.
Args:
resource_list: resources to check. If None, will use shared_resources() +
local_resources().
name: name for the resource-checking op.
Returns:
Tensor containing names of the handles of all resources which have not
yet been initialized.
"""
if resource_list is None:
resource_list = shared_resources() + local_resources()
with ops.name_scope(name):
# Run all operations on CPU
local_device = os.environ.get(
"TF_DEVICE_FOR_UNINITIALIZED_VARIABLE_REPORTING", "/cpu:0")
with ops.device(local_device):
if not resource_list:
# Return an empty tensor so we only need to check for returned tensor
# size being 0 as an indication of model ready.
return array_ops.constant([], dtype=dtypes.string)
# Get a 1-D boolean tensor listing whether each resource is initialized.
variables_mask = math_ops.logical_not(
array_ops_stack.stack([r.is_initialized for r in resource_list]))
# Get a 1-D string tensor containing all the resource names.
variable_names_tensor = array_ops.constant(
[s.handle.name for s in resource_list])
# Return a 1-D tensor containing all the names of uninitialized resources.
return array_ops.boolean_mask(variable_names_tensor, variables_mask)
@tf_should_use.should_use_result
def initialize_resources(resource_list, name="init"):
"""Initializes the resources in the given list.
Args:
resource_list: list of resources to initialize.
name: name of the initialization op.
Returns:
op responsible for initializing all resources.
"""
if resource_list:
return control_flow_ops.group(*[r.create for r in resource_list], name=name)
return control_flow_ops.no_op(name=name)
| UTF-8 | Python | false | false | 4,390 | py | 20,451 | resources.py | 13,396 | 0.715034 | 0.712073 | 0 | 117 | 36.521368 | 80 |
jorzel/codefights | 4,724,464,065,452 | e0259143fb743f31d30c3bb7972bdc7dab0bed6f | e748e6d96aace1c9149327f384e0de07d743715a | /arcade/core/drawRectangle.py | 545d9c16759d437660b2a1171de9b9e4a853a6ac | [] | no_license | https://github.com/jorzel/codefights | cdfc4cb32261b064ffc605bfd927bf237885b5d2 | 28b62a2ae3809f0eb487198044c0fe74be09d4e8 | refs/heads/master | 2022-04-28T06:54:26.170503 | 2022-03-23T22:22:20 | 2022-03-23T22:22:20 | 110,818,719 | 3 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | """
You are implementing a command-line version of the Paint app. Since the command line doesn't support colors, you are using different characters to represent pixels. Your current goal is to support rectangle x1 y1 x2 y2 operation, which draws a rectangle that has an upper left corner at (x1, y1) and a lower right corner at (x2, y2). Here the x-axis points from left to right, and the y-axis points from top to bottom.
Given the initial canvas state and the array that represents the coordinates of the two corners, return the canvas state after the operation is applied. For the details about how rectangles are painted, see the example.
Example
For
canvas = [['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'],
['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'],
['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'],
['b', 'b', 'b', 'b', 'b', 'b', 'b', 'b'],
['b', 'b', 'b', 'b', 'b', 'b', 'b', 'b']]
and rectangle = [1, 1, 4, 3], the output should be
drawRectangle(canvas, rectangle) = [['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'],
['a', '*', '-', '-', '*', 'a', 'a', 'a'],
['a', '|', 'a', 'a', '|', 'a', 'a', 'a'],
['b', '*', '-', '-', '*', 'b', 'b', 'b'],
['b', 'b', 'b', 'b', 'b', 'b', 'b', 'b']]
Note that rectangle sides are depicted as -s and |s, asterisks (*) stand for its corners and all of the other "pixels" remain the same. Color in the example is used only for illustration.
"""
def drawRectangle(canvas, rectangle):
lt = rectangle[0], rectangle[1]
rt = rectangle[2], rectangle[1]
lb = rectangle[0], rectangle[3]
rb = rectangle[2], rectangle[3]
for row in range(lt[1], lb[1] + 1):
for col in range(lt[0], rt[0] + 1):
if (col, row) in [lt, rt, lb, rb]:
canvas[row][col] = '*'
elif row in (lt[1], lb[1]):
canvas[row][col] = '-'
elif col in (lt[0], rt[0]):
canvas[row][col] = '|'
return canvas | UTF-8 | Python | false | false | 2,082 | py | 305 | drawRectangle.py | 304 | 0.506244 | 0.491835 | 0 | 39 | 52.410256 | 418 |
dopamine333/ARPG_Prototype | 5,257,039,971,339 | 9cc83d5c5ba0c1811f323892bc9483d9c21ebdca | 3b687583c29e44b5d6d835b9b770a3a19119699f | /Scripts/Factory/FactoryManager.py | f84c37f1261be29938cf4de657a12d2672447f96 | [] | no_license | https://github.com/dopamine333/ARPG_Prototype | 3acc7dfe358eb9501168b0a5eae632644f8015d2 | ec241f69194e957a9d421bd6395f4aa54dc1749b | refs/heads/main | 2023-07-16T11:43:55.206606 | 2021-08-14T15:12:06 | 2021-08-14T15:12:06 | 384,057,838 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from Scripts.Factory.OnLevelGameObjectFactory import OnLevelGameObjectFactory
from Scripts.Factory.CharacterFactory import CharacterFactory
from Scripts.Tools.Singleton import Singleton
class FactoryManager(Singleton):
def __init__(self) -> None:
self.characterfactory = CharacterFactory()
self.onlevelgameobjectfactory = OnLevelGameObjectFactory()
def get_characterfactory(self):
return self.characterfactory
def get_onlevelgameobjectfactory(self):
return self.onlevelgameobjectfactory
| UTF-8 | Python | false | false | 535 | py | 65 | FactoryManager.py | 65 | 0.783178 | 0.783178 | 0 | 15 | 34.666667 | 77 |
xcooo/scrapy-plus | 10,866,267,259,210 | edf8871eb3a9d1a2a8acc1467aa16d72b4bb99f5 | 63c67a26814a6fc6a68c21e1151cb5c760eeac86 | /scrapy_plus/core/downloader.py | 1ca1c82a5920ceb84a5bf6a6970443a9d7887f16 | [] | no_license | https://github.com/xcooo/scrapy-plus | 0fc519fcb5e08653e716409889a0a972e4e9e5df | 4bceb69d054d3a54c558383de79cc8187dbdaeec | refs/heads/master | 2022-01-21T21:05:03.829997 | 2019-07-29T02:48:38 | 2019-07-29T02:48:38 | 198,324,315 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # encoding: utf-8
# !/usr/bin/env python
"""
@file: downloader.py
@author: www.xcooo.cn
@Mail: 602006050@qq.com
"""
# 下载器
import requests
from ..http.response import Response
from ..utils.log import logger
class Downloader():
# 完成对下载器的封装
def get_response(self, request):
"""
实现构造请求对象,发送请求,返回响应
:param request: request
:return: response
"""
if request.method.upper() == 'GET':
resp = requests.get(request.url, headers=request.headers, params=request.params)
elif request.method.upper() == 'POST':
resp = requests.post(request.url, headers=request.headers, params=request.params, data=request.data)
else:
raise Exception('请求方法不支持: <{}>'.format(request.method))
logger.info('<{} {}>'.format(resp.status_code,resp.request.url))
return Response(url=resp.url, headers=resp.headers, body=resp.content, status_code=resp.status_code)
| UTF-8 | Python | false | false | 1,023 | py | 20 | downloader.py | 19 | 0.640084 | 0.629591 | 0 | 30 | 30.733333 | 112 |
tanvir43/daily-eCommerce | 4,114,578,703,234 | eebe98c2051a8dd59c1b636a221cf6337b6135ee | 8575c8e29ac5bdac7736e39535fdbadbd3ce2b3d | /products/migrations/0008_delete_categorymanager.py | 76040a3783cd09236297871f963628b419f5500a | [] | no_license | https://github.com/tanvir43/daily-eCommerce | 795bf4abb4e3021dfc05b7a42b194f66fd591ab1 | 418158b3e3559c3a644c2b34ca63170b1b1cb8d2 | refs/heads/master | 2022-12-17T23:30:08.348855 | 2020-09-22T05:06:13 | 2020-09-22T05:06:13 | 255,512,690 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.0.4 on 2020-04-23 13:47
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('products', '0007_auto_20200419_1150'),
]
operations = [
migrations.DeleteModel(
name='CategoryManager',
),
]
| UTF-8 | Python | false | false | 305 | py | 96 | 0008_delete_categorymanager.py | 93 | 0.606557 | 0.504918 | 0 | 16 | 18.0625 | 48 |
Raushan-Raj2552/Codeforces-solution | 11,897,059,457,704 | 0103347671f685824fbe93407548e6e2c4652b90 | f7404cbbabf00d49cd89765c5bbae328ab973591 | /208A.py | b5449a979100b6906cb1bf221e7d4bbfdf96f36f | [] | no_license | https://github.com/Raushan-Raj2552/Codeforces-solution | 2aab9580339eb2e3c4d65edb14021dd83d55879b | bcdecbed3b9d7369386e37ef4b366c3786e9e082 | refs/heads/master | 2022-10-15T16:18:17.189762 | 2020-05-30T06:20:55 | 2020-05-30T06:20:55 | 259,187,175 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | orig = str(input())
rem = "WUB"
res = orig.replace(rem,"")
print(res) | UTF-8 | Python | false | false | 72 | py | 98 | 208A.py | 97 | 0.597222 | 0.597222 | 0 | 4 | 16.5 | 26 |
tiger1016/mb_app | 6,133,213,343,681 | a3f806d76bda640f5f6ca64ce2ce1af21e26a4f9 | 347b5682618a26efe04a8baa4e059dc68051f253 | /pages/tests.py | b4bd5b648315eebd52e0b143b09aefe4827dc797 | [] | no_license | https://github.com/tiger1016/mb_app | 95db485aa6dd9b18a647074cbfec00c3eb6a698f | d631b8c0509c4948c504bedd1178c63e07f88643 | refs/heads/master | 2020-11-28T06:20:38.551059 | 2019-12-23T10:41:10 | 2019-12-23T10:41:10 | 229,726,668 | 0 | 0 | null | false | 2019-12-23T10:41:11 | 2019-12-23T10:08:53 | 2019-12-23T10:28:27 | 2019-12-23T10:41:11 | 0 | 0 | 0 | 0 | Python | false | false | from django.test import SimpleTestCase
# Create your tests here.
class SimpleTests(SimpleTestCase):
def test_homepage_status(self):
request = self.client.get('/pages/about/')
self.assertEqual(request.status_code, 200)
def test_aboutpage_status(self):
request = self.client.get('/pages/home/')
self.assertEqual(request.status_code, 200) | UTF-8 | Python | false | false | 383 | py | 4 | tests.py | 4 | 0.686684 | 0.671018 | 0 | 13 | 28.538462 | 50 |
CarlSpacklersGopher/DailyCodingProblems | 14,946,486,213,538 | 377704aae8d79e4a1c8bd7a0510ee152e9955c39 | 1cffaf09df21078fec1b0485cbb281555dc67933 | /2020_01_08_SumInList/test_sum_in_list.py | 639dfb300fe4a928d59b479978d71d747c92ad8a | [] | no_license | https://github.com/CarlSpacklersGopher/DailyCodingProblems | 52fc9fcefd63e0756f19dbd8e85d933a7518abc5 | 003ee64a75e4ccda85e31244ddd09bdb426c736f | refs/heads/master | 2020-12-07T13:06:10.205936 | 2020-01-09T06:18:31 | 2020-01-09T06:18:31 | 232,708,919 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import unittest
from sum_in_list import is_sum_in_list
class SumInListTestCase(unittest.TestCase):
"""Tests for 'sum_in_list.py'"""
def test_example(self):
"""Using the example in the problem statement"""
self.assertTrue(is_sum_in_list([10, 15, 3, 7], 17))
self.assertFalse(is_sum_in_list([10, 15, 3, 7], 19))
def test_k_not_present(self):
"""Purpose: Verify 2 numbers in the list do not sum to k"""
list_of_numbers = [10, 15, 3, 7]
k = 12
self.assertFalse(is_sum_in_list(list_of_numbers, k))
def test_big_list(self):
"""Purpose: Verify 2 numbers in the list sum to k."""
list_of_numbers = []
for i in range(1, 1000):
list_of_numbers.append(i)
# Make desired sum the sum of the last 2 numbers to maximize the number of items processed.
k = list_of_numbers[-1] + list_of_numbers[-2]
self.assertTrue(is_sum_in_list(list_of_numbers, k))
def test_negative_sum(self):
"""Purpose: Verify the handling of negative numbers"""
self.assertTrue(is_sum_in_list([-1, 0, 5, 9, -3], -4))
if __name__ == '__main__':
# Run tests. Dump output to log.
log_file_name = 'test_sum_in_list.log'
with open(log_file_name, 'w') as log_file:
runner = unittest.TextTestRunner(log_file)
unittest.main(testRunner=runner)
print("running tests")
| UTF-8 | Python | false | false | 1,413 | py | 2 | test_sum_in_list.py | 2 | 0.60368 | 0.575372 | 0 | 40 | 34.3 | 99 |
iostapyshyn/assp3 | 10,350,871,226,254 | ef2beb7dc1765aadb1cacc2d1a8de1db4003f8a3 | 3b6fc08a852a9204aa85c2a1f748af98772d783b | /c.py | c280be59936afb2b210016a714f1339f28f8f6e9 | [] | no_license | https://github.com/iostapyshyn/assp3 | 141a23cc76ae6f0c7ff54c7371412555ed35f32a | 3bd26f11f64def7c5992732026ad23c2966522ee | refs/heads/master | 2020-12-20T11:44:38.098100 | 2020-01-24T18:58:01 | 2020-01-24T18:58:01 | 236,064,145 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile
plt.style.use('ggplot')
from a import *
FILENAME = 'audio/aeiou_16000.wav'
DURATION = 100
# Computes CEPSTRUM for whole signal.
# The FFT size depends on the supplied window size
# window - analysis window
# hop - hop size
# count - the size of the matrix column
def stcep(y, window, hop, count):
N = len(window)
hops = len(y)//hop
kmat = np.zeros((hops, count))
for i in range(hops):
buf = y[i*hop:(i*hop)+N]
buf *= window[:len(buf)]
fftbuf = np.fft.fft(buf)
cepbuf = cepstrum(fftbuf)
kmat[i] = cepbuf[0:count]
return kmat
if __name__ == '__main__':
# Read and normalize the audio file
fs, y = scipy.io.wavfile.read(FILENAME)
y = y * (0.99 / max(abs(y))) # Normalize
# Calculate the number of samples for analysis
sample_duration_ms = 1/fs * 1000 # duration of one sample in ms
samples = int(DURATION / sample_duration_ms)
kmat = stcep(y, np.hanning(samples), 512, 200)
fig = plt.figure()
sub = fig.add_subplot(111)
for i in kmat:
plot_cepstrum(sub, i, fs)
plt.pause(DURATION/1000)
plt.cla()
plt.show()
| UTF-8 | Python | false | false | 1,243 | py | 3 | c.py | 3 | 0.621883 | 0.596943 | 0 | 52 | 22.903846 | 67 |
shantanaBernados/ootd | 14,508,399,533,593 | 849cd1f4827cd3c5dbc3317304b16e2405b92e7f | 240c0a54fb7d5d0748c13ded542e3e7c2836bc09 | /OOTD/main/feature_extraction.py | 6b64ad1564b5bbcf4f3b2bef98fe0baaa878cc2a | [] | no_license | https://github.com/shantanaBernados/ootd | 57fd7bbc237452d3c84326bff62883c2118e922a | 063fc462973fd0f7567c588ca516ff13fae12c2b | refs/heads/master | 2020-08-09T18:13:31.851444 | 2015-05-19T05:19:26 | 2015-05-19T05:19:26 | 35,711,526 | 0 | 2 | null | null | null | null | null | null | null | null | null | null | null | null | null | from sklearn.cluster import KMeans
from scipy.stats import itemfreq
from PIL import Image
import numpy as np
import operator
def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
d = codebook.shape[1]
image = np.zeros((w, h, d))
label_idx = 0
for i in range(w):
for j in range(h):
image[i][j] = codebook[labels[label_idx]]
label_idx += 1
return np.asarray(image, dtype=np.uint8)
def get_dominant_color(image, n_colors=3, show=False):
input_image = image
image_array = np.array(input_image, dtype=np.uint8) #Convert to numpy array of type uint8
# Load Image and transform to a 2D numpy array.
w, h, d = original_shape = tuple(image_array.shape) # shape returns width, height, color space (rbg)
image_array = np.reshape(input_image, (w * h, d)) # w*h = number of pixels, d = rgb
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array)
labels = kmeans.labels_
new = recreate_image(kmeans.cluster_centers_, labels, w, h) # Converting the image to uint8 datatype
if show:
# Display quantized image
im = Image.fromarray(new)
im.show()
im.save("out.bmp")
# Get int conversions from center clusters
clusters = np.uint8(kmeans.cluster_centers_)
# Look for dominant
r, c = new.shape[0], new.shape[1] # Get shape
px1 = [p for p in new[0][0]] # Pixel value for topmost, leftmost pixel, indicates background
px2 = [p for p in new[r - 1][0]] # Pixel value for bottommost, leftmost pixel, indicates background
px3 = [p for p in new[0][c - 1]] # Pixel value for topmost, rightmost pixel, indicates background
px4 = [p for p in new[r - 1][c - 1]] # Pixel value for bottommost, rightmost pixel, indicates background
# Sort by cluster sizes, the larger the cluster, the more dominant
cluster_sizes = dict(itemfreq(labels))
sorted_cluster = sorted(cluster_sizes.items(), key=operator.itemgetter(1), reverse=True)
# print clusters
# print sorted_cluster
# Loop through list of cluster indices, sorted by cluster size
dominant = None
for c in sorted_cluster:
index = c[0]
# If cluster values are not equal to the values in px1-px4, it is not background! THIS IS IT
if not (px1 == list(clusters[index]) or px2 == list(clusters[index])
or px3 == list(clusters[index]) or px4 == list(clusters[index])):
dominant = list(clusters[index])
break
if dominant == None: # Was not able to extract, just get second dominant color
dominant = list(clusters[1])
# for i in range(len(dominant)):
# dominant[i] = dominant[i] - 255
dominant = (int(dominant[0]) * 65536) + (int(dominant[1]) * 256) + int(dominant[2])
return dominant
| UTF-8 | Python | false | false | 2,861 | py | 12 | feature_extraction.py | 6 | 0.649074 | 0.632296 | 0 | 70 | 39.857143 | 108 |
mariebedniakova/ProjectLib | 15,857,019,305,101 | 5332b25e7282090c92f6fcb1ebf39973b18b8f5d | 943a4a5ef8dbfd73d46f69117a8bb2840335af58 | /Web/add_books.py | b25e30b8711e4d6bbb8b238d29fedc2a20da78da | [] | no_license | https://github.com/mariebedniakova/ProjectLib | 08245dc305d5eaa11db3812eb06093964a54bfe4 | 46e8f1f5dec03f82810ffc2727cf60fb1c520482 | refs/heads/master | 2023-05-02T20:31:23.828170 | 2021-04-28T14:34:47 | 2021-04-28T14:34:47 | 357,057,033 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # noinspection PyUnresolvedReferences
from data.books import Book
# noinspection PyUnresolvedReferences
from data.db_session import global_init, create_session
from flask_wtf import FlaskForm
from wtforms import TextField, BooleanField, SubmitField
from wtforms import IntegerField, StringField
from wtforms.fields.html5 import EmailField
from wtforms.validators import DataRequired
from flask import Flask, render_template, redirect
from flask_login import LoginManager, login_user, login_required, current_user
class AccessError(Exception):
pass
app = Flask(__name__)
app.config['SECRET_KEY'] = 'yandexlyceum_secret_key'
login_manager = LoginManager()
login_manager.init_app(app)
global_init("db/library.db")
@app.route('/addbook', methods=['GET', 'POST'])
@login_required
def add_job():
try:
if not current_user.is_authenticated:
return redirect('/library/login')
if not current_user.admin:
return AccessError
form = BooksForm()
if form.validate_on_submit():
db_sess = create_session()
book = Book()
book.title = form.title.data
book.author = form.author.data
book.year = form.year.data
book.genre = form.genre.data
book.description = form.description.data
db_sess.add(book)
db_sess.merge(current_user)
db_sess.commit()
return redirect('/library')
except AccessError:
return # ругается на отсутствие прав доступа
return render_template('books.html', title='Добавление книги',
form=form)
if __name__ == '__main__':
app.run(port=8080, host='127.0.0.1')
# to do: возможность зарегестрироваться при входе и войти при регистрации
# редактирование удаление и получение книги. примитивные html
| UTF-8 | Python | false | false | 1,995 | py | 19 | add_books.py | 7 | 0.674078 | 0.668113 | 0 | 57 | 31.350877 | 78 |
cds88/Housecrawler | 15,539,191,686,049 | d6a1c240d1aa42d01d96ab0614131d26fd2bd454 | fc7983152bc7709e7f0fb53919adfe286d7e44ab | /root/frontend/urls.py | 52ebf5a56c66d3b415c3d8ebb2765ea3364c8375 | [] | no_license | https://github.com/cds88/Housecrawler | a6310294415a26942c1e3e9200c460026ab20b8b | 5afea9b1de810a1ff3ef224f4ede74735b9d6fee | refs/heads/master | 2021-09-06T12:38:33.816980 | 2019-11-15T22:42:52 | 2019-11-15T22:42:52 | 220,566,278 | 0 | 0 | null | false | 2021-08-11T16:56:41 | 2019-11-08T23:57:49 | 2019-11-19T22:17:09 | 2021-08-11T16:56:41 | 1,978 | 0 | 0 | 12 | JavaScript | false | false |
from django.urls import path
from . import views
urlpatterns =[
path('', views.homepage),
path('der/', views.homepage),
path('accounts/', views.homepage),
path('map/', views.homepage),
path('profile/', views.homepage),
path('advertisements/', views.homepage)
]
| UTF-8 | Python | false | false | 297 | py | 50 | urls.py | 10 | 0.62963 | 0.62963 | 0 | 13 | 21.615385 | 43 |
olmokramer/fb.py | 11,003,706,244,026 | e20d9fa67fbfb1fec90a88f3f10f898dc0005a92 | 8616cbad9fdccb7c90e20238b7f8ee55cd022e12 | /fb/env.py | 02b849fc9dfce2b36e6b9e2e93266bc4b7787573 | [] | no_license | https://github.com/olmokramer/fb.py | 7feed33c860fb47c898c22c5369907550c61cbc5 | 63ad45cae2e878bfcd7d45e46cc0e727ba4b5699 | refs/heads/master | 2018-12-20T14:28:24.215076 | 2018-10-23T17:21:02 | 2018-10-23T17:21:02 | 145,055,143 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Copyright (c) 2018, Olmo Kramer <olmo.kramer@protonmail.com>
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
'''
Environment variables.
'''
import os
EDITOR = os.getenv('EDITOR', 'vi')
MIME = os.getenv('MIME', 'xdg-mime query filetype')
OPEN = os.getenv('OPEN', 'xdg-open')
PAGER = os.getenv('PAGER', 'less')
SHELL = os.getenv('SHELL', 'sh')
SUDOEDIT = os.getenv('SUDOEDIT', 'sudoedit')
| UTF-8 | Python | false | false | 1,398 | py | 32 | env.py | 28 | 0.755365 | 0.752504 | 0 | 32 | 42.6875 | 79 |
rbrecheisen/rappy | 6,803,228,214,300 | 579d997dc202478d500b4d619e2b1b892e757817 | 054e97e7e9742e31658837479708d2c4b66930ee | /archive/lib/rappy/rest/api/dcm2masks.py | 064d3c94878044a117d6dde5ae62743608b1cac8 | [] | no_license | https://github.com/rbrecheisen/rappy | 0a9ebb94c21fa5ae2e5f300a7c6a628a7274c7ec | f2f9cd374ffd00685c6854bdcb5fa32302fe7c02 | refs/heads/master | 2021-01-24T00:28:06.542758 | 2018-09-13T20:47:44 | 2018-09-13T20:47:44 | 122,767,162 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
from flask import request, current_app, send_from_directory, after_this_request
from flask_restful import Resource
from rappy.radiomics import Dcm2Masks
class Dcm2MasksResourceList(Resource):
@staticmethod
def post():
files = request.files.getlist('files')
dcm_file = files[0]
n = Dcm2Masks()
n.set_input('dcm_file', dcm_file)
n.set_param('labels', {})
n.set_param('target_dir_path', os.path.join(current_app.config['UPLOAD_FOLDER'], 'dcm2masks'))
output_file_paths = n.get_output('output_file_paths')
output_file_names = []
for x in output_file_paths:
output_file_names.append(os.path.split(x)[1])
return {'output_file_names': output_file_names}
class Dcm2MasksResource(Resource):
@staticmethod
def get(file_name):
output_dir = os.path.join(current_app.config['UPLOAD_FOLDER'], 'dcm2masks')
output_file_name = file_name
@after_this_request
# Warning: this may not work on Windows!
def remove_file(response):
file_path = os.path.join(output_dir, output_file_name)
os.remove(file_path)
return response
return send_from_directory(output_dir, output_file_name)
@staticmethod
def delete(file_name):
os.remove(os.path.join(current_app.config['UPLOAD_FOLDER'], 'dcm2masks', file_name))
| UTF-8 | Python | false | false | 1,411 | py | 45 | dcm2masks.py | 41 | 0.64068 | 0.634302 | 0 | 46 | 29.673913 | 102 |
timniederhausen/django-auth-remember | 4,011,499,476,002 | 6209c34c6bdeddeb5d1aefab9bf40548bf39af87 | 325cd742d5e0fc3daaee947496783b5b7a40dd79 | /auth_remember/migrations/0002_auto_20161016_0239.py | cb8ab60a781fddd4e826c542217d4b1d8cece6bb | [] | no_license | https://github.com/timniederhausen/django-auth-remember | 41ab44bd1d2d8316c559457609e0e1cb2f0779ab | 21842dc22cc1cd5bf262f4071a73fc6320277b91 | refs/heads/master | 2021-01-12T04:58:37.456070 | 2016-10-17T01:56:51 | 2016-10-17T01:56:51 | 77,816,624 | 0 | 1 | null | true | 2017-01-02T07:01:37 | 2017-01-02T07:01:37 | 2016-10-12T00:52:05 | 2016-10-17T01:56:56 | 47 | 0 | 0 | 0 | null | null | null | # -*- coding: utf-8 -*-
# Generated by Django 1.10.2 on 2016-10-16 00:39
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
import django.utils.timezone
class Migration(migrations.Migration):
dependencies = [
('auth_remember', '0001_initial'),
]
operations = [
migrations.AlterModelOptions(
name='remembertoken',
options={'ordering': ('-created',), 'verbose_name': 'Remember Token', 'verbose_name_plural': 'Remember Tokens'},
),
migrations.AlterField(
model_name='remembertoken',
name='created',
field=models.DateTimeField(default=django.utils.timezone.now, editable=False, verbose_name='Created'),
),
migrations.AlterField(
model_name='remembertoken',
name='created_initial',
field=models.DateTimeField(editable=False, verbose_name='Created Initially'),
),
migrations.AlterField(
model_name='remembertoken',
name='token_hash',
field=models.CharField(max_length=60, primary_key=True, serialize=False, verbose_name='Token Hash'),
),
migrations.AlterField(
model_name='remembertoken',
name='user',
field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='remember_me_tokens', to=settings.AUTH_USER_MODEL, verbose_name='User'),
),
]
| UTF-8 | Python | false | false | 1,529 | py | 1 | 0002_auto_20161016_0239.py | 1 | 0.626553 | 0.611511 | 0 | 42 | 35.404762 | 166 |
mohsinkd786/machine-learning | 1,967,095,069,086 | 44a70f6f3b4c0c729c53b9b17af52b900cbb7565 | 24636ee5821ed1a3ebff622a77171a7cc863ed55 | /basics/utilities/UserService.py | 4eec9a336df5641015cdfe90972526f67d23d63d | [] | no_license | https://github.com/mohsinkd786/machine-learning | 5f8d72d5d2c77a952b666dc7b1908e7876b14f01 | 16ac56f2e1510e561a0f4eff7babbe59826795e2 | refs/heads/master | 2020-04-21T16:11:10.426244 | 2019-04-19T06:45:53 | 2019-04-19T06:45:53 | 169,692,288 | 2 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # user service class
class UserService:
userId = 1120
__uuid = 1119873636
def __init__(self,firstName,lastName):
self.firstName = firstName
self.lastName = lastName
print('User')
def getUser(self,age):
print('Hello ',self.firstName,age)
def __getUuid(self):
print('UUid ',__uuid)
uService = UserService('John','Doe')
uService.getUser(22)
print(uService.userId)
# private method
# print(uService.__getUuid())
# private variable
# print(uService.__uuid)
# print(uService.getUuid())
class Human :
def __init__(self,ethinic):
self.ethinic = ethinic
class EmployeeService(UserService,Human) :
def __init__(self,firstName,lastName,ethinic):
#self.firstName = firstName
#self.lastName = lastName
UserService.__init__(self,firstName,lastName)
Human.__init__(self,ethinic)
#print('Employee Service ',self.ethinic)
def eDetails(self):
print('Hello! ',self.firstName,self.lastName,self.ethinic)
eService = EmployeeService('John','Doe','Asian')
eService.eDetails()
sortedMatrix =[[1,2,3],
[4,5,6],
[7,8,9]]
inputMatrix =[[9,6,1],
[5,3,7],
[4,2,8]]
#inputMatrix.index([4,2,8])
| UTF-8 | Python | false | false | 1,297 | py | 35 | UserService.py | 30 | 0.593678 | 0.56515 | 0 | 56 | 22.160714 | 66 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.