repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
sequence
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
jonathonw/FailoverHomework
1,992,864,841,580
c453ed569a8abc29d2deb7ab2cd559614f6a31ca
2328d8ef09501a8181b8f3197a928f3d05c922a0
/UseCpu.py
889b1b970d41e3f66f9cceedd84c20f53ca8cb79
[]
no_license
https://github.com/jonathonw/FailoverHomework
70f449412ce99889125e153a41f28dee61c526a3
13604e0557ccc52c0a0d73e42ee4df620a5f8a95
refs/heads/master
2021-01-01T19:56:43.470418
2011-11-30T20:47:50
2011-11-30T20:47:50
2,540,786
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import time import sys import threading class BusyThread(threading.Thread): def __init__(self, percentage): threading.Thread.__init__(self) self._percentage = percentage def run(self): while True: result = 1 for iteration in range(1, 100): for i in range(1, 20): result = result * iteration time.sleep(0.0005 - percentage*0.0005) if __name__ == "__main__": if len(sys.argv) != 2 or float(sys.argv[1]) < 0 or float(sys.argv[1]) > 100: print "Usage:", sys.argv[0], "percentage" print " where 'percentage' is a number between 0 and 100" exit(-1) percentage = float(sys.argv[1]) / 100.0 if percentage == 0: exit(0) numberThreads = int(percentage * 10 + 1) for i in range(numberThreads): newThread = BusyThread(0.2) newThread.start() while True: time.sleep(1)
UTF-8
Python
false
false
872
py
9
UseCpu.py
7
0.607798
0.557339
0
36
23.222222
78
saratello/annotation-software
9,809,705,311,297
5590520123f754cee863a75953e058f956bb9043
7099f031ed770f8d0ceb4c762c9ab5023d2a7000
/methods.py
d78de0cadf0f40d133539134cd0c721fab25fc35
[]
no_license
https://github.com/saratello/annotation-software
8b1d24f8a0260117e78c24b39d4e1dec8b4d6bc8
3a0b07b14a1fc911e3614b7d53559e6e6d3173fb
refs/heads/main
2023-05-20T11:07:07.367780
2021-06-10T07:59:02
2021-06-10T07:59:02
375,738,099
0
0
null
true
2021-06-10T15:07:11
2021-06-10T15:07:10
2021-06-10T08:24:39
2021-06-10T13:50:52
2,913
0
0
0
null
false
false
from typing import Dict, List, Union, Tuple from string import punctuation as punc from collections import namedtuple import re import os import json from git import Repo, RemoteReference POS = str ExampleFieldGulf = str # ['baseword', 'gloss', 'clitic', 'context'] ExampleFieldCODA = str # ['raw', 'coda', 'context'] ExampleFieldMSA = str # ['segment', 'gloss', 'context'] SegmentType = str # ['baseword', 'enclitic', 'proclitic'] ExampleGulf = Dict[ExampleFieldGulf, str] ExampleCODA = Dict[ExampleFieldCODA, str] ExampleMSA = Dict[ExampleFieldMSA, str] ExamplesQueryFilter = namedtuple('ExamplesQueryFilter', 'segment_type match_type resource') ARABIC_LETTERS = "ءؤئابتثجحخدذرزسشصضطظعغفقكلمنهوىي" def search_bar_examples(query: str, gulf_tag_examples: Dict[SegmentType, Dict[POS, List[ExampleGulf]]], msa_tag_examples: Dict[POS, List[ExampleMSA]], coda_examples: List[ExampleCODA], query_filter: Tuple[str] = ('Baseword', 'Approximate', 'Gulf Tags') ) -> Union[Dict[POS, List[ExampleGulf]], List[ExampleCODA], Dict[POS, List[ExampleMSA]]]: """Function which allows to search for specific examples in a static JSON file using a filter. For the query filter: - In index 0, possible choices are 'Baseword', 'Enclitic', 'Proclitic'. - In index 1, possible choices are 'Approximate', 'Exact' (whether the match should be exact or not). - In index 2, possible choices are 'Gulf Tags', 'MSA Tags', 'CODA Examples'. Args: query (str): what the user will type in the search bar. gulf_tag_examples (Dict[SegmentType, Dict[POS, List[Dict[ExampleField, str]]]]): already parsed static JSON object sitting in memory for Gulf Arabic tagging examples msa_tag_examples (Dict[POS, List[Dict[ExampleField, str]]]): already parsed static JSON object sitting in memory for MSA tagging examples coda_examples (List[ExampleCODA]): already parsed static JSON object sitting in memory for CODA standardization examples query_filter (Optional[List[str]], optional): Should be drop down menus where the user specifies what he is searching for. Defaults to ('Baseword', 'Approximate', 'Gulf Tags'). Returns: Union[Dict[POS, List[Union[ExampleGulf, ExampleMSA]]], List[ExampleCODA]]: Dictionary with a structure which depends on the value chosen for the resource type (index 2) in the query filter """ query_filter = ExamplesQueryFilter(*query_filter) if 'Tags' in query_filter.resource: response: Dict[POS, List[Union[ExampleGulf, ExampleMSA]]] = {} if 'Gulf' in query_filter.resource: tag_examples: Dict[POS, List[ExampleGulf]] = gulf_tag_examples[query_filter.segment_type.lower()] elif 'MSA' in query_filter.resource: tag_examples: Dict[POS, List[ExampleMSA]] = msa_tag_examples is_pos = True if query.translate( str.maketrans('', '', punc)).isupper() else False is_arabic_str = True if query[0] in ARABIC_LETTERS else False is_gloss = True if [True for char in query if char.islower( ) and char not in ARABIC_LETTERS] else False if is_pos: query_pos, query_features = None, None if 'Gulf' in query_filter.resource: query_split = query.split(':') if len(query_split) == 2: query_pos, query_features = query_split[0], set(query_split[1]) for k, v in tag_examples.items(): k_pos, k_features = None, None if 'Gulf' in query_filter.resource and query_pos: k = k.split(':') k_pos, k_features = k[0], set(k[1]) if len(k) == 2 else set() if not query_pos: if query_filter.match_type == 'Approximate': if query in k: response[k] = v elif query_filter.match_type == 'Exact': if query == k: response[k] = v else: if query_filter.match_type == 'Approximate': if query_pos in k_pos or bool(k_features.intersection(query_features)): response[k] = v elif query_filter.match_type == 'Exact': if query_pos == k_pos and query_features == k_features: response[k] = v elif is_arabic_str or is_gloss: if 'Gulf' in query_filter.resource: example_key = 'baseword' if query_filter.segment_type.lower() == 'baseword' else 'clitic' example_key = 'gloss' if is_gloss else example_key elif 'MSA' in query_filter.resource: example_key = 'segment' for k, v in tag_examples.items(): v_: List[ExampleGulf] = [] for example in v: if query_filter.match_type == 'Approximate': if query in example[example_key]: v_.append(example) elif query_filter.match_type == 'Exact': if query == example[example_key]: v_.append(example) if v_: response.setdefault(k, []).append(v_) elif query_filter.resource == 'CODA Examples': response: List[ExampleCODA] = [] for example in coda_examples: if query_filter.match_type == 'Approximate': if query in example['raw'] or query in example['coda']: response.append(example) elif query_filter.match_type == 'Exact': if query == example['raw'] or query == example['coda']: response.append(example) return response Annotator = str Feature = str # ['raw', 'coda', 'segments'] AnnotationField = str # ['text', 'verb_form', 'pos', 'lemma'] Segment = Dict[AnnotationField, str] Annotation = Dict[Feature, Union[str, List[str], List[Segment]]] FilteredAnnotation = namedtuple('FilteredAnnotation', 'annotator id annotation') AnnotationsQueryFilter = namedtuple('AnnotationsQueryFilter', 'feature field match annotators') # Probably not the final list ANNOTATORS = ['Christian', 'Jana', 'Wiaam', 'Sarah', 'Carine'] def search_bar_previous_annotations(query: str, annotations_json: Dict[Annotator, List[Annotation]], query_filter: Tuple[str] = ('Raw', 'Text', 'Approximate', 'Christian') ) -> List[Annotation]: """Function which allows to search for previously done annotations the contents of which match the values of the filter. For the query filter: - In index 0, possible choices are 'Raw', 'CODA', 'Segments'. - In index 1, possible choices are 'Text', 'Verb Form', 'POS', 'Lemma'. - In index 2, possible choices are 'Approximate', 'Exact' (whether the match should be exact or not). - In index 3, possible choices are the names of the annotators, to be defined in a separate list. Args: query (str): what the user will type in the search bar. annotations_json (Dict[Annotator, List[Annotation]]): JSON file containing the already finished annotations query_filter (Tuple[str], optional): Should be dropdown menus where the user specifies what he is searching for. Defaults to ('Raw', 'Text', 'Approximate', 'Christian'). Returns: List[Annotation]: List of annotations to show that we can scroll through. """ query_filter = AnnotationsQueryFilter(*query_filter) # Filtering by annotator annotators = ANNOTATORS annotators = [query_filter.annotators] if query_filter.annotators in ANNOTATORS else ANNOTATORS if query_filter.annotators in [f'All But {annotator}' for annotator in ANNOTATORS]: annotators.remove(re.sub('All But ', '', query_filter.annotators)) # Filtering by feature annotations_filtered: List[FilteredAnnotation] = [] for annotator, annotations in annotations_json.items(): if annotator in annotators: for i, annotation in enumerate(annotations): if query_filter.feature == 'Segments': for token in annotation[query_filter.feature.lower()]: for segment in token: annotations_filtered.append(FilteredAnnotation( annotator, i, segment[query_filter.field.lower()])) else: annotations_filtered.append(FilteredAnnotation( annotator, i, annotation['_'.join(query_filter.feature.lower().split())])) already_added = [] response: List[Annotation] = [] if query_filter.field == 'POS': query_pos, query_features = None, None query_split = query.split(':') if len(query_split) == 2: query_pos, query_features = query_split[0], set(query_split[1]) for annotation in annotations_filtered: k_pos, k_features = None, None if query_filter.field == 'POS' and query_pos: k = annotation.annotation.split(':') k_pos, k_features = k[0], set(k[1]) if len(k) == 2 else set() if not query_pos: if query_filter.match == 'Approximate': if query in annotation.annotation and \ (annotation.annotator, annotation.id) not in already_added: response.append( annotations_json[annotation.annotator][annotation.id]) elif query_filter.match == 'Exact': if query == annotation.annotation and \ (annotation.annotator, annotation.id) not in already_added: response.append( annotations_json[annotation.annotator][annotation.id]) else: if (annotation.annotator, annotation.id) not in already_added: if query_filter.match == 'Approximate': if query_pos in k_pos or bool(k_features.intersection(query_features)): response.append( annotations_json[annotation.annotator][annotation.id]) elif query_filter.match == 'Exact': if query_pos == k_pos and query_features == k_features: response.append( annotations_json[annotation.annotator][annotation.id]) return response COMMIT_MESSAGE = 'No message' def clone_repo(repo_dir='/Users/chriscay/thesis/annotation_wiaam', username='christios', auth_key='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', repo_name='annotation', annotator_name='Wiaam') -> None: """This method is called once, when the annotator sets up their local application. What it does: - Clones a remote repository that I have already set up - Sets up a local branch in the annotator's name and its corresponding up-stream branch """ repo_url = f"https://{username}:{auth_key}@github.com/{username}/{repo_name}.git" repo = Repo.clone_from(repo_url, repo_dir) origin = repo.remote('origin') current = repo.create_head(annotator_name) current.checkout() origin.push(annotator_name) # Create up-stream branch repo.head.reference = repo.create_head(annotator_name) rem_ref = RemoteReference(repo, f"refs/remotes/origin/{annotator_name}") repo.head.reference.set_tracking_branch(rem_ref) def sync_annotations(repo_dir='/Users/chriscay/thesis/annotation', annotator_name='Christian') -> None: """This method is called each time the annotator presses the `Sync` button. What it does: - Checks out the branch in the annotator's name - Commits the contents of the working directory - Pushes the commit to the remote branch in the annotator's name - Checks out local main - Locally merges all the remote branches (one for each annotator) into local main - Checks out the branch in the annotator's name again """ repo = Repo(repo_dir) repo.git.checkout(annotator_name) annotator_file_path = f'{annotator_name}.json' open(os.path.join(repo_dir, annotator_file_path), 'w').close() repo.index.add([annotator_file_path]) repo.index.commit(COMMIT_MESSAGE) repo.git.push('origin', annotator_name) repo.git.fetch() remote_branches = repo.git.branch('-r').splitlines() remote_branches = [branch.strip() for branch in remote_branches if re.match(r'\w+/\w+$', branch.strip(), re.M) and 'main' not in branch] repo.git.checkout('main') for branch in remote_branches: repo.git.merge(branch.strip()) repo.git.checkout(annotator_name) def get_merged_json(repo_dir='/Users/chriscay/thesis/annotation', annotator_name='Christian') -> Dict[Annotator, List[Annotation]]: """This method should be called to get the JSON file with the annotator's respective annotations. This is the file which should be edited by the platform in the working directory. """ repo = Repo(repo_dir) repo.git.checkout('main') annotator_file_paths = [file_path for file_path in os.listdir(repo_dir) if '.json' in file_path] annotations_json: Dict[Annotator, List[Annotation]] = {} for annotator_file_path in annotator_file_paths: with open(os.path.join(repo_dir, annotator_file_path)) as f: try: annotations_json[annotator_file_path.strip( '.json')] = json.load(f) except json.JSONDecodeError: annotations_json[annotator_file_path.strip( '.json')] = [] repo.git.checkout(annotator_name) return annotations_json # with open('/Users/chriscay/annotation-software/examples/gulf_tag_examples.json') as f_gulf, \ # open('/Users/chriscay/annotation-software/examples/coda_examples.json') as f_coda, \ # open('/Users/chriscay/annotation-software/examples/msa_tag_examples.json') as f_msa: # gulf_tag_examples = json.load(f_gulf) # coda_examples = json.load(f_coda) # msa_tag_examples = json.load(f_msa) # with open('/Users/chriscay/Library/Containers/com.apple.mail/Data/Library/Mail Downloads/6A3F79B7-E791-498F-87DD-A0238023A21E/data.json') as f: # annotations_json = json.load(f) # search_bar_previous_annotations('p1:1', annotations_json, ('Segments', 'POS', 'Exact', 'Nana')) # search_bar_examples('NOUN', gulf_tag_examples, msa_tag_examples, coda_examples, ('Enclitic', 'Approximate', 'MSA Tags')) # clone_repo(repo_dir='/Users/chriscay/thesis/annotation_carine', # annotator_name='Carine') # sync_annotations(repo_dir='/Users/chriscay/thesis/annotation_wiaam', # annotator_name='Wiaam') # get_merged_json(repo_dir='/Users/chriscay/thesis/annotation_wiaam', # annotator_name='Wiaam')
UTF-8
Python
false
false
15,570
py
14
methods.py
2
0.601236
0.597632
0
301
49.621262
196
MahnazAkbariKasten/Algorithms_And_DataStructur_Challenges
4,818,953,351,357
b2d9e6ab6f049e6b7d30e6ad527d9d70bc067454
b28ea5f1b69ca5c15fafd78e2aea96cd69dba7cf
/leetcode/circularArrayLoop/circular_array_loop.py
1963a0ec8c9810a4e3ab7104b6d63ffc8f9f668a
[]
no_license
https://github.com/MahnazAkbariKasten/Algorithms_And_DataStructur_Challenges
43a7dbee21d84170c2375760e30bf0b278102aee
828ec611088751475308407dfed4de8ceefd221c
refs/heads/master
2021-08-28T09:28:11.052107
2017-12-11T20:38:57
2017-12-11T20:38:57
113,905,750
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
__author__ = 'pretymoon' import unittest class MethodTest(unittest.TestCase): def test_mixed_directions(self): self.assertFalse(circularArrayLoop([-1, 2, 2]), False) self.assertFalse(circularArrayLoop([3, 3, -1, 3, 3]), False) def test_forward_loop(self): self.assertTrue(circularArrayLoop([2, -1, 1, 2, 2]), True) def test_backward_loop(self): self.assertTrue(circularArrayLoop([-1, 1, -2, -1]), True) def test_short_path(self): # self.assertFalse(circularArrayLoop([-1, 2]), False) self.assertFalse(circularArrayLoop([3, 1, 2]), True) def circularArrayLoop(nums): """ :type nums: List[int] :rtype: bool """ s = len(nums) for i in range(s): loop_direction = int(nums[i] / abs(nums[i])) going = True cnt = 0 # number of jumps # num_sum = 0 # sum of jump-lengths idx = i # next index after jump # print(going, cnt, s, i, idx, nums[idx]) while going and cnt <= s and nums[idx] != 0: cnt += 1 # num_sum += nums[idx] idx = (idx + nums[idx]) % s if nums[idx] == 0 or int(nums[idx] / abs(nums[idx])) != loop_direction: going = False if going and idx == i: if cnt > 1: # print(cnt) return True else: return False return False if __name__ == "__main__": unittest.main() # print("[2, -1, 1, 2, 2] has a loop? ", circularArrayLoop([2, -1, 1, 2, 2])) # print("[-1, 2] has a loop? ", circularArrayLoop([-1, 2])) # print("[3, 3, -1, 3, 3] has a loop? ", circularArrayLoop([3, 3, -1, 3, 3])) # print("[-1, 3, 3, 4, 2] has a loop? ", circularArrayLoop([-1, 3, 3, 4, 2])) # def check_for_loop(aray): # l = len(aray) # # for i in range(l): # path = [] # loop = False # # no_move = True # next_idx = (i + aray[i]) % l # while next_idx < i: # # if aray[i] * aray[next_idx] < 0: # moving back and forth # # no_move = False # # break # # # path.append(next_idx) # next_idx = (next_idx + aray[next_idx]) % l
UTF-8
Python
false
false
2,331
py
136
circular_array_loop.py
126
0.481338
0.454311
0
68
33.294118
87
sunilka/pylabs
13,752,485,329,423
01bc214654d9f9a7082990135c6a2967acbb4c87
8b2f6c139b39f8f30793015a35ecf9dab5685b8b
/interviews/bogotobogo/Q1/Init_dict_with_list-1.py
5651e5900f153830b4891bda7eabbb89af819554
[]
no_license
https://github.com/sunilka/pylabs
daaabfe101f99c0ec58b434e43ea8029c5e83436
422915e7876df5880b7177e93f1faa95adae441e
refs/heads/master
2021-01-19T17:57:55.237621
2020-12-08T02:15:35
2020-12-08T02:15:35
88,345,998
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
cities = {'San Francisco': 'US', 'London':'UK', 'Manchester':'UK', 'Paris':'France', 'Los Angeles':'US', 'Seoul':'Korea'} from collections import defaultdict d=defaultdict(list) for k,v in cities.items(): d[v].append(k) print(d)
UTF-8
Python
false
false
250
py
87
Init_dict_with_list-1.py
83
0.616
0.616
0
9
26.777778
47
NeuObito/ggs-api
9,019,431,326,661
02de29927b772347537f868382b87fdd378e507c
30f9a649ce1d9e341b0e683f44756982342ee5df
/authentication/views.py
29c377dd1964768ad981137826615796370cfae6
[]
no_license
https://github.com/NeuObito/ggs-api
11ce4618002ba877e7ad08877e1778479038a158
55d46d8b8aa5a86ada14045f31f4e51e5050f3f0
refs/heads/master
2021-01-21T19:58:26.014577
2017-07-31T08:18:38
2017-07-31T08:18:38
92,179,704
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- from __future__ import unicode_literals from django.contrib.auth import login, logout from django.views.generic import View from django.urls.resolvers import get_resolver from django.shortcuts import render from django.http import JsonResponse, HttpResponse from .models import User from .forms import LoginForm, RegisterForm __author__ = "nabito" class RegisterView(View): """ 实现注册功能。 """ def post(self, request): form = RegisterForm(request.POST) if form.is_valid(): form.register() return JsonResponse({"msg": "Hello World."}) def options(self, request): response = HttpResponse() response['Access-Control-Allow-Headers'] = "accept, content-type" response['Access-Control-Allow-Method'] = "POST" response['Access-Control-Allow-Origin'] = "*" return HttpResponse(response, content_type="application/json") class LoginView(View): """ 实现登录功能。 """ def post(self, request): print(request) print(request.session) form = LoginForm(request.POST) if form.is_valid(): user = form.login() print(user) if user: login(request, user) return JsonResponse({"msg": "登录成功", "succode": 20001}) return JsonResponse({"msg": "登录失败", "errcode": 10001}) def options(self, request): response = HttpResponse() response['Access-Control-Allow-Headers'] = "accept, content-type" response['Access-Control-Allow-Method'] = "POST" response['Access-Control-Allow-Origin'] = "*" return HttpResponse(response, content_type="application/json")
UTF-8
Python
false
false
1,781
py
8
views.py
7
0.624064
0.617732
0
59
28.440678
73
determined-ai/determined
12,103,217,870,564
df86ed4d31cecf4e62a10d733e9ac3baf6002822
ddddaa700e4642f46a2c1e1e0271a7c8ea62ba0f
/examples/computer_vision/fasterrcnn_coco_pytorch/model_def.py
a1ca8489e69a51280bf8a2d152efa367d3383a20
[ "Apache-2.0" ]
permissive
https://github.com/determined-ai/determined
9d563cb5ffd074c88ee5edc9bf22ab9c3cb78c7e
8239b1993f4f44390f4e88901ffaf3b12429b83c
refs/heads/main
2023-08-21T12:13:36.651298
2023-08-21T08:34:16
2023-08-21T08:34:16
253,846,879
2,531
330
Apache-2.0
false
2023-09-14T21:54:17
2020-04-07T16:12:29
2023-09-13T21:34:41
2023-09-14T21:54:16
219,165
2,448
319
142
Go
false
false
""" This is an object detection finetuning example. We finetune a Faster R-CNN model pretrained on COCO to detect pedestrians in the relatively small PennFudan dataset. Useful References: https://docs.determined.ai/latest/reference/api/pytorch.html https://www.cis.upenn.edu/~jshi/ped_html/ Based on: https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html """ import copy from typing import Any, Dict, Sequence, Union import torch import torchvision from data import PennFudanDataset, collate_fn, download_data, get_transform from torch import nn from torchvision.models.detection import fasterrcnn_resnet50_fpn from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from determined.pytorch import DataLoader, LRScheduler, PyTorchTrial, PyTorchTrialContext TorchData = Union[Dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor] class ObjectDetectionTrial(PyTorchTrial): def __init__(self, context: PyTorchTrialContext) -> None: self.context = context # Create a unique download directory for each rank so they don't overwrite each # other when doing distributed training. self.download_directory = f"/tmp/data-rank{self.context.distributed.get_rank()}" download_data( download_directory=self.download_directory, data_config=self.context.get_data_config(), ) dataset = PennFudanDataset(self.download_directory + "/PennFudanPed", get_transform()) # Split 80/20 into training and validation datasets. train_size = int(0.8 * len(dataset)) test_size = len(dataset) - train_size self.dataset_train, self.dataset_val = torch.utils.data.random_split( dataset, [train_size, test_size] ) model = fasterrcnn_resnet50_fpn(pretrained=True) # Replace the classifier with a new two-class classifier. There are # only two "classes": pedestrian and background. num_classes = 2 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) # Wrap the model. self.model = self.context.wrap_model(model) # Wrap the optimizer. self.optimizer = self.context.wrap_optimizer( torch.optim.SGD( self.model.parameters(), lr=self.context.get_hparam("learning_rate"), momentum=self.context.get_hparam("momentum"), weight_decay=self.context.get_hparam("weight_decay"), ) ) # Wrap the LR scheduler. self.lr_scheduler = self.context.wrap_lr_scheduler( torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=3, gamma=0.1), step_mode=LRScheduler.StepMode.STEP_EVERY_EPOCH, ) def build_training_data_loader(self) -> DataLoader: return DataLoader( self.dataset_train, batch_size=self.context.get_per_slot_batch_size(), collate_fn=collate_fn, ) def build_validation_data_loader(self) -> DataLoader: return DataLoader( self.dataset_val, batch_size=self.context.get_per_slot_batch_size(), collate_fn=collate_fn, ) def train_batch( self, batch: TorchData, epoch_idx: int, batch_idx: int ) -> Dict[str, torch.Tensor]: images, targets = batch loss_dict = self.model(list(images), list(targets)) self.context.backward(loss_dict["loss_box_reg"]) self.context.step_optimizer(self.optimizer) return {"loss": loss_dict["loss_box_reg"]} def evaluate_batch(self, batch: TorchData) -> Dict[str, Any]: images, targets = batch output = self.model(list(images), copy.deepcopy(list(targets))) sum_iou = 0 num_boxes = 0 # Our eval metric is the average best IoU (across all predicted # pedestrian bounding boxes) per target pedestrian. Given predicted # and target bounding boxes, IoU is the area of the intersection over # the area of the union. for idx, target in enumerate(targets): # Filter out overlapping bounding box predictions based on # non-maximum suppression (NMS) predicted_boxes = output[idx]["boxes"] prediction_scores = output[idx]["scores"] keep_indices = torchvision.ops.nms(predicted_boxes, prediction_scores, 0.1) predicted_boxes = torch.index_select(predicted_boxes, 0, keep_indices) # Tally IoU with respect to the ground truth target boxes target_boxes = target["boxes"] boxes_iou = torchvision.ops.box_iou(target_boxes, predicted_boxes) sum_iou += sum(max(iou_result) for iou_result in boxes_iou) num_boxes += len(target_boxes) return {"val_avg_iou": sum_iou / num_boxes}
UTF-8
Python
false
false
4,942
py
2,965
model_def.py
1,767
0.654189
0.650344
0
123
39.178862
94
karthikpappu/pyc_source
9,242,769,652,806
bce21d7019c31db120f3fda79d3f305e79b05323
91fa095f423a3bf47eba7178a355aab3ca22cf7f
/pycfiles/kyoka-0.2.1-py2.7/deep_q_learning_test.py
61ab9a9d7926557f0e758fcdf2822168f2e3c03f
[]
no_license
https://github.com/karthikpappu/pyc_source
0ff4d03e6d7f88c1aca7263cc294d3fa17145c9f
739e7e73180f2c3da5fd25bd1304a3fecfff8d6e
refs/heads/master
2023-02-04T11:27:19.098827
2020-12-27T04:51:17
2020-12-27T04:51:17
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# uncompyle6 version 3.7.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.9 (default, Apr 18 2020, 01:56:04) # [GCC 8.4.0] # Embedded file name: build/bdist.macosx-10.12-intel/egg/tests/kyoka/algorithm/td_learning/deep_q_learning_test.py # Compiled at: 2016-10-28 07:31:35 from tests.base_unittest import BaseUnitTest from kyoka.algorithm.td_learning.deep_q_learning import DeepQLearning from kyoka.value_function.base_deep_q_learning_action_value_function import BaseDeepQLearningActionValueFunction from kyoka.policy.base_policy import BasePolicy from kyoka.policy.greedy_policy import GreedyPolicy from mock import Mock from mock import patch import os class DeepQLearningTest(BaseUnitTest): def setUp(self): self.algo = DeepQLearning(gamma=0.1, N=3, C=3, minibatch_size=2, replay_start_size=2) self.algo.replay_memory.store_transition(2.5, 3, 25, (5, False)) self.algo.replay_memory.store_transition(5.0, 7, 144, (5.5, True)) self.domain = self.__setup_stub_domain() self.value_func = self.TestValueFunctionImpl() self.policy = self.NegativePolicyImple() self.algo.setUp(self.domain, self.policy, self.value_func) def tearDown(self): dir_path = self.__generate_tmp_dir_path() file_path = os.path.join(dir_path, 'dqn_algorithm_state.pickle') if os.path.exists(dir_path): if os.path.exists(file_path): os.remove(file_path) os.rmdir(dir_path) def test_update_value_function_learning_minibatch_delivery(self): with patch('random.sample', side_effect=lambda lst, n: lst[len(lst) - n:]): self.algo.update_value_function(self.domain, self.policy, self.value_func) learning_minibatch_expected = [ [ (5.0, 7, 144), (0.5, 1.5, 2.85)], [ (0.5, 1.5, 2.85), (2, 4, 30.25)]] actual = [ arg[0][0] for arg in self.value_func.Q.train_on_minibatch.call_args_list ] self.eq(learning_minibatch_expected, actual) self.value_func.Q_hat.train_on_minibatch.assert_not_called() def test_update_value_function_experience_replay_memory_state(self): with patch('random.sample', side_effect=lambda lst, n: lst[len(lst) - n:]): self.algo.update_value_function(self.domain, self.policy, self.value_func) replay_memory_expected = [(5.0, 7, 144, (5.5, True)), ( 0.5, 1.5, 2.25, (2, False)), ( 2, 4, 30.25, (6.0, True))] self.eq(replay_memory_expected, self.algo.replay_memory.queue) def test_update_value_function_reset_target_network(self): with patch('random.sample', side_effect=lambda lst, n: lst[-n:]): self.algo.update_value_function(self.domain, self.policy, self.value_func) self.eq(2, self.algo.reset_step_counter) self.eq('Q_hat_network_0', self.value_func.Q_hat.name) self.algo.update_value_function(self.domain, self.policy, self.value_func) self.eq(0, self.algo.reset_step_counter) self.eq('Q_hat_network_1', self.value_func.Q_hat.name) def test_initialize_replay_memory(self): algo = DeepQLearning(gamma=0.1, N=3, C=3, minibatch_size=2, replay_start_size=2) value_func = self.TestValueFunctionImpl(strict_mode=False) self.domain.is_terminal_state.side_effect = lambda state: state == 4 or state >= 100 self.eq(0, len(algo.replay_memory.queue)) algo.setUp(self.domain, self.policy, value_func) self.eq(2, len(algo.replay_memory.queue)) def test_save_and_load_algorithm_state(self): dir_path = self.__generate_tmp_dir_path() file_path = os.path.join(dir_path, 'dqn_algorithm_state.pickle') os.mkdir(dir_path) self.algo.save_algorithm_state(dir_path) self.true(os.path.exists(file_path)) new_algo = DeepQLearning(replay_start_size=100) domain = self.__setup_stub_domain() domain.is_terminal_state.side_effect = lambda state: state == 4 or state >= 100 value_func = self.TestValueFunctionImpl(strict_mode=False) policy = self.NegativePolicyImple() new_algo.setUp(domain, policy, value_func) new_algo.load_algorithm_state(dir_path) self.eq(self.algo.gamma, new_algo.gamma) self.eq(self.algo.C, new_algo.C) self.eq(self.algo.minibatch_size, new_algo.minibatch_size) self.eq(self.algo.replay_start_size, new_algo.replay_start_size) self.eq(self.algo.reset_step_counter, new_algo.reset_step_counter) self.eq(domain, new_algo.domain) self.eq(policy, new_algo.policy) self.eq(value_func, new_algo.value_function) self.eq(self.algo.replay_memory.max_size, new_algo.replay_memory.max_size) self.eq(self.algo.replay_memory.queue, new_algo.replay_memory.queue) self.true(isinstance(new_algo.greedy_policy, GreedyPolicy)) with patch('random.sample', side_effect=lambda lst, n: lst[len(lst) - n:]): new_algo.update_value_function(self.domain, self.policy, self.value_func) replay_memory_expected = [(5.0, 7, 144, (5.5, True)), ( 0.5, 1.5, 2.25, (2, False)), ( 2, 4, 30.25, (6.0, True))] self.eq(replay_memory_expected, new_algo.replay_memory.queue) def __setup_stub_domain(self): mock_domain = Mock() mock_domain.generate_initial_state.return_value = 0 mock_domain.is_terminal_state.side_effect = lambda state: state == 5.5 mock_domain.transit_state.side_effect = lambda state, action: state + action mock_domain.generate_possible_actions.side_effect = lambda state: [] if state == 5.5 else [state + 1, state + 2] mock_domain.calculate_reward.side_effect = lambda state: state ** 2 return mock_domain def __generate_tmp_dir_path(self): return os.path.join(os.path.dirname(__file__), 'tmp') class TestValueFunctionImpl(BaseDeepQLearningActionValueFunction): def __init__(self, strict_mode=True): self.deepcopy_counter = 0 self.strict_mode = strict_mode def initialize_network(self): mock_q_network = Mock(name='Q_network') mock_q_network.predict.side_effect = self.q_predict_scenario return mock_q_network def deepcopy_network(self, q_network): mock_q_hat_network = Mock(name='Q_hat_network') mock_q_hat_network.name = 'Q_hat_network_%d' % self.deepcopy_counter mock_q_hat_network.predict.side_effect = self.q_hat_predict_scenario self.deepcopy_counter += 1 return mock_q_hat_network def preprocess_state_sequence(self, raw_state_sequence): return raw_state_sequence[(-1)] + 0.5 def predict_action_value(self, network, processed_state, action): return network.predict(processed_state, action) def train_on_minibatch(self, network, learning_minibatch): network.train_on_minibatch(learning_minibatch) def q_predict_scenario(self, state, action): if state == 0.5 and action == 1.5: return 1 if state == 0.5 and action == 2.5: return 2 if state == 2 and action == 3: return 4 if state == 2 and action == 4: return 3 if self.strict_mode: raise AssertionError('q_network received unexpected state-action pair (state=%s, action=%s)' % (state, action)) else: return 1 def q_hat_predict_scenario(self, state, action): if state == 2 and action == 3: return 5 if state == 2 and action == 4: return 6 if self.strict_mode: raise AssertionError('q_hat_network received unexpected state-action pair (state=%s, action=%s)' % (state, action)) else: return 1 class NegativePolicyImple(BasePolicy): def choose_action(self, domain, value_function, state): actions = domain.generate_possible_actions(state) calc_Q_value = lambda state, action: value_function.calculate_value(state, action) Q_value_for_actions = [ calc_Q_value(state, action) for action in actions ] min_Q_value = min(Q_value_for_actions) Q_act_pair = zip(Q_value_for_actions, actions) worst_actions = [ act for Q_value, act in Q_act_pair if min_Q_value == Q_value ] return worst_actions[0]
UTF-8
Python
false
false
8,588
py
114,545
deep_q_learning_test.py
111,506
0.628551
0.604797
0
179
46.98324
131
Harut0726/pointnet-luis
2,276,332,695,618
1a07a0157b5367594043cb65709ced837ff456a3
566b47e16e4fee52911e154325e2cdd537cd7582
/utils/helpers.py
93f6e5a9f8a0f67c76d6f4124a14759348738951
[]
no_license
https://github.com/Harut0726/pointnet-luis
904173d5eb2bca5e217a6dc7502c763de2946c87
e078a646c0c111e40a3ef49d444859665bfb9881
refs/heads/master
2020-09-22T13:54:38.137918
2019-12-01T20:52:04
2019-12-01T20:52:04
225,228,404
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np def norm_pts(x): x -= np.mean(x, axis=0) dists = np.linalg.norm(x, axis=1) return x / np.max(dists)
UTF-8
Python
false
false
132
py
14
helpers.py
9
0.598485
0.583333
0
6
21
37
GaneshGoel/Basic-Python-programs
3,212,635,579,295
66392762b78127e459631a4e0b673e5d637897b9
6ceb7bd42428410174ff2b110754d1bc40a343c3
/Merge List.py
1a81bc771a873a61c3289a04b933e73754464612
[]
no_license
https://github.com/GaneshGoel/Basic-Python-programs
382e4560406ade35cf011d48b9e83e7db407a0f9
f59b7449f2230b9ebcdf0f0ae829ea1618a4d3ca
refs/heads/master
2020-05-30T08:28:49.811571
2019-05-31T16:26:28
2019-05-31T16:26:28
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Merge two lists and sort it l1=[] l2=[] l3=[] l4=[] x=int(input("Enter size of list 1:")) y=int(input("Enter size of list 2:")) print("\nEnter items of list 1") for i in range(x): a=int(input("Enter list item:")) l1.append(a) print("\nEnter items of list 2") for i in range(y): b=int(input("Enter list item:")) l2.append(b) l3=l1+l2 j=0 while j in range(len(l3)): m=l3[0] s=len(l3) for i in range(s): if l3[i]<m: m=l3[i] l4.append(m) l3.remove(m) print("Sorted list in ascending order:",l4)
UTF-8
Python
false
false
577
py
17
Merge List.py
17
0.556326
0.516464
0
27
19.37037
43
KoMinjae/codingtest
14,087,492,735,232
9017cd81a8d1581caa5d4d330fb120c6ce90ab30
6cb5afbe80fe07f837848f56c1c0cc194534155c
/전자카트.py
2273864edb2afc43632a862f06106059e7deca6a
[]
no_license
https://github.com/KoMinjae/codingtest
9073dbd094e0675c0f3cac35085703d8d1c546f6
160dfc5f73cad9d1d00a9a497550ab34cdf31a32
refs/heads/master
2022-12-19T14:11:00.972578
2020-09-25T03:08:16
2020-09-25T03:08:16
285,505,309
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def solution(N,MAPS): answer=list() stack=list() stack.append((0,["0"],0)) while stack: v, path, point = stack.pop() if len(path)==N: answer.append((point+MAPS[v][0])) else: for i in range(len(MAPS[v])): if MAPS[v][i]!=0 and str(i) not in path: stack.append((i,path+list(str(i)),point+MAPS[v][i])) return min(answer) T = int(input()) # 여러개의 테스트 케이스가 주어지므로, 각각을 처리합니다. for test_case in range(1, T + 1): # /////////////////////////////////////////////////////////////////////////////////// N=int(input()) MAPS=[list(map(int,input().split())) for _ in range(N)] print("#"+str(test_case), solution(N,MAPS)) ### """ 3 3 0 18 34 48 0 55 18 7 0 4 0 83 65 97 82 0 78 6 19 19 0 82 6 34 94 0 5 0 9 26 85 42 14 0 84 31 27 58 88 0 16 46 83 61 94 0 17 40 71 24 38 0 """ #1 89 #2 96 #3 139 ###
UTF-8
Python
false
false
969
py
176
전자카트.py
175
0.470141
0.356135
0
43
20.44186
89
Maciej-Glowacki/Python_exercises
14,465,449,856,831
8aeda0ace19d30fc828ab29268168316c8040871
595482c645343a92db7b458711d9e8c88cf8b014
/exe_87_classmethod.py
907eb7db7a6efd33dd18ec8031805dea049cf24d
[]
no_license
https://github.com/Maciej-Glowacki/Python_exercises
a78af3dd59327f2920451a36fa9c6b08ec0d622b
a1eb553a8ab66d76d8a3f34691e592ffa0522b32
refs/heads/main
2023-07-11T19:28:34.805514
2021-08-23T15:35:37
2021-08-23T15:35:37
372,899,923
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import datetime class Person: def __init__(self, name, age): self.name = name self.age = age @classmethod def create_person(cls, name, year_of_birth): actual_year = datetime.datetime.now().year age = actual_year - year_of_birth return cls(name, age) def __str__(self): return f'{self.name} is {self.age} years old.' John = Person.create_person('Jan', 1987) Cindy = Person.create_person('Cindy', 1977) print(John) print(Cindy)
UTF-8
Python
false
false
497
py
94
exe_87_classmethod.py
93
0.61167
0.595573
0
22
21.545455
54
jingyuluo/HCALPFG
15,247,133,910,993
0274a5111089d102881af4d0a7ae676e1963312a
f9ff4434e976adb78aadcd544e2cd953476a55f0
/HcalTupleMaker/test/analysis_utca_noise_test_cfg.py
7e9c382833e2c0467e2ad2d43a93eb2d11ba4bcb
[]
no_license
https://github.com/jingyuluo/HCALPFG
4ec1e2156f370d35e31100afdf2f5e1520db5d5d
deac0a0825a36f6ee9c39cdaacb1d2004b97172b
refs/heads/master
2021-07-08T06:42:22.407287
2020-12-01T02:16:23
2020-12-01T02:16:23
207,335,036
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#------------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------------ import FWCore.ParameterSet.Config as cms import FWCore.ParameterSet.VarParsing as VarParsing #------------------------------------------------------------------------------------ # Options #------------------------------------------------------------------------------------ options = VarParsing.VarParsing() options.register('skipEvents', 0, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "Number of events to skip") options.register('processEvents', -1, #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.int, "Number of events to process") options.register('inputFiles', "root://cmsxrootd-site.fnal.gov//store/data/Commissioning2016/MinimumBias/RAW/v1/000/264/232/00000/1EDB8470-71D1-E511-A299-02163E014504.root", #default value, corresponds to LFN /store/data/Commissioning2016/MinimumBias/RAW/v1/000/264/232/00000/1EDB8470-71D1-E511-A299-02163E014504.root from run 267594 VarParsing.VarParsing.multiplicity.list, VarParsing.VarParsing.varType.string, "Input files") options.register('outputFile', "file:/uscms/home/dryu/HCAL/data/HCALPFG/utca_noise_test/hcalTupleTree_267594.root", #default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Output file") options.register('doReco', False, # default value VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.bool, "Run HCAL reconstruction algo?") options.register('globalTag', '80X_dataRun2_Prompt_v2', VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Global Tag") options.parseArguments() print "Skip events =", options.skipEvents print "Process events =", options.processEvents print "inputFiles =", options.inputFiles print "outputFile =", options.outputFile print "doReco =", options.doReco #------------------------------------------------------------------------------------ # Declare the process #------------------------------------------------------------------------------------ process = cms.Process("ANA") #------------------------------------------------------------------------------------ # What files should we run over? #------------------------------------------------------------------------------------ process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( options.inputFiles ), skipEvents = cms.untracked.uint32( options.skipEvents ) ) #------------------------------------------------------------------------------------ # How many events should we run over? #------------------------------------------------------------------------------------ process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32( options.processEvents ) ) #------------------------------------------------------------------------------------ # Set up the output #------------------------------------------------------------------------------------ process.TFileService = cms.Service("TFileService", fileName = cms.string( options.outputFile ) ) #------------------------------------------------------------------------------------ # Various python configuration files #------------------------------------------------------------------------------------ # Need to set up MessageLogger process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = cms.untracked.int32(1000) # Need to set up the global tag # Which to use? https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideFrontierConditions #process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_condDBv2_cff') #from Configuration.AlCa.GlobalTag_condDBv2 import GlobalTag #process.GlobalTag = GlobalTag(process.GlobalTag, 'GR_P_V49', '') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') from Configuration.AlCa.GlobalTag import GlobalTag #process.GlobalTag = GlobalTag(process.GlobalTag, 'GR_P_V46::All') process.GlobalTag = GlobalTag(process.GlobalTag, options.globalTag) # Need the topology to unpack/analyze digis process.load("Geometry.HcalCommonData.hcalDBConstants_cff") process.load("Geometry.HcalEventSetup.HcalTopology_cfi") # Make trigger tower geometry process.HcalTrigTowerGeometryESProducer = cms.ESProducer("HcalTrigTowerGeometryESProducer") # Need to unpack digis from RAW process.load("EventFilter.HcalRawToDigi.HcalRawToDigi_cfi") # Use an emap that has the uTCA (now from the database) #from CalibCalorimetry.HcalPlugins.Hcal_FrontierConditions_cff import es_pool #process.my_es_pool = es_pool #process.my_es_pool.connect = cms.string("frontier://FrontierPrep/CMS_COND_HCAL") #process.my_es_pool.toGet = cms.VPSet( # cms.PSet(record = cms.string("HcalElectronicsMapRcd"), # tag = cms.string("HcalElectronicsMap_v7.06_hlt_test") # ) #) #process.my_es_prefer = cms.ESPrefer('PoolDBESSource','my_es_pool') process.es_ascii = cms.ESSource('HcalTextCalibrations', input = cms.VPSet( cms.PSet( object = cms.string('ElectronicsMap'), file = cms.FileInPath('HCALPFG/HcalTupleMaker/data/2016-feb-24/version_G_emap_all.txt') ), ) ) process.es_prefer = cms.ESPrefer('HcalTextCalibrations','es_ascii') # Set up utcaDigis unpacker process.hcalDigis.FilterDataQuality = cms.bool(False) process.hcalDigis.FEDs = cms.untracked.vint32() #for FED in [x+700 for x in range(32)] + [1118, 1120, 1122]: for FED in xrange(1100, 1124, 2): process.hcalDigis.FEDs.append ( FED ) # Need the geometry to get digi and rechit positions process.load("Geometry.CaloEventSetup.CaloGeometry_cfi") process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") # Set up our analyzer process.load("HCALPFG.HcalTupleMaker.HcalTupleMaker_cfi") # Modify hbhedigis tuple maker for this specific test process.hcalTupleHBHEDigis.DoEnergyReco = cms.untracked.bool ( False ) # HF digis process.hcalTupleHFDigis.DoEnergyReco = cms.untracked.bool ( False ) # Make a path process.p = cms.Path( process.hcalDigis* process.hcalTupleEvent* process.hcalTupleHBHEDigis* process.hcalTupleHFDigis* process.hcalTupleUnpackReport* process.hcalTupleTree )
UTF-8
Python
false
false
6,799
py
85
analysis_utca_noise_test_cfg.py
78
0.590528
0.567142
0
174
38.074713
319
SWannell/cro55-prompt-test
13,039,520,740,632
c12547a307b4323cb2543c88afaa5b772ab4af9c
e8e5d40fea01d50356fee0caf7c344c3b24111fc
/ttest_MDE_model.py
096671e236d209d189fc12420d736594a5cc704d
[]
no_license
https://github.com/SWannell/cro55-prompt-test
de0da0054d65b7b99e8f8e8c225440a2d9a02d96
fc00a914351bd76f3cdf478934bad70533b7f9e4
refs/heads/master
2022-10-20T10:45:08.240099
2020-06-11T15:32:10
2020-06-11T15:32:10
263,640,548
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri May 15 16:07:28 2020 @author: SWannell """ import numpy as np from scipy.stats import ttest_ind_from_stats import matplotlib.pyplot as plt; plt.style.use('ggplot') import seaborn as sns np.random.seed(1234) # Set parameters params = {'ctrl': {'prompts': [5, 25, 50], 'p': [0.25, 0.375, 0.375]}, 'test': {'prompts': [15, 35, 50]}} cellvol = 500 # Get a starting distribution that has an equal average gift size = 10000 trial_dist = [0.48, 0.26, 0.26] ctrl_vals = np.random.choice(params['ctrl']['prompts'], size, p=params['ctrl']['p']) test_vals = np.random.choice(params['test']['prompts'], size, p=trial_dist) print(ctrl_vals.mean(), test_vals.mean()) # set initial values in dict params['test']['p'] = [0.48, 0.26, 0.26] for cell in params.keys(): params[cell]['vals'] = np.random.choice(params[cell]['prompts'], size=cellvol, p=params[cell]['p']) params[cell]['mean'] = params[cell]['vals'].mean() params[cell]['std'] = params[cell]['vals'].std() # Plot initial dist figs, axs = plt.subplots(2, 1, sharex=True, sharey=True) sns.violinplot(x=params['ctrl']['vals'], color='#1d1a1c', ax=axs[0]) sns.violinplot(x=params['test']['vals'], color='#ee2a24', ax=axs[0]) alpha = 0.7 plt.setp(axs[0].collections, alpha=alpha) # MDE calc p_MDE = 1 t_MDE = 0 lift_MDE = 0.00 while p_MDE > 0.05: # Apply expected uplift - flatten the diff between prompts lift = np.array([-lift_MDE, 0.5*lift_MDE, 0.5*lift_MDE]) params['test']['p'] = np.array(params['test']['p']) + lift for cell in params.keys(): params[cell]['vals'] = np.random.choice(params[cell]['prompts'], size=cellvol, p=params[cell]['p']) params[cell]['mean'] = params[cell]['vals'].mean() params[cell]['std'] = params[cell]['vals'].std() # t-test t_MDE, p_MDE = ttest_ind_from_stats( params['ctrl']['mean'], params['ctrl']['std'], cellvol, params['test']['mean'], params['test']['std'], cellvol ) degf = cellvol*2 - 2 upliftMDE = lift_MDE*100 print("Ctrl: (mean={:.2f}, std={:.2f})".format( params['ctrl']['mean'], params['ctrl']['std']), "\nTest: (mean={:.2f}, std={:.2f})".format( params['test']['mean'], params['test']['std']), "\nt({:.0f})={:.2f}, p={:.2f}, uplift={:,.0f}%\n".format( degf, t_MDE, p_MDE, upliftMDE)) if p_MDE < 0.05: break lift_MDE += 0.01 # PLot resulting dist sns.violinplot(x=params['ctrl']['vals'], color='#1d1a1c', ax=axs[1]) sns.violinplot(x=params['test']['vals'], color='#ee2a24', ax=axs[1]) plt.setp(axs[1].collections, alpha=alpha)
UTF-8
Python
false
false
3,031
py
16
ttest_MDE_model.py
7
0.52359
0.484659
0
89
33.067416
72
lukehuang/bitblog
10,754,598,117,185
aa568486f795594f99e26a2651641829738d50cb
d94591fb254d2d0bddaa3f879a27c623bf8bdd7f
/apps/contrib/models.py
a3b55187f4ed1e8445c6f54aaf73fc045949269b
[ "MIT" ]
permissive
https://github.com/lukehuang/bitblog
2c55fd37276d140c75769a91b66106193116e575
903dd83164c9238f24348e8c63e4d2ff1b9f1d4f
refs/heads/master
2021-06-11T10:45:35.340433
2017-03-07T19:15:02
2017-03-07T19:15:02
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import uuid import gc from uuid import UUID from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin, UserManager from django.core.mail import send_mail from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ class AbstractUser(AbstractBaseUser, PermissionsMixin): """ An abstract base class implementing a fully featured User model with admin-compliant permissions. Username and password are required. Other fields are optional. """ first_name = models.CharField(_('first name'), max_length=30, blank=True) last_name = models.CharField(_('last name'), max_length=30, blank=True) is_staff = models.BooleanField(_('staff status'), default=False, help_text=_('Designates whether the user can log into this admin site.'), ) is_active = models.BooleanField(_('active'), default=True, help_text=_( 'Designates whether this user should be treated as active. ' 'Unselect this instead of deleting accounts.' )) date_joined = models.DateTimeField(_('date joined'), default=timezone.now) objects = UserManager() class Meta: verbose_name = _('user') verbose_name_plural = _('users') abstract = True def get_full_name(self): """ Returns the first_name plus the last_name, with a space in between. """ full_name = '%s %s' % (self.first_name, self.last_name) return full_name.strip() def get_short_name(self): "Returns the short name for the user." return self.first_name def email_user(self, subject, message, from_email=None, **kwargs): """ Sends an email to this User. """ send_mail(subject, message, from_email, [self.email], **kwargs) class TimestampMixin(models.Model): creation_date = models.DateTimeField( verbose_name=_("Creación"), auto_now=True, ) class Meta: abstract = True class CodeMixin(models.Model): code = models.UUIDField( verbose_name=_("Código"), default=uuid.uuid4, unique=True, db_index=True, max_length=255, ) class Meta: abstract = True def validate_uuid4(uuid_string): """ Validate that a UUID string is in fact a valid uuid4. Happily, the uuid module does the actual checking for us. It is vital that the 'version' kwarg be passed to the UUID() call, otherwise any 32-character hex string is considered valid. """ try: val = UUID(uuid_string, version=4) except ValueError: return False # If the uuid_string is a valid hex code, # but an invalid uuid4, # the UUID.__init__ will convert it to a # valid uuid4. This is bad for validation purposes. return val.hex == uuid_string def queryset_iterator(queryset, chunksize=1000): """ Iterate over a Django Queryset ordered by the primary key This method loads a maximum of chunksize (default: 1000) rows in it's memory at the same time while django normally would load all rows in it's memory. Using the iterator() method only causes it to not preload all the classes. Note that the implementation of the iterator does not support ordered query sets. """ pk = 0 last_pk = queryset.order_by('-pk')[0].pk queryset = queryset.order_by('pk') while pk < last_pk: for row in queryset.filter(pk__gt=pk)[:chunksize]: pk = row.pk yield row gc.collect()
UTF-8
Python
false
false
3,811
py
171
models.py
62
0.618273
0.611709
0
126
29.230159
108
tommyliverani/RulPrediction
2,783,138,833,717
2e70e25477e27e90aeb6f0e63684516d707776e9
4f394d0ded063cef913972ee2a2c108e9995e2d7
/evaluate.py
95ec6202eb30968d3d7afb40bfcc031a2788ef28
[]
no_license
https://github.com/tommyliverani/RulPrediction
d91db638ede73b015c3849ff5699c604e5b04e09
ada762488cab30c7e8c0a6bd2524df5d3d2bee94
refs/heads/main
2023-01-29T00:38:53.556346
2020-12-10T14:22:21
2020-12-10T14:22:21
316,713,775
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from matplotlib import pyplot as plt import pandas as pd from tensorflow import keras from tensorflow.keras import layers, callbacks from tensorflow_probability import distributions from sklearn.metrics import r2_score from rul_utils import split_data fig_size=(9, 3) def plot_pred_scatter(y_pred, y_true, figsize=fig_size, autoclose=True): if autoclose: plt.close('all') plt.figure(figsize=figsize) plt.scatter(y_pred, y_true, marker='.', alpha=0.1) xl, xu = plt.xlim() yl, yu = plt.ylim() l, u = min(xl, yl), max(xu, yu) plt.plot([l, u], [l, u], ':', c='0.3') plt.xlim(l, u) plt.ylim(l, u) plt.xlabel('prediction') plt.ylabel('target') plt.tight_layout() plt.show() stop=10000 def plot_rul(pred=None, target=None, stddev=None, q1_3=None, same_scale=True, figsize=fig_size, autoclose=True): if autoclose: plt.close('all') plt.figure(figsize=figsize) if target is not None: plt.plot(range(len(target)), target, label='target', color='tab:orange') if pred is not None: if same_scale or target is None: ax = plt.gca() else: ax = plt.gca().twinx() ax.plot(range(len(pred)), pred, label='pred', color='tab:blue') # if stddev is not None: # ax.fill_between(range(len(pred)), # pred-stddev, pred+stddev, # alpha=0.3, color='tab:blue', label='+/- std') if q1_3 is not None: ax.fill_between(range(len(pred)), q1_3[0], q1_3[1], alpha=0.3, color='tab:blue', label='1st/3rd quartile') plt.legend() plt.tight_layout() plt.show() tr=pd.read_csv('data/tr.csv') ts=pd.read_csv('data/ts.csv') dt_in = list(tr.columns[3:-1]) #model 1 def build_regressor(hidden): input_shape = (len(dt_in), ) model_in = keras.Input(shape=input_shape, dtype='float32') x = model_in for h in hidden: x = layers.Dense(h, activation='relu')(x) model_out = layers.Dense(1, activation='linear')(x) model = keras.Model(model_in, model_out) return model #modello 2 def build_cnn2(self): inp = KL.Input(shape=(self.input_shape)) x = inp x = KL.Conv1D(32,16,activation='relu')(x) x = KL.MaxPool1D(4)(x) x = KL.Conv1D(64,3,activation='relu')(x) x = KL.MaxPool1D(4)(x) x = KL.Conv1D(64,3,activation='relu')(x) x = KL.MaxPool1D(2)(x) x = KL.Conv1D(64,3,activation='relu')(x) x = KL.MaxPool1D(2)(x) x = KL.Conv1D(64,3,activation='relu')(x) x = KL.MaxPool1D(2)(x) x = KL.Flatten()(x) x = KL.Dropout(0.3)(x) x = KL.Dense(128,activation='relu')(x) x = KL.Dropout(0.3)(x) x = KL.Dense(self.feature_size,activation='relu',name='feature')(x) out = KL.Dense(1)(x) model = keras.Model(inp,out) #model.summary() model.compile(optimizer=keras.optimizers.Adam(lr=0.001), loss='mse') return model #modello 1 #nn=build_regressor(hidden=[64, 64,64,64]) #modello2 nn=build_cnn2() nn.load_weights("checkpoint.ckt") tr_in=tr[dt_in] tr_out=tr['rul'] ts_in=ts[dt_in] ts_out=ts['rul'] input("Press enter to valuate prediction on training set") result = nn.predict(tr_in).ravel() print(f"Result:{r2_score(result,tr_out)}") plot_pred_scatter(result ,tr_out,fig_size) plot_rul(result[:stop] ,tr_out[:stop],fig_size) input("Press enter to valuate prediction on training set") result = nn.predict(ts_in).ravel() print(f"Result:{r2_score(result,ts_out)}") plot_pred_scatter(result ,ts_out,fig_size) plot_rul(result[:stop] ,ts_out[:stop],fig_size)
UTF-8
Python
false
false
3,769
py
9
evaluate.py
4
0.5922
0.56779
0
130
27.969231
75
esddse/leetcode
12,137,577,610,875
19bb40ea68670719c0911ba14fb9629518d3dc44
15373eaa353e8aece47a26741b7fb27795268bf6
/medium/525_contiguous_array.py
d82833fd5893042e2b6b0120549c22947bc575ca
[]
no_license
https://github.com/esddse/leetcode
e1a9bacf04c68a8d642a1e53c90e6c2dda2c1980
0ceccdb262149f7916cb30fa5f3dae93aef9e9cd
refs/heads/master
2021-06-08T19:15:14.346584
2020-01-09T01:41:23
2020-01-09T01:41:23
109,675,590
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: def findMaxLength(self, nums: List[int]) -> int: size = len(nums) sum_start = {0:-1} res = 0 s = 0 for i, num in enumerate(nums): if num == 0: s += -1 else: s += 1 if s in sum_start: res = max(i-sum_start[s], res) else: sum_start[s] = i return res
UTF-8
Python
false
false
442
py
423
525_contiguous_array.py
411
0.373303
0.357466
0
16
25.75
52
xiaohai12/leetcode
17,016,660,451,237
9ad2cc14edadd00c5254de2ac099c8f4eb09eae9
f0fc8e34f1da807eeb89bd02da9a17a78fd7b4dc
/271 encode decode string.py
d8d0c55c8e9c938b47d44cb66418ffc01f13d4ac
[]
no_license
https://github.com/xiaohai12/leetcode
91ceea6aed9b1e0bcc7e6a7c19e04cddf5dfe017
a443d6dee491c6f93f2847cd0def7ed579f3170b
refs/heads/master
2021-08-07T10:47:01.881877
2020-04-12T13:18:57
2020-04-12T13:18:57
149,550,272
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Codec: def encode(self, strs: [str]) -> str: """Encodes a list of strings to a single string. """ ret = '' for s in strs: ret += str(len(s)) +'/' +s return ret def decode(self, s: str) -> [str]: """Decodes a single string to a list of strings. """ i = 0 ret = [] while i<len(s): ind = s[i:].find('/') size = int(s[i:i+ind]) ret.append(s[i+ind+1:i+ind+size+1]) i += ind + size +1 return ret # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.decode(codec.encode(strs))
UTF-8
Python
false
false
668
py
154
271 encode decode string.py
152
0.480539
0.474551
0
25
25.76
60
milvus-io/milvus
12,713,103,222,589
b3155bdee4cb0e03867ff0ae1167975939e28f02
2cf314b8237fc6a77b7f1a096f17a679179b0057
/tools/core_gen/assemble.py
a9ce6c9cfebd78262017cf9cb14be18c8cffa012
[ "Apache-2.0" ]
permissive
https://github.com/milvus-io/milvus
a02d732cf746effec1ea723f9e4d17856843f8a8
0530fd80c91dc5b200606c00214c12bf8dd17cb4
refs/heads/master
2023-09-04T06:28:57.681855
2023-09-04T02:01:04
2023-09-04T02:01:04
208,728,772
23,316
2,917
Apache-2.0
false
2023-09-14T15:06:12
2019-09-16T06:43:43
2023-09-14T14:54:06
2023-09-14T15:06:11
166,634
22,863
2,509
579
Go
false
false
#!python from meta_gen import * import re def assemble(template, **kwargs): pattern = re.compile("@@@@(.*?)\n((.|\n)*?)\n####", re.MULTILINE) temp_info = pattern.findall(template) # print(temp_info) mapping = dict() rep_map = dict() # drop repetive field from mapping for k, v in kwargs.items(): if isinstance(v, list): rep_map[k] = v else: mapping[k] = v for k, v, _ in temp_info: info = k.split("@") new_v = replace_all(v, **mapping) assert(1 <= len(info) <= 2) if len(info) == 2: k = info[0] rep = info[1] new_v = "\n\n".join([new_v.replace("@@" + rep + "@@", rep_v) for rep_v in rep_map[rep]]) mapping[k] = new_v return mapping["main"] # import sys # if __name__ == "__main__": # assert(len(sys.argv) == 2) # root_file = sys.argv[1] # namespace, root_base, struct_name = meta_gen(readfile(root_file)) # gen_all(readfile("templates/node_full.cpp"), namespace=namespace, root_base=root_base, struct_name=struct_name)
UTF-8
Python
false
false
1,097
py
1,980
assemble.py
1,639
0.533273
0.526892
0
36
29.416667
117
pawarspeaks/HackFest21
12,618,613,929,544
f155d09c3d8e770045628bf6e011ea54209cddc2
246096c11c7ac7bd47fdf81f0be5faede3588f40
/Python Scripts/print_any_pattern/print_any_pattern.py
99ed9ccc67d472e651e36cc937f4cdbb87685f4e
[ "MIT" ]
permissive
https://github.com/pawarspeaks/HackFest21
4aa75e5e388e3776919a26487bf507810d27ddc3
71f161bf68f81aed3d2d5b154c01eadea5634b48
refs/heads/main
2023-08-21T11:47:44.675343
2021-10-29T19:44:19
2021-10-29T19:44:19
422,694,801
4
0
null
true
2021-10-29T19:43:35
2021-10-29T19:43:35
2021-10-27T12:45:34
2021-10-29T16:03:05
78,432
0
0
0
null
false
false
""" Use Patterns.Alphabets_pattern file from the current project which contains printer logic such as printA, printB, etc functions These functions have been mapped with the printer alphabets which will print out the given input by the user """ from Patterns.Alphabets_pattern import * characters = 'abcdefghijklmnopqrstuvwxyz' text = input('Enter what you want to print:\n').lower() for character in text: if character == 'a': printA(character) elif character == 'b': printB(character) elif character == 'c': printC(character) elif character == 'd': printD(character) elif character == 'e': printE(character) elif character == 'f': printF(character) elif character == 'g': printG(character) elif character == 'h': printH(character) elif character == 'i': printI(character) elif character == 'j': printJ(character) elif character == 'k': printK(character) elif character == 'l': printL(character) elif character == 'm': printM(character) elif character == 'n': printN(character) elif character == 'o': printO(character) elif character == 'p': printP(character) elif character == 'q': printQ(character) elif character == 'r': printR(character) elif character == 's': printS(character) elif character == 't': printT(character) elif character == 'u': printU(character) elif character == 'v': printV(character) elif character == 'w': printW(character) elif character == 'x': printX(character) elif character == 'y': printY(character) elif character == 'z': printZ(character)
UTF-8
Python
false
false
1,785
py
204
print_any_pattern.py
170
0.602241
0.602241
0
64
26.890625
66
glotzerlab/gsd
3,178,275,806,198
2422878d2a1a63ca3cf2f14fe807b2bcf7384278
b17758025b2ab936cedd80c0cbd6d4b4fa837bf4
/gsd/__main__.py
7d85c3da480f1dd05d56090f05978e7107adaccb
[ "BSD-2-Clause" ]
permissive
https://github.com/glotzerlab/gsd
58c620675ee912d7af762845f357e1f63c709fc1
de226fed1862ae2a3a76ac9ef06ce6df4eb970f5
refs/heads/trunk-patch
2023-08-31T05:08:31.674725
2023-08-03T19:06:20
2023-08-03T19:06:20
147,664,770
22
10
BSD-2-Clause
false
2023-09-05T12:05:28
2018-09-06T11:40:13
2023-07-28T16:34:55
2023-09-05T12:05:27
2,154
21
7
1
Python
false
false
# Copyright (c) 2016-2023 The Regents of the University of Michigan # Part of GSD, released under the BSD 2-Clause License. """The GSD command line interface. To simplify ad hoc usage of :py:mod:`gsd`, this module provides a command line interface for interacting with GSD files. The primary entry point is a single command for starting a Python interpreter with a GSD file pre-loaded:: $ gsd read trajectory.gsd The following options are available for the ``read`` subcommand: .. program:: read .. option:: -s schema, --schema schema The schema of the GSD file. Supported values for ``schema`` are "hoomd" and "none". .. option:: -m mode, --mode mode The mode in which to open the file. Valid modes are identical to those accepted by :func:`gsd.fl.open`. """ import sys import argparse import code from . import version from .hoomd import open as hoomd_open from . import fl def _print_err(msg=None, *args): print(msg, *args, file=sys.stderr) SHELL_BANNER = """Python {python_version} gsd {gsd_version} File: {fn} {extras} The GSD file handle is available via the "handle" variable. For supported schema, you may access the trajectory using the "traj" variable. Type "help(handle)" or "help(traj)" for more information. The gsd and gsd.fl packages are always loaded. Schema-specific modules (e.g. gsd.hoomd) are loaded if available.""" def main_read(args): """Main function to launch a Python interpreter with an open GSD file.""" # Default to a new line for well-formatted printing. local_ns = { 'gsd': sys.modules['gsd'], 'gsd.hoomd': sys.modules['gsd.hoomd'], 'gsd.fl': sys.modules['gsd.fl'], } attributes = {} if args.schema == 'hoomd': traj = hoomd_open(args.file, mode=args.mode) handle = traj.file local_ns.update({ 'handle': handle, 'traj': traj, }) attributes.update({"Number of frames": len(traj)}) else: if args.mode not in ['rb', 'rb+', 'ab', 'a', 'r', 'r+']: raise ValueError("Unsupported schema for creating a file.") handle = fl.open(args.file, args.mode) local_ns.update({ 'handle': handle, }) extras = "\n".join( "{}: {}".format(key, val) for key, val in attributes.items()) code.interact(local=local_ns, banner=SHELL_BANNER.format(python_version=sys.version, gsd_version=version.version, fn=args.file, extras=extras + "\n")) def main(): """Entry point to the GSD command-line interface. This function handles parsing command-line arguments and launching the appropriate subcommand based on the first argument to ``gsd`` on the command line. At present the following commands are supported: * read """ parser = argparse.ArgumentParser( description="The gsd package encodes canonical readers and writers " "for the gsd file format.") parser.add_argument('--version', action='store_true', help="Display the version number and exit.") parser.add_argument('--debug', action='store_true', help="Show traceback on error for debugging.") subparsers = parser.add_subparsers() parser_read = subparsers.add_parser('read') parser_read.add_argument('file', type=str, nargs='?', help="GSD file to read.") parser_read.add_argument('-s', '--schema', type=str, default='hoomd', choices=['hoomd', 'none'], help="The file schema.") parser_read.add_argument('-m', '--mode', type=str, default='r', choices=[ 'rb', 'rb+', 'wb', 'wb+', 'xb', 'xb+', 'ab', 'w', 'r', 'r+', 'x', 'a', ], help="The file mode.") parser_read.set_defaults(func=main_read) # This is a hack, as argparse itself does not # allow to parse only --version without any # of the other required arguments. if '--version' in sys.argv: print('gsd', version.version) sys.exit(0) args = parser.parse_args() if not hasattr(args, 'func'): parser.print_usage() sys.exit(2) try: args.func(args) except KeyboardInterrupt: _print_err() _print_err("Interrupted.") if args.debug: raise sys.exit(1) except RuntimeWarning as warning: _print_err("Warning: {}".format(warning)) if args.debug: raise sys.exit(1) except Exception as error: _print_err('Error: {}'.format(error)) if args.debug: raise sys.exit(1) else: sys.exit(0) if __name__ == '__main__': main()
UTF-8
Python
false
false
5,594
py
65
__main__.py
15
0.512692
0.510011
0
175
30.965714
79
john-mwangi/multilabel-classification
6,201,932,778,581
d497db33327e3564a764f0c374a0c78e41369982
dfb155865bbc0405de56d215233aa4011139c7f2
/src/train.py
fb620b5ca7c49a80ac7eccb6d155adac4a86ec1f
[]
no_license
https://github.com/john-mwangi/multilabel-classification
7528021a0b04663c986583f592ff3635c08ec54a
72a142b0ed355f3d27f1e871fbaa42479c4dfeae
refs/heads/main
2023-08-03T03:03:51.477384
2021-09-21T14:55:31
2021-09-21T14:55:31
387,020,414
0
0
null
false
2021-07-20T04:25:55
2021-07-17T19:16:34
2021-07-20T04:17:30
2021-07-20T04:25:54
66,282
0
0
0
Python
false
false
""" This module is for training the actual neural network and hyper-parameter tuning using optuna. """ import pandas as pd import numpy as np import torch import optuna from torch.utils.data import DataLoader import utils DEVICE = "cuda" if torch.cuda.is_available() else "cpu" EPOCHS = 10 def run_training(fold, params, save_model=False): df = pd.read_csv("../inputs/train_features.csv") df = utils.Engine.process_data(df=df) targets_df = pd.read_csv("../outputs/train_targets_folds.csv") features_columns = df.drop(labels="sig_id", axis=1).columns target_columns = targets_df.drop(["sig_id", "kfold"], axis=1).columns df = pd.merge(left=df, right=targets_df, how="left", on="sig_id") train_df = df[df.kfold != fold].reset_index(drop=True) valid_df = df[df.kfold == fold].reset_index(drop=True) xtrain = train_df[features_columns].to_numpy() xvalid = valid_df[features_columns].to_numpy() ytrain = train_df[target_columns].to_numpy() yvalid = valid_df[target_columns].to_numpy() train_dataset = utils.MoADataset(features=xtrain, targets=-ytrain) valid_dataset = utils.MoADataset(features=xvalid, targets=yvalid) train_loader = DataLoader( dataset=train_dataset, batch_size=1024, num_workers=2, shuffle=True ) valid_loader = DataLoader( dataset=valid_dataset, batch_size=1024, num_workers=2 ) model = utils.Model( nfeatures=xtrain.shape[1], ntargets=ytrain.shape[1], nlayers=params["num_layers"], hidden_size=params["hidden_size"], dropout=params["dropout"] ) model.to(device=DEVICE) optimizer = torch.optim.Adam(params=model.parameters(), lr=params["learning_rate"]) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer=optimizer, mode="min", patience=3, threshold=1e-5, verbose=True ) eng = utils.Engine(model=model, optimizer=optimizer, device=DEVICE) best_loss = np.inf early_stopping_iter = 10 early_stopping_counter = 0 for epoch in range(EPOCHS): train_loss = eng.train_loss(data_loader=train_loader) valid_loss = eng.eval_loss(data_loader=valid_loader) scheduler.step(valid_loss) print(f"{fold}, {epoch}, {train_loss}, {valid_loss}") if valid_loss < best_loss: best_loss = valid_loss if save_model: torch.save(obj=model.state_dict(), f=f"model_{fold}.bin") else: early_stopping_counter += 1 if early_stopping_counter > early_stopping_iter: break return best_loss def objective(trial): params = { "num_layers": trial.suggest_int("num_layers", 1, 7), "hidden_size": trial.suggest_int("hidden_size", 16, 2048), "dropout": trial.suggest_uniform("dropout", 0.1, 0.7), "learning_rate": trial.suggest_loguniform("learning_rate", 1e-6, 1e-3) } all_losses = [] for f_ in range(5): temp_loss = run_training(fold=f_, params=params, save_model=False) all_losses.append(temp_loss) return np.mean(all_losses) if __name__ == "__main__": study = optuna.create_study(direction="minimize") study.optimize(func=objective, n_trials=20) print("Best trial:") trial_ = study.best_trial print(trial_.values) print(trial_.params) scores = 0 for j in range(5): scr = run_training(fold=j, params=trial_.params, save_model=True) scores += scr print(f"CV Score of best params: {scores/5}")
UTF-8
Python
false
false
3,648
py
5
train.py
4
0.622533
0.610197
0
130
27.061538
78
jhartman86/gitdeployhooks
11,991,548,714,720
3962463ecf7cc4fee660598cfbf35829baf57df2
cda266d434d19fd80f7eeefd9d4183ca70de4ba5
/deploy_coordinator/system/__init__.py
d9deb9a580926d52d41381ae4e13633a26c87fc8
[]
no_license
https://github.com/jhartman86/gitdeployhooks
84f18ed35ad59e498e60aae2b2cb99913dc52780
93050346be4f341ad14b87371842af72b99f4e12
refs/heads/master
2016-09-05T18:19:26.644667
2015-09-10T02:55:10
2015-09-10T02:55:10
34,279,904
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# from execute import Execute # from file_system import FileSystem # from git import Git # from parse_json import ParseJson
UTF-8
Python
false
false
123
py
14
__init__.py
12
0.796748
0.796748
0
4
30
36
Etenil/anvil
13,950,053,825,270
4350daff015eb24cb3b8c946198cc7d3b1884828
6db970b6a09bdf07767aae00ea4cc2b5591300f4
/anvil.py
fe0b11c25c91f55957ab5657e83d0426d346c96d
[ "MIT" ]
permissive
https://github.com/Etenil/anvil
fc439d854dc3be8f14493d0200488bb6ca8a9268
d40c296ed3ca0c05fce6d59038fc7a1f9890dccd
refs/heads/master
2021-01-25T07:18:55.439521
2013-06-16T11:36:53
2013-06-16T11:36:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import web import common import sys import os from controller.user import User from controller.project import Project from controller.message import Message from controller.bug import Bug from controller.doc import Doc import model.project import model.message import model.event from anvillib import config ### Parsing the configuration config.load_conf() # Generating an argv from the config file (for web.py; pretty dirty I # know). sys.argv = ['anvil.py', config.val('port')] ### URL mapping urls = ( '/' , 'Main', '/(login)' , 'User', '/(logout)' , 'User', '/(register)' , 'User', '/(profile)' , 'User', '/(users)' , 'User', '/message(?:/(.+))?$' , 'Message', '/ajax/(listusers)' , 'User', '/project(?:/(.+))?$' , 'Project', '/\*([a-z0-9._-]+)$' , 'User', '/\*([a-z0-9._-]+)/(key)(?:/(.+?)(?:/(.+))?)?$' , 'User', '/\*([a-z0-9._-]+)/(branch)(?:/(.+?)(?:/(.+?)(?:/(.+))?)?)?$' , 'User', '/\*([a-z0-9._-]+)/(events)$' , 'User', '/([a-z0-9._-]+)/bugs(?:/(.+?)(?:/(.+))?)?$' , 'Bug', '/([a-z0-9._-]+)/doc(?:/(.+?)(?:/(.+))?)?$' , 'Doc', '/([a-z0-9._-]+)/(commiters)/(del|add)/(.+)$' , 'Project', '/([a-z0-9._-]+)/(branch)/(.+?)(?:/(.+?)(?:/(.+))?)?$' , 'Project', '/([a-z0-9._-]+)/(events)$' , 'Project', '/([a-z0-9._-]+)(?:/(.+))?$' , 'Project', #Leave at bottom! '.*' , 'Main', ) ### Runing the server app = web.application(urls, globals(), autoreload=False) common.session = web.session.Session(app, web.session.DBStore(common.db, 'sessions'), initializer={'user': None}) # This is a hook that is run on every request handling. This ensures # we always display the number of unread messages to the user. def refresh_messages(handler): common.msgs = model.message.num_unread_msgs(common.session.user) web.header('Content-Type', 'text/html') return handler() app.add_processor(refresh_messages) # Default page in case we don't know what to do (shouldn't happen). class Main: def GET(self): activity = model.event.get_events(0, 30) custom_logged_page=None custom_visitor_page=None if os.path.exists("custom.logged.html"): f = open("custom.logged.html") custom_logged_page = f.read() f.close() if os.path.exists("custom.visitor.html"): f = open("custom.visitor.html") custom_visitor_page = f.read() f.close() return common.render.main(content="Welcome to " + config.val('title'), is_main=True, num_proj=model.project.count_proj(), activity=activity, custom_logged_page=custom_logged_page, custom_visitor_page=custom_visitor_page, htTitle="Welcome to " + config.val('title') + "!") # Defining the mode if config.val('mode') == 'fcgi': web.wsgi.runwsgi = lambda func, addr=None: web.wsgi.runfcgi(func, addr) # Serving. if __name__ == "__main__": app.run()
UTF-8
Python
false
false
3,868
py
62
anvil.py
28
0.431489
0.425543
0
94
40.148936
95
ShihabSikder/tronics
12,163,347,390,491
f0a8216535af9545bb46ebf3115d329d5b3f9972
2e89eaa81cd06caf31702b46679d4c1d7aa0f912
/portfolio/urls.py
a4a1536008b35b38b281f24b1220fa42f09ba764
[]
no_license
https://github.com/ShihabSikder/tronics
aa5914074efc1040e146dd1dcc2ba1bf3547e9fc
58fbbdd749e2ee5978f61c141721c7517749ce53
refs/heads/master
2020-09-23T20:32:18.494172
2019-12-03T18:59:39
2019-12-03T18:59:39
225,580,607
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from django.urls import path,include from django.conf.urls import url from blog import views urlpatterns = [ path('admin/', admin.site.urls), path('',include('blog.urls')), url(r'aboutme/',views.aboutme, name='about') ]
UTF-8
Python
false
false
266
py
3
urls.py
1
0.710526
0.710526
0
9
28.444444
48
bethebunny/sos
10,127,532,892,267
3fc69467e29c0a73c9ff8ef2a7f9179636c8f739
8e280407a657f81b793bff7d5cdc851b2ba9a6bf
/utils/sosh.py
b8b0d9794e23e21277e56117f089f1a13546b3fd
[]
no_license
https://github.com/bethebunny/sos
152e909de045c1db1e0056d9c7a2a1efce4a6802
458cdc466b93e453fc457e44144403493fa33ecc
refs/heads/master
2023-07-30T21:03:48.765757
2021-09-05T08:13:09
2021-09-05T08:13:09
400,320,017
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from IPython.terminal.embed import embed from sos.execution_context import current_execution_context from sos.kernel_main import Kernel from sos.scheduler import Scheduler from sos.service.remote import Remote from sos.services.services import RemoteServicesBackend if __name__ == "__main__": services = RemoteServicesBackend(Remote.Args(("localhost", 2222))) kernel = Kernel( services=services, root_ec=current_execution_context(), scheduler=Scheduler(), ) # Can't point to kernel.main directly; IPython tries to pickle the function # and event loops don't pickle well :/ def run(coro): return kernel.main(coro) embed(colors="neutral", using=run)
UTF-8
Python
false
false
713
py
25
sosh.py
22
0.713885
0.708275
0
23
30
79
kzm0211/Lchika
6,828,998,035,831
8648782449100acd5f1d1b4d7f69ac7b626a4cfe
6eeed3094c766601a970e4584759b846d0867a36
/led3onoff_mod.py
b8631e80a2c2a1bd5abf7c6fbdecf25caeaaff44
[]
no_license
https://github.com/kzm0211/Lchika
1ce79c25085051993a03f59e54b64e1abcbf5e27
61c07e916cce0e165548d785ca577f946daa318a
refs/heads/master
2021-01-20T19:56:42.743778
2016-07-19T15:18:45
2016-07-19T15:18:45
63,612,013
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python import RPi.GPIO as GPIO import time def led_init(leds): GPIO.setup(leds, GPIO.OUT) def led_on(leds): GPIO.output(leds, GPIO.HIGH) def led_off(leds): GPIO.output(leds, GPIO.LOW) LED1 = 6 led_init(LED1) LED2 = 5 led_init(LED2) LED3 = 11 led_init(LED3) for i in range(10): print(i) led_on(LED1) led_on(LED2) led_on(LED3) time.sleep(0.5) led_off(LED1) led_off(LED2) led_off(LED3) time.sleep(0.5) GPIO.cleanup()
UTF-8
Python
false
false
452
py
5
led3onoff_mod.py
5
0.672566
0.623894
0
36
11.527778
29
HMQstu/FileServer
13,322,988,581,198
342d1949f2d9db0075d816fb7acd6ab2677aef68
802e89a1c0c5149df76dad4e85700a47b27b2be0
/user_service.py
5116c3eebf162cf2dea53ba9e335b9df0a2089df
[]
no_license
https://github.com/HMQstu/FileServer
63f72be2c93293989dd3b02064fa43d1d39d58fc
3f6e7a232a18ec6a2809adf8b9fd6183a59c547c
refs/heads/master
2021-09-15T07:01:53.483116
2018-05-28T07:56:38
2018-05-28T07:56:38
126,126,643
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 import db_helper def query_user(username, password): user = db_helper.find_user_by_username(username) if user is None: # 用户不存在 return None if password != user.password: # 密码错误 return None return user def register_user(user): old_user = db_helper.find_user_by_username(user.username) if old_user is not None: db_helper.remove_user_by_username(user.username) db_helper.insert_user(user)
UTF-8
Python
false
false
492
py
14
user_service.py
13
0.647679
0.64557
0
21
21.571429
61
AbelRapha/Python-Exercicios-CeV
18,476,949,328,451
a5550f0b1bd30829eb30df234aad296c7fa82117
2dafd069ae283ea707c644e3aacedca35493df3c
/Mundo 1/ex035 Aprovando emprestimo.py
deb1285ad5249e298af3bd573281f0d405c4c92e
[ "MIT" ]
permissive
https://github.com/AbelRapha/Python-Exercicios-CeV
49353c7284aa9467ac8ab1cb416b121a927bbccb
17e7055c982c8a1224992602ece50bae8eeee365
refs/heads/main
2023-08-29T04:55:03.430294
2021-09-12T03:53:09
2021-09-12T03:53:09
405,525,468
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import time valorCasa = float(input("Digite o valor da Casa que deseja adquirir: ")) salario = float(input("Digite o seu salario: ")) anos = int(input("Em quantos voce quer pagar esse financiamento? ")) prestacao = valorCasa/ (12*anos) def aprovacaoEmprestimo(prestacao, salario): if prestacao <= 0.3*salario: return "APROVADO" else: return "REPROVADO" print("Para pagar uma casa no valor de R$ {:,.2f} em {} anos a prestacao sera de R$ {:,.2f} por mes.".format(valorCasa,anos, prestacao)) print("Analisando a aprovacao do financiamento. Aguarde... ") time.sleep(3) print(aprovacaoEmprestimo(prestacao,salario))
UTF-8
Python
false
false
638
py
107
ex035 Aprovando emprestimo.py
106
0.710031
0.69906
0
17
36.588235
136
ColDog/battlesnake-training-snakes
14,809,047,264,372
b8694438eeec1051223bb6d0052f82fb7e35d890
e652bc36ce2a447eaaf46e00e40941fd20afddce
/app/snakes/snake_3.py
bd45503f45ebb4a021faacb6e88bef31ff0f2aa5
[]
no_license
https://github.com/ColDog/battlesnake-training-snakes
478770854ab8fb703dc7476e7d7b86b5a24c284c
39f0b85714582ff936c2145754a6d96975df57b8
refs/heads/master
2021-05-08T23:05:12.150527
2018-02-06T04:59:09
2018-02-06T04:59:09
119,697,932
0
0
null
true
2018-01-31T14:27:51
2018-01-31T14:27:51
2018-01-30T23:56:12
2018-01-31T00:36:42
21
0
0
0
null
false
null
from utils.vector import Vector, up, down, left, right, noop from base_snake import BaseSnake class Snake3(BaseSnake): def move(self, gamestate): first_food = gamestate.food[0] ordered_directions = self._directions_to(first_food, gamestate) head = gamestate.my_head for v in ordered_directions: if gamestate.is_empty(head + v): return v return up def _directions_to(self, goal, gamestate): to_travel = goal - gamestate.my_head horizontal = [left, right] if goal.x < gamestate.my_head.x else [right, left] vertical = [up, down] if goal.y < gamestate.my_head.y else [down, up] if to_travel.x > to_travel.y: return horizontal + vertical return vertical + horizontal def name(self): return "Training Snake 3" def color(self): return "#05f299" def head_url(self): return "" def taunt(self): return "" def end(self): pass
UTF-8
Python
false
false
1,013
py
12
snake_3.py
11
0.596249
0.588351
0
37
26.378378
85
IrinaMun/python-base
10,703,058,535,666
e1177396c0e1a4a1d261769f00699110b65f9bf3
a130ad550ce437dbd9487d6f37b8c1121bc46289
/Lesson9/task5.py
899f70c0feadc35b9de1ec591491ba4a1531d359
[]
no_license
https://github.com/IrinaMun/python-base
0172f71f2617e1a70321106d0e2b758943e6dae9
ada695419c43639d4021aa6ef3d279d699bdbc12
refs/heads/main
2023-04-08T22:42:10.139091
2021-04-05T16:23:46
2021-04-05T16:23:46
341,997,663
0
0
null
false
2021-04-10T13:51:52
2021-02-24T18:33:33
2021-04-05T16:23:49
2021-04-10T13:51:06
588
0
0
2
Python
false
false
""" 5. Реализуйте базовый класс Car. при создании класса должны быть переданы атрибуты: color (str), name (str). реализовать в классе методы: go(speed), stop(), turn(direction), которые должны изменять состояние машины - для хранения этих свойств вам понадобятся дополнительные атрибуты - придумайте какие. добавьте метод is_police() - который возвращает True/False, в зависимости от того является ли этот автомобиль полицейским (см.дальше) Сделайте несколько производных классов: TownCar, SportCar, WorkCar, PoliceCar; Добавьте в базовый класс метод get_status(), который должен возвращать в виде строки название, цвет, текущую скорость автомобиля и направление движения (в случае если автомобиль едет), для полицейских автомобилей перед названием автомобиля должно идти слово POLICE; Для классов TownCar и WorkCar в методе get_status() рядом со значением скорости должна выводиться фраза "ПРЕВЫШЕНИЕ!", если скорость превышает 60 (TownCar) и 40 (WorkCar). Создайте по одному экземпляру каждого производного класса. В цикле из 10 итераций, для каждого автомобиля сделайте одно из случайных действий: go, stop, turn со случайными параметрами. После каждого действия показывайте статус автомобиля. """ from random import randrange directions = ['Север', 'Юг', 'Запад', 'Восток'] class Car(object): def __init__(self, color, name): self.color = color self.name = name self.speed = 0 self.direction = None def go(self, speed, direction=None): self.speed = speed if direction: self.direction = direction def stop(self): self.speed = 0 def turn(self, direction): self.direction = direction def show_speed(self): return self.speed def is_police(self): return False def get_status(self): status_str = f'Скорость: {self.show_speed()}\n' \ f'Цвет: {self.color}\n' \ f'Название: {self.name}\n' \ f'Направление: {self.direction}\n' \ f'*********************************' return status_str class TownCar(Car): def show_speed(self): result = '' if self.speed > 60: result += 'ПРЕВЫШЕНИЕ: ' result += str(self.speed) return result class SportCar(Car): pass class WorkCar(Car): def show_speed(self): result = '' if self.speed > 40: result += 'ПРЕВЫШЕНИЕ: ' result += str(self.speed) return result class PoliceCar(Car): def is_police(self): return True def get_status(self): result = "POLICE: " + super().get_status() return result if __name__ == '__main__': town_car = TownCar( color="Green", name="Nissan", ) sport_car = SportCar( color="Red", name="lamborghini", ) work_car = WorkCar( color="Gray", name="Ford", ) police_car = PoliceCar( color="Blue", name="Hyundai", ) car_list = [town_car, sport_car, work_car, police_car] for count in range(10): for car in car_list: car.go(randrange(0, 100)) car.turn(directions[randrange(0, 3)]) if randrange(0, 10) > 8: car.stop() for car in car_list: print(car.get_status())
UTF-8
Python
false
false
4,242
py
5
task5.py
5
0.612798
0.605357
0
121
26.768595
120
vaezc/PythonTraining
17,815,524,346,343
3632a1f2c0c5503a55de0ce06ff82a6ed8a66aad
d6a0d07a6ba5667ed33b5f0576555308553fbd56
/统计代码行数/main.py
7a468bb422a1b1a94353971c911669795be099b1
[]
no_license
https://github.com/vaezc/PythonTraining
5f371ab4ed72cf01d54348ec6018284c130366a6
bc305e37a748751e5bd4eed21a6031fbd3c72186
refs/heads/master
2020-03-13T12:26:42.507244
2018-04-26T07:49:09
2018-04-26T07:49:09
131,119,081
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os length = 0 def writeFile(path,fileList): str = "" for line in fileList: str = str + line with open(path,"w+") as f: f.write(str) def readFile(path): global length with open(path,"r") as f: fileList = f.readlines() for line in fileList: length += 1 def listAllDir(path): list = os.listdir(path) for line in list: newline = os.path.join(path, line) if os.path.isdir(newline): listAllDir(newline) else: if newline.endswith('.h') or newline.endswith('.m'): if 'Pods' in newline: continue else: readFile(newline) path = '' listAllDir(path) print length
UTF-8
Python
false
false
756
py
1
main.py
1
0.527778
0.525132
0
37
19.459459
64
DominicBurkart/wikipedia-revisions
16,252,156,274,104
de1d7edc42c7312e077cfb3bc15d44991460501f
6ceccf5269b468ebbdb792d5ab42834635ba2fc8
/wikipedia_revisions/download.py
bf44941e7802a011567bee10ac47ab8f964e7c10
[ "BSD-3-Clause" ]
permissive
https://github.com/DominicBurkart/wikipedia-revisions
9bee9a7bd9ed1e67b4b612a12c1ebb645b4d7c2f
826e455e32d440bb2d4af5d17e5c939b1da067df
refs/heads/master
2023-06-08T22:43:26.391137
2020-08-27T11:43:50
2020-08-27T11:43:50
250,873,585
2
0
BSD-3-Clause
false
2023-05-22T23:22:43
2020-03-28T19:10:25
2020-08-27T11:44:02
2023-05-22T23:22:43
175
2
0
3
Python
false
false
import bz2 import errno import hashlib import os import platform import re import threading import time import traceback import xml.etree.ElementTree as ET from typing import Optional, Dict, Generator, Iterable, Callable, Set import click import requests from wikipedia_revisions import config from wikipedia_revisions.utils import timestr def download_bz2_file(session: requests.Session, url: str) -> str: CHUNK_SIZE = 1024 * 1024 * 5 filename = url.split("/")[-1] retries = 0 while True: try: if os.path.exists(filename): print(f"{timestr()} using local file {filename} 👩‍🌾") break print(f"{timestr()} downloading {url}. saving to {filename}. 📁") resp = session.get(url, stream=True, timeout=60) assert resp.status_code == 200 print(f"{timestr()} response for {url}: {resp.status_code}. 🕺") with open(filename, "wb") as file: for chunk in resp.iter_content(chunk_size=CHUNK_SIZE): file.write(chunk) break except (requests.exceptions.Timeout, requests.exceptions.ConnectionError): traceback.print_exc() retries += 1 print( f"{timestr()} timeout for {url}: sleeping 60 seconds and restarting download... (retry #{retries}) ↩️" ) time.sleep(60) return filename def download_and_verify_bz2_files( session: requests.Session, update_urls: Set[str] ) -> Generator[str, None, None]: verified_files = VerifiedFilesRecord() # perform checksum if config["low_storage"]: print( f"{timestr()} [low storage mode] " f"deleting all records of previously verified files. 🔥" ) verified_files.remove_local_file_verification() while len(update_urls) > 0: url = update_urls.pop() unverified_filename = download_bz2_file(session, url) verified_filename = check_hash(verified_files, unverified_filename) if verified_filename is not None: yield verified_filename else: update_urls.add(url) class MalformattedInput(Exception): ... def generate_revisions(file) -> Generator[Dict, None, None]: def prefixed(s: str) -> str: """element names have the following string prepended to them.""" return "{http://www.mediawiki.org/xml/export-0.10/}" + s ID_STR = prefixed("id") NS_STR = prefixed("ns") TITLE_STR = prefixed("title") PAGE_STR = prefixed("page") REVISION_STR = prefixed("revision") PARENT_ID_STR = prefixed("parentid") TIMESTAMP_STR = prefixed("timestamp") CONTRIBUTOR_STR = prefixed("contributor") IP_STR = prefixed("ip") USERNAME_STR = prefixed("username") COMMENT_STR = prefixed("comment") TEXT_STR = prefixed("text") page_id = None page_ns = None page_title = None for event, element in ET.iterparse(file, events=["start", "end"]): if event == "end" and element.tag == PAGE_STR: page_id = None page_ns = None page_title = None element.clear() elif event == "end": # hack: assume that the id, ns, and title for a revision all precede the first revision. # if this is not the case, a MalformattedInput exception is thrown. if page_id is None and element.tag == ID_STR: page_id = element.text elif page_ns is None and element.tag == NS_STR: page_ns = element.text elif page_title is None and element.tag == TITLE_STR: page_title = element.text elif element.tag == REVISION_STR: revision_id = element.find(ID_STR).text parent_id_element = element.find(PARENT_ID_STR) parent_id = ( parent_id_element.text if parent_id_element is not None else None ) timestamp = element.find(TIMESTAMP_STR).text contributor_element = element.find(CONTRIBUTOR_STR) ip_element = contributor_element.find(IP_STR) contributor_ip = ip_element.text if ip_element is not None else None contributor_id_element = contributor_element.find(ID_STR) contributor_id = ( contributor_id_element.text if contributor_id_element is not None else None ) contributor_name_element = contributor_element.find(USERNAME_STR) contributor_name = ( contributor_name_element.text if contributor_name_element is not None else None ) comment_element = element.find(COMMENT_STR) comment = comment_element.text if comment_element is not None else None text = element.find(TEXT_STR).text if any(v is None for v in (page_id, page_ns, page_title)): raise MalformattedInput yield { "id": revision_id, "parent_id": parent_id, "timestamp": timestamp, "page_id": page_id, "page_title": page_title, "page_ns": page_ns, "contributor_id": contributor_id, "contributor_name": contributor_name, "contributor_ip": contributor_ip, "comment": comment, "text": text, } element.clear() def parse_one_file(filename: str) -> Generator[Dict, None, None]: pid = os.getpid() print( f"{timestr()} extracting revisions from update file {filename} in process #{pid}... 🧛" ) with bz2.open(filename, "rt", newline="") as uncompressed: for revision in generate_revisions(uncompressed): yield revision print(f"{timestr()} exhausted file: {filename} 😴") if config["low_storage"]: print(f"{timestr()} Deleting {filename}... ✅") os.remove(filename) class VerifiedFilesRecord: """ retain the hash and basename for each downloaded file. downloads the canonical hashes from wikipedia if they are not stored locally. """ def __init__(self): self.canonical_record = "canonical_hashes.txt" self.lock = threading.Lock() while not os.path.exists(self.canonical_record): resp = requests.get(config["md5_hashes_url"]) if resp.status_code != 200: print( f"{timestr()} unable to get md5 hashes from wikipedia. " "Sleeping for five minutes then retrying... 🛌" ) time.sleep(5 * 60) else: with open(self.canonical_record, "w") as local_record: local_record.write(resp.text) self.canonical_hashes = { line.split(" ")[1].strip(): line.split(" ")[0] for line in open(self.canonical_record).readlines() } self.record_in_storage = "verified_files_record.txt" if os.path.exists(self.record_in_storage): self.files = set( map(lambda s: s.strip(), open(self.record_in_storage).readlines()) ) else: open(self.record_in_storage, "a").close() self.files = set() def __contains__(self, filename): with self.lock: return filename in self.files def add(self, filename): with self.lock: base = os.path.basename(filename) with open(self.record_in_storage, "a") as store: store.write(base + "\n") self.files.add(base) def canonical_hash(self, filename) -> str: base = os.path.basename(filename) return self.canonical_hashes[base] def remove_local_file_verification(self): with self.lock: with open(self.record_in_storage, "w") as store: store.write("") self.files.clear() def get_hash(filename: str) -> str: hash = hashlib.md5() with open(filename, "rb") as f: while True: chunk = f.read(1000000) if not chunk: break hash.update(chunk) return hash.hexdigest() def check_hash(verified_files: VerifiedFilesRecord, filename: str) -> Optional[str]: if filename not in verified_files: print(f"{timestr()} checking hash for {filename}... 📋") file_hash = get_hash(filename) if file_hash == verified_files.canonical_hash(filename): if not config["low_storage"]: # ^ hack in low_storage mode the files are deleted when exhausted verified_files.add(filename) else: print(f"{timestr()} hash mismatch with {filename}. Deleting file.🗑️") os.remove(filename) return None print(f"{timestr()} {filename} hash verified 💁") return filename def full_dump_url_from_partial(partial: str): if config["date"] != "latest" and partial.startswith("/"): return "https://dumps.wikimedia.org" + partial elif config["date"] == "latest" and not partial.startswith("/"): return "https://dumps.wikimedia.org/enwiki/latest/" + partial else: raise ValueError("dump page format has been updated.") def download_and_parse_files() -> Iterable[Callable[..., Generator[Dict, None, None]]]: print(f"{timestr()} requesting dump directory... 📚") session = requests.Session() session.headers.update( { "User-Agent": "Mozilla/5.0 (Linux; Android 8.0.0; Pixel 2 XL Build/OPD1.170816.004) " "AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Mobile Safari/537.36", "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp," "image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", } ) dump_page = session.get(config["dump_page_url"]) assert dump_page.status_code == 200 print(f"{timestr()} parsing dump directory... 🗺️🗺️") # read history file links in dump summary bz2_urls = set( map( full_dump_url_from_partial, filter( lambda url: "pages-meta-history" in url and url.endswith(".bz2"), re.findall('href="(.+?)"', dump_page.text), ), ) ) # download & verify history files verified_files = download_and_verify_bz2_files(session, bz2_urls) # create functions that read and parse valid files for filename in verified_files: yield lambda: parse_one_file(filename) def write_to_csv( filename: Optional[str], revision_iterator_functions: Iterable[Callable[..., Iterable[Dict]]], ): from wikipedia_revisions.write_to_files import write_to_csv as write write(filename, revision_iterator_functions) def write_to_database( revision_iterator_functions: Iterable[Callable[..., Iterable[Dict]]] ) -> None: from wikipedia_revisions.write_to_database import write write(config, revision_iterator_functions) @click.command() @click.option( "--date", "date", default="latest", help="Wikipedia dump page in YYYYMMDD format (like 20200101). " "Find valid dates by checking which entries on " "https://dumps.wikimedia.org/enwiki/ have .bz2 files that " 'contain the include "pages-meta-history" in the name and ' "have been successfully written.", ) @click.option( "--low-storage/--large-storage", "low_storage", default=True, help="Cut performance to decrease storage requirements. Deletes " "files when they are exhausted and keeps a limited number of " ".xml.bz2 files on disk at any time. If --large-storage, " "downloads all xml.bz2 files and never deletes them.", ) @click.option( "--database/--csv", "use_database", default=False, help="Write output into a database instead of a CSV. " "Requires additional installations (run pip install -r " "database_requirements.txt) and for the database URL (see " "--database-url) to be available.", ) @click.option( "-o", "--output", "output_file", default=os.path.join(os.path.curdir, "revisions.csv.bz2"), help="set output path for csv.bz2. Defaults to revisions.csv.bz2 in current directory.", ) @click.option( "--database-url", default="postgres:///wikipedia_revisions" if platform.python_implementation() == "CPython" else "postgresql+psycopg2cffi:///wikipedia_revisions", help="Database URL to use. Defines database dialect used (any " "database dialect supported by SQLAlchemy should work). Ignored" "if --database is not set. Default is postgres:///wikipedia_revisions on CPython, and " "postgresql+psycopg2cffi:///wikipedia_revisions on all other implementations (e.g. PyPy).", ) @click.option( "--low-memory/--large-memory", "low_memory", default=True, help="Optimize for low-memory systems. Limits the number of " "dump files concurrently processed to 3, instead of " "the number of CPU cores. If writing to a database, " "also commits every megabyte instead of gigabyte to limit " "memory usage.", ) @click.option( "--delete-database/--do-not-delete-database", "delete_database", default=False, help="drop everything in the passed database and overwrite it with " "the wikipedia revisions data.", ) @click.option( "--num-subprocesses", "concurrent_reads", default=2, type=int, help="number of concurrent processes, each reading one .xml.bz2 file. Default is 2. When using storage media " "with fast concurrent reads and high throughput (SSDs), higher values (e.g. the number of " "cpu cores) are better.", ) @click.option( "--insert-multiple-values/--batch-insert", "insert_multiple_values", default=False, help="if writing to a database, insert multiple values within a single statement. Not supported for all " "SQLAlchemy-covered databases. For more information on multi-value inserts in SQLAlchemy, see: " "http://docs.sqlalchemy.org/en/latest/core/dml.html#sqlalchemy.sql.expression.Insert.values.params.*args", ) @click.option( "--db-connections-per-process", "num_db_connections", default=4, type=int, help="number of DB connections per process. Default is 4. Must be > 0.", ) @click.option( "-p", "--pipe-dir", "pipe_dir", default=False, help="write revisions as uncompressed csvs to a series of named pipes. Pipes are named " "revisions-<process number>-<numeric time string>.pipe, and are placed in the passed directory.", ) def run( date, low_storage, use_database, output_file, database_url, low_memory, delete_database, concurrent_reads, insert_multiple_values, num_db_connections, pipe_dir, ): config["date"] = date config["dump_page_url"] = f"https://dumps.wikimedia.org/enwiki/{date}/" config[ "md5_hashes_url" ] = f"https://dumps.wikimedia.org/enwiki/{date}/enwiki-{date}-md5sums.txt" config["low_storage"] = low_storage config["database_url"] = database_url config["low_memory"] = low_memory config["delete_database"] = delete_database config["concurrent_reads"] = concurrent_reads config["insert_multiple_values"] = insert_multiple_values config["num_db_connections"] = num_db_connections config["backlog"] = 300 if low_memory else 5000 config["pipe_dir"] = pipe_dir if concurrent_reads < 1: raise ValueError("concurrent_reads must be at least 1.") if num_db_connections < 1: raise ValueError("num_db_connections must be at least 1.") print(f"{timestr()} program started. 👋") if config["low_storage"]: print(f"{timestr()} low storage mode active. 🐈 📦") complete = False while not complete: try: # download XML files from wikipedia and collect revisions revision_iterator_functions = download_and_parse_files() # write collected revisions to output. if pipe_dir is not None: write_to_csv(None, revision_iterator_functions) elif use_database: write_to_database(revision_iterator_functions) else: if os.path.exists(output_file): print(f"{timestr()} overwriting file {output_file}... 🥛") write_to_csv(output_file, revision_iterator_functions) print(f"{timestr()} program complete. 💐") complete = True except Exception as e: if getattr(e, "errno", None) == errno.ENOSPC: print(f"{timestr()} no space left on device. Ending program. 😲") raise e SLEEP_SECONDS = 5 * 60 print( f"{timestr()} caught exception ({e}). Sleeping {SLEEP_SECONDS/60} minutes..." ) time.sleep(SLEEP_SECONDS) print(f"{timestr()} Restarting...") finally: for fname in ["verified_files.txt", "canonical_hashes.txt"]: if os.path.exists(fname): os.remove(fname) if __name__ == "__main__": run()
UTF-8
Python
false
false
17,530
py
10
download.py
7
0.59945
0.591487
0
479
35.442589
118
johnmay/rdkit
2,353,642,081,957
39a7f35a569f334c9ca645ebdb46f761a4171f91
de1810660d8a62630a06be06f48024c3ab6a5a35
/rdkit/utils/PilTools.py
bd4fedbf2d752221419ae4ec9e10b2b18962aff6
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
https://github.com/johnmay/rdkit
3909cc8ac66c405f313f21a0fc1f61d690347ca8
b6f5fefeecdaabcf163a93afe28d50d3986282dd
refs/heads/master
2021-01-18T12:31:49.441251
2014-04-04T05:19:22
2014-04-04T05:19:22
18,447,327
0
0
NOASSERTION
true
2019-06-26T07:30:31
2014-04-04T17:53:22
2014-04-04T17:53:24
2019-06-26T07:30:30
151,880
0
0
0
C++
false
false
## Automatically adapted for numpy.oldnumeric Jun 27, 2008 by -c # $Id$ # # Copyright (C) 2000,2001,2002,2003 greg Landrum and Rational Discovery LLC # All Rights Reserved # """ tools for working with PIL images """ #try: # from wxPython.wx import * #except ImportError: # hasWx=0 #else: # hasWx=1 hasWx=0 try: from qt import * except ImportError: hasQt = 0 else: hasQt=1 from PIL import Image # these are here to help the Installer work: import PIL.ImageFile import PIL.GifImagePlugin import PIL.PngImagePlugin import PIL.JpegImagePlugin import PIL.BmpImagePlugin import PIL.TiffImagePlugin import PIL.PpmImagePlugin def ResizeImage(origImg,newSize,filter=Image.BILINEAR,maintainAspect=0, priorityX=1): """Resizes an image to fit a given space. The new image is returned. **Arguments** - origImg: a PIL image - newSize: the requested size (either a 2-tuple or a list 2 elements long) - filter: the filter to be used in resizing the image - maintainAspect: toggles maintaining the aspect ratio of the image - prioritiyX: (only meaningful when _maintainAspect_ is nonzero) if nonzero, the X size will be given priority in setting the new size, otherwise the Y size will take priority **Returns** a PIL image **Notes** - if maintainAspect is nonzero, the aspect ratio of the image will not be changed. This implies that the final image may not actually be the requested size. """ if maintainAspect: if priorityX: scaleFact = float(origImg.size[0])/newSize[0] else: scaleFact = float(origImg.size[1])/newSize[1] newSize = (int(origImg.size[0]*scaleFact),int(origImg.size[1].scaleFact)) newImg = origImg.resize(newSize,filter) return newImg def FitImage(origImg,newSize,filter=Image.BILINEAR,bgColor=(255,255,255)): """Fits an image into a box of a particular size. **Arguments** - origImg: a PIL image - newSize: the requested size (either a 2-tuple or a list 2 elements long) - filter: the filter to be used in resizing the image - bgColor: the background color to start with **Returns** a PIL image **Notes** - there may be blank spaces around the original image in the new image, these will be filled with _bgColor_ """ tmpImg = origImg.convert('RGB') newImg = Image.new(tmpImg.mode,newSize,bgColor) scaleFact = min(float(newSize[0])/origImg.size[0], float(newSize[1])/origImg.size[1]) if scaleFact < 1: tImg = origImg.resize((int(origImg.size[0]*scaleFact),int(origImg.size[1]*scaleFact)),filter) else: tImg = origImg xDiff = newSize[0] - tImg.size[0] if xDiff > 0: xLoc = xDiff/2 else: xLoc = 0 yDiff = newSize[1] - tImg.size[1] if yDiff > 0: yLoc = yDiff/2 else: yLoc = 0 newImg.paste(tImg,(xLoc,yLoc)) return newImg.convert(origImg.mode) def NumericMatrixToImage(data,scaleCols=0,transposeIt=0, minColor=(0,0,0),maxColor=(255,255,255)): import numpy # copy the data data = numpy.array(data,numpy.float) if numpy.transpose: data = numpy.transpose(data) #nRows,nCols = data.shape nRows,nCols = data.shape if scaleCols: minIndices = numpy.argmin(data) maxIndices = numpy.argmax(data) mins = zeros(nCols) maxs = zeros(nCols) for i in range(nCols): mins[i] = data[i][minIndices[i]] maxs[i] = data[i][maxIndices[i]] # subtract off the minimum data -= mins maxs -= mins # no zeros here please, we're dividing: maxs += numpy.equal(maxs,0.0) # and divide: data /= maxs # okey dokey, get a three D matrix: imgMat = numpy.ones((nRows,nCols,3),numpy.integer) # start at minColor: minColor = numpy.array(minColor) maxColor = numpy.array(maxColor) imgMat *= minColor deltaColor = maxColor-minColor # and move to maxColor: for i in range(nRows): for j in range(nCols): imgMat[i,j] += (deltaColor*data[i,j]).astype(numpy.integer) d = imgMat.astype('B').tostring() img = Image.fromstring('RGB',(nCols,nRows),d) return img if hasWx: def PilImgToWxBmp(pilImg): """ converts a PIL image into a wxPython bitmap **Arguments** - pilImg: a PIL image **Returns** a wxPython bitmap """ wxImg = wxEmptyImage(pilImg.size[0],pilImg.size[1]) wxImg.SetData(pilImg.tostring()) bmp = wxImg.ConvertToBitmap() return bmp if hasQt: def PilImgToQPixmap(pilImg): from StringIO import StringIO sio = StringIO() pilImg.save(sio,format='png') pm = QPixmap() pm.loadFromData(sio.getvalue()) return pm if __name__ == '__main__': if 0: boxImg = Image.open('12h.gif').convert('RGB') img1 = ResizeImage(boxImg,(100,200)) img1.save('test1.gif') img2 = FitImage(boxImg,(100,200),bgColor=(200,200,200)) img2.save('test2.gif') img3 = FitImage(boxImg,(50,200),bgColor=(200,200,200)) img3.save('test3.gif') else: vs = array([[1.,.5,0,0,0,0],[.5,1,.5,1,0,1],[0,.5,1,0,0,1]]) img = NumericMatrixToImage(vs) img = img.resize((200,200)) img.save('foo.gif')
UTF-8
Python
false
false
5,232
py
137
PilTools.py
107
0.648318
0.618693
0
209
24.028708
97
diogoolsen/CozinhaPet
3,968,549,803,295
0ed52de97e051fbc7e6201eaaaa5924b8a01da22
9e30856cc1450c19b4e55e13a867534aa66441e2
/tests/model/test_ingredient.py
055b63af044e8b3f72abbd66a31b29cfa4d1eed3
[]
no_license
https://github.com/diogoolsen/CozinhaPet
e0a7ce2c65b02347e32653ec625f9e4676e98a03
adbb4e4e3a92096b66d94170b8bdf6db8bd0e0d8
refs/heads/master
2023-05-08T17:42:57.283182
2021-01-18T13:29:47
2021-01-18T13:29:47
326,803,382
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# import pytest import datetime from pytest import approx, raises from src.model.ingredient import Ingredient class TestIngredient(): def assert_item_by_item(self, actual, expected, message=''): assert actual['name'] == expected['name'], message assert actual['searchable'] == expected['searchable'], message assert actual['type'] == expected['type'], message assert actual['unity'] == expected['unity'], message assert actual['establishedCostPer1K'] == \ approx(expected['establishedCostPer1K']) assert isinstance(actual['factorsLog'][0]['date'], datetime.datetime) assert actual['factorsLog'][0]['cookingFactor'] ==\ approx(expected['factorsLog'][0]['cookingFactor']), message assert actual['factorsLog'][0]['safetyMargin'] ==\ approx(expected['factorsLog'][0]['safetyMargin']), message assert actual['factorsLog'][0]['actualFactor'] ==\ approx(expected['factorsLog'][0]['actualFactor']), message assert isinstance(actual['costLog'][0]['date'], datetime.datetime) assert actual['costLog'][0]['price'] ==\ approx(expected['costLog'][0]['price']), message assert actual['costLog'][0]['amount'] ==\ approx(expected['costLog'][0]['amount']), message assert actual['costLog'][0]['costPer1Unity'] ==\ approx(expected['costLog'][0]['costPer1Unity']), message assert actual['costLog'][0]['costPer1K'] ==\ approx(expected['costLog'][0]['costPer1K']), message def test_create_ingredient_OK_v1(self): name = 'abobrinha' type = 'vegetal' unity = 'g' price = '3.14' established = '3' actual = Ingredient(name, type, unity, price, established).dict expected_factors_dict = { 'date': datetime.datetime.now(), 'cookingFactor': 1., 'safetyMargin': 1., 'actualFactor': 1. } expected_cost_dict = { 'date': datetime.datetime.now(), 'price': 3.14, 'amount': 1000., 'costPer1Unity': 0.00314, 'costPer1K': 3.14 } expected = { 'name': 'abobrinha', 'searchable': 'ABOBRINHA', 'type': 'vegetal', 'unity': 'g', # 'amount': 1000., 'factorsLog': [expected_factors_dict], 'costLog': [expected_cost_dict], 'establishedCostPer1K': 3. } message = ('test_create_ingredient_OK_v1 returned' '{0}' 'instead of' '{1}'.format(actual, expected) ) self.assert_item_by_item(actual, expected, message) def test_create_ingredient_OK_v2(self): name = 'figado bovino' type = 'carne' unity = 'g' price = '32.5' established = '65' amount = '500' cookingFactor = '0.75' safetyMargin = '1.05' actual = Ingredient(name, type, unity, price, established, amount, cookingFactor, safetyMargin).dict expected_factors_dict = { 'date': datetime.datetime.now(), 'cookingFactor': 0.75, 'safetyMargin': 1.05, 'actualFactor': 0.7875 } expected_cost_dict = { 'date': datetime.datetime.now(), 'price': 32.5, 'amount': 500., 'costPer1Unity': 0.065, 'costPer1K': 65 } expected = { 'name': 'figado bovino', 'searchable': 'FIGADO BOVINO', 'type': 'carne', 'unity': 'g', # 'amount': 500., 'factorsLog': [expected_factors_dict], 'costLog': [expected_cost_dict], 'establishedCostPer1K': 65 } message = ('test_create_ingredient_OK_v2 returned' '{0}' 'instead of' '{1}'.format(actual, expected) ) self.assert_item_by_item(actual, expected, message) def test_create_ingredient_validate_v1(self): name = '' type = 'complemento' unity = 'ml' price = '32' established = '32' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established) # Check if ValueError contains correct message assert exception_info.match('Nome do ingrediente inválido.') def test_create_ingredient_validate_v2(self): name = 'Óleo de coco' type = '' unity = 'ml' price = '32' established = '64' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established) # Check if ValueError contains correct message assert exception_info.match('Tipo do ingrediente inválido.') def test_create_ingredient_validate_v3(self): name = 'Óleo de coco' type = 'complemento' unity = '' price = '32' established = '64' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established) # Check if ValueError contains correct message assert exception_info.match('Unidade do ingrediente inválido') def test_create_ingredient_validate_v4(self): name = 'Óleo de coco' type = 'complemento' unity = 'ml' price = '32,5' established = '65' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established) # Check if ValueError contains correct message assert exception_info.match('Custo do ingrediente inválido.') def test_create_ingredient_validate_v5(self): name = 'Óleo de coco' type = 'complemento' unity = 'ml' price = '32' established = '64' amount = '22x' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established, amount) # Check if ValueError contains correct message assert exception_info.match('Quantidade de ingrediente inválida.') def test_create_ingredient_validate_v6(self): name = 'Óleo de coco' type = 'complemento' unity = 'ml' price = '32' established = '64' amount = '22' cookingFactor = '1,2' safetyMargin = '1.1' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established, amount, cookingFactor, safetyMargin) # Check if ValueError contains correct message assert exception_info.match('Fator de cocção do ingrediente inválido.') def test_create_ingredient_validate_v7(self): name = 'Óleo de coco' type = 'complemento' unity = 'ml' price = '32' established = '64' amount = '22' cookingFactor = '1.2' safetyMargin = '1,1' with raises(ValueError) as exception_info: # store the exception Ingredient(name, type, unity, price, established, amount, cookingFactor, safetyMargin) # Check if ValueError contains correct message assert exception_info.match( 'Margem de segurança do ingrediente inválida.')
UTF-8
Python
false
false
7,904
py
20
test_ingredient.py
20
0.535877
0.5161
0
251
30.422311
79
sakakazu2468/AtCoder_py
11,321,533,808,078
43e1795f8d91e21a750443edcf3438a69f858baf
cbf9f600374d7510988632d7dba145c8ff0cd1f0
/abc/010/b.py
e4d104dbea76c571eab349e5d78cb84962c97296
[]
no_license
https://github.com/sakakazu2468/AtCoder_py
d0945d03ad562474e40e413abcec39ded61e6855
34bdf39ee9647e7aee17e48c928ce5288a1bfaa5
refs/heads/master
2022-04-27T18:32:28.825004
2022-04-21T07:27:00
2022-04-21T07:27:00
225,844,364
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n = int(input()) a = list(map(int, input().split())) ans = 0 for i in a: if i == 9: pass elif i >= 7: ans += i - 7 elif i >= 3: ans += i - 3 else: ans += i - 1 print(ans)
UTF-8
Python
false
false
219
py
554
b.py
553
0.401826
0.369863
0
13
15.846154
35
scottsilverlabs/raspberrystem-hw-base
901,943,154,393
1d7aa8444246ad5189265de45279dca5dd739f37
739a21f0322b41e0020ad0b42208f8e14815353f
/PCB/logo/eagle-scale.py
8bfb8df0c2ba5633e956c706ec87bf6a261e18cf
[ "Apache-2.0" ]
permissive
https://github.com/scottsilverlabs/raspberrystem-hw-base
528c720ffde1e7c0df0cc0a5599d83ea118ea5ff
47c591ae8a7bcf0205d4f6b6f2b078505c93e240
refs/heads/master
2021-01-17T11:59:38.145540
2015-07-01T19:32:43
2015-07-01T19:32:43
20,490,444
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# # Simple scaleable BRD file script. # # Reads in Eagle BRD file given as arg, and scales attributes in the <plain> section by the given # factor. # # Original file is overwritten - beware! # # See also hflip/vflip scripts. # # Example: # # cp Logo.brd new.brd && python eagle-scale.py new.brd 1.8 open new.brd # # The above scales Logo.brd by 1.8x, and opens the scaled file in Eagle. In # Eagle, you can then: # - group the file, # - copy the group (then hit ESC), # - open the board file you want to paste it into, # - use the paste command to paste it. # from bs4 import BeautifulSoup import sys try: prog, name, scale_factor = sys.argv except: print "Usage: eagle-scale.py <file> <scale_factor> " sys.exit() with file(name) as f: soup = BeautifulSoup(f) for tag in soup.plain.find_all(["vertex", "polygon", "wire"]): for attr in ["width", "x", "y", "x1", "y1", "x2", "y2"]: if attr in tag.attrs: tag[attr] = float(tag[attr]) * float(scale_factor) with file(name, "w") as f: f.write(str(soup))
UTF-8
Python
false
false
1,069
py
20
eagle-scale.py
2
0.637979
0.62956
0
40
25.7
97
yeonggilee/django_study
5,866,925,372,494
717cd7a39809c99c5588d5c4b175b8bd6e4ba03f
e530fbb22d6e73932fec6d763cf6498d803a907a
/ssido_app/migrations/0003_auto_20180908_1612.py
b92c6af9c8e2b50141e0aed6ed4d20fe08fa8d97
[]
no_license
https://github.com/yeonggilee/django_study
5082bdee2e871a79297e63ac5fca3bf734fe5b2e
c6ed5223eaaed07fe96609553421c3b11192b4b3
refs/heads/master
2020-03-30T05:54:53.517328
2018-09-29T06:55:36
2018-09-29T06:55:36
150,827,150
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.1.1 on 2018-09-08 07:12 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ssido_app', '0002_test'), ] operations = [ migrations.RenameModel( old_name='Test', new_name='BestFood', ), migrations.RenameField( model_name='bestfood', old_name='best_food', new_name='food_name', ), ]
UTF-8
Python
false
false
464
py
4
0003_auto_20180908_1612.py
3
0.534483
0.493534
0
22
20.090909
47
uhayate/CTF
5,222,680,236,610
12eee49b2737bc7d80c643ab95046311e40d026b
a8e846a8a62762871b505595828207fa81afad23
/解题脚本/eval计算题/计算题1.py
7c57463dff857775aa64c256bf39dc4648191a29
[]
no_license
https://github.com/uhayate/CTF
e3180ab2413bc5e1c380e780afb99f6ba7659d8f
a01e5703abfd4e6351fd709ff55dc88d656e7c76
refs/heads/master
2016-05-25T13:48:48.414786
2015-11-02T00:54:04
2015-11-02T00:54:04
41,954,649
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*-coding:gbk -*- import re import requests get_url = 'http://ctf8.simplexue.com/jia/' post_url = 'http://ctf8.simplexue.com/jia/?action=check_pass' s = requests.Session() get = s.get(get_url) num1 = re.findall(r"'my_expr'>(.*?)</div>=?", get.content)[0] num2 = num1.replace('x', '*') post = s.post(post_url, {'pass_key': eval(num2)}) print post.content ''' 第二种做法,使用BeautifulSoup # -*-coding:gbk -*- from bs4 import BeautifulSoup import requests get_url = 'http://ctf8.simplexue.com/jia/' post_url = 'http://ctf8.simplexue.com/jia/?action=check_pass' s = requests.Session() get = s.get(get_url) soup = BeautifulSoup(get.content, 'lxml') calculation = str(soup.form.find_all('div')[0].string).replace('x', '*') post = s.post(post_url, {'pass_key': eval(calculation)}) print post.content ''' # <div class="content_title_01">这是一道计算题</div> # <div class="horizontal_divider_01">&nbsp;</div> # <div class="cleaner">&nbsp;</div> # <form method='POST' action='?action=check_pass'> # <p> # Please input your answer in 3 sesounds! # <div name='my_expr'>(6826 + 999) x (8504 - 64) - (753 + 475 - 477) x 699 </div>=? # </p> # <input name='pass_key' type='text'></input> # <input type='submit'/> # </form>
GB18030
Python
false
false
1,265
py
14
计算题1.py
12
0.634008
0.60081
0
42
28.380952
86
hkariti/higlass_proxy
9,148,280,382,601
dbfb2ce171bcd201b37b1027f69cc6d22a2be167
425c382463939d23ee0c84143ba3002d126dc087
/setup.py
7c5c08c04154b03fc01fb037c4fa3f3bfa9bda30
[]
no_license
https://github.com/hkariti/higlass_proxy
3fdd4d43f45729d0e8290aa380cc70e63ed3fa25
2c5f093c77295d7c54bc2c75aac38b7c6d3db100
refs/heads/master
2023-02-11T17:31:21.572877
2021-01-06T12:42:27
2021-01-06T12:42:27
297,071,453
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from setuptools import setup, find_packages def get_requirements(path): content = open(path).read() return [req for req in content.split("\n") if req != "" and not req.startswith("#")] setup_args = { "name": "higlass_proxy", "version": 0.2, "description": "Proxy for jupyter for higlass daemons using unix sockets", "url": "https://github.com/hkariti/higlass_proxy", "author": "Hagai Kariti", "author_email": "hkariti@gmail.com", "keywords": ["higlass", "jupyter"], "install_requires": get_requirements("requirements.txt"), "packages": find_packages(), } setup(**setup_args)
UTF-8
Python
false
false
623
py
2
setup.py
2
0.65008
0.64687
0
20
30.15
88
cmdiaz6/fod_placer
3,547,642,994,802
899ab2f3af0649752c78751fb6847850e5503a93
9c1fadab453f09eb68f08a49328b9a6d04672b22
/pointclass.py
3e735cd05a4bf2eec3b14fba948cf9759531eecd
[ "MIT" ]
permissive
https://github.com/cmdiaz6/fod_placer
d9e6ea2fbba405ae8f9ac8c7df45793097901609
0f7dc934a08b7530560264bf86768f3ae36bc49b
refs/heads/master
2021-05-06T00:34:15.053425
2020-05-14T16:12:12
2020-05-14T16:12:12
114,309,670
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 """class for 3D point in space also used for operations on vectors center at origin""" import math __author__ = "Carlos Diaz" class Point: def __init__(self, x = 0.0, y = 0.0, z = 0.0): self.x, self.y, self.z = x, y, z def __str__(self): return "({0},{1},{2})".format(self.x,self.y,self.z) def __add__(self,other): x = self.x + other.x y = self.y + other.y z = self.z + other.z return Point(x,y,z) def __sub__(self,other): x = self.x - other.x y = self.y - other.y z = self.z - other.z return Point(x,y,z) def __mul__(self,other): """multiply Point() by float on right side""" x = self.x * other y = self.y * other z = self.z * other return Point(x,y,z) def __rmul__(self,other): return self.__mul__(other) # def __div__(self,other): def __truediv__(self,other): """divide Point() by float""" x = self.x / other y = self.y / other z = self.z / other return Point(x,y,z) def dot(self,other): """dot product between two vectors""" x = self.x * other.x y = self.y * other.y z = self.z * other.z return x+y+z def cross(self,other): """cross product between two vectors""" x = self.y*other.z - self.z*other.y y = self.z*other.x - self.x*other.z z = self.x*other.y - self.y*other.x return Point(x,y,z) def rotatearound(self,n,t): """Rodrigues' rotation formula""" #vrot = self*math.cos(t) + n.cross(self)*math.sin(t) + n*n.dot(self)*(1-math.cos(t)) vrot = self*math.cos(t) + n.cross(self)*math.sin(t) + n*n.dot(self)*(2*math.sin(t/2)**2) #more stable according to Yoh return vrot def normalize(self): """normalize vector""" normalized_self = self / norm(self) return normalized_self def norm(self): norm=math.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) return norm def rotatepoints(pointlist,n,vrotate,valign): """rotates points around n aligns vrotate vector with valign vector""" if norm(n) == 0.0: if valign.x < 0.0: theta = math.pi #180 degrees else: theta = 0.0 else: n = normalize(n) #normalize #define angle of rotation as angle between top and valign #theta = acos( a.b / ||a||*||b|| ) theta = vrotate.dot(valign) / (norm(vrotate)*norm(valign)) theta = math.acos(theta) print('by theta: {0:4.4f}'.format(theta)) #Rotate tetrahedron to point along bond newlist = pointlist for i, point in enumerate(newlist): #rotate around n by theta pointlist[i] = point.rotatearound(n,theta) return pointlist def translatepoints(pointlist,center): """translates points by center vector""" newlist = pointlist for i, point in enumerate(newlist): #translate to atom center pointlist[i] = point + center return pointlist
UTF-8
Python
false
false
3,092
py
11
pointclass.py
10
0.554981
0.546248
0
106
28.160377
126
ArkadiuszMichalRys/bug-compare
16,827,681,884,382
c99e40c9c8244ef5c6f58637f1f3e2c4702ad358
59fb1f85bb84c4106d58c3cae4654ee78d335b94
/processor/processor/workers/evaluator.py
19079260cc6ec7416db18da8a5f779464d9f9ec5
[]
no_license
https://github.com/ArkadiuszMichalRys/bug-compare
b1902f0165336065da88be2a38ba0422fd62b1d1
1e5fe88645f09ef89bb20d2796b473011c83f777
refs/heads/master
2020-04-24T05:50:30.944026
2019-08-30T19:14:48
2019-08-30T19:14:48
171,743,887
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import csv import json from collections import defaultdict from pathlib import Path from statistics import median from typing import List from processor.workers.worker import Worker from processor.util import increase_csv_field_size_limit class Evaluator(Worker): """""" def __init__(self, settings: dict, base_directory: Path = Path(__file__).resolve().parent.parent.parent): """""" super().__init__(settings, base_directory) # Input self._in_path = base_directory.joinpath("data").joinpath(settings["input"]) self._in_path_type = settings["input"].split(".")[-1].lower() self._annotations_path = base_directory.joinpath("data").joinpath(settings["annotations"]) self._criteria = settings["criteria"] def create_id_time_dict(self) -> dict: """""" id_time = dict() with self._annotations_path.open() as in_file: csv_in_reader = csv.DictReader(in_file) for report in csv_in_reader: id_time[report["id"]] = report["fix_time"] return id_time def parse_criteria(self) -> List: """""" options = [] for split in self._criteria: options.append([split["operation"], split["value"], split["class"]]) return options def compare_class(self, actual, predicted) -> str: """""" if actual == "slow" and predicted == actual: return "TP" if actual == "slow" and predicted != actual: return "FP" if actual == "fast" and predicted == actual: return "TN" if actual == "fast" and predicted != actual: return "FN" raise ValueError def get_precision(self, confusion_matrix) -> float: """""" return confusion_matrix["TP"] / (confusion_matrix["TP"] + confusion_matrix["FP"]) def get_recall(self, confusion_matrix) -> float: """""" return confusion_matrix["TP"] / (confusion_matrix["TP"] + confusion_matrix["FN"]) def get_accuracy(self, confusion_matrix) -> float: """""" numerator = confusion_matrix["TP"] + confusion_matrix["TN"] denominator = numerator + confusion_matrix["FN"] + confusion_matrix["FP"] return numerator / denominator def get_f_measure(self, precision, recall) -> float: """""" # TODO precision + recall can't be 0 return 2 * ((precision * recall) / (precision + recall)) def __to_csv(self): """""" increase_csv_field_size_limit() id_time = self.create_id_time_dict() confusion_matrix = defaultdict(int) parsed_criteria = self.parse_criteria() self._logger.info("Gathering statistics") with self._in_path.open() as in_file: csv_in_reader = csv.DictReader(in_file) for classification in csv_in_reader: report_id = classification["report_id"] report_class = classification["class"] actual_time = id_time[report_id] actual_class = None for operation, value, suffix in parsed_criteria: if operation == ">=": if float(actual_time) >= float(value): actual_class = suffix elif operation == "<": if float(actual_time) < float(value): actual_class = suffix else: self._logger.warning(f"Operation {operation} is not supported") confusion_matrix[self.compare_class(actual_class, report_class)] += 1 precision = self.get_precision(confusion_matrix) recall = self.get_recall(confusion_matrix) accuracy = self.get_accuracy(confusion_matrix) f = self.get_f_measure(precision, recall) stats = { "precision": precision, "recall": recall, "accuracy": accuracy, "F": f, "TP": confusion_matrix["TP"], "FP": confusion_matrix["FP"], "FN": confusion_matrix["FN"], "TN": confusion_matrix["TN"], } with self._out_path.open('w') as out_file: bug_writer = csv.DictWriter(out_file, fieldnames=stats) bug_writer.writeheader() bug_writer.writerow(stats) self._logger.info(f"Saving to file: {self._out_path}") def perform_activity(self): """""" if self._out_path_type != self._in_path_type: self._logger.error(f"Input type and output type ({self._in_path_type}->{self._out_path_type}) don't match.") return if self._out_path_type == "json": raise NotImplementedError elif self._out_path_type == "csv": self.__to_csv() else: self._logger.error(f"Output file type ({self._out_path_type}) is not supported.")
UTF-8
Python
false
false
5,028
py
59
evaluator.py
23
0.547932
0.547136
0
132
37.090909
120
nw0428/Integer-Arithmetic
18,906,446,045,106
8324a5792d76cf687785c469e3286aba1faa06df
a359677a11c69921bfe0e9238382773b0e639019
/divs.py
bda1ce0097cba105079af96f71116fb116eedd10
[]
no_license
https://github.com/nw0428/Integer-Arithmetic
8caeb15e83bfdd31c05b20543f8ee9ce67bccb64
b3925d691e28ab91e728105382779e247b80a4f8
refs/heads/master
2022-12-26T07:54:38.736183
2020-10-14T14:21:30
2020-10-14T14:21:30
304,038,899
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def div(x, y): return x/y def int_div(x, y): return x //y def mod(x, y): return x % y
UTF-8
Python
false
false
93
py
4
divs.py
3
0.548387
0.548387
0
8
10.75
18
zhangleihong/pyQt5project
6,253,472,390,617
970bbbcda7e572d2eec1c7bb5efc7d383fc41170
fd61f78d7114cd52b54ffeebb8ea484a3901be55
/数据分析/机器学习(算法篇)/2.1linear_grade.py
2a990455b5f8a8fc5691a4a1af203913ffc25a91
[]
no_license
https://github.com/zhangleihong/pyQt5project
10c966ed5a3ed330ed3a64f1f2fa39f5e18e7726
89bb93b8c70f785d4d6bfa36aa2614698c819a0a
refs/heads/master
2021-05-19T08:59:48.157153
2021-01-27T07:56:04
2021-01-27T07:56:04
251,617,073
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" @project:数据分析 @author:zlh @file:2.1linear_grade.py @time:2020/5/7 16:04 """ ''' 1.获取数据集 2.数据基本处理(该案例中省略) 3.特征工程(该案例中省略) 4.机器学习 5.模型评估(该案例中省略) ''' from sklearn.linear_model import LinearRegression # 平时成绩 期末成绩 x = [[80, 86], [82, 80], [85, 78], [90, 90], [86, 82], [82, 90], [78, 80], [92, 94]] y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4] # 实例化API estimator = LinearRegression() # 使用fit方法进行训练 estimator.fit(x,y) #线性回归系数 estimator.coef_ print("线性回归的系数是:\n",estimator.coef_) # 打印预测结果 print("输出预测结果:\n",estimator.predict([[100, 80]]))
UTF-8
Python
false
false
739
py
17
2.1linear_grade.py
14
0.640367
0.499083
0
35
14.571429
50
Frankd35/JingXiShop
13,297,218,783,218
4a34114b40c589a60bf8da26f3d30c1ac82b5fcb
2ff7843847542e4f4e64e63aa2a8a9578f2c2c06
/WebProject/goods/migrations/0003_category_comment.py
c5bfa932f26298bbf572d75b5957e6d9ca9110fe
[]
no_license
https://github.com/Frankd35/JingXiShop
513872a3a3ee2b4a49a882d3e39549663311979b
71a494f7cf80024baad3e05313ae43be5d770274
refs/heads/main
2023-08-16T21:00:21.230243
2021-10-12T15:14:12
2021-10-12T15:14:12
397,312,750
0
3
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 3.2.6 on 2021-08-23 02:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('goods', '0002_alter_goods_price'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('state', models.IntegerField(blank=True, default=0)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.IntegerField()), ('goods_id', models.IntegerField()), ('text', models.TextField()), ('mark', models.DecimalField(blank=True, decimal_places=2, default=5.0, max_digits=10)), ('createtime', models.DateField(auto_now=True)), ], ), ]
UTF-8
Python
false
false
1,133
py
55
0003_category_comment.py
34
0.543689
0.518976
0
32
34.40625
117
lmwgv/advent
14,336,600,862,504
1af9be65efb15cafee654aa228cb58a2547ff840
c80bd50e0515ca6852f3b74371c1fc661b33d151
/advent07.py
7cb8bb70e58873b0eeecf6d85417db4f96f57fdb
[]
no_license
https://github.com/lmwgv/advent
e5d93ef43c85425a837c7a24818a6592ae796708
0effc7973c7b5fa10fc2b1570a2b881b626a4e83
refs/heads/master
2021-01-11T06:37:55.637394
2017-02-22T19:39:13
2017-02-22T19:39:13
81,434,937
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
if __name__ == '__main__': ips_supporting_tls = 0 ips_supporting_ssl = 0 with open('advent07.in', 'r') as f: for line in f.readlines(): abas_in = [] abas_out = [] abba_out = False abba_in = False inside_brackets = False for c in range(len(line) - 2): if line[c] == '[': inside_brackets = True if line[c] == ']': inside_brackets = False if c + 3 < len(line) and line[c] == line[c + 3] and line[c + 1] == line[c + 2] and line[c] != line[c + 1]: if inside_brackets: abba_in = True else: abba_out = True if line[c] == line[c + 2] and line[c] != line[c + 1]: if inside_brackets: abas_in.append((line[c], line[c + 1])) else: abas_out.append((line[c + 1], line[c])) for aba in abas_in: if aba in abas_out: ips_supporting_ssl += 1 print(str(aba) + ' ' + line[:-1]) break if abba_out and not abba_in: ips_supporting_tls += 1 print(str(ips_supporting_tls)) print(str(ips_supporting_ssl))
UTF-8
Python
false
false
1,408
py
12
advent07.py
12
0.391335
0.379261
0
34
39.411765
122
RianneLam96/Thesis_Project_Crowd_Prediction
7,215,545,075,444
dd46f29b3bed3007b9808d7de2a2af59785d1055
1213b3720f187f058cf2ae7b53a74ea1fd4bcbce
/code/preprocessing.py
7b5780882781be8f45bacf2c36f4c86fe88c3ac4
[]
no_license
https://github.com/RianneLam96/Thesis_Project_Crowd_Prediction
2a459b7368b0a7f77f00d8766b53f384f5aa993f
165073441b86c0ad98d8d289a4cfc6d9a860d5cd
refs/heads/master
2023-06-09T07:36:37.403527
2021-07-06T12:08:36
2021-07-06T12:08:36
382,340,967
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# General import pandas as pd import geopandas as gpd import numpy as np import os from sqlalchemy import create_engine, inspect # Dates from datetime import datetime, timedelta, date import datetime as dt import pytz # Cleaning from scipy.optimize import curve_fit from sklearn import preprocessing, svm ### FUNCTIONS - pre-processing def get_start_learnset(train_length = None, date_str = None): """ Get a datetime string for the starting date for training One of: train_length: integer indicating the number of weeks used for training date_str: str indicating a starting date (in the format "2020-01-01 00:00:00") """ if train_length: date_time_current = datetime.now() start_learnset = date_time_current - dt.timedelta(days = train_length*7) elif date_str: start_learnset = pd.to_datetime(date_str) return start_learnset def prepare_engine(cred): ''' Prepare engine to read in data. cred: the env object with credentials. Returns the engine and the table names. ''' # Create engine object engine_azure = create_engine() # DB information removed in public version # Check available tables inspector = inspect(engine_azure) table_names = [] for table_name in inspector.get_table_names('ingested'): table_names.append(table_name) return engine_azure, table_names def get_data(engine, table_name, names, start_learnset): """ Read in data source from the database. table_name: name of the database table names: list of one or more location names (have to match location_name column in table); or 'all' for all locations start_learnset: date indicating the moment to begin using data for training. """ # Read in data from two weeks before starting date learn set (necessary for lag features) start_date = start_learnset - dt.timedelta(days = 14) start_date = start_date.strftime("%Y-%m-%d %H:%M:%S") # Select all locations if names == 'all': query = "SELECT * FROM " + table_name + " WHERE measured_at >= '" + start_date + "' LIMIT 3000000" df_raw = pd.read_sql_query(query, con = engine) # Select one location elif isinstance(names, str): query = "SELECT * FROM " + table_name + " WHERE location_name = '" + names + "' AND measured_at >= '".format(names) + start_date + "' LIMIT 3000000" df_raw = pd.read_sql_query(query, con = engine) # Select locations out of list of location names else: names = tuple(names) query = "SELECT * FROM " + table_name + " WHERE location_name IN {} AND measured_at >= '".format(names) + start_date + "' LIMIT 3000000" df_raw = pd.read_sql_query(query, con = engine) return df_raw def preprocess_resono_data(df_raw, freq, end_prediction): """ Prepare the raw resono data for modelling. """ # Drop duplicates df = df_raw.copy() df = df.drop_duplicates() # Fix timestamp df["datetime"] = pd.to_datetime(df["measured_at"]) df = df.sort_values(by = "datetime", ascending = True) # Wide format df = df.pivot_table(index = ["datetime"], columns = "location_name", values = "total_count").reset_index() df = df.set_index('datetime') # Change column names df.rename(columns = {'location_name': 'location'}) # Set right sampling frequency idx = pd.date_range(df.index[0], end_prediction, freq = freq) df = df.reindex(idx) # Any new samples are treated as missing data return df def preprocess_covid_data(df_raw, freq, end_prediction): """ Prepare the raw covid stringency data for modelling. """ # Put data to dataframe df_raw_unpack = df_raw.T['NLD'].dropna() df = pd.DataFrame.from_records(df_raw_unpack) # Add datetime column df['datetime'] = pd.to_datetime(df['date_value']) # Select columns df_sel = df[['datetime', 'stringency']] # extend dataframe to 14 days in future (based on latest value) dates_future = pd.date_range(df['datetime'].iloc[-1], periods = 14, freq='1d') df_future = pd.DataFrame(data = {'datetime': dates_future, 'stringency': df['stringency'].iloc[-1]}) # Add together and set index df_final = df_sel.append(df_future.iloc[1:]) df_final = df_final.set_index('datetime') # Set right sampling frequency idx = pd.date_range(df_final.index[0], end_prediction, freq = freq) df_final = df_final.reindex(idx) # Fill missing values with nearest value df_final = df_final.fillna(method = "ffill") df_final = df_final.fillna(method = "bfill") return df_final def preprocess_holidays_data(holidays, freq, end_prediction): """ Prepare the raw holiday data for modelling. """ # Put in dataframe holiday_df = pd.DataFrame(holidays).rename(columns = {0: 'date', 1: 'holiday'}) # Create datetime index holiday_df['datetime'] = pd.to_datetime(holiday_df['date']) holiday_df = holiday_df.set_index('datetime') # Create dummy variable holiday_df['holiday_dummy'] = 1 holiday_df_d = holiday_df.resample('1d').asfreq() # dataframe with all days holiday_df_d['holiday_dummy'] = holiday_df_d['holiday_dummy'].fillna(0) holiday_df_d['holiday_dummy'] = holiday_df_d['holiday_dummy'].astype(int) # Select column holiday_df_d = holiday_df_d[['holiday_dummy']] # Set right sampling frequency idx = pd.date_range(holiday_df_d.index[0], end_prediction, freq = freq) holiday_df_d = holiday_df_d.reindex(idx) # Fill missing values with nearest value holiday_df_d = holiday_df_d.fillna(method = "ffill") # set back to right dtype holiday_df_d['holiday_dummy'] = holiday_df_d['holiday_dummy'].astype(int) return holiday_df_d def get_crowd_levels(df, Y_name, thresholds_all = None, thresholds_one = None): ''' Recalculate the crowd levels based on the thresholds from the static Resono/CMSA table. ''' df_level = df.copy() # Re-calculate crowd levels if thresholds_all is not None: th = thresholds_all[Y_name] elif thresholds_one is not None: th = thresholds_one # If the scaled thresholds are identical (no samples with crowd level 1.0), only use the first threshold if (th[1] == th[2]) | (len(th) == 3): if th[1] == th[2]: th.pop(2) labels = [-1.0, 0.0] df_level[Y_name] = pd.cut(df_level[Y_name], bins = th, labels = labels) else: labels = [-1.0, 0.0, 1.0] df_level[Y_name] = pd.cut(df_level[Y_name], bins = th, labels = labels) df_level[Y_name] = df_level[Y_name].astype('category') return df_level ### FUNCTIONS - cleaning def clean_data(df, target, Y_name, n_samples_day, cols_to_clean, outlier_removal, nu = 0.2, gamma = 0.1): """ Clean data by imputing missing values and removing outliers (replacing with interpolation/extrapolation). Days that are fully missing are dropped from the dataframe (to prevent strange interpolation results). cols_to_clean: column names of columns to clean outlier_removal: "yes" or "no" # nu: value for nu parameter for outlier removal model (default is 0.2) # gamma: value for gamma parameter for outlier removal model (default = 0.1) Returns the dataframe with missing values interpolated and outliers replaced. """ # Initialize data frame to clean df_to_clean = df.copy() # If target variable is count, add to columns to clean if cols_to_clean is not None: cols = cols_to_clean.copy() if target == 'count': cols.append(Y_name) else: cols = Y_name # Define date column to group on df_to_clean['date'] = df_to_clean.index.date # Find missing days for target column dates_to_drop = [] # Index of fully missing days day_missing_idx = np.where(df_to_clean[Y_name].isnull().groupby(df_to_clean['date']).sum() == n_samples_day)[0] # Find the dates dates_to_drop.extend(df_to_clean['date'].unique()[day_missing_idx]) # Select columns to impute df_to_impute = df_to_clean[[cols]] # First interpolate/extrapolate missing values df_to_impute = interpolate_ts(df_to_impute) df_to_impute = extrapolate_ts(df_to_impute) if outlier_removal == "yes": # Outlier detection and replacement SVM_models = create_SVM_models(df_to_impute) df_to_impute = SVM_outlier_detection(df_to_impute, SVM_models) df_to_impute = interpolate_ts(df_to_impute) df_to_impute = extrapolate_ts(df_to_impute) # Put cleaned variables in data frame df_cleaned = df_to_clean.copy() df_cleaned[cols] = df_to_impute.copy() df_cleaned.index.name = 'datetime' # Drop the dates that are fully mising df_cleaned = df_cleaned[~(df_cleaned['date'].isin(dates_to_drop))] # Drop date column df_cleaned = df_cleaned.drop('date', 1) # Use forward fill imputation if the target is categorical if target == "level": df_cleaned[Y_name] = df_cleaned[Y_name].fillna(method = "ffill") return df_cleaned def interpolate_ts(df, min_samples = 2): """ Interpolate missing values. df: dataframe to interpolate min_samples: minimum number of samples necessary to perform interpolation (default = 2) Returns the dataframe with missing values interpolated. """ # Initialize new dataframe df_ip = df.copy() # For each location for idx, location in enumerate(df.columns): # Initialize new location data ts = df.iloc[:, idx] ts_ip = ts.copy() # Only interpolate if there are enough data points if ts_ip.count() >= min_samples: # Interpolate missing values ts_ip = ts_ip.interpolate(method = 'cubicspline', limit_area = 'inside') df_ip.iloc[:, idx] = ts_ip # No negative values for counts df_ip = df_ip.clip(lower = 0) return df_ip def extrapolate_ts(df, min_samples = 1): """ Extrapolate missing values. df: dataframe to extrapolate min_samples: minimum number of samples necessary to perform extrapolation (default = 1) Returns the dataframe with missing values extrapolated. """ # Initialize new dataframe df_ep = df.copy() # For each location for idx, location in enumerate(df.columns): # Initialize new location data ts = df.iloc[:, idx] ts_ep = ts.copy() # Only extrapolate if there are enough data points if ts_ep.count() >= min_samples: # Temporarily remove dates and make index numeric index = ts.index ts_temp = ts_ep.reset_index() ts_temp = ts_temp.iloc[:, 1] # Function to curve fit to the data (3rd polynomial) def func(x, a, b, c, d): return a * (x ** 3) + b * (x ** 2) + c * x + d # Initial parameter guess, just to kick off the optimization guess = (0.5, 0.5, 0.5, 0.5) # Create copy of data to remove NaNs for curve fitting ts_fit = ts_temp.dropna() # Curve fit x = ts_fit.index.astype(float).values y = ts_fit.values # Curve fit column and get curve parameters params = curve_fit(func, x, y, guess) # Get the index values for NaNs in the column x = ts_temp[pd.isnull(ts_temp)].index.astype(float).values # Extrapolate those points with the fitted function ts_temp[x] = func(x, * params[0]) # Put date index back ts_temp.index = index ts_ep = ts_temp.copy() df_ep.iloc[:, idx] = ts_ep # No negative values for counts df_ep = df_ep.clip(lower = 0) return df_ep def create_SVM_models(df, min_samples = 1, nu = 0.05, gamma = 0.01): """ Create one-class SVM model for each variable to perform outlier removal. Code adapted from: https://github.com/kdrelczuk/medium/blob/master/anomalies_local.py # df: data frame to perform outlier removal on # min_samples: minimum number of samples needed (for each variable) to create a SVM model (default = 1) # nu: value for nu parameter (default is 0.05) # gamma: value for gamma parameter (default = 0.01) # Returns a list of SVM models for each variable. """ # Initialize list of models for each location SVM_models = [] # For each location for idx, location in enumerate(df.columns): # Select location and fit one-class SVM ts = df.iloc[:, idx] # Only create a model if there are enough data points if ts.count() >= min_samples: scaler = preprocessing.StandardScaler() ts_scaled = scaler.fit_transform(ts.values.reshape(-1,1)) model = svm.OneClassSVM(nu = nu, kernel = "rbf", gamma = gamma) model.fit(ts_scaled) # Save the model SVM_models.append(model) # Otherwise add None to the list of models else: SVM_models.append(None) return SVM_models def SVM_outlier_detection(df, SVM_models): """ Detects outliers for each variable in the dataframe. Code adapted from: https://github.com/kdrelczuk/medium/blob/master/anomalies_local.py df: dataframe to apply outlier detection on using SVM models SVM_models: list of SVM models (one for each variable) Returns a dataframe with the outliers replaced by NaNs. """ # Initialize new dataframe df_detected = df.copy() # For each location for idx, location in enumerate(df.columns): # Initialize new location data ts = df.iloc[:, idx] ts_detected = ts.copy() # Detect outliers using the one-class SVM model for this location if SVM_models[idx] is not None and ts.isnull().sum().sum() == 0: scaler = preprocessing.StandardScaler() ts_scaled = scaler.fit_transform(ts.values.reshape(-1,1)) pred = SVM_models[idx].predict(ts_scaled) to_idx = lambda x: True if x==-1 else False v_to_idx = np.vectorize(to_idx) outliers_idx = v_to_idx(pred) # Set outliers to NaN # If not all data points have been marked as outliers; otherwise do not clean if outliers_idx.sum() != len(ts_detected): ts_detected[outliers_idx] = np.nan df_detected.iloc[:, idx] = ts_detected df_detected.index.name = 'datetime' return df_detected def get_train_df(df, Y_name, start_prediction): """ Split dataframe into X and y sets for training data """ df_X_train = df.drop(Y_name, 1)[:start_prediction].iloc[:-1] df_y_train = df[[Y_name]][:start_prediction].iloc[:-1] return df_X_train, df_y_train def get_future_df(start_pred, predict_period, freq): """ Create empty data frame for predictions of the target variable for the specfied prediction period """ datetime_predict = pd.date_range(start_pred, periods = predict_period, freq = freq) df = pd.DataFrame(data = {'datetime' : datetime_predict}).set_index('datetime') return df def add_time_variables(df): """ Create dummy variables from weekday, weekend and hour and add these to the dataframe. Also, add cos and sine times """ df = df.reset_index() # add weekday and hour dummies df['weekday'] = pd.Categorical(df['datetime'].dt.weekday) df['hour'] = pd.Categorical(df['datetime'].dt.hour) weekday_dummies = pd.get_dummies(df[['weekday']], prefix='weekday_') hour_dummies = pd.get_dummies(df[['hour']], prefix='hour_') df_time = df.merge(weekday_dummies, left_index = True, right_index = True) df_time = df_time.merge(hour_dummies, left_index = True, right_index = True) # add cyclical time features df_time['minutes'] = df_time['datetime'].dt.hour * 60 + df_time['datetime'].dt.minute df_time['sin_time'] = np.sin(2 * np.pi * df_time['minutes'] / (24 * 60)) df_time['cos_time'] = np.cos(2 * np.pi * df_time['minutes'] / (24 * 60)) df_time = df_time.set_index('datetime') return df_time def add_lag_variables(df, Y_name, target, predict_period, n_samples_day, n_samples_week): """ Add lag variables (features that are lagged version of the target variable). """ df[Y_name + "_prev_2h"] = df[Y_name].shift(predict_period) df[Y_name + "_prev_day"] = df[Y_name].shift(n_samples_day) df[Y_name + "_prev_week"] = df[Y_name].shift(n_samples_week) if target == 'count': df[Y_name + "_prev_2h_mean_diff"] = df[Y_name + "_prev_2h"] - df[Y_name].mean() df[Y_name + "_prev_2h_diff_size"] = df[Y_name] - df[Y_name].shift(predict_period+1) return df def scale_variables(df_unscaled, Y_name, target, method): """ Scale the variables and store the scaler object for the target variable. method: "standard" or "minmax" """ if target == 'count': # Select target variable Y_unscaled = df_unscaled[Y_name].values Y_unscaled = Y_unscaled.reshape(-1, 1) # Select continuous columns (do not scale binary/category variables) cont_idx = df_unscaled.select_dtypes('float').columns.tolist() df_unscaled_cont = df_unscaled.loc[:, cont_idx] # Standardization if method == "standard": scaler = preprocessing.StandardScaler().fit(df_unscaled_cont.values) if target == "count": # Store scaler object for target variable Y_scaler = preprocessing.StandardScaler().fit(Y_unscaled) # Min-max scaling elif method == "minmax": scaler = preprocessing.MinMaxScaler().fit(df_unscaled_cont.values) if target == "count": # Store scaler object for target variable Y_scaler = preprocessing.MinMaxScaler().fit(Y_unscaled) # Scale variables df_scaled_cont = scaler.transform(df_unscaled_cont.values) df_scaled = df_unscaled.copy() df_scaled.loc[:, cont_idx] = df_scaled_cont # Convert back to right format df_scaled = pd.DataFrame(df_scaled, columns = df_unscaled.columns, index = df_unscaled.index) df_scaled.index.name = 'datetime' if target == "level": Y_scaler = None return df_scaled, Y_scaler
UTF-8
Python
false
false
19,049
py
7
preprocessing.py
4
0.610583
0.603076
0
573
32.242583
156
Stebalien/Mist
4,080,218,962,713
98f54754b5d2f64b0cbf5ef541efa0742a769f56
b1943593888d5a99815b2b3e34c99ba682ffa115
/bin/metaedit.py
e2d5e6636be65877e2fda8359cbb025f001eadb6
[]
no_license
https://github.com/Stebalien/Mist
b3a1ab39a7fb26b663d09b2e55ac2ac956862254
aa34d1488f196e53823a0df21ffb3f7fc3712fe3
refs/heads/master
2020-04-15T08:21:03.105938
2011-11-30T19:40:43
2011-11-30T19:40:43
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Metadata editor for Mist program. This is a wrapper class for the mutagen module.""" __author__ = "Jonathan Allen" __all__ = ["FileError", "NonexistantFileError", "UnsupportedFiletypeError", "EncodeInput", "EncodeOutput", "Metadata", "GENERAL_TAGNAMES"] import mimetypes import os import types from jonathan.dictools import * #=============================================================================== # Constants #=============================================================================== GENERAL_TAGNAMES = ["TITLE", "ALBUM", "ARTIST", "ARTISTSORTORDER", "PRODUCER", "PERFORMER", "RECORDINGLABEL", "DATE", "GENRE", "LOCATION"] #=============================================================================== # Exceptions #=============================================================================== class FileError(Exception): pass class NonexistantFileError(FileError): pass class UnsupportedFiletypeError(FileError): pass #=============================================================================== # Decorators #=============================================================================== def EncodeInput(function): """ Encodes values in specified metadata as ASCII. Ignores invalid characters. """ def wrapped(self, data): for key, value in data.items(): try: value.decode('ascii') except UnicodeDecodeError: data[key] = value.encode('ascii', errors = 'ignore') return function(self, data) return wrapped def EncodeOutput(function): """ Encodes output metadata as ASCII. Ignores invalid characters. """ def wrapped(*args, **kwargs): output = function(*args, **kwargs) for key, value in output.items(): try: value.decode('ascii') except UnicodeDecodeError: try: output[key] = value.encode('ascii', errors = 'ignore') except: output[key] = "????" return output return wrapped mimetypes.add_type('audio/mp4', '.m4a') class Metadata: """ Class to handle reading and writing metadata for music files. """ def __init__(self, fileName): self.fileName = fileName self.fileType = mimetypes.guess_type(fileName)[0] self.data = ExtendedDictionary() self.failedReads = set() self.failedWrites = set() def __new__(cls, fileName): if not os.path.exists(fileName): raise NonexistantFileError("{} could not be found.".format(fileName)) fileType = mimetypes.guess_type(fileName)[0] from mp3metaedit import MP3Metadata from standardmetaedit import StandardMetadata output = { 'audio/mpeg': MP3Metadata, 'audio/ogg': StandardMetadata, 'audio/flac': StandardMetadata, 'audio/mp4': StandardMetadata } try: return output[fileType](fileName) except KeyError: raise UnsupportedFiletypeError("cannot read metadata for filetype: <{}>.".format(fileType)) @EncodeOutput def read(self, tagNames = [], ignore = []): raise NotImplementedError() def write(self, data): raise NotImplementedError() def truncateOutput(self, data): """ If data is a list, returns the first value. Otherwise simply returns the given data. """ if isinstance(data, (types.ListType, types.TupleType)): return bytes(data[0]) return bytes(data)
UTF-8
Python
false
false
3,565
py
18
metaedit.py
17
0.53324
0.530715
0
106
32.632075
110
MiscCoding/gsp_web
704,374,649,433
9828ca405d7b4253a29147f9b7c499668c79208b
6e43937c521b841595fbe7f59268ffc72dfefa9d
/GSP_WEB/views/system/backup.py
b224a04664acc8d3bba67e2e97aabcd755c11f6d
[]
no_license
https://github.com/MiscCoding/gsp_web
a5e50ce7591157510021cae49c6b2994f4eaabbe
a24e319974021ba668c5f8b4000ce96d81d1483e
refs/heads/master
2020-03-28T15:11:30.301700
2019-08-12T04:47:42
2019-08-12T04:47:42
148,565,440
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#-*- coding: utf-8 -*- import datetime from flask import request, Response, render_template, Blueprint, json, make_response, g, session from GSP_WEB import login_required, db_session, app from GSP_WEB.common.util.invalidUsage import InvalidUsage from GSP_WEB.common.util.logUtil import logUtil from GSP_WEB.common.util.textUtil import RepresentsInt from GSP_WEB.models.IP_WhiteList import IP_WhiteList from GSP_WEB.models.Account import Account blueprint_page = Blueprint('bp_backup_page', __name__, url_prefix='/system') @blueprint_page.route('/backup', methods=['GET']) #@login_required def config(): return render_template('system/backup.html')
UTF-8
Python
false
false
655
py
168
backup.py
124
0.769466
0.767939
0
18
35.444444
96
kimhtae/shop
13,013,750,936,900
c0f459293031dfd4ba6c10a1854575ef6da38f33
48d16bf3e3074937e16f9d95e847a5fd5f363cae
/final/baemin/forms.py
40ce4b4b154e8b9ad272467c2f7d782788f7ee45
[]
no_license
https://github.com/kimhtae/shop
271d216a8eb640b832c44eac493a0e6f55dbdcf3
b4f176900379fbac4eb81f1ec2bcb0258cde58f9
refs/heads/master
2020-03-21T17:02:55.506717
2018-07-04T23:09:47
2018-07-04T23:09:47
138,810,012
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django import forms from .models import Order # Create your models here. class OrderForm(forms.ModelForm): def __init__(self, shop, *args, **kwargs): super().__init__(*args, **kwargs) # 해당 시점의 상품목록만 보이도록 Filter self.fields['item_set'].queryset = self.fields['item_set'].queryset.filter(shop=shop) class Meta: model = Order fields = ('item_set',)
UTF-8
Python
false
false
396
py
10
forms.py
6
0.679348
0.679348
0
15
23.6
87
xuguoliang1995/leetCodePython
5,652,176,977,294
41c340eb8e3d3f1b5c91f758bcbe8b3052197e61
8fc1a5f5c81df49ff5f8e7af956b516de32786a8
/python_know/high/demo7.py
f7a485f66ffb90dc6895e966994d178d791e41d5
[ "Apache-2.0" ]
permissive
https://github.com/xuguoliang1995/leetCodePython
1f88d4dedf401fe5a1748b30ad878ce94655b317
9e4a96efd21506e8b0443a52be16c1280643b48c
refs/heads/master
2020-07-26T16:33:58.022862
2019-11-20T07:00:19
2019-11-20T07:00:19
208,704,541
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 字符串知识 """ 1、ASCII标准是美国创建的,定义了从0到127的字符代码,允许每个字符存储在一个8位的字节中(实际上是127位) 2、每个字符一个字节不够,各种符号和重音字符并不在ASCII所定义的可能字符的范围中,所以使用0到255来表示字符 并且把128到255分配给特殊字符,这样的标准叫做Latin-I,广泛使用西欧地区。 3、一些字母表定义了如此多的字符,以至于无法把其中的每一个都表示成一个字节。Unicode考虑到更多的灵活性。 Unicode通常用在国际化的程序中,拥有比8位字符所能表示的更多的字符 4、 UTF-8编码,采用了可变的字节数的方案,小于128的字符代码表示为单个字节,128到0x7ff(2047)之间的代码 转换为两个字节,而每个字节拥有一个128到255之间的值,0x7ff代码转换为3个或者4个字节序列,每个字节序列在 128到255之间。 python2中使用 (1)str表示8位文本和二进制数据 (2)unicode用来表示宽字符Unicode文本 python3 (1)str表示Unicode文本(8位的和更宽的) (2)bytes表示二进制数据(不可变不可修改的) (3)bytearray 是一种可变的bytes类型。 二进制文件:以为二进制模式打开一个文件的时候,读取数据不会以任何方式解码它, 是直接返回其内容raw并且未经修改。 • str.encode()和bytes(S, encoding)把一个字符串转换为其raw bytes形式,并且 在此过程中根据一个str创建一个bytes。 • bytes.decode()和str(B, encoding)把raw bytes转换为其字符串形式,并且在此 过程中根据一个bytes创建一个str。 字符串格式化只对str有效,对bytes对象无效。 总结:• 对文本数据使用str; • 对二进制数据使用bytes; • 对想要原处修改的二进制数据使用bytearray。 """
UTF-8
Python
false
false
1,926
py
45
demo7.py
44
0.824324
0.755631
0
30
28.533333
62
GGiiuusseeppee/isde
19,189,913,906,037
ae6d36da376d9ab5e323e62e0a34e488e477ca43
5c056a5443273a7b8cb38c2edab1357cec628cac
/src2/timeslot/timeslot_2.py
f179d5b2814eaddb9d149418cf459ef6eda58865
[ "Apache-2.0" ]
permissive
https://github.com/GGiiuusseeppee/isde
7c02444581e124a5acd315966b0adb2315673f8b
a9603d8b8d1a347447cec483108132aa1e8457eb
refs/heads/master
2023-08-27T19:55:57.178818
2021-10-21T15:31:07
2021-10-21T15:31:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class TimeSlot: """A class to store time slot""" minutes_in_hour = 60 def __init__(self): # initialize an empty slot self.timeslot = {'h': 0, 'm': 0} # timeslot is an instance attribute # (attribute of the object) def set_h_m(self, h, m): # set_h_m() is an instance method #(method of the object) self.timeslot['h'] = h self.timeslot['m'] = m def set_m(self, m): self.timeslot['h'] = int(m / self.minutes_in_hour) self.timeslot['m'] = m % self.minutes_in_hour def get_h_m(self): return self.timeslot['h'], self.timeslot['m'] def get_m(self): return self.timeslot['h'] * self.minutes_in_hour + self.timeslot['m'] t1 = TimeSlot() # t1 is an object t1.set_h_m(2, 20) print(t1.get_m()) # Expected value: 140 print(t1.get_h_m()) # Expected value: 2, 120 t1.set_m(140) print(t1.get_m()) # Expected value: 140 print(t1.get_h_m()) # Expected value: 2, 120
UTF-8
Python
false
false
970
py
67
timeslot_2.py
61
0.579381
0.546392
0
34
27.529412
77
abulovic/binner
11,965,778,922,872
77f6d1cbdc96854db57ec0bfdddea3ce82466b62
913c80188ec68991fa929b995d8b34d909438eab
/solver/read2cds/Read2CDSSolver.py
3d5b63391ba64fad27a2bb1bc38f68d99e6eaa31
[]
no_license
https://github.com/abulovic/binner
2360116a44a36fbefa7074169071f44897819530
470c9e66e50e7b51a0be40e2ea1b30df44e6eba6
refs/heads/master
2016-09-06T21:52:13.900983
2013-06-16T16:57:59
2013-06-16T16:57:59
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# @author: Martin Sosic, sosic.martin@gmail.com class Read2CDSSolver (object): """ Class that decides for each read to which CDS does it belong (to which CDS does it map). It operates on CdsAlnContainer -> it uses data from it and modifies it. Method map_reads_2_cdss() must be called first. """ def __init__(self): """ (CdsAlnContainer) _cds_aln_container It contains list of all CDSs. Solver operates upon it. """ self._cds_aln_container = None # Should be overrided and called with super() at the beginning of overriding method. def map_reads_2_cdss(self, cds_aln_container): """ Main method of solver: it decides for each read to which cds does it belong(map). When method is finished CDS alignment container will be modified in such way that there will not be two CDSs that have same read assigned (each read will be assigned to exactly one CDS). Read is considered to be assigned to CDS if it is activated (attribute active) in cds alignment of that CDS. @param (CdsAlnContainer) cdsAlnContainer Reference to container is stored in object to be used for possible updating. """ self._cds_aln_container = cds_aln_container # Should be overrided and called with super() at the beginning of overriding method. def remove_cds_and_remap_reads(self, cds_aln): """ Called after map_reads_2_cdss. It remaps active reads from given cds alignment to alternative cds alignments. After that it deletes given cds alignment from cds alignment container. Each read is activated in some alternative cds alignment (if there is one). If read has no alternative cds alignments then it will not be maped anywhere. Works upon cds alignment container that was given in map_reads_2_cdss(), which will be modified. @param (CdsAlignment) cds_aln @return ({read_id:CdsAlignment}) Dictionary where key is read_id and value is cds alignment to which it maps. If it does not map anywhere then value is None. """ if (self._cds_aln_container == None): raise Exception ("Cds alignment container was not specified! Have you executed map_reads_2_cdss?") @staticmethod def test_cds_alignment_container_consistency(cds_aln_container): """ This function is intended to be used for testing purposes. It should be run after execution of map_reads_2_cdss() or after execution of remove_cds_and_remap_reads in order to test cds alignment container for consistency. Cds alignment container is considered to be consistent (after execution of map_reads_2_cdss()) if each read is active in (mapped to) at most one cds alignment. Also, if cds alignment contains read (active or not), that cds must be element of read2cds for that read and vice versa. @param (CdsAlnContainer) cds_aln_container Container produced using map_reads_2_cdss(). @return (boolean) True if test passed, False otherwise. """ active_read_ids = set() for cds_aln in cds_aln_container.cds_repository.values(): for aln_reg in cds_aln.aligned_regions.values(): if aln_reg.active: # Check if it is active in some other cds. if aln_reg.read_id in active_read_ids: return False else: active_read_ids.add(aln_reg.read_id) # Check if there is mapping in read2cds. if not(cds_aln in cds_aln_container.read2cds[aln_reg.read_id]): return False # For each mapping in read2cds check if there is mapping in cds_repository. for (read_id, cds_alns) in cds_aln_container.read2cds.items(): for cds_aln in cds_alns: try: if not(read_id in cds_aln_container.cds_repository[cds_aln.cds].aligned_regions.keys()): return False except KeyError: return False return True
UTF-8
Python
false
false
4,180
py
34
Read2CDSSolver.py
31
0.641627
0.638278
0
75
54.72
125
sidhuking07/quick-attendance
8,727,373,584,377
891797aedde989e82d267348f761161650fe3a40
89f4fc7e44f4ea5042c1f07fc23c9b8c442ab7d4
/projecting_faces.py
1b69c4daab960b07a0b6a003b36314d98b2eab47
[]
no_license
https://github.com/sidhuking07/quick-attendance
bcd5c8a31c4b0603be2da01c60cccebe243fa3b1
2bd5c9180cdc518c546d15ffd95ba35dc10dcfe2
refs/heads/master
2021-08-31T20:05:35.992362
2017-12-22T17:47:54
2017-12-22T17:47:54
111,775,688
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import dlib import cv2 import openface predictor_model = "shape_predictor_68_face_landmarks.dat" file_name = sys.argv[1] #take input from command face_detector = dlib.get_frontal_face_detector() #create HOG face detector from dlib face_pose_predictor = dlib.shape_predictor(predictor_model) face_aligner = openface.AlignDlib(predictor_model) #use AlignDlib from openface for alignment file_name = sys.argv[1] #take the input from command image = cv2.imread(file_name) #load image as array detected_faces = face_detector(image, 1) #run HOG face detector # Loop through each face we found in the image for i, face_rect in enumerate(detected_faces): pose_landmarks = face_pose_predictor(image, face_rect) #get the pose alignedFace = face_aligner.align(534, image, face_rect, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE) #perfrom alignment cv2.imwrite("aligned_face_{}.jpg".format(i), alignedFace) #save the aligned image
UTF-8
Python
false
false
955
py
6
projecting_faces.py
5
0.771728
0.760209
0
28
33.107143
132
Akpanwal2001/CodeAddiction
11,416,023,120,091
f4b7271f5102778f6ea96aa85e0deb6461664b7d
6ecf369f015241d0265d05b6d0b9e676fb2d45ff
/blog/views.py
f30a7b1b31f1c892c63f75a462a9f8e9470d6fe6
[]
no_license
https://github.com/Akpanwal2001/CodeAddiction
404c5dd536e249384f8038a57d6d52a277481c6f
5b8bce2d63b651b522e74332e62ffe0028b21273
refs/heads/master
2023-06-20T06:46:12.256762
2021-07-16T13:11:10
2021-07-16T13:11:10
386,641,810
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from .models import Post # all Blogs page function def blog(request): allPosts = Paginator(Post.objects.all().order_by('-datetime'), 2) page = request.GET.get('page') try: Posts = allPosts.page(page) except PageNotAnInteger: Posts = allPosts.page(1) except EmptyPage: Posts = allPosts.page(allPosts.num_pages) context = {'allPosts' : Posts} return render(request, 'blog.html', context) # Blogpost page function def blogpost(request, slug): post = Post.objects.filter(slug = slug).first() post.view = post.view + 1 post.save() context = { 'post' : post } return render(request, 'blogpost.html', context)
UTF-8
Python
false
false
795
py
19
views.py
15
0.674214
0.67044
0
26
29.538462
72
DamirNesimi/min_max.py
2,276,332,668,092
bb85a2d2dbbb434bf4c0bd44a0147ca84e83104d
701d1ce081e43d8f1469666540a6c5104fd26d99
/min_max.py
c8f5bc078d266adcfe72e3491aa0befcdca1858c
[]
no_license
https://github.com/DamirNesimi/min_max.py
6ea9916ed296a16cea5ab63df7267995c16ba963
e7c8fe8400b36621e2275649ceac15286927a903
refs/heads/master
2022-12-20T03:26:27.246955
2020-09-27T14:15:40
2020-09-27T14:15:40
299,046,625
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Dette programmet bruker funksjonene egen_max og egen_min som beregner maximum og minimum av to tall skrevet inn av en bruker. 27.09.2020 """ # funksjon som returnerer den største verdien av tall_1 og tall_2 def egen_max(tall_1, tall_2): max = (tall_1 + tall_2 + abs(tall_1 - tall_2))//2 return max # funksjon som returnerer den minste verdien av tall_1 og tall_2 def egen_min(tall_1, tall_2): min = (tall_1 + tall_2 - abs(tall_1 - tall_2))//2 return min # variabler som lagrer verdien fra input av bruker tall_1 = input("Tall 1: ") tall_2 = input("Tall 2: ") # verdien konverteres til heltallsverdi tall_1_int = int(tall_1) tall_2_int = int(tall_2) # output til skjerm print() print("egen_max(" + tall_1 + ", " + tall_2 + ") = " + str(egen_max(tall_1_int, tall_2_int))) print("max(" + tall_1 + ", " + tall_2 + ") = " + str(max(tall_1_int, tall_2_int))) print() print("egen_min(" + tall_1 + ", " + tall_2 + ") = " + str(egen_min(tall_1_int, tall_2_int))) print("min(" + tall_1 + ", " + tall_2 + ") = " + str(min(tall_1_int, tall_2_int)))
UTF-8
Python
false
false
1,065
py
1
min_max.py
1
0.62406
0.577068
0
33
31.242424
99
NBGodlike/dz
11,269,994,232,089
3df8e0b35c592268c5427041349ddf1cbbab00ba
d8335ac15d7cbe3ad6f87e8cabfa48124aa60d61
/users/migrations/0005_course_picture.py
4dbcc82eee8dcbaec49e22b8c9830cc69158938b
[]
no_license
https://github.com/NBGodlike/dz
a5d56bc4b7a190e1ca75f2f3c04ed2dc6d646cd6
7dc67aedb373411ca2637a38622f97d0bf97889a
refs/heads/master
2021-04-29T02:56:39.502536
2017-01-05T08:39:52
2017-01-05T08:39:52
78,049,378
0
1
null
false
2017-03-16T03:23:52
2017-01-04T20:14:27
2017-01-05T08:31:34
2017-01-10T14:46:51
4,013
0
0
0
CSS
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-01 19:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20161231_2028'), ] operations = [ migrations.AddField( model_name='course', name='Picture', field=models.TextField(max_length=255, null=True), ), ]
UTF-8
Python
false
false
460
py
23
0005_course_picture.py
14
0.595652
0.517391
0
20
22
62
nkyllonen/ACVC
14,345,190,794,352
211810653fc2266d120652706553277fb7eb0e83
68f651118c0e6363163cc970ed650a86a9cc5f77
/DecisionMaker.py
5025df4a8b4f50e4ee0678aa862c75b3e9ef0e82
[]
no_license
https://github.com/nkyllonen/ACVC
784d8d2543238d7a56b000dfbc05796e29e34ba4
f2f675080d5716f1cbf45a40edcf0ed169b9c4f2
refs/heads/master
2022-12-10T06:30:49.977124
2020-05-11T16:02:44
2020-05-11T16:02:44
256,346,234
0
1
null
false
2022-12-08T09:41:18
2020-04-16T22:43:00
2020-05-11T16:02:56
2022-12-08T09:41:17
13,850
0
1
2
Python
false
false
''' DecisionMaker: module for deciding potential answers Alex Berg and Nikki Kyllonen ''' from __future__ import print_function import State import string, nltk, random from nltk.corpus import stopwords nltk.download("stopwords") from textwrap import wrap from terminaltables import AsciiTable ## GLOBAL VARIABLES ## punc = set(string.punctuation) engStopWords = set(stopwords.words('english')) ## HELPER FUNCTIONS ## def clean_string(s): """ Remove double spaces, stopwords, and all punctuation """ s = s.replace(" " , " ") words = [ w for w in s.split(" ") if w not in engStopWords ] s = " ".join(words) return "".join( ch.lower() for ch in s if ch not in punc ) ## MODULE FUNCTIONS ## def get_possible_words(corpus, wordLen, wordHint): """ Construct list of possible word matches """ if State.METRIC == State.Metric.JACCARD: possible = use_jaccard_metric(corpus, wordLen, wordHint) elif State.METRIC == State.Metric.COSINE: # TODO: cosine similarity metric possible = [("example", 0.5, "some def")] # sort and only keep the top 10 possible words possible = sorted(possible, key = lambda x : x[1], reverse=True)[:10] return possible def use_jaccard_metric(corpus, wordLen, wordHint): """ Use brute force with jaccard similarity metric """ possible = [] for word in list(corpus.keys()): if len(word) == wordLen: maxJaccard = 0 maxJaccardString = "" for val in corpus[word]: m = max(maxJaccard, jaccard(wordHint, val)) if (m != maxJaccard): maxJaccardString = val maxJaccard = m if maxJaccard > 0: possible.append((word, maxJaccard, maxJaccardString)) return possible def jaccard(query1, query2): """ Calculate the jaccard value between two inputs """ q1 = set(clean_string(query1).split(" ")) q2 = set(clean_string(query2).split(" ")) return len(q1.intersection(q2)) / len(q1.union(q2)) def average_sentence_vec(words): """ """ # TODO: calc sentence feature vector return "" def evaluate_corpus(corpus, golden): """ Evaluate the given corpus against given golden standard """ withinCorrectWords = [] withinIncorrectWords = [] withoutNum = 0 # Randomly sample golden corpus sampleWords = random.sample(golden.keys(), State.SAMPLES) if State.DEBUG: print("[DEBUG] Using sample words:" , sampleWords) for answer in sampleWords: clue = random.choice(golden[answer]) possibleWords = get_possible_words(corpus, len(answer), clue) # Check if possible words contains correct answer check = list(filter( lambda x : x[0] == answer , possibleWords )) if len(check) > 0: # Store corresponding result values + golden hint + max jaccard of all results result = list(check[0]) result.append(clue) result.append(possibleWords[0][1]) # Calculate jaccard distance d = float(possibleWords[0][1]) - float(result[1]) result.append(d) withinCorrectWords.append(result) if State.DEBUG: print("[DEBUG]" , answer , "CORRECT" , result) else: # Check if answer is in corpus if answer in corpus.keys(): withinIncorrectWords.append(answer) else: withoutNum += 1 if State.DEBUG: print("[DEBUG]", answer , "INCORRECT") return {"withinCor" : withinCorrectWords, "withinIncor" : withinIncorrectWords, "withoutN" : withoutNum} def run_evaluation(corpus, golden): """ Generate tables containing evaluation data """ wordsTable, correctTable, statsTable = None, None, None results = [] for i in range(State.LOOPS): results.append(evaluate_corpus(corpus, golden)) if State.DEBUG: # TODO: format this output with labels and a table? print("[DEBUG]" , results) # Initialize counters percentCor, percentIncor, percentWithin = 0, 0, 0 distances, totalWithin, totalWithinCor = 0, 0, 0 for evalResult in results: # Format output into tables WORDS_DATA = ( ("Within Correct", "Within Incorrect", "Without Number"), ("\n".join([ val[0] for val in evalResult["withinCor"] ]) , "\n".join(evalResult["withinIncor"]), evalResult["withoutN"]) ) wordsTable = AsciiTable(WORDS_DATA, "Word Results") # Only output word result tables if NOT looping --minimize output if State.DEBUG or State.LOOPS == 1: print("\n" + wordsTable.table) MATCH_DATA = ("Word" , "Jaccard Value" , "Matching Corpus Value" , "Hint", "Max Jaccard Value", "Jaccard Distance") data = [] correctTable = AsciiTable([MATCH_DATA, []]) # Cap column widths at 35 chars for widest columns maxValWidth = min(correctTable.column_max_width(2), 35) maxHintWidth = min(correctTable.column_max_width(3), 35) for i in range(len(evalResult["withinCor"])): r = list(evalResult["withinCor"][i]) # Format text to wrap wrappedVal = '\n'.join(wrap(r[2], maxValWidth)) wrappedHint = '\n'.join(wrap(r[3], maxHintWidth)) r[2] = wrappedVal r[3] = wrappedHint if State.DEBUG: print(r) data.append(r) correctTable = AsciiTable(tuple([MATCH_DATA] + data), "Correct Matches Results") # Only output word result tables if NOT looping --minimize output if State.DEBUG or State.LOOPS == 1: print("\n" + correctTable.table) # Check if we had any hits at all, otherwise output zeroes if (State.SAMPLES != evalResult["withoutN"]): withinN = State.SAMPLES - evalResult["withoutN"] withinCor = len(evalResult["withinCor"]) percentCor += withinCor / withinN percentIncor += len(evalResult["withinIncor"]) / withinN percentWithin += withinN / State.SAMPLES # Sum the distances for each result from this loop to calc overal average for word in evalResult["withinCor"]: distances += word[5] totalWithin += withinN totalWithinCor += withinCor STATS_DATA = ( ("Average Percentage Within Correct" , "Average Percentage Within Incorrect", "Average Percentage Within", "Average Jaccard Distance"), (percentCor / State.LOOPS, percentIncor / State.LOOPS, percentWithin / State.LOOPS, distances / totalWithinCor if totalWithinCor > 0 else 0.0) ) statsTable = AsciiTable(STATS_DATA, "Statistics") print("\n" + statsTable.table)
UTF-8
Python
false
false
6,916
py
14
DecisionMaker.py
6
0.606131
0.598323
0
200
33.58
143
silverstar194/Nano-SpeedTest
3,470,333,582,658
5d2d1fa3dd8565971010275fd3d1a0e092e145c5
c68fbb8f11d33a08326827d90fe96b1805214e28
/app/backend/speedtest_api/services/nodes.py
a709949555d78ecd62756a69de5c4ecb300a1120
[]
no_license
https://github.com/silverstar194/Nano-SpeedTest
ce8decf9a616b100449b786a53d3cf67798e1a9b
c5b11305050aac44ea940d7241d61423c63a2406
refs/heads/master
2022-12-12T12:17:02.062680
2020-12-12T23:55:11
2020-12-12T23:55:11
149,526,364
28
7
null
false
2022-12-07T23:53:06
2018-09-20T00:02:48
2022-11-18T20:19:32
2022-12-07T23:53:06
5,409
25
4
7
CSS
false
false
from django.conf import settings as settings from .. import models as models class NodeNotFoundException(Exception): def __init__(self, node): Exception.__init__(self, "Fatal error occurred occurred. Node %s not found." % (node.URL)) def new_node(URL, latitude, longitude, location_name=None): """ Create a new node from the given information @param URL: URL to connect to RPC of the node @param latitude: Latitude of the node @param longitude: Longitude of the node @param location_name: Friendly name of the node's location (256 character limit) @return: New node object """ return models.Node.objects.create(URL=URL, latitude=latitude, longitude=longitude, location_name=location_name) def get_nodes(enabled=True): """ Get all nodes @param enabled: Filter nodes by enability. @return: Query of Node objects """ return models.Node.objects.filter(enabled=enabled) def get_node(id, enabled=True): """ Get a node with the specified node.id @return: Node object or None if the node was not found @raise MultipleObjectsReturned: If more than one node with the Id is found, this is raised """ try: return models.Node.objects.get(id=id, enabled=enabled) except models.Node.DoesNotExist: return None except MultipleObjectsReturned: raise MultipleObjectsReturned()
UTF-8
Python
false
false
1,398
py
145
nodes.py
110
0.69671
0.694564
0
46
29.391304
115
Nidocq/Sudoku_Solver
7,842,610,288,689
06f3f2662dc1955027e608fa39758e57d1f3d257
71c3683c843a0773311d0692d7f5af1195995643
/Board.py
b8992be65c5f2d882ee390a86dbf37b5bc7b366a
[]
no_license
https://github.com/Nidocq/Sudoku_Solver
b4eb2168406406753f4316fef01dce1860294c09
17d41ec86c1d7df4b2a9b04f5f8f9f0544db9cc1
refs/heads/main
2023-06-14T06:37:08.607379
2021-07-08T20:47:06
2021-07-08T20:47:06
383,120,452
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 class Board(): def __init__(self): self.grid = [[6, 0, 0, 1, 0, 0, 0, 4, 0], [0, 0, 1, 8, 6, 0, 2, 0, 0], [8, 9, 0, 2, 5, 4, 0, 0, 0], [2, 0, 0, 3, 8, 0, 1, 5, 0], [0, 7, 0, 0, 2, 6, 9, 8, 3], [3, 8, 9, 7, 1, 0, 0, 0, 0], [0, 2, 8, 9, 0, 1, 6, 3, 4], [7, 0, 4, 6, 0, 0, 8, 0, 5], [0, 0, 0, 5, 4, 0, 7, 1, 2]] self.size = 9 def validPlacement(self, row, col, value): for lines in range(0, self.size): if self.grid[row][lines] == value: return False if self.grid[lines][col] == value: return False startRow = row - row % 3 startCol = col - col % 3 for i in range(3): for j in range(3): if self.grid[i + startRow][j + startCol] == value: return False return True def showGridTerminal(self): for i in self.grid: print(i) def showGrid(self) -> str: boardString = '' for i in self.grid: boardString += str(i) + "</br>" return boardString
UTF-8
Python
false
false
1,187
py
5
Board.py
4
0.410278
0.336142
0
42
27.285714
66
gabriellaec/desoft-analise-exercicios
11,020,886,091,469
ecb2eeab5c7af369435d0c5c0e2b200801684bce
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_116/ch80_2020_04_08_20_35_59_699840.py
4a781044dd6978c7d01548ae00b9cde383ae5340
[]
no_license
https://github.com/gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def interseccao_chaves(x,y): lista=[] for k in x.keys(): if k in y.keys(): if k not in lista: lista.append(k) return lista
UTF-8
Python
false
false
170
py
35,359
ch80_2020_04_08_20_35_59_699840.py
35,352
0.494118
0.494118
0
7
23.428571
31
equinor/webviz-core-components
9,199,819,960,594
67c46cf98c24ad00dc66569c82c47e46d817b048
bfd641697aaf7777e7c6b921d6b8b04e867fa877
/webviz_core_components/wrapped_components/frame.py
095dd25afee6c584167b1143fd1cf4a2012a6d0b
[ "MIT" ]
permissive
https://github.com/equinor/webviz-core-components
cb02480f16050c704e2d46d635f12f95235aa2fa
cba53f3ea37beabd6cee5765de2b556d9f4aef48
refs/heads/master
2023-08-29T23:54:37.086036
2023-08-09T10:52:08
2023-08-09T10:52:08
201,783,679
13
15
MIT
false
2023-08-17T07:55:19
2019-08-11T15:42:13
2023-06-23T09:13:35
2023-08-11T16:38:59
11,088
11
15
43
TypeScript
false
false
from typing import Any from dash import html class Frame(html.Div): """A html.Div with border and background styling Keyword arguments: - children (a list of or a singular dash component, string or number; required): The children of this component. - color (str; default #F9F9F9): Background color of the frame - highlight (bool; default: True): Adds additional shadow when hovering over the box - className (string; optional): Additional css class to apply - style (string; optional): Additional style for the component """ def __init__( self, children: Any, color: str = "#F9F9F9", highlight: bool = True, className: str = "", style: dict = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.className = ( className + " webviz-frame" if highlight else className + " webviz-frame-no-hover" ) self.style = style if style is not None else {} self.style.update({"backgroundColor": color}) self.children = children
UTF-8
Python
false
false
1,157
py
186
frame.py
70
0.582541
0.577355
0
46
24.152174
84
masakiaota/kyoupuro
1,443,109,038,543
eef9666bf68f7b3056de2f1837df9759b2c0bed7
0987f31e64bcacb41ba3a1e20054d7b8ac0d7346
/practice/E_ABC/abc149_e.py
0e334dcd7bf5adaa753340eb3b4a63fba759f475
[]
no_license
https://github.com/masakiaota/kyoupuro
81ae52ab3014fb2b1e10472994afa4caa9ea463b
74915a40ac157f89fe400e3f98e9bf3c10012cd7
refs/heads/master
2021-06-27T04:13:52.152582
2020-09-20T03:21:17
2020-09-20T03:21:17
147,049,195
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# https://atcoder.jp/contests/abc149/tasks/abc149_e # すべての握手の組み合わせN**2を列挙しソートしM番目までを足し合わせればOK # だけど制約からこれを行うことは困難 # すべてを列挙しなくともM番目の値を知ることは二分探索で可能(参考:億マス計算) # Aの累積和を保持しておけば、M番目の値の探索中にMまでの値の合計もついでに計算できる # 以下reverseでソート済みだと仮定 # XがM番目の数→X以上である数はM個以上(cntとする)→cntがM個以上の条件を満たすうちの最大となるXがM番目の値 # そのあと余分な分を引く処理とか必要 from bisect import bisect_right, bisect_left import sys read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) class cumsum1d: def __init__(self, ls: list): ''' 1次元リストを受け取る ''' from itertools import accumulate self.ls_accum = [0] + list(accumulate(ls)) def total(self, i, j): # もとの配列lsにおける[i,j)の中合計 return self.ls_accum[j] - self.ls_accum[i] N, M = read_ints() A = read_ints() A.sort() # bisectを使う都合上 reverseは抜き A_reversed = list(reversed(A)) A_rev_acc = cumsum1d(A_reversed) def is_ok(X): # M番目の数はXである→X以上の個数>=M となるうちで最大のX(もっとも左の方のX) # X以上の個数>=Mを返す # X以下の個数はai+aj>=Xを満たす個数 cnt = 0 ans = 0 for a in A: aa = X - a idx_reverse = N - bisect_left(A, aa) # 大きい方からだと何番目か # これはbisect_right(A_reversed,aa)に等しい cnt += idx_reverse ans += A_rev_acc.total(0, idx_reverse) + idx_reverse * a return cnt >= M, ans, cnt def meguru_bisect(ng, ok): ''' define is_okと 初期値のng,okを受け取り,is_okを満たす最小(最大)のokを返す ng ok は とり得る最小の値-1 とり得る最大の値+1 最大最小が逆の場合はよしなにひっくり返す ''' while (abs(ok - ng) > 1): mid = (ok + ng) // 2 flg, ans, cnt = is_ok(mid) if flg: ok = mid ans_true = ans # さいごにokとなる状態がans cnt_true = cnt else: ng = mid return ans_true, ok, cnt_true ans_tmp, M_th_num, M_plus_alpha_th = \ meguru_bisect(2 * 10 ** 5 + 1, 0) # print(ans_tmp, M_th_num, M_plus_alpha_th) print(ans_tmp - (M_plus_alpha_th - M) * M_th_num)
UTF-8
Python
false
false
2,628
py
891
abc149_e.py
842
0.60982
0.597149
0
77
23.597403
64
NaraS91/AdventOfCode
695,784,729,214
3498b64f7b5dfe5563b7ad0a4250f65716e4862b
97c7933f831fe4d7458f540764475a4360899e91
/AdventOfCode/Day05/solver.py
9051b30c81c274cba6ad1b8753573f3bdd2c0ab9
[]
no_license
https://github.com/NaraS91/AdventOfCode
2e462c3c35e85b55cab7d05c02cf26745064a2fd
b753dafc96b65faa1ccebd2173f94663fcb8ad7c
refs/heads/main
2023-02-05T15:49:49.072298
2020-12-22T20:24:00
2020-12-22T20:24:00
317,490,059
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def boarding_pass_to_seat(boarding_pass): row = 0 powOf2 = 64 for i in range(0, 7): if boarding_pass[i] == 'B': row += powOf2 powOf2 /= 2 column = 0 powOf2 = 4 for i in range(7, 10): if boarding_pass[i] == 'R': column += powOf2 powOf2 /= 2 return (row, column) def row_column_to_id(row_column): return row_column[0] * 8 + row_column[1] def input_to_list_of_boarding_passes(file_address): f = open(file_address, "r") return f.readlines() def solve1(input_file): boarding_passes = input_to_list_of_boarding_passes(input_file) seats = map(boarding_pass_to_seat, boarding_passes) ids = map(row_column_to_id, seats) return max(ids) def solve2(input_file): boarding_passes = input_to_list_of_boarding_passes(input_file) seats = map(boarding_pass_to_seat, boarding_passes) ids = list(map(row_column_to_id, seats)) ids_set = set() for id in ids: ids_set.add(id) for id in ids: if id + 1 not in ids_set and id + 2 in ids_set: return id + 1 print(solve1("input")) print(solve2("input"))
UTF-8
Python
false
false
1,072
py
21
solver.py
13
0.638993
0.612873
0
47
21.808511
64
ispras/lingvodoc
9,740,985,841,877
3ffc2e3a0aaed92a3b79c6faa26faa0b4690ee59
9cd2a076f5044f29ba336d3a8c9721133f90b8d4
/lingvodoc/views/v2/delete.py
6795f33a737eea883ed35dfdb8b957c3c6c6a067
[ "BSD-3-Clause", "BSD-3-Clause-Modification", "LGPL-3.0-or-later", "LicenseRef-scancode-openssl-exception-lgpl3.0plus", "Zlib", "ZPL-2.1", "LGPL-2.1-only", "Apache-2.0", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-other-permissive", "ZPL-2.0", "MIT" ]
permissive
https://github.com/ispras/lingvodoc
19e889a92bfd5428fe8f2a409e21b44bd8a25d06
4e129f73e99a1dea93d900c4abf476409bc56957
refs/heads/heavy_refactor
2023-08-17T10:48:17.617483
2023-08-10T13:06:56
2023-08-10T13:06:56
22,783,020
7
22
Apache-2.0
false
2023-09-06T14:13:29
2014-08-09T09:19:56
2023-07-03T22:44:46
2023-09-06T14:13:27
102,130
6
12
11
JavaScript
false
false
from lingvodoc.models import ( Client, DBSession, Dictionary, DictionaryPerspective, DictionaryPerspectiveToField, Field, LexicalEntry, Entity, PublishingEntity, Language, Organization, User, UserBlobs, TranslationAtom, TranslationGist, categories, ObjectTOC ) from sqlalchemy import and_ from pyramid.request import Request from sqlalchemy.inspection import inspect from sqlalchemy.orm import joinedload import datetime import base64 import json import os import shutil from pathvalidate import sanitize_filename from collections import deque from pyramid.httpexceptions import ( HTTPBadRequest, HTTPNotFound, HTTPOk, HTTPInternalServerError, HTTPConflict ) from lingvodoc.exceptions import CommonException from sqlalchemy.exc import IntegrityError # todo: all of this should be in models def real_delete_object(obj): DBSession.delete(DBSession.query(ObjectTOC).filter_by(client_id=obj.client_id, object_id=obj.object_id).first()) DBSession.delete(obj) def real_delete_language(language, settings): for child in language.language: real_delete_language(child, settings) for dictionary in language.dictionary: real_delete_dictionary(dictionary, settings) real_delete_object(language) def real_delete_dictionary(dictionary, settings): for perspective in dictionary.dictionaryperspective: real_delete_perspective(perspective, settings) real_delete_object(dictionary) def real_delete_perspective(perspective, settings): for field in perspective.dictionaryperspectivetofield: real_delete_object(field) for lex in perspective.lexicalentry: real_delete_lexical_entry(lex, settings) real_delete_object(perspective) def real_delete_lexical_entry(lexical_entry, settings): for entity in lexical_entry.entity: if not entity.upper_level: real_delete_entity(entity, settings) real_delete_object(lexical_entry) def real_delete_entity(entity, settings): DBSession.delete(DBSession.query(PublishingEntity).filter_by(client_id=entity.client_id, object_id=entity.object_id).first()) for child in entity.entity: real_delete_entity(child, settings) if entity.additional_metadata and 'data_type' in entity.additional_metadata: try: path = entity.content base_path = settings['storage']['path'] storage_dir = os.path.join(base_path, 'entity', entity.additional_metadata['data_type'], str(entity.client_id), str(entity.object_id)) split_path = path.split('/') path = os.path.join(storage_dir, split_path[len(split_path) - 1]) # todo: make path in windows os.remove(path) except: print('fail with entity', entity.client_id, entity.object_id) real_delete_object(entity) def real_delete_translation_gist(translation_gist, settings): for translation_atom in translation_gist.translationatom: real_delete_object(translation_atom) real_delete_object(translation_gist)
UTF-8
Python
false
false
3,146
py
386
delete.py
169
0.709472
0.708519
0
106
28.688679
129
foamliu/facesdk
7,224,135,030,147
9c0727bb83157176b6ab032d960b5bdf353692bb
efbb9d3ebb2b2c44d05ffe88c74bf4c7da2d4479
/examples/detect.py
7794cba7b2147e4db4f314000cf3dd01b906aa31
[ "MIT" ]
permissive
https://github.com/foamliu/facesdk
5ff858ad144a6a26f0eded8ecbc98cb7ca580441
af83d440eafe8523e4323df7c4c8dc5370fb3d70
refs/heads/master
2020-12-12T19:33:49.278947
2020-01-19T02:42:06
2020-01-19T02:42:06
234,211,843
2
1
MIT
false
2020-01-18T00:47:33
2020-01-16T01:52:34
2020-01-17T13:02:37
2020-01-18T00:47:32
13,073
0
1
0
Python
false
false
import cv2 as cv from facesdk.core import FaceSDK def draw_bboxes(img, bboxes, landmarks): num_faces = bboxes.shape[0] # show image for i in range(num_faces): b = bboxes[i] text = "{:.4f}".format(b[4]) b = list(map(int, b)) cv.rectangle(img, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2) cx = b[0] cy = b[1] + 12 cv.putText(img, text, (cx, cy), cv.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255)) # landms landms = landmarks[i] cv.circle(img, (landms[0], landms[5]), 1, (0, 0, 255), 4) cv.circle(img, (landms[1], landms[6]), 1, (0, 255, 255), 4) cv.circle(img, (landms[2], landms[7]), 1, (255, 0, 255), 4) cv.circle(img, (landms[3], landms[8]), 1, (0, 255, 0), 4) cv.circle(img, (landms[4], landms[9]), 1, (255, 0, 0), 4) return img if __name__ == "__main__": img = cv.imread('examples/data/aqgy_0.jpg') facesdk = FaceSDK() bboxes, landmarks = facesdk.detect_faces(img) img = draw_bboxes(img, bboxes, landmarks) cv.imshow('face detection', img) cv.waitKey(0) cv.imwrite('examples/output/face_detection.jpg', img)
UTF-8
Python
false
false
1,191
py
8
detect.py
6
0.533165
0.465995
0
41
28.04878
69
tom-sb/farmManage
9,775,345,595,600
bd24f25b9c0c8cbcd0f1abb011a8ef59b76cfe26
f4a43d4eead4b1ffb145a27d30eb4b3571f80fed
/moduloGranja/apps/alimentos/models.py
5348e0d77bb5c26470c76f10e5fa346996bb996a
[]
no_license
https://github.com/tom-sb/farmManage
256dd968416c5449d52e118ad0e3d3cd8ebdaae9
0f24f4a3f790e30accd70bf0c7876f635e27a9ba
refs/heads/master
2023-02-25T15:22:30.073951
2021-02-05T01:28:48
2021-02-05T01:28:48
298,927,843
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from apps.clusters.models import Cluster from datetime import date # Create your models here. class Alimento(models.Model): nombre_alimento = models.CharField(max_length = 50) stock_alimento = models.IntegerField() def __str__(self): return self.nombre_alimento def updateStock(self, val): self.stock_alimento = self.stock_alimento + val class FichaAlimento(models.Model): nombre_ficha = models.CharField(max_length = 50) alimento = models.ForeignKey(Alimento, on_delete=models.CASCADE) cluster = models.ForeignKey(Cluster, on_delete=models.CASCADE) fecha_expiracion = models.DateField(default = (date.today)) frecuencia_xdia = models.PositiveSmallIntegerField() cantidad_xtoma = models.PositiveSmallIntegerField() auto_renovar = models.BooleanField(default = False) def __str__(self): return self.nombre_ficha
UTF-8
Python
false
false
867
py
85
models.py
48
0.767013
0.762399
0
28
29.964286
65
hidetomo-watanabe/analysis_for_kaggle
9,560,597,246,364
338dd6377e2848f156dd0b46a6592140966a7f4e
ab291f94e5cc97703196bb1d0f2f7438f5c90390
/sklearn_wrapper/modules/Notifier.py
a5544b631f2177826e4b3ddc8a6f923e6ffc9f26
[ "Apache-2.0" ]
permissive
https://github.com/hidetomo-watanabe/analysis_for_kaggle
45c50fc629fc963a3dc3bb81de686dcd51050c7f
0d688b5fae418c61a022e583412e2437b9f86592
refs/heads/master
2021-06-03T00:02:58.092592
2021-06-02T23:48:26
2021-06-02T23:48:26
97,419,388
3
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json from logging import getLogger import requests logger = getLogger('predict').getChild('Notifier') if 'ConfigReader' not in globals(): from .ConfigReader import ConfigReader class Notifier(ConfigReader): def __init__(self): self.configs = {} def notify_slack(self): mode = self.configs['notify'].get('mode') if not mode: logger.warning('NO NOTIFICATION') return logger.info('notification: %s' % mode) if mode == 'slack': text = 'Finished.' requests.post( self.configs['notify'][mode], data=json.dumps({'text': text})) else: logger.error('NOT IMPLEMENTED NOTIFICATION: %s' % mode) raise Exception('NOT IMPLEMENTED')
UTF-8
Python
false
false
795
py
59
Notifier.py
40
0.579874
0.579874
0
29
26.413793
67
saraitne11/CodingTest
670,014,918,275
df08459e55a4a4f8a18bee5c05e80314cc658cfa
c4a44a38eb04701688ed9f8e5dd20e3ad41535d7
/baekjoon/baekjoon7576/baekjoon7576.py
1e5660099a9aa3d52075324f61b575e1f12a3228
[]
no_license
https://github.com/saraitne11/CodingTest
2374514f934f5b59e3c137100899069a874c517b
1c9eb6bb263d6aa2f5c4a37aa0060c2843526dc9
refs/heads/master
2022-06-07T12:40:26.779146
2022-05-16T00:48:26
2022-05-16T00:48:26
210,196,388
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" https://www.acmicpc.net/problem/7576 토마토 """ from pprint import pprint from collections import deque UP = (-1, 0) DOWN = (1, 0) LEFT = (0, -1) RIGHT = (0, 1) MOVES = (UP, DOWN, LEFT, RIGHT) def in_matrix(i, j, n, m): if 0 <= i < n and 0 <= j < m: return True else: return False def bfs(mtx, starts): """ :param mtx: matrix :param starts: [(i1, j1), (i2, j2), ...] :return: """ n = len(mtx) m = len(mtx[0]) queue = deque() for i, j in starts: queue.append((i, j, 0)) max_d = 0 while queue: # list.pop(0) 는 추가적으로 O(N)을 소모함. 앞으로 한칸씩 다 땡켜줘야해서 i, j, d = queue.popleft() for di, dj in MOVES: new_i = i + di new_j = j + dj new_d = d + 1 if in_matrix(new_i, new_j, n, m): if mtx[new_i][new_j] == 0: mtx[new_i][new_j] = 1 queue.append((new_i, new_j, new_d)) max_d = max(max_d, new_d) return max_d def main(): m, n = tuple(map(int, input().rstrip().split(' '))) # print(n, m) map_ = [list(map(int, input().rstrip().split(' '))) for _ in range(n)] # pprint(map_) starts = [] for i in range(n): for j in range(m): if map_[i][j] == 1: starts.append((i, j)) max_day = bfs(map_, starts) for i in range(n): for j in range(m): if map_[i][j] == 0: print(-1) return print(max_day) return if __name__ == '__main__': main()
UTF-8
Python
false
false
1,636
py
56
baekjoon7576.py
54
0.44697
0.429293
0
78
19.307692
74
prompto/prompto-python3
9,672,266,390,222
7e2615d2ae4a1a6a5747947a93736511d20d3796
8bb4a472344fda15985ac322d14e8f4ad79c7553
/Python3-Core/src/test/prompto/translate/oeo/TestCast.py
50587ecb1cc5b18f3e4f0162e7b5297ba4a9c6ee
[]
no_license
https://github.com/prompto/prompto-python3
c6b356f5af30c6826730ba7f2ad869f341983a2d
64bd3d97d4702cc912097d41d961f7ab3fd82bee
refs/heads/master
2022-12-24T12:33:16.251468
2022-11-27T17:37:56
2022-11-27T17:37:56
32,623,633
4
0
null
false
2019-05-04T11:06:05
2015-03-21T07:17:25
2019-04-27T02:51:34
2019-05-04T11:06:04
12,379
0
0
0
Python
false
false
from prompto.parser.o.BaseOParserTest import BaseOParserTest class TestCast(BaseOParserTest): def setUp(self): super(type(self), self).setUp() def testAutoDowncast(self): self.compareResourceOEO("cast/autoDowncast.poc") def testAutoDowncastMethod(self): self.compareResourceOEO("cast/autoDowncastMethod.poc") def testCastChild(self): self.compareResourceOEO("cast/castChild.poc") def testCastEnum(self): self.compareResourceOEO("cast/castEnum.poc") def testCastMethod(self): self.compareResourceOEO("cast/castMethod.poc") def testCastMissing(self): self.compareResourceOEO("cast/castMissing.poc") def testCastNull(self): self.compareResourceOEO("cast/castNull.poc") def testCastParent(self): self.compareResourceOEO("cast/castParent.poc") def testIsAChild(self): self.compareResourceOEO("cast/isAChild.poc") def testIsAText(self): self.compareResourceOEO("cast/isAText.poc") def testMutableEntity(self): self.compareResourceOEO("cast/mutableEntity.poc") def testMutableList(self): self.compareResourceOEO("cast/mutableList.poc") def testNullIsNotAText(self): self.compareResourceOEO("cast/nullIsNotAText.poc")
UTF-8
Python
false
false
1,303
py
689
TestCast.py
685
0.701458
0.701458
0
45
27.911111
62
wushijie312/yanjiuKJ
4,707,284,165,509
d4e302172d3249365c8120f997d529b0343042ad
6af9c3905a649dae6960e730dcaa770c83878beb
/Django_myblog/blog/migrations/0005_artical_pub_time.py
1afaa40531073ebce5a39029ff90f2be79944e29
[]
no_license
https://github.com/wushijie312/yanjiuKJ
c712cb702bc209a25d1e5b9168cd7e25874fe738
d6da709bc180f8721ea0ad2986f7f32ab139bf25
refs/heads/master
2020-03-23T09:12:36.885699
2018-07-18T03:10:50
2018-07-18T03:10:50
141,374,147
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.0.5 on 2018-05-11 09:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0004_auto_20180508_1833'), ] operations = [ migrations.AddField( model_name='artical', name='pub_time', field=models.DateTimeField(auto_now=True), ), ]
UTF-8
Python
false
false
388
py
50
0005_artical_pub_time.py
26
0.585052
0.505155
0
18
20.555556
54
Moons08/TIL
10,110,353,047,310
7eb30fb1889b4853731088cca51f1470be73f022
cb3af0b9c456764ffd6f1c331ea452798c7efc1f
/Past/DSS/Programming/Scraping/180306_secondhand_search/search.py
76f5024fccb400e4e1a07a69f748d4eda3bd820c
[ "MIT" ]
permissive
https://github.com/Moons08/TIL
fed16d93ac7c23af97dfe4f952e32032c2ad6649
e257854e1f7b9af5a6e349f38037f3010c07310f
refs/heads/master
2021-05-11T18:06:16.406383
2020-01-20T13:02:57
2020-01-20T13:02:57
117,811,982
0
0
MIT
false
2018-01-21T07:20:49
2018-01-17T09:07:51
2018-01-17T09:37:59
2018-01-21T07:20:49
7
0
0
0
Jupyter Notebook
false
null
import requests import pandas as pd from bs4 import BeautifulSoup import pickle # 전체 데이터 갯수를 가져오는 함수 def get_total(keyword): response = requests.get("https://m.cafe.naver.com/ArticleSearchList.nhn?search.query={}\ &search.menuid=&search.searchBy=1&search.sortBy=date&search.clubid=10050146&search.option=0&search.defaultValue=".format(keyword)) soup = BeautifulSoup(response.content, "html.parser") return soup.select_one("#ct > div.search_contents > div.search_sort > div.sort_l > span").text # 아이템 리스트를 가져오는 함수 def get_items(keyword, page): response = requests.get("https://m.cafe.naver.com/ArticleSearchListAjax.nhn?search.query={}\ &search.menuid=&search.searchBy=1&search.sortBy=date&search.clubid=10050146&search.option=0&search.defaultValue=&search.page={}".format(keyword, page)) soup = BeautifulSoup(response.content, "html.parser") return soup.select('ul li') # 상세 페이지에서 가격정보를 가져오는 함수 def get_price(link): with open('cookie.bin', 'rb') as f: a = pickle.load(f) # when you use pickle, never ever name that file as pickle.py like that headers = { "cookie" : "{}".format(a), "user-agent" : 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0; Trident/4.0; GTB7.4; InfoPath.3; SV1; .NET CLR 3.1.76908; WOW64; en-US)' } f.close() response = requests.get(link, headers=headers) soup = BeautifulSoup(response.content, "html.parser") return soup.select_one('.price em').text # 아이템을 데이터 리스트로 만드는 함수 def make_datas(items): datas = [] for item in items: #판매중인지 체크 try: sell = item.select_one(".icon_txt").text if sell == "완료": continue except: continue title = item.select_one("h3").text link = "https://m.cafe.naver.com/{}".format(item.select_one("a").attrs["href"]) view = item.select_one(".no em").text date = item.select_one(".time").text price = get_price(link) datas.append([title, view, date, price, link]) print(len(datas)) return datas # 키워드를 입력받아 전체 데이터를 가져오는 함수 def all_datas(keyword): datas=[] a = int(get_total(keyword)) total = a//20 + 1 for i in range(1, total+1): item = get_items(keyword, i) datas.extend(make_datas(item)) return datas # 데이터 프레임화 + csv파일로 저장 datas = all_datas("공기측정기") columns = ["title", "views", "date", "price", "link"] df = pd.DataFrame(datas, columns=columns) df.to_csv("PeacefulWorld.csv")
UTF-8
Python
false
false
2,774
py
149
search.py
29
0.626953
0.608203
0
73
34.068493
179
ashesknight/tof-mpi-remove
8,650,064,169,131
18878db74650037429012ea0c330a812638e3cba
0ae7462dece6a980afb75a4aa4f40c1d8bf24e30
/pipe/kinect_pipeline.py
0ca60fd729a8d7c47259400f2108eb187451f547
[ "MIT" ]
permissive
https://github.com/ashesknight/tof-mpi-remove
8e3375931c2c5aa52b7d25ea2ca965a202efd97a
11ecac5db4b30affbb1785ac01397e7aa53f22cf
refs/heads/master
2022-12-23T12:47:50.601122
2020-09-24T13:58:11
2020-09-24T13:58:11
220,787,315
6
6
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.path.insert(0, '../sim/') import tensorflow as tf from tof_class import * from kinect_spec import * tf.logging.set_verbosity(tf.logging.INFO) from kinect_init import * tof_cam = kinect_real_tf() PI = 3.14159265358979323846 flg = False dtype = tf.float32 def kinect_pipeline(meas): ## Kinect Pipeline, use the algorithm of Kinect v2 to compute the denoised depth # convert to the default data type x_kinect = tf.cast(meas, tf.float32) # make the size to be 424,512 (padding 0) y_idx = int((424 - int(x_kinect.shape[1])) / 2) zero_mat = tf.zeros([tf.shape(x_kinect)[0], y_idx, tf.shape(x_kinect)[2], 9]) x_kinect = tf.concat([zero_mat, x_kinect, zero_mat], 1) msk = kinect_mask_tensor() msk = tf.expand_dims(tf.expand_dims(msk, 0), -1) x_kinect = x_kinect * msk * tof_cam.cam['map_max'] # final depth prediction: kinect pipeline ira, irb, iramp = processPixelStage1_mat(x_kinect) depth_outs, ir_sum_outs, ir_outs, msk_out1 = processPixelStage2(ira, irb, iramp) # creates the mask ms = tf.concat([ira, irb, iramp], -1) bilateral_max_edge_tests = filterPixelStage1(ms)[1] depth_out_edges = depth_outs * bilateral_max_edge_tests msk_out2 = filterPixelStage2(depth_outs, depth_out_edges, ir_outs)[1] msk_out3 = tf.cast(tf.greater(depth_outs, prms['min_depth']), dtype=dtype) msk_out4 = tf.cast(tf.less(depth_outs, prms['max_depth']), dtype=dtype) depth_msk = tf.cast(tf.greater(msk_out2 * msk_out3 * msk_out4, 0.5), dtype=dtype) depth_outs /= 1000.0 depth_outs *= depth_msk # baseline correction depth_outs = depth_outs * base_cor['k'] + base_cor['b'] depth_outs = depth_outs[:, 20:-20, :] depth_msk = depth_msk[:, 20:-20, :] amplitude_outs = ir_outs[:, 20:-20, :] return depth_outs, depth_msk, amplitude_outs def kinect_mask_tensor(): # return the kinect mask that creates the positive-negative interval mask = np.zeros((424, 512)) idx = 1 for i in range(mask.shape[0]): mask[i, :] = idx if i != (mask.shape[0] / 2 - 1): idx = -idx mask = tf.convert_to_tensor(mask) mask = tf.cast(mask, tf.float32) return mask def processPixelStage1(m): # m is (None,424, 512, 9) # the first three is the first frequency tmp = [] tmp.append(processMeasurementTriple(m[:, :, :, 0:3], prms['ab_multiplier_per_frq'][0], trig_table0)) tmp.append(processMeasurementTriple(m[:, :, :, 3:6], prms['ab_multiplier_per_frq'][1], trig_table1)) tmp.append(processMeasurementTriple(m[:, :, :, 6:9], prms['ab_multiplier_per_frq'][2], trig_table2)) m_out = [ \ tmp[0][:, :, :, 0], tmp[1][:, :, :, 0], tmp[2][:, :, :, 0], tmp[0][:, :, :, 1], tmp[1][:, :, :, 1], tmp[2][:, :, :, 1], tmp[0][:, :, :, 2], tmp[1][:, :, :, 2], tmp[2][:, :, :, 2], ] m_out = tf.stack(m_out, -1) # return processMeasurementTriple(m[:,:,:,0:3], prms['ab_multiplier_per_frq'][0], trig_table0) return m_out def processPixelStage1_mat(m): # if not saturated cos_tmp0 = np.stack([trig_table0[:, :, 0], trig_table1[:, :, 0], trig_table2[:, :, 0]], -1) cos_tmp1 = np.stack([trig_table0[:, :, 1], trig_table1[:, :, 1], trig_table2[:, :, 1]], -1) cos_tmp2 = np.stack([trig_table0[:, :, 2], trig_table1[:, :, 2], trig_table2[:, :, 2]], -1) sin_negtmp0 = np.stack([trig_table0[:, :, 3], trig_table1[:, :, 3], trig_table2[:, :, 3]], -1) sin_negtmp1 = np.stack([trig_table0[:, :, 4], trig_table1[:, :, 4], trig_table2[:, :, 4]], -1) sin_negtmp2 = np.stack([trig_table0[:, :, 5], trig_table1[:, :, 5], trig_table2[:, :, 5]], -1) # stack cos_tmp0 = np.expand_dims(cos_tmp0, 0) cos_tmp1 = np.expand_dims(cos_tmp1, 0) cos_tmp2 = np.expand_dims(cos_tmp2, 0) sin_negtmp0 = np.expand_dims(sin_negtmp0, 0) sin_negtmp1 = np.expand_dims(sin_negtmp1, 0) sin_negtmp2 = np.expand_dims(sin_negtmp2, 0) # abMultiplierPerFrq = np.expand_dims(np.expand_dims(np.expand_dims(prms['ab_multiplier_per_frq'], 0), 0), 0) ir_image_a = cos_tmp0 * m[:, :, :, 0::3] + cos_tmp1 * m[:, :, :, 1::3] + cos_tmp2 * m[:, :, :, 2::3] ir_image_b = sin_negtmp0 * m[:, :, :, 0::3] + sin_negtmp1 * m[:, :, :, 1::3] + sin_negtmp2 * m[:, :, :, 2::3] ir_image_a *= abMultiplierPerFrq ir_image_b *= abMultiplierPerFrq ir_amplitude = tf.sqrt(ir_image_a ** 2 + ir_image_b ** 2) * prms['ab_multiplier'] return ir_image_a, ir_image_b, ir_amplitude def processMeasurementTriple(m, abMultiplierPerFrq, trig_table): # m is (None,424,512,3) zmultiplier = tf.constant(z_table, dtype=dtype) # judge where saturation happens saturated = tf.cast(tf.less(tf.abs(m), 1.0), dtype=dtype) saturated = 1 - saturated[:, :, :, 0] * saturated[:, :, :, 1] * saturated[:, :, :, 2] # if not saturated cos_tmp0 = trig_table[:, :, 0] cos_tmp1 = trig_table[:, :, 1] cos_tmp2 = trig_table[:, :, 2] sin_negtmp0 = trig_table[:, :, 3] sin_negtmp1 = trig_table[:, :, 4] sin_negtmp2 = trig_table[:, :, 5] # stack cos_tmp0 = np.expand_dims(cos_tmp0, 0) cos_tmp1 = np.expand_dims(cos_tmp1, 0) cos_tmp2 = np.expand_dims(cos_tmp2, 0) sin_negtmp0 = np.expand_dims(sin_negtmp0, 0) sin_negtmp1 = np.expand_dims(sin_negtmp1, 0) sin_negtmp2 = np.expand_dims(sin_negtmp2, 0) ir_image_a = cos_tmp0 * m[:, :, :, 0] + cos_tmp1 * m[:, :, :, 1] + cos_tmp2 * m[:, :, :, 2] ir_image_b = sin_negtmp0 * m[:, :, :, 0] + sin_negtmp1 * m[:, :, :, 1] + sin_negtmp2 * m[:, :, :, 2] ir_image_a *= abMultiplierPerFrq ir_image_b *= abMultiplierPerFrq ir_amplitude = tf.sqrt(ir_image_a ** 2 + ir_image_b ** 2) * prms['ab_multiplier'] m_out = tf.stack([ir_image_a, ir_image_b, ir_amplitude], -1) return m_out def processPixelStage2(ira, irb, iramp): ratio = 100 tmp0 = tf.atan2(ratio * (irb + 1e-10), ratio * (ira + 1e-10)) flg = tf.cast(tf.less(tmp0, 0.0), dtype) tmp0 = flg * (tmp0 + PI * 2) + (1 - flg) * tmp0 tmp1 = tf.sqrt(ira ** 2 + irb ** 2) * prms['ab_multiplier'] ir_sum = tf.reduce_sum(tmp1, -1) # disable disambiguation ir_min = tf.reduce_min(tmp1, -1) # phase mask phase_msk1 = tf.cast( \ tf.greater(ir_min, prms['individual_ab_threshold']), dtype=dtype ) phase_msk2 = tf.cast( \ tf.greater(ir_sum, prms['ab_threshold']), dtype=dtype ) phase_msk_t = phase_msk1 * phase_msk2 # compute phase t0 = tmp0[:, :, :, 0] / (2.0 * PI) * 3.0 t1 = tmp0[:, :, :, 1] / (2.0 * PI) * 15.0 t2 = tmp0[:, :, :, 2] / (2.0 * PI) * 2.0 t5 = tf.floor((t1 - t0) * 0.3333333 + 0.5) * 3.0 + t0 t3 = t5 - t2 t4 = t3 * 2.0 c1 = tf.cast(tf.greater(t4, -t4), dtype=dtype) f1 = c1 * 2.0 + (1 - c1) * (-2.0) f2 = c1 * 0.5 + (1 - c1) * (-0.5) t3 = t3 * f2 t3 = (t3 - tf.floor(t3)) * f1 c2 = tf.cast(tf.less(0.5, tf.abs(t3)), dtype=dtype) * \ tf.cast(tf.less(tf.abs(t3), 1.5), dtype=dtype) t6 = c2 * (t5 + 15.0) + (1 - c2) * t5 t7 = c2 * (t1 + 15.0) + (1 - c2) * t1 t8 = (tf.floor((t6 - t2) * 0.5 + 0.5) * 2.0 + t2) * 0.5 t6 /= 3.0 t7 /= 15.0 # transformed phase measurements (they are transformed and divided # by the values the original values were multiplied with) t9 = t8 + t6 + t7 t10 = t9 / 3.0 # some avg t6 = t6 * 2.0 * PI t7 = t7 * 2.0 * PI t8 = t8 * 2.0 * PI t8_new = t7 * 0.826977 - t8 * 0.110264 t6_new = t8 * 0.551318 - t6 * 0.826977 t7_new = t6 * 0.110264 - t7 * 0.551318 t8 = t8_new t6 = t6_new t7 = t7_new norm = t8 ** 2 + t6 ** 2 + t7 ** 2 mask = tf.cast(tf.greater(t9, 0.0), dtype) t10 = t10 slope_positive = float(0 < prms['ab_confidence_slope']) ir_min_ = tf.reduce_min(tmp1, -1) ir_max_ = tf.reduce_max(tmp1, -1) ir_x = slope_positive * ir_min_ + (1 - slope_positive) * ir_max_ ir_x = tf.log(ir_x) ir_x = (ir_x * prms['ab_confidence_slope'] * 0.301030 + prms['ab_confidence_offset']) * 3.321928 ir_x = tf.exp(ir_x) ir_x = tf.maximum(prms['min_dealias_confidence'], ir_x) ir_x = tf.minimum(prms['max_dealias_confidence'], ir_x) ir_x = ir_x ** 2 mask2 = tf.cast(tf.greater(ir_x, norm), dtype) t11 = t10 mask3 = tf.cast( \ tf.greater(prms['max_dealias_confidence'] ** 2, norm), dtype ) t10 = t10 phase = t11 # mask out dim regions phase = phase # phase to depth mapping zmultiplier = z_table xmultiplier = x_table phase_msk = tf.cast(tf.less(0.0, phase), dtype) phase = phase_msk * (phase + prms['phase_offset']) + (1 - phase_msk) * phase depth_linear = zmultiplier * phase depth = depth_linear max_depth = phase * prms['unambiguous_dist'] * 2 cond1 = tf.cast(tf.less(0.0, depth_linear), dtype) * \ tf.cast(tf.less(0.0, max_depth), dtype) depth_out = depth ir_sum_out = ir_sum ir_out = tf.minimum( \ tf.reduce_sum(iramp, -1) * 0.33333333 * prms['ab_output_multiplier'], 65535.0 ) msk_out = cond1 * phase_msk_t * mask * mask2 * mask3 return depth_out, ir_sum_out, ir_out, msk_out def filterPixelStage1(m): # m is (None, 424, 512, 9) # the first three is measurement a # the second three is measurement b # the third three is amplitude norm2 = m[:, :, :, 0:3] ** 2 + m[:, :, :, 3:6] ** 2 inv_norm = 1.0 / tf.sqrt(norm2) # get rid of those nan inv_norm = tf.minimum(inv_norm, 1e10) m_normalized = tf.stack([m[:, :, :, 0:3] * inv_norm, m[:, :, :, 3:6] * inv_norm], -1) threshold = prms['joint_bilateral_ab_threshold'] ** 2 / prms['ab_multiplier'] ** 2 joint_bilateral_exp = prms['joint_bilateral_exp'] threshold = tf.constant(threshold, dtype=dtype) joint_bilateral_exp = tf.constant(joint_bilateral_exp, dtype=dtype) # set the parts with norm2 < threshold to be zero norm_flag = tf.cast(tf.less(norm2, threshold), dtype=dtype) threshold = (1 - norm_flag) * threshold joint_bilateral_exp = (1 - norm_flag) * joint_bilateral_exp # guided bilateral filtering gauss = prms['gaussian_kernel'] weight_acc = tf.ones(tf.shape(m_normalized)[0:4]) * gauss[1, 1] weighted_m_acc0 = gauss[1, 1] * m[:, :, :, 0:3] weighted_m_acc1 = gauss[1, 1] * m[:, :, :, 3:6] # coefficient for bilateral space m_n = m_normalized # proxy for other m normalized m_l = tf.concat([m_n[:, :, 1::, :], m_n[:, :, 0:1, :]], 2) m_r = tf.concat([m_n[:, :, -1::, :], m_n[:, :, 0:-1, :]], 2) m_u = tf.concat([m_n[:, 1::, :, :], m_n[:, 0:1, :, :]], 1) m_d = tf.concat([m_n[:, -1::, :, :], m_n[:, 0:-1, :, :]], 1) m_lu = tf.concat([m_l[:, 1::, :, :], m_l[:, 0:1, :, :]], 1) m_ru = tf.concat([m_r[:, 1::, :, :], m_r[:, 0:1, :, :]], 1) m_ld = tf.concat([m_l[:, -1::, :, :], m_l[:, 0:-1, :, :]], 1) m_rd = tf.concat([m_r[:, -1::, :, :], m_r[:, 0:-1, :, :]], 1) m_n_shift = [ \ m_rd, m_d, m_ld, m_r, m_l, m_ru, m_u, m_lu ] m_n_shift = tf.stack(m_n_shift, -1) # proxy of other_norm2 norm2_l = tf.concat([norm2[:, :, 1::, :], norm2[:, :, 0:1, :]], 2) norm2_r = tf.concat([norm2[:, :, -1::, :], norm2[:, :, 0:-1, :]], 2) norm2_u = tf.concat([norm2[:, 1::, :, :], norm2[:, 0:1, :, :]], 1) norm2_d = tf.concat([norm2[:, -1::, :, :], norm2[:, 0:-1, :, :]], 1) norm2_lu = tf.concat([norm2_l[:, 1::, :, :], norm2_l[:, 0:1, :, :]], 1) norm2_ru = tf.concat([norm2_r[:, 1::, :, :], norm2_r[:, 0:1, :, :]], 1) norm2_ld = tf.concat([norm2_l[:, -1::, :, :], norm2_l[:, 0:-1, :, :]], 1) norm2_rd = tf.concat([norm2_r[:, -1::, :, :], norm2_r[:, 0:-1, :, :]], 1) other_norm2 = tf.stack([ \ norm2_rd, norm2_d, norm2_ld, norm2_r, norm2_l, norm2_ru, norm2_u, norm2_lu, ], -1) dist = [ \ m_rd * m_n, m_d * m_n, m_ld * m_n, m_r * m_n, m_l * m_n, m_ru * m_n, m_u * m_n, m_lu * m_n, ] dist = -tf.reduce_sum(tf.stack(dist, -1), -2) dist += 1.0 dist *= 0.5 # color filtering gauss_f = gauss.flatten() gauss_f = np.delete(gauss_f, [4]) joint_bilateral_exp = tf.tile(tf.expand_dims(joint_bilateral_exp, -1), [1, 1, 1, 1, 8]) weight_f = tf.exp(-1.442695 * joint_bilateral_exp * dist) weight = tf.stack([gauss_f[k] * weight_f[:, :, :, :, k] for k in range(weight_f.shape[-1])], -1) # if (other_norm2 >= threshold)... threshold = tf.tile(tf.expand_dims(threshold, -1), [1, 1, 1, 1, 8]) wgt_msk = tf.cast(tf.less(threshold, other_norm2), dtype=dtype) weight = wgt_msk * weight dist = wgt_msk * dist # coefficient for bilateral space ms = tf.stack([m[:, :, :, 0:3], m[:, :, :, 3:6]], -1) # proxy for other m normalized m_l = tf.concat([ms[:, :, 1::, :], ms[:, :, 0:1, :]], 2) m_r = tf.concat([ms[:, :, -1::, :], ms[:, :, 0:-1, :]], 2) m_u = tf.concat([ms[:, 1::, :, :], ms[:, 0:1, :, :]], 1) m_d = tf.concat([ms[:, -1::, :, :], ms[:, 0:-1, :, :]], 1) m_lu = tf.concat([m_l[:, 1::, :, :], m_l[:, 0:1, :, :]], 1) m_ru = tf.concat([m_r[:, 1::, :, :], m_r[:, 0:1, :, :]], 1) m_ld = tf.concat([m_l[:, -1::, :, :], m_l[:, 0:-1, :, :]], 1) m_rd = tf.concat([m_r[:, -1::, :, :], m_r[:, 0:-1, :, :]], 1) m_shift = [ \ m_rd, m_d, m_ld, m_r, m_l, m_ru, m_u, m_lu ] m_shift = tf.stack(m_shift, -1) weighted_m_acc0 += tf.reduce_sum(weight * m_shift[:, :, :, :, 0, :], -1) weighted_m_acc1 += tf.reduce_sum(weight * m_shift[:, :, :, :, 1, :], -1) dist_acc = tf.reduce_sum(dist, -1) weight_acc += tf.reduce_sum(weight, -1) # test the edge bilateral_max_edge_test = tf.reduce_prod(tf.cast( \ tf.less(dist_acc, prms['joint_bilateral_max_edge']), dtype ), -1) m_out = [] wgt_acc_msk = tf.cast(tf.less(0.0, weight_acc), dtype=dtype) m_out.append(wgt_acc_msk * weighted_m_acc0 / weight_acc) m_out.append(wgt_acc_msk * weighted_m_acc1 / weight_acc) m_out.append(m[:, :, :, 6:9]) m_out = tf.concat(m_out, -1) # mask out the edge # do not filter the edge edge_step = 1 edge_msk = np.zeros(m.shape[1:3]) edge_msk[0:0 + edge_step, :] = 1 edge_msk[-1 - edge_step + 1::, :] = 1 edge_msk[:, 0:0 + edge_step] = 1 edge_msk[:, -1 - edge_step + 1::] = 1 edge_msk = tf.constant(edge_msk, dtype=dtype) edge_msk = tf.tile(tf.expand_dims(tf.expand_dims(edge_msk, -1), 0), [tf.shape(m)[0], 1, 1, 9]) m_out = edge_msk * m + (1 - edge_msk) * m_out return m_out, bilateral_max_edge_test def filterPixelStage2(raw_depth, raw_depth_edge, ir_sum): # raw depth is the raw depth prediction # raw_depth_edge is roughly the same as raw depth, except some part are zero if # don't want to do edge filtering # mask out depth that is out of region depth_msk = tf.cast(tf.greater(raw_depth, prms['min_depth']), dtype) * \ tf.cast(tf.less(raw_depth, prms['max_depth']), dtype) # mask out the edge # do not filter the edge of the image edge_step = 1 edge_msk = np.zeros(raw_depth.shape[1:3]) edge_msk[0:0 + edge_step, :] = 1 edge_msk[-1 - edge_step + 1::, :] = 1 edge_msk[:, 0:0 + edge_step] = 1 edge_msk[:, -1 - edge_step + 1::] = 1 edge_msk = tf.constant(edge_msk, dtype=dtype) edge_msk = tf.tile(tf.expand_dims(edge_msk, 0), [tf.shape(raw_depth)[0], 1, 1]) # knl = tf.constant(np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), dtype=dtype) knl = tf.expand_dims(tf.expand_dims(knl, -1), -1) ir_sum_exp = tf.expand_dims(ir_sum, -1) ir_sum_acc = tf.nn.conv2d(ir_sum_exp, knl, strides=[1, 1, 1, 1], padding='SAME') squared_ir_sum_acc = tf.nn.conv2d(ir_sum_exp ** 2, knl, strides=[1, 1, 1, 1], padding='SAME') ir_sum_acc = tf.squeeze(ir_sum_acc, -1) squared_ir_sum_acc = tf.squeeze(squared_ir_sum_acc, -1) min_depth = raw_depth max_depth = raw_depth # min_depth, max_depth m_n = raw_depth_edge m_l = tf.concat([m_n[:, :, 1::], m_n[:, :, 0:1]], 2) m_r = tf.concat([m_n[:, :, -1::], m_n[:, :, 0:-1]], 2) m_u = tf.concat([m_n[:, 1::, :], m_n[:, 0:1, :]], 1) m_d = tf.concat([m_n[:, -1::, :], m_n[:, 0:-1, :]], 1) m_lu = tf.concat([m_l[:, 1::, :], m_l[:, 0:1, :]], 1) m_ru = tf.concat([m_r[:, 1::, :], m_r[:, 0:1, :]], 1) m_ld = tf.concat([m_l[:, -1::, :], m_l[:, 0:-1, :]], 1) m_rd = tf.concat([m_r[:, -1::, :], m_r[:, 0:-1, :]], 1) m_shift = [ \ m_rd, m_d, m_ld, m_r, m_l, m_ru, m_u, m_lu ] m_shift = tf.stack(m_shift, -1) nonzero_msk = tf.cast(tf.greater(m_shift, 0.0), dtype=dtype) m_shift_min = nonzero_msk * m_shift + (1 - nonzero_msk) * 99999999999 min_depth = tf.minimum(tf.reduce_min(m_shift_min, -1), min_depth) max_depth = tf.maximum(tf.reduce_max(m_shift, -1), max_depth) # tmp0 = tf.sqrt(squared_ir_sum_acc * 9.0 - ir_sum_acc ** 2) / 9.0 edge_avg = tf.maximum( \ ir_sum_acc / 9.0, prms['edge_ab_avg_min_value'] ) tmp0 /= edge_avg # abs_min_diff = tf.abs(raw_depth - min_depth) abs_max_diff = tf.abs(raw_depth - max_depth) avg_diff = (abs_min_diff + abs_max_diff) * 0.5 max_abs_diff = tf.maximum(abs_min_diff, abs_max_diff) cond0 = [] cond0.append(tf.cast(tf.less(0.0, raw_depth), dtype)) cond0.append(tf.cast(tf.greater_equal(tmp0, prms['edge_ab_std_dev_threshold']), dtype)) cond0.append(tf.cast(tf.less(prms['edge_close_delta_threshold'], abs_min_diff), dtype)) cond0.append(tf.cast(tf.less(prms['edge_far_delta_threshold'], abs_max_diff), dtype)) cond0.append(tf.cast(tf.less(prms['edge_max_delta_threshold'], max_abs_diff), dtype)) cond0.append(tf.cast(tf.less(prms['edge_avg_delta_threshold'], avg_diff), dtype)) cond0 = tf.reduce_prod(tf.stack(cond0, -1), -1) depth_out = (1 - cond0) * raw_depth # !cond0 part edge_test_msk = 1 - tf.cast(tf.equal(raw_depth_edge, 0.0), dtype) depth_out = raw_depth * (1 - cond0) * edge_test_msk # mask out the depth out of the range depth_out = depth_out * depth_msk # mask out the edge depth_out = edge_msk * raw_depth + (1 - edge_msk) * depth_out # msk_out msk_out = edge_msk + (1 - edge_msk) * depth_msk * (1 - cond0) * edge_test_msk return depth_out, msk_out
UTF-8
Python
false
false
18,323
py
15
kinect_pipeline.py
14
0.54407
0.491459
0
490
36.395918
113
phanrahan/loam
2,585,570,338,936
41a68bead09b92b4d046b152fc2385d7726e04eb
f28dd5d5dd4a966cfb981075c59023e737085f42
/tests/test_mantle/mothball/arith/_fulladder.py
6492acc68a01bcc9b7bf0628e08736967934c99a
[ "MIT" ]
permissive
https://github.com/phanrahan/loam
91ec366a3652363207f42b2b5f04dad693669d6a
10b08bd622b7cfd63eabaec4729f6238e4521b30
refs/heads/master
2021-03-24T14:01:40.877743
2019-10-07T18:15:09
2019-10-07T18:15:09
84,332,116
16
3
NOASSERTION
false
2019-12-30T08:24:19
2017-03-08T14:55:39
2019-11-09T00:45:40
2019-10-07T18:15:26
12,323
8
3
6
Verilog
false
false
import sys from magma import * from mantle import * from loam.shields.megawing import MegaWing megawing = MegaWing() megawing.Switch.on(3) megawing.LED.on(2) main = megawing.main() fa = FullAdder(2, A0^A1,A0&A1) fa( main.SWITCH[0], main.SWITCH[1] ) wire( main.SWITCH[2], fa.CIN ) wire( fa.O, main.LED[0] ) wire( fa.COUT, main.LED[1] ) compile(sys.argv[1], main)
UTF-8
Python
false
false
370
py
507
_fulladder.py
279
0.691892
0.656757
0
20
17.4
42
LaGvidilo/ALIEN
6,399,501,281,834
8d0763d87eb5f80fd6ea71f38f8bef19fa74d3bc
9f65e7373ab61b456f68cf3bdc01dfb0e5634802
/dico/DICO20.py
9decdbf74b275e6d54b00743d1f3f0ccb2324db3
[]
no_license
https://github.com/LaGvidilo/ALIEN
a8b43a78eff4a7079be2823a65846df6c70f5e90
a4ffc4c0f1aed33ee42a8f581729579b43143e6e
refs/heads/master
2016-08-03T17:23:41.376795
2015-09-15T03:15:15
2015-09-15T03:15:15
42,492,226
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- def get_seed(data): if data==chr(203)+chr(85)+chr(166): return chr(9)+chr(10)+chr(1)+chr(1) if data==chr(9)+chr(10)+chr(1)+chr(1): return chr(203)+chr(85)+chr(166) if data==chr(0)+chr(187)+chr(84): return chr(10)+chr(10)+chr(1)+chr(1) if data==chr(10)+chr(10)+chr(1)+chr(1): return chr(0)+chr(187)+chr(84) if data==chr(203)+chr(108)+chr(24): return chr(11)+chr(10)+chr(1)+chr(1) if data==chr(11)+chr(10)+chr(1)+chr(1): return chr(203)+chr(108)+chr(24) if data==chr(111)+chr(75)+chr(109): return chr(12)+chr(10)+chr(1)+chr(1) if data==chr(12)+chr(10)+chr(1)+chr(1): return chr(111)+chr(75)+chr(109) if data==chr(80)+chr(112)+chr(232): return chr(13)+chr(10)+chr(1)+chr(1) if data==chr(13)+chr(10)+chr(1)+chr(1): return chr(80)+chr(112)+chr(232) if data==chr(218)+chr(19)+chr(32): return chr(14)+chr(10)+chr(1)+chr(1) if data==chr(14)+chr(10)+chr(1)+chr(1): return chr(218)+chr(19)+chr(32) if data==chr(138)+chr(235)+chr(238): return chr(15)+chr(10)+chr(1)+chr(1) if data==chr(15)+chr(10)+chr(1)+chr(1): return chr(138)+chr(235)+chr(238) if data==chr(15)+chr(251)+chr(203): return chr(0)+chr(11)+chr(1)+chr(1) if data==chr(0)+chr(11)+chr(1)+chr(1): return chr(15)+chr(251)+chr(203) if data==chr(155)+chr(120)+chr(173): return chr(1)+chr(11)+chr(1)+chr(1) if data==chr(1)+chr(11)+chr(1)+chr(1): return chr(155)+chr(120)+chr(173) if data==chr(78)+chr(183)+chr(230): return chr(2)+chr(11)+chr(1)+chr(1) if data==chr(2)+chr(11)+chr(1)+chr(1): return chr(78)+chr(183)+chr(230) if data==chr(57)+chr(88)+chr(7): return chr(3)+chr(11)+chr(1)+chr(1) if data==chr(3)+chr(11)+chr(1)+chr(1): return chr(57)+chr(88)+chr(7) if data==chr(22)+chr(239)+chr(33): return chr(4)+chr(11)+chr(1)+chr(1) if data==chr(4)+chr(11)+chr(1)+chr(1): return chr(22)+chr(239)+chr(33) if data==chr(37)+chr(31)+chr(121): return chr(5)+chr(11)+chr(1)+chr(1) if data==chr(5)+chr(11)+chr(1)+chr(1): return chr(37)+chr(31)+chr(121) if data==chr(18)+chr(247)+chr(104): return chr(6)+chr(11)+chr(1)+chr(1) if data==chr(6)+chr(11)+chr(1)+chr(1): return chr(18)+chr(247)+chr(104) if data==chr(44)+chr(117)+chr(132): return chr(7)+chr(11)+chr(1)+chr(1) if data==chr(7)+chr(11)+chr(1)+chr(1): return chr(44)+chr(117)+chr(132) if data==chr(143)+chr(175)+chr(253): return chr(8)+chr(11)+chr(1)+chr(1) if data==chr(8)+chr(11)+chr(1)+chr(1): return chr(143)+chr(175)+chr(253) if data==chr(63)+chr(53)+chr(213): return chr(9)+chr(11)+chr(1)+chr(1) if data==chr(9)+chr(11)+chr(1)+chr(1): return chr(63)+chr(53)+chr(213) if data==chr(51)+chr(118)+chr(195): return chr(10)+chr(11)+chr(1)+chr(1) if data==chr(10)+chr(11)+chr(1)+chr(1): return chr(51)+chr(118)+chr(195) if data==chr(109)+chr(23)+chr(214): return chr(11)+chr(11)+chr(1)+chr(1) if data==chr(11)+chr(11)+chr(1)+chr(1): return chr(109)+chr(23)+chr(214) if data==chr(185)+chr(209)+chr(65): return chr(12)+chr(11)+chr(1)+chr(1) if data==chr(12)+chr(11)+chr(1)+chr(1): return chr(185)+chr(209)+chr(65) if data==chr(177)+chr(174)+chr(104): return chr(13)+chr(11)+chr(1)+chr(1) if data==chr(13)+chr(11)+chr(1)+chr(1): return chr(177)+chr(174)+chr(104) if data==chr(182)+chr(239)+chr(45): return chr(14)+chr(11)+chr(1)+chr(1) if data==chr(14)+chr(11)+chr(1)+chr(1): return chr(182)+chr(239)+chr(45) if data==chr(48)+chr(48)+chr(151): return chr(15)+chr(11)+chr(1)+chr(1) if data==chr(15)+chr(11)+chr(1)+chr(1): return chr(48)+chr(48)+chr(151) if data==chr(66)+chr(249)+chr(30): return chr(0)+chr(12)+chr(1)+chr(1) if data==chr(0)+chr(12)+chr(1)+chr(1): return chr(66)+chr(249)+chr(30) if data==chr(191)+chr(56)+chr(206): return chr(1)+chr(12)+chr(1)+chr(1) if data==chr(1)+chr(12)+chr(1)+chr(1): return chr(191)+chr(56)+chr(206) if data==chr(82)+chr(155)+chr(136): return chr(2)+chr(12)+chr(1)+chr(1) if data==chr(2)+chr(12)+chr(1)+chr(1): return chr(82)+chr(155)+chr(136) if data==chr(89)+chr(133)+chr(246): return chr(3)+chr(12)+chr(1)+chr(1) if data==chr(3)+chr(12)+chr(1)+chr(1): return chr(89)+chr(133)+chr(246) if data==chr(167)+chr(245)+chr(52): return chr(4)+chr(12)+chr(1)+chr(1) if data==chr(4)+chr(12)+chr(1)+chr(1): return chr(167)+chr(245)+chr(52) if data==chr(249)+chr(36)+chr(66): return chr(5)+chr(12)+chr(1)+chr(1) if data==chr(5)+chr(12)+chr(1)+chr(1): return chr(249)+chr(36)+chr(66) if data==chr(93)+chr(15)+chr(2): return chr(6)+chr(12)+chr(1)+chr(1) if data==chr(6)+chr(12)+chr(1)+chr(1): return chr(93)+chr(15)+chr(2) if data==chr(156)+chr(196)+chr(218): return chr(7)+chr(12)+chr(1)+chr(1) if data==chr(7)+chr(12)+chr(1)+chr(1): return chr(156)+chr(196)+chr(218) if data==chr(247)+chr(60)+chr(191): return chr(8)+chr(12)+chr(1)+chr(1) if data==chr(8)+chr(12)+chr(1)+chr(1): return chr(247)+chr(60)+chr(191) if data==chr(99)+chr(100)+chr(39): return chr(9)+chr(12)+chr(1)+chr(1) if data==chr(9)+chr(12)+chr(1)+chr(1): return chr(99)+chr(100)+chr(39) if data==chr(153)+chr(168)+chr(242): return chr(10)+chr(12)+chr(1)+chr(1) if data==chr(10)+chr(12)+chr(1)+chr(1): return chr(153)+chr(168)+chr(242) if data==chr(6)+chr(215)+chr(132): return chr(11)+chr(12)+chr(1)+chr(1) if data==chr(11)+chr(12)+chr(1)+chr(1): return chr(6)+chr(215)+chr(132) if data==chr(146)+chr(233)+chr(165): return chr(12)+chr(12)+chr(1)+chr(1) if data==chr(12)+chr(12)+chr(1)+chr(1): return chr(146)+chr(233)+chr(165) if data==chr(137)+chr(46)+chr(229): return chr(13)+chr(12)+chr(1)+chr(1) if data==chr(13)+chr(12)+chr(1)+chr(1): return chr(137)+chr(46)+chr(229) if data==chr(198)+chr(167)+chr(87): return chr(14)+chr(12)+chr(1)+chr(1) if data==chr(14)+chr(12)+chr(1)+chr(1): return chr(198)+chr(167)+chr(87) if data==chr(21)+chr(211)+chr(36): return chr(15)+chr(12)+chr(1)+chr(1) if data==chr(15)+chr(12)+chr(1)+chr(1): return chr(21)+chr(211)+chr(36) if data==chr(103)+chr(72)+chr(196): return chr(0)+chr(13)+chr(1)+chr(1) if data==chr(0)+chr(13)+chr(1)+chr(1): return chr(103)+chr(72)+chr(196) if data==chr(191)+chr(129)+chr(139): return chr(1)+chr(13)+chr(1)+chr(1) if data==chr(1)+chr(13)+chr(1)+chr(1): return chr(191)+chr(129)+chr(139) if data==chr(72)+chr(111)+chr(90): return chr(2)+chr(13)+chr(1)+chr(1) if data==chr(2)+chr(13)+chr(1)+chr(1): return chr(72)+chr(111)+chr(90) if data==chr(60)+chr(134)+chr(130): return chr(3)+chr(13)+chr(1)+chr(1) if data==chr(3)+chr(13)+chr(1)+chr(1): return chr(60)+chr(134)+chr(130) if data==chr(54)+chr(70)+chr(169): return chr(4)+chr(13)+chr(1)+chr(1) if data==chr(4)+chr(13)+chr(1)+chr(1): return chr(54)+chr(70)+chr(169) if data==chr(125)+chr(166)+chr(226): return chr(5)+chr(13)+chr(1)+chr(1) if data==chr(5)+chr(13)+chr(1)+chr(1): return chr(125)+chr(166)+chr(226) if data==chr(170)+chr(167)+chr(20): return chr(6)+chr(13)+chr(1)+chr(1) if data==chr(6)+chr(13)+chr(1)+chr(1): return chr(170)+chr(167)+chr(20) if data==chr(103)+chr(228)+chr(180): return chr(7)+chr(13)+chr(1)+chr(1) if data==chr(7)+chr(13)+chr(1)+chr(1): return chr(103)+chr(228)+chr(180) if data==chr(97)+chr(164)+chr(83): return chr(8)+chr(13)+chr(1)+chr(1) if data==chr(8)+chr(13)+chr(1)+chr(1): return chr(97)+chr(164)+chr(83) if data==chr(100)+chr(47)+chr(114): return chr(9)+chr(13)+chr(1)+chr(1) if data==chr(9)+chr(13)+chr(1)+chr(1): return chr(100)+chr(47)+chr(114) if data==chr(114)+chr(141)+chr(7): return chr(10)+chr(13)+chr(1)+chr(1) if data==chr(10)+chr(13)+chr(1)+chr(1): return chr(114)+chr(141)+chr(7) if data==chr(82)+chr(71)+chr(145): return chr(11)+chr(13)+chr(1)+chr(1) if data==chr(11)+chr(13)+chr(1)+chr(1): return chr(82)+chr(71)+chr(145) if data==chr(159)+chr(4)+chr(132): return chr(12)+chr(13)+chr(1)+chr(1) if data==chr(12)+chr(13)+chr(1)+chr(1): return chr(159)+chr(4)+chr(132) if data==chr(39)+chr(197)+chr(26): return chr(13)+chr(13)+chr(1)+chr(1) if data==chr(13)+chr(13)+chr(1)+chr(1): return chr(39)+chr(197)+chr(26) if data==chr(136)+chr(9)+chr(55): return chr(14)+chr(13)+chr(1)+chr(1) if data==chr(14)+chr(13)+chr(1)+chr(1): return chr(136)+chr(9)+chr(55) if data==chr(46)+chr(92)+chr(30): return chr(15)+chr(13)+chr(1)+chr(1) if data==chr(15)+chr(13)+chr(1)+chr(1): return chr(46)+chr(92)+chr(30) if data==chr(175)+chr(212)+chr(142): return chr(0)+chr(14)+chr(1)+chr(1) if data==chr(0)+chr(14)+chr(1)+chr(1): return chr(175)+chr(212)+chr(142) if data==chr(154)+chr(48)+chr(5): return chr(1)+chr(14)+chr(1)+chr(1) if data==chr(1)+chr(14)+chr(1)+chr(1): return chr(154)+chr(48)+chr(5) if data==chr(41)+chr(120)+chr(190): return chr(2)+chr(14)+chr(1)+chr(1) if data==chr(2)+chr(14)+chr(1)+chr(1): return chr(41)+chr(120)+chr(190) if data==chr(86)+chr(68)+chr(232): return chr(3)+chr(14)+chr(1)+chr(1) if data==chr(3)+chr(14)+chr(1)+chr(1): return chr(86)+chr(68)+chr(232) if data==chr(61)+chr(155)+chr(13): return chr(4)+chr(14)+chr(1)+chr(1) if data==chr(4)+chr(14)+chr(1)+chr(1): return chr(61)+chr(155)+chr(13) if data==chr(4)+chr(64)+chr(41): return chr(5)+chr(14)+chr(1)+chr(1) if data==chr(5)+chr(14)+chr(1)+chr(1): return chr(4)+chr(64)+chr(41) if data==chr(60)+chr(121)+chr(33): return chr(6)+chr(14)+chr(1)+chr(1) if data==chr(6)+chr(14)+chr(1)+chr(1): return chr(60)+chr(121)+chr(33) if data==chr(202)+chr(228)+chr(70): return chr(7)+chr(14)+chr(1)+chr(1) if data==chr(7)+chr(14)+chr(1)+chr(1): return chr(202)+chr(228)+chr(70) if data==chr(30)+chr(53)+chr(164): return chr(8)+chr(14)+chr(1)+chr(1) if data==chr(8)+chr(14)+chr(1)+chr(1): return chr(30)+chr(53)+chr(164) if data==chr(105)+chr(65)+chr(227): return chr(9)+chr(14)+chr(1)+chr(1) if data==chr(9)+chr(14)+chr(1)+chr(1): return chr(105)+chr(65)+chr(227) if data==chr(46)+chr(243)+chr(216): return chr(10)+chr(14)+chr(1)+chr(1) if data==chr(10)+chr(14)+chr(1)+chr(1): return chr(46)+chr(243)+chr(216) if data==chr(102)+chr(46)+chr(130): return chr(11)+chr(14)+chr(1)+chr(1) if data==chr(11)+chr(14)+chr(1)+chr(1): return chr(102)+chr(46)+chr(130) if data==chr(123)+chr(119)+chr(205): return chr(12)+chr(14)+chr(1)+chr(1) if data==chr(12)+chr(14)+chr(1)+chr(1): return chr(123)+chr(119)+chr(205) if data==chr(61)+chr(94)+chr(207): return chr(13)+chr(14)+chr(1)+chr(1) if data==chr(13)+chr(14)+chr(1)+chr(1): return chr(61)+chr(94)+chr(207) if data==chr(192)+chr(237)+chr(76): return chr(14)+chr(14)+chr(1)+chr(1) if data==chr(14)+chr(14)+chr(1)+chr(1): return chr(192)+chr(237)+chr(76) if data==chr(40)+chr(232)+chr(30): return chr(15)+chr(14)+chr(1)+chr(1) if data==chr(15)+chr(14)+chr(1)+chr(1): return chr(40)+chr(232)+chr(30) if data==chr(211)+chr(54)+chr(151): return chr(0)+chr(15)+chr(1)+chr(1) if data==chr(0)+chr(15)+chr(1)+chr(1): return chr(211)+chr(54)+chr(151) if data==chr(154)+chr(195)+chr(185): return chr(1)+chr(15)+chr(1)+chr(1) if data==chr(1)+chr(15)+chr(1)+chr(1): return chr(154)+chr(195)+chr(185) if data==chr(125)+chr(212)+chr(49): return chr(2)+chr(15)+chr(1)+chr(1) if data==chr(2)+chr(15)+chr(1)+chr(1): return chr(125)+chr(212)+chr(49) if data==chr(156)+chr(116)+chr(96): return chr(3)+chr(15)+chr(1)+chr(1) if data==chr(3)+chr(15)+chr(1)+chr(1): return chr(156)+chr(116)+chr(96) if data==chr(171)+chr(234)+chr(243): return chr(4)+chr(15)+chr(1)+chr(1) if data==chr(4)+chr(15)+chr(1)+chr(1): return chr(171)+chr(234)+chr(243) if data==chr(246)+chr(110)+chr(90): return chr(5)+chr(15)+chr(1)+chr(1) if data==chr(5)+chr(15)+chr(1)+chr(1): return chr(246)+chr(110)+chr(90) if data==chr(127)+chr(57)+chr(155): return chr(6)+chr(15)+chr(1)+chr(1) if data==chr(6)+chr(15)+chr(1)+chr(1): return chr(127)+chr(57)+chr(155) if data==chr(20)+chr(94)+chr(79): return chr(7)+chr(15)+chr(1)+chr(1) if data==chr(7)+chr(15)+chr(1)+chr(1): return chr(20)+chr(94)+chr(79) if data==chr(83)+chr(28)+chr(191): return chr(8)+chr(15)+chr(1)+chr(1) if data==chr(8)+chr(15)+chr(1)+chr(1): return chr(83)+chr(28)+chr(191) if data==chr(42)+chr(138)+chr(73): return chr(9)+chr(15)+chr(1)+chr(1) if data==chr(9)+chr(15)+chr(1)+chr(1): return chr(42)+chr(138)+chr(73) if data==chr(244)+chr(122)+chr(5): return chr(10)+chr(15)+chr(1)+chr(1) if data==chr(10)+chr(15)+chr(1)+chr(1): return chr(244)+chr(122)+chr(5) if data==chr(101)+chr(244)+chr(75): return chr(11)+chr(15)+chr(1)+chr(1) if data==chr(11)+chr(15)+chr(1)+chr(1): return chr(101)+chr(244)+chr(75) if data==chr(19)+chr(254)+chr(92): return chr(12)+chr(15)+chr(1)+chr(1) if data==chr(12)+chr(15)+chr(1)+chr(1): return chr(19)+chr(254)+chr(92) if data==chr(192)+chr(3)+chr(110): return chr(13)+chr(15)+chr(1)+chr(1) if data==chr(13)+chr(15)+chr(1)+chr(1): return chr(192)+chr(3)+chr(110) if data==chr(158)+chr(99)+chr(192): return chr(14)+chr(15)+chr(1)+chr(1) if data==chr(14)+chr(15)+chr(1)+chr(1): return chr(158)+chr(99)+chr(192) if data==chr(133)+chr(122)+chr(254): return chr(15)+chr(15)+chr(1)+chr(1) if data==chr(15)+chr(15)+chr(1)+chr(1): return chr(133)+chr(122)+chr(254) if data==chr(86)+chr(217)+chr(211): return chr(0)+chr(0)+chr(2)+chr(1) if data==chr(0)+chr(0)+chr(2)+chr(1): return chr(86)+chr(217)+chr(211) if data==chr(48)+chr(115)+chr(155): return chr(1)+chr(0)+chr(2)+chr(1) if data==chr(1)+chr(0)+chr(2)+chr(1): return chr(48)+chr(115)+chr(155) if data==chr(162)+chr(114)+chr(220): return chr(2)+chr(0)+chr(2)+chr(1) if data==chr(2)+chr(0)+chr(2)+chr(1): return chr(162)+chr(114)+chr(220) if data==chr(54)+chr(20)+chr(7): return chr(3)+chr(0)+chr(2)+chr(1) if data==chr(3)+chr(0)+chr(2)+chr(1): return chr(54)+chr(20)+chr(7) if data==chr(147)+chr(237)+chr(232): return chr(4)+chr(0)+chr(2)+chr(1) if data==chr(4)+chr(0)+chr(2)+chr(1): return chr(147)+chr(237)+chr(232) if data==chr(217)+chr(114)+chr(47): return chr(5)+chr(0)+chr(2)+chr(1) if data==chr(5)+chr(0)+chr(2)+chr(1): return chr(217)+chr(114)+chr(47) if data==chr(253)+chr(62)+chr(72): return chr(6)+chr(0)+chr(2)+chr(1) if data==chr(6)+chr(0)+chr(2)+chr(1): return chr(253)+chr(62)+chr(72) if data==chr(58)+chr(123)+chr(148): return chr(7)+chr(0)+chr(2)+chr(1) if data==chr(7)+chr(0)+chr(2)+chr(1): return chr(58)+chr(123)+chr(148) if data==chr(34)+chr(7)+chr(194): return chr(8)+chr(0)+chr(2)+chr(1) if data==chr(8)+chr(0)+chr(2)+chr(1): return chr(34)+chr(7)+chr(194) if data==chr(146)+chr(10)+chr(77): return chr(9)+chr(0)+chr(2)+chr(1) if data==chr(9)+chr(0)+chr(2)+chr(1): return chr(146)+chr(10)+chr(77) if data==chr(182)+chr(226)+chr(185): return chr(10)+chr(0)+chr(2)+chr(1) if data==chr(10)+chr(0)+chr(2)+chr(1): return chr(182)+chr(226)+chr(185) if data==chr(64)+chr(143)+chr(233): return chr(11)+chr(0)+chr(2)+chr(1) if data==chr(11)+chr(0)+chr(2)+chr(1): return chr(64)+chr(143)+chr(233) if data==chr(153)+chr(66)+chr(196): return chr(12)+chr(0)+chr(2)+chr(1) if data==chr(12)+chr(0)+chr(2)+chr(1): return chr(153)+chr(66)+chr(196) if data==chr(0)+chr(36)+chr(177): return chr(13)+chr(0)+chr(2)+chr(1) if data==chr(13)+chr(0)+chr(2)+chr(1): return chr(0)+chr(36)+chr(177) if data==chr(214)+chr(10)+chr(16): return chr(14)+chr(0)+chr(2)+chr(1) if data==chr(14)+chr(0)+chr(2)+chr(1): return chr(214)+chr(10)+chr(16) if data==chr(67)+chr(101)+chr(160): return chr(15)+chr(0)+chr(2)+chr(1) if data==chr(15)+chr(0)+chr(2)+chr(1): return chr(67)+chr(101)+chr(160) if data==chr(15)+chr(19)+chr(66): return chr(0)+chr(1)+chr(2)+chr(1) if data==chr(0)+chr(1)+chr(2)+chr(1): return chr(15)+chr(19)+chr(66) if data==chr(111)+chr(11)+chr(60): return chr(1)+chr(1)+chr(2)+chr(1) if data==chr(1)+chr(1)+chr(2)+chr(1): return chr(111)+chr(11)+chr(60) if data==chr(34)+chr(163)+chr(230): return chr(2)+chr(1)+chr(2)+chr(1) if data==chr(2)+chr(1)+chr(2)+chr(1): return chr(34)+chr(163)+chr(230) if data==chr(210)+chr(240)+chr(114): return chr(3)+chr(1)+chr(2)+chr(1) if data==chr(3)+chr(1)+chr(2)+chr(1): return chr(210)+chr(240)+chr(114) if data==chr(85)+chr(9)+chr(44): return chr(4)+chr(1)+chr(2)+chr(1) if data==chr(4)+chr(1)+chr(2)+chr(1): return chr(85)+chr(9)+chr(44) if data==chr(208)+chr(80)+chr(225): return chr(5)+chr(1)+chr(2)+chr(1) if data==chr(5)+chr(1)+chr(2)+chr(1): return chr(208)+chr(80)+chr(225) if data==chr(199)+chr(95)+chr(55): return chr(6)+chr(1)+chr(2)+chr(1) if data==chr(6)+chr(1)+chr(2)+chr(1): return chr(199)+chr(95)+chr(55) if data==chr(137)+chr(43)+chr(222): return chr(7)+chr(1)+chr(2)+chr(1) if data==chr(7)+chr(1)+chr(2)+chr(1): return chr(137)+chr(43)+chr(222) if data==chr(155)+chr(147)+chr(174): return chr(8)+chr(1)+chr(2)+chr(1) if data==chr(8)+chr(1)+chr(2)+chr(1): return chr(155)+chr(147)+chr(174) if data==chr(137)+chr(0)+chr(88): return chr(9)+chr(1)+chr(2)+chr(1) if data==chr(9)+chr(1)+chr(2)+chr(1): return chr(137)+chr(0)+chr(88) if data==chr(31)+chr(114)+chr(141): return chr(10)+chr(1)+chr(2)+chr(1) if data==chr(10)+chr(1)+chr(2)+chr(1): return chr(31)+chr(114)+chr(141) if data==chr(171)+chr(41)+chr(103): return chr(11)+chr(1)+chr(2)+chr(1) if data==chr(11)+chr(1)+chr(2)+chr(1): return chr(171)+chr(41)+chr(103) if data==chr(9)+chr(170)+chr(21): return chr(12)+chr(1)+chr(2)+chr(1) if data==chr(12)+chr(1)+chr(2)+chr(1): return chr(9)+chr(170)+chr(21) if data==chr(97)+chr(57)+chr(196): return chr(13)+chr(1)+chr(2)+chr(1) if data==chr(13)+chr(1)+chr(2)+chr(1): return chr(97)+chr(57)+chr(196) if data==chr(245)+chr(36)+chr(102): return chr(14)+chr(1)+chr(2)+chr(1) if data==chr(14)+chr(1)+chr(2)+chr(1): return chr(245)+chr(36)+chr(102) if data==chr(135)+chr(191)+chr(201): return chr(15)+chr(1)+chr(2)+chr(1) if data==chr(15)+chr(1)+chr(2)+chr(1): return chr(135)+chr(191)+chr(201) if data==chr(63)+chr(59)+chr(15): return chr(0)+chr(2)+chr(2)+chr(1) if data==chr(0)+chr(2)+chr(2)+chr(1): return chr(63)+chr(59)+chr(15) if data==chr(235)+chr(230)+chr(231): return chr(1)+chr(2)+chr(2)+chr(1) if data==chr(1)+chr(2)+chr(2)+chr(1): return chr(235)+chr(230)+chr(231) if data==chr(132)+chr(100)+chr(186): return chr(2)+chr(2)+chr(2)+chr(1) if data==chr(2)+chr(2)+chr(2)+chr(1): return chr(132)+chr(100)+chr(186) if data==chr(143)+chr(26)+chr(91): return chr(3)+chr(2)+chr(2)+chr(1) if data==chr(3)+chr(2)+chr(2)+chr(1): return chr(143)+chr(26)+chr(91) if data==chr(236)+chr(199)+chr(133): return chr(4)+chr(2)+chr(2)+chr(1) if data==chr(4)+chr(2)+chr(2)+chr(1): return chr(236)+chr(199)+chr(133) if data==chr(84)+chr(229)+chr(131): return chr(5)+chr(2)+chr(2)+chr(1) if data==chr(5)+chr(2)+chr(2)+chr(1): return chr(84)+chr(229)+chr(131) if data==chr(185)+chr(121)+chr(13): return chr(6)+chr(2)+chr(2)+chr(1) if data==chr(6)+chr(2)+chr(2)+chr(1): return chr(185)+chr(121)+chr(13) if data==chr(150)+chr(111)+chr(220): return chr(7)+chr(2)+chr(2)+chr(1) if data==chr(7)+chr(2)+chr(2)+chr(1): return chr(150)+chr(111)+chr(220) if data==chr(43)+chr(147)+chr(152): return chr(8)+chr(2)+chr(2)+chr(1) if data==chr(8)+chr(2)+chr(2)+chr(1): return chr(43)+chr(147)+chr(152) if data==chr(215)+chr(43)+chr(164): return chr(9)+chr(2)+chr(2)+chr(1) if data==chr(9)+chr(2)+chr(2)+chr(1): return chr(215)+chr(43)+chr(164) if data==chr(84)+chr(166)+chr(48): return chr(10)+chr(2)+chr(2)+chr(1) if data==chr(10)+chr(2)+chr(2)+chr(1): return chr(84)+chr(166)+chr(48) if data==chr(11)+chr(62)+chr(11): return chr(11)+chr(2)+chr(2)+chr(1) if data==chr(11)+chr(2)+chr(2)+chr(1): return chr(11)+chr(62)+chr(11) if data==chr(98)+chr(66)+chr(112): return chr(12)+chr(2)+chr(2)+chr(1) if data==chr(12)+chr(2)+chr(2)+chr(1): return chr(98)+chr(66)+chr(112) if data==chr(168)+chr(97)+chr(33): return chr(13)+chr(2)+chr(2)+chr(1) if data==chr(13)+chr(2)+chr(2)+chr(1): return chr(168)+chr(97)+chr(33) if data==chr(186)+chr(51)+chr(78): return chr(14)+chr(2)+chr(2)+chr(1) if data==chr(14)+chr(2)+chr(2)+chr(1): return chr(186)+chr(51)+chr(78) if data==chr(78)+chr(28)+chr(114): return chr(15)+chr(2)+chr(2)+chr(1) if data==chr(15)+chr(2)+chr(2)+chr(1): return chr(78)+chr(28)+chr(114) if data==chr(108)+chr(168)+chr(14): return chr(0)+chr(3)+chr(2)+chr(1) if data==chr(0)+chr(3)+chr(2)+chr(1): return chr(108)+chr(168)+chr(14) if data==chr(174)+chr(13)+chr(113): return chr(1)+chr(3)+chr(2)+chr(1) if data==chr(1)+chr(3)+chr(2)+chr(1): return chr(174)+chr(13)+chr(113) if data==chr(80)+chr(135)+chr(252): return chr(2)+chr(3)+chr(2)+chr(1) if data==chr(2)+chr(3)+chr(2)+chr(1): return chr(80)+chr(135)+chr(252) if data==chr(142)+chr(103)+chr(189): return chr(3)+chr(3)+chr(2)+chr(1) if data==chr(3)+chr(3)+chr(2)+chr(1): return chr(142)+chr(103)+chr(189) if data==chr(97)+chr(156)+chr(237): return chr(4)+chr(3)+chr(2)+chr(1) if data==chr(4)+chr(3)+chr(2)+chr(1): return chr(97)+chr(156)+chr(237) if data==chr(18)+chr(214)+chr(237): return chr(5)+chr(3)+chr(2)+chr(1) if data==chr(5)+chr(3)+chr(2)+chr(1): return chr(18)+chr(214)+chr(237) if data==chr(60)+chr(91)+chr(149): return chr(6)+chr(3)+chr(2)+chr(1) if data==chr(6)+chr(3)+chr(2)+chr(1): return chr(60)+chr(91)+chr(149) if data==chr(71)+chr(244)+chr(147): return chr(7)+chr(3)+chr(2)+chr(1) if data==chr(7)+chr(3)+chr(2)+chr(1): return chr(71)+chr(244)+chr(147) if data==chr(157)+chr(91)+chr(120): return chr(8)+chr(3)+chr(2)+chr(1) if data==chr(8)+chr(3)+chr(2)+chr(1): return chr(157)+chr(91)+chr(120) if data==chr(220)+chr(251)+chr(220): return chr(9)+chr(3)+chr(2)+chr(1) if data==chr(9)+chr(3)+chr(2)+chr(1): return chr(220)+chr(251)+chr(220) if data==chr(56)+chr(144)+chr(194): return chr(10)+chr(3)+chr(2)+chr(1) if data==chr(10)+chr(3)+chr(2)+chr(1): return chr(56)+chr(144)+chr(194) if data==chr(251)+chr(44)+chr(105): return chr(11)+chr(3)+chr(2)+chr(1) if data==chr(11)+chr(3)+chr(2)+chr(1): return chr(251)+chr(44)+chr(105) if data==chr(197)+chr(177)+chr(157): return chr(12)+chr(3)+chr(2)+chr(1) if data==chr(12)+chr(3)+chr(2)+chr(1): return chr(197)+chr(177)+chr(157) if data==chr(216)+chr(114)+chr(253): return chr(13)+chr(3)+chr(2)+chr(1) if data==chr(13)+chr(3)+chr(2)+chr(1): return chr(216)+chr(114)+chr(253) if data==chr(35)+chr(169)+chr(199): return chr(14)+chr(3)+chr(2)+chr(1) if data==chr(14)+chr(3)+chr(2)+chr(1): return chr(35)+chr(169)+chr(199) if data==chr(58)+chr(157)+chr(228): return chr(15)+chr(3)+chr(2)+chr(1) if data==chr(15)+chr(3)+chr(2)+chr(1): return chr(58)+chr(157)+chr(228) if data==chr(92)+chr(82)+chr(7): return chr(0)+chr(4)+chr(2)+chr(1) if data==chr(0)+chr(4)+chr(2)+chr(1): return chr(92)+chr(82)+chr(7) if data==chr(103)+chr(190)+chr(137): return chr(1)+chr(4)+chr(2)+chr(1) if data==chr(1)+chr(4)+chr(2)+chr(1): return chr(103)+chr(190)+chr(137) if data==chr(161)+chr(151)+chr(36): return chr(2)+chr(4)+chr(2)+chr(1) if data==chr(2)+chr(4)+chr(2)+chr(1): return chr(161)+chr(151)+chr(36) if data==chr(187)+chr(236)+chr(71): return chr(3)+chr(4)+chr(2)+chr(1) if data==chr(3)+chr(4)+chr(2)+chr(1): return chr(187)+chr(236)+chr(71) if data==chr(70)+chr(250)+chr(193): return chr(4)+chr(4)+chr(2)+chr(1) if data==chr(4)+chr(4)+chr(2)+chr(1): return chr(70)+chr(250)+chr(193) if data==chr(95)+chr(133)+chr(227): return chr(5)+chr(4)+chr(2)+chr(1) if data==chr(5)+chr(4)+chr(2)+chr(1): return chr(95)+chr(133)+chr(227) if data==chr(251)+chr(2)+chr(20): return chr(6)+chr(4)+chr(2)+chr(1) if data==chr(6)+chr(4)+chr(2)+chr(1): return chr(251)+chr(2)+chr(20) if data==chr(123)+chr(64)+chr(22): return chr(7)+chr(4)+chr(2)+chr(1) if data==chr(7)+chr(4)+chr(2)+chr(1): return chr(123)+chr(64)+chr(22) if data==chr(98)+chr(188)+chr(210): return chr(8)+chr(4)+chr(2)+chr(1) if data==chr(8)+chr(4)+chr(2)+chr(1): return chr(98)+chr(188)+chr(210) if data==chr(12)+chr(223)+chr(222): return chr(9)+chr(4)+chr(2)+chr(1) if data==chr(9)+chr(4)+chr(2)+chr(1): return chr(12)+chr(223)+chr(222) if data==chr(115)+chr(18)+chr(95): return chr(10)+chr(4)+chr(2)+chr(1) if data==chr(10)+chr(4)+chr(2)+chr(1): return chr(115)+chr(18)+chr(95) if data==chr(253)+chr(147)+chr(95): return chr(11)+chr(4)+chr(2)+chr(1) if data==chr(11)+chr(4)+chr(2)+chr(1): return chr(253)+chr(147)+chr(95) if data==chr(245)+chr(183)+chr(149): return chr(12)+chr(4)+chr(2)+chr(1) if data==chr(12)+chr(4)+chr(2)+chr(1): return chr(245)+chr(183)+chr(149) if data==chr(235)+chr(56)+chr(174): return chr(13)+chr(4)+chr(2)+chr(1) if data==chr(13)+chr(4)+chr(2)+chr(1): return chr(235)+chr(56)+chr(174) if data==chr(77)+chr(186)+chr(132): return chr(14)+chr(4)+chr(2)+chr(1) if data==chr(14)+chr(4)+chr(2)+chr(1): return chr(77)+chr(186)+chr(132) if data==chr(236)+chr(71)+chr(57): return chr(15)+chr(4)+chr(2)+chr(1) if data==chr(15)+chr(4)+chr(2)+chr(1): return chr(236)+chr(71)+chr(57) if data==chr(139)+chr(85)+chr(117): return chr(0)+chr(5)+chr(2)+chr(1) if data==chr(0)+chr(5)+chr(2)+chr(1): return chr(139)+chr(85)+chr(117) if data==chr(226)+chr(231)+chr(131): return chr(1)+chr(5)+chr(2)+chr(1) if data==chr(1)+chr(5)+chr(2)+chr(1): return chr(226)+chr(231)+chr(131) if data==chr(85)+chr(246)+chr(90): return chr(2)+chr(5)+chr(2)+chr(1) if data==chr(2)+chr(5)+chr(2)+chr(1): return chr(85)+chr(246)+chr(90) if data==chr(29)+chr(117)+chr(11): return chr(3)+chr(5)+chr(2)+chr(1) if data==chr(3)+chr(5)+chr(2)+chr(1): return chr(29)+chr(117)+chr(11) if data==chr(79)+chr(133)+chr(69): return chr(4)+chr(5)+chr(2)+chr(1) if data==chr(4)+chr(5)+chr(2)+chr(1): return chr(79)+chr(133)+chr(69) if data==chr(44)+chr(73)+chr(92): return chr(5)+chr(5)+chr(2)+chr(1) if data==chr(5)+chr(5)+chr(2)+chr(1): return chr(44)+chr(73)+chr(92) if data==chr(223)+chr(155)+chr(192): return chr(6)+chr(5)+chr(2)+chr(1) if data==chr(6)+chr(5)+chr(2)+chr(1): return chr(223)+chr(155)+chr(192) if data==chr(174)+chr(215)+chr(103): return chr(7)+chr(5)+chr(2)+chr(1) if data==chr(7)+chr(5)+chr(2)+chr(1): return chr(174)+chr(215)+chr(103) if data==chr(246)+chr(88)+chr(135): return chr(8)+chr(5)+chr(2)+chr(1) if data==chr(8)+chr(5)+chr(2)+chr(1): return chr(246)+chr(88)+chr(135) if data==chr(37)+chr(190)+chr(58): return chr(9)+chr(5)+chr(2)+chr(1) if data==chr(9)+chr(5)+chr(2)+chr(1): return chr(37)+chr(190)+chr(58) if data==chr(250)+chr(4)+chr(100): return chr(10)+chr(5)+chr(2)+chr(1) if data==chr(10)+chr(5)+chr(2)+chr(1): return chr(250)+chr(4)+chr(100) if data==chr(91)+chr(15)+chr(72): return chr(11)+chr(5)+chr(2)+chr(1) if data==chr(11)+chr(5)+chr(2)+chr(1): return chr(91)+chr(15)+chr(72) if data==chr(86)+chr(253)+chr(30): return chr(12)+chr(5)+chr(2)+chr(1) if data==chr(12)+chr(5)+chr(2)+chr(1): return chr(86)+chr(253)+chr(30) if data==chr(103)+chr(255)+chr(116): return chr(13)+chr(5)+chr(2)+chr(1) if data==chr(13)+chr(5)+chr(2)+chr(1): return chr(103)+chr(255)+chr(116) if data==chr(95)+chr(105)+chr(237): return chr(14)+chr(5)+chr(2)+chr(1) if data==chr(14)+chr(5)+chr(2)+chr(1): return chr(95)+chr(105)+chr(237) if data==chr(197)+chr(151)+chr(211): return chr(15)+chr(5)+chr(2)+chr(1) if data==chr(15)+chr(5)+chr(2)+chr(1): return chr(197)+chr(151)+chr(211) if data==chr(177)+chr(253)+chr(247): return chr(0)+chr(6)+chr(2)+chr(1) if data==chr(0)+chr(6)+chr(2)+chr(1): return chr(177)+chr(253)+chr(247) if data==chr(160)+chr(213)+chr(185): return chr(1)+chr(6)+chr(2)+chr(1) if data==chr(1)+chr(6)+chr(2)+chr(1): return chr(160)+chr(213)+chr(185) if data==chr(229)+chr(129)+chr(34): return chr(2)+chr(6)+chr(2)+chr(1) if data==chr(2)+chr(6)+chr(2)+chr(1): return chr(229)+chr(129)+chr(34) if data==chr(216)+chr(42)+chr(111): return chr(3)+chr(6)+chr(2)+chr(1) if data==chr(3)+chr(6)+chr(2)+chr(1): return chr(216)+chr(42)+chr(111) if data==chr(80)+chr(142)+chr(11): return chr(4)+chr(6)+chr(2)+chr(1) if data==chr(4)+chr(6)+chr(2)+chr(1): return chr(80)+chr(142)+chr(11) if data==chr(130)+chr(101)+chr(218): return chr(5)+chr(6)+chr(2)+chr(1) if data==chr(5)+chr(6)+chr(2)+chr(1): return chr(130)+chr(101)+chr(218) if data==chr(21)+chr(150)+chr(100): return chr(6)+chr(6)+chr(2)+chr(1) if data==chr(6)+chr(6)+chr(2)+chr(1): return chr(21)+chr(150)+chr(100) if data==chr(94)+chr(130)+chr(178): return chr(7)+chr(6)+chr(2)+chr(1) if data==chr(7)+chr(6)+chr(2)+chr(1): return chr(94)+chr(130)+chr(178) if data==chr(218)+chr(163)+chr(173): return chr(8)+chr(6)+chr(2)+chr(1) if data==chr(8)+chr(6)+chr(2)+chr(1): return chr(218)+chr(163)+chr(173) if data==chr(90)+chr(216)+chr(62): return chr(9)+chr(6)+chr(2)+chr(1) if data==chr(9)+chr(6)+chr(2)+chr(1): return chr(90)+chr(216)+chr(62) if data==chr(180)+chr(14)+chr(251): return chr(10)+chr(6)+chr(2)+chr(1) if data==chr(10)+chr(6)+chr(2)+chr(1): return chr(180)+chr(14)+chr(251) if data==chr(72)+chr(140)+chr(178): return chr(11)+chr(6)+chr(2)+chr(1) if data==chr(11)+chr(6)+chr(2)+chr(1): return chr(72)+chr(140)+chr(178) if data==chr(230)+chr(27)+chr(145): return chr(12)+chr(6)+chr(2)+chr(1) if data==chr(12)+chr(6)+chr(2)+chr(1): return chr(230)+chr(27)+chr(145) if data==chr(109)+chr(180)+chr(67): return chr(13)+chr(6)+chr(2)+chr(1) if data==chr(13)+chr(6)+chr(2)+chr(1): return chr(109)+chr(180)+chr(67) if data==chr(25)+chr(141)+chr(83): return chr(14)+chr(6)+chr(2)+chr(1) if data==chr(14)+chr(6)+chr(2)+chr(1): return chr(25)+chr(141)+chr(83) if data==chr(107)+chr(113)+chr(160): return chr(15)+chr(6)+chr(2)+chr(1) if data==chr(15)+chr(6)+chr(2)+chr(1): return chr(107)+chr(113)+chr(160) if data==chr(143)+chr(53)+chr(48): return chr(0)+chr(7)+chr(2)+chr(1) if data==chr(0)+chr(7)+chr(2)+chr(1): return chr(143)+chr(53)+chr(48) if data==chr(125)+chr(73)+chr(30): return chr(1)+chr(7)+chr(2)+chr(1) if data==chr(1)+chr(7)+chr(2)+chr(1): return chr(125)+chr(73)+chr(30) if data==chr(78)+chr(76)+chr(242): return chr(2)+chr(7)+chr(2)+chr(1) if data==chr(2)+chr(7)+chr(2)+chr(1): return chr(78)+chr(76)+chr(242) if data==chr(183)+chr(246)+chr(240): return chr(3)+chr(7)+chr(2)+chr(1) if data==chr(3)+chr(7)+chr(2)+chr(1): return chr(183)+chr(246)+chr(240) if data==chr(89)+chr(75)+chr(114): return chr(4)+chr(7)+chr(2)+chr(1) if data==chr(4)+chr(7)+chr(2)+chr(1): return chr(89)+chr(75)+chr(114) if data==chr(132)+chr(5)+chr(245): return chr(5)+chr(7)+chr(2)+chr(1) if data==chr(5)+chr(7)+chr(2)+chr(1): return chr(132)+chr(5)+chr(245) if data==chr(253)+chr(97)+chr(198): return chr(6)+chr(7)+chr(2)+chr(1) if data==chr(6)+chr(7)+chr(2)+chr(1): return chr(253)+chr(97)+chr(198) if data==chr(75)+chr(83)+chr(89): return chr(7)+chr(7)+chr(2)+chr(1) if data==chr(7)+chr(7)+chr(2)+chr(1): return chr(75)+chr(83)+chr(89) if data==chr(153)+chr(11)+chr(43): return chr(8)+chr(7)+chr(2)+chr(1) if data==chr(8)+chr(7)+chr(2)+chr(1): return chr(153)+chr(11)+chr(43) if data==chr(15)+chr(118)+chr(155): return chr(9)+chr(7)+chr(2)+chr(1) if data==chr(9)+chr(7)+chr(2)+chr(1): return chr(15)+chr(118)+chr(155) if data==chr(164)+chr(21)+chr(26): return chr(10)+chr(7)+chr(2)+chr(1) if data==chr(10)+chr(7)+chr(2)+chr(1): return chr(164)+chr(21)+chr(26) if data==chr(241)+chr(236)+chr(136): return chr(11)+chr(7)+chr(2)+chr(1) if data==chr(11)+chr(7)+chr(2)+chr(1): return chr(241)+chr(236)+chr(136) if data==chr(95)+chr(118)+chr(24): return chr(12)+chr(7)+chr(2)+chr(1) if data==chr(12)+chr(7)+chr(2)+chr(1): return chr(95)+chr(118)+chr(24) if data==chr(32)+chr(104)+chr(78): return chr(13)+chr(7)+chr(2)+chr(1) if data==chr(13)+chr(7)+chr(2)+chr(1): return chr(32)+chr(104)+chr(78) if data==chr(63)+chr(40)+chr(57): return chr(14)+chr(7)+chr(2)+chr(1) if data==chr(14)+chr(7)+chr(2)+chr(1): return chr(63)+chr(40)+chr(57) if data==chr(195)+chr(3)+chr(23): return chr(15)+chr(7)+chr(2)+chr(1) if data==chr(15)+chr(7)+chr(2)+chr(1): return chr(195)+chr(3)+chr(23) if data==chr(159)+chr(237)+chr(74): return chr(0)+chr(8)+chr(2)+chr(1) if data==chr(0)+chr(8)+chr(2)+chr(1): return chr(159)+chr(237)+chr(74) if data==chr(249)+chr(120)+chr(160): return chr(1)+chr(8)+chr(2)+chr(1) if data==chr(1)+chr(8)+chr(2)+chr(1): return chr(249)+chr(120)+chr(160) if data==chr(98)+chr(176)+chr(126): return chr(2)+chr(8)+chr(2)+chr(1) if data==chr(2)+chr(8)+chr(2)+chr(1): return chr(98)+chr(176)+chr(126) if data==chr(52)+chr(76)+chr(19): return chr(3)+chr(8)+chr(2)+chr(1) if data==chr(3)+chr(8)+chr(2)+chr(1): return chr(52)+chr(76)+chr(19) if data==chr(199)+chr(15)+chr(53): return chr(4)+chr(8)+chr(2)+chr(1) if data==chr(4)+chr(8)+chr(2)+chr(1): return chr(199)+chr(15)+chr(53) if data==chr(208)+chr(131)+chr(253): return chr(5)+chr(8)+chr(2)+chr(1) if data==chr(5)+chr(8)+chr(2)+chr(1): return chr(208)+chr(131)+chr(253) if data==chr(132)+chr(1)+chr(171): return chr(6)+chr(8)+chr(2)+chr(1) if data==chr(6)+chr(8)+chr(2)+chr(1): return chr(132)+chr(1)+chr(171) if data==chr(8)+chr(197)+chr(222): return chr(7)+chr(8)+chr(2)+chr(1) if data==chr(7)+chr(8)+chr(2)+chr(1): return chr(8)+chr(197)+chr(222) if data==chr(228)+chr(63)+chr(188): return chr(8)+chr(8)+chr(2)+chr(1) if data==chr(8)+chr(8)+chr(2)+chr(1): return chr(228)+chr(63)+chr(188) if data==chr(168)+chr(139)+chr(173): return chr(9)+chr(8)+chr(2)+chr(1) if data==chr(9)+chr(8)+chr(2)+chr(1): return chr(168)+chr(139)+chr(173) if data==chr(124)+chr(210)+chr(104): return chr(10)+chr(8)+chr(2)+chr(1) if data==chr(10)+chr(8)+chr(2)+chr(1): return chr(124)+chr(210)+chr(104) else: return'-'
UTF-8
Python
false
false
33,705
py
257
DICO20.py
257
0.610295
0.443525
0
907
36.16097
40
kalthommusa/100DaysOfCode
16,552,803,994,497
762b7d086f440e19513f0bd3fba2940106c45f12
7cc342310bac85d2600d9f3246a3d6b62ae40c3d
/Day72_mysql_orderby.py
2e919304f5f9379c797926c97ec178d10a37e4e6
[]
no_license
https://github.com/kalthommusa/100DaysOfCode
52b1111a81671b68e8ddb8806bb22fec58355f11
3b7b1e036aaeaee7243e4dabfbd360d3deb8d6dd
refs/heads/master
2020-07-07T05:51:28.971917
2019-11-12T20:11:13
2019-11-12T20:11:13
203,270,354
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import mysql.connector #create a connection to MySQL server mydb=mysql.connector.connect( host="127.0.0.1", user="root", passwd="pass111", database="mydatabase" ) mycursor=mydb.cursor() #Select all the records and sort the result alphabetically by name (ascending by default) sql="SELECT * FROM customers ORDER BY name" """ Select all the records and sort the result alphabetically by name (descending) sql="SELECT * FROM customers ORDER BY name DESC" """ mycursor.execute(sql) myresult=mycursor.fetchall() for i in myresult: print(i)
UTF-8
Python
false
false
546
py
89
Day72_mysql_orderby.py
86
0.754579
0.738095
0
20
26.35
90
NAH8/dmpipe
12,343,736,018,176
bc698692c90c259ee91c104e5573fa66cb69c908
cfd310aaad4d40c3689c28672baabe11ec783d19
/setup.py
bdcea345c03dc51d59f9f59a64d7d0e6ce66e429
[ "BSD-3-Clause" ]
permissive
https://github.com/NAH8/dmpipe
e7fda3531f87c10ac3cf091d99cc91bebd17f5f3
041aca0a778d5b31adc770e53ce571ac5e6e8ec8
refs/heads/master
2021-05-15T10:21:14.990087
2017-06-27T01:58:12
2017-06-27T01:58:12
108,181,123
0
0
null
true
2017-10-24T20:41:05
2017-10-24T20:41:05
2017-05-16T22:18:30
2017-06-27T01:58:51
101
0
0
0
null
false
null
#!/usr/bin/env python from setuptools import setup, find_packages import versioneer setup( name='dmpipe', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), author='Matthew Wood', author_email='mdwood@slac.stanford.edu', description='Pipeline Scripts for LAT DM Analysis', license='BSD', packages=find_packages(), include_package_data=True, url="https://github.com/fermiPy/dmpipe", classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Scientific/Engineering :: Astronomy', 'Development Status :: 4 - Beta', ], scripts=[], entry_points={'console_scripts': [ 'dmpipe-analyze-roi = dmpipe.target_analysis:main_roi_single', 'dmpipe-analyze-sed = dmpipe.target_analysis:main_sed_single', 'dmpipe-prepare-targets = dmpipe.target_analysis:main_prepare_targets', 'dmpipe-analyze-roi-sg = dmpipe.target_analysis:main_roi_batch', 'dmpipe-analyze-sed-sg = dmpipe.target_analysis:main_sed_batch', 'dmpipe-convert-castro = dmpipe.dm_spectral:main_convert_single', 'dmpipe-convert-castro-sg = dmpipe.dm_spectral:main_convert_batch', 'dmpipe-stack-likelihood = dmpipe.dm_spectral:main_stack_likelihood', 'dmpipe-spec-table = dmpipe.dm_spectral:main_spec_table', 'dmpipe-pipeline-dsph = dmpipe.pipeline_dsph:main_chain', 'dmpipe-plot-dm = dmpipe.scripts.plot_castro_dm:main_single', 'dmpipe-plot-dm-sg = dmpipe.scripts.plot_castro_dm:main_batch', 'dmpipe-plot-castro = dmpipe.scripts.plot_castro:main_single', 'dmpipe-plot-castro-sg = dmpipe.scripts.plot_castro:main_batch', ]}, install_requires=[ 'numpy >= 1.6.1', 'astropy >= 1.2.1', 'matplotlib >= 1.5.0', 'scipy >= 0.14', 'fermipy >= 0.14.0', 'pyyaml', 'healpy', 'dmsky' ], extras_require=dict( all=[], ), )
UTF-8
Python
false
false
2,229
py
8
setup.py
8
0.628084
0.619112
0
56
38.803571
79
lianglin74/CoOp
6,399,501,290,664
b48cfdbf949e235d16cb897e952509857fbe1869
9cdc5ba730439cc1a2e5bddfc7d1d34cdd17e5bc
/src/qd/evaluate/evaluate_openimages_google.py
25ae4fe2900efdcca22a1d4d2c603f9277de53b6
[]
no_license
https://github.com/lianglin74/CoOp
dff26848a5cee1ac3388c6c1a0abdfd73052d9ff
1b0b82bcea1dea9bc91935cab480d218f2aea8b0
refs/heads/master
2023-08-11T07:13:20.706047
2021-09-08T22:01:08
2021-09-08T22:01:40
406,508,593
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import os.path as op import json from qd.tsv_io import load_list_file from qd.tsv_io import TSVFile, tsv_reader from qd.evaluate.oid_hierarchical_labels_expansion_tsv import expand_labels import numpy as np import argparse import time import logging def parallel_oi5c_to_submit_csv(pred_tsv, submit_csv, num_decimal=4, min_conf=0.): from qd.tsv_io import TSVDataset dataset = TSVDataset('OpenImageV5C') name_to_cid = {name: cid for cid, name in tsv_reader(op.join(dataset._data_root, 'cid_to_name.tsv'))} name_to_cid['Studio couch'] = name_to_cid['studio couch'] hw_tsv = dataset.get_data('test', t='hw') from qd.process_tsv import parallel_multi_tsv_process parallel_multi_tsv_process(lambda x: oi5c_to_submit_csv_row_processor(x, num_decimal=num_decimal, name_to_cid=name_to_cid, min_conf=min_conf), [pred_tsv, hw_tsv], submit_csv, num_process=200, out_sep=',', head=('ImageId', 'PredictionString')) def oi5c_to_submit_csv_row_processor(row, num_decimal, name_to_cid, min_conf=0.): (key, str_rects), (key_hw, str_hw) = row rects = json.loads(str_rects) h, w = map(float, str_hw.split(' ')) float_pattern = '{:.' + str(num_decimal) + 'f}' pred = [] for r in rects: if r['conf'] < min_conf: continue pred.append(name_to_cid[r['class']]) pred.append(float_pattern.format(r['conf'])) x1, y1, x2, y2 = r['rect'] pred.extend([float_pattern.format(x1 / w), float_pattern.format(y1 / h), float_pattern.format(x2 / w), float_pattern.format(y2 / h)]) return key, ' '.join(pred) def load_truths_label(tsv_file, imagelabel_tsv_file, all_idx, label): tsv = TSVFile(tsv_file) imagelabel_tsv = TSVFile(imagelabel_tsv_file) key_to_info = {} for idx in all_idx: row = tsv.seek(idx) key = row[0] imagelabel_key, str_imagelabel = imagelabel_tsv.seek(idx) assert imagelabel_key == row[0] img_label = json.loads(str_imagelabel) box_label = json.loads(row[1]) if img_label==[] and box_label==[]: continue for obj in img_label: if obj['conf'] == 0: # negative labels if obj['class'] != label: continue if key not in key_to_info: key_to_info[key] = -1 else: assert key_to_info[key] == -1 for obj in box_label: if obj['class'] != label: continue if key not in key_to_info: key_to_info[key] = [] key_to_info[key].append((int(obj['IsGroupOf']), obj['rect'])) return key_to_info def load_truths(tsv_file, imagelabel_tsv_file, shuf_file=None): """ Load ground-truth annotations in both image-level and box-level. Args: tsv_file: A string of the tsv file with all ground-truth annotations. The format of each row is as follows: row[0]: image key row[1]: a json string of image-level positive/negative labels row[2]: a json string of box-level annotations for positive labels shuf_file: A string of the shuffle file with a list of indexes. This feature enables to evaluate on a subset of images in tsv_file. Assert: Check if there is conflict labels. Eg., a class is labeled as negative while there is also box-level labels. Returns: gt_dict: A dictionary of all annotations. It is grouped by class label first and then by image key. For positive label, gt_dict[label][key] is a list of tuple with (IsGroupOf, rect). For negative label, gt_dict[label][key] = -1 """ tsv = TSVFile(tsv_file) imagelabel_tsv = TSVFile(imagelabel_tsv_file) if shuf_file is None: shuf_list = [_ for _ in range(tsv.num_rows())] else: shuf_list = [int(x) for x in load_list_file(shuf_file)] gt_dict = {} for idx in shuf_list: row = tsv.seek(idx) key = row[0] imagelabel_key, str_imagelabel = imagelabel_tsv.seek(idx) assert imagelabel_key == row[0] img_label = json.loads(str_imagelabel) box_label = json.loads(row[1]) if img_label==[] and box_label==[]: continue for obj in img_label: if obj['conf'] == 0: # negative labels label = obj['class'] if label not in gt_dict: gt_dict[label] = {} if key not in gt_dict[label]: gt_dict[label][key] = -1 else: assert gt_dict[label][key] == -1 for obj in box_label: label = obj['class'] if label not in gt_dict: gt_dict[label] = {} if key not in gt_dict[label]: gt_dict[label][key] = [] gt_dict[label][key] += [(int(obj['IsGroupOf']), obj['rect'])] return gt_dict def load_dets_label(tsv_file, all_idx, label): key_to_info = {} from tqdm import tqdm tsv = TSVFile(tsv_file) for i in tqdm(all_idx): row = tsv[i] key = row[0] rects = json.loads(row[1]) for obj in rects: if obj['class'] != label: continue if is_valid_rect(obj['rect']): if key not in key_to_info: key_to_info[key] = [] key_to_info[key].append((obj['conf'], obj['rect'])) for key in key_to_info: key_to_info[key] = sorted(key_to_info[key], key=lambda x:-x[0]) return key_to_info def load_dets(tsv_file, truths): """ Load detection results. Args: tsv_file: A string of the tsv file with all detection results. The format of each row is as follows: row[0]: image key row[1]: a json string of bounding box predictions (including class, confidence, rect) truths: A dictionary of ground-truth annotations. Detections of unknown classes are not recorded. Returns: det_dict: A dictionary of detections of all classes in truths. Any invalid detections are removed (i.e., x2<x1, y2<y1). It is grouped by class label first and then by image key. det_dict[label][key] is a list of tuple with (confidence, rect) and it is sorted by confidence (high to low). """ det_dict = {cls:{} for cls in truths} from tqdm import tqdm for i, row in tqdm(enumerate(tsv_reader(tsv_file))): key = row[0] rects = json.loads(row[1]) for obj in rects: label = obj['class'] if label in det_dict: if is_valid_rect(obj['rect']): if key not in det_dict[label]: det_dict[label][key] = [] det_dict[label][key] += [(obj['conf'], obj['rect'])] for label in det_dict: for key in det_dict[label]: det_dict[label][key] = sorted(det_dict[label][key], key=lambda x:-x[0]) return det_dict def is_valid_rect(rc): # a rect is valid if x2 > x1 and y2 > y1 return rc[2] > rc[0] and rc[3] > rc[1] def rect_area(rc): return (float(rc[2]) - rc[0]) * (rc[3] - rc[1]) def IoU(rc1, rc2): rc_inter = [max(rc1[0], rc2[0]), max(rc1[1], rc2[1]), min(rc1[2], rc2[2]), min(rc1[3], rc2[3])] if is_valid_rect(rc_inter): return rect_area(rc_inter) / (rect_area(rc1) + rect_area(rc2) - rect_area(rc_inter)) else: return 0 def IoA(rc1, rc2): """ Intersection over smaller box area, used in group-of box evaluation. Args: rc1: A list of the smaller box coordinates in xyxy mode rc2: A list of the group box coordinates in xyxy mode Returns: ioa: A float number of ioa score = intersection(rc1, rc2) / area(rc1) """ rc_inter = [max(rc1[0], rc2[0]), max(rc1[1], rc2[1]), min(rc1[2], rc2[2]), min(rc1[3], rc2[3])] if is_valid_rect(rc_inter): return rect_area(rc_inter) / rect_area(rc1) else: return 0 def get_overlaps(det, gt): """ Calculate IoU and IoA for a list of detection boxes and ground-truth boxes. Args: det: A list of D detection results (from det_dict[label][key]) gt: A list of G ground-truth results (from gt_dict[label][key]), and say there are G1 group-of box and G2 non group-of box Returns: ious: A float numpy array (D*G1) of IoU scores between detection and non group-of ground-truth boxes ioas: A float numpy array (D*G2) of IoA scores between detection and group-of ground-truth boxes """ gt_is_group = [g for g in gt if g[0]!=0] gt_is_non_group = [g for g in gt if g[0]==0] ious = [[IoU(d[1], g[1]) for g in gt_is_non_group] for d in det] ioas = [[IoA(d[1], g[1]) for g in gt_is_group] for d in det] return np.array(ious), np.array(ioas) def eval_per_class(c_dets, c_truths, overlap_threshold=0.5, count_group_of=True): """ Evaluation for each class. Args: c_dets: A dictionary of all detection results (from det_dict[label]) c_truths: A dictionary of all ground-truth annotations (from gt_dict[label]) overlap_threshold: A float indicates the threshold used in IoU and IoA matching count_group_of: A bool indicates whether to consider group-of box or not Returns: scores_all: A list of numpy float array collecting the confidence scores of both truth positives and false positives in each image(ignored detections are not included) tp_fp_labels_all: A list of numpy float array collecting the true positives (=1) and false positives (=0) labels in each image num_gt_all: An integer of the total number of valid ground-truth boxes Note: the IsGroupOf feature can be 0, 1, and -1 (unknown). Follow Google's implementation, unknown is considered as group-of. """ num_gt_all = 0 for key in c_truths: if c_truths[key] == -1: continue # negative label does not count is_group_of = [1 if x[0]!=0 else 0 for x in c_truths[key]] if count_group_of: num_gt_all += len(is_group_of) else: num_gt_all += sum(is_group_of) scores_all = [] tp_fp_labels_all = [] for key in c_dets: img_det = c_dets[key] num_det = len(img_det) scores = np.array([det[0] for det in img_det]) tp_fp_labels = np.zeros(num_det, dtype=float) is_matched_to_group_of_box = np.zeros(num_det, dtype=bool) if key not in c_truths: continue # ignore missing labels img_gt = c_truths[key] if img_gt == -1: # for negative label, all detections are fp scores_all.append(scores) tp_fp_labels_all.append(tp_fp_labels) else: ######## This part is imported modified from Google's implementation ######## # The evaluation is done in two stages: # 1. All detections are matched to non group-of boxes; true positives are # determined and detections matched to difficult boxes are ignored. # 2. Detections that are determined as false positives are matched against # group-of boxes and scored with weight w per ground truth box is matched. [ious, ioas] = get_overlaps(img_det, img_gt) # Tp-fp evaluation for non-group of boxes (if any). if ious.shape[1] > 0: max_overlap_gt_ids = np.argmax(ious, axis=1) is_gt_box_detected = np.zeros(ious.shape[1], dtype=bool) for i in range(num_det): gt_id = max_overlap_gt_ids[i] if ious[i, gt_id] >= overlap_threshold: if not is_gt_box_detected[gt_id]: tp_fp_labels[i] = True is_gt_box_detected[gt_id] = True scores_group_of = np.zeros(ioas.shape[1], dtype=float) tp_fp_labels_group_of = int(count_group_of) * np.ones(ioas.shape[1], dtype=float) # Tp-fp evaluation for group of boxes. if ioas.shape[1] > 0: max_overlap_group_of_gt_ids = np.argmax(ioas, axis=1) for i in range(num_det): gt_id = max_overlap_group_of_gt_ids[i] if not tp_fp_labels[i] and ioas[i, gt_id] >= overlap_threshold: is_matched_to_group_of_box[i] = True scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i]) selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0)) scores_group_of = scores_group_of[selector] tp_fp_labels_group_of = tp_fp_labels_group_of[selector] scores_all.append(np.concatenate((scores[~is_matched_to_group_of_box], scores_group_of))) tp_fp_labels_all.append(np.concatenate((tp_fp_labels[~is_matched_to_group_of_box], tp_fp_labels_group_of))) ######## end ######## return scores_all, tp_fp_labels_all, num_gt_all def compute_precision_recall(scores, labels, num_gt): assert np.sum(labels) <= num_gt, "number of true positives must be no larger than num_gt." assert len(scores) == len(labels), "scores and labels must be of the same size." sorted_indices = np.argsort(scores) sorted_indices = sorted_indices[::-1] tp_labels = labels[sorted_indices] fp_labels = (tp_labels <= 0).astype(float) cum_tp = np.cumsum(tp_labels) cum_fp = np.cumsum(fp_labels) precision = cum_tp.astype(float) / (cum_tp + cum_fp) recall = cum_tp.astype(float) / num_gt return precision, recall def compute_average_precision(precision, recall): if not precision.size: return 0.0 assert len(precision) == len(recall), "precision and recall must be of the same size." assert np.amin(precision) >= 0 and np.amax(precision) <= 1, "precision must be in the range of [0, 1]." assert np.amin(recall) >= 0 and np.amax(recall) <= 1, "recall must be in the range of [0, 1]." assert all(recall[i] <= recall[i+1] for i in range(len(recall)-1)), "recall must be a non-decreasing array" rec = np.concatenate([[0], recall, [1]]) prec = np.concatenate([[0], precision, [0]]) # pre-process precision to be a non-decreasing array for i in range(len(prec) - 2, -1, -1): prec[i] = np.maximum(prec[i], prec[i + 1]) indices = np.where(rec[1:] != rec[:-1])[0] + 1 ap = np.sum((rec[indices] - rec[indices - 1]) * prec[indices]) return ap def parallel_processor(task): label = task['label'] label_order = task['label_order'] pred_file = task['pred_file'] inverted_file = task['inverted_file'] truths = task['truths'] imagelabel_truths = task['imagelabel_truths'] overlap_threshold = task['overlap_threshold'] count_group_of = task['count_group_of'] label_, str_idx = TSVFile(inverted_file)[label_order] assert label == label_ all_idx = list(map(int, str_idx.split(' '))) c_truths = load_truths_label(truths, imagelabel_truths, all_idx, label) c_dets = load_dets_label(pred_file, all_idx, label) scores, tp_fp_labels, num_gt = eval_per_class(c_dets, c_truths, overlap_threshold, count_group_of) if scores and num_gt: scores = np.concatenate(scores) tp_fp_labels = np.concatenate(tp_fp_labels) precision, recall = compute_precision_recall(scores, tp_fp_labels, num_gt) ap = compute_average_precision(precision, recall) else: ap = 0.0 # there are cases when num_gt = 0 and there are false positives. return ap, num_gt def create_inverted_label_to_posneg(truths, imagelabel_truths, inverted_file): from collections import defaultdict class_to_idx = defaultdict(list) for i, (key, str_rects) in enumerate(tsv_reader(truths)): rects = json.loads(str_rects) for c in set([r['class'] for r in rects]): class_to_idx[c].append(i) for i, (key, str_rects) in enumerate(tsv_reader(imagelabel_truths)): rects = json.loads(str_rects) for c in set([r['class'] for r in rects if r['conf'] == 0]): class_to_idx[c].append(i) from qd.tsv_io import tsv_writer tsv_writer(((c, ' '.join(map(str, idx))) for c, idx in class_to_idx.items()), inverted_file) def parallel_evaluate(truths, imagelabel_truths, dets, shuf_file=None, expand_label_gt=False, expand_label_det=False, apply_nms_gt=False, apply_nms_det=False, json_hierarchy_file=None, count_group_of=True, overlap_threshold=0.5, save_file=None): if expand_label_gt: assert json_hierarchy_file is not None, "need json hierarchy file for label expansion" if not apply_nms_gt: new_file = op.splitext(truths)[0] + '.expanded.tsv' new_imagelevel_truths = op.splitext(imagelabel_truths)[0] + '.expanded.tsv' else: new_file = op.splitext(truths)[0] + '.expanded.nms.tsv' new_imagelevel_truths = op.splitext(imagelabel_truths)[0] + '.expanded.nms.tsv' if not (op.isfile(new_file) and op.isfile(new_imagelevel_truths)): logging.info('expanding labels for ground-truth file and save to: ' + new_file) expand_labels(truths, imagelabel_truths, json_hierarchy_file, new_file, new_imagelevel_truths, True, apply_nms_gt) truths = new_file imagelabel_truths = new_imagelevel_truths if expand_label_det: assert json_hierarchy_file is not None, "need json hierarchy file for label expansion" if not apply_nms_det: new_file = op.splitext(dets)[0] + '.expanded.tsv' else: new_file = op.splitext(dets)[0] + '.expanded.nms.tsv' if not op.isfile(new_file): logging.info('expanding labels for detection file and save to: ' + new_file) expand_labels(dets, None, json_hierarchy_file, new_file, None, False, apply_nms_det) dets = new_file # create the inverted file from qd.qd_common import hash_sha1 inverted_file = truths + '.inverted.{}'.format(hash_sha1(imagelabel_truths)) + '.tsv' valid_labelmap = inverted_file + '.validlabel.tsv' if not op.isfile(inverted_file): create_inverted_label_to_posneg(truths, imagelabel_truths, inverted_file) from qd.qd_common import write_to_file write_to_file('\n'.join([key for key, _ in tsv_reader(inverted_file)]), valid_labelmap) labelmap = load_list_file(valid_labelmap) all_task = [{'label': l, 'label_order': i, 'truths': truths, 'imagelabel_truths': imagelabel_truths, 'pred_file': dets, 'inverted_file': inverted_file, 'count_group_of': count_group_of, 'overlap_threshold': overlap_threshold, } for i, l in enumerate(labelmap)] from qd.qd_common import parallel_map all_result = parallel_map(parallel_processor, all_task, num_worker=200, isDebug=False) class_ap = {} class_num_gt = {} for task, (ap, num_gt) in zip(all_task, all_result): label = task['label'] class_ap[label] = ap class_num_gt[label] = num_gt logging.info('{} = {}'.format(label, ap)) mean_ap = sum([class_ap[cls] for cls in class_ap]) / len(class_ap) total_gt = sum([class_num_gt[cls] for cls in class_num_gt]) return {'class_ap': class_ap, 'map': mean_ap, 'class_num_gt': class_num_gt, 'total_gt': total_gt} def evaluate(truths, imagelabel_truths, dets, shuf_file=None, expand_label_gt=False, expand_label_det=False, apply_nms_gt=False, apply_nms_det=False, json_hierarchy_file=None, count_group_of=True, overlap_threshold=0.5, save_file=None): if expand_label_gt: assert json_hierarchy_file is not None, "need json hierarchy file for label expansion" if not apply_nms_gt: new_file = op.splitext(truths)[0] + '.expanded.tsv' new_imagelevel_truths = op.splitext(imagelabel_truths)[0] + '.expanded.tsv' else: new_file = op.splitext(truths)[0] + '.expanded.nms.tsv' new_imagelevel_truths = op.splitext(imagelabel_truths)[0] + '.expanded.nms.tsv' if not (op.isfile(new_file) and op.isfile(new_imagelevel_truths)): logging.info('expanding labels for ground-truth file and save to: ' + new_file) expand_labels(truths, imagelabel_truths, json_hierarchy_file, new_file, new_imagelevel_truths, True, apply_nms_gt) truths = new_file imagelabel_truths = new_imagelevel_truths if expand_label_det: assert json_hierarchy_file is not None, "need json hierarchy file for label expansion" if not apply_nms_det: new_file = op.splitext(dets)[0] + '.expanded.tsv' else: new_file = op.splitext(dets)[0] + '.expanded.nms.tsv' if not op.isfile(new_file): logging.info('expanding labels for detection file and save to: ' + new_file) expand_labels(dets, None, json_hierarchy_file, new_file, None, False, apply_nms_det) dets = new_file truths_dict = load_truths(truths, imagelabel_truths, shuf_file) dets_dict = load_dets(dets, truths_dict) class_ap = {} class_num_gt = {} for label in sorted(truths_dict.keys()): c_truths = truths_dict[label] c_dets = dets_dict[label] scores, tp_fp_labels, num_gt = eval_per_class(c_dets, c_truths, overlap_threshold, count_group_of) if scores and num_gt: scores = np.concatenate(scores) tp_fp_labels = np.concatenate(tp_fp_labels) precision, recall = compute_precision_recall(scores, tp_fp_labels, num_gt) ap = compute_average_precision(precision, recall) else: ap = 0.0 # there are cases when num_gt = 0 and there are false positives. class_ap[label] = ap class_num_gt[label] = num_gt logging.info('{} = {}'.format(label, ap)) if len(truths_dict) == 0: mean_ap = 0 else: mean_ap = sum([class_ap[cls] for cls in class_ap]) / len(truths_dict) total_gt = sum([class_num_gt[cls] for cls in class_num_gt]) return {'class_ap': class_ap, 'map': mean_ap, 'class_num_gt': class_num_gt, 'total_gt': total_gt} def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='OpenImage Challenge Evaluation') parser.add_argument('--truths', required=True, help='import groundtruth file') parser.add_argument('--shuf_file', required=False, default=None, help='shuffle list to select a subset of images') parser.add_argument('--dets', required=True, help='import detection results') parser.add_argument('--overlap_threshold', required=False, type=float, default=0.5, help='IoU overlap threshold, default=0.5') parser.add_argument('--count_group_of', required=False, type=bool, default=True, help='include group-of box evaluation or ignore default=True') parser.add_argument('--expand_label_gt', required=False, default=False, action='store_true', help='whether to expand labels for gt annotations or not default=False') parser.add_argument('--expand_label_det', required=False, default=False, action='store_true', help='whether to expand labels for detection annotations or not default=False') parser.add_argument('--apply_nms_gt', required=False, default=False, action='store_true', help='whether to apply nms after gt label expansion, default=False') parser.add_argument('--apply_nms_det', required=False, default=False, action='store_true', help='whether to apply nms after det label expansion, default=True') parser.add_argument('--json_hierarchy_file', required=False, type=str, default=None, help='json file used for label expansion default=None') parser.add_argument('--save_file', required=False, type=str, default=None, help='filename to save evaluation results (class AP)') args = parser.parse_args() return args if __name__ == '__main__': """ This script is for OpenImage Detection (OID) Challenge evaluation. It follows Google's official implementation to produce the same result, but it is much faster compared to Google's evaluation (2 mins vs. 50 mins not consider label expansion). However, there are three known issues with Google's implementation. 1) Box area calculation: should +1 for height and width computation 2) Duplicate label expansion: child class is expanded to the same parent more than once. (eg. Shrimp->Shellfish->seafood, Shrimp->Shellfish->..->Animal) 3) Dense box matching: not considered (should follow COCO's evaluation) For example, we should not assign a detection to be false positive immediately when it is matched to an already matched ground-truth box. Instead, we should look at the next largest iou score to see if it can be matched to another un-matched ground-truth box. This is helpful for crowd scenes like human crowd. (we observe a 1.5 AP improvement on "Person" class after turn on this feature) A few other notes: 1) The IsGroupOf attribute can be 0, 1 and -1 (unknown). There are 1,166 boxes are unknown in the validation set, which are considered as group-of boxes. """ start = time.time() args = parse_args() evaluate(**vars(args)) end = time.time() print('Elapsed time: ' + str(end - start))
UTF-8
Python
false
false
27,090
py
370
evaluate_openimages_google.py
291
0.579919
0.571724
0
585
44.307692
158
Throupy/Discord-Bot
1,176,821,078,397
52abbc33d244aa0bab5d77c760dd4a2b19523b11
37bc1e6300f61702975366b17141864519c87505
/cogs/main.py
7dd4d39f1d84b9a737441a24f0534997eb585716
[]
no_license
https://github.com/Throupy/Discord-Bot
9b8a5f4506e8eae6b4587146b8a0d4ea1f74264e
8778b019585b8106008822dd0924c6e59e93dcac
refs/heads/master
2020-05-05T05:26:40.626234
2019-04-17T21:24:20
2019-04-17T21:24:20
179,752,527
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Cog for main commands.""" import aiohttp import datetime import random from dateutil.relativedelta import relativedelta import discord from bs4 import BeautifulSoup from discord.ext import commands from utils.consts import Consts from utils.embedgenerator import Embed class MainCog(commands.Cog): """Main cog.""" CONSTS = Consts() def __init__(self, bot): """Initialize the cog.""" print("Main cog Initialized") self.bot = bot @commands.command() @commands.cooldown(1, 1, commands.BucketType.user) async def roll(self, ctx, max: int = None): """Run when the roll command is called.""" if not type(max) == int or not max or max < 0: return await ctx.channel.send("Please do ~roll <max(int)>") number = random.randint(1, max) return await ctx.channel.send(f"`You rolled a {number}`") @commands.command(aliases=['cls']) @commands.cooldown(1, 15, commands.BucketType.user) async def clear(self, ctx, number: int = 10): """Clear messages.""" print("Clear called") if "administrator" in [y.name.lower() for y in ctx.author.roles]: if number > 0 and number < 75: deleted = await ctx.channel.purge(limit=number + 1) await ctx.channel.send( f"Deleted {len(deleted) - 1} messages") return await ctx.channel.send( "You can specify a number of messages (1 - 75)") return await ctx.channel.send( "You don't have the `administrator` role!") @commands.command(aliases=['who']) @commands.cooldown(1, 5, commands.BucketType.user) async def whois(self, ctx, member: discord.Member = None): """Run when the whois command is called.""" if member is None: return await ctx.channel.send("Please do: ~whois @user") embed = Embed([("Display Username", f":name_badge: {member.name}"), ("Status", f":o:{str(member.status)}"), ("Joined On", f":date: {member.joined_at.date()}"), ("Role(s)", f":bow:" + ''.join( [str(role.mention) for role in member.roles[1:]]))]) embed.author = ctx.message.author embed.thumbnail = member.avatar_url embed = embed.generate_embed() return await ctx.channel.send(embed=embed) @commands.command() @commands.cooldown(1, 120, commands.BucketType.user) async def report(self, ctx, victim: discord.Member, reason: str): """Run when the report command is called.""" if victim is None or reason is None: return await ctx.channel.send("Please do ~report <user> <reason>") for member in ctx.guild.members: for role in member.roles: print(f"{role.name} - {role.id}") # Administrator or owner if role.id in self.CONSTS.administrators: try: await member.send("{} reported {} for {}".format( ctx.author.name, victim, reason )) # User has DMs from members disabled except discord.errors.HTTPException: pass return await ctx.channel.send(":white_check_mark: Thank you") @commands.command(aliases=['say']) @commands.cooldown(1, 5, commands.BucketType.user) async def echo(self, ctx, *args): """Run when the echo command is called.""" if args is None: return await ctx.channel.send("Please do ~echo <message>") return await ctx.channel.send(f"`{' '.join([x for x in args])}`") @commands.command(aliases=['serverinfo', 'svinfo']) @commands.cooldown(1, 30, commands.BucketType.user) async def server(self, ctx): """Run when the server command is called - gives info about server.""" guild = ctx.message.author.guild embed = Embed([("Server Name", f":name_badge: {guild.name}"), ("Region", f":o:{guild.region}"), ("Owner", f":person_with_blond_hair: {guild.owner}"), ("Member Count", f":100: {guild.member_count}"), ("Date Created", f":date: {guild.created_at}")]) embed.thumbnail = guild.icon_url embed = embed.generate_embed() return await ctx.channel.send(embed=embed) @commands.command(aliases=['depressme', 'exams']) @commands.cooldown(1, 10, commands.BucketType.user) async def gcses(self, ctx): """Run when the gcse countdown command is called.""" today = datetime.datetime.today() td = relativedelta(datetime.datetime(2019, 5, 13, 9, 0, 0), today) return await ctx.channel.send( "`{} months, {} weeks, {} days, {} hours {} minutes until GCSES!`" .format( td.months, td.weeks, td.days, td.hours, td.minutes )) async def fetch(self, session, url): """Fetch the word of the day.""" async with session.get(url) as response: return await response.text() @commands.command(aliases=['word', 'wordoftheday', 'spaword']) @commands.cooldown(1, 15, commands.BucketType.user) async def wotd(self, ctx): """Run when the wotd command is called.""" async with aiohttp.ClientSession() as session: html = await self.fetch(session, 'https://www.spanishdict.com/') soup = BeautifulSoup(html, features="lxml") spa = soup.find('a', {'class': 'wotd-sidebar-word'}).text eng = soup.find('div', {'class': 'wotd-sidebar-translation'}).text return await ctx.channel.send(f":flag_es:`{spa} - {eng}`:flag_es:") def setup(bot): """Initialize and add to main script.""" bot.add_cog(MainCog(bot))
UTF-8
Python
false
false
5,967
py
8
main.py
7
0.572314
0.564103
0
136
42.875
79
p56071078/python-practice
14,998,025,804,731
fc0d0df1a374c4cf6fea43fbadd7e459fd9f8960
2706674a5547e58ced2cf0bb330e270c1ecc731c
/HW4_for_loop.py
81d4e58b204a7fdcc3758a55c228efff9d2d9334
[]
no_license
https://github.com/p56071078/python-practice
548db33ca5e1e30292ec5a510cce4ec9ef5bd330
165241fa81605c12cdb7a0386d7792b40929a603
refs/heads/master
2023-02-22T02:23:29.794974
2021-01-27T12:59:12
2021-01-27T12:59:12
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#4.1 a = int(input()) b = int(input()) for i in range(a,b+1): print(i,end=' ') #4.2 # Read an integer: a = int(input()) b = int(input()) # Print a value: # if a>=b: for i in range(a, b-1,-1): print(i,end=' ') else: for i in range(a, b+1): print(i,end=' ') #4.3 #老師解 sum=0 for i in range(10): sum=sum+int(input()) print(sum) #4.4 sum=0 N=int(input()) for i in range(N): sum=sum+int(input()) print(sum) #4.5 sum=0 N=int(input()) for i in range(1,N+1): sum=sum+(i**3) print(sum) #4.6 #階層的話起始ersult不能等於0,要設成1 result=1 n=int(input()) for i in range(1,n+1): result=result*i print(result) #4.7 #判斷輸入的數字中有幾個數字是0 count=0 n=int(input()) for i in range(n): if int(input())==0: count=count+1 print(count) #4.8 難 #先計算階層之後,再把階層結果相加 #n=4 -> 1!+2!+3!+4!=33 result=1 sum=0 n=int(input()) for i in range(1,n+1): result=result*i sum=sum+result print(sum) #4.9 #找不見的牌,假設有5張牌,只拿到4張,猜是哪個數字沒拿到 #先算N!,再算拿到的數字加總,相減就可以知道缺哪個數字 result=0 sum=0 N=int(input()) for i in range(1,N+1): result += i for i in range(1,N): sum += int(input()) # print(result) # print(sum) print(result-sum) #4.A #巢狀迴圈 #如果想讓印出的東西在不同行的話,中間可以插入print(),就可以換行了 #ex:input(3) #output: #1 #12 #123 a = int(input()) for i in range(1,a+1): for j in range(1,i+1): print(j,end="") print()
UTF-8
Python
false
false
1,547
py
10
HW4_for_loop.py
10
0.611068
0.557288
0
95
12.505263
37
ParticleFilter101/Time-series-forecasting
9,526,237,505,712
bc92f9d79188a3d4fe2e278f5d2fadc5d7d618b3
3085b3992489cddb5ec256105ded0b7cdf9ec86b
/lstmty3.py
60795e2a629d51c34b07552199d847ecc56cea83
[]
no_license
https://github.com/ParticleFilter101/Time-series-forecasting
81a754ae871c1321391540d74e88f253b1830afe
a9e95da89c497d3298dba65a8b7bd53b13290b0c
refs/heads/master
2023-07-06T20:57:45.243204
2019-08-30T13:11:43
2019-08-30T13:11:43
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Aug 30 14:38:47 2019 @author: shivambhardwaj """ import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import randint import seaborn as sns # used for plot interactive graph. from sklearn.model_selection import train_test_split, KFold from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_score from sklearn.feature_selection import SelectFromModel from sklearn import metrics from sklearn.metrics import mean_squared_error,r2_score import keras from keras.layers import Dense from keras.models import Sequential from keras.utils import to_categorical from keras.optimizers import SGD from keras.callbacks import EarlyStopping from keras.utils import np_utils import itertools from keras.layers import LSTM from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.layers import Dropout #loading data data = pd.read_csv('household_power_consumption.txt', sep=';', parse_dates={'dt' : ['Date', 'Time']}, infer_datetime_format=True, low_memory=False, na_values=['nan','?'], index_col='dt') ## finding all columns that have nan: droping_list_all=[] for j in range(0,7): if not data.iloc[:, j].notnull().all(): droping_list_all.append(j) #print(df.iloc[:,j].unique()) droping_list_all # filling nan with mean in any columns for j in range(0,7): data.iloc[:,j]=data.iloc[:,j].fillna(data.iloc[:,j].mean()) data.Global_active_power.plot() plt.tight_layout() plt.show() # ploting different features sampled over the day # specify columns to plot cols = [0, 1, 2, 3, 5, 6] i = 1 groups=cols values = data.resample('D').mean().values # plot each column plt.figure(figsize=(15, 10)) for group in groups: plt.subplot(len(cols), 1, i) plt.plot(values[:, group]) plt.title(data.columns[group], y=0.75, loc='right') i += 1 plt.show() plt.figure() plt.matshow(data.resample('D').mean().corr(method='spearman'),vmax=1,vmin=-1,cmap='PRGn') plt.title('resampled over day', size=15) plt.colorbar() plt.margins(0.02) plt.show def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] dff = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(dff.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(dff.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg ## resampling of data over hour data_resample = data.resample('h').mean() data_resample.shape values = data_resample.values scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(values) reframed = series_to_supervised(scaled, 1, 1) reframed.drop(reframed.columns[[8,9,10,11,12,13]], axis=1, inplace=True) print(reframed.head()) # split into train and test sets values = reframed.values n_train_time = 365*24 train = values[:n_train_time, :] test = values[n_train_time:, :] # split into input and outputs train_X, train_y = train[:, :-1], train[:, -1] test_X, test_y = test[:, :-1], test[:, -1] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) # We reshaped the input into the 3D format as expected by LSTMs, namely [samples, timesteps, features]. model = Sequential() model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dropout(0.2)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') fit_history = model.fit(train_X, train_y, epochs=20, batch_size=70, validation_data=(test_X, test_y), verbose=2, shuffle=False) # summarize history for loss plt.figure() plt.plot(fit_history.history['loss']) plt.plot(fit_history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper right') plt.show() # make a prediction yhat = model.predict(test_X) test_X = test_X.reshape((test_X.shape[0], 7)) # invert scaling for forecast inv_yhat = np.concatenate((yhat, test_X[:, -6:]), axis=1) inv_yhat = scaler.inverse_transform(inv_yhat) inv_yhat = inv_yhat[:,0] # invert scaling for actual test_y = test_y.reshape((len(test_y), 1)) inv_y = np.concatenate((test_y, test_X[:, -6:]), axis=1) inv_y = scaler.inverse_transform(inv_y) inv_y = inv_y[:,0] rmse = np.sqrt(mean_squared_error(inv_y, inv_yhat)) print('Test RMSE: %.3f' % rmse) aa=[x for x in range(500)] plt.figure() plt.plot(aa, inv_y[:500], marker='.', label="actual") plt.plot(aa, inv_yhat[:500], 'r', label="prediction") plt.ylabel('Global_active_power', size=15) plt.xlabel('Time step', size=15) plt.legend(fontsize=15) plt.show()
UTF-8
Python
false
false
5,379
py
3
lstmty3.py
2
0.688418
0.664622
0
179
29.044693
103
zwei2stein/mtg-commandline-tool
2,190,433,345,208
6038aef09071dc7929cc20820bd2510934854b5a
8af5ff2a64e2589bd7898a87f1cc909919782239
/price_source/mysticshop.py
001488df7f3e42833f77da00054b32018670cf4f
[]
no_license
https://github.com/zwei2stein/mtg-commandline-tool
b461dd44fd17722b3974bece5e23545e68f47d5c
7ee6b211ff7d15aa4dd20231c28955ccb00166f5
refs/heads/master
2023-05-27T01:13:39.420872
2022-12-17T21:13:11
2022-12-17T21:13:11
162,145,046
1
0
null
false
2023-05-23T05:22:59
2018-12-17T14:44:35
2022-12-22T13:31:44
2023-05-23T05:22:58
326
1
0
2
Python
false
false
import re import requests from price_source.priceSource import PriceSource class MysticShop(PriceSource): def __init__(self, base_cache_dir, clearCache, cacheTimeout, smartFlush, priority): super().__init__(base_cache_dir, '.mysticShopCache') self.clearCache = clearCache self.cacheTimeout = cacheTimeout self.smartFlush = smartFlush self.sourceName = 'Mystic Shop' self.supportedCurrency = 'czk' self.priority = priority self.baseUrl = "http://mysticshop.cz/mtgshop.php" def fetch_card_price(self, card, page = 0, cheapestPrice = None): response = requests.post(self.baseUrl, params={ 'name': card.name, 'limit': 500, 'p': page + 1}) start = response.text.find('<tbody>') end = response.text.find('</tbody>', start + 1) regexRow = '<td class="detail"><b>(.+?)</b>' names = re.findall(regexRow, response.text[start:end]) regexRow = '<td class="price2">([0-9]+),-</td>' prices = re.findall(regexRow, response.text[start:end]) for name, price in zip(names, prices): price = int(price) if ((cheapestPrice == None or cheapestPrice > price) and name.lower() == card.name.lower()): cheapestPrice = price return cheapestPrice
UTF-8
Python
false
false
1,191
py
54
mysticshop.py
38
0.68178
0.674223
0
43
26.72093
95
westgate458/LeetCode
8,890,582,322,253
90cc4a29da2fcac7cd1f5ce7c392d0ca8a94e12d
8773e8c9b9a0a6e407f91b6f7c6321141d7e8356
/apple/P1804_apple.py
39be60380ea474768740062f36b0c62f59a029be
[]
no_license
https://github.com/westgate458/LeetCode
1836bb21e8dd95386ccab390f5fd04567a429a02
36d7f9e967a62db77622e0888f61999d7f37579a
refs/heads/master
2021-12-28T04:16:36.875737
2021-12-17T05:48:09
2021-12-17T05:48:09
152,928,584
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Trie(object): def __init__(self): self.d = {} def insert(self, word): """ :type word: str :rtype: None """ node = self.d for c in word: if c not in node: node[c] = {} node = node[c] if '@' not in node: node['@'] = 0 node['@'] += 1 if '*' not in node: node['*'] = 0 node['*'] += 1 def countWordsEqualTo(self, word): """ :type word: str :rtype: int """ node = self.d for c in word: if c not in node: return 0 node = node[c] return node.get('*', 0) def countWordsStartingWith(self, prefix): """ :type prefix: str :rtype: int """ node = self.d for c in prefix: if c not in node: return 0 node = node[c] return node.get('@', 0) def erase(self, word): """ :type word: str :rtype: None """ node = self.d for c in word: if c not in node: return node = node[c] node['@'] -= 1 if '*' in node: node['*'] -= 1 # Your Trie object will be instantiated and called as such: # obj = Trie() # obj.insert(word) # param_2 = obj.countWordsEqualTo(word) # param_3 = obj.countWordsStartingWith(prefix) # obj.erase(word)
UTF-8
Python
false
false
1,542
py
640
P1804_apple.py
640
0.407263
0.399481
0
60
24.716667
59
jinjinfan/An_Introduction_to_Interactive_Programming_in_Python-
7,456,063,227,217
0b872b6ffc9932da6b58aa2615a0da735b8abdb2
0df40e835f27acc62d50fe79b6a2407542b8d317
/Stopwatch.py
296aa4c531e4b236246e400fe25f54e02821cf83
[]
no_license
https://github.com/jinjinfan/An_Introduction_to_Interactive_Programming_in_Python-
5a1abd6c645e60eeb0aa9492ae2617ad9a67f088
89ee143a5f7de3eb0441bf2533d0f865a53045cc
refs/heads/master
2021-01-16T21:01:03.765411
2015-06-28T15:14:01
2015-06-28T15:14:01
38,201,072
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# "Stopwatch: The Game" import simplegui # define global variables time = 0 # the total number of stops number_stops = 0 # the number of successful stops at a whole second nmber_win = 0 # determine whether stopwatch is running timer_running = False # define helper function format that converts time # in tenths of seconds into formatted string A:BC.D def format(t): minute = t // 600 second = (t % 600 ) // 10 second_tenth = t - minute * 600 - second * 10 if second < 10: str_sec = "0" + str(second) else: str_sec = str(second) return str(minute) + ":" + str_sec + "." + str(second_tenth) # display the game results def game_result(): return str(nmber_win) + " / " + str(number_stops) # define event handlers for buttons; "Start", "Stop", "Reset" def start(): global timer_running # set the variable to True when running the timer timer_running = True timer.start() def stop(): global number_stops global nmber_win global timer_running if timer_running == True: # add the total number of stops by 1 number_stops = number_stops + 1 # when successfully stops at a whole second if time % 10 == 0: # add the win number by 1 nmber_win = nmber_win + 1 # set the variable to False when the stopwatch stops timer_running = False timer.stop() def reset(): global time global number_stops global nmber_win global timer_running time = 0 number_stops = 0 nmber_win = 0 timer_running = False # define event handler for timer with 0.1 sec interval def timer(): global time time = time + 1 # define draw handler def display(canvas): canvas.draw_text(format(time), (50, 90), 40, 'White') canvas.draw_text("win / total",(135, 20),15,'Red') canvas.draw_text(game_result(), (140, 40), 23, 'Red') # create frame frame = simplegui.create_frame("Stop watch", 200, 150) label = frame.add_label("Stopwatch: The Game") # register event handlers frame.add_button("Start", start, 120) frame.add_button("Stop", stop, 120) frame.add_button("Reset", reset, 120) frame.set_draw_handler(display) timer = simplegui.create_timer(100, timer) # start frame frame.start()
UTF-8
Python
false
false
2,388
py
7
Stopwatch.py
6
0.611809
0.582496
0
84
26.404762
70
chaitanyak52/fairing
5,729,486,409,668
b5f2f9e6357928a68f8e067e743e35bbfdd67d58
1d4dbd4bf687c3b7e12a329a16eb600f8cbab72b
/fairing/deployers/gcp/gcp.py
9f8d8c18db35e0538d100f7034587d7ed87e2459
[ "Apache-2.0" ]
permissive
https://github.com/chaitanyak52/fairing
1d9075fcf42d5305d04f6a34d85e2a5cce2ec322
bf7930f0ee8832d4a942ca7e308b56ed0b9a924c
refs/heads/master
2021-06-13T19:14:02.380885
2019-06-27T14:49:57
2019-06-27T14:49:57
193,507,639
2
0
Apache-2.0
false
2021-06-01T23:52:36
2019-06-24T13:08:38
2019-08-14T12:29:32
2021-06-01T23:52:35
3,355
2
0
1
Jsonnet
false
false
from fairing import utils from fairing.deployers.deployer import DeployerInterface from fairing.cloud.gcp import guess_project_name from fairing import http_utils from oauth2client.client import GoogleCredentials from googleapiclient import discovery from googleapiclient import errors class GCPJob(DeployerInterface): """Handle submitting training job to GCP. Attributes: project_id: Google Cloud project ID to use. region: region in which the job has to be deployed. Ref: https://cloud.google.com/compute/docs/regions-zones/ scale_tier: machine type to use for the job. Ref: https://cloud.google.com/ml-engine/docs/tensorflow/machine-types job_config: Custom job configuration options. If an option is specified in the job_config and as a top-level parameter, the parameter overrides the value in the job_config. Ref: https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs """ def __init__(self, project_id=None, region=None, scale_tier=None, job_config=None): self._project_id = project_id or guess_project_name() self._region = region or 'us-central1' self._job_config = job_config or {} self.scale_tier = scale_tier self._ml = discovery.build('ml', 'v1') self._ml._http = http_utils.configure_http_instance(self._ml._http) def create_request_dict(self, pod_template_spec): """Return the request to be sent to the ML Engine API.""" # TODO: Update deploy interface to pass image directly instad of # PodTemplateSpec. # Retrieve image uri from pod template spec. image_uri = pod_template_spec.containers[0].image self._job_name = 'fairing_job_{}'.format(utils.random_tag()) # Merge explicitly specified parameters with the job config dictionary request_dict = self._job_config request_dict['jobId'] = self._job_name if 'trainingInput' not in request_dict: request_dict['trainingInput'] = {} if self.scale_tier: request_dict['trainingInput']['scaleTier'] = self.scale_tier if 'masterConfig' not in request_dict['trainingInput']: request_dict['trainingInput']['masterConfig'] = {} request_dict['trainingInput']['masterConfig']['imageUri'] = image_uri if self._region: request_dict['trainingInput']['region'] = self._region return request_dict def deploy(self, pod_template_spec): """Deploys the training job""" request_dict = self.create_request_dict(pod_template_spec) try: print('Creating training job with the following options: {}'.format( str(request_dict))) response = self._ml.projects().jobs().create( parent='projects/{}'.format(self._project_id), body=request_dict ).execute() print('Job submitted successfully.') self.get_logs() return self._job_name except errors.HttpError as err: print('There was an error submitting the job.') print(err._get_reason()) def get_logs(self): """Streams the logs for the training job""" print('Access job logs at the following URL:') print('https://console.cloud.google.com/mlengine/jobs/{}?project={}' .format(self._job_name, self._project_id))
UTF-8
Python
false
false
3,464
py
114
gcp.py
88
0.637991
0.636547
0
80
42.3
87
b2220333/panda3d-editor
18,657,337,943,299
15c28b9efea38f45fbc7d7627b255d627bd96aa6
c311242ac4796a275c84c503c4ca2f7eb2db4b9a
/src/pandaEditor/editor/nodes/sceneRoot.py
c7e6c8c87d978da3890bb4a3763d3e6a208af446
[ "MIT" ]
permissive
https://github.com/b2220333/panda3d-editor
c9773631733d78e71fc76abfca72bc588600141e
f87fadf03048508a909d38f9714a72cb01abf069
refs/heads/master
2020-03-27T08:59:03.964485
2016-10-08T01:41:37
2016-10-08T01:41:37
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from game.nodes.sceneRoot import SceneRoot as GameSceneRoot class SceneRoot( GameSceneRoot ): def GetChildren( self ): children = [] comps = [render2d, render] + base.scene.comps.keys() for comp in comps: children.append( base.game.nodeMgr.Wrap( comp ) ) return children
UTF-8
Python
false
false
343
py
140
sceneRoot.py
140
0.603499
0.600583
0
13
25.461538
61
Lifefang/python-labs
7,765,300,880,670
971ab5ab1a8bffb6e59b4252f60a9ee1720bc8ab
69c5b9a024dfdaf8e0fd9be5df68e6afcf292557
/Lab3_Act1_d.py
11f52128054b97c1a131351090c2204376e208f3
[]
no_license
https://github.com/Lifefang/python-labs
a85bab0a66b2170d047752c923e2d9b21c78a491
c257c35f73c87f27e7dd90119428f097bea2b9e9
refs/heads/master
2020-08-02T21:16:58.817993
2019-12-07T15:10:28
2019-12-07T15:10:28
211,509,984
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# “Aggies do not lie, cheat, or steal, or tolerate those who do” # “I have not given or received any unauthorized aid on this assignment” # # Name: RYAN WALTERBACH # Section: 537 # Assignment: LAB4b_Prog4 # Date: 20 9 2019 from math import * print('Enter the coefficient for A:') A = float(input()) print('Enter the coefficient for B:') B = float(input()) print('Enter the coefficient for C:') C = float(input()) # The quadratic formula is: (-row_4 +- sqrt(row_4**2 - 4*A*C)) / (2*A) if A != 0: # If input A doesnt equal zero then it will have 2 zeros b1 = -B # squareroot = B**2 - 4*A*C a1 = 2 * A if squareroot > 0: # If the square root is positive then there will be real zeros zero1 = (b1 + sqrt(squareroot)) / a1 zero2 = (b1 - sqrt(squareroot)) / a1 print('The zeros are line_number=', zero1, 'and line_number=', zero2) elif squareroot < 0: # If the square root is negative then there will be imaginary zeros squareroot = -squareroot zero1 =print('line_number=', (b1/a1),'+ months', (sqrt(squareroot)/a1)) zero2 = print('line_number=',(b1/a1),'+ months', (sqrt(squareroot)/a1)) if A == 0 and B != 0: # If only A = 0 then there will be one zero zero = (-C)/ B print('If A=0 there is only one root. It being line_number=',zero,) if A == 0 and B == 0: # If A and B = 0 then C must also equal zero if C != 0: # C has to be zero is A and B are. If then there will be an error print('Error') elif C == 0: # If C does equal 0 then there will be no zeros. print('No zeros found.')
UTF-8
Python
false
false
1,600
py
71
Lab3_Act1_d.py
70
0.621231
0.588568
0
36
43.25
93
stratosm/NLP_modules
14,190,571,989,278
7ea92369c18c224dadcf1d80ff86765725cb2705
1662a53ab7e9c07b96bfd7fc9648f5f9d305d028
/src/clean_rows.py
ea8608563090f6d5eda6f12d8b37cc228dce9949
[]
no_license
https://github.com/stratosm/NLP_modules
deec43d17e2bdb60f60202b10cf9355748dcf69c
5a30de3dfcd761d2538edbaf95e912be6fc6c64b
refs/heads/master
2022-07-04T18:46:04.875672
2020-05-16T14:17:32
2020-05-16T14:17:32
264,003,463
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Author: Stratos mansalis import numpy as np import pandas as pd def clean_NaN(df): """ Clean the sentences from NaN (Not a Number) and empty rows. Note! Drop the unnecessary columns first and then use this function. Arguments --------- df: the given dataframe Usage ----- new_df = clean_rows(df) Returns ------- A dataframe cleaned from empty rows or rows contain NaNs """ # there are few nan as text values, not np.nan df = df.replace('nan', '') df = df.replace('NaN', '') # replace field that's entirely space (or empty) with NaN df = df.replace(r'^\s*$', np.nan, regex=True) # total number of NaNs total_nan = df.isna().sum().sum() # total number of rows total_rows = df print('There are ',total_nan,' rows that contain NaN values.') print('Removing these rows ...') columns = df.columns.astype(str).tolist() df.dropna(subset=columns, inplace=True) print('Succesfully Deleted!') return df
UTF-8
Python
false
false
1,100
py
19
clean_rows.py
10
0.571818
0.571818
0
47
22.404255
76
ntadej/racorodja
4,638,564,728,277
da6c8d6c9cd95c1e54dfb2b1e2072858324b7d25
65b9bc780fd8226cc1a27782fae4761def781a60
/python/branje_matrika.py
9a11d27717d22046fddbd5dcb3a5aaffad61409f
[ "MIT" ]
permissive
https://github.com/ntadej/racorodja
044f1f93594b3e8c52523492737d827f6d1f538b
8c391c42d5f4cb6861982e367da31ee19f9f24c8
refs/heads/master
2023-08-25T09:21:05.023814
2016-06-02T06:47:45
2016-06-02T06:47:54
53,779,403
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Ustvarimo prazen seznam vrstic, ki jih bomo prebrali data = [] # Ukaz 'with' zagotovi, da se datoteka na koncu bloka zapre in nam # ni potrebno vec paziti na to with open('../data/matrika.dat', 'r') as f: # beremo vrstico po vrstico for line in f: # odstranimo odvecne presledke line = line.strip() # locimo podake po presledkih in jih pretvorimo v celo stevilo h = [int(x) for x in line.split()] # dodamo vrstico data.append(h) print(data)
UTF-8
Python
false
false
501
py
15
branje_matrika.py
8
0.642715
0.642715
0
16
30.3125
70
sophiaems1/ColumbiaPythonCourse
13,451,837,593,718
46fa798908180931e9a8aaf53b66f75f3ee9b967
aa3e05df216aa135b9062a5608d46aec249dadd6
/A2_Hot_or_Cold_sem2275.py
a96298183471fb6d536076b8afe3c35b090fb105
[]
no_license
https://github.com/sophiaems1/ColumbiaPythonCourse
5d5fa4686531033e1ad25e5480f10aad8e35bcdf
f39bcd63191ad59678313f859e28387ad5d3ace4
refs/heads/main
2023-06-15T20:25:35.790379
2021-07-14T13:41:45
2021-07-14T13:41:45
385,954,362
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
code = 25 print("Welcome to Sophia's Hot or Cold game!") print("You have a total of 10 tries to figure out the secret number between 1 and 100 (only integers).") x = int(input("Enter a guess:")) guesses = 1 while x != code: if x >= 0 and x < 15: print("You're warm!") x = int(input("Enter a new guess (so close!): ")) guesses = guesses + 1 if x > 35 and x <= 50: print("You're warm!") x = int(input("Enter a new guess (so close!): ")) guesses = guesses + 1 if x >= 15 and x <= 35: print("You're on fire!") x = int(input("Enter a new guess (YOU GOT THIS!!): ")) guesses = guesses + 1 if x > 50 and x <= 75: print("You're cold!") x = int(input("Enter a new guess (try smaller numbers): ")) guesses = guesses + 1 if x > 75: print("You're freezing cold!") x = int(input("Enter a new guess (think MUCH smaller): ")) guesses = guesses + 1 elif guesses == 10: print(f"Sorry, you lost the game. The correct number was: {code}.") break print() print() if x == 25: print("You're amazing! Great job, you found Sophia's secret code!") print() print(f"It took you {guesses} guesses!".format(guesses))
UTF-8
Python
false
false
1,298
py
7
A2_Hot_or_Cold_sem2275.py
7
0.546995
0.520031
0
37
33.027027
104
spivachuk/sovrin-node
962,072,708,230
18350f3a66aa3c89ba3f491f90d92d85bb058145
5503910c7093a4977156aab2f04261a4bdb76fbe
/scripts/performance/Measuring_Transactions/measuring_transactions.py
1ff94384c131427be09d884a5228391d05b5774c
[ "Apache-2.0" ]
permissive
https://github.com/spivachuk/sovrin-node
8092cc3b9aab589b6c20d9662a5f3e0564219533
4db8ed69407d11bffb90ca6f998efd671df697c5
refs/heads/master
2020-12-31T05:39:53.508220
2018-07-24T13:56:02
2018-07-24T13:56:02
80,642,284
0
0
Apache-2.0
true
2018-07-24T14:01:21
2017-02-01T16:59:41
2018-07-24T13:56:11
2018-07-24T14:01:21
10,090
0
0
0
Python
false
null
''' Created on Feb 26, 2018 @author: khoi.ngo ''' import argparse from asyncio.events import get_event_loop import json from indy import ledger, signus, pool, wallet class Options: """ This class use to pass the value from command line. """ def __init__(self): parser = argparse.ArgumentParser( description='This script will show the current number of ' 'transaction and then show how many transactions per minute.') parser.add_argument('-c', help='Use to get current seqNo of transactions', action='store_true', default=False, required=False, dest='count') parser.add_argument('-s', help='It is the starting seqNo of the transaction', action='store', default=False, required=False, dest='start_seqNo') parser.add_argument('-e', help='It is the ending seqNo of the transaction', action='store', default=False, required=False, dest='end_seqNo') self.args = parser.parse_args() class Colors: """ Class to set the colors for text. """ OKGREEN = '\033[92m' FAIL = '\033[91m' ENDC = '\033[0m' # Normal default color. class Var: pool_handle = 0 wallet_handle = 0 def force_print_to_console(message: str, color: str): """ Force print a message to console (no matter log is captured or not). :param message: :param color: """ msg = color + message + Colors.ENDC print(msg) def print_green(message: str): """ Force print a message with green color to console (no matter log is captured or not). :param message: """ force_print_to_console(message, Colors.OKGREEN) def print_error(message: str): """ Force print a message with green color to console (no matter log is captured or not). :param message: """ force_print_to_console(message, Colors.FAIL) def generate_random_string(prefix="", suffix="", size=20): """ Generate random string . :param prefix: (optional) Prefix of a string. :param suffix: (optional) Suffix of a string. :param size: (optional) Max length of a string (include prefix and suffix) :return: The random string. """ import random import string left_size = size - len(prefix) - len(suffix) random_str = "" if left_size > 0: random_str = ''.join( random.choice(string.ascii_uppercase + string.digits) for _ in range(left_size)) else: print("Warning: Length of prefix and suffix more than %s chars" % str(size)) result = str(prefix) + random_str + str(suffix) return result async def create_submitter_did(): try: # variable pool_txn = "/var/lib/indy/sandbox/pool_transactions_genesis" pool_name = generate_random_string("test_pool") wallet_name = generate_random_string("test_wallet") seed_default_steward = "000000000000000000000000Steward1" pool_config = json.dumps({"genesis_txn": pool_txn}) # Create pool await pool.create_pool_ledger_config(pool_name, pool_config) Var.pool_handle = await pool.open_pool_ledger(pool_name, None) # Create Wallet await wallet.create_wallet(pool_name, wallet_name, None, None, None) Var.wallet_handle = await wallet.open_wallet(wallet_name, None, None) submitter_did, _ = await signus.create_and_store_my_did( Var.wallet_handle, json.dumps({"seed": seed_default_steward})) target_did, _ = await signus.create_and_store_my_did( Var.wallet_handle, json.dumps({})) return submitter_did, target_did except Exception as e: print_error("Exception: " + str(e)) async def get_current_number_of_the_transaction(): """ Get the current number of transaction. @return: return the number of transaction. """ submitter_did, target_did = await create_submitter_did() seqNo = 0 try: nym_req = await ledger.build_nym_request(submitter_did, target_did, None, None, None) response = await ledger.sign_and_submit_request(Var.pool_handle, Var.wallet_handle, submitter_did, nym_req) seqNo = json.loads(response)['result']['seqNo'] print_green("Current number of transactions: " + str(seqNo)) return seqNo except Exception as e: print_error("Exception: " + str(e)) async def get_a_transaction_by_seqNo(seqNo): """ Get the transaction by number. @param seqNo: The seqNo of the transaction. That will be used to get transaction information. @return: return the transaction information. """ submitter_did, _ = await create_submitter_did() get_txn_request = await ledger.build_get_txn_request(submitter_did, int(seqNo)) result = await ledger.sign_and_submit_request(Var.pool_handle, Var.wallet_handle, submitter_did, get_txn_request) return result async def calculate_transactions_per_minute(start_seqNo, end_seqNo): """ Calculating the transactions per minute by getting the begin transaction and the current transaction. Then it shows the number of transactions per minute, second. @param start_seqNo: The starting seqNo of the transaction. That will be used to get transaction information. @param end_seqNo: The ending seqNo of the transaction. That will be used to get transaction information. """ try: # get time of the begin transaction start_number = int(start_seqNo) begin_trans = await get_a_transaction_by_seqNo(start_number) begin_time = int(json.loads(begin_trans)['result']['data']['txnTime']) # get number and time of the latest transaction if not end_seqNo: latest_number = await get_current_number_of_the_transaction() - 1 else: latest_number = int(end_seqNo) latest_trans = await get_a_transaction_by_seqNo(latest_number) latest_time = int(json.loads(latest_trans)['result']['data']['txnTime']) # calculate the transactions per second num_of_trans = latest_number - int(start_number) duration_as_second = latest_time - begin_time duration_as_minute = (latest_time - begin_time) / 60 result_minute = num_of_trans / duration_as_minute result_second = num_of_trans / duration_as_second print_green("From number: " + str(start_number) + " - Timestamp: " + str(begin_time)) print_green("To number: " + str(latest_number) + " - Timestamp: " + str(latest_time)) print_green("ADD measurement") print_green(str(int(result_minute)) + " txns/min") print_green(str(int(result_second)) + " txns/sec") except Exception as e: print("Exception: " + str(e)) if __name__ == '__main__': args = Options().args try: loop = get_event_loop() if args.count: loop.run_until_complete(get_current_number_of_the_transaction()) elif args.start_seqNo: loop.run_until_complete( calculate_transactions_per_minute( args.start_seqNo, args.end_seqNo)) loop.close() except Exception as e: print("Exception: " + str(e))
UTF-8
Python
false
false
7,963
py
18
measuring_transactions.py
16
0.578802
0.572021
0
224
34.549107
93
MarkLyck/py_ai
764,504,205,695
123e4d708c472d8f581e62d61ce3561b7b3e024e
380bdc92f71ca472d9268af7476235b24fd38a22
/NLP/NLP.py
976b8b528468f477fa0ec52a8750b2d6e276bd45
[]
no_license
https://github.com/MarkLyck/py_ai
662e8e121cd3c0130455fe9518690877a0a32d54
6d398978a248eafb944f738888d4109817eaecec
refs/heads/master
2021-01-13T14:05:18.351013
2016-12-13T02:52:02
2016-12-13T02:52:02
76,211,511
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def tasks(originalMessage): return { 'originalMessage': originalMessage }
UTF-8
Python
false
false
79
py
2
NLP.py
2
0.746835
0.746835
0
2
38
49
ParallelMeaningBank/easyccg
12,996,571,049,643
0de744edd6edc9f7e9ce1509ff7ae1cf299a03da
37f5037bb23db69b934c0940b5fa3c3400266626
/training/eval_test.py
fd2c130515ebda6082ea0b79376cd161d43c5487
[ "MIT" ]
permissive
https://github.com/ParallelMeaningBank/easyccg
052d2a429267876893df834cba7999c27fa0c5fb
a36ea6037e905cc7917cc5163e810ec0e2670a62
refs/heads/master
2020-04-05T16:13:28.043930
2019-11-14T10:58:49
2019-11-14T10:59:00
61,124,350
2
1
null
true
2016-06-14T13:19:23
2016-06-14T13:19:22
2016-05-27T11:51:05
2016-05-31T14:24:24
61,522
0
0
0
null
null
null
import sys from collections import Counter rawfile=sys.argv[1] goldfile=sys.argv[2] infile=sys.argv[3] brackets={} brackets["-LRB-"]="(" brackets["-RRB-"]=")" brackets["-LSB-"]="[" brackets["-RSB-"]="]" brackets["-LCB-"]="{" brackets["-RCB-"]="}" file=open("/group/corpora/public/ccgbank/data/LEX/CCGbank.02-21.lexicon") seenw=set() for line in file: word=line.split()[0] cat=line.split()[1] #cat=rgx.sub("S",cat) word=brackets.get(word,word) wordcat=word+" "+cat if word not in seenw: seenw.add(word) file.close() stoks={} snum=0 file=open(rawfile) for line in file: stuff=line.split() t=0 stoks[snum]={} for tok in stuff: stoks[snum][t]=tok t=t+1 snum=snum+1 file.close() file=open(goldfile) snum=0 sentences={} totalr=Counter() totr=0 totrCov=0 for line in file: stuff=line.split() id=stuff[0] sentences[snum]=set() for dep in stuff[1:]: argstype=dep.rstrip("]").split("[") args=argstype[0].split("-") deptype=argstype[1].lstrip("<").rstrip(">") argl=int(args[0]) argr=int(args[1]) if argstype[1][0]=="<": temp=argr argr=argl argl=temp sentences[snum].add(deptype+" %03d %03d "%(argl,argr)) #totalr[deptype]=totalr[deptype]+1 totr=totr+1 snum=snum+1 file.close() print snum stuffcount=Counter() file=open(infile) flag=0 snum=0 totc=0 correct=Counter() corpos=Counter() scorpos=Counter() slcorrect=Counter() srcorrect=Counter() lrtotc=0 wrong=Counter() totp=0 totalp=Counter() totpos=Counter() stotpos=Counter() sltotalp=Counter() srtotalp=Counter() lrtotp=0 sltotalr=Counter() srtotalr=Counter() lrtotr=0 cov=0 deps=set() sents=0 for line in file: stuff=line.split() if len(stuff) > 0 and stuff[0]=="<c>": t=0 wpos={} for tokcat in stuff[1:]: tok=tokcat.split("|")[0] pos=tokcat.split("|")[1] wpos[t]=pos if tok != stoks[snum][t] and "&" not in stoks[snum][t]: print snum, t, tok, stoks[snum][t] snum=snum+1 t=t+1 args=set() if deps: for dep in sentences[snum]: deptype=dep.split()[0] argl=int(dep.split()[1]) argr=int(dep.split()[2]) args.add(argl) args.add(argr) wordl=stoks[snum][argl] wordr=stoks[snum][argr] seenl=(wordl not in seenw) seenr=(wordr not in seenw) if seenl: sltotalr[deptype]=sltotalr[deptype]+1 if seenr: srtotalr[deptype]=srtotalr[deptype]+1 if seenl and seenr: lrtotr=lrtotr+1 totalr[deptype]=totalr[deptype]+1 totrCov=totrCov+1 #if deptype=="nsubj": # totpos[wpos[argl]]=totpos[wpos[argl]]+1 # if seenl: # stotpos[wpos[argl]]=stotpos[wpos[argl]]+1 for depw in deps: dep=" ".join(depw.split()[0:3])+" " wordl=depw.split()[3] wordr=depw.split()[4] seenl=(wordl not in seenw) seenr=(wordr not in seenw) deptype=dep.split()[0] argl=int(dep.split()[1]) argr=int(dep.split()[2]) if dep in sentences[snum]: totc=totc+1 correct[deptype]=correct[deptype]+1 if seenl: slcorrect[deptype]=slcorrect[deptype]+1 if seenr: srcorrect[deptype]=srcorrect[deptype]+1 if seenl and seenr: lrtotc=lrtotc+1 if deptype=="nsubj": corpos[wpos[argl]]=corpos[wpos[argl]]+1 if seenl: scorpos[wpos[argl]]=scorpos[wpos[argl]]+1 if argl in args and argr in args: totp=totp+1 totalp[deptype]=totalp[deptype]+1 if seenl: sltotalp[deptype]=sltotalp[deptype]+1 if seenr: srtotalp[deptype]=srtotalp[deptype]+1 if seenl and seenr: lrtotp=lrtotp+1 if flag==1: cov=cov+1 if len(sentences[snum]) > 0: sents=sents+1 snum=snum+1 flag=0 deps=set() elif len(line)>0 and line[0]=="(": flag=1 #if stuff[1] in ["_"]:#,"part","num","poss"]: # del stuff[1] stuffcount[len(stuff)]=stuffcount[len(stuff)]+1 if len(stuff) == 3: deptype=stuff[0][1:] wordl=stuff[1].split("_")[0] wordr=stuff[2].split("_")[0] if stuff[1].split("_")[1] != "" and stuff[2].split("_")[1] != "": argl=int(stuff[1].split("_")[1]) argr=int(stuff[2].split("_")[1].rstrip(")")) deps.add(deptype+" %03d %03d "%(argl,argr)+" "+wordl+" "+wordr) file.close() #print snum print "Coverage: ", sents, snum, float(cov)/float(snum) precision=float(totc)/float(totp) recall=float(totc)/float(totrCov) fscore=2*(precision*recall)/(precision+recall) print "recall (cov):", totc, totrCov, recall print "precision (cov):", totp, totc, precision print "fscore (cov):", fscore print precision=float(totc)/float(totp) recall=float(totc)/float(totr) fscore=2*(precision*recall)/(precision+recall) print "recall (all):", totr, totc, recall print "precision (all):", totp, totc, precision print "fscore (all):", fscore print for deptype, countr in totalr.most_common(): countp=max(totalp[deptype],1) slcountp=max(sltotalp[deptype],1) srcountp=max(srtotalp[deptype],1) slcountr=max(sltotalr[deptype],1) srcountr=max(srtotalr[deptype],1) print deptype, countr, correct[deptype], float(correct[deptype])/float(countr), float(correct[deptype])/float(countp), slcountr, float(slcorrect[deptype])/float(slcountr), srcountr, float(srcorrect[deptype])/float(srcountr) print for pos, count in totpos.most_common(): scount=max(1,stotpos[pos]) print pos, count, scount, float(corpos[pos])/float(count), float(scorpos[pos])/float(scount)
UTF-8
Python
false
false
5,491
py
42
eval_test.py
32
0.624841
0.603715
0
226
22.287611
224
NareshPeshwe/new_project
3,985,729,677,463
d36d26e5b2bfbd3564d14f8e2e03db910ade6e92
5b84cd2bbd88a9d89a76b43713a9fa3bf2ec8f01
/social/urls.py
796eb7bc0e2f820d4f66991c841b2a431e1049a9
[]
no_license
https://github.com/NareshPeshwe/new_project
a5c0f0cde66125ced05c30c5387421c86fc5dbf5
dda51c7729e690ac038497c25cce719639a7d3c2
refs/heads/master
2018-03-23T09:51:18.196333
2016-06-06T09:48:18
2016-06-06T09:48:18
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^key/$', views.index, name='index'), url(r'^register/$',views.sign_up,name="sign_up"), url(r'^loggedin/$',views.sign_in,name="sign_in"), url(r'^update/$',views.update,name="update"), url(r'^log_out/$',views.log_out,name="log_out"), #url(r'^build_team/$',views.build_team,name="build_team"), url(r'^player_profile/$',views.player_profile,name="player_profile"), #url(r'^owner_profile/$',views.owner_profile,name="owner_profile"), #url(r'^add_ground/$',views.add_ground,name="add_ground"), ]
UTF-8
Python
false
false
646
py
5
urls.py
4
0.636223
0.636223
0
16
39.4375
73
SakuraYUI/recognition_SVM
8,366,596,337,935
c6d4503da0788abcb9901ba552ad8d17b8f0b9e2
d54c3b3f345fedc4e64dbbf18455147199dd5bb2
/save.py
f4301bedb1e1f7a58edc842a4f8541a750dde806
[]
no_license
https://github.com/SakuraYUI/recognition_SVM
1fda9f54eb6c6ae8543056397b9ab12fc0efe8b7
a59383dd0584175befc91c3179d07d4a18082ac2
refs/heads/master
2021-01-11T15:00:47.020697
2017-02-17T06:27:09
2017-02-17T06:27:09
80,279,443
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import sys path = "D:\Python 2.7.9\libsvm-3.16\python" sys.path.append(path) from svmutil import * import Image import random NUM = 30 for i in range(1, NUM): train_label, train_matrix = svm_read_problem('./dataocr/ocr_' + str(i)) model = svm_train(train_label, train_matrix, '-c 3 -g 0.015625') svm_save_model('./datamodel/model_' + str(i), model)
UTF-8
Python
false
false
408
py
8
save.py
7
0.620098
0.57598
0
14
27.214286
75
yogendrabohara/tdddjango
11,948,599,033,477
76917498b6b9f6a50caaf8016a0b22d5caf7f194
ee2c2188eacf35de859ddff22337b2caf0e488de
/xword_data/views.py
ca4852484a930bb43fb9f978a936ce18558b6025
[]
no_license
https://github.com/yogendrabohara/tdddjango
020098401886338f2c3abb5d1f1027eedb4abb80
949958d36201d8582b3190d90aac725638f97b73
refs/heads/main
2023-08-15T23:59:22.249395
2021-09-10T17:28:21
2021-09-10T17:28:21
404,807,952
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render from .models import Clue from django.http import Http404 from django.shortcuts import redirect # Create your views here. def drillView(request): if request.method == 'GET': clue = Clue.objects.order_by('?').first() results = "" else: clue = Clue.objects.get(id=request.POST['clue_id']) print(clue) if clue.entry.entry_text.lower() == request.POST['answer'].lower(): return redirect('xword-answer', clue.id) else: results = 'not correct' # for requested count if request.session.get('requested_count'): requested_count = request.session.get('requested_count') + 1 else: requested_count = 1 return render(request, 'drill.html', {'clue': clue, 'requested_count': requested_count, 'result': results})
UTF-8
Python
false
false
848
py
13
views.py
9
0.639151
0.633255
0
25
32.92
111
moigagoo/sphinxcontrib-swagger2sphinx
16,939,351,058,224
884745461698033b8f20bffc12845d37c38a11d0
da3a59dc6e6e23b6086fd0166d82dce639d76ff2
/setup.py
7bf124b56b559acdef5b96b7efa4065e7cdabe3f
[]
no_license
https://github.com/moigagoo/sphinxcontrib-swagger2sphinx
2b7fdbb6d01fc80c5512d74bec7e3f95b67cdc80
bb10723ebca52974fc316e44488688e03bbbc2a6
refs/heads/master
2020-05-23T08:19:02.549958
2016-10-11T08:28:56
2016-10-11T08:28:56
70,225,816
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
from setuptools import setup def readme(): try: with open("README.rst") as f: return f.read() except IOError: pass setup( name="sphinxcontrib-swagger2sphinx", version="0.1.5", url="https://github.com/moigagoo/sphinxcontrib-swagger2sphinx", download_url="https://pypi.org/project/sphinxcontrib-swagger2sphinx", license="MIT", author="Konstantin Molchanov", author_email="moigagoo@live.com", description="Converter from Swagger to Sphinx HTTP domain.", long_description=readme(), classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Documentation", "Topic :: Utilities", ], py_modules=["sphinxcontrib.swagger2sphinx"], packages=["sphinxcontrib"], package_dir={"sphinxcontrib": '.'}, platforms="any", install_requires=["Sphinx>=1.0", "requests"] )
UTF-8
Python
false
false
1,171
py
3
setup.py
2
0.605465
0.596926
0
37
29.648649
73
LukeEuler/project-euler
5,093,831,219,422
8980bb8ec4f46a6245647ff96da6b0a44ab07f6b
b9dbf54c5ac0083a094145ac6c22781e5e1c0ffb
/problem_12.py
4ef6bd286d406254fa20e651b647ebf32498d576
[]
no_license
https://github.com/LukeEuler/project-euler
8197ed068f673010f13d19045fef1aa05899a843
0833a8ab931f5c3499a6e6ca695b1fe579eca62c
refs/heads/master
2020-12-02T18:15:10.184004
2017-10-01T07:45:47
2017-10-01T07:45:47
96,504,562
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """Highly divisible triangular number.""" # https://projecteuler.net/problem=12 from app import Problem from utils import Prime class Problem12(Problem): """Highly divisible triangular number.""" def __init__(self): self.name = "problem 12" self.num = 500 self.primes = [] for prime in Prime(): self.primes.append(prime) if len(self.primes) > 500: break def triangle(self, num): return int(num * (num + 1) / 2) def factorsNum(self, num): result = 1 for prime in self.primes: if prime > num: break primeFactorsNum = 0 while num % prime == 0: primeFactorsNum += 1 num = int(num / prime) result *= (primeFactorsNum + 1) return result def solve(self): n = 1 while True: triangle = self.triangle(n) result = self.factorsNum(triangle) if result > self.num: return triangle n += 1 Problem12().run()
UTF-8
Python
false
false
1,127
py
28
problem_12.py
27
0.510204
0.488909
0
48
22.479167
46
AlexPraefectus/labs_web
2,396,591,773,523
5fce201ecfac0aa59eb2ddb3083b70dd62aa018f
327482022ed6ba5ce79c63ceb1bbf9538cbdb338
/labs_web/views/tutor/answer_ticket.py
07260c3b9c2beaad61f6d88990c8590e2a3b62b0
[ "BSD-3-Clause" ]
permissive
https://github.com/AlexPraefectus/labs_web
b798d2e352d81b2dd065440581480d9b350df2dc
9bfd69ffc2196832523d5809cf921debe530f886
refs/heads/master
2021-08-16T11:07:27.637687
2020-06-19T08:18:25
2020-06-19T08:18:25
127,518,643
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask.views import View from flask_login import current_user, login_required from labs_web.extensions import AnswerTicketForm, Tickets, mongo_oid from flask import request, flash, render_template, abort from datetime import datetime import math class AnswerTicket(View): PER_PAGE = 5 methods = ["GET", "POST"] decorators = [login_required] def dispatch_request(self, *args, **kwargs): try: page = int(request.args.get('page')) except (ValueError, TypeError): flash("invalid integer literal for page/no page provided") return abort(404) pages = int(math.ceil(Tickets.count({'course.id': {'$in': [course.course_id for course in current_user.courses]}, 'checked': {'$exists': False}}) / AnswerTicket.PER_PAGE)) if page > pages and page != 1: # page number should exist but first page is always available abort(404) # pagination tickets = Tickets.find({'course.id': {'$in': [course.course_id for course in current_user.courses]}, 'checked': {'$exists': False}}). \ skip((page - 1) * AnswerTicket.PER_PAGE).limit(AnswerTicket.PER_PAGE) form = AnswerTicketForm() form.selected_ticket.choices = [(str(ticket['_id']), "{} - {} ({}) {}".format(ticket['topic'], ticket['author']['name'], ticket['author']['group'], ticket['sent'].strftime("%d %b %Y: %H:%M"))) for ticket in tickets] if request.method == 'POST' and form.validate_on_submit(): Tickets.find_one_and_update({'_id': mongo_oid(form.data.get('selected_ticket'))}, {'$set': {'checked': datetime.utcnow(), 'answ_body': form.data.get('answ_body'), 'public': form.data.get('make_public')}}) flash('Ticket answer saved') for field, errors in form.errors.items(): for message in errors: flash(message) return render_template('tutor/answer_ticket.html', tickets=tickets, form=form, page=page, pages=pages)
UTF-8
Python
false
false
2,753
py
143
answer_ticket.py
89
0.455866
0.452597
0
52
51.942308
110
fictionic/pacman_ai
2,843,268,369,026
4951ddda4cf3ef88d3261d4844958d352d351fb0
e7e2e74dbe32be78f2ca4a483066ebe83eb0f5e0
/project2/multiAgents.py
c96d8c324f650bfde876bad2fd03a2f80aab3d19
[]
no_license
https://github.com/fictionic/pacman_ai
b3146a9b34e8f42e16dc448cd9bc0364898c8492
ce52db1fe44eeb236bacdc5973cb81b4cbb3d922
refs/heads/master
2021-06-16T14:33:33.793903
2017-02-03T04:59:07
2017-02-03T04:59:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# multiAgents.py # -------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). from util import manhattanDistance from game import Directions import random, util from game import Agent import sys class ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. """ def getAction(self, gameState): """ getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {North, South, West, East, Stop} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState, action): """ The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (newFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. This evaluation function is not particularly good; using information from the game state would allow it to be much better, although still not as good as an agent that plans. You may find the information listed below helpful in later parts of the project (e.g., when designing an evaluation function for your planning agent). """ # Useful information you can extract from a GameState (pacman.py) successorGameState = currentGameState.generatePacmanSuccessor(action) newPos = successorGameState.getPacmanPosition() newFood = successorGameState.getFood() newGhostStates = successorGameState.getGhostStates() newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] return successorGameState.getScore() def scoreEvaluationFunction(currentGameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore() class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'): self.index = 0 # Pacman is always agent index 0 self.evaluationFunction = util.lookup(evalFn, globals()) self.depth = int(depth) def debug(s): # print(s) pass class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 1) """ def getAction(self, gameState): """ Returns the minimax action from the current gameState using self.depth and self.evaluationFunction. Here are some method calls that might be useful when implementing minimax. gameState.getLegalActions(agentIndex): Returns a list of legal actions for an agent agentIndex=0 means Pacman, ghosts are >= 1 gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game """ # we're pacman return self.maxValueAction(0, 0, gameState)[1] def minValueAction(self, ghostIndex, curDepth, state): # if we're at a terminal state if state.isLose() or state.isWin(): return self.evaluationFunction(state), None nextDepth = None if ghostIndex == state.getNumAgents() - 1: func = self.maxValueAction nextIndex = 0 nextDepth = curDepth + 1 else: func = self.minValueAction nextIndex = ghostIndex + 1 nextDepth = curDepth v = None for action in state.getLegalActions(ghostIndex): child = state.generateSuccessor(ghostIndex, action) childV = func(nextIndex, nextDepth, child)[0] if v is None or childV < v: v = childV # if we're at a leaf if len(state.getLegalActions()) == 0: v = self.evaluationFunction(state) return v, None def maxValueAction(self, pacmanIndex, curDepth, state): v = None a = None # if we've reached the max depth, or if we're at a terminal state if curDepth == self.depth or state.isLose() or state.isWin(): return self.evaluationFunction(state), None nextIndex = 1 nextDepth = curDepth for action in state.getLegalActions(pacmanIndex): child = state.generateSuccessor(pacmanIndex, action) childV = self.minValueAction(nextIndex, nextDepth, child)[0] if v is None or childV > v: v = childV a = action # if we're at a leaf if len(state.getLegalActions()) == 0: v = self.evaluationFunction(state) return v, a class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 2) """ def getAction(self, gameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ # we're pacman return self.maxValueAction(0, 0, gameState, -sys.maxint, sys.maxint)[1] def maxValueAction(self, pacmanIndex, curDepth, state, alpha, beta): # if we've reached the max depth, or if we're at a terminal state if curDepth == self.depth or state.isLose() or state.isWin(): return self.evaluationFunction(state), None v = None a = None nextIndex = 1 nextDepth = curDepth for action in state.getLegalActions(pacmanIndex): child = state.generateSuccessor(pacmanIndex, action) childV = self.minValueAction(nextIndex, nextDepth, child, alpha, beta)[0] if v is None or childV > v: v = childV a = action # prune of v>beta if beta is None or v > beta: return v, action alpha = max(v, alpha) if alpha is not None else v # if we're at a leaf if len(state.getLegalActions()) == 0: v = self.evaluationFunction(state) return v, a def minValueAction(self, ghostIndex, curDepth, state, alpha, beta): # if we're at a terminal state if state.isLose() or state.isWin(): return self.evaluationFunction(state), None nextDepth = None if ghostIndex == state.getNumAgents() - 1: func = self.maxValueAction nextIndex = 0 nextDepth = curDepth + 1 else: func = self.minValueAction nextIndex = ghostIndex + 1 nextDepth = curDepth v = None for action in state.getLegalActions(ghostIndex): child = state.generateSuccessor(ghostIndex, action) childV = func(nextIndex, nextDepth, child, alpha, beta)[0] if v is None or childV < v: v = childV # if the parent is pacman if alpha is None or v < alpha: return v, action beta = min(v, beta) if beta is not None else v # if we're at a leaf if len(state.getLegalActions()) == 0: v = self.evaluationFunction(state) return v, None class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def getAction(self, gameState): """ Returns the expectimax action using self.depth and self.evaluationFunction All ghosts should be modeled as choosing uniformly at random from their legal moves. """ return self.maxValueAction(0, 0, gameState)[1] def maxValueAction(self, pacmanIndex, curDepth, state): # if we've reached the max depth, or if we're at a terminal state if curDepth == self.depth or state.isLose() or state.isWin(): return self.evaluationFunction(state), None v = None a = None nextIndex = 1 nextDepth = curDepth for action in state.getLegalActions(pacmanIndex): child = state.generateSuccessor(pacmanIndex, action) childV = self.chanceValueAction(nextIndex, nextDepth, child)[0] if v is None or childV > v: v = childV a = action # if we're at a leaf if len(state.getLegalActions()) == 0: v = self.evaluationFunction(state) return v, a def chanceValueAction(self, ghostIndex, curDepth, state): # if we've reached the max depth, or if we're at a terminal state if state.isLose() or state.isWin(): return self.evaluationFunction(state), None nextDepth = None if ghostIndex == state.getNumAgents() - 1: func = self.maxValueAction nextIndex = 0 nextDepth = curDepth + 1 else: func = self.chanceValueAction nextIndex = ghostIndex + 1 nextDepth = curDepth numLegalActions = len(state.getLegalActions(ghostIndex)) expectedV = 0.0 for action in state.getLegalActions(ghostIndex): child = state.generateSuccessor(ghostIndex, action) childV = func(nextIndex, nextDepth, child)[0] expectedV += childV # if we're at a leaf if len(state.getLegalActions()) == 0: expectedV = self.evaluationFunction(state) expectedV /= numLegalActions return expectedV, None #### helper things for evaluationFunction def getNearestGhost(gameState): curPos = gameState.getPacmanPosition() ghostDist = None closestIndex = None for ghostIndex in xrange(gameState.getNumAgents()): if ghostIndex == 0: continue ghostPos = gameState.getGhostPosition(ghostIndex) dist = manhattanDistance(ghostPos, curPos) if ghostDist is None or dist < ghostDist: ghostDist = dist closestIndex = ghostIndex return closestIndex def getNearestAngryGhost(gameState): curPos = gameState.getPacmanPosition() ghostDist = None closestIndex = None for ghostIndex in xrange(gameState.getNumAgents()): if ghostIndex == 0: continue ghostState = gameState.getGhostState(ghostIndex) # skip all of the scared ghosts for this if ghostState.scaredTimer > 0: continue ghostPos = gameState.getGhostPosition(ghostIndex) dist = manhattanDistance(ghostPos, curPos) if ghostDist is None or dist < ghostDist: ghostDist = dist closestIndex = ghostIndex return closestIndex class Feature: def __init__(self, weight, valueFn): self.weight = weight self.valueFn = valueFn features = [] # number of foods left weight = 70 def fn(gameState): numFood = gameState.getNumFood() if numFood == 0: return 500 return 1.0/numFood**2 feature = Feature(weight, fn) features.append(feature) # manhattan distance to nearest capsule weight = 1 def fn(gameState): ret = None curPos = gameState.getPacmanPosition() for capsule in gameState.getCapsules(): dist = manhattanDistance(capsule, curPos) if ret is None or dist < ret: ret = dist if ret is None: return 0 return 1.0/ret feature = Feature(weight, fn) features.append(feature) # if nearest ghost is scared: distance to scared ghost; # else negative distance to nearest ghost weight = 8 def fn(gameState): ghostIndex = getNearestGhost(gameState) if ghostIndex is None: return 0 ghostState = gameState.getGhostState(ghostIndex) ghost = gameState.getGhostPosition(ghostIndex) curPos = gameState.getPacmanPosition() dist = manhattanDistance(ghost, curPos) if ghostState.scaredTimer > 0: if dist == 0: return 200 if dist == 1: return 0 return 1.0 / dist else: if dist == 0: return -200 if (dist > 6): return 0 return -1.0 / dist feature = Feature(weight, fn) features.append(feature) def betterEvaluationFunction(currentGameState): """ Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: We have a series of features with given weights that are applied to every state when determining value. These features include the number of food left, the distance to the closest capsule and the distance to the nearest ghost (positive or negative value based on whether it is scared or not scared). These are weighted with values 50, 1, and 8, respectively. """ ret = 0 for feature in features: ret += feature.weight * feature.valueFn(currentGameState) return ret # Abbreviation better = betterEvaluationFunction
UTF-8
Python
false
false
14,997
py
3
multiAgents.py
2
0.639595
0.633593
0
404
36.118812
91
atyamsriharsha/VideoEditor
6,914,897,386,426
b21dfb454b0e2d8dbe2223799be7a63dac357bab
74ae604fef2ecd1d53ca4150ab1d510c386251b9
/generatehighlights.py
e13f649130118c933753acca9f8e315c987b0472
[]
no_license
https://github.com/atyamsriharsha/VideoEditor
118fed5fedd9a9f869e1d9155d51e3ad890a22b4
034c8904931bb3ac4b0356093747a031ab03f991
refs/heads/master
2021-01-22T04:01:26.413506
2016-10-20T16:42:49
2016-10-20T16:42:49
69,271,536
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from moviepy.editor import VideoFileClip, concatenate clip = VideoFileClip("match.mp4") cut = lambda i: clip.audio.subclip(i,i+1).to_soundarray(fps=22000) volume = lambda array: np.sqrt(((1.0*array)**2).mean()) volumes = [volume(cut(i)) for i in range(0,int(clip.audio.duration-2))] averaged_volumes = np.array([sum(volumes[i:i+10])/10 for i in range(len(volumes)-10)]) increases = np.diff(averaged_volumes)[:-1]>=0 decreases = np.diff(averaged_volumes)[1:]<=0 peaks_times = (increases * decreases).nonzero()[0] peaks_vols = averaged_volumes[peaks_times] peaks_times = peaks_times[peaks_vols>np.percentile(peaks_vols,90)] final_times=[peaks_times[0]] for t in peaks_times: if (t - final_times[-1]) < 60: if averaged_volumes[t] > averaged_volumes[final_times[-1]]: final_times[-1] = t else: final_times.append(t) final = concatenate([clip.subclip(max(t-10,0),min(t+10, clip.duration)) for t in final_times]) final.to_videofile('highlights.mp4')
UTF-8
Python
false
false
1,053
py
12
generatehighlights.py
7
0.660019
0.624881
0
27
38
71