repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
JulseJiang/DrugKBPrototype
3,032,246,933,707
699b403b2d1b2d7deae4507a01013afe8739cb95
3b9194499503f9e06dbebe113c53afad0b572ab2
/Visualization/functionhelp.py
2c17b58cfc37b4fa09a344204cc4c1932e90d348
[]
no_license
https://github.com/JulseJiang/DrugKBPrototype
0bffa42b2913996d22e40942d24c4da0feb76f33
34567630fe8febb1ea6827541fd3d92f42935ecc
refs/heads/main
2023-03-19T17:57:14.822743
2021-03-18T11:54:22
2021-03-18T11:54:22
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- encoding: utf-8 -*- #------------------------------------------------------------------------------- # @file: function # @Author: GuoSijia # @Purpose: # @Created: 2019-04-21 # @update: 2019-04-21 9:39 # @Software: PyCharm #------------------------------------------------------------------------------- import pymongo import numpy as np import math class DataStorage: def __init__(self, collection_name="", ip_adress='127.0.0.1', port=27017, user="tanxian123", password="123456", db_name="Denovo"): self.name = collection_name self.path = self.__login(ip_adress, port, user, password, db_name) def __login(self, ip_adress, port, user, password, db_name): client = pymongo.MongoClient("127.0.0.1", 27017) db = client['Denovo'] # db.authenticate("tanxian123", "123456") collection = client['Denovo'][self.name] return collection def Storage(self, dic): return self.path.insert(dic) def FindByID(self, ID): return self.path.find_one({'ENTREZ_ID': ID}) def find_one_by_one_condition(self, db_field, value): return self.path.find_one({db_field: value}) def find_count_by_one_condition(self, db_field, value): result_list = [] for item in self.path.find({db_field: value}): result_list.append(item) return result_list class PPIPointClass(object): def __init__(self): self.ds_gene = DataStorage('Genes') # self.ds_protein_exp = DataStorage('ProteinExpress_Update') # self.ds_gene_express = DataStorage('Gtex_Gene_AllTissue') def get_mutation_count(self, id): ''' 判断目标基因携带新发突变个数 :param id: 基因ENTREZ_ID :return: 该基因携带新发突变个数 ''' gene_inforamtion = self.ds_gene.FindByID(id) if gene_inforamtion == None: return 0 else: return gene_inforamtion.get('MutationCount') def get_protein_brain_exp_flag(self, id): ''' 判断目标基因对应的蛋白在脑组织中是否有表达 :param id: 基因ENTREZ_ID :return: 蛋白层面是否在脑中有表达 ''' gene_inforamtion = self.ds_gene.FindByID(id) if gene_inforamtion == None: return False else: return gene_inforamtion.get('ProteinBrainExpress') def get_gene_brain_exp_flag(self, id): ''' 判断目标基因在脑组织中是否有表达 :param id: 基因ENTREZ_ID :return: 基因层面是否在脑中有表达 ''' gene_inforamtion = self.ds_gene.FindByID(id) if gene_inforamtion == None: return False else: return gene_inforamtion.get('GeneBrainExpress') # if __name__ == '__main__': # node_id='126961' # data_nodes = {'data': {}} # ppipointclass=PPIPointClass() # print(ppipointclass.get_mutation_count(node_id)) # print(ppipointclass.get_protein_brain_exp_flag(node_id)) # print(ppipointclass.get_gene_brain_exp_flag(node_id)) # if ((ppipointclass.get_mutation_count(node_id) != 0) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == False) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == False)): # data_nodes['data']['color'] = '#FE0000' # 红色 # data_nodes['data']['type'] = 'circle' # elif ((ppipointclass.get_mutation_count(node_id) == 0) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == True) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == False)): # data_nodes['data']['color'] = '#000081' # 蓝色 # data_nodes['data']['type'] = 'circle' # elif ((ppipointclass.get_mutation_count(node_id) == 0) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == False) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == True)): # data_nodes['data']['color'] = '#039735' # 绿色 # data_nodes['data']['type'] = 'circle' # elif ((ppipointclass.get_mutation_count(node_id) != 0) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == True) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == False)): # data_nodes['data']['color'] = '#D60093' # data_nodes['data']['type'] = 'triangle' # elif ((ppipointclass.get_mutation_count(node_id) != 0) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == False) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == True)): # data_nodes['data']['color'] = '#FFFE35' # data_nodes['data']['type'] = 'rectangle' # elif ((ppipointclass.get_mutation_count(node_id) == 0) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == True) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == True)): # data_nodes['data']['color'] = '#3497CE' # data_nodes['data']['type'] = 'barrel' # elif ((ppipointclass.get_mutation_count(node_id) != 0) and ( # ppipointclass.get_gene_brain_exp_flag(node_id) == True) and ( # ppipointclass.get_protein_brain_exp_flag(node_id) == True)): # data_nodes['data']['type'] = 'diamond' # data_nodes['data']['color'] = '#000000' # else: # data_nodes['data']['type'] = 'circle' # data_nodes['data']['color'] = '#669999' # print(data_nodes)
UTF-8
Python
false
false
4,950
py
67
functionhelp.py
54
0.631889
0.608119
0
135
34.222222
112
pranavgarg1506/Machine_Learning
9,156,870,305,944
2f1d912d53450d23d7cfaa7a80ea93f7a7b68c63
9a92c117403e9b8ed6d0ab4d25ece315288fdfe1
/passwordGenerator/passwordgenerate.py
94b3ed859e53fcace9f280b53a8a4da21b93f48b
[]
no_license
https://github.com/pranavgarg1506/Machine_Learning
b459c1eb0fecf91f958ab349a60d653e8dad51a9
865906d6d9edf76657f71cc8ae275ca1e27ae93a
refs/heads/master
2022-04-11T14:49:28.227047
2020-03-31T15:35:12
2020-03-31T15:35:12
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import datetime Capital = "ABCDEFGIJKLMNOPQRSTUVWXYZ" small = 'abcdefgijklmnopqrstuvwxyz' number = '0123456789' specialCharacters = '!@#$%^&*()' digit = int(input()) print("digit ", digit) password = '' index = 0 # defining probabilities for all the sets # p_Capital = 0 # p_small = 0 # p_number = 0 # p_character = 0 # calculating the currentSum on the basis of current Time def choice1(): currentTimeStamp = datetime.datetime.now() currentMonth = currentTimeStamp.month currentYear = currentTimeStamp.year currentDay = currentTimeStamp.day currentMinute = currentTimeStamp.minute currentHour = currentTimeStamp.hour currentSecond = currentTimeStamp.second currentMicroSecond = currentTimeStamp.microsecond currentSum = currentYear + currentMonth + currentDay + currentHour + currentMinute + currentSecond + currentMicroSecond print("currentSum ", currentSum) return currentSum def checkForDuplicates(currentSum, flag): byMod = 0 if (flag == 0): tempArray = Capital byMod = len(Capital) elif (flag == 1): tempArray = small byMod = len(small) elif (flag == 2): tempArray = number byMod = len(number) elif (flag == 3): tempArray = specialCharacters byMod = len(specialCharacters) tempIndex = currentSum % byMod flag = True while (flag): for i in password: if i == tempArray[tempIndex % byMod]: tempIndex = tempIndex + 1 flag = True break flag = False return tempIndex def choiceCapital(currentSum): # index = currentSum % 26 index = checkForDuplicates(currentSum, 0) print("value of index for Capital", index) print("Capital index ", Capital[index]) return Capital[index] def choiceSmall(currentSum): # index = currentSum % 26 index = checkForDuplicates(currentSum, 1) print("value of index for Small", index) print("small index", small[index]) return small[index] def choicenumber(currentSum): # index = currentSum % 10 index_number = checkForDuplicates(currentSum, 2) print("value of index for number", index_number) print("number index", number[index_number]) return number[index_number] def choiceCharacters(currentSum): # index = currentSum % 10 index_character = checkForDuplicates(currentSum, 3) print("value of index for characters", index_character) print("character index", specialCharacters[index_character]) return specialCharacters[index_character] for index in range(0, digit): currentSum = choice1() if currentSum % 4 == 0: character = choiceCapital(currentSum) password = password + character elif currentSum % 4 == 1: character = choiceSmall(currentSum) password = password + character elif currentSum % 4 == 2: character = choicenumber(currentSum) password = password + character elif currentSum % 4 == 3: character = choiceCharacters(currentSum) password = password + character else: print("Error 404") break print("Generated Password", password)
UTF-8
Python
false
false
3,210
py
6
passwordgenerate.py
4
0.664174
0.649533
0
116
26.672414
123
Chenjianqi1992/Movie_comment
1,400,159,367,740
6889d13882024bab36cf319628e955794316e501
e17b9b9978ba214294d752d170bb50caff6ec70a
/movie_comment/movie/migrations/0002_remove_movie_info_movie_published.py
cc5629c9c3ed9e2a5b6dde1d8de57e2c94e3c8ee
[]
no_license
https://github.com/Chenjianqi1992/Movie_comment
e0563ab215e456f1da8dd87ed473c988c1f6013f
73900ef887fa38bc2a4fc770c39eef0e4ebcb4c3
refs/heads/master
2021-07-16T13:01:33.512789
2020-05-19T02:31:09
2020-05-19T02:31:09
144,814,257
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 2.0.7 on 2018-08-07 06:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('movie', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='movie_info', name='movie_published', ), ]
UTF-8
Python
false
false
345
py
13
0002_remove_movie_info_movie_published.py
9
0.550725
0.495652
0
17
18.294118
47
buraksmg/e-itim
14,465,449,897,259
7f190558ca228b7bbdb54b6480c79b67fd24754c
d9c7c6da6c55d6f77f9cbbb754ce88863195b871
/egitim_1.py
94953c4d0d8ac4425bc4f5503a046310d5b1fe67
[]
no_license
https://github.com/buraksmg/e-itim
f2f89d3bf2764d3a5c7f3363c2b4daef74e12da7
fc518478ccc2470c96db9a03c52fe2851e3fc0c4
refs/heads/master
2022-11-20T08:43:42.429429
2020-07-20T13:01:52
2020-07-20T13:01:52
280,889,960
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
"""test""" print("Hello world") print("merhaba doğum tarihinizi yazınız") a = int(input()) print("yaşınız:"+str(2020-a))
UTF-8
Python
false
false
134
py
7
egitim_1.py
7
0.640625
0.609375
0
6
19.333333
41
csm9493/denoising_gan
19,061,064,862,038
f5122de663339e52f2ad2185a9c17746ea863284
71b193a2bb083efd33406fb3b00b07f9f1469abd
/main_noisegan.py
f935b0fd315307a0906506d6e50fbe3aa6a3daa4
[]
no_license
https://github.com/csm9493/denoising_gan
cbbb4d73e29ab8d1a7bc2a26914e6d0d65ed9b2d
0a2dc2329035ae1f0a8fb044b8e6be4c2c306949
refs/heads/master
2020-04-25T20:09:57.178031
2019-03-27T00:31:47
2019-03-27T00:31:47
173,045,206
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from core.noisegan import NoiseGAN import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), nn.InstanceNorm2d(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), nn.InstanceNorm2d(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9): super(Generator, self).__init__() # Initial convolution block # model = [ nn.ReflectionPad2d(3), # nn.Conv2d(input_nc, 64, 7), # nn.InstanceNorm2d(64), # nn.ReLU(inplace=True) ] self.pad2d_1 = nn.ReflectionPad2d(3) self.conv2d_1 = nn.Conv2d(input_nc, 64, 7) self.norm2d_1 = nn.InstanceNorm2d(64) self.relu_1 = nn.ReLU(inplace=True) self.rv_embedding = nn.Linear(1, 64) self.tanh = nn.Tanh() model = [] # Downsampling in_features = 64 out_features = in_features*2 for _ in range(2): model += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 # Residual blocks for _ in range(n_residual_blocks): model += [ResidualBlock(in_features)] # Upsampling out_features = in_features//2 for _ in range(2): model += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), nn.InstanceNorm2d(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 # Output layer model += [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7), nn.Tanh() ] self.model = nn.Sequential(*model) def forward(self, x, z): out1 = self.pad2d_1(x) out2 = self.conv2d_1(out1) out1_1 = self.rv_embedding(z) out1_2 = self.tanh(out1_1) out1_3 = out1_2.view(-1,64,1,1) out2_1 = out2*out1_3 out3 = self.norm2d_1((out2_1)) out4 = self.relu_1((out3)) return self.model(out4) class Discriminator(torch.nn.Module): def __init__(self, channels): super().__init__() # Filters [256, 512, 1024] # Input_dim = channels (Cx64x64) # Output_dim = 1 self.main_module = nn.Sequential( # Omitting batch normalization in critic because our new penalized training objective (WGAN with gradient penalty) is no longer valid # in this setting, since we penalize the norm of the critic's gradient with respect to each input independently and not the enitre batch. # There is not good & fast implementation of layer normalization --> using per instance normalization nn.InstanceNorm2d() # Image (Cx32x32) nn.Conv2d(in_channels=channels, out_channels=256, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(256, affine=True), nn.LeakyReLU(0.2, inplace=True), # State (256x16x16) nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(512, affine=True), nn.LeakyReLU(0.2, inplace=True), # State (512x8x8) nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=4, stride=2, padding=1), nn.InstanceNorm2d(1024, affine=True), nn.LeakyReLU(0.2, inplace=True)) # output of main module --> State (1024x4x4) self.output = nn.Sequential( # The output of D is no longer a probability, we do not apply sigmoid at the output of D. nn.Conv2d(in_channels=1024, out_channels=1, kernel_size=4, stride=1, padding=0)) def forward(self, x): x = self.main_module(x) return self.output(x) def feature_extraction(self, x): # Use discriminator for feature extraction then flatten to vector of 16384 x = self.main_module(x) return x.view(-1, 1024*4*4) def weights_init_normal(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: torch.nn.init.normal(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal(m.weight.data, 1.0, 0.02) torch.nn.init.constant(m.bias.data, 0.0) input_nc = 1 output_nc = 1 lr_g = 2e-4 #learning rate for generator lr_c = 5e-5 #learning rate for critic ep = 20 #training epochs decay_ep = 10 #learning rate decay mbs = 32 #mini batch size im_size = 100 #cropped image size tr_data_name = 'gan_trdata_20500_patch_120x120.hdf5' #training data name critic_iter = 5 #iterations for trainin critic tr_type = 'only_zi' #training type 'only_zi', 'shuffle' experiment_type = '_zi-zi_hat_mbs32_not_equal_loss_x0001_cycleloss_x5' #information about experiment (name for saving result file and weight) sv_name = '190322_cycleGAN_wGAN_experiment_'+ tr_type + experiment_type netG_A2B = Generator(input_nc, output_nc) netG_B2A = Generator(output_nc, input_nc) netD_B = Discriminator(input_nc) netG_A2B.cuda() netG_B2A.cuda() netD_B.cuda() netG_A2B.apply(weights_init_normal) netG_B2A.apply(weights_init_normal) netD_B.apply(weights_init_normal) trainer = NoiseGAN(netG_A2B, netG_B2A, netD_B, save_name=sv_name, lr_g=lr_g, lr_critic=lr_c, epochs=ep, decay_epoch = decay_ep, mini_batch_size=mbs, img_size=im_size, tr_data_name = tr_data_name, critic_iter = critic_iter, input_nc=input_nc, output_nc = output_nc, train_type=tr_type)
UTF-8
Python
false
false
6,326
py
5
main_noisegan.py
5
0.585836
0.543155
0
169
36.372781
149
N1te0wl1384/inzopr2020
12,773,232,784,532
7c817870f4cf59a571325a419d63e442ee3250b4
c465c76e7bbbcc5c2a74dc2a1fd47d8def839d51
/git_operations/pracownicy.py
87b7b8d27ec520da52970c52b00810c619b15bb5
[]
no_license
https://github.com/N1te0wl1384/inzopr2020
547f796662834be13ee7746b63a09f5959131313
c25aa1bf401f114a9702b663bf288a36ac1eb5b5
refs/heads/master
2022-05-28T23:38:28.849880
2020-04-30T14:37:01
2020-04-30T14:37:01
259,095,822
0
0
null
false
2020-04-30T14:37:02
2020-04-26T17:48:34
2020-04-30T14:24:23
2020-04-30T14:37:01
16
0
0
0
Python
false
false
class Pracownik: def __init__(self, imie, pensja): self.imie = imie self.pensja = pensja def obliczPensje(self): b = self.pensja c = float('%.2f'% (round(b*0.0976,2) + round(b*0.015,2) + round(b*0.0245,2))) d = b - c e = float('%.2f'% round(d*0.09, 2)) f = float('%.2f'%round(d*0.0775, 2)) g = 111.25 h = float('%.2f'%round(b - g - c)) i = float('%.2f'%(round(h*0.18,2) -46.33)) j = round(i - f) k = b - c - e - j return k def skladkiPracodawcy(self): b = self.pensja c = float('%.2f'%(round(b*0.0976,2) + round(b*0.065,2) + round(b*0.0245,2) + round(b*0.0193,2) + round(b*0.001,2))) return c liczba_pracownikow = int(input()) pracownicy = []; for i in range(liczba_pracownikow): pracownik = input() dane=[] for dana in pracownik.split(): dane.append(dana) pracownicy.append(dane) lacznie = 0 for i in pracownicy: pracownik_instancja = Pracownik(i[0], float(i[1])) skladki_pracodawcy = pracownik_instancja.skladkiPracodawcy() pensja = pracownik_instancja.pensja laczny_koszt = skladki_pracodawcy + pensja print(pracownik_instancja.imie, '%.2f' % pracownik_instancja.obliczPensje(), '%.2f' % skladki_pracodawcy, '%.2f' % laczny_koszt) lacznie = lacznie + laczny_koszt print('%.2f' % lacznie)
UTF-8
Python
false
false
1,383
py
5
pracownicy.py
4
0.573391
0.514823
0
41
32.731707
132
meijida258/mediaSpider
16,269,336,159,180
c3dfbe1bf9a93c64aa15e7b3ab852440462ea30c
54891a2c2ddd56de28c495309a52e98b36290cf0
/crawl/mmjpg.py
3caec44e10e4ad56f26a8056c7d8449ac3d672e8
[]
no_license
https://github.com/meijida258/mediaSpider
61287f5ca58650c6a9578afdbab764fe063c5b39
9a9ef40d1f3dbd46dff25fad4a8b87ee85e5e1fd
refs/heads/master
2021-01-23T08:10:14.211074
2018-06-20T02:19:12
2018-06-20T02:19:12
86,479,178
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import asyncio, time, re, os, requests, json, random, datetime from lxml import etree from multiprocessing.dummy import Pool from pymongo import MongoClient from PIL import Image from tool.ImgOut import iop client = MongoClient('localhost', 27017) db = client.MMjpg collection1 = db.Image1 collection2 = db.Image2 collection3 = db.Image3 collection4 = db.Image4 set_path = 'C:/Users/Administrator/Desktop/图/fhx20161004' out_path = 'C:/Users/Administrator/Desktop' def random_output(output_path, source_collection): st = time.time() img_list = source_collection.find() img_random = img_list[random.randint(0, img_list.count())] img_set_name = img_random['set_name'] img_set_list = source_collection.find({'set_name':img_set_name}) if not os.path.exists(output_path + os.path.sep + img_set_name): os.mkdir(output_path + os.path.sep + img_set_name) for img_dict in img_set_list: save_path = output_path + os.path.sep + img_dict['set_name'] + os.path.sep + img_dict['img_num'] + '.' + img_dict['img_type'] with open(save_path, 'wb') as img: img.write(img_dict['img_data']) img.close() print('输出完毕,耗时%s' % str(time.time()-st)) # iop.random_output(out_path, collection4) def insert_pic(i, save_collection = collection4): img_name_list = os.listdir(set_path + os.path.sep + i) for each_img in img_name_list: if save_collection.find({'set_name': i, 'img_num': each_img.split('.')[0]}).count() == 0: start_time = time.time() with open(set_path + os.path.sep + i + os.path.sep + each_img, 'rb') as img: img_data = img.read() img.close() insert_dict = {} insert_dict['img_data'] = img_data insert_dict['set_name'] = i insert_dict['img_type'] = each_img.split('.')[-1] insert_dict['img_num'] = each_img.split('.')[0] save_collection.insert(insert_dict) print('录入一张图片,来自%s的第%s张图片,耗时%s' % (insert_dict['set_name'], insert_dict['img_num'], str(time.time() - start_time))) def up_photos(): collection = [collection1, collection2, collection3, collection4] save_file = out_path + os.sep + 'photos' for i in collection: pic_list = i.find() collection_count = 0 while True: try: save_pic_count = len(os.listdir(save_file)) save_path = save_file + os.sep + 'img_%s.' % str(save_pic_count + 1) + pic_list[collection_count]['img_type'] with open(save_path, 'wb') as pic: pic.write(pic_list[collection_count]['img_data']) pic.close() collection_count += 2 except: break up_photos() # exit() # b = requests.get('http://imgs.aixifan.com/live/1493028073796/1493028073796.jpg').content # # fl = open('a.txt', 'wb') # fl.write(b) # fl.close() # fl = open('a.txt', 'rb') # with open('b.jpg', 'wb') as c: # c.write(fl.read()) # c.close()
UTF-8
Python
false
false
3,072
py
122
mmjpg.py
93
0.597948
0.577763
0
78
37.75641
133
hi-noikiy/hall0
5,995,774,369,967
c56c8fd31581724bab21bc7911e6e3126f917611
2b5dfacdb7389aefff64c67fac863e3f82d3723e
/source/tyframework/src/tyframework/_private_/dao/userprops_/usermedal.py
95de216065f5bc50b36cdd1ed59226c47e7bc7a5
[]
no_license
https://github.com/hi-noikiy/hall0
54ef76c715f7ac7fec4c9ca175817e12f60fbd6a
21ea94c5b048bc611fb1557ac0b6e3ef4fdbbc09
refs/heads/master
2020-04-08T21:58:55.239106
2018-01-15T14:58:32
2018-01-15T14:58:32
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding=utf-8 -*- from tyframework._private_.dao.userprops_.daobase import DaoBase from tyframework._private_.dao.userprops_.daoconst import DaoConst from tyframework._private_.dao.userprops_.decorator.structdataitem import load_struct_data, \ dump_struct_data class UserMedal(DaoConst, DaoBase): def _init_singleton_(self): pass def get_medal_by_id(self, uid, gameid, medalid, medal_cls): ''' 取得一个medalid对应内容, 将其内容实例化为medal_cls类的新实例 class类必须为使用 @struct_data_item 修饰的类 返回: 依据medal_cls的@struct_data_item的标记内容,返回@struct_data_item的实例或实例数组 ''' data = self.__ctx__.RedisGame.execute(uid, 'HGET', 'medal:' + str(gameid) + ':' + str(uid), medalid) return load_struct_data(medal_cls, data) def get_medal_by_id_list(self, uid, gameid, medalid_list, medal_cls): ''' 取得一个medalid_list集合中所有medalid对应的内容, 将所有内容实例化为medal_cls类的新实例 class类必须为使用 @struct_data_item 修饰的类 返回: 数组, 每一项对应的medal_cls的实例或数组 ''' datas = self.__ctx__.RedisGame.execute(uid, 'HMGET', 'medal:' + str(gameid) + ':' + str(uid), *medalid_list) values = [] for data in datas: obj = load_struct_data(medal_cls, data) values.append(obj) return values def get_medal_by_id_dict(self, uid, gameid, medalid_cls_dict): ''' medalid_cls_dict为一个集合, key为medalid value为itmeid所对应的class类 class类必须为使用 @struct_data_item 修饰的类 返回: dict集合, key为medalid, value为对应的类的实例 ''' medalids = medalid_cls_dict.keys() datas = self.__ctx__.RedisGame.execute(uid, 'HMGET', 'medal:' + str(gameid) + ':' + str(uid), *medalids) values = {} for x in xrange(len(medalids)): data = datas[x] medalid = medalids[x] medal_cls = medalid_cls_dict[medalid] obj = load_struct_data(medal_cls, data) values[medalid] = obj return values def update_medal_by_id(self, uid, gameid, medalid, medal_obj): ''' 更新一个medal的内容, medal_obj必须为使用@struct_data_item修饰过的类实例 ''' data = dump_struct_data(medal_obj) self.__ctx__.RedisGame.execute(uid, 'HSET', 'medal:' + str(gameid) + ':' + str(uid), medalid, data) def update_medal_by_id_list(self, uid, gameid, medalid_list, medal_value_list): ''' 更新一组medal的内容, medalid_list 为medalid的列表集合 medal_value_list为medalid对应的数据集合 medal_value_list中的每一项,可以为单对象数据也可以为同一类的实例的list集合 数据项目必须为使用@struct_data_item修饰过的类实例 ''' datas = [] for x in xrange(len(medalid_list)): datas.append(medalid_list[x]) datas.append(medal_value_list[x]) self.__ctx__.RedisGame.execute(uid, 'HMSET', 'medal:' + str(gameid) + ':' + str(uid), *datas) def update_medal_by_id_dict(self, uid, gameid, medalid_ins_dict): ''' 更新一组medal的内容, medalid_ins_dict为一个dict, key为medalid,value为medalid对应的数据值 value可以为单对象数据也可以为同一类的实例的list集合 数据项目必须为使用@struct_data_item修饰过的类实例 ''' datas = [] for k, v in medalid_ins_dict.items(): datas.append(k) datas.append(dump_struct_data(v)) self.__ctx__.RedisGame.execute(uid, 'HMSET', 'medal:' + str(gameid) + ':' + str(uid), *datas) def remove_medal_by_id(self, uid, gameid, medalid): ''' 删除一个medal ''' self.__ctx__.RedisGame.execute(uid, 'HDEL', 'medal:' + str(gameid) + ':' + str(uid), medalid) def remove_medal_by_id_list(self, uid, gameid, medalid_list): ''' 删除一组medal ''' self.__ctx__.RedisGame.execute(uid, 'HDEL', 'medal:' + str(gameid) + ':' + str(uid), *medalid_list) def insure_medal_ids(self, uid, gameid, all_medalid_list): ''' 删除所有不再all_medalid_list中的其他的所有ID项目, 通常为整理数据内容时使用 ''' allids = set() for x in all_medalid_list: allids.add(str(x)) delids = [] rids = self.__ctx__.RedisGame.execute(uid, 'HKEYS', 'medal:' + str(gameid) + ':' + str(uid)) for rid in rids: if rid not in allids: delids.append(rid) if delids: self.__ctx__.RedisGame.execute(uid, 'HDEL', 'medal:' + str(gameid) + ':' + str(uid), *delids)
UTF-8
Python
false
false
4,966
py
1,079
usermedal.py
601
0.584984
0.584754
0
113
37.424779
116
PurpleMyst/porcupine
18,219,251,289,688
f017a806ba28bc62cc281deb3445d569032374c1
3c98132198637077b55d3b6630a7134f747e8e39
/porcupine/plugins/autopep8.py
5d24f6b133af09b5fdd842989959e709202cdeff
[ "MIT" ]
permissive
https://github.com/PurpleMyst/porcupine
ebff59278fb426e8cba862ac6ef6f3ce7d4bd3a9
1ce4e15a5b2fed97efb889e56216c93c042fc7a8
refs/heads/master
2021-01-25T06:56:11.144326
2017-09-07T19:11:12
2017-09-07T19:11:12
93,628,416
0
1
null
true
2017-06-07T11:35:06
2017-06-07T11:35:05
2017-05-29T12:16:37
2017-06-07T10:00:48
774
0
0
0
null
null
null
import platform import subprocess import porcupine from porcupine import tabs, utils def run_autopep8(code): try: import autopep8 # noqa except ImportError: # this command is wrong in some cases, but most of the time # it's ok if platform.system() == 'Windows': command = "py -m pip install autopep8" app = 'command prompt or PowerShell' else: command = "python3 -m pip install --user autopep8" app = 'terminal' utils.errordialog( "Cannot find autopep8", "Looks like autopep8 is not installed.\n" + "You can install it by running this command on a %s:" % app, command) return None # autopep8's main() does some weird signal stuff, so we'll run it in # a subprocess just to make sure that the porcupine process is ok command = [utils.python_executable, '-m', 'autopep8', '-'] process = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, errors) = process.communicate(code.encode('utf-8')) if process.returncode != 0: utils.errordialog( "Running autopep8 failed", "autopep8 exited with status code %r." % process.returncode, errors.decode('utf-8', errors='replace')) return None return output.decode('utf-8') def on_click(): widget = porcupine.get_tab_manager().current_tab.textwidget before = widget.get('1.0', 'end - 1 char') after = run_autopep8(before) if after is None: # error return if before != after: widget['autoseparators'] = False widget.delete('1.0', 'end - 1 char') widget.insert('1.0', after) widget.edit_separator() widget['autoseparators'] = True def setup(): porcupine.add_action(on_click, "Tools/autopep8", tabtypes=[tabs.FileTab])
UTF-8
Python
false
false
1,957
py
57
autopep8.py
44
0.60603
0.593255
0
63
30.063492
77
ahtouw/Projects
9,680,856,317,183
0d3c8d4f4845c46313d5fc3e6f849dc877b5ea4f
23019dc9f099efe5361d387817022130af59334b
/Comp Sci/Python/hw4/hw4-3.py
f7b06e5e5a91ccc4c724207580a34c8d0e47990e
[]
no_license
https://github.com/ahtouw/Projects
950dc23b371fe0997b48c4475ad268aa0342fbca
15d25449e3ddcfe204d2ac6546ccb9272f074928
refs/heads/master
2020-04-14T15:38:02.363349
2019-01-03T07:16:34
2019-01-03T07:16:34
163,932,996
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Homework 4 - Part 3 - Substitution # William Ah Tou # 3/12/17 # Mustafa Al-Lail import sys import re inFile = sys.argv[1] outFile = sys.argv[2] def readFile(fileName): with open(fileName,'r') as f: lines = f.read().splitlines() return lines def writeFile(newLine): appendStr = newLine + '\n' with open(outFile,'a') as i: i.write(appendStr) def modify(testStr): a = re.compile(r"(\(" r"\d\d\d" r"\)" r"\d\d\d" r"\-" r"\d\d\d\d)") b = re.compile(r"(\(" r"\d\d\d" r"\)\-" r"\d\d\d" r"\-" r"\d\d\d\d)") c = re.compile(r"(\(" r"\d\d\d" r"\)\s" r"\d\d\d" r"\-" r"\d\d\d\d)") d = re.compile(r"(" r"\d\d\d" r"\-" r"\d\d\d" r"\-" r"\d\d\d\d)") e = re.compile(r"(\(" r"\d\d\d" r"\)" r"\d\d\d" r"\." r"\d\d\d\d)") f = re.compile(r"(\(" r"\d\d\d" r"\)\." r"\d\d\d" r"\." r"\d\d\d\d)") g = re.compile(r"(\(" r"\d\d\d" r"\)\s" r"\d\d\d" r"\." r"\d\d\d\d)") h = re.compile(r"(" r"\d\d\d" r"\." r"\d\d\d" r"\." r"\d\d\d\d)") substit = testStr if a.search(substit): substit = testStr if b.search(substit): substit = re.sub(r"(\(\d\d\d\))-(\d\d\d)-(\d\d\d\d)",r"\1\2-\3",substit) if c.search(substit): substit = re.sub(r"(\(\d\d\d\))\s(\d\d\d)-(\d\d\d\d)",r"\1\2-\3",substit) if d.search(substit): substit = re.sub(r"(\d\d\d)-(\d\d\d)-(\d\d\d\d)", r"(\1)\2-\3", substit) if e.search(substit): substit = re.sub(r"(\(\d\d\d\))(\d\d\d).(\d\d\d\d)", r"\1\2-\3", substit) if f.search(substit): substit = re.sub(r"(\(\d\d\d\)).(\d\d\d).(\d\d\d\d)", r"\1\2-\3", substit) if g.search(substit): substit = re.sub(r"(\(\d\d\d\))\s(\d\d\d).(\d\d\d\d)", r"\1\2-\3", substit) if h.search(substit): substit = re.sub(r"(\d\d\d).(\d\d\d).(\d\d\d\d)", r"(\1)\2-\3", substit) print(substit) return(substit) lines = readFile(inFile) modLines = [] for i in lines: modLines.append(modify(i)) for i in modLines: writeFile(i)
UTF-8
Python
false
false
2,151
py
40
hw4-3.py
16
0.451883
0.437936
0
98
20.959184
77
darionyaphet/python.learning
8,521,215,159,316
fc035da22f55faa92bbe141491c880559f67884d
f319e49b4a4852539fca48fbe830f3871f9f5a2f
/pandas/start.py
77a7d5af338e73b20cf02844f9ccfadc6d009e0d
[]
no_license
https://github.com/darionyaphet/python.learning
75b4d8f7e863286f212f55a6b0478a68b11e48d9
eec24569ef11c7c459a2a10aff9f6522edb1e352
refs/heads/master
2020-05-21T12:23:02.060758
2018-12-12T07:03:10
2018-12-12T07:03:10
36,119,713
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' 10 Minutes to pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html ''' import pandas as pd import numpy as np import matplotlib.pyplot as plt #Creating a Series by passing a list of values, letting pandas create a default integer index s = pd.Series([1,3,5,np.nan,6,8]) ''' 0 1 1 3 2 5 3 NaN 4 6 5 8 dtype: float64 ''' #Creating a DataFrame by passing a numpy array, with a datetime index and labeled columns dates = pd.date_range('20130101', periods=6) ''' DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D', tz=None) ''' df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) ''' A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 ''' #Creating a DataFrame by passing a dict of objects that can be converted to series-like df2 = pd.DataFrame({ 'A' : 1., 'B' : pd.Timestamp('20130102'), 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), 'D' : np.array([3] * 4,dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]), 'F' : 'foo' }) ''' A B C D E F 0 1 2013-01-02 1 3 test foo 1 1 2013-01-02 1 3 train foo 2 1 2013-01-02 1 3 test foo 3 1 2013-01-02 1 3 train foo ''' df2.dtypes ''' A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object ''' df.head() ''' A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 ''' df.tail(3) ''' A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 '''
UTF-8
Python
false
false
2,443
py
53
start.py
50
0.561195
0.289808
0
84
28.047619
93
MarcoBurgos/ayeWedding
17,093,969,866,911
d18d3d8c1b5acc479b13e121eaffcefebc75b5e1
74315bccd4faef88b2ac33dcb1b26977121a4d0f
/ayeApp/models.py
50d474e7bd40906ad5c44f90540cd1c2f8633429
[]
no_license
https://github.com/MarcoBurgos/ayeWedding
b5aebe825272f8a9a1a32348515a7260b164bf8b
16d231ae5e6bd623c66874ef150d7e2ea3d7eb1f
refs/heads/main
2022-12-30T12:25:33.158855
2020-10-20T02:02:42
2020-10-20T02:02:42
305,221,217
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from django.forms import ModelForm # Create your models here. class Invitation(models.Model): invitation_owner_name = models.CharField(max_length=90, verbose_name="Propietario de la invitación") email = models.EmailField(max_length = 128, unique=True) telephone = models.CharField(max_length=16) guest_names = models.CharField(max_length=256, verbose_name="Nombres de invitados") number_of_guests = models.IntegerField(verbose_name="Total de invitados") guests_confirmed = models.CharField(max_length=256, null=True, blank=True, verbose_name="Nombres confirmados") total_guests_confirmed = models.IntegerField(null=True, blank=True, verbose_name="Total de confirmados") is_RSVP = models.BooleanField(null=True, blank=True, verbose_name="¿Confirmó?") date_RSVP =models.DateField(null=True, blank=True, verbose_name="Fecha confirmación") def __str__(self): return str(self.guest_names) class Meta: verbose_name_plural = "Invitaciones"
UTF-8
Python
false
false
1,029
py
13
models.py
8
0.736585
0.723902
0
20
50.25
114
SaurabhAgarwala/grapp
13,503,377,206,205
3f9d28756c601b20f5534d1fcbc663f99a9e7dc5
c7f47100965c15b4cb120610a4c8af33ab727c3d
/grievances/forms.py
bc2030b50bd712fcbf7d331d05b93d19f30c0210
[]
no_license
https://github.com/SaurabhAgarwala/grapp
a60213f262115e6599b77a03cdd0c5b46678644a
d0d568add196308e6940c94735a1e980d9b23a38
refs/heads/master
2020-03-26T22:30:33.608655
2018-08-20T19:58:37
2018-08-20T19:58:37
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django import forms from . import models class ComplainForm(forms.ModelForm): class Meta: model = models.Complain fields = ['title', 'body'] class RespondForm(forms.ModelForm): class Meta: model = models.Complain fields = ['status', 'comments']
UTF-8
Python
false
false
291
py
16
forms.py
8
0.649485
0.649485
0
12
23.333333
39
xinsec/python-framework
14,654,428,435,711
d1338348b197822003edf7738f8c79af7532e8d5
4ebf8067f596707dc5336914bf0ea0a97d9fbcb7
/tornadoapp/tornadoapp/websocket/client.py
ed4bc7ae825713f550c9436098dfec7305bcaf03
[]
no_license
https://github.com/xinsec/python-framework
0ade696c5467635a6fd38125f1b2467d58047184
2da2258896145456312342f471d91cec95ddfb24
refs/heads/master
2018-02-06T19:13:18.152713
2017-06-28T03:54:21
2017-06-28T03:54:21
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" pip install websocket-client """ from websocket import create_connection if __name__ == '__main__': ws_server = "ws://localhost:30001/websocket/" ws = create_connection(ws_server) # ws.send('{"name":"admin"}') ws.send('{"message":{"reload":1},"destination":"admin"}') print ws.recv() ws.close()
UTF-8
Python
false
false
324
py
35
client.py
27
0.611111
0.592593
0
13
24
61
woobinda/mysite_v2
764,504,206,826
bf4a14bc18cc7d923fcdcf6b3732ec332a1c7c94
cad8d97ff00189c5bcc5f9d8278cb809ff044772
/musicians/migrations/0027_auto_20160412_1443.py
869dfa91f853e9d54658f82642d8f5cb68aa9120
[]
no_license
https://github.com/woobinda/mysite_v2
d1a405148ffd1bb87b254c9449f46dc50c73085f
9a105e042c4ae1c204d031a4a2a9cd712ce0e831
refs/heads/master
2016-06-03T08:11:04.791096
2016-04-15T17:56:08
2016-04-15T17:56:08
51,135,993
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-04-12 11:43 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('musicians', '0026_auto_20160412_1407'), ] operations = [ migrations.CreateModel( name='MusicianInstrument', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('slug', models.SlugField(max_length=100, unique=True, verbose_name='slug')), ], ), migrations.RemoveField( model_name='musician', name='instrument', ), migrations.RemoveField( model_name='musician', name='instrument_slug', ), migrations.AlterField( model_name='musician', name='playing_style', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='musicians.MusicStyle', verbose_name='Playing style'), ), ]
UTF-8
Python
false
false
1,203
py
81
0027_auto_20160412_1443.py
46
0.58271
0.551122
0
37
31.513514
149
cyriltasse/FindCluster
8,315,056,690,198
1e00c4aa44c79a38d75e139eb7c778e19dcbae5c
593930a095ace43d083e850c6a155eea3824dfcf
/ClassLogDiffLikelihoodMachine.py
d938c2eb8cc3d2cfb3a80bd245f372c5d26fb48c
[]
no_license
https://github.com/cyriltasse/FindCluster
edc96280e0e5824ed2d607a5b4a4d62686c99559
f8010c04b6802751669a81bfc63bb5a84777ca31
refs/heads/master
2023-01-28T12:26:54.549341
2020-05-27T14:34:03
2020-05-27T14:34:03
186,429,403
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pylab import ClassMassFunction import ClassCatalogMachine import ClassDisplayRGB from DDFacet.Other import ClassTimeIt from DDFacet.ToolsDir.ModToolBox import EstimateNpix np.random.seed(1) from DDFacet.Other import logger log = logger.getLogger("ClassLikelihoodMachine") from DDFacet.Other.AsyncProcessPool import APP, WorkerProcessError import ClassInitGammaCube from ClassAndersonDarling import * from ClassShapiroWilk import * from ClassEigenShapiroWilk import * class ClassLikelihoodMachine(): def __init__(self,CM): self.CM=CM self.zParms=self.CM.zg_Pars self.logMParms=self.CM.logM_Pars self.logM_g=np.linspace(*self.logMParms) self.MassFunction=ClassMassFunction.ClassMassFunction() self.MassFunction.setSelectionFunction(self.CM) self.NSlice=self.zParms[-1]-1 self.MAP=1 # APP.registerJobHandlers(self) def ComputeIndexCube(self,NPix): self.NPix=NPix self.IndexCube=np.array([i*np.int64(NPix**2)+np.int64(self.CM.Cat_s.xCube*NPix)+np.int64(self.CM.Cat_s.yCube) for i in range(self.NSlice)]).flatten() X,Y=self.CM.Cat_s.xCube,self.CM.Cat_s.yCube # # X=np.int64(np.random.rand(X.size)*NPix) # # Y=np.int64(np.random.rand(X.size)*NPix) # # X.fill(NPix//2) # # Y.fill(NPix//2) self.MassFunction.GammaMachine.ThisMask.fill(0) self.IndexCube_xy_Slice=(np.int64(X*NPix)+np.int64(Y)).flatten() indy,indx=np.where(self.MassFunction.GammaMachine.ThisMask==0) #self.IndexCube_Mask=np.array([i*(np.int64(indy).flatten()*NPix+np.int64(indx).flatten()) for i in range(self.NSlice)]).flatten() self.IndexCube_Mask_Slice=(np.int64(indy).flatten()*NPix+np.int64(indx).flatten()) self.IndexCube_Mask=np.array([i*NPix**2+(np.int64(indy).flatten()*NPix+np.int64(indx).flatten()) for i in range(self.NSlice)]).flatten() if self.MAP: GM=self.MassFunction.GammaMachine self.LCAD=[] self.LCSW=[] self.PowerMAP=1.#4.#2.5 # for iSlice in range(self.NSlice): # CAD=ClassAndersonDarlingMachine() # CAD.generatePA2(GM.L_NParms[iSlice],NTry=2000) # self.LCAD.append(CAD) # self.CSWFull=ClassShapiroWilk() # self.CSWFull.Init(GM.NParms,NTry=2000) self.CSW=ClassEigenShapiroWilk(GM.L_NParms) # for iSlice in range(self.NSlice): # log.print("======================================="%iSlice) # log.print("Init ShapiroWilk for slice %i"%iSlice) # CAD=ClassShapiroWilk() # CAD.Init(GM.L_NParms[iSlice],NTry=2000) # self.LCSW.append(CAD) def measure_dlogPdg(self,g0,DoPlot=0): g=g0.copy() L0=self.logL(g,DoPlot=DoPlot) dL_dg0=self.dlogLdg(g) NN=g.size dg=.001 NTest=100 # Parm_id=np.arange(NN)[::-1][0:NTest] Parm_id=np.int64(np.random.rand(NTest)*g.size) dL_dg1=np.zeros((Parm_id.size,),np.float64) for i in range(Parm_id.size): g1=g.copy() g1[Parm_id[i]]+=dg L1=self.logL(g1,DoPlot=DoPlot) dL_dg1[i]=(L0-L1)/((g-g1)[Parm_id[i]]) if (L0-L1)==0: print(" 0 diff for iParm = %i"%i) pylab.figure("Jacob") pylab.clf() # pylab.plot(dL_dg0[Parm_id]/dL_dg1) pylab.plot(dL_dg0[Parm_id],label="Computed") pylab.plot(dL_dg1,ls="--",label="Measured") pylab.legend() pylab.draw() pylab.show(block=False) pylab.pause(0.1) # ############################################# def measure_d2logPdg2(self,g0,DoPlot=0): g=g0.copy() NN=g.size dg=1e-2 NTest=1 Parm_id=np.int64(np.random.rand(NTest)*g.size) Parm_id=np.arange(NN) dJdg0=self.d2logPdg2(g,Diag=True) dJdg0_Full=self.d2logPdg2(g, Diag=False, ParmId=Parm_id) #dJdg2=self.buildFulldJdg(g,ParmId=Parm_id) pylab.figure("Hessian") pylab.clf() pylab.plot(dJdg0[Parm_id],label="CalcDiag",color="black") pylab.plot(np.diag(dJdg0_Full)[Parm_id],label="np.diag(CalcFull)",ls="--",lw=2) # #pylab.plot(np.diag(dJdg2)[Parm_id]) # pylab.draw() # pylab.show(block=False) # pylab.pause(0.1) dLdg_0=self.dlogPdg(g) dJdg1_row=np.zeros((Parm_id.size,dLdg_0.size),np.float64) dJdg1=np.zeros((Parm_id.size,),np.float64) for i in range(Parm_id.size): print("%i/%i"%(i,Parm_id.size)) g1=g.copy() g1[Parm_id[i]]+=dg dLdg_1=self.dlogPdg(g1) dJdg1[i]=(dLdg_0[Parm_id[i]]-dLdg_1[Parm_id[i]]) / ((g-g1)[Parm_id[i]]) dJdg1_row[i,:]=(dLdg_1-dLdg_0) / dg # pylab.plot(dL_dg0[Parm_id]/dL_dg1) pylab.plot(dJdg1,label="measure of diag",ls="-.",lw=2) pylab.legend() pylab.draw() pylab.show(block=False) pylab.pause(0.1) #I0=np.log10(np.abs(dJdg0_Full)) #I1=np.log10(np.abs(dJdg1_row)) I0=(np.abs(dJdg0_Full)) I1=(np.abs(dJdg1_row)) I0[I0<=0]=1e-10 I1[I1<=0]=1e-10 I1=np.log10(I1) I0=np.log10(I0) v0=np.min([I0.min(),I1.min()]) v1=np.max([I0.max(),I1.max()]) #m=np.median(I0[I0>0]) #v0,v1=0,100*m pylab.figure("Full Hessian") pylab.clf() ax=pylab.subplot(2,2,1) pylab.imshow(I1,interpolation="nearest",vmin=v0,vmax=v1) pylab.title("measured") pylab.subplot(2,2,2,sharex=ax,sharey=ax) pylab.imshow(I0,interpolation="nearest",vmin=v0,vmax=v1) pylab.title("computed") pylab.subplot(2,2,3,sharex=ax,sharey=ax) pylab.imshow(I1-I0,interpolation="nearest",vmin=-1,vmax=1) pylab.title("resid") pylab.colorbar() # ind=np.int64(np.random.rand(1000)*dJdg1_row.size) # x=dJdg1_row.T.flatten()[ind] # y=dJdg0_Full[Parm_id,:].T.flatten()[ind] # #x=np.log10(np.abs(x)) # #y=np.log10(np.abs(y)) # #x=np.log10(np.abs(x)) # #y=np.log10(np.abs(y)) # pylab.plot(x,label="row measured",color="black") # pylab.plot(y,ls="--",label="row computed") # # pylab.plot(dJdg1_row.T,label="row measured",color="black") # # pylab.plot(dJdg0_Full[Parm_id,:].T,ls="--",label="row computed") # pylab.legend() pylab.draw() pylab.show(False) pylab.pause(0.1) # ################################################ def logP(self,g): logL=self.logL(g) #logL=0. if self.MAP: logL+=self.CSW.logP_x(g.flatten()) return logL def dlogPdg(self,g): NParms=self.MassFunction.GammaMachine.NParms J=np.zeros((NParms,),np.float32) J+=self.dlogLdg(g) #J.fill(0) if self.MAP: J+=self.CSW.dlogPdx(g.flatten()) return J def d2logPdg2(self,g0,Diag=True,ParmId=None): if Diag: H=self.d2logLdg2(g0) #H.fill(0) if self.MAP: H[:]+=self.CSW.d2logPdx2_Diag(g0.flatten()) else: # H=np.zeros((g0.size,g0.size),np.float64) # dg=1e-3 # dLdg0=self.dlogLdg(g0) # if ParmId is None: # ParmId=np.arange(g0.size) # for ii,i in enumerate(ParmId): # print("%i/%i"%(ii,ParmId.size)) # g1=g0.copy() # g1[i]+=dg # dLdg1=self.dlogLdg(g1) # H[i]=(dLdg1-dLdg0) / dg H=self.d2logLdg2_Full(g0) #H.fill(0) if self.MAP: H+=self.CSW.d2logPdx2_Full(g0) return H # ################################################ def logprob(self,g): return np.float64(self.logP(g)),np.float64(self.dlogPdg(g)) def logL(self,g0,DoPlot=0): GM=self.MassFunction.GammaMachine g0=np.float64(g0) GM.computeGammaCube(g0) self.CellRad_0=self.MassFunction.GammaMachine.CellRad self.CellRad_1=(.00001/3600)*np.pi/180 g=g0.reshape((-1,1)) L_SqrtCov=GM.L_SqrtCov L_NParms=GM.L_NParms Ns=self.CM.Cat_s.shape[0] n_z=self.CM.DicoDATA["DicoSelFunc"]["n_z"] n_zt=self.CM.Cat_s.n_zt TypeSum=np.float64 #TypeSum=np.float32 # self.funcNormLog=np.log10 # self.fNormLog=np.log(10) self.funcNormLog=np.log self.fNormLog=1. if DoPlot: GM.PlotGammaCube(Cube=GM.GammaCube,FigName="JacobCube") Nx_1=np.zeros((Ns,),np.float64) # Ax_1=np.zeros((Ns,),np.float32) L_Ax_1_z=[] for iSlice in range(self.NSlice): Gamma_i=GM.GammaCube[iSlice].flat[self.IndexCube_xy_Slice] Nx_1[:]+=n_z[iSlice]*Gamma_i*self.CellRad_1**2 Ax_1_z=n_zt[:,iSlice]*Gamma_i*self.CellRad_1**2 #Ax_1[:]+=Ax_1_z L_Ax_1_z.append(Ax_1_z) L=np.float64([0.]) # ####################### # SumNx_0=np.sum(TypeSum((n_z.reshape(-1,1,1)*self.CellRad_0**2)*GM.GammaCube)) SumNx_0=np.sum(TypeSum(n_z.reshape(-1,1,1)*GM.GammaCube).flat[self.IndexCube_Mask])*self.CellRad_0**2/self.fNormLog L+=-SumNx_0 # ####################### SumNx_1=np.sum(TypeSum(Nx_1)) L+= SumNx_1 # ####################### self.Ax_1_z=np.array(L_Ax_1_z) self.Ax_1=np.sum(TypeSum(self.Ax_1_z),axis=0) SumAx_1=np.sum(self.funcNormLog(TypeSum(self.Ax_1))) L+= SumAx_1 self.gCurrentL=g0.copy() return L[0] def dlogLdg(self,g0,Slice=None): T=ClassTimeIt.ClassTimeIt() T.disable() GM=self.MassFunction.GammaMachine GM.computeGammaCube(g0) g=g0.reshape((-1,1)) T.timeit("Compute Gamma") L_SqrtCov=GM.L_SqrtCov L_NParms=GM.L_NParms NParms=GM.NParms Ns=self.CM.Cat_s.shape[0] n_z=self.CM.DicoDATA["DicoSelFunc"]["n_z"] n_zt=self.CM.Cat_s.n_zt # Sum_z_Ax_1_z=np.sum(self.Ax_1_z,axis=0) L_Ax_1_z=[] for iSlice in range(self.NSlice): Gamma_i=GM.GammaCube[iSlice].flat[self.IndexCube_xy_Slice] Ax_1_z=n_zt[:,iSlice]*Gamma_i*self.CellRad_1**2 L_Ax_1_z.append(Ax_1_z) Ax_1_z=np.array(L_Ax_1_z) Sum_z_Ax_1_z=np.sum(Ax_1_z,axis=0) # print(GM.GammaCube.flat[0]) ii=0 J=np.zeros((NParms,),np.float64) if Slice is None: Sl=slice(None) else: Sl=slice(Slice,Slice+1) for iSlice in range(self.NSlice)[Sl]: ThisNParms=L_NParms[iSlice] iPar=ii jPar=iPar+ThisNParms GammaSlice=GM.GammaCube[iSlice] SqrtCov=L_SqrtCov[iSlice] SqrtCov_xy=SqrtCov[self.IndexCube_xy_Slice,:] # ####################### dNx_0_dg=n_z[iSlice]*SqrtCov[:,:]*GammaSlice.reshape((-1,1))*self.CellRad_0**2 Sum_dNx_0_dg=np.sum(dNx_0_dg[self.IndexCube_Mask_Slice,:],axis=0) J[iPar:jPar]+= -Sum_dNx_0_dg # ######################### dNx_1_dg=n_z[iSlice]*SqrtCov_xy[:,:]*GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1))*self.CellRad_1**2 Sum_dNx_1_dg=np.sum(dNx_1_dg,axis=0) J[iPar:jPar]+= Sum_dNx_1_dg # ######################### dAx_dg_0 = n_zt[:,iSlice].reshape((-1,1))*SqrtCov_xy[:,:]*GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1))#*np.log(10) dAx_dg_1 = Sum_z_Ax_1_z dAx_dg = dAx_dg_0/dAx_dg_1.reshape((-1,1))*self.CellRad_1**2 Sum_dAx_dg=np.sum(dAx_dg,axis=0) J[iPar:jPar]+= + Sum_dAx_dg ii+=ThisNParms return J # ################################# # HESSIANs def d2logLdg2(self,g0): T=ClassTimeIt.ClassTimeIt() T.disable() GM=self.MassFunction.GammaMachine GM.computeGammaCube(g0) g=g0.reshape((-1,1)) T.timeit("Compute Gamma") L_SqrtCov=GM.L_SqrtCov L_NParms=GM.L_NParms NParms=GM.NParms Ns=self.CM.Cat_s.shape[0] n_z=self.CM.DicoDATA["DicoSelFunc"]["n_z"] n_zt=self.CM.Cat_s.n_zt # Sum_z_Ax_1_z=np.sum(self.Ax_1_z,axis=0) L_Ax_1_z=[] for iSlice in range(self.NSlice): Gamma_i=GM.GammaCube[iSlice].flat[self.IndexCube_xy_Slice] Ax_1_z=n_zt[:,iSlice]*Gamma_i*self.CellRad_1**2 L_Ax_1_z.append(Ax_1_z) Ax_1_z=np.array(L_Ax_1_z) Sum_z_Ax_1_z=np.sum(Ax_1_z,axis=0) ii=0 H=np.zeros((NParms,),np.float32) for iSlice in range(self.NSlice): ThisNParms=L_NParms[iSlice] iPar=ii jPar=iPar+ThisNParms GammaSlice=GM.GammaCube[iSlice] SqrtCov=L_SqrtCov[iSlice] SqrtCov_xy=SqrtCov[self.IndexCube_xy_Slice,:] # ##################################" dNx_0_dg=n_z[iSlice] * (SqrtCov[:,:])**2 * GammaSlice.reshape((-1,1))*self.CellRad_0**2*self.fNormLog Sum_dNx_0_dg=np.sum(dNx_0_dg[self.IndexCube_Mask_Slice,:],axis=0) H[iPar:jPar]+= -Sum_dNx_0_dg # ##################################" dNx_1_dg=n_z[iSlice]*(SqrtCov_xy[:,:])**2 * GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1))*self.CellRad_1**2 Sum_dNx_1_dg=np.sum(dNx_1_dg,axis=0) H[iPar:jPar]+= + Sum_dNx_1_dg # ##################################" dAx_dg_0 = n_zt[:,iSlice].reshape((-1,1))* (SqrtCov_xy[:,:]) \ * GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1))#*np.log(10) dAx_dg_1 = Sum_z_Ax_1_z dAx_dg_A = SqrtCov_xy[:,:]*dAx_dg_0 / dAx_dg_1.reshape((-1,1)) * self.CellRad_1**2 dAx_dg_B = - ( (dAx_dg_0 * dAx_dg_0) * self.CellRad_1**4 / (dAx_dg_1.reshape((-1,1)))**2 ) dAx_dg = dAx_dg_A + dAx_dg_B Sum_dAx_dg=np.sum(dAx_dg,axis=0) H[iPar:jPar]+= + Sum_dAx_dg ii+=ThisNParms return H # ############################# # FULLLLL def d2logLdg2_Full(self,g0): T=ClassTimeIt.ClassTimeIt() T.disable() GM=self.MassFunction.GammaMachine GM.computeGammaCube(g0) g=g0.reshape((-1,1)) T.timeit("Compute Gamma") L_SqrtCov=GM.L_SqrtCov L_NParms=GM.L_NParms NParms=GM.NParms Ns=self.CM.Cat_s.shape[0] n_z=self.CM.DicoDATA["DicoSelFunc"]["n_z"] n_zt=self.CM.Cat_s.n_zt # Sum_z_Ax_1_z=np.sum(self.Ax_1_z,axis=0) L_Ax_1_z=[] for iSlice in range(self.NSlice): Gamma_i=GM.GammaCube[iSlice].flat[self.IndexCube_xy_Slice] Ax_1_z=n_zt[:,iSlice]*Gamma_i*self.CellRad_1**2 L_Ax_1_z.append(Ax_1_z) Ax_1_z=np.array(L_Ax_1_z) Sum_z_Ax_1_z=np.sum(Ax_1_z,axis=0) DicoIndex={} ii=0 for iSlice in range(self.NSlice): ThisNParms=L_NParms[iSlice] iPar=ii jPar=iPar+ThisNParms DicoIndex[iSlice]=(iPar,jPar) ii+=ThisNParms ii=0 H=np.zeros((NParms,NParms),np.float32) dAidg=np.zeros((Ns,NParms),np.float32) for iSlice in range(self.NSlice): GammaSlice=GM.GammaCube[iSlice] i0,i1=DicoIndex[iSlice] ThisNParms=i1-i0 SqrtCov=L_SqrtCov[iSlice] SqrtCov_xy=SqrtCov[self.IndexCube_xy_Slice,:] iPar,jPar=i0,i1 ng=n_zt[:,iSlice].reshape((-1,1))* GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1)) dAidg[:,i0:i1] = ng * SqrtCov_xy.reshape((Ns,ThisNParms)) for iSlice in range(self.NSlice): GammaSlice=GM.GammaCube[iSlice] i0,i1=DicoIndex[iSlice] ThisNParms=i1-i0 SqrtCov=L_SqrtCov[iSlice] SqrtCov_xy=SqrtCov[self.IndexCube_xy_Slice,:] iPar,jPar=i0,i1 # ################################## dNx_0_dg=n_z[iSlice]\ * SqrtCov.reshape((self.NPix**2,ThisNParms,1))\ * SqrtCov.reshape((self.NPix**2,1,ThisNParms))\ * GammaSlice.reshape((-1,1,1))*self.CellRad_0**2*self.fNormLog Sum_dNx_0_dg=np.sum(dNx_0_dg[self.IndexCube_Mask_Slice,...],axis=0) H[iPar:jPar,iPar:jPar]+= - Sum_dNx_0_dg # ################################## dNx_1_dg=n_z[iSlice].reshape(-1,1,1)\ * SqrtCov_xy.reshape((Ns,ThisNParms,1))\ * SqrtCov_xy.reshape((Ns,1,ThisNParms))\ * GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1,1))*self.CellRad_1**2 Sum_dNx_1_dg=np.sum(dNx_1_dg,axis=0) H[iPar:jPar,iPar:jPar]+= Sum_dNx_1_dg ng=n_zt[:,iSlice].reshape((-1,1))* GammaSlice.flat[self.IndexCube_xy_Slice].reshape((-1,1)) dAx_dg_0 = ng.reshape(-1,1,1) * SqrtCov_xy.reshape((Ns,ThisNParms,1)) * SqrtCov_xy.reshape((Ns,1,ThisNParms)) H[iPar:jPar,iPar:jPar]+= np.sum(dAx_dg_0 * (Sum_z_Ax_1_z.reshape((-1,1,1)))**(-1),axis=0)*self.CellRad_1**2 for jSlice in range(self.NSlice): GammaSlice_j=GM.GammaCube[jSlice] j0,j1=DicoIndex[jSlice] ThisNParms_j=j1-j0 SqrtCov_j=L_SqrtCov[jSlice] SqrtCov_xy_j=SqrtCov_j[self.IndexCube_xy_Slice,:] # ################################## Js=dAidg[:,i0:i1] Js_j=dAidg[:,j0:j1] H[i0:i1,j0:j1]+= - np.sum(Js.reshape((Ns,ThisNParms,1))*Js_j.reshape((Ns,1,ThisNParms_j)) \ * (Sum_z_Ax_1_z.reshape((-1,1,1)))**(-2),axis=0)*self.CellRad_1**4 return H def recenterNorm(self,X): return X return self.CSW.recenterNorm(X)
UTF-8
Python
false
false
18,810
py
49
ClassLogDiffLikelihoodMachine.py
49
0.509091
0.477778
0
541
33.752311
157
KupynOrest/AmurTigerCVWC
5,265,629,914,523
b5ad41c2d7d9bac0fb5a938ee165f125b5922945
116395020bafdfc3b7ac56150dfff72507d83faa
/PyTorch/model_training/detection/detector.py
f8f846a7b91b983d12d604f4d6c2a747a2c9739a
[]
no_license
https://github.com/KupynOrest/AmurTigerCVWC
4e8aee5f4b9b736a8d8fe24aae984c97dab22acd
684e9c1480da92b4ce7ea24d31a55657256aee23
refs/heads/master
2020-06-26T09:53:40.176070
2019-08-05T14:15:04
2019-08-05T14:15:04
199,601,559
7
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import albumentations as albu import numpy as np import torch # from model_training.detection.retinanet_v2 import RetinaNet from model_training.detection.retinanet import RetinaNet from .ssd import SSD from .detector_postprocessing import DetectorPostProcessing class Detector(object): def __init__(self, config): super(Detector, self).__init__() self._init_model(config) self.img_size = config['img_size'] self.multiclass_suppression = config.get('multiclass_suppression', True) self.transform = self._get_transform() self.post_processing = DetectorPostProcessing(config) def __call__(self, img): with torch.no_grad(): x = self._process_image(img) if torch.cuda.is_available(): x = x.cuda() loc, conf, priors = self.net(x) priors = priors[0] return self.post_processing(loc, conf, priors, img.shape, multiclass_suppression=self.multiclass_suppression) def _process_image(self, img): return torch.from_numpy(np.transpose(self.transform(img), (2, 0, 1))).unsqueeze(0) def _init_model(self, config): if config['name'] == 'ssd': self.net = SSD(config) else: self.net = RetinaNet(config, pretrained=config.get('pretrained', False)) model_dict = torch.load(config['filepath'], map_location=None if torch.cuda.is_available() else 'cpu') self.net.load_state_dict(model_dict['model']) self.net = self.net.eval() if torch.cuda.is_available(): self.net = self.net.cuda() def _get_transform(self): pipeline = albu.Compose([ albu.Resize(self.img_size, self.img_size), albu.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def process(a): r = pipeline(image=a) return r['image'] return process
UTF-8
Python
false
false
1,930
py
39
detector.py
32
0.615544
0.6
0
54
34.740741
117
Yanqin25/pythonLab
9,629,316,721,274
e3086ecfe12d2ca0f7ad2320b1494235f763d01a
0771e69408932bd128e71556ac8b3547c583bab0
/18.algorithm/linear_algebra/matrix.py
a77140feff04a1d1d0c008b0deb1db3b43689e3f
[]
no_license
https://github.com/Yanqin25/pythonLab
bbbe7bc8eb7f9964b5070ea8b1c6a65313eae56d
48f6ab729a635016c09208608c7223523f73d8f7
refs/heads/master
2020-08-10T23:40:05.760447
2020-02-26T10:07:30
2020-02-26T10:07:30
214,445,503
0
0
null
false
2020-02-18T01:13:04
2019-10-11T13:36:54
2020-02-18T01:12:41
2020-02-18T01:13:03
16,739
0
0
2
Python
false
false
from vetor import * class Matrix(object): def __init__(self,matrix,w,h): # 矩阵的初始化 self.__matrix = matrix self.__width = w self.__height = h def __str__(self): # 返回矩阵的字符表达形式 ans = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width -1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def changeComponent(self,x,y, value): # 改变矩阵特定位置的元素 if x >= 0 and x < self.__height and y >= 0 and y < self.__width: self.__matrix[x][y] = value else: raise Exception ("changeComponent: indices out of bounds") def component(self,x,y): # 返回矩阵特定位置的元素 if x >= 0 and x < self.__height and y >= 0 and y < self.__width: return self.__matrix[x][y] else: raise Exception ("changeComponent: indices out of bounds") def width(self): # 返回矩阵的宽度 return self.__width def height(self): # 返回矩阵的高度 return self.__height def __mul__(self,other): # 矩阵的乘积 if isinstance(other, Vector): # 判断与矩阵乘积的对象是向量 if (len(other) == self.__width): ans = zeroVector(self.__height) for i in range(self.__height): summe = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] ans.changeComponent(i,summe) summe = 0 return ans else: raise Exception("vector must have the same size as the " + "number of columns of the matrix!") elif isinstance(other,int) or isinstance(other,float): #判断与矩阵乘积的是标量,即数乘 matrix = [[self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height)] return Matrix(matrix,self.__width,self.__height) def __add__(self,other): # 矩阵的加法 if (self.__width == other.width() and self.__height == other.height()): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] + other.component(i,j)) matrix.append(row) return Matrix(matrix,self.__width,self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__(self,other): # 矩阵的减法 if (self.__width == other.width() and self.__height == other.height()): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] - other.component(i,j)) matrix.append(row) return Matrix(matrix,self.__width,self.__height) else: raise Exception("matrix must have the same dimension!") if __name__ == "__main__": m=Matrix([[1,2,3],[4,5,6],[7,8,9]],3,3) v=Vector([1,2,3]) print(m*v)
UTF-8
Python
false
false
3,348
py
186
matrix.py
163
0.497782
0.491128
0
80
38.425
111
parkus/FLAIIL
16,149,077,071,889
b978cfc4f3020848f337a6704d53e2b6db1e35d6
aed2049a6cc9cf2434221632b1b0d60da7d10d60
/ranges.py
9c3776c36af86bc0eca4e84beccc8ccb8f1c3cfc
[ "MIT" ]
permissive
https://github.com/parkus/FLAIIL
15d776c36cca48ead0e6bf65ba4f48f599173976
53698f9e6e2d933c091fb9c4b069bf255871541b
refs/heads/master
2020-03-16T17:18:35.783996
2020-02-21T18:15:26
2020-02-21T18:15:26
132,826,181
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Utilities for handling numerical ranges. """ from __future__ import division, print_function, absolute_import import numpy as np def rangeset_union(ranges0, ranges1): """ Return the union of two sets of *sorted* ranges. Parameters ---------- ranges0 : Nx2 array ranges1 : Nx2 array Returns ------- union_ranges : Nx2 array """ invrng0, invrng1 = list(map(rangeset_invert, [ranges0, ranges1])) xinv = rangeset_intersect(invrng0, invrng1) return rangeset_invert(xinv) def rangeset_intersect(ranges0, ranges1, presorted=False): """ Return the intersection of two sets of ranges. Parameters ---------- ranges0 : Nx2 array ranges1 : Nx2 array presorted : bool If True, ranges are assumed to be sorted. Returns ------- intersecting_ranges : Nx2 array """ if len(ranges0) == 0 or len(ranges1) == 0: return np.empty([0, 2]) rng0, rng1 = list(map(np.asarray, [ranges0, ranges1])) rng0, rng1 = [np.reshape(a, [-1, 2]) for a in [rng0, rng1]] if not presorted: rng0, rng1 = [r[np.argsort(r[:,0])] for r in [rng0, rng1]] for rng in [rng0, rng1]: assert np.all(rng[1:] > rng[:-1]) l0, r0 = rng0.T l1, r1 = rng1.T f0, f1 = [rng.flatten() for rng in [rng0, rng1]] lin0 = inranges(l0, f1, [1, 0]) rin0 = inranges(r0, f1, [0, 1]) lin1 = inranges(l1, f0, [0, 0]) rin1 = inranges(r1, f0, [0, 0]) #keep only those edges that are within a good area of the other range l = weave(l0[lin0], l1[lin1]) r = weave(r0[rin0], r1[rin1]) return np.array([l, r]).T def rangeset_invert(ranges): """ Return the inverse of the provided ranges. Parameters ---------- ranges : Nx2 array Returns ------- inverted_ranges : Nx2 array """ if len(ranges) == 0: return np.array([[-np.inf, np.inf]]) edges = ranges.ravel() rnglist = [edges[1:-1].reshape([-1, 2])] if edges[0] != -np.inf: firstrng = [[-np.inf, edges[0]]] rnglist.insert(0, firstrng) if edges[-1] != np.inf: lastrng = [[edges[-1], np.inf]] rnglist.append(lastrng) return np.vstack(rnglist) def inranges(values, ranges, inclusive=[False, True]): """Determines whether values are in the supplied list of sorted ranges. Parameters ---------- values : 1-D array-like The values to be checked. ranges : 1-D or 2-D array-like The ranges used to check whether values are in or out. If 2-D, ranges should have dimensions Nx2, where N is the number of ranges. If 1-D, it should have length 2N. A 2xN array may also be used, but note that it will be assumed to be Nx2 if N == 2. inclusive : length 2 list of booleans Whether to treat bounds as inclusive. Because it is the default behavior of numpy.searchsorted, [False, True] is the default here as well. Using [False, False] or [True, True] will require roughly triple computation time. Returns ------ inside : array a boolean array indexing the values that are in the ranges. """ ranges = np.asarray(ranges) if ranges.ndim == 2: if ranges.shape[1] != 2: ranges = ranges.T ranges = ranges.ravel() if inclusive == [0, 1]: return (np.searchsorted(ranges, values) % 2 == 1) if inclusive == [1, 0]: return (np.searchsorted(ranges, values, side='right') % 2 == 1) if inclusive == [1, 1]: a = (np.searchsorted(ranges, values) % 2 == 1) b = (np.searchsorted(ranges, values, side='right') % 2 == 1) return (a | b) if inclusive == [0, 0]: a = (np.searchsorted(ranges, values) % 2 == 1) b = (np.searchsorted(ranges, values, side='right') % 2 == 1) return (a & b) def weave(a, b): """ Insert values from b into a in a way that maintains their order. Both must be sorted. """ mapba = np.searchsorted(a, b) return np.insert(a, mapba, b)
UTF-8
Python
false
false
4,068
py
7
ranges.py
6
0.584317
0.552606
0
144
27.256944
83
urmithakkar/testrepo
13,580,686,593,455
13a2be3124a6d79b1be53a72abe41c8ae8c3363f
ec77feaed2d190ded34799ea01c8072d955a0022
/testbranch1.py
9cc1f894fe66a595f686cfbcd7be9aa53540ae87
[]
no_license
https://github.com/urmithakkar/testrepo
8181ee263cf31d19f36041da4ecffa20779fc394
2e7e154b1ab44242ab889a0ebf74c8e18182d487
refs/heads/main
2023-02-05T16:56:38.494353
2020-12-26T15:43:46
2020-12-26T15:43:46
324,581,770
0
0
null
false
2020-12-26T15:43:47
2020-12-26T15:23:08
2020-12-26T15:26:22
2020-12-26T15:43:46
0
0
0
0
Python
false
false
#creating a file in brach1 print("Inside branch 1")
UTF-8
Python
false
false
53
py
2
testbranch1.py
2
0.735849
0.698113
0
3
16.666667
26
fd-facu/termodinamica
18,030,272,737,461
b9a8f8bae47d51cee31a962d4e9714f9fdc6a367
aafae0baeaeda7409c47cf4933edcfde4040f018
/grafico_temp_calor.py
6582a93e95fb7d2f7ae1c0d50b3453b973d833ff
[]
no_license
https://github.com/fd-facu/termodinamica
26adb1c46bcb43398daff558e37d6612dacf3df4
1a9a1d50a82d7a8542f26a97b68298d0be8cc40c
refs/heads/master
2022-01-29T11:38:44.559874
2017-12-12T20:56:40
2017-12-12T20:56:40
95,333,793
0
0
null
false
2022-01-19T23:29:57
2017-06-25T02:29:31
2017-12-06T17:41:23
2022-01-19T23:29:56
63
0
0
1
Python
false
false
import matplotlib.pyplot as plt plt.ylabel('Temperatura (K)') plt.xlabel('Tiempo (seg)') plt.title('Grafico PV') def generar_grafico(lista_etapas): instancia_x = [] instancia_y = [] for tupla in lista_etapas: instancia_x.append(tupla[0]) instancia_y.append(tupla[1]) plt.plot(instancia_x, instancia_y) plt.show() # Test #generar_grafico()
UTF-8
Python
false
false
405
py
19
grafico_temp_calor.py
18
0.612346
0.607407
0
23
15.695652
38
Bihan-tifr/Exam
6,743,098,678,767
8135bb23edb4c7f029af0082e6b21201459431a3
5bf5da35ccd39c6e99cf6f904f250ed117bc019c
/p9.py
1e35676b173fd3fee99d955075f00cc83b633f8d
[]
no_license
https://github.com/Bihan-tifr/Exam
52615027df4a86bbf980b303335094b1c50f4e59
e254c346c8dde8def5cb033e1b4998652a6cd341
refs/heads/master
2022-10-08T21:40:56.950279
2020-06-05T15:49:10
2020-06-05T15:49:10
269,667,696
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np A=np.array([[2,1],[1,0],[0,1]]) print("The Matrix:\n{}".format(A)) print("Singular value decomposition:") u,s,v=(np.linalg.svd(A)) print("u:\n{}".format(u)) print("s:\n{}".format(s)) print("v:\n{}".format(v)) input("press any key to evaluate svd of second matrix") B=np.array([[1,1,0],[1,0,1],[0,1,1]]) print("The Matrix:\n{}".format(B)) print("Singular value decomposition") u,s,v=(np.linalg.svd(B)) print("u:\n{}".format(u)) print("s:\n{}".format(s)) print("v:\n{}".format(v))
UTF-8
Python
false
false
502
py
6
p9.py
5
0.615538
0.585657
0
19
25.368421
55
1017-MJ/1017_MJ
18,236,431,163,772
edf019e4e0f8b7c9e9478e2ffd0deb28d634e969
c235a6d5ff3c118f6e89b7ee853e8d2cb8debeda
/27.py
576e52ca08ad3e5b7cc6debe4f29de089114aee2
[]
no_license
https://github.com/1017-MJ/1017_MJ
7b9b7ac4322bf8ed17d8c200d98d2bdc7c2c1fad
a2f2775cc40f88fd5abdc0c0fa14cdf2f6d21460
refs/heads/main
2023-06-04T16:41:27.230568
2021-06-11T11:46:15
2021-06-11T11:46:15
365,239,005
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
x = [3,2,4,1] for n in x: print(n) x = [3,2,4,1] y = ["Hello", "There"] for c in y: print(c) x = [3,2,4,1] #0,1,2,3 y = ["Hello", "There"] print(x.index(4)) print(y.index("Hello")) x = [3,2,4,1] #0,1,2,3 y = ["Hello", "There"] print("bye" in y) print("Hello" in y) if "Hello" in y: print("Hello가 있어요.") if "bye" in y: print("bye") print("bye는 없어요.")
UTF-8
Python
false
false
496
py
26
27.py
26
0.397917
0.345833
0
34
12.176471
25
zvonicek/IT3708
10,660,108,846,122
429ecd76fdaea5cc57bce42ed087fb1542f5b573
7b201f188e0e5073009dd84f0437cc6a1c41b920
/task5_q_learning/q_flatland/reinforcement_flatland/flatland.py
4c588cb74da5ee3de1de249a84fbc855bed021f1
[]
no_license
https://github.com/zvonicek/IT3708
d4e4653cb1579c0765bd4837677d798f696f57af
990b448f9d01badc8b955ce49843e37c54f8fd7b
refs/heads/master
2020-05-20T06:01:23.754233
2015-05-19T10:59:32
2015-05-19T10:59:32
30,255,328
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random class Cell: Food, Poison, Empty, Agent = range(0, 4) class Turn: Left, Right, Up, Down = range(0, 4) class Flatland(): def __init__(self, world, agent_coord, food_num, poison_num): self.agent_init = agent_coord self.agent_coord = agent_coord self.grid = world self.food_num = food_num self.poison_num = poison_num # copy the grid so as it can be restored for next generation self.start_grid = [x[:] for x in self.grid] @classmethod def random_world(cls, length, fpd, agent_coord): grid = [[Cell.Empty for _ in range(length)] for _ in range(length)] grid[agent_coord[0]][agent_coord[1]] = Cell.Agent food_positions = [(x, y) for x in range(length) for y in range(length) if x != y] food_num = round(fpd[0] * length ** 2) for pos in random.sample(food_positions, food_num): grid[pos[0]][pos[1]] = Cell.Food poison_positions = [(x, y) for x in range(length) for y in range(length) if x != y and grid[x][y] == Cell.Empty] poison_num = round(fpd[1] * (length ** 2 - food_num)) for pos in random.sample(poison_positions, poison_num): grid[pos[0]][pos[1]] = Cell.Poison return cls(grid, agent_coord, food_num, poison_num) @classmethod def from_file(cls, filename): grid = [] food_num = 0 poison_num = 0 agent_coord = None with open(filename, 'r') as f: header = f.readline().split() agent_coord = int(header[3]), int(header[2]) line = f.readline().split() while line: row = [] for cell in line: if cell == "-2": row.append(Cell.Agent) elif cell == "-1": row.append(Cell.Poison) poison_num += 1 elif cell == "0": row.append(Cell.Empty) else: row.append(Cell.Food) food_num += 1 grid.append(row) line = f.readline().split() return cls(grid, agent_coord, food_num, poison_num) def reset(self): """resets the world to initial state""" self.grid = [x[:] for x in self.start_grid] self.agent_coord = self.agent_init def move(self, turn): curr_row, curr_col = self.get_agent() new_row, new_col = curr_row, curr_col if turn == Turn.Up: new_row = (new_row - 1) % len(self.grid) elif turn == Turn.Right: new_col = (new_col + 1) % len(self.grid[0]) elif turn == Turn.Down: new_row = (new_row + 1) % len(self.grid) elif turn == Turn.Left: new_col = (new_col - 1) % len(self.grid[0]) cell_state = self.grid[new_row][new_col] self.grid[curr_row][curr_col] = Cell.Empty self.grid[new_row][new_col] = Cell.Agent self.agent_coord = (new_row, new_col) return cell_state def get_agent(self): return self.agent_coord def print_stats(self): food = 0 poison = 0 for row in range(len(self.grid)): for col in range(len(self.grid)): if self.grid[row][col] == Cell.Food: food += 1 elif self.grid[row][col] == Cell.Poison: poison += 1 print("food eaten:", self.food_num - food, "poison eaten:", self.poison_num - poison)
UTF-8
Python
false
false
3,620
py
57
flatland.py
37
0.508011
0.498895
0
114
30.763158
93
hypnguyen1209/infosec-algorithm
154,618,845,393
fb92f1769733165dfad4a83ca4d1e089cf7ae84f
fd836e5c699198ff32f6a6710a6720979a53ca43
/a.py
940803d21643dcec9bfd86d90b73ffb21428b594
[]
no_license
https://github.com/hypnguyen1209/infosec-algorithm
af4552da0e937135e41e54538fa35807a989edb7
9b9a0b091cf1a2296cede4befcee625671ac5d98
refs/heads/main
2023-07-02T12:41:26.696442
2021-08-16T09:49:17
2021-08-16T09:49:17
364,528,414
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math a = 123456 W = 8 p = 2147483647 def solve(a, W, p): result = [] m = round(math.log2(p)) t = round(m/W) n = [pow(2, i*W) for i in range(t)] for i in n[::-1]: result.append(math.floor(a/i)) a = a%i return result if __name__ == "__main__": print(solve(a, W, p))
UTF-8
Python
false
false
301
py
32
a.py
31
0.524917
0.458472
0
18
14.833333
36
Ironman778/WebShell-C2
11,381,663,354,765
a664157e42e52f2a89cb0e4572f38043d7fb07e5
5510fa4604cf9c72198c4cb590622ff22c8624a5
/live_feedback_(OldVersion).py
741e14cef580fe9956de2a36c6adabebc64908d6
[ "MIT" ]
permissive
https://github.com/Ironman778/WebShell-C2
028e351509a046f82774fb5066b6a370cd8bb4e6
5ed781b2797054f7c031191a238618a3cf441750
refs/heads/main
2023-08-24T18:33:53.822209
2021-11-03T13:57:18
2021-11-03T13:57:18
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import time import glob session = input("Session ID :") if session not in glob.glob("./data/*.*"): with open(f"./data/{session}",'a') as file: file.write('') previous = "" while True: with open(f"./data/{session}",'r') as file: data = file.read() if data!=previous: previous = data print(previous) time.sleep(5)
UTF-8
Python
false
false
377
py
22
live_feedback_(OldVersion).py
10
0.551724
0.549072
0
19
18.842105
47
pulumi/pulumi-aws-native
6,760,278,539,705
db694e00dec7014e2d820026bf831bf36ff33c4e
5a74500be5b851f1efd999778088fb228ffa75b2
/sdk/python/pulumi_aws_native/configuration/get_configuration_recorder.py
08bacf4d61bc34268fd7eebc68ae9c405a06f1cc
[ "Apache-2.0" ]
permissive
https://github.com/pulumi/pulumi-aws-native
d0031db61fba441d62e83f14a1503093dcabbd5a
360bc11ff2538e17bacfb34c512cd1b34ef7ba50
refs/heads/master
2023-08-16T04:46:09.356539
2023-08-10T06:13:07
2023-08-10T06:13:07
219,575,168
68
13
Apache-2.0
false
2023-09-14T12:47:08
2019-11-04T19:00:32
2023-09-08T08:20:52
2023-09-14T12:47:07
174,365
70
12
111
Go
false
false
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetConfigurationRecorderResult', 'AwaitableGetConfigurationRecorderResult', 'get_configuration_recorder', 'get_configuration_recorder_output', ] @pulumi.output_type class GetConfigurationRecorderResult: def __init__(__self__, id=None, recording_group=None, role_arn=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if recording_group and not isinstance(recording_group, dict): raise TypeError("Expected argument 'recording_group' to be a dict") pulumi.set(__self__, "recording_group", recording_group) if role_arn and not isinstance(role_arn, str): raise TypeError("Expected argument 'role_arn' to be a str") pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter def id(self) -> Optional[str]: return pulumi.get(self, "id") @property @pulumi.getter(name="recordingGroup") def recording_group(self) -> Optional['outputs.ConfigurationRecorderRecordingGroup']: return pulumi.get(self, "recording_group") @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[str]: return pulumi.get(self, "role_arn") class AwaitableGetConfigurationRecorderResult(GetConfigurationRecorderResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetConfigurationRecorderResult( id=self.id, recording_group=self.recording_group, role_arn=self.role_arn) def get_configuration_recorder(id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConfigurationRecorderResult: """ Resource Type definition for AWS::Config::ConfigurationRecorder """ __args__ = dict() __args__['id'] = id opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('aws-native:configuration:getConfigurationRecorder', __args__, opts=opts, typ=GetConfigurationRecorderResult).value return AwaitableGetConfigurationRecorderResult( id=pulumi.get(__ret__, 'id'), recording_group=pulumi.get(__ret__, 'recording_group'), role_arn=pulumi.get(__ret__, 'role_arn')) @_utilities.lift_output_func(get_configuration_recorder) def get_configuration_recorder_output(id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetConfigurationRecorderResult]: """ Resource Type definition for AWS::Config::ConfigurationRecorder """ ...
UTF-8
Python
false
false
3,096
py
13,355
get_configuration_recorder.py
6,362
0.666667
0.666344
0
82
36.756098
151
AlexG31/EcgDiagnosis
11,836,929,879,787
06fc69d38fed30deb9f9b476d857d3b8bd302ac7
9feaa24ec54d39270d87bb0039dc106aedf12709
/mcmc/hermit_model.py
2f1c53a3876b5e8d00c3a00fb702b0ecab49676f
[]
no_license
https://github.com/AlexG31/EcgDiagnosis
65cb4a98aa1da1db916744e867e28bedf55bdf19
16b1c81351957393f27675e5eaea4920be787e28
refs/heads/master
2021-01-12T02:46:26.899927
2017-01-20T09:55:16
2017-01-20T09:55:16
78,096,065
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#encoding:utf8 # MCMC Model import os import sys import pymc import matplotlib.pyplot as plt import scipy.signal as signal from pymc import DiscreteUniform, Exponential, deterministic, Poisson, Uniform import numpy as np import json # Load ECG segment array with open('./segment.json', 'r') as fin: raw_sig = json.load(fin) raw_sig = np.array(raw_sig) raw_sig = raw_sig[30:] # Normalize min_val = np.min(raw_sig) max_val = np.max(raw_sig) raw_sig -= min_val raw_sig /= (max_val - min_val) # Hermit functions def HermitFunction(level, size): '''Return hermit function.''' if size < 0: raise Exception('Size must be greater or equal to zero!') def He0(x): return 1.0 def He1(x): return x def He2(x): return x * x - 1 def He3(x): return x ** 3.0 - 3.0 * x def He4(x): return x ** 4.0 - 6.0 * x ** 2.0 + 3.0 def He5(x): return x ** 5.0 - 10.0 * x ** 3.0 + 15.0 * x # Mapping wave_width to range [-3,3] wave_width = 50 x_ratio = 6.0 / wave_width if level == 0: hermit = He0 elif level == 1: hermit = He1 elif level == 2: hermit = He2 elif level == 3: hermit = He3 elif level == 4: hermit = He4 elif level == 5: hermit = He5 data = [hermit((x - size / 2) * x_ratio) / 20.0 for x in xrange(0, size)] return np.array(data) # plt.plot(raw_sig) # plt.plot(HermitFunction(5, len(raw_sig))) # plt.show() # Length of the ECG segment len_sig = raw_sig.size # wave_center = DiscreteUniform('wave_center', lower=0, upper=len_sig, doc='WaveCetner[index]') hc0 = pymc.Normal('hc0', 1, 0.25) hc1 = pymc.Normal('hc1', 1, 0.25) hc2 = pymc.Normal('hc2', 1, 0.25) hc3 = pymc.Normal('hc3', 1, 0.25) hc4 = pymc.Normal('hc4', 1, 0.25) hc5 = pymc.Normal('hc5', 1, 0.25) @deterministic(plot=False) def wave_shell(hc0=hc0, hc1=hc1, hc2=hc2, hc3=hc3, hc4=hc4, hc5=hc5, ): ''' Concatenate wave.''' coefs = [hc0, hc1, hc2, hc3, hc4, hc5,] out = np.zeros(len_sig,) for level, coef in zip(xrange(0,6), coefs): out += HermitFunction(level, len_sig) * coef return out ecg = pymc.Normal('ecg', mu=wave_shell, tau = 4e4, value=raw_sig, observed=True) def test(): '''Compare Gaussian Function.''' import scipy.signal as signal xlist = signal.gaussian(100, 7) # plt.hist(xlist) plt.plot(xlist) plt.title('ECG Segment') plt.show() # test()
UTF-8
Python
false
false
2,543
py
23
hermit_model.py
20
0.577271
0.529296
0
113
21.504425
95
PantherPrg/Rollercoaster_Height
18,382,460,052,989
78198715a5a08a23b7ad73fdbcd6bf5bf3cf3f94
3bbffa332419f35ed617d79cc9d46160b75cbe6d
/TestCases/testCase3.py
6de6b77fa81a2722fec625a5c567eede2b926228
[]
no_license
https://github.com/PantherPrg/Rollercoaster_Height
d599a75e0c51960e174cea3915dd726de175b039
a835dfca6cf45c17cee52cf5317f75b97a82872e
refs/heads/main
2023-03-30T18:00:29.210400
2021-03-30T05:58:01
2021-03-30T05:58:01
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
70 Sidney 64 Carlin 69 Oldra 59 Alvy 63 Gael 59 Harlea 67 Luba 66 Brooke 62
UTF-8
Python
false
false
75
py
8
testCase3.py
7
0.786667
0.546667
0
9
7.444444
9
xieqiumei/data_analysis
120,259,117,519
fae403f1b9ab28b954b1c31ecac8ce6083f4ceb8
1a3e6deed6002bb4a0cb832edb743a8a566ce33f
/feature_analysis/model_analysis.py
efb8b41111ea98f01f2dce4e489c5293101a3782
[]
no_license
https://github.com/xieqiumei/data_analysis
7bc2157cfaa4e91b41effb58ff35c3bca0ba92e2
208fe84aad98f0ae834020aacbc3f5a21d1b8a50
refs/heads/master
2023-05-30T21:20:44.033699
2021-06-28T00:32:15
2021-06-28T00:32:15
380,514,178
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!D:/Code/python # -*- coding: utf-8 -*- # @File:model_analysis.py # @Software:PyCharm import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.metrics import r2_score # 要注意预测评估函数,有回归和分类之分 from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LinearRegression from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_regression, f_regression from feature_analysis.train_config import svr_params_dict from sklearn.ensemble import RandomForestRegressor from utils.metrics import get_adjusted_r_squared, get_p_values from utils.feature_select import backward_regression, select_by_recursive_feature_elimination, select_by_lasso, \ column_index pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) def select_features(x_train, y_train, x_test, x_cloumns, y_column, select_type, k=None): """ feature selection :param x_train: :param y_train: :param x_test: :param x_cloumns: :param y_column: :param select_type: :param k: :return: """ if select_type == 'backward': features, feature_ids = backward_regression(x_train, y_train, x_cloumns, y_column) return x_train[:, feature_ids], x_test[:, feature_ids], features if select_type == 'rfe': features, feature_ids = select_by_recursive_feature_elimination(x_train, y_train, x_cloumns) return x_train[:, feature_ids], x_test[:, feature_ids], features if select_type == 'lasso': features, feature_ids = select_by_lasso(x_train, y_train, x_cloumns) return x_train[:, feature_ids], x_test[:, feature_ids], features if select_type in ['mi', 'f']: if k is None: return None, None, None # configure to select a subset of features if select_type == 'mi': fs = SelectKBest(score_func=mutual_info_regression, k=k) else: fs = SelectKBest(score_func=f_regression, k=k) # learn relationship from training dataf_regression fs.fit(x_train, y_train) # transform train input data # print(fs.get_support()) x_train_fs = fs.transform(x_train) # transform test input data x_test_fs = fs.transform(x_test) # 特征的重要性 support = fs.get_support() index = np.where(support == 1)[0] return x_train_fs, x_test_fs, np.array(x_cloumns)[index] return None, None, None def get_scale_data(x_train, x_test, y_train, y_test): """ 对数据进行缩放,缩放后的数据用scaler.inverse_transform(test_S)还原 :return: """ scale_x = StandardScaler().fit(x_train) x_train = scale_x.transform(x_train) x_test = scale_x.transform(x_test) scale_y = StandardScaler().fit(y_train) y_train = scale_y.transform(y_train).ravel() y_test = scale_y.transform(y_test).ravel() return x_train, x_test, y_train, y_test, scale_y def get_svr_best_params(x_train, y_train): """ 网格搜索寻找最优的svr参数 :param x_train: :param y_train: :return: """ # 创建SVR实例 svr = SVR() gscv = GridSearchCV( estimator=svr, param_grid=svr_params_dict, n_jobs=2, scoring='r2', cv=6) gscv.fit(x_train, y_train) # 寻找最优参数 best_params = gscv.best_params_ return best_params def create_model(x_train, y_train, model_type): if model_type == 'svr': # 网格搜索寻找最优的svr参数 best_params = get_svr_best_params(x_train, y_train) print(f"Best svr params are {best_params}.") kernel = best_params['kernel'] return SVR(C=best_params['C'], kernel=kernel, gamma=best_params['gamma'], epsilon=best_params['epsilon']) if model_type == 'linear': return LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) elif model_type == 'rf': return RandomForestRegressor(n_estimators=50, oob_score=True, random_state=100) else: return None def find(arr, min, max): """ 用于查找预测数据落在±50mm范围的数据 :param arr: :param min: :param max: :return: """ pos_min = arr >= min pos_max = arr <= max pos_rst = pos_min & pos_max return np.where(pos_rst == True) # where的返回值刚好可以用[]来进行元素提取 def model_fit_and_score(x_train_fs, y_train, x_test_fs, y_test, model_type, selected_features, scale_y): model = create_model(x_train_fs, y_train, model_type) if model is None: print(f"Currently can't predicate by this model type.") return model.fit(x_train_fs, y_train) # evaluate the model y_predicate = model.predict(x_test_fs) # importance = model.coef_ y_test = scale_y.inverse_transform(y_test) y_predicate = scale_y.inverse_transform(y_predicate) tmp = y_predicate - y_test print("误差±50mm的数量和百分比:", len(find(tmp, -50.0, 50.0)[0]), len(tmp), len(find(tmp, -50.0, 50.0)[0]) * 100 / len(tmp)) # evaluate predictions:explained_variance_score, r2_score,mean_absolute_error r2score = r2_score(y_test, y_predicate) adjusted_r2squared = get_adjusted_r_squared(x_test_fs, y_test, r2score) print( f'Test R^2 of selected features {selected_features} is {r2score}, \nand adjusted_R^2 is {adjusted_r2squared}.') def svr_predicate_with_full_feature(x_array, y_value, y_name, feature_names, model_type, test_size=0.2): """ svr回归预测 :param x_array: :param y_value: :param y_name: :param feature_names: :param model_type: :param test_size: :return: """ # 按照比例分成测试语料和训练语料 x_train, x_test, y_train, y_test = train_test_split(x_array, y_value, test_size=test_size, random_state=999) y_train = np.array(y_train).reshape(-1, 1) y_test = np.array(y_test).reshape(-1, 1) # 数据缩放 x_train, x_test, y_train, y_test, scale_y = get_scale_data(x_train, x_test, y_train, y_test) model = create_model(x_train, y_train, model_type) if model is None: print(f"Currently can't predicate by this model type.") return model.fit(x_train, y_train) y_predicate = model.predict(x_test) # evaluate predictions score = r2_score(y_test, y_predicate) print(f'Test R^2 of {y_name} by features {feature_names[:-1]} is {score}') def svr_predicate_with_feature_select(x_array, y_array, x_cloumns, y_column, model_type, select_type, test_size=0.2, selected_feature=None): """ :param x_array: :param y_value: :param feature_names: :param model_type: :param k_num: :param test_size: :param select_type: :return: """ # x_train, x_test, y_train, y_test = train_test_split(x_array, y_value, test_size=test_size) n_train = int(x_array.shape[0] * (1 - test_size)) x_train = x_array[:n_train, :] x_test = x_array[n_train:, :] y_train = y_array[:n_train] y_test = y_array[n_train:] # 分隔输入X和输出y # print("测试前:", y_test) y_train = np.array(y_train).reshape(-1, 1) y_test = np.array(y_test).reshape(-1, 1) # 数据缩放 x_train, x_test, y_train, y_test, scale_y = get_scale_data(x_train, x_test, y_train, y_test) if selected_feature is not None: X_df = pd.DataFrame(data=x_array, columns=x_cloumns) feature_ids = column_index(X_df, selected_feature) model_fit_and_score(x_train[:, feature_ids], y_train, x_test[:, feature_ids], y_test, model_type, selected_feature, scale_y) return if select_type is None or select_type not in ['f', 'mi', 'backward', 'rfe', 'lasso']: print("The wrong feature select type!") return # 特征选择 if select_type in ['f', 'mi']: k_num = [i for i in range(1, x_array.shape[1] + 1)] # k_num = [i for i in range(1, 6)] # k_num = [x_array.shape[1]] for e in k_num: x_train_fs, x_test_fs, features = select_features(x_train, y_train, x_test, x_cloumns, y_column, select_type, k=e) model_fit_and_score(x_train_fs, y_train, x_test_fs, y_test, model_type, features, scale_y) print("\n") else: x_train_fs, x_test_fs, features = select_features(x_train, y_train, x_test, x_cloumns, y_column, select_type) model_fit_and_score(x_train_fs, y_train, x_test_fs, y_test, model_type, features, scale_y) def outlier_treatment_by_median(df_data): for column in df_data.columns.tolist(): if np.abs(df_data[column].skew()) > 1: # median = df_data[column].quantile(0.5) # _95percentile = df_data[column].quantile(0.95) # # print(median, _95percentile) # df[column] = np.where(df[column] >= _95percentile, median, df[column]) flooring = df_data[column].quantile(0.1) capping = df_data[column].quantile(0.9) df_data[column] = np.where(df_data[column] < flooring, flooring, df_data[column]) df_data[column] = np.where(df_data[column] > capping, capping, df_data[column]) return df_data # df = outlier_treatment_by_median(df) # print(df.corr()['P'].sort_values()) if __name__ == '__main__': df = pd.read_excel("D:/工作项目/鸿玖/中泰数据 min级汇总/按分钟汇总数据/1min采样/C电极的参数汇总_1min__增加炉底温度.xlsx", sheet_name='Sheet1') # 剔除电流异常数据 df.drop([894, 895, 896, 897, 898, 899, 900, 901, 903], inplace=True) X = df[['焦炭实际配料值', '兰炭实际配料值', '石灰二实际配料值', '石灰一实际配料值', '电流_电极电流 KA_IA', '电流_电极电流 KA_IB', '电流_电极电流 KA_IC', '电压_电极电压 V_UA', '电压_电极电压 V_UB', '电压_电极电压 V_UC', '功率_电极功率_Pa', '功率_电极功率_Pb', '功率_电极功率_Pc', '功率_无功功率', '功率_有功功率', '温度_炉 底 ℃_3', '加热元件温度C']].values Y = df['C电极长度mm(计算)'].values svr_predicate_with_feature_select(X, Y, ['焦炭实际配料值', '兰炭实际配料值', '石灰二实际配料值', '石灰一实际配料值', '电流_电极电流 KA_IA', '电流_电极电流 KA_IB', '电流_电极电流 KA_IC', '电压_电极电压 V_UA', '电压_电极电压 V_UB', '电压_电极电压 V_UC', '功率_电极功率_Pa', '功率_电极功率_Pb', '功率_电极功率_Pc', '功率_无功功率', '功率_有功功率', '温度_炉 底 ℃_3', '加热元件温度C'], ['C电极长度mm(计算)'], 'rf', 'mi', test_size=0.3, selected_feature=None) """" linear预测明显效果优于svr """
UTF-8
Python
false
false
11,415
py
16
model_analysis.py
15
0.59524
0.584052
0
298
34.392617
119
zodiac/competitive-programming
1,769,526,567,929
df9b2b798639a0479384bc379cf17c66edcc2f41
7da5ffee8fe9722fd06d28757dd5dfc57d2806ac
/codeforces/E99/C/C.py
4c2ad6b9cb6d505b3b7190867e96e49760d7428a
[]
no_license
https://github.com/zodiac/competitive-programming
1609aa8bc3ab69894eecad45f2ce9d798ddd6d92
a35a2c0a10b5f2b0cd4a2cfa5926b6ebf5bff03f
refs/heads/master
2020-12-29T02:49:36.244457
2020-12-28T14:34:40
2020-12-28T14:34:40
1,388,667
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env pypy3 T = int(input()) for _ in range(T): x, y = input().split() x = int(x) y = int(y) print(x-1, y)
UTF-8
Python
false
false
121
py
832
C.py
811
0.528926
0.512397
0
8
14.125
23
janion/CARMA
16,716,012,723,377
8e15fa82325d735cc5fa1fec7aa02f05f86171cf
41e42c52e502e67ea06fcf66b7bf1acb1bd30be7
/CARMA/src/backend/event/events/CheckSignalEvent.py
50c30ca1264eb076f596ab73d56b698d00ca6aae
[]
no_license
https://github.com/janion/CARMA
2e7840d9f55df0cccd0004e3a4a182a341f8fbf0
55bfafc2465371e2b0e37deda5a955e47d202270
refs/heads/master
2021-01-10T23:16:27.224636
2016-10-03T17:52:03
2016-10-03T17:52:03
70,622,618
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Created on 27 Sep 2016 @author: Janion ''' class CheckSignalEvent(): ''' Event which relates to a train needing to check a signal. ''' CODE = "C" def __init__(self, sectionName): ''' Constructor ''' self.entityName = sectionName ################################################################################ def getEntityName(self): return self.entityName ################################################################################ @staticmethod def isToHardware(): return False; ################################################################################ @staticmethod def isEvent(message): return message.index(CheckSignalEvent.CODE) != -1
UTF-8
Python
false
false
819
py
17
CheckSignalEvent.py
16
0.373626
0.365079
0
35
21.285714
80
SLLittrell/GameRater-server
1,133,871,392,209
719636f364a112f4890d7746305d3ed0af289d9e
15ae6080ac1ba504ec2c19dd02edc6ac585e13cb
/raterprojectapi/views/game.py
729dae9aecf94f0625a3d43e312e7cdacb2e9709
[]
no_license
https://github.com/SLLittrell/GameRater-server
1d824df4d662567a944c2697c43e1a890af6ad1d
dbd55ab096408b738ade7c3407ad71bdcbd7a541
refs/heads/main
2023-05-09T00:24:43.183349
2021-05-26T19:05:03
2021-05-26T19:05:03
364,363,110
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.core.exceptions import ValidationError from rest_framework import status from django.http import HttpResponseServerError from rest_framework.viewsets import ViewSet from rest_framework.response import Response from rest_framework import serializers from rest_framework import status from raterprojectapi.models import Game, Player, Category, Review class GameViewSet(ViewSet): def create(self, request): creator = Player.objects.get(user=request.auth.user) game = Game() game.title = request.data['title'] game.description = request.data['description'] game.release_year = request.data['releaseYear'] game.number_players = request.data['numberPlayers'] game.time_to_play = request.data['timeToPlay'] game.age = request.data['age'] game.creator = creator try: game.save() categories = Category.objects.in_bulk(request.data['categories']) game.categories.set(categories) serializer = GameSerializer(game, context={'request': request}) return Response(serializer.data, status=status.HTTP_201_CREATED) except ValidationError as ex: return Response({"reason": ex.message}, status=status.HTTP_400_BAD_REQUEST) def retrieve(self, request, pk=None): try: game = Game.objects.get(pk=pk) serializer = GameSerializer(game, context={'request': request}) return Response(serializer.data) except Exception as ex: return HttpResponseServerError(ex) def update(self, request, pk=None): game = Game() creator = Player.objects.get(user=request.auth.user) if creator is not game.creator: return Response({}, status=status.HTTP_403_FORBIDDEN) game.title = request.data['title'] game.description = request.data['description'] game.release_year = request.data['releaseYear'] game.number_players = request.data['numberPlayers'] game.time_to_play = request.data['timeToPlay'] game.age = request.data['age'] game.creator = creator categories = Category.objects.in_bulk(request.data['categories']) game.categories.set(categories) game.save() return Response({}, status=status.HTTP_204_NO_CONTENT) def destroy(self, request, pk=None): try: game = Game.objects.get(pk=pk) game.delete() return Response({}, status=status.HTTP_204_NO_CONTENT) except Game.DoesNotExist as ex: return Response({'message': ex.args[0]}, status=status.HTTP_404_NOT_FOUND) except Exception as ex: return Response({'message': ex.args[0]}, status=status.HTTP_500_INTERNAL_SERVER_ERROR) def list(self, request): games = Game.objects.all() serializer = GameSerializer( games, many=True, context={'request': request}) return Response(serializer.data) class GameSerializer(serializers.ModelSerializer): class Meta: model = Game fields = ('id', 'title', 'description', 'release_year', 'number_players', 'time_to_play', 'age', 'creator', 'categories', 'average_rating') depth = 1
UTF-8
Python
false
false
3,320
py
15
game.py
13
0.636747
0.629518
0
98
32.867347
147
darkoob12/POSTagger
14,439,680,077,343
d01a8bf21c7e5ae11c7e04d016e3c0554ab30544
08c7d5fadbfce44166f29d23fe8734e7e87c6094
/program.py
c7097067b2e94a459228bce6238c3b5e846559cc
[]
no_license
https://github.com/darkoob12/POSTagger
0ae08cf0fcd3ecbe6c1ad42e31a56b4c7158e933
8de77008f28661a1e7d600dae9ab2e859da1d424
refs/heads/master
2021-01-16T17:36:53.901293
2017-08-11T08:10:53
2017-08-11T08:10:53
100,008,605
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from POSTagger import * import time import random def read_data(path): """ str -> list loads data from a csv file removes redundant info :param path: :return: list of sentences """ data = [] with open(path, 'r') as f: sentence = [] for line in f: a = line.split(' ') if len(a) < 3: # end of sentence data.append(sentence) sentence.insert(0, ['', '##']) if sentence[-1][0] != '.': sentence.append(['.', '.']) sentence = [] else: sentence.append([a[0].strip(), a[1].strip()]) return data def concat_sentences(corpus): seq = [''] for sent in corpus: words = [p[0] for p in sent] seq.extend(words[1:-1]) seq.append('.') return seq def get_words(data): ret = [] for s in data: ret.append([p[0] for p in s]) return ret def read_tags(path): t = [] with open(path, 'r') as f: for line in f: tokens = line.strip().split(',') t.append(tokens[0]) return t def check_eol(data): dot_count = 0 anomaly_count = 0 for sentence in data: if sentence[-1][0] == '.': dot_count += 1 else: anomaly_count += 1 print("{0} out of {1} has '.' as their terminal state.".format(dot_count, len(data))) def concat_chunks(record): """ list -> str convert words of a sentence to its values :param record: list of words and their pos tag :return: a sentence """ words = [x[0] for x in record] return ' '.join(words) def test_model(mod, data): total = 0 # total number of words correct = 0 # correctly tagged s = np.zeros(len(data)) i = 0 for sentence in data: ws = [] ts = [] for chunk in sentence: ws.append(chunk[0]) ts.append(chunk[1]) predicted_tags = mod.decode(ws) c = np.sum(np.array(ts[1:]) == np.array(predicted_tags[1:])) correct += c l = len(sentence) - 1 total += l s[i] = c / l print("{0} : [length => {1}, corrects => {2}] | Accuracy => {3:.2%}".format(i, l, c, s[i])) i += 1 word_acc = correct / total print("per word accuracy on test data is : {:.2%}".format(word_acc)) sentence_acc = np.mean(s) print("average sentence accuracy on test data is : {:.2%}".format(sentence_acc)) return word_acc, sentence_acc def experiment_p1(): train = read_data('train.txt') test = read_data('test.txt') dic = TextDictionary() dic.add(train) dic.add(test) model = HMM(dic.get_tags(), dic.get_words()) tic = time.time() model.estimate(train) # estimate the probabilities toc = time.time() print('estimation time: {0:.2f}'.format(toc - tic)) model.save() test_model(model, test) def experiment_p2(): train = read_data('train.txt') test = read_data('test.txt') dic = TextDictionary() dic.add(train) dic.add(test) model = HMM(dic.get_tags(), dic.get_words()) model.rand_init() random.shuffle(train) model.estimate(train[:-10]) tic = time.time() model.train(concat_sentences(train[-10:]), max_iter=50) toc = time.time() print('learning time: {0:.2f}'.format(toc - tic)) model.save() test_model(model, test) if __name__ == '__main__': experiment_p2() print('hello, world!')
UTF-8
Python
false
false
3,498
py
3
program.py
2
0.534019
0.520011
0
139
24.165468
99
Ashyaa/aoc2020
6,657,199,332,578
fdeda4671d22fb88224d67b201b1c1c7918d9a36
e03c4147acf427ef26b73ad2c26e7a0fcb5f8de4
/2021/day20/solution.py
40e4764a267f69d5662e8871adaafa61be9ac517
[]
no_license
https://github.com/Ashyaa/aoc2020
22b5051d3e77155b93e54df553c852d60f3f4767
844548cd99050f5227bd17ef13b88286cdce60a4
refs/heads/main
2023-02-21T04:30:05.618050
2022-12-25T09:21:41
2022-12-25T09:21:41
318,306,558
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import contextlib from pathlib import Path from typing import * import numpy as np from AoC.util import show CWD = Path(__file__).parent def read_input(filename: str = "input.txt") -> Tuple[str, np.ndarray]: input_file = CWD.joinpath(filename) with open(input_file, "r") as reader: s = reader.readline().strip().replace('.', '0').replace('#', '1') reader.readline() res = [] for l in reader.readlines(): ll = l.strip().replace('.', '0').replace('#', '1') res.append(np.array([c for c in ll], dtype=str)) res = np.array(res) return s, res def step(s: str, arr: np.ndarray, i: int) -> np.ndarray: inverted = s[0] == '1' and s[-1] == '0' cons = i%2 if inverted else 0 arr = np.pad(arr, ((2, 2), (2, 2)), 'constant', constant_values=cons) if inverted and not(i%2): res = np.ones(arr.shape, dtype=int).astype(str) else: res = np.zeros(arr.shape, dtype=int).astype(str) for i in range(1, arr.shape[0]-1): for j in range(1, arr.shape[1]-1): idx = int("".join(arr[i-1:i+2, j-1:j+2].flatten()), 2) res[i,j] = s[idx] return res @show def first(s: str, inp: np.ndarray, steps: int) -> None: arr = inp.copy() for i in range(steps): arr = step(s, arr, i) return arr.astype(int).sum() def test_example() -> None: with contextlib.redirect_stdout(None): s, inp = read_input("example.txt") assert first(s, inp, 2) == 35 assert first(s, inp, 50) == 3351 if __name__ == "__main__": test_example() s, inp = read_input() first(s, inp, 2) # 5065 first(s, inp, 50) # 14790
UTF-8
Python
false
false
1,708
py
126
solution.py
123
0.556206
0.528103
0
60
27.466667
73
YANH216/myweb
16,475,494,591,582
84d9db9b1020fc3b752906969d549354267a6703
95913618293ab052c7f75fe0411adae8379c4c3a
/SitesApp/migrations/0003_auto_20180605_1307.py
9bac1c31b74b0342ca7c195acde009b4d94d1477
[]
no_license
https://github.com/YANH216/myweb
6553f9028c8e23fe57c9988fb94e2c88f5b44886
c24600a99e0e6c3c1266251c2f6f18caed17f83c
refs/heads/master
2023-06-27T03:18:13.718437
2021-07-29T09:19:28
2021-07-29T09:19:28
390,667,214
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-06-05 05:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('SitesApp', '0002_auto_20180605_1128'), ] operations = [ migrations.AlterField( model_name='candidate', name='cEmail', field=models.CharField(blank=True, default=None, max_length=20, null=True), ), migrations.AlterField( model_name='user', name='uEmail', field=models.CharField(blank=True, default=None, max_length=20, null=True), ), ]
UTF-8
Python
false
false
680
py
45
0003_auto_20180605_1307.py
28
0.591176
0.536765
0
25
26.2
87
larsbak/fletch
8,624,294,346,937
ce4922248d60fbd850cf516c699aa8d31fd3100b
4fffc216d36563b5db4a5ef230d95b6bda3be0e4
/src/vm/vm.gyp
6262c463f1339822da528907eb156cf599a81a51
[ "BSD-3-Clause" ]
permissive
https://github.com/larsbak/fletch
e18ec6cdfe306f75553638433109a2549b589c7a
6ca18fb7c55f052ef5537c650025811434b9a323
refs/heads/master
2018-05-19T05:37:25.789701
2015-01-29T11:19:50
2015-01-29T11:19:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Copyright (c) 2015, the Fletch project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE.md file. { 'target_defaults': { 'include_dirs': [ '../../', ], 'actions': [ { # TODO(ahe): Move to .gypi file that is included by the other .gyp # files. 'action_name': 'lint_>(_target_name)', 'inputs': [ '../../third_party/cpplint/cpplint.py', '>@(_sources)', ], 'outputs': [ '>(INTERMEDIATE_DIR)/lint_>(_target_name).log' ], 'action': [ "bash", "-c", "python >(_inputs) && " "LANG=POSIX date '+Lint checked on %+' > <(_outputs)", ], }, ] }, 'targets': [ { 'target_name': 'fletch_vm_base', 'type': 'static_library', 'dependencies': [ '../shared/shared.gyp:fletch_shared', '../double_conversion.gyp:double_conversion', ], 'sources': [ # TODO(ahe): Add header (.h) files. 'assembler_x86.cc', 'assembler_x86_macos.cc', 'assembler_x64.cc', 'assembler_x64_macos.cc', 'event_handler.cc', 'event_handler_macos.cc', 'ffi.cc', 'fletch.cc', 'fletch_api_impl.cc', 'heap.cc', 'interpreter.cc', 'intrinsics.cc', 'lookup_cache.cc', 'natives.cc', 'object.cc', 'object_list.cc', 'object_map.cc', 'object_memory.cc', 'platform_posix.cc', 'port.cc', 'process.cc', 'program.cc', 'scheduler.cc', 'service_api_impl.cc', 'session.cc', 'snapshot.cc', 'stack_walker.cc', 'thread_pool.cc', 'thread_posix.cc', 'weak_pointer.cc', ], }, { 'target_name': 'fletch_vm', 'type': 'static_library', 'dependencies': [ 'fletch_vm_base', '../shared/shared.gyp:fletch_shared', '../double_conversion.gyp:double_conversion', ], 'sources': [ '<(INTERMEDIATE_DIR)/generated.S', ], 'actions': [ { 'action_name': 'generate_generated_S', 'inputs': [ '<(PRODUCT_DIR)/<(EXECUTABLE_PREFIX)' 'fletch_vm_generator' '<(EXECUTABLE_SUFFIX)', ], 'outputs': [ '<(INTERMEDIATE_DIR)/generated.S', ], 'action': [ # TODO(ahe): Change generator to accept command line argument for # output file. Using file redirection may not work well on Windows. 'bash', '-c', '<(_inputs) > <(_outputs)', ], }, ], }, { 'target_name': 'fletch_vm_generator', 'type': 'executable', 'dependencies': [ 'fletch_vm_base', '../shared/shared.gyp:fletch_shared', '../double_conversion.gyp:double_conversion', ], 'sources': [ # TODO(ahe): Add header (.h) files. 'generator.cc', ], }, { 'target_name': 'fletch', 'type': 'executable', 'dependencies': [ 'fletch_vm', ], 'sources': [ # TODO(ahe): Add header (.h) files. 'main.cc', ], }, { 'target_name': 'vm_run_tests', 'type': 'executable', 'dependencies': [ 'fletch_vm', ], 'defines': [ 'TESTING', # TODO(ahe): Remove this when GYP is the default. 'GYP', ], 'sources': [ # TODO(ahe): Add header (.h) files. 'foreign_ports_test.cc', 'object_map_test.cc', 'object_memory_test.cc', 'object_test.cc', 'platform_test.cc', '../shared/test_main.cc', ], }, ], }
UTF-8
Python
false
false
3,846
gyp
58
vm.gyp
26
0.471659
0.468539
0
147
25.163265
79
LuisHVieira/valorant_games
11,269,994,186,642
1fbde5dfabbc5a903b62e336d4dcf1a817572e06
d054c44279a959f03fc76147f4dde75b20dd5f6a
/datasValorant.py
0710f807c0d508a259d9b0c3fbbadd6e800b4c9f
[]
no_license
https://github.com/LuisHVieira/valorant_games
03f5991083a3d0394f1acd072be3cfb13d634172
8e8af388a607ff4c76aede1c7d52b7aed549097e
refs/heads/master
2023-08-15T03:23:25.527484
2021-09-30T23:54:14
2021-09-30T23:54:14
411,813,213
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import json import datetime import embeds as e import discord def get_games_today(): #Get current date and convert from string today = datetime.datetime.now() year = str(today.year) month = str(today.month) if today.month >= 10 else '0' + str(today.month) day = str(today.day) if today.day >= 10 else '0' + str(today.day) #String complete and only date formartBR dateBr = day + '/' + month + '/' + year stringRangeToday = year + '-' + month + '-' + day + 'T' #Request linkRequest = 'https://api.pandascore.co/valorant/matches/upcoming?&range[begin_at]=' + stringRangeToday + '00:00:00Z,' + stringRangeToday + '23:59:59Z&token=CZ2gKXBwL8LYIKbj_VzKC8cjujXZcVF-vlwPf8P3qC-GcHnSoRQ' #rTest = 'https://api.pandascore.co/valorant/matches/upcoming?&range[begin_at]=2021-09-13T00:00:00Z,2021-09-13T23:59:59Z&token=CZ2gKXBwL8LYIKbj_VzKC8cjujXZcVF-vlwPf8P3qC-GcHnSoRQ' r = requests.get(linkRequest) responseJson = r.json() #list and count a = [] count = 0 count2 = 0 for i in responseJson: idC = count dateTime = i['begin_at'] serieName = i['serie']['name'] thumb = i['league']['image_url'] idSerie = i['serie']['id'] hour = int(dateTime[11:13]) - 3 minSec = dateTime[13:16] dateTimeFormated = dateBr + ' - ' + str(hour) + minSec datas = dict(id=idC, serieName=serieName, dateTime=dateTimeFormated, thumb=thumb, serieID=idSerie) for j in i['opponents']: teamName = j['opponent']['name'] idTeam = j['opponent']['id'] if count % 2 == 0: teams = dict(teamName0=teamName, id0=idTeam) else: teams = dict(teamName1=teamName, id1=idTeam) datas.update(teams) count += 1 count2 += 1 a.append(datas) return a
UTF-8
Python
false
false
1,701
py
7
datasValorant.py
3
0.673721
0.628454
0
65
25.153846
211
chaitualuru/algorithms
10,196,252,397,575
aa80d07c26f450f42b4189a9755446298101607c
19241f750f9bef7f2d8529bb6d3096eea46d83b5
/eip/sudoku_checker.py
095fbd59f128f3ccad973e90e379edb20854d63e
[]
no_license
https://github.com/chaitualuru/algorithms
ad372146dc9a286963131a59889ee5c83445db17
af58921e23f9c97650f87bfadbdeac51f433a249
refs/heads/master
2022-07-12T03:58:25.129841
2015-08-31T06:00:33
2015-08-31T06:00:33
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
"""Sudoku Checker""" def sudoku_checker(A): for i in range(len(A)): if not valid_line(A[i]): return False unzipped_A = list(zip(*A)) for j in range(len(unzipped_A)): if not valid_line(unzipped_A[j]): return False for k in range(0, len(A), 3): for l in range(0, len(A), 3): grid = [] for x in A[k:k+3]: for y in x[l:l+3]: grid.append(y) if not valid_line(grid): return False return True def valid_line(line): return (len(line) == 9 and sum(line) == sum(set(line))) def main(): """Entry point of the program.""" # valid if sudoku_checker([ [5,3,0,0,7,0,0,0,0], [6,0,0,1,9,5,0,0,0], [0,9,8,0,0,0,0,6,0], [8,0,0,0,6,0,0,0,3], [4,0,0,8,0,3,0,0,1], [7,0,0,0,2,0,0,0,6], [0,6,0,0,0,0,2,8,0], [0,0,0,4,1,9,0,0,5], [0,0,0,0,8,0,0,7,9]]): print "Valid" else: print "Not Valid" if __name__ == '__main__': main()
UTF-8
Python
false
false
875
py
57
sudoku_checker.py
57
0.544
0.443429
0
45
18.444444
56
moskalikbogdan/CDV
5,257,039,992,144
1241c1a272387bd5034d0044af2b2351952cd4b6
a9d4ba71e1c847e0f4a7f26d76ee1fb6c08f8c76
/Python/Warsztaty/Week02/W02.Z04.2.py
ddfae2e158abb6e57bcba39f1739d0a711780b19
[]
no_license
https://github.com/moskalikbogdan/CDV
569c257b779e14c42fe9e1ff19cfd105bb624afb
90d14a597e66f9e5902ecf2b103baf737ed0e4ea
refs/heads/master
2020-12-15T01:42:18.842169
2020-07-13T00:40:20
2020-07-13T00:40:20
234,949,055
0
1
null
false
2020-02-09T08:30:12
2020-01-19T18:55:48
2020-01-21T15:38:26
2020-02-09T08:29:32
17
0
0
1
Python
false
false
""" @author: Bogdan Moskalik, DataScience, Niestacjonarne, Grupa 2 """ import numpy as np print('''Policzę srednią i odchylenie standardowe z listy którą wprowadzisz Z ilu elementów ma się składać lista?: ''') a = int(input()) print('''Wprowadź pojedyńczo elementy twojej listy:''') x = [] for i in range(0,a): x.append(int(input('Wprowadź element %i:'%(i+1)))) print () print('Średnia twojej listy to:') print(np.mean(x)) print('Odchylenie standardowe twojej listy to:') print(round(np.std(x),2))
UTF-8
Python
false
false
531
py
43
W02.Z04.2.py
36
0.684008
0.676301
0
25
19.8
75
m-nosrati/springboard-course
7,610,682,086,991
be8e030dbfe6707ba2b450fc7a4d679a8f959f68
ff986f9509dbdbe843c223f630a82e80e9dbfebc
/machine-learning/naive_bayes/src/naive_bayes.py
125630359e284d4f2b44167a2543df0d39046f5d
[]
no_license
https://github.com/m-nosrati/springboard-course
65ce414411525ac49c3bd36e0da00164af75b153
bd7da238f32bcf6d5716984dab6e887c90ac94ad
refs/heads/master
2022-02-27T05:55:31.642308
2019-08-13T02:06:51
2019-08-13T02:06:51
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#%% [markdown] # # Basic Text Classification with Naive Bayes submitted by Ahrim Han (2019/3/25) # *** # In the mini-project, you'll learn the basics of text analysis using a subset of movie reviews from the rotten tomatoes database. You'll also use a fundamental technique in Bayesian inference, called Naive Bayes. This mini-project is based on [Lab 10 of Harvard's CS109](https://github.com/cs109/2015lab10) class. Please free to go to the original lab for additional exercises and solutions. #%% get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from six.moves import range # Setup Pandas pd.set_option('display.width', 500) pd.set_option('display.max_columns', 100) pd.set_option('display.notebook_repr_html', True) # Setup Seaborn sns.set_style("whitegrid") sns.set_context("poster") #%% [markdown] # # Table of Contents # # * [Rotten Tomatoes Dataset](#Rotten-Tomatoes-Dataset) # * "fresh" or "rotton": The critics upload their reviews to the movie page on the website, and need to mark their review "fresh" if it's generally favorable or "rotten" otherwise. It is necessary for the critic to do so as some reviews are qualitative and do not grant a numeric score, making it impossible for the system to be automatic. # * Movies and TV shows are Certified Fresh with a steady Tomatometer of 75% or higher after a set amount of reviews (80 for wide-release movies, 40 for limited-release movies, 20 for TV shows), including 5 reviews from Top Critics. # * [Explore](#Explore) # * [The Vector Space Model and a Search Engine](#The-Vector-Space-Model-and-a-Search-Engine) # * [In Code](#In-Code) # * [Naive Bayes](#Naive-Bayes) # * [Multinomial Naive Bayes and Other Likelihood Functions](#Multinomial-Naive-Bayes-and-Other-Likelihood-Functions) # * [Picking Hyperparameters for Naive Bayes and Text Maintenance](#Picking-Hyperparameters-for-Naive-Bayes-and-Text-Maintenance) # * [Interpretation](#Interpretation) # #%% [markdown] # ## Rotten Tomatoes Dataset #%% critics = pd.read_csv('./critics.csv') #let's drop rows with missing quotes critics = critics[~critics.quote.isnull()] critics.head() #%% [markdown] # ### Explore #%% n_reviews = len(critics) n_movies = critics.rtid.unique().size n_critics = critics.critic.unique().size print("Number of reviews: {:d}".format(n_reviews)) print("Number of critics: {:d}".format(n_critics)) print("Number of movies: {:d}".format(n_movies)) #%% critics.fresh.value_counts() #%% df = critics.copy() df['fresh'] = df.fresh == 'fresh' grp = df.groupby('critic') counts = grp.critic.count() # number of reviews by each critic means = grp.fresh.mean() # average freshness for each critic means[counts > 100].hist(bins=10, edgecolor='w', lw=1) plt.xlabel("Average Rating per critic") plt.ylabel("Number of Critics") plt.yticks([0, 2, 4, 6, 8, 10]); #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set I</h3> # <br/> # <b>Exercise:</b> Look at the histogram above. Tell a story about the average ratings per critic. What shape does the distribution look like? What is interesting about the distribution? What might explain these interesting things? # </div> #%% [markdown] # The distribution looks roughly normal with a strange gap around 0.55. Except the gap, the distribution definitely look normal. There appear to be two distinct groups of raters: harsh raters and generous raters. #%% [markdown] # ## The Vector Space Model and a Search Engine #%% [markdown] # All the diagrams here are snipped from [*Introduction to Information Retrieval* by Manning et. al.]( http://nlp.stanford.edu/IR-book/) which is a great resource on text processing. For additional information on text mining and natural language processing, see [*Foundations of Statistical Natural Language Processing* by Manning and Schutze](http://nlp.stanford.edu/fsnlp/). # # Also check out Python packages [`nltk`](http://www.nltk.org/), [`spaCy`](https://spacy.io/), [`pattern`](http://www.clips.ua.ac.be/pattern), and their associated resources. Also see [`word2vec`](https://en.wikipedia.org/wiki/Word2vec). # # Let us define the vector derived from document $d$ by $\bar V(d)$. What does this mean? Each document is treated as a vector containing information about the words contained in it. Each vector has the same length and each entry "slot" in the vector contains some kind of data about the words that appear in the document such as presence/absence (1/0), count (an integer) or some other statistic. Each vector has the same length because each document shared the same vocabulary across the full collection of documents -- this collection is called a *corpus*. # # To define the vocabulary, we take a union of all words we have seen in all documents. We then just associate an array index with them. So "hello" may be at index 5 and "world" at index 99. # # Suppose we have the following corpus: # # `A Fox one day spied a beautiful bunch of ripe grapes hanging from a vine trained along the branches of a tree. The grapes seemed ready to burst with juice, and the Fox's mouth watered as he gazed longingly at them.` # # Suppose we treat each sentence as a document $d$. The vocabulary (often called the *lexicon*) is the following: # # $V = \left\{\right.$ `a, along, and, as, at, beautiful, branches, bunch, burst, day, fox, fox's, from, gazed, grapes, hanging, he, juice, longingly, mouth, of, one, ready, ripe, seemed, spied, the, them, to, trained, tree, vine, watered, with`$\left.\right\}$ # # Then the document # # `A Fox one day spied a beautiful bunch of ripe grapes hanging from a vine trained along the branches of a tree` # # may be represented as the following sparse vector of word counts: # # $$\bar V(d) = \left( 4,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,2,1,0,1,0,0,1,0,0,1,1,1,0,0 \right)$$ # # or more succinctly as # # `[(0, 4), (1, 1), (5, 1), (6, 1), (7, 1), (9, 1), (10, 1), (12, 1), (14, 1), (15, 1), (20, 2), (21, 1), (23, 1),` # `(26, 1), (29,1), (30, 1), (31, 1)]` # # along with a dictionary # # `` # { # 0: a, 1: along, 5: beautiful, 6: branches, 7: bunch, 9: day, 10: fox, 12: from, 14: grapes, 15: hanging, 19: mouth, 20: of, 21: one, 23: ripe, 24: seemed, 25: spied, 26: the, 29:trained, 30: tree, 31: vine, # } # `` # # Then, a set of documents becomes, in the usual `sklearn` style, a sparse matrix with rows being sparse arrays representing documents and columns representing the features/words in the vocabulary. # # Notice that this representation loses the relative ordering of the terms in the document. That is "cat ate rat" and "rat ate cat" are the same. Thus, this representation is also known as the Bag-Of-Words representation. # # Here is another example, from the book quoted above, although the matrix is transposed here so that documents are columns: # # ![novel terms](terms.png) # # Such a matrix is also catted a Term-Document Matrix. Here, the terms being indexed could be stemmed before indexing; for instance, `jealous` and `jealousy` after stemming are the same feature. One could also make use of other "Natural Language Processing" transformations in constructing the vocabulary. We could use Lemmatization, which reduces words to lemmas: work, working, worked would all reduce to work. We could remove "stopwords" from our vocabulary, such as common words like "the". We could look for particular parts of speech, such as adjectives. This is often done in Sentiment Analysis. And so on. It all depends on our application. # # From the book: # >The standard way of quantifying the similarity between two documents $d_1$ and $d_2$ is to compute the cosine similarity of their vector representations $\bar V(d_1)$ and $\bar V(d_2)$: # # $$S_{12} = \frac{\bar V(d_1) \cdot \bar V(d_2)}{|\bar V(d_1)| \times |\bar V(d_2)|}$$ # # ![Vector Space Model](vsm.png) # # # >There is a far more compelling reason to represent documents as vectors: we can also view a query as a vector. Consider the query q = jealous gossip. This query turns into the unit vector $\bar V(q)$ = (0, 0.707, 0.707) on the three coordinates below. # # ![novel terms](terms2.png) # # >The key idea now: to assign to each document d a score equal to the dot product: # # $$\bar V(q) \cdot \bar V(d)$$ # # Then we can use this simple Vector Model as a Search engine. #%% [markdown] # ### In Code #%% from sklearn.feature_extraction.text import CountVectorizer text = ['Hop on pop', 'Hop off pop', 'Hop Hop hop'] print("Original text is\n{}".format('\n'.join(text))) vectorizer = CountVectorizer(min_df=0) # call `fit` to build the vocabulary vectorizer.fit(text) # call `transform` to convert text to a bag of words x = vectorizer.transform(text) # CountVectorizer uses a sparse array to save memory, but it's easier in this assignment to # convert back to a "normal" numpy array x = x.toarray() print("") print("Transformed text vector is \n{}".format(x)) # `get_feature_names` tracks which word is associated with each column of the transformed x print("") print("Words for each feature:") print(vectorizer.get_feature_names()) # Notice that the bag of words treatment doesn't preserve information about the *order* of words, # just their frequency #%% [markdown] # [Coordinate Format (COO)](https://scipy-lectures.org/advanced/scipy_sparse/coo_matrix.html) #%% def make_xy(critics, vectorizer=None): #Your code here if vectorizer is None: vectorizer = CountVectorizer() X = vectorizer.fit_transform(critics.quote) X = X.tocsc() # some versions of sklearn return COO format y = (critics.fresh == 'fresh').values.astype(np.int) return X, y X, y = make_xy(critics) #%% [markdown] # ## Naive Bayes #%% [markdown] # From Bayes' Theorem, we have that # # $$P(c \vert f) = \frac{P(c \cap f)}{P(f)}$$ # # where $c$ represents a *class* or category, and $f$ represents a feature vector, such as $\bar V(d)$ as above. **We are computing the probability that a document (or whatever we are classifying) belongs to category *c* given the features in the document.** $P(f)$ is really just a normalization constant, so the literature usually writes Bayes' Theorem in context of Naive Bayes as # # $$P(c \vert f) \propto P(f \vert c) P(c) $$ # # $P(c)$ is called the *prior* and is simply the probability of seeing class $c$. But what is $P(f \vert c)$? This is the probability that we see feature set $f$ given that this document is actually in class $c$. This is called the *likelihood* and comes from the data. One of the major assumptions of the Naive Bayes model is that the features are *conditionally independent* given the class. While the presence of a particular discriminative word may uniquely identify the document as being part of class $c$ and thus violate general feature independence, conditional independence means that the presence of that term is independent of all the other words that appear *within that class*. This is a very important distinction. Recall that if two events are independent, then: # # $$P(A \cap B) = P(A) \cdot P(B)$$ # # Thus, conditional independence implies # # $$P(f \vert c) = \prod_i P(f_i | c) $$ # # where $f_i$ is an individual feature (a word in this example). # # To make a classification, we then choose the class $c$ such that $P(c \vert f)$ is maximal. # # There is a small caveat when computing these probabilities. For [floating point underflow](http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html) we change the product into a sum by going into log space. This is called the LogSumExp trick. So: # # $$\log P(f \vert c) = \sum_i \log P(f_i \vert c) $$ # # There is another caveat. What if we see a term that didn't exist in the training data? This means that $P(f_i \vert c) = 0$ for that term, and thus $P(f \vert c) = \prod_i P(f_i | c) = 0$, which doesn't help us at all. Instead of using zeros, we add a small negligible value called $\alpha$ to each count. This is called Laplace Smoothing. # # $$P(f_i \vert c) = \frac{N_{ic}+\alpha}{N_c + \alpha N_i}$$ # # where $N_{ic}$ is the number of times feature $i$ was seen in class $c$, $N_c$ is the number of times class $c$ was seen and $N_i$ is the number of times feature $i$ was seen globally. $\alpha$ is sometimes called a regularization parameter. #%% [markdown] # ### Multinomial Naive Bayes and Other Likelihood Functions # # Since we are modeling word counts, we are using variation of Naive Bayes called Multinomial Naive Bayes. This is because the likelihood function actually takes the form of the multinomial distribution. # # $$P(f \vert c) = \frac{\left( \sum_i f_i \right)!}{\prod_i f_i!} \prod_{f_i} P(f_i \vert c)^{f_i} \propto \prod_{i} P(f_i \vert c)$$ # # where the nasty term out front is absorbed as a normalization constant such that probabilities sum to 1. # # There are many other variations of Naive Bayes, all which depend on what type of value $f_i$ takes. If $f_i$ is continuous, we may be able to use *Gaussian Naive Bayes*. First compute the mean and variance for each class $c$. Then the likelihood, $P(f \vert c)$ is given as follows # # $$P(f_i = v \vert c) = \frac{1}{\sqrt{2\pi \sigma^2_c}} e^{- \frac{\left( v - \mu_c \right)^2}{2 \sigma^2_c}}$$ #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set II</h3> # # <p><b>Exercise:</b> Implement a simple Naive Bayes classifier:</p> # # <ol> # <li> split the data set into a training and test set # <li> Use `scikit-learn`'s `MultinomialNB()` classifier with default parameters. # <li> train the classifier over the training set and test on the test set # <li> print the accuracy scores for both the training and the test sets # </ol> # # What do you notice? Is this a good classifier? If not, why not? # </div> #%% from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import train_test_split def xy_train_test(critics, vectorizer) #%% [markdown] # ### Picking Hyperparameters for Naive Bayes and Text Maintenance #%% [markdown] # We need to know what value to use for $\alpha$, and we also need to know which words to include in the vocabulary. As mentioned earlier, some words are obvious stopwords. Other words appear so infrequently that they serve as noise, and other words in addition to stopwords appear so frequently that they may also serve as noise. #%% [markdown] # First, let's find an appropriate value for `min_df` for the `CountVectorizer`. `min_df` can be either an integer or a float/decimal. If it is an integer, `min_df` represents the minimum number of documents a word must appear in for it to be included in the vocabulary. If it is a float, it represents the minimum *percentage* of documents a word must appear in to be included in the vocabulary. From the documentation: #%% [markdown] # >min_df: When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set III</h3> # # <p><b>Exercise:</b> Construct the cumulative distribution of document frequencies (df). The $x$-axis is a document count $x_i$ and the $y$-axis is the percentage of words that appear less than $x_i$ times. For example, at $x=5$, plot a point representing the percentage or number of words that appear in 5 or fewer documents.</p> # # <p><b>Exercise:</b> Look for the point at which the curve begins climbing steeply. This may be a good value for `min_df`. If we were interested in also picking `max_df`, we would likely pick the value where the curve starts to plateau. What value did you choose?</p> # </div> #%% # Your turn. #%% [markdown] # The parameter $\alpha$ is chosen to be a small value that simply avoids having zeros in the probability computations. This value can sometimes be chosen arbitrarily with domain expertise, but we will use K-fold cross validation. In K-fold cross-validation, we divide the data into $K$ non-overlapping parts. We train on $K-1$ of the folds and test on the remaining fold. We then iterate, so that each fold serves as the test fold exactly once. The function `cv_score` performs the K-fold cross-validation algorithm for us, but we need to pass a function that measures the performance of the algorithm on each fold. #%% from sklearn.model_selection import KFold def cv_score(clf, X, y, scorefunc): result = 0. nfold = 5 for train, test in KFold(nfold).split(X): # split data into train/test groups, 5 times clf.fit(X[train], y[train]) # fit the classifier, passed is as clf. result += scorefunc(clf, X[test], y[test]) # evaluate score function on held-out data return result / nfold # average #%% [markdown] # We use the log-likelihood as the score here in `scorefunc`. The higher the log-likelihood, the better. Indeed, what we do in `cv_score` above is to implement the cross-validation part of `GridSearchCV`. # # The custom scoring function `scorefunc` allows us to use different metrics depending on the decision risk we care about (precision, accuracy, profit etc.) directly on the validation set. You will often find people using `roc_auc`, precision, recall, or `F1-score` as the scoring function. #%% def log_likelihood(clf, x, y): prob = clf.predict_log_proba(x) rotten = y == 0 fresh = ~rotten return prob[rotten, 0].sum() + prob[fresh, 1].sum() #%% [markdown] # We'll cross-validate over the regularization parameter $\alpha$. #%% [markdown] # Let's set up the train and test masks first, and then we can run the cross-validation procedure. #%% from sklearn.model_selection import train_test_split _, itest = train_test_split(range(critics.shape[0]), train_size=0.7) mask = np.zeros(critics.shape[0], dtype=np.bool) mask[itest] = True #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set IV</h3> # # <p><b>Exercise:</b> What does using the function `log_likelihood` as the score mean? What are we trying to optimize for?</p> # # <p><b>Exercise:</b> Without writing any code, what do you think would happen if you choose a value of $\alpha$ that is too high?</p> # # <p><b>Exercise:</b> Using the skeleton code below, find the best values of the parameter `alpha`, and use the value of `min_df` you chose in the previous exercise set. Use the `cv_score` function above with the `log_likelihood` function for scoring.</p> # </div> #%% from sklearn.naive_bayes import MultinomialNB #the grid of parameters to search over alphas = [.1, 1, 5, 10, 50] best_min_df = None # YOUR TURN: put your value of min_df here. #Find the best value for alpha and min_df, and the best classifier best_alpha = None maxscore=-np.inf for alpha in alphas: vectorizer = CountVectorizer(min_df=best_min_df) Xthis, ythis = make_xy(critics, vectorizer) Xtrainthis = Xthis[mask] ytrainthis = ythis[mask] # your turn #%% print("alpha: {}".format(best_alpha)) #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set V: Working with the Best Parameters</h3> # # <p><b>Exercise:</b> Using the best value of `alpha` you just found, calculate the accuracy on the training and test sets. Is this classifier better? Why (not)?</p> # # </div> #%% vectorizer = CountVectorizer(min_df=best_min_df) X, y = make_xy(critics, vectorizer) xtrain=X[mask] ytrain=y[mask] xtest=X[~mask] ytest=y[~mask] clf = MultinomialNB(alpha=best_alpha).fit(xtrain, ytrain) #your turn. Print the accuracy on the test and training dataset training_accuracy = clf.score(xtrain, ytrain) test_accuracy = clf.score(xtest, ytest) print("Accuracy on training data: {:2f}".format(training_accuracy)) print("Accuracy on test data: {:2f}".format(test_accuracy)) #%% from sklearn.metrics import confusion_matrix print(confusion_matrix(ytest, clf.predict(xtest))) #%% [markdown] # ## Interpretation #%% [markdown] # ### What are the strongly predictive features? # # We use a neat trick to identify strongly predictive features (i.e. words). # # * first, create a data set such that each row has exactly one feature. This is represented by the identity matrix. # * use the trained classifier to make predictions on this matrix # * sort the rows by predicted probabilities, and pick the top and bottom $K$ rows #%% words = np.array(vectorizer.get_feature_names()) x = np.eye(xtest.shape[1]) probs = clf.predict_log_proba(x)[:, 0] ind = np.argsort(probs) good_words = words[ind[:10]] bad_words = words[ind[-10:]] good_prob = probs[ind[:10]] bad_prob = probs[ind[-10:]] print("Good words\t P(fresh | word)") for w, p in zip(good_words, good_prob): print("{:>20}".format(w), "{:.2f}".format(1 - np.exp(p))) print("Bad words\t P(fresh | word)") for w, p in zip(bad_words, bad_prob): print("{:>20}".format(w), "{:.2f}".format(1 - np.exp(p))) #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set VI</h3> # # <p><b>Exercise:</b> Why does this method work? What does the probability for each row in the identity matrix represent</p> # # </div> #%% [markdown] # The above exercise is an example of *feature selection*. There are many other feature selection methods. A list of feature selection methods available in `sklearn` is [here](http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection). The most common feature selection technique for text mining is the chi-squared $\left( \chi^2 \right)$ [method](http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html). #%% [markdown] # ### Prediction Errors # # We can see mis-predictions as well. #%% x, y = make_xy(critics, vectorizer) prob = clf.predict_proba(x)[:, 0] predict = clf.predict(x) bad_rotten = np.argsort(prob[y == 0])[:5] bad_fresh = np.argsort(prob[y == 1])[-5:] print("Mis-predicted Rotten quotes") print('---------------------------') for row in bad_rotten: print(critics[y == 0].quote.iloc[row]) print("") print("Mis-predicted Fresh quotes") print('--------------------------') for row in bad_fresh: print(critics[y == 1].quote.iloc[row]) print("") #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set VII: Predicting the Freshness for a New Review</h3> # <br/> # <div> # <b>Exercise:</b> # <ul> # <li> Using your best trained classifier, predict the freshness of the following sentence: *'This movie is not remarkable, touching, or superb in any way'* # <li> Is the result what you'd expect? Why (not)? # </ul> # </div> # </div> #%% #your turn #%% [markdown] # ### Aside: TF-IDF Weighting for Term Importance # # TF-IDF stands for # # `Term-Frequency X Inverse Document Frequency`. # # In the standard `CountVectorizer` model above, we used just the term frequency in a document of words in our vocabulary. In TF-IDF, we weight this term frequency by the inverse of its popularity in all documents. For example, if the word "movie" showed up in all the documents, it would not have much predictive value. It could actually be considered a stopword. By weighing its counts by 1 divided by its overall frequency, we downweight it. We can then use this TF-IDF weighted features as inputs to any classifier. **TF-IDF is essentially a measure of term importance, and of how discriminative a word is in a corpus.** There are a variety of nuances involved in computing TF-IDF, mainly involving where to add the smoothing term to avoid division by 0, or log of 0 errors. The formula for TF-IDF in `scikit-learn` differs from that of most textbooks: # # $$\mbox{TF-IDF}(t, d) = \mbox{TF}(t, d)\times \mbox{IDF}(t) = n_{td} \log{\left( \frac{\vert D \vert}{\vert d : t \in d \vert} + 1 \right)}$$ # # where $n_{td}$ is the number of times term $t$ occurs in document $d$, $\vert D \vert$ is the number of documents, and $\vert d : t \in d \vert$ is the number of documents that contain $t$ #%% # http://scikit-learn.org/dev/modules/feature_extraction.html#text-feature-extraction # http://scikit-learn.org/dev/modules/classes.html#text-feature-extraction-ref from sklearn.feature_extraction.text import TfidfVectorizer tfidfvectorizer = TfidfVectorizer(min_df=1, stop_words='english') Xtfidf=tfidfvectorizer.fit_transform(critics.quote) #%% [markdown] # <div class="span5 alert alert-info"> # <h3>Exercise Set VIII: Enrichment <b>(Optional)</b></h3> # # <p> # There are several additional things we could try. Try some of these as exercises: # <ol> # <li> Build a Naive Bayes model where the features are n-grams instead of words. N-grams are phrases containing n words next to each other: a bigram contains 2 words, a trigram contains 3 words, and 6-gram contains 6 words. This is useful because "not good" and "so good" mean very different things. On the other hand, as n increases, the model does not scale well since the feature set becomes more sparse. # <li> Try a model besides Naive Bayes, one that would allow for interactions between words -- for example, a Random Forest classifier. # <li> Try adding supplemental features -- information about genre, director, cast, etc. # <li> Use word2vec or [Latent Dirichlet Allocation](https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation) to group words into topics and use those topics for prediction. # <li> Use TF-IDF weighting instead of word counts. # </ol> # </p> # # <b>Exercise:</b> Try at least one of these ideas to improve the model (or any other ideas of your own). Implement here and report on the result. # </div> #%% # Your turn
UTF-8
Python
false
false
25,840
py
19
naive_bayes.py
5
0.713235
0.70209
0
508
49.862205
857
noltron000/CS-1-2_tweet-generator
5,609,227,289,814
77f8235f455e91f8d95a896cd589b58597305a5d
0c0712ff1c7a06bf75dcc9fbfdac8d6d3b8df876
/misc/prefactored.py
10f81c92eacee63b7e195570f07a08ce4cff19d1
[]
no_license
https://github.com/noltron000/CS-1-2_tweet-generator
fde70ce31188e2143cda06824292218d0adf527e
11c1afcf81632aa453818e2320937b9854891fa7
refs/heads/master
2020-04-05T09:12:06.165258
2019-04-14T20:26:16
2019-04-14T20:26:16
154,562,627
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from flask import Flask app = Flask(__name__) import urllib.request # imports internet textfile reader import random # psuedo-random number generator module import sys # module allows program to access terminal parameters import re # the powerful "regular expression" for decompartimentalizing strings def dictionary_main(): # opens primary dictionary on the machine. ''' This shouldn't vary too much machine to machine, but it may. It is the primary dictionary on your machine, so it holds many words. It isn't originally in list format. ''' file = open("/usr/share/dict/words", "r") text = file.read() file.close() return text def publication_random(): book = round((random.random()*49544)+1) link = f"http://www.gutenberg.org/cache/epub/{book}/pg{book}.txt" with urllib.request.urlopen(link) as response: text = response.read() print("200 SUCCESS") text = str(text) text = text.replace("\\r\\n", "") return text def publication_example(): # opens primary dictionary on the machine. ''' It is the primary dictionary on your machine, so it holds many words. It isn't originally in list format. ''' file = open("./example.txt", "r") text = file.read() file.close() return text def user_number(feed): print(feed) while True: try: number = int(input("enter integer:\n>> ")) assert isinstance(number, int) # throws an error if its not an integer assert number != None assert number != "" return number except: print("INVALID INPUT.\nplease try again.\n") def user_string(feed): print(feed) while True: try: string = str(input("enter string:\n>> ")) assert isinstance(string, str) # throws an error if its not an string return string except: print("INVALID INPUT.\nplease try again.\n") def listify_data(input_data): # takes data and returns its list version. ''' if its already a list, nothing happens. if its a string, it uses REGULAR EXPRESSIONS to transform it into a list. if its an unexpected data type, it throws an assertion error ''' input_data = str(input_data) if (type(input_data) is str): input_data = re.findall(r"[\w']+", input_data) # I still must configure the thing to remove /n /r /xc3 assert type(input_data) is list return input_data def undupli_list(input_list): # removes duplicates from a list. output_list = [] for word in input_list: if word not in output_list: output_list += [word] return output_list def randify_list(input_list, iterations): # randomly shuffles a list. ''' picks a random digit, min 0 max current length of input list pops current digit into output list the `iterations` variable determines the number of words to output ''' output_list = [] while len(input_list) > 0 and (len(output_list) < iterations or iterations == 0): digit_rand = random.randint(0, len(input_list) - 1) input_rand = input_list.pop(digit_rand) output_list += [input_rand] return output_list def textify_list(input_list): # turns a list into a space-deliminated string. ''' output_text is the final return product. each item is added with a space to output_text. the final output_text string is returned ''' output_text = '' for input_item in input_list: if output_text != '': output_text += ' ' output_text += input_item input_list = output_text return input_list def textify_dict(input_dict): output_text = '' for w in sorted(input_dict, key=input_dict.get, reverse=False): if input_dict[w] > 0: output_text += str(input_dict[w]) + ' ' + str(w) + "\n" return output_text def lowerfy_list(input_list): # takes a list of strings and runs lowercase on each item. ''' output_text is the final return product. each item is added with a space to output_text. the final output_text string is returned ''' output_list = [] for string in input_list: string = string.lower() output_list += [string] return output_list def reverse_text(old_word): # simply reverses a text. new_word = "" i = 1 for _ in old_word: new_word += old_word[len(old_word)-i] i+=1 return new_word # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ''' Now setting up specific functions. These will each return complete jobs. These functions will use the previously declared helpers to make code readable. ''' # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def rearrange(iterations, input_data = dictionary_main()): data = input_data data = listify_data(data) data = lowerfy_list(data) # data = undupli_list(data) ## This function takes too long! data = randify_list(data, iterations) data = textify_list(data) return(data) ### ANAGRAMS def anagrams (input_word, input_data = dictionary_main()): data = input_data data = listify_data(data) data = lowerfy_list(data) new_data = [] i_word = input_word for v_word in data: if verify_anagram(i_word,v_word): new_data += [v_word] new_data = textify_list(new_data) return new_data def verify_anagram(input_word, verify_word): input_list = list(input_word) verify_list = list(verify_word) input_list.sort() verify_list.sort() if input_list == verify_list: return True else: return False ### PALINDROMES def palindromes(input_data = dictionary_main()): data = input_data data = listify_data(data) data = lowerfy_list(data) new_data = [] for word in data: if verify_palindrome(word): new_data += [word] new_data = undupli_list(new_data) new_data = textify_list(new_data) return new_data def verify_palindrome(input_word): i = 1 while (i <= len(input_word)/2): if input_word[i-1] != input_word[-i]: return False i += 1 return True # HISTOGRAM def histogram(input_data = dictionary_main()): data = listify_data(input_data) data = lowerfy_list(data) # data = undupli_list(data) ## This removes duplicates. If this is correct, there will be no outputs when this is uncommented. hist = {} for word in data: if word in hist: hist[word] += 1 else: hist[word] = 1 return hist def histogram_arrays(input_data = dictionary_main()): data = listify_data(input_data) data = lowerfy_list(data) hist = [] for word in data: found = False for item in hist: if word == item[0]: found = True if found: item[1] += 1 else: item[0] = word item[1] = 1 return hist def display_dict(input_data = dictionary_main()): hist = histogram(input_data) output = textify_dict(hist) return output def display_weight(input_data): hist = histogram(input_data) hist = calculate_weight(hist) # testing calculate weight string = prettify(hist) return string def prettify(input_data): string = '' for item in input_data: string += item string += ': ' string += str(input_data[item] * 1000) string += '‰\n' return string # WEIGHTED FUNCTION def calculate_weight(input_dict): weight_dict = {} dict_total = 0 for word in input_dict: dict_total += input_dict[word] for word in input_dict: weight_dict[word] = input_dict[word] / dict_total return weight_dict def random_choice(weight_dict): cumulative = 0 rand_select = random.random() for word in weight_dict: if (cumulative <= rand_select < weight_dict[word] + cumulative): print("SELECTED: " + word) return word cumulative += weight_dict[word] print(rand_select) # for word in weight_dict: # if weight_dict ### STARTER KIT # MUST DO RANDOM WEIGHTING @app.route('/') def hello_world(): return display_weight(publication_random()) if __name__ == '__main__': # print("\nIt looks like you used a parameter when you ran this file.\nI'm going to assume that this is a file, and I'm going to run") entry = user_number("\nI generate several words.\nHow many should I create?") print("\nRandom Words:\n" + rearrange(entry)) entry = user_string("\nI make anagrams, so I need a word.\nWhat base word should I use today?") print("\nAnagrams:\n" + anagrams(entry)) print("\nI do palindromes too, but I\ndon't need any inputs for that!\nI'll go ahead and get started.") print("\nPalindromes:\n" + palindromes()) print("\nI'm going to spit out a large histogram of words, \nsorted by the PERMILLE (‰) of the text that it is used in.") input("press enter to continue: ") my_dict = publication_random() print("\nDisplay Weight:\n" + display_weight(my_dict))
UTF-8
Python
false
false
8,304
py
12
prefactored.py
10
0.678675
0.674337
0
305
26.216393
135
State-Representation/code
3,298,534,887,485
6ddbedf7fa2f86e63527bc4ab206c8b8bcc1c3c8
566aabb186fc6950959240202b7db596a64fec4a
/algorithms/AE_Algorithm.py
5d0cbaa14c70dbe0500e008b7633326d344c3378
[]
no_license
https://github.com/State-Representation/code
3393c34a831c209f9d89793543b3a56e4d1fb18a
88c8e80a491db56204e3b9211ae10aa87d661178
refs/heads/main
2023-07-24T22:52:03.918718
2021-09-07T15:14:55
2021-09-07T15:14:55
399,847,904
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # State Representation Learning with Task-Irrelevant Factors of Variation in Robotics # Anonymous Authors 2021 import numpy as np import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt import torch import torch.optim as optim from scipy.stats import norm import sys sys.path.insert(0,'..') import importlib import algorithms.EarlyStopping as ES import torch.utils.data as data # --- # ====================== Training functions ====================== # # --- class AE_Algorithm(): def __init__(self, opt): # Save the whole config self.opt = opt # Training parameters self.batch_size = opt['batch_size'] self.epochs = opt['epochs'] self.current_epoch = None self.loss_fn = opt['loss_fn'] self.snapshot = opt['snapshot'] self.console_print = opt['console_print'] self.lr_schedule = opt['lr_schedule'] self.init_lr_schedule = opt['lr_schedule'] self.model = None self.vae_optimiser = None # Beta scheduling self.beta = opt['beta_min'] self.beta_range = opt['beta_max'] - opt['beta_min'] + 1 self.beta_steps = opt['beta_steps'] - 1 self.beta_idx = 0 # Gamma scheduling self.gamma_warmup = opt['gamma_warmup'] self.gamma = 0 if self.gamma_warmup > 0 else opt['gamma_min'] self.gamma_min = opt['gamma_min'] self.gamma_idx = 0 self.gamma_update_step = (opt['gamma_max'] - opt['gamma_min']) / opt['gamma_steps'] self.gamma_update_epoch_step = (self.epochs - self.gamma_warmup - 1) / opt['gamma_steps'] # Action loss parameters self.min_dist = opt['min_dist_samples'] self.weight_dist_loss = opt['weight_dist_loss'] self.distance_type = opt['distance_type'] if 'distance_type' in opt.keys() else '2' self.batch_dist_dict = {} self.epoch_dist_dict = {} self.min_epochs = opt['min_epochs'] if 'min_epochs' in opt.keys() else 499 self.max_epochs = opt['max_epochs'] if 'max_epochs' in opt.keys() else 499 # Other parameters self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.opt['device'] = self.device print(' *- Chosen device: ', self.device) torch.manual_seed(opt['random_seed']) np.random.seed(opt['random_seed']) print(' *- Chosen random seed: ', self.device) if self.device == 'cuda': torch.cuda.manual_seed(opt['random_seed']) self.save_path = self.opt['exp_dir'] + '/' + self.opt['filename'] self.model_path = self.save_path + '_model.pt' def count_parameters(self): """ Counts the total number of trainable parameters in the model. """ return sum(p.numel() for p in self.model.parameters() if p.requires_grad) def plot_grid(self, images, n=5,name="dec"): """ Plots an nxn grid of images of size digit_size. Used to monitor the reconstruction of decoded images. """ digit_size = int(np.sqrt(self.opt['input_dim']/self.opt['input_channels'])) filename = self.save_path +name + '_checkpointRecon_{0}'.format(self.current_epoch) figure = np.zeros((digit_size * n, digit_size * n, self.opt['input_channels'])) # Construct grid of latent variable values grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) # decode for each square in the grid counter = 0 for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): digit = images[counter].permute(1,2,0).detach().cpu().numpy() figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit counter += 1 plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='bone') plt.savefig(filename) plt.clf() plt.close() def latent_mean_dist(self, mean1, mean2, action, distance_type='1'): """ Computed the average d distance between the action and no action pairs in the given batch. """ sample1 = mean1 sample2 = mean2 dist = torch.norm(sample1 - sample2, p=float(self.distance_type), dim=1) # Batch size dist=dist**2 # Distances between pairs with an action dist_action = torch.mul(dist, action) # Batch size dist_action = dist_action[dist_action.nonzero()] # num_action, 1 dist_action_mean = torch.mean(dist_action) dist_action_std = torch.std(dist_action) # Distances between pairs without an action dist_no_action = torch.mul(dist, (1-action)) dist_no_action = dist_no_action[dist_no_action.nonzero()] dist_no_action_mean = torch.mean(dist_no_action) dist_no_action_std = torch.std(dist_no_action) # Compute the action loss zeros = torch.zeros(dist.size()).to(self.device) batch_dist = (1 - action) * dist + action * torch.max(zeros, self.min_dist - dist) dist_loss = torch.mean(batch_dist) # Weight the action loss batch_loss = self.weight_dist_loss*self.gamma * batch_dist avg_batch_loss = torch.mean(batch_loss) # Save the result in order to compute average epoch distance # If training, save to training distances if self.model.training: self.epoch_action_dist.append(dist_action.cpu().detach().numpy()) self.epoch_noaction_dist.append(dist_no_action.cpu().detach().numpy()) # If evaluation, save to test distances else: self.test_action_dist.append(dist_action.cpu().detach().numpy()) self.test_noaction_dist.append(dist_no_action.cpu().detach().numpy()) return (avg_batch_loss, dist_loss, dist_action_mean, dist_action_std, dist_no_action_mean, dist_no_action_std) def compute_loss(self, x, dec_mu, enc_mu): """ Computes the usual VAE loss on the training batch given the criterion. """ # Reconstruction loss loss = torch.nn.MSELoss(reduction = 'sum') batch_rec=loss(x,dec_mu) return batch_rec def format_loss(self, losses_list): """Rounds the loss and returns an np array for logging.""" reformatted = list(map(lambda x: round(x.item(), 2), losses_list)) reformatted.append(int(self.current_epoch)) return np.array(reformatted) def init_model(self): """Initialises the VAE model.""" vae = importlib.import_module("architectures.{0}".format(self.opt['model'])) print(' *- Imported module: ', vae) try: class_ = getattr(vae, self.opt['model']) instance = class_(self.opt).to(self.device) return instance except: raise NotImplementedError( 'Model {0} not recognized'.format(self.opt['model'])) def init_optimiser(self): """Initialises the optimiser.""" print(self.model.parameters()) if self.opt['optim_type'] == 'Adam': print(' *- Initialised Adam optimiser.') vae_optim = optim.Adam(self.model.parameters(), lr=self.lr) return vae_optim else: raise NotImplementedError( 'Optimiser {0} not recognized'.format(self.opt['optim_type'])) def update_learning_rate(self, optimiser): """Annealing schedule for the learning rate.""" if self.current_epoch == self.lr_update_epoch: for param_group in optimiser.param_groups: self.lr = self.new_lr param_group['lr'] = self.lr print(' *- Learning rate updated - new value:', self.lr) try: self.lr_update_epoch, self.new_lr = self.lr_schedule.pop(0) except: print(' *- Reached the end of the update schedule.') print(' *- Remaning lr schedule:', self.lr_schedule) def update_gamma(self): """Annealing schedule for the distance term.""" epoch_to_update = self.gamma_idx * self.gamma_update_epoch_step + self.gamma_warmup if (self.current_epoch + 1) > epoch_to_update: self.gamma = self.gamma_min + self.gamma_idx * self.gamma_update_step self.gamma_idx += 1 print (' *- Gamma updated - new value:', self.gamma) def train(self, train_dataset, test_dataset, num_workers=0, chpnt_path=''): """Trains a model with given hyperparameters.""" dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=num_workers, drop_last=True)#, sampler=train_sampler) n_data = len(train_dataset) assert(train_dataset.dataset_name == test_dataset.dataset_name) print(('\nPrinting model specifications...\n' + ' *- Path to the model: {0}\n' + ' *- Training dataset: {1}\n' + ' *- Number of training samples: {2}\n' + ' *- Number of epochs: {3}\n' + ' *- Loss criterion: {4}\n' + ' *- Batch size: {5}\n' ).format(self.model_path, train_dataset.dataset_name, n_data, self.epochs, self.loss_fn, self.batch_size)) if chpnt_path: # Pick up the last epochs specs self.load_checkpoint(chpnt_path) else: # Initialise the model self.model = self.init_model() self.start_epoch, self.lr = self.lr_schedule.pop(0) try: self.lr_update_epoch, self.new_lr = self.lr_schedule.pop(0) except: self.lr_update_epoch, self.new_lr = self.start_epoch - 1, self.lr self.vae_optimiser = self.init_optimiser() self.valid_losses = [] self.epoch_losses = [] # To track the average epoch action loss self.epoch_action_dist_list = [] self.epoch_noaction_dist_list = [] self.test_action_dist_list = [] self.test_noaction_dist_list = [] print((' *- Learning rate: {0}\n' + ' *- Next lr update at {1} to the value {2}\n' + ' *- Remaining lr schedule: {3}' ).format(self.lr, self.lr_update_epoch, self.new_lr, self.lr_schedule)) es = ES.EarlyStopping(patience=300) num_parameters = self.count_parameters() self.opt['num_parameters'] = num_parameters print(' *- Model parameter/training samples: {0}'.format( num_parameters/len(train_dataset))) print(' *- Model parameters: {0}'.format(num_parameters)) for name, param in self.model.named_parameters(): if param.requires_grad: spacing = 1 print('{0:>2}{1}\n\t of dimension {2}'.format('', name, spacing), list(param.shape)) print('\nStarting to train the model...\n' ) for self.current_epoch in range(self.start_epoch, self.epochs): # Restart the epoch distances self.epoch_action_dist = [] self.epoch_noaction_dist = [] # Update hyperparameters self.model.train() #self.update_beta() self.update_gamma() self.update_learning_rate(self.vae_optimiser) epoch_loss = np.zeros(11) for batch_idx, (img1, img2, action) in enumerate(dataloader): img1 = img1.to(self.device) img2 = img2.to(self.device) action = action.to(self.device) # VAE loss on img1 dec_mean1, enc_mean1 = self.model(img1) loss1= self.compute_loss( img1, dec_mean1, enc_mean1) # VAE loss on img2 dec_mean2, enc_mean2 = self.model(img2) loss2 = self.compute_loss( img2, dec_mean2, enc_mean2) # Average VAE loss for the pair of image batches loss = (loss1 + loss2) / 2 # Action loss between the latent samples (w_dist_loss, pure_dist_loss, dist_action_mean, dist_action_std, dist_no_action_mean, dist_no_action_std) = self.latent_mean_dist( enc_mean1, enc_mean2, action) # Optimise the VAE for the complete loss the_loss = loss + w_dist_loss self.vae_optimiser.zero_grad() the_loss.backward() self.vae_optimiser.step() valid_loss = np.zeros(10) # Check that the at least 350 epochs are done if (es.step(valid_loss[0]) and self.current_epoch > self.min_epochs) \ or (self.current_epoch > self.min_epochs and self.epoch_gap > 0) \ or self.current_epoch > self.max_epochs: self.plot_dist_hists( self.epoch_action_dist, self.epoch_noaction_dist, 'training') break # Update the checkpoint only if no early stopping was done self.save_checkpoint(epoch_loss[0]) # Print current loss values every epoch if (self.current_epoch + 1) % self.console_print == 0: print('Epoch {0}:'.format(self.current_epoch)) print(' Train loss: {0:.3f} recon loss: {1:.3f} KL loss: {2:.3f} dist: {3:.3f}'.format( epoch_loss[0], epoch_loss[1], epoch_loss[2], epoch_loss[4])) print(' Valid loss: {0:.3f} recon loss: {1:.3f} KL loss: {2:.3f} dist: {3:.3f}'.format( valid_loss[0], valid_loss[1], valid_loss[2], valid_loss[4])) print(' Beta: {0:.6e}'.format(self.beta)) print(' Gamma: {0:.6e}'.format(self.gamma)) print(' LR: {0:.6e}'.format(self.lr)) print(' MD: {0:.6e}'.format(self.min_dist)) #print(' Gap: {0:.6e}\n'.format(self.epoch_gap)) # Print validation results when specified if (self.current_epoch + 1) % self.snapshot == 0: # Plot reconstructions self.plot_grid(dec_mean1) self.plot_grid(img1, name="input") self.model.eval() print('Training completed.') #self.plot_model_loss() self.model.eval() # Measure other d distances at the end of training for comparisson print('Calculating other distances...') original_distance_type = self.distance_type all_distance_types = ['1', '2', 'inf'] self.batch_dist_dict = {} self.epoch_dist_dict = {} for dist_type in all_distance_types: self.distance_type = dist_type self.batch_dist_dict[dist_type] = {} self.epoch_dist_dict[dist_type] = {} print(' *- Distance type set to ', self.distance_type) after_training_train = self.compute_test_loss(train_dataset) self.batch_dist_dict[dist_type]['train'] = list(map(lambda x: round(x, 3), after_training_train)) #self.epoch_dist_dict[dist_type]['train_action'] = round(self.test_action_dist / self.test_action_pairs, 2) self.epoch_dist_dict[dist_type]['train_noaction'] = round(self.test_noaction_dist / self.test_noaction_pairs, 2) after_training_test = self.compute_test_loss(test_dataset) self.batch_dist_dict[dist_type]['test'] = list(map(lambda x: round(x, 3), after_training_test)) #self.epoch_dist_dict[dist_type]['test_action'] = round(self.test_action_dist / self.test_action_pairs, 2) self.epoch_dist_dict[dist_type]['test_noaction'] = round(self.test_noaction_dist / self.test_noaction_pairs, 2) self.distance_type = original_distance_type # Save the model torch.save(self.model.state_dict(), self.model_path) def save_checkpoint(self, epoch_ml, keep=False): """ Saves a checkpoint during the training. """ if keep: path = self.save_path + '_checkpoint{0}.pth'.format(self.current_epoch) checkpoint_type = 'epoch' else: path = self.save_path + '_lastCheckpoint.pth' checkpoint_type = 'last' training_dict = { 'last_epoch': self.current_epoch, 'model_state_dict': self.model.state_dict(), 'vae_optimiser_state_dict': self.vae_optimiser.state_dict(), 'last_epoch_loss': epoch_ml, 'valid_losses': self.valid_losses, 'epoch_losses': self.epoch_losses, 'epoch_action_dist_list': self.epoch_action_dist_list, 'epoch_noaction_dist_list': self.epoch_noaction_dist_list, 'test_action_dist_list': self.test_action_dist_list, 'test_noaction_dist_list': self.test_noaction_dist_list, 'beta': self.beta, 'beta_range': self.beta_range, 'beta_steps': self.beta_steps, 'beta_idx': self.beta_idx, 'gamma_warmup': self.gamma_warmup, 'gamma': self.gamma, 'gamma_min': self.gamma_min, 'gamma_idx': self.gamma_idx, 'gamma_update_step': self.gamma_update_step, 'gamma_update_epoch_step': self.gamma_update_epoch_step, 'snapshot': self.snapshot, 'console_print': self.console_print, 'current_lr': self.lr, 'lr_update_epoch': self.lr_update_epoch, 'new_lr': self.new_lr, 'lr_schedule': self.lr_schedule } torch.save({**training_dict, **self.opt}, path) print(' *- Saved {1} checkpoint {0}.'.format(self.current_epoch, checkpoint_type)) def load_checkpoint(self, path, eval=False): """ Loads a checkpoint and initialises the models to continue training. """ checkpoint = torch.load(path, map_location=self.device) self.model = self.init_model() self.model.load_state_dict(checkpoint['model_state_dict']) self.lr = checkpoint['current_lr'] self.lr_update_epoch = checkpoint['lr_update_epoch'] self.new_lr = checkpoint['new_lr'] self.lr_schedule = checkpoint['lr_schedule'] self.vae_optimiser= self.init_optimiser() self.vae_optimiser.load_state_dict(checkpoint['vae_optimiser_state_dict']) self.start_epoch = checkpoint['last_epoch'] + 1 self.snapshot = checkpoint['snapshot'] self.valid_losses = checkpoint['valid_losses'] self.epoch_losses = checkpoint['epoch_losses'] if 'epoch_action_dist_list' in checkpoint.keys(): self.epoch_action_dist_list = checkpoint['epoch_action_dist_list'] self.epoch_noaction_dist_list = checkpoint['epoch_noaction_dist_list'] self.test_action_dist_list = checkpoint['test_action_dist_list'] self.test_noaction_dist_list = checkpoint['test_noaction_dist_list'] self.beta = checkpoint['beta'] self.beta_range = checkpoint['beta_range'] self.beta_steps = checkpoint['beta_steps'] self.beta_idx = checkpoint['beta_idx'] self.gamma_warmup = checkpoint['gamma_warmup'] self.gamma = checkpoint['gamma'] self.gamma_min = checkpoint['gamma_min'] self.gamma_idx = checkpoint['gamma_idx'] self.gamma_update_step = checkpoint['gamma_update_step'] self.gamma_update_epoch_step = checkpoint['gamma_update_epoch_step'] self.snapshot = checkpoint['snapshot'] self.console_print = checkpoint['console_print'] print(('\nCheckpoint loaded.\n' + ' *- Last epoch {0} with loss {1}.\n' ).format(checkpoint['last_epoch'], checkpoint['last_epoch_loss'])) print(' *- Current lr {0}, next update on epoch {1} to the value {2}'.format( self.lr, self.lr_update_epoch, self.new_lr) ) if eval == False: self.model.train() else: self.model.eval()
UTF-8
Python
false
false
20,883
py
17
AE_Algorithm.py
15
0.557918
0.549011
0
501
40.676647
124
StevenClontz/mathematics-of-data
1,288,490,210,696
5e8b15b9788d0904d6c638fa2c4d9e302d246203
e9cf8a5b25f6e22d2b13b4e557f0fb5adb16d7ce
/source/files/measurements-spread-deviations.py
083dec31359cdda2ec9066c94a76d8eb5a92c301
[ "MIT" ]
permissive
https://github.com/StevenClontz/mathematics-of-data
fe0a910fcd4b99c0bc8dff43c20f8085e5fdade9
dd35724cafd4f7581ade5358828332f7e9fcb6b3
refs/heads/main
2023-04-04T11:05:00.228022
2022-06-15T21:05:38
2022-06-15T21:05:38
267,642,578
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
data_one = [] # fill in values from first dataset data_two = [] # fill in this too # if means are different, data was entered incorrectly from statistics import mean assert mean(data_one) == mean(data_two), "Means should be the same" print("The mean for each dataset is FIXME") # print out the mean of the datasets deviations_one = [ abs( value - mean(data_one) ) # measure distance of value from the mean for value in data_one # do this for each value of data ] print(deviations_one) deviations_two = [] # TODO print(deviations_two) # prints [5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 1, 3, 4, 6]
UTF-8
Python
false
false
598
py
562
measurements-spread-deviations.py
24
0.688963
0.66388
0
15
38.933333
80
wayabi/bvh2nn_data__q2e
12,524,124,669,126
bf52fba0b6f5a13fac06a1a9604d3594e1cae6be
ee8f2d1a738528c8ae300a50b0861e0fedebf551
/pandas3Dscatter.py
e62b08b28d53f2bde1562b855750f769f4da2341
[]
no_license
https://github.com/wayabi/bvh2nn_data__q2e
1a612b9ef4897c6d9d55a28887661d43c71b76fb
2ec84e4d71166b19a19f2a6c806718fd2452d658
refs/heads/master
2020-03-22T19:02:19.190245
2018-07-11T00:10:17
2018-07-11T00:10:17
140,499,741
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_csv('~/a', parse_dates=True) #print(df.head()) #df['H-L'] = df.High - df.Low #df['100MA'] = pd.rolling_mean(df['Close'], 100) threedee = plt.figure().gca(projection='3d') threedee.scatter(df['x'], df['y'], df['z']) threedee.set_xlabel('x') threedee.set_ylabel('y') threedee.set_zlabel('z') plt.show()
UTF-8
Python
false
false
437
py
9
pandas3Dscatter.py
8
0.688787
0.668192
0
16
26.3125
48
mesonbuild/meson
15,195,594,324,002
8c855c54f7660368ed011739de7e60f3e7ff6054
85ccd32aa73eecf274a937f1fc3b6f4d484b77da
/test cases/common/262 generator chain/stage2.py
7f82592a1efe5f47c09cdff8a731e74087c2d87d
[ "Apache-2.0" ]
permissive
https://github.com/mesonbuild/meson
48321cf4235dfcc0194fed90ff43a57367592bf7
cf5adf0c646474f0259d123fad60ca5ed38ec891
refs/heads/master
2023-09-01T05:58:50.807952
2023-03-17T20:27:37
2023-08-31T11:52:41
19,784,232
5,122
1,848
Apache-2.0
false
2023-09-14T15:47:23
2014-05-14T15:08:16
2023-09-14T09:59:12
2023-09-14T15:47:22
40,706
4,875
1,436
2,172
Python
false
false
#!/usr/bin/env python3 import sys from pathlib import Path assert(Path(sys.argv[1]).read_text() == 'stage2\n') Path(sys.argv[2]).write_text('int main(void){}\n')
UTF-8
Python
false
false
163
py
3,350
stage2.py
683
0.687117
0.662577
0
6
26.166667
51
ulucsahin/Thesis
16,879,221,485,506
c1450d0d58662a515250e9b45b338041218f17c4
00e256c739659169972fca251a3611d137c913a4
/annotation_manager.py
d0fd267cd8abb24265a4e0e222a1cd8ede71ca4f
[]
no_license
https://github.com/ulucsahin/Thesis
3a5378a0f5b5e526c199dae7c4d72ef3330bd573
0f9b85b3ac7284174a011e619fdd6f6e3971360c
refs/heads/master
2023-03-14T20:58:43.282707
2021-03-14T12:41:41
2021-03-14T12:41:41
243,502,559
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from random import randint # Annotation indexes bald = 4 bangs = 5 black_hair = 8 blond_hair = 9 brown_hair = 11 gray_hair = 17 receding_hairline = 28 straight_hair = 32 wavy_hair = 33 # gender and beard goatee = 16 male = 20 mustache = 22 no_beard = 24 sideburns = 34 # face chubby = 13 high_cheekbones = 19 oval_face = 25 rosy_cheeks = 29 double_chin = 14 # nose big_nose = 7 pointy_nose = 27 # mouth mouth_open = 21 smiling = 31 # eye area arched_eyebrows = 1 bags_under_eyes = 3 bushy_eyebrows = 12 narrow_eyes = 23 # attractive and makeup + young attractive = 2 make_up = 18 young = 39 # skin pale = 26 # not added: 6,15,30,35,36,37,38 def get_introduction_info(annotations): intro = "" skin = "" age = "" gender = "" if annotations[39] == "1\n": age = " young" else: rand = randint(0, 1) ages = ["n old", " middle aged"] age = ages[rand] if annotations[male] == "1": gender = "male" else: gender = "female" if annotations[pale] == "1": rand = randint(0, 2) skin1 = " with pale skin and" skin2 = " who has a pale skin and" skin3 = " that has pale skin" skins = [skin1, skin2, skin3] skin = skins[rand] intro = f"A{age} {gender} {skin}" return intro def get_gender_auxiliary(annotations): if annotations[male] == "1": return "he" else: return "she" def get_gender_auxiliary2(annotations): if annotations[male] == "1": return "his" else: return "her" def get_hair(annotations): hair_color = get_hair_color(annotations) hair_type = get_hair_type(annotations) gender = "woman" if annotations[20] == "1": gender = "man" result = f" with {hair_color} {hair_type} hair " if annotations[receding_hairline] == "1": rand = randint(0, 1) x = [" and a receding hairline", f" , the {gender} has a receding hairline"] result += x[rand] if annotations[bangs] == "1": result += " with bangs" if annotations[20] == "1" and annotations[sideburns] == "1": result += " and sideburns" return result + " ." def get_hair_color(annotations): if annotations[bald] == "1": return "balding" elif annotations[black_hair] == "1": return "black" elif annotations[blond_hair] == "1": return "blond" elif annotations[brown_hair] == "1": return "brown" elif annotations[gray_hair] == "1": return "gray" else: return "" def get_hair_type(annotations): if annotations[straight_hair] == "1": return "straight" elif annotations[wavy_hair] == "1": return "wavy" else: return "" def get_face(annotations): face = "" face_middle = "a face with " face_end = "" if annotations[chubby] == "1": face = " chubby" face_middle = " face with" face_end = " face" if annotations[oval_face] == "1": face += " oval" face_middle = " face with" face_end = " face" # Almost all of them has this so I removed it. Bad annotations # if annotations[high_cheekbones] == "1": # face += f" {face_middle} high cheekbones" # face_middle = "and" # face_end = "" if annotations[rosy_cheeks] == "1": face += f" {face_middle} rosy cheeks " face_middle = " and" face_end = "" if annotations[double_chin] == "1": face += f" {face_middle} double chin " face_end = "" if face != "": face = face + face_end + " ." return face def get_nose(annotations): nose = "" nose_middle = "" if annotations[pointy_nose] == "1": nose = " pointy" nose_middle = " and" if annotations[big_nose] == "1": nose += f"{nose_middle} big" if nose != "": nose += " nose" return nose def get_beard(annotations): beard = "" if annotations[goatee] == "1": beard = " a goatee" if annotations[mustache] == "1": beard = " a mustache" if annotations[no_beard] == "1": beard = " no beard" return beard def get_eye_information(annotations, he_she, his_her): bags = False narrow = False eyes = "" eyes_middle = "" eyes_end = "" bushy = "" if annotations[narrow_eyes] == "1": eyes = f" {he_she} has narrow eyes" narrow = True if annotations[bags_under_eyes] == "1": if not narrow: eyes = f" {he_she} has bags under {his_her} eyes" else: eyes += f" with bags under {his_her} eyes" bags = True if annotations[bushy_eyebrows] == "1": bushy = " , bushy" if annotations[arched_eyebrows] == "1": if bags: eyes += f" and {he_she} has arched {bushy} eyebrows" else: eyes = f" {he_she} has arched {bushy} eyebrows" return eyes + " ." def get_makeup(annotations): makeup_ = "" young_ = "" gender_ = " woman" attractive_ = "" is_none = True if annotations[young] == "1": _ = " young" if annotations[20] == "1": gender_ = " man" if annotations[attractive] == "1": attractive_ = " attractive" is_none = False if annotations[make_up] == "1": makeup_ = f" The {young_} {attractive_} {gender_} is wearing heavy make up ." is_none = False else: makeup_ = f" The {young_} {gender_} is {attractive_} ." if is_none: return "" else: return makeup_ def get_mouth_area(annotations, he_she): mouth_middle = "" gender = " woman" is_none = True mouth_open = False if annotations[20] == "1": gender = " man" mouth = f" The {gender}" if annotations[mouth_open] == "1": mouth += f" has a slightly open mouth" mouth_middle = " and" is_none = False mouth_open = True if annotations[smiling] == "1": if not mouth_open: he_she = "" mouth += f" {mouth_middle} {he_she} is smiling ." is_none = False else: x = randint(0,9) # add serious with 10% chance because annotations are bad and not all not smiling people are serious looking if x==1: if not mouth_open: he_she = "" mouth += f" {mouth_middle} {he_she} looks serious ." is_none = False if is_none: return "" else: return mouth
UTF-8
Python
false
false
6,550
py
15
annotation_manager.py
12
0.540153
0.519847
0
308
20.266234
116
pardusnimr/adelscrapper
2,723,009,266,699
7585f0f8451324cdbc6807bb71226fcd7d5f6a5f
fcb5b41c20330ae17093d5449f209d113b2a1775
/wed2.py
51e5d2ab8e7649f4ced88765488a0c60c6ed03ba
[]
no_license
https://github.com/pardusnimr/adelscrapper
0c520650881b2dd05d1cd79265065dd708a769bd
83c66ba82cf6c058cd4e6febc33a70012fb39dc4
refs/heads/master
2021-01-10T05:25:07.229791
2015-12-09T20:33:30
2015-12-09T20:33:30
47,716,780
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# coding: utf-8 import lxml.html import pymongo client = pymongo.MongoClient("mongodb://nimr:d7hero@ds041871.mongolab.com:41871/adel") db = client['adel'] f = open('allrabea2.html') ff = f.read() doc = lxml.html.document_fromstring(ff) region = '' city = '' district = '' scheme = '' land = '' deal = '' deal_price = '' land_area = '' price_per_sqr_meter = '' records = db.records for row in doc.xpath("//tr"): chiled = row.getchildren() if chiled[0].attrib['style'] == 'padding-left: 5px': region = chiled[0].text elif chiled[0].attrib['style'] == 'padding-left: 17px': city = chiled[0].text elif chiled[0].attrib['style'] == 'padding-left: 29px': district = chiled[0].text elif chiled[0].attrib['style'] == 'padding-left: 41px': scheme = chiled[0].text elif chiled[0].attrib['style'] == 'padding-left: 53px': land = chiled[0].text elif chiled[0].attrib['style'] == 'padding-left: 65px': deal = chiled[0].text deal_price = chiled[1].text land_area = chiled[2].text price_per_sqr_meter = chiled[3].text record = {"region" : region, "city" : city, "distric" : district, "scheme" : scheme, "land" : land, "deal" : deal, "deal_price" : deal_price, "land_area" : land_area, "price_per_sqr_meter" : price_per_sqr_meter} records.insert(record)
UTF-8
Python
false
false
1,526
py
78
wed2.py
5
0.543906
0.517693
0
56
26.089286
86
cho-jae-seong/Algorithm
798,863,933,104
99dbc7e94cb5a714ff1c19d5d9bc3e240e4b05d1
6feda26060cfc9f79a98acdedc8ef4bd82bf0587
/BOJ17140.py
288582525c2c43ac445712f9f9b4d16524acda4d
[]
no_license
https://github.com/cho-jae-seong/Algorithm
1ff188ec1dbba370af6cfbf0186728ab536930b6
436dadb8be5c308c276562de53a7f4bf25d03bfa
refs/heads/master
2023-07-04T04:27:33.741983
2021-08-10T10:12:04
2021-08-10T10:12:04
260,405,007
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys from collections import Counter from functools import reduce def R(array): mx=0 for i in range(len(array)): X=Counter(array[i]) del X[0] X=list(X.items()) X.sort(key=lambda x: (x[1],x[0])) if len(X)>50: X=X[:50] array[i]=reduce(lambda x, y: list(x)+list(y), X[1:], list(X[0])) mx=max(mx,len(array[i])) for i in range(len(array)): if len(array[i])<mx: array[i].extend([0]*(mx-len(array[i]))) r,c,k=map(int, sys.stdin.readline().split()) r,c=r-1,c-1 a=[list(map(int, sys.stdin.readline().split()))for _ in range(3)] if r<len(a) and c<len(a[0]) and a[r][c]==k: print(0) exit(0) time=0 while True: row_len=len(a) col_len=len(a[0]) if row_len>=col_len: R(a) else: a=list(map(list, zip(*a))) R(a) a=list(map(list, zip(*a))) time+=1 if time>100: print(-1) exit(0) if r<len(a) and c<len(a[0]) and a[r][c]==k: print(time) exit(0)
UTF-8
Python
false
false
1,086
py
123
BOJ17140.py
123
0.486188
0.461326
0
43
23.255814
72
fattredd/fattredd.github.io
16,621,523,470,920
0b2ad160523e9b476f4f943353278d81f4b705fb
f1fed01b75e8968a1bf1ab194a12b2c3ad7ccb95
/py/textOffset.py
9f36744b36ed7d5cb9ad4d9953f0838d932cb2da
[]
no_license
https://github.com/fattredd/fattredd.github.io
c0553f938df005b822b3640cdc56d6c0bb453c8c
d45da47ae3a2f5f40848b89f47b97e6127996d48
refs/heads/master
2021-01-19T21:28:11.700195
2019-05-13T14:11:28
2019-05-13T14:11:28
21,010,252
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import msvcrt as m import time alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def wait(): key = m.getch() def offsetStr(string, num=1): out = '' #23 for x in string: if x in alpha: newNum = ord(x)-65+num if newNum > 25: newNum = newNum%26 elif newNum < 0: newNum += 26 out += chr(newNum+65) else: out += x return out def fileR(name='gf.txt'): f = open(name,'r') out = f.read().split('\n') f.close() return out def fileW(textL, name='gf2.txt'): f = open(name, 'w+') f.write('\n'.join(textL)) f.close() def tryRange(string, num, inum=0): for i in range(inum,num): print i, offsetStr(string, i) wait() def doAll(L,off): out = [] for x in L: out.append(offsetStr(x,off)) fileW(out)
UTF-8
Python
false
false
721
py
71
textOffset.py
60
0.613037
0.590846
0
42
16.190476
36
raulastu/Algorithm-Competitions-EWS
19,224,273,620,446
9e21c959008307071eb15529af013301085bc6d9
fc4897c00ad5a6a641e12e4affe374d686ae7714
/coderperu/Round13/D.py
c2565b3875920ac9f34256e178908044246de2fa
[]
no_license
https://github.com/raulastu/Algorithm-Competitions-EWS
b651c0af684b7e4a1afc7cfabdc6fd9d1dc8e45d
07801fe774778dc5c81682f6a893f97a79ed4022
refs/heads/master
2020-04-10T12:18:50.923422
2015-08-31T01:45:15
2015-08-31T01:45:15
7,485,600
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.stdin = open("D.in", "r") def expo(a, b, MOD): if (b==1): return a%MOD; if (b==2): return (a*a)%MOD; if (b%2==0): return expo(expo(a%MOD,b/2,MOD),2,MOD)%MOD else: return a*expo(expo(a%MOD,(b-1)/2,MOD),2,MOD)%MOD; def solve(): A = raw_input().split(" ") a = int(A[0]); b = int(A[1]); k = int(A[2]); r = pow(a,b) # print(r) if(r<10000 and k >= 4): print(-1) return if(r<1000 and k >= 3): print(-1) return if(r<100 and k >= 2): print(-1) return if(r<10 and k >= 1): print(-1) return s=str(r%10000) if(k>=len(s)): print(0) else: print(s[len(s)-1-k]) N = int(raw_input()) while(N>0): A = raw_input().split(" ") a = int(A[0]); b = int(A[1]); k = int(A[2]); r = pow(a,b) # print(r) if(r<10000 and k >= 4): print(-1) continue if(r<1000 and k >= 3): print(-1) continue if(r<100 and k >= 2): print(-1) continue if(r<10 and k >= 1): print(-1) continue s=str(r%10000) if(k>=len(s)): print(0) else: print(s[len(s)-1-k]) # print(r) N -= 1
UTF-8
Python
false
false
1,276
py
324
D.py
286
0.418495
0.359718
0
69
17.507246
58
eqiihuu/EE512
9,577,777,106,043
1b09bd7c3831b1f01408ec4f9ce8124e76bd73f2
a8f778fed3e42cad4554c57ad607c19d10fbc697
/EE512-graphical-model-master/test.py
a0e42ae50f71d4dfe58d3c29c225fd88b799a41a
[]
no_license
https://github.com/eqiihuu/EE512
75b38842979aaae2b90e218a57eaa0c97a7b7183
0ce92f60f6e2a7e212ced7fc30bf988d81faf223
refs/heads/master
2021-08-28T03:34:42.352695
2017-12-05T11:45:11
2017-12-05T11:45:11
113,174,681
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import exact_inference as EI from read_data import read_uai #from node_clique import Node, Clique, Graph, Junction_tree_cloud graph = read_uai("../data/test.uai") for clique in graph.cliques: print("-------------------") for node in clique.nodes: print(node.index) EI.min_fill(graph) for node in graph.nodes: print(node.get_neighbor_index()) max_cliques = EI.MSC(graph) for clique in max_cliques: print("------------------") for node in clique: print(node.index) clouds = EI.generate_junction_tree(max_cliques) EI.rotate_axis(max_cliques[0], graph.cliques[9])
UTF-8
Python
false
false
602
py
5
test.py
4
0.652824
0.649502
0
24
24.083333
65
beverast/LS-DS-Unit-CS
4,947,802,351,867
9ae6cda83b6790e6395ad57070494ffb32de8775
623fa21c3e24373d3e90f7f40a2cef983a32a6b5
/Whiteboard-Lectures/skip_list.py
8df9b745930cc074f51c86e20fb22f18b3678bd1
[]
no_license
https://github.com/beverast/LS-DS-Unit-CS
4c138ba427c87e9ef753512362d8814acc6aba16
e0fb759da5ffa49aa5a04e267bb150d00db119e2
refs/heads/master
2023-05-29T22:47:10.151353
2020-05-16T19:00:58
2020-05-16T19:00:58
264,509,235
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Skip list: probabilistic data structure based on the Linked list # Description of a skip list: https://brilliant.org/wiki/skip-lists/ class SkipNode(object): def __init__(self, elem=None): self.elem = elem # 'Square' representation (not list, station-like representation) self.prev = None self.next = None self.below = None self.above = None class SkipList(object): def __init__(self, max_height): # Should have pointers to every single station in first node self.max_height = max_height self.head = [SkipNode() for i in range(max_height)] if len(self.head) > 1: # Connect all nodes, loop through all nodes in head for i in range(max_height): # For the ith node, connect it's 'below' to the i-1 node if i == 0: self.head[i].above = self.head[i + 1] elif i == len(self.head) - 1: self.head[i].below = self.head[i - 1] else: self.head[i].above = self.head[i + 1] self.head[i].below = self.head[i - 1] def search(self, target): ''' Starts at the top node of the head If the next node along this line > target: Move down a layer, check next node along line again If the next node along line <= target: Move right to next node Stop criteria: target is found ''' # Start at the last node in self.head start = self.head[-1] # If below exists go there while start.below: current = start.below # Go right if next < target while target >= current.next: current = current.next return current def insert(self, val): # Search the skip list for the largest value < val # Assuming the value doesn't exist in the list # Create a new node with the val and connect it to the found node # Add layers to this new node by flipping coins to determine # of layers # Connect layers to nodes in the same layers pass
UTF-8
Python
false
false
2,195
py
20
skip_list.py
17
0.560364
0.556264
0
61
34.983607
80
abhusnurmath/rando
15,470,472,227,060
32000b9ec633b8ae10abff2854ce83813fb4b0ac
a6df3ca677cb301ae67220d1a2bec37f5045d270
/cit590Examples/fancySort.py
501c66aca4a36a1659d160958626deaf33bbe827
[]
no_license
https://github.com/abhusnurmath/rando
53c6fdf5ef8ecbe8440c09acb79636db7f0bbd42
84260a35399d983ed0154a5e004cadd970d2be6a
refs/heads/master
2020-05-19T11:07:09.372441
2015-02-21T01:35:25
2015-02-21T01:35:25
2,403,652
7
10
null
false
2015-01-25T02:02:12
2011-09-17T05:34:24
2015-01-24T02:43:10
2015-01-24T02:43:10
651
14
14
1
Java
null
null
def compareBasedOnLastComponent(x,y): if x[-1] < y[-1]: return -1 elif x[-1] == y[-1]: return 0 return 1 data = [['arv','Penn', 33], ['fed', 'West Point', 45], ['Ben', 'Cornell', 25], ['Steven', 'UVA', 24]]
UTF-8
Python
false
false
233
py
153
fancySort.py
153
0.502146
0.437768
0
7
31.571429
54
santiago-dc/MyLearningPath
18,030,272,713,282
7f502f1af7de2e13253bdc93805f3e428b45e9dd
acc7d1568e286afeae2841b218761943ae9e21ba
/skin_cancer/.ipynb_checkpoints/CNN_dataset2-checkpoint.py
cca594931a63a4d3befe3df9b594070cc259510c
[]
no_license
https://github.com/santiago-dc/MyLearningPath
b0b826397b185855492fdbf793cc26232dfb06d8
414809a1770cc58d66c132bafe4eb2c75e83e99d
refs/heads/master
2021-09-11T12:05:17.503457
2021-09-07T17:03:26
2021-09-07T17:03:26
241,696,158
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pandas as pd from PIL import Image import os import glob import matplotlib.pyplot as plt from keras.utils.np_utils import to_categorical import tensorflow as tf np.random.seed(5) benign_train_folder = 'data/melanoma/DermMel/train/NotMelanoma' malignant_train_folder = 'data/melanoma/DermMel/train/Melanoma' benign_test_folder = 'data/melanoma/DermMel/test/NotMelanoma' malignant_test_folder = 'data/melanoma/DermMel/test/Melanoma' def read(folder_path): data_path = os.path.join(folder_path,'*jpg') folder = glob.glob(data_path) matrix = [] for f in folder: img = np.asarray(Image.open(f).convert("RGB")) matrix.append(img) matrix = np.asarray(matrix) return matrix #Create data X_benign_train = read(benign_train_folder) X_malignant_train = read(malignant_train_folder) X_benign_test = read(benign_test_folder) X_malignant_test = read(malignant_test_folder) #Create labels Y_benign_train = np.zeros(X_benign_train.shape[0]) Y_malignant_train = np.ones(X_malignant_train.shape[0]) Y_benign_test = np.zeros(X_benign_test.shape[0]) Y_malignant_test = np.ones(X_malignant_test.shape[0]) #Merge and Shuffle data X_train = np.concatenate((X_benign_train, X_malignant_train), axis = 0) Y_train = np.concatenate((Y_benign_train, Y_malignant_train), axis = 0) # s = np.arange(X_train.shape[0]) # np.random.shuffle(s) # X_train = X_train[s] # Y_train = Y_train[s] # train_dataset = tf.data.Dataset.from_tensor_slices((X_train, Y_train)) # train_dataset = train_dataset.shuffle(buffer_size=6000).batch(10) X_test = np.concatenate((X_benign_test, X_malignant_test), axis = 0) Y_test = np.concatenate((Y_benign_test, Y_malignant_test), axis = 0) # s = np.arange(X_test.shape[0]) # np.random.shuffle(s) # X_test = X_test[s] # Y_test = Y_test[s] # test_dataset = tf.data.Dataset.from_tensor_slices((X_test, Y_test)) # test_dataset = test_dataset.batch(10) # X =np.concatenate((X_train, X_test), axis = 0) # Y =np.concatenate((Y_train, Y_test), axis = 0) # s = np.arange(X.shape[0]) # np.random.shuffle(s) # X = X[s] # Y = Y[s] # X_train = X[0:3500]#2637 # X_test = X[3500:] # Y_train = Y[0:3500] # Y_test = Y[3500:] # Display first 15 images of moles, and how they are classified # w=40 # h=30 # fig=plt.figure(figsize=(12, 8)) # columns = 5 # rows = 3 # for i in range(1, columns*rows +1): # ax = fig.add_subplot(rows, columns, i) # if Y_train[i] == 0: # ax.title.set_text('Benign') # else: # ax.title.set_text('Malignant') # plt.imshow(X_train[i],interpolation='nearest') # plt.show() #Turn labels into one hot encoding (ya veremos si esto hace falta o si lo dejo) Y_train = to_categorical(Y_train, num_classes= 2) Y_test = to_categorical(Y_test, num_classes= 2) # Normalization # X_train = X_train/255. # X_test = X_test/255. #Model from keras.models import Sequential from keras import regularizers from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, AveragePooling2D, BatchNormalization, Dropout model = Sequential() model.add(BatchNormalization()) model.add(Conv2D(3, kernel_size=10 ,padding='same', strides=2, activation='relu', input_shape=(450,600,3))) model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding='same', data_format=None)) #model.add(BatchNormalization()) #model.add(Dropout(0.25)) # model.add(Conv2D(3, kernel_size=3,padding='same', strides=2, activation='relu')) # model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding='same', data_format=None)) #model.add(BatchNormalization()) #model.add(Dropout(0.25)) # model.add(Flatten()) # #model.add(Dropout(0.25)) # model.add(Dense(450, activation='relu',kernel_regularizer=regularizers.l2(0.01))) # #model.add(Dropout(0.25)) # model.add(Dense(450, activation='relu',kernel_regularizer=regularizers.l2(0.01))) # # model.add(Dropout(0.25)) # model.add(Dense(200, activation='relu',kernel_regularizer=regularizers.l2(0.01))) # #model.add(Dropout(0.25)) # model.add(Dense(100, activation='relu',kernel_regularizer=regularizers.l2(0.01))) # #model.add(Dropout(0.25)) # model.add(Dense(30, activation='relu',kernel_regularizer=regularizers.l2(0.01))) # model.add(Dense(2, activation='softmax')) model.add(Flatten()) # model.add(Dense(450, activation='relu')) # model.add(Dropout(0.25)) model.add(Dense(450, activation='relu')) #model.add(Dropout(0.25)) model.add(Dense(200, activation='relu')) #model.add(Dropout(0.25)) model.add(Dense(100, activation='relu')) #model.add(Dropout(0.25)) model.add(Dense(30, activation='relu')) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_dataset, validation_data=test_dataset, batch_size=10, epochs=10) test_loss, test_acc = model.evaluate(test_dataset, batch_size=10) print('Test Acc: ', test_acc) print(':)')
UTF-8
Python
false
false
4,839
py
46
CNN_dataset2-checkpoint.py
6
0.704691
0.66708
0
145
32.372414
108
yamini94/imdb
6,975,026,891,233
793e3b215c83227c4228f998ce76ffb8a07721c4
f7ea2b73e87508ae9a145d79752d0251c362c6ab
/movie/documents.py
c9780389bc7a1494611c42797a2e9cd99ae1e506
[]
no_license
https://github.com/yamini94/imdb
ec730d4a04c266e71ca8d9e01edffe99506daef4
66e341675f5c1976d9f44378be179751e9169d98
refs/heads/master
2022-12-10T10:17:11.509859
2020-08-28T03:11:20
2020-08-28T03:11:20
290,918,417
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django_elasticsearch_dsl import Document from django_elasticsearch_dsl.registries import registry from .models import Imdb,Genre from elasticsearch_dsl import Index from django_elasticsearch_dsl import Document, fields # @registry.register_document imdb_index = Index('imdb') @registry.register_document @imdb_index.document class ImdbDocument(Document): genre = fields.NestedField(properties={ 'name': fields.TextField() }) class Django: model = Imdb related_models = [Genre] fields = [ 'id', 'name', 'popularity', 'director', 'imdb_score', 'created_date', 'modified_date' ] def get_instances_from_related(self, related_instance): return related_instance.imdb_set.all() # class Index: # # Index name # name = 'imdb' # settings = {'number_of_shards': 1, # 'number_of_replicas': 0} # class Django: # model = Imdb # django model name # # Model fields to display # fields = [ # 'name', # 'popularity', # 'director', # 'imdb_score', # 'genre', # 'created_date', # 'modified_date' # ]
UTF-8
Python
false
false
1,148
py
15
documents.py
13
0.621951
0.620209
0
51
21.470588
56
ChinaChenp/Knowledge
4,956,392,282,476
7adb242787d6d0c807ff3953c1a387a2b2def07f
5e3fb85de7caa7e9529114e97a992f1f88067d6c
/interview/interview_python/jianzhioffer2/16.py
02935955e68e34bcc942e9fdd00ea01bbb4d38d5
[]
no_license
https://github.com/ChinaChenp/Knowledge
ad3f0b290fadf18b1a4be11246041efa81736df7
64bb5286856ad5c01e682fc5e93477c6aa7299b9
refs/heads/master
2021-06-05T03:13:32.071326
2019-12-25T10:45:51
2019-12-25T10:45:51
45,509,734
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 数的N次方 def Power(base, exp): # 0的n次方没有意义,0的-n求倒数会出错 if base >= -1e-9 and base <= 1e-9 and exp < 0: return 0.0 # 次方为负数要用正数n次方求倒数 abs_exp = abs(exp) # 计算次方 re = 1.0 for _ in range(0, abs_exp): re *= base # 次方为负数要求倒数 if exp < 0: return 1.0 / re return re print(Power(2, 3)) print(Power(1, 2)) print(Power(2, -3)) print(Power(-2, -3)) print(Power(0, -3))
UTF-8
Python
false
false
522
py
368
16.py
300
0.518605
0.460465
0
26
15.538462
50
tomaxh/todo
10,161,892,646,172
2a3a550063bb199e8a875e22dcb7ec4a8277ba4c
be00691fd152502981c6a221d4636db0a0b93e7e
/backend/src/articles/admin.py
b563cb1b766d3b4bde410aa1420b0957a2f97342
[]
no_license
https://github.com/tomaxh/todo
8ca34e9200e114753a671ea391c3d7ee0dfdb71a
2c04aa272be6c3cd56bcd7edd8be287a01c31c12
refs/heads/master
2020-05-18T11:05:47.890825
2019-05-15T22:09:57
2019-05-15T22:09:57
184,369,447
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from .models import Todo # Register your models he admin.site.register(Todo)
UTF-8
Python
false
false
111
py
16
admin.py
12
0.801802
0.801802
0
5
21.4
32
codingEnzo/YunfangWork
171,798,741,664
bd47edb4791d1e62727386f35abfe4ff2434c2d0
d7ade211dd818f9653c5a1de6edba343dff1514c
/developer_data_push/start_task.py
288489272d9ec9b801cbf338d851d32e8e420703
[]
no_license
https://github.com/codingEnzo/YunfangWork
ee6382feedd663d1906ff54f41988df814395444
da6c3b622ea10e28802bcdead01d422a90784cb5
refs/heads/master
2017-09-10T02:45:10.013828
2017-08-25T03:36:44
2017-08-25T03:36:44
81,432,516
0
1
null
false
2017-03-23T12:29:25
2017-02-09T09:22:26
2017-02-09T09:49:47
2017-03-23T12:29:25
458
0
1
0
HTML
null
null
#coding=utf-8 from __future__ import absolute_import import sqlalchemy import __builtin__ from db_orm import data_handle_instance,db_instance from celery import Celery from settings import * from sqlalchemy import * from sqlalchemy.orm import * from sqlalchemy.ext.declarative import declarative_base from task_env import app def _init(): celery = Celery(broker="redis://192.168.6.34/2",backend="redis://192.168.6.34/3") celery.conf.broker_transport_options = {'visibility_timeout': 240000} celery.conf.worker_prefetch_multiplier = 1 try: _mysql_format = "mysql+pymysql://{db_user_name}:{db_passwd}@{db_address}:{db_port}/{db_name}?connect_timeout=1800&charset=utf8" _mysql_source_path = _mysql_format.format(db_user_name=db_user_name, db_passwd=db_passwd, db_address=db_source, db_port=db_port, db_name=db_source_name) source_engine = create_engine(_mysql_source_path,echo=False) source_conn = source_engine.connect() source_metadata = MetaData(source_engine) source_Session = sessionmaker(bind=source_engine) source_session = source_Session(bind=source_conn) try: source_Base = declarative_base(metadata=source_metadata) source_Base.metadata.reflect(source_engine, only=[db_source_schema,]) schema_instance = source_Base.metadata.tables[db_source_schema] source_schema = __builtin__.type('source_schema',(source_Base,),{'__table__':schema_instance,'__mapper_args__':{'primary_key':[schema_instance.c.TID,]}}) return source_session,source_schema,celery except Exception as e: print Exception,":",e if isinstance(e,sqlalchemy.exc.NoSuchTableError): print "Cannot find the table." return else: return except Exception as e: print Exception,":",e return @app.task(bind=True) def begin_task(self): source_session,source_schema,celery = _init() source_max_id = _get_source_max_id() source_min_id = _get_source_min_id() _reset_table() source_begin_id = source_min_id while True: if source_begin_id+db_source_step >= source_max_id: celery.send_task("start_task.create_new_task", args=[source_begin_id,source_max_id],queue="develop_task") break else: celery.send_task("start_task.create_new_task", args=[source_begin_id,source_begin_id+db_source_step],queue="develop_task") source_begin_id += db_source_step @app.task(bind=True) def create_new_task(self,begin_num,end_num): source_session,source_schema,celery = _init() pdi = data_handle_instance.pandas_instance(dbUserName=db_user_name, dbPasswd=db_passwd, dbAddress=db_source, dbPort=db_port, schema_list=[db_source_schema,], dbName=db_source_name) query_sql_for_new = 'select * from %s where TID >= %s and TID< %s '%(db_source_schema,begin_num,end_num) pdi.create_dataframe('df_for_new', query_sql_for_new.decode('utf-8')) pdi.create_task_new(pdi.df_for_new) def _reset_table(table_name="house_count"): reset_db = db_instance.mysql_DB_instance(dbUserName='root', dbPasswd='', dbAddress='192.168.6.8', dbName='develop_data') reset_db.conn.execute('truncate {table}'.format(table=table_name)) def _get_source_max_id(): source_session,source_schema,celery = _init() res = source_session.query(func.max(source_schema.TID).label('max_id')).all()[0].max_id print "max id is : ",res return res def _get_source_min_id(): source_session,source_schema,celery = _init() res = source_session.query(func.min(source_schema.TID).label('min_id')).all()[0].min_id print "min id is : ",res return res
UTF-8
Python
false
false
4,317
py
233
start_task.py
209
0.576789
0.566597
0
103
40.912621
165
HPCD/room-number-ocr
3,272,765,127,997
918b26caaf578aead2bee87ced834a314b678b92
039370bec9ba63a49bc48d3f7e11463dc10da032
/testpost.py
468fb715578abaea06f6067cbe13989d741e23b9
[]
no_license
https://github.com/HPCD/room-number-ocr
96660b72e2a83a773de198de25d41ea0393c6fca
d7548c52a83351f8b056ae43e8459a70bf32b962
refs/heads/master
2023-03-24T22:43:20.236234
2021-03-19T03:08:26
2021-03-19T03:08:26
349,283,348
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python #-*- coding:utf-8 -*- """ @author:abner @file:testpost.py @ datetime:2020/8/26 16:45 @software: PyCharm """ import cv2 import base64 import requests import unittest from datetime import datetime import json import os #内部测试地址 in_url_ip = "http://10.74.150.75:32666" # 测试环境外部访问地址 # out_url_ip = "http://ai.gdii-yueyun.com:30067/" # out_url_ip ="http://10.16.153.31:32488/" out_url_ip = "http://ai.gdii-yueyun.com:30092" docker_ip = "http://10.16.153.36:32088/" ip = "http://10.200.117.108:32088/" class DriverLicenseRequestUnitTest(unittest.TestCase): def test_roomnum_ocr(self): """ 车牌号码识别测试样例 """ car_img_path = 'D:\\abner\\project\\dataset\\room\\43.jpg' img = cv2.imread(car_img_path) img_encode = cv2.imencode('.jpg', img)[1] byte_image = str(base64.b64encode(img_encode))[2:-1] # print(byte_image) #post请求 req = {"user_name": "yueyun", "device_id": "A1010", "image": byte_image} print(req) start_time = datetime.now() in_url = docker_ip+"/ai/room/ocr" in_url = "https://open-api.gdii-yueyun.com/ai/room/ocr" print("dfff") TOKEN = requests.post('https://open-api.gdii-yueyun.com/login', json={"username": "AI", "password": "123456"},verify=True).json().get('data') print("请求TOKEN!!") headers = {"AG-X-Access-Token": TOKEN, "Content-Type": 'application/json'} print(TOKEN) res = requests.post(in_url,headers=headers, json=req) result = json.loads(res.text) print(result) if __name__ == "__main__": unittest.main()
UTF-8
Python
false
false
1,737
py
22
testpost.py
14
0.591751
0.529588
0
69
23.246377
107
Ysnsn/python
7,404,523,624,478
373ff21a836a36261f802c2e6c6e9419db7b8e7e
f89a96461b24dd448007ef221926dd83f5c54562
/基本.py
82af16231743c1b7f42a53d88404c9883d7e0bea
[]
no_license
https://github.com/Ysnsn/python
4b34e96edbd21dfc255f3fcb0256cc23048dc994
ccf6d4f3510d54724c7571ab22bd423d1e7c2d27
refs/heads/master
2023-01-04T13:28:24.013264
2020-08-04T02:59:47
2020-08-04T02:59:47
280,341,353
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
ls=[7,4,5,2,3,5,6] print("列表为",end="") print(ls) print("列表长度为{}".format(len(ls))) print("列表中有{}个5".format(ls.count(5))) print(ls[1:5:2]) new=eval(input("请输入一个新的元素:")) ls.append(new) ls[3:5]=[11,12,13] print("列表为",end="") print(ls) print("列表中的最大值为:{}".format(max(ls))) print("列表中的最小值为:{}".format(min(ls))) n=eval(input("请输入要删除的元素符号:")) del ls[n] print("列表为",end="") print(ls) ls=sorted(ls,reverse=True) print(ls) ls=sorted(ls,reverse=False) print(ls)
UTF-8
Python
false
false
568
py
36
基本.py
33
0.639738
0.59607
0
29
14.793103
37
damc/TextEditor
13,520,557,082,282
3bed9bc228d353edbf82aad2eb18ac1655f4615f
bfdf5da40942676f17300f48ece3348cf50a67dd
/text_editor/__init__.py
f903ce9bdaf80bda6f5eb89ebc0b7188a416e065
[]
no_license
https://github.com/damc/TextEditor
c81209163a09900e14ab33065cc03391a4cf3ab3
5801b09f490a2845f9ffcb67beb8fc2a39d19e94
refs/heads/master
2023-07-03T17:58:07.829734
2021-02-19T13:58:29
2021-02-19T13:58:29
395,630,579
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .text_editor import TextEditor
UTF-8
Python
false
false
35
py
6
__init__.py
5
0.857143
0.857143
0
1
35
35
OzupeSir/credit_card
5,944,234,746,840
3ac2be34527b4b5a79671f5f93fcf151ce32b512
74ddde6c4d75e82761551190b3347bca38f9a90f
/credit_card/auto_bin.py
9c4fe036c94e346563f99ed96a5a758b55034ea2
[]
no_license
https://github.com/OzupeSir/credit_card
551b5d1e84ce5ae9f7d89ac192a2024705f1bbcd
c7ff733629164d8050c286f3ba95cbfc031fe171
refs/heads/master
2020-07-26T20:56:23.394379
2019-09-25T12:08:56
2019-09-25T12:08:56
208,763,691
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# utf8 # Hsiaofei Tsien import numpy as np import pandas as pd import scipy class AutoBins: def __init__(self, frame, y): self._frame = frame.copy() self._y = y def _column_qcut(self, column,q): # 进行初始化分箱,先分成 20 个箱体 _drop, bins = pd.qcut(self._frame[column], q=q, retbins=True, duplicates="drop") # 排除因为开闭区间导致的临界值取值问题 bins = list(bins) bins.insert(0, -float("inf")) bins.append(float("inf")) # 按照添加了最大最小值后的箱体重新分箱 self._frame[column+"_qcut"] = pd.cut(self._frame[column], bins=bins) init_counts = list(self._frame[column+"_qcut"].value_counts().sort_index()) # 查看首尾箱体是否占比超过 2%,如果没有那么将之与相邻的箱体进行合并,用于处理添加 inf 后导致的空字段的问题 if init_counts[0] < (len(self._frame)/50): bins.pop(1) if init_counts[-1] < (len(self._frame)/50): bins.pop(-2) # 使用这个箱体的数据进行分箱并做后续的最优化合并 self._frame[column+"_qcut"] = pd.cut(self._frame[column], bins=bins) # 统计每个分段 0,1的数量 inf_init_bins = self._frame.groupby([column+"_qcut", self._y])[self._y].count().unstack() # num_bins值分别为每个区间的上界,下界,0的频次,1的频次 num_bins = [*zip(bins, bins[1:], inf_init_bins[0], inf_init_bins[1])] return num_bins def _merge_zero_bins(self,num_bins): # 用于确保所有的分组均包含两种分类 while 0 in num_bins[0][2:]: # 如果是第一个组某个分类为 0,向后合并 num_bins =self._merger_bins(num_bins,0) idx=1 while idx<len(num_bins): # 如果后面的组某个分类为 0 ,向前合并,合并后 num_bins 变短 # 所以需要继续查看当前的 idx 的位置 if 0 in num_bins[idx][2:]: num_bins =self._merger_bins(num_bins, idx-1) else: # 如果没有出现某个分类统计为 0 ,查看下一个 idx 的位置 idx += 1 return num_bins def _merger_bins(self, num_bins, x): # 合并 num_bins x 索引和 x+1 索引的分组数据 num_bins[x: x+2] = [( num_bins[x][0], num_bins[x+1][1], num_bins[x][2]+num_bins[x+1][2], num_bins[x][3]+num_bins[x+1][3] )] return num_bins # 创建计算 iv 值函数 def _get_iv(self, woe_df): rate = ((woe_df.count_0/woe_df.count_0.sum()) - (woe_df.count_1/woe_df.count_1.sum())) iv = np.sum(rate * woe_df.woe) return iv # 定义计算 woe 的函数 def _get_woe(self, num_bins): # 通过 num_bins 数据计算 woe columns = ["min", "max", "count_0", "count_1"] df = pd.DataFrame(num_bins, columns=columns) df["total"] = df.count_0 + df.count_1 df["percentage"] = df.total / df.total.sum() df["bad_rate"] = df.count_1 / df.total df["woe"] = np.log( (df.count_0 / df.count_0.sum()) / (df.count_1 / df.count_1.sum()) ) return df def _chi2_merge(self, num_bins): p_values = [] # 获取 num_bins 两两之间的卡方检验的置信度(或卡方值) for i in range(len(num_bins)-1): x1 = num_bins[i][2:] x2 = num_bins[i+1][2:] # 0 返回 chi2 值,1 返回 p 值。 pv = scipy.stats.chi2_contingency([x1, x2])[1] # chi2 = scipy.stats.chi2_contingency([x1, x2])[0] p_values.append(pv) # 通过 p 值进行处理。合并 p 值最大的两组 idx = p_values.index(max(p_values)) num_bins = self._merger_bins(num_bins, idx) return num_bins def auto_bins(self, column, n=2, show_iv=True,q=20): print(f"对 {column} 列进行分箱: ") # 初始化分箱 num_bins = self._column_qcut(column,q) # 合并没有包含两类的分箱 num_bins = self._merge_zero_bins(num_bins) # 通过 chi2_merge 不断合并最相似的相邻箱体 while len(num_bins) > n: num_bins = self._chi2_merge(num_bins) woe_df = self._get_woe(num_bins) iv = self._get_iv(woe_df) if all(woe_df['percentage']>=(1/q)): if show_iv: print(f"分组个数: {len(num_bins):02d} \tiv值: {iv}") print(f"woe情况:\n",woe_df) return num_bins, woe_df,iv # if __name__ == "__main__": # model_data = pd.read_csv("ChiMergeData.csv", encoding="utf8") # bins_data = AutoBins(model_data, "SeriousDlqin2yrs") # bins_data.auto_bins("age", n=4)
UTF-8
Python
false
false
4,951
py
2
auto_bin.py
1
0.52143
0.501066
0
131
31.236641
97
nayamama/asycio-programming
18,038,862,644,295
09d3e2131b1f4a97e4b8ec8e54b48859755f2a8a
1ab21f43ee50952693c06711df296ebf41ec9699
/thread_programming/os_processes.py
dd6534155f6b05a2aaae41b1903c269c4ea8f53a
[]
no_license
https://github.com/nayamama/asycio-programming
17cc478fda383a7d68212b1095e2cc79d789df03
fdc52a7bab97c95e1b50018ab16f4fc99c263eed
refs/heads/master
2020-05-27T06:27:07.759152
2019-05-25T04:46:54
2019-05-25T04:46:54
188,520,641
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from multiprocessing import Process from syc_programming import io_bound, cpu_bound, timeit @timeit() def multiprocessed(n_thread, func, *args): pros = [] for _ in range(n_thread): p = Process(target=func, args=args) pros.append(p) # start the process for p in pros: p.start() # ensure all processes have finished for p in pros: p.join() if __name__ == '__main__': a = 7777 b = 200000 urls = [ "http://google.com", "http://yahoo.com", "http://linkedin.com", "http://facebook.com" ] multiprocessed(10, cpu_bound, a, b) multiprocessed(10, io_bound, urls)
UTF-8
Python
false
false
669
py
7
os_processes.py
6
0.572496
0.55157
0
30
21.333333
55
mobilase/python
12,678,743,494,967
f4a671d94d5442c60f91271df937eb9f2e0476a4
9c6382dec3012f29019d44619233293fbfc2125c
/08/01.py
69798c23e721d25dc36959a71baab1a9f22f4805
[]
no_license
https://github.com/mobilase/python
7a56dd0d5fc63503aa4bad34d7ec677c5685eed7
5690d924c3ef0d9f0df25d184b1752cdc03399ca
refs/heads/master
2022-04-25T05:09:12.692031
2020-04-28T17:55:30
2020-04-28T17:55:30
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import threading import time import random def worker(number): sleep = random.randrange(1, 10) time.sleep(sleep) print("Worker {} slept {} seconds\n".format(number, sleep)) for i in range(8): t = threading.Thread(target=worker, args=(i,)) t.start() print("All Treads are in queries\n")
UTF-8
Python
false
false
311
py
146
01.py
97
0.66881
0.655949
0
14
21.071429
63
nj7/SecureVault
4,990,752,008,265
36ae039c7bc9a5b1887a6221b2fffdfa4e959282
1abb3698e84c61dfe0d8bac3dfbd29d26e3f1036
/secure.py
876be179ae4417b6e3479407e1168e505ab116b8
[]
no_license
https://github.com/nj7/SecureVault
784f14d8d5bbe81cdfe629decbbf132776ee9a0d
d1d5c6c9567a97c0754eadfc7ea29c7f7ea43be9
refs/heads/master
2021-01-23T00:14:46.576516
2017-03-30T01:12:14
2017-03-30T01:12:14
85,706,448
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import shutil import os import batchExecute def main(): """taking user input of view a file or adding a file to vault""" while True: choice = takeInput() if choice == 1: hideFile() elif choice == 2: findFile() else: print "Please Select Correct Output" break def takeInput(): while (True): choice = int(raw_input("Select an option \n1.Hide a file \n2.Unhide a file\n")) if choice == 1 or choice == 2: return choice def hideFile(): while(True): file_path=raw_input("Enter File Path\n") file_name=raw_input("Enter File Name\n") src_of_file = file_path+"\\" src_of_file += file_name print "The Source of File you want to Secure :: "+ src_of_file if raw_input("Do you want to Continue (Y/N)") == 'Y' or 'y': break #secure vault source vault = "nj$SeCureVaUlt@ThIsIsTeStIngPhAse4ME" dierectory = "C:\Secure_nj_project" #creating secure vault for first run if not os.path.exists(dierectory): os.makedirs(dierectory) dierectory += "\\" dierectory += vault if not os.path.exists(dierectory): os.makedirs(dierectory) print "true" # copy file file from location to secure vault shutil.copy2(src_of_file, dierectory) #remove file from location os.remove(src_of_file) """Hiding vault having file""" #creating batch file to hide vault dierectory += "\\batch.bat" batch_file = open(dierectory,"w+") batch_file.write("C:\ncd C:\Secure_nj_project\nattrib +h +r +s "+vault+"\necho y|cacls "+vault+" /p everyone:n") batch_file.close() #executing Batch File batchExecute.open_batch(dierectory) """Hiding Project Folder having vault""" #hiding Vault folder batch_file = open("C:\\System.bat","w+") batch_file.write("C:\nattrib +h +r +s Secure_nj_project\necho y|cacls Secure_nj_project /p everyone:n") batch_file.close() #executing Batch File batchExecute.open_batch("C:\\System.bat") def findFile(): while(True): file_name=raw_input("Enter File Name\n") print "The Source of File you want to find :: "+ file_name if raw_input("Do you want to Continue (Y/N)") == 'Y' or 'y': break #secure vault source vault = "nj$SeCureVaUlt@ThIsIsTeStIngPhAse4ME" dierectory = "C:\Secure_nj_project" #creating secure vault for first run if not os.path.exists(dierectory): os.makedirs(dierectory) if not os.path.exists(dierectory + "\\"+ vault): os.makedirs(dierectory) """UnHiding Project Folder having vault #hiding Vault folder batch_file = open("C:\\System.bat","w+") batch_file.write("C:\necho y|cacls Secure_nj_project /p everyone:f\nattrib -h -r -s Secure_nj_project") batch_file.close() #executing Batch File batchExecute.open_batch("C:\\System.bat")""" """UnHiding vault having file""" #creating batch file to hide vault batch_file = open(dierectory + "\\batch.bat","w+") batch_file.write("C:\ncd C:\Secure_nj_project\necho y|cacls "+vault+" /p everyone:f\nattrib -h -r -s "+vault+"\n") batch_file.close() #executing Batch File batchExecute.open_batch(dierectory + "\\batch.bat") for file in os.listdir(dierectory +"\\"+vault): if file == file_name: shutil.copy2(dierectory +"\\"+vault + "\\" + file, "C:\\Users\\nirmit\\Desktop") if __name__ =='__main__': main()
UTF-8
Python
false
false
3,782
py
3
secure.py
2
0.574828
0.572184
0
145
24.082759
118
cassie01/APItesting
14,113,262,579,406
a6e79ea33c785ee83636fe603f5d08e249ca252c
1ae32e324de7e8712b4cde4aaa0a6901fa293301
/before/010.py
64279bab200e84ab76c150ef18e8debca027f161
[]
no_license
https://github.com/cassie01/APItesting
bfd78422aeebcf5a1031ce4357309df3b99e4979
812cff983bc59df3d34e0fd5d2f4229c82cf90ab
refs/heads/master
2020-04-18T07:33:48.901876
2019-01-24T13:47:34
2019-01-24T13:47:34
167,364,372
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from selenium import webdriver import unittest import time from selenium.webdriver.common.action_chains import ActionChains class Cnode(unittest.TestCase): def setUp(self): self.Url = 'http://39.107.96.138:3000' self.driver = webdriver.Chrome() self.driver.get(self.Url) #登陆用户 self.driver.find_element_by_css_selector('a[href = "/signin"]').click() self.driver.find_element_by_id('name').send_keys('user1') self.driver.find_element_by_id('pass').send_keys('123456') self.driver.find_element_by_css_selector('input[type = "submit"]').click() def test_post_topic(self): driver = self.driver driver.get('http://39.107.96.138:3000/topic/create') driver.find_element_by_name('tab').click() driver.find_element_by_css_selector('[value="share"]').click() driver.find_element_by_id('title').send_keys('金丝熊000001新熊发帖') content_area = driver.find_element_by_class_name('CodeMirror-scroll') content_area.click() ActionChains(driver).move_to_element(content_area).send_keys('可乐饲养员测试').perform() driver.find_element_by_css_selector('input[type="submit"]').click() def tearDown(self): self.driver.save_screenshot('./01.png') self.driver.quit() if __name__ == "__main__": unittest.main()
UTF-8
Python
false
false
1,389
py
24
010.py
24
0.643755
0.611973
0
34
38.823529
89
lbgbox/DenoiSeg
15,607,911,190,206
4e8740ace94520da2010da21043c2db6a84e6fa8
1c6763051234c7e00acc0b209d79f9b3a718605b
/denoiseg/utils/seg_utils.py
e9d7ea553b42c6290dbce8efe7dc309987005c82
[ "BSD-3-Clause" ]
permissive
https://github.com/lbgbox/DenoiSeg
07151d513391bb60e0c21131a244d4ac701e99c0
9803cbcf31c0510d28a9ff43be92b29cd47120a0
refs/heads/master
2023-08-30T18:40:53.591717
2021-11-16T13:53:07
2021-11-16T13:53:07
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from skimage.segmentation import find_boundaries def convert_to_oneHot(data, eps=1e-8): """ Converts labelled images (`data`) to one-hot encoding. Parameters ---------- data : array(int) Array of lablelled images. Returns ------- data_oneHot : array(int) Array of one-hot encoded images. """ data_oneHot = np.zeros((*data.shape, 3), dtype=np.float32) for i in range(data.shape[0]): data_oneHot[i] = onehot_encoding(add_boundary_label(data[i].astype(np.int32))) if ( np.abs(np.max(data[i])) <= eps ): data_oneHot[i][...,0] *= 0 return data_oneHot def add_boundary_label(lbl, dtype=np.uint16): """ Find boundary labels for a labelled image. Parameters ---------- lbl : array(int) lbl is an integer label image (not binarized). Returns ------- res : array(int) res is an integer label image with boundary encoded as 2. """ b = find_boundaries(lbl, mode='outer') res = (lbl > 0).astype(dtype) res[b] = 2 return res def onehot_encoding(lbl, n_classes=3, dtype=np.uint32): """ n_classes will be determined by max lbl value if its value is None """ onehot = np.zeros((*lbl.shape, n_classes), dtype=dtype) for i in range(n_classes): onehot[lbl == i, ..., i] = 1 return onehot def normalize(img, mean, std): """ Mean-Std Normalization. Parameters ---------- img : array(float) Array of source images. mean : float mean intensity of images. std: float standard deviation of intensity of images. Returns ------- (img - mean)/std: array(float) Normalized images """ return (img - mean) / std def denormalize(img, mean, std): """ Mean-Std De-Normalization. Parameters ---------- img : array(float) Array of source images. mean : float mean intensity of images. std: float standard deviation of intensity of images. Returns ------- img * std + mean: array(float) De-normalized images """ return (img * std) + mean def zero_out_train_data(X_train, Y_train, fraction): """ Fractionates training data according to the specified `fraction`. Parameters ---------- X_train : array(float) Array of source images. Y_train : float Array of label images. fraction: float (between 0 and 100) fraction of training images. Returns ------- X_train : array(float) Fractionated array of source images. Y_train : float Fractionated array of label images. """ train_frac = int(np.round((fraction / 100) * X_train.shape[0])) Y_train[train_frac:] *= 0 return X_train, Y_train
UTF-8
Python
false
false
2,826
py
54
seg_utils.py
12
0.583864
0.573956
0
118
22.949153
86
huseyinbiyik/repository.boogie
10,874,857,197,365
40d46e33c0091f373300cb8f5ceb5875aa120a26
7c8bfb281103e5b59054ff5a957926cf62a7a896
/service.subtitles.turkcealtyazi/service.py
be80bf22a1cb7dbdf5c1810ed2c14cf3c4f96f06
[]
no_license
https://github.com/huseyinbiyik/repository.boogie
06deaee6b4e641330dc6070bb53529f119c0395a
d73d8baa99f2757e9ad13730c51d9b96b17b6512
refs/heads/master
2021-03-12T19:22:09.903700
2021-02-17T00:07:30
2021-02-17T00:07:30
39,784,700
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- ''' Author : Huseyin BIYIK <husenbiyik at hotmail> Year : 2016 License : GPL This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import sublib import htmlement import urlparse import re import os domain = "https://turkcealtyazi.org" quals = { "1": 5, # good quality "2": 4, # enough quality "3": 0, # bad quality "4": 2, # not rated yet "5": 1, # waiting for source "6": 3, # archived } def norm(txt): txt = txt.replace(" ", "") txt = txt.lower() return txt def striphtml(txt): txt = re.sub("<.*?>", "", txt) txt = re.sub("\t", "", txt) txt = re.sub("\n", "", txt) txt = txt.replace(" ", " ") return txt def elementsrc(element, exclude=[]): if element is None: return "" if element in exclude: return "" text = element.text or '' for subelement in element: text += elementsrc(subelement, exclude) text += element.tail or '' return striphtml(text) class turkcealtyazi(sublib.service): def checkrecaptcha(self): resp = self.request(domain, method="HEAD", text=False) if not resp.status_code == 200: self.request(domain) def search(self): self.checkrecaptcha() self.found = False self.ignoreyear = False if self.item.imdb: self.find(self.item.imdb) if not self.num() and not self.item.show and self.item.year: self.find("%s %s" % (self.item.title, self.item.year)) if not self.num(): self.ignoreyear = True self.find(self.item.title) def checkpriority(self, txt): # this is a very complicated and fuzzy string work txt = txt.lower().replace(" ", "") cd = re.search("([0-9])cd", txt) # less the number of cds higher the priority if cd: return False, - int(cd.group(1)) # rest is for episodes, if movie then return lowest prio. if self.item.episode < 0 or not self.item.show: return False, -100 ispack = 0 packmatch = 0 epmatch = 0 skip = False se = re.search("s(.+?)\|e(.+)", txt) if not se: se = re.search("s(.+?)(paket)", txt) if se: e = se.group(2) s = se.group(1) # verify season match first if s.isdigit() and self.item.season > 0 and \ not self.item.season == int(s): return True, 0 ismultiple = False # e: 1,2,3,4 ... for m in e.split(","): if m.strip().isdigit(): ismultiple = True else: ismultiple = False break if ismultiple: # check if in range multiples = [int(x) for x in e.split(",")] if self.item.episode in multiples: packmatch = 2 else: skip = True # e: 1~4 if "~" in e: startend = e.split("~") # check if in range if len(startend) == 2 and \ startend[0].strip().isdigit() and \ startend[1].strip().isdigit(): if int(startend[0]) < self.item.episode and \ int(startend[1]) > self.item.episode: packmatch = 2 else: skip = True else: ispack = 1 # e: Paket meaning a package if e == "paket": ispack = 1 # e:1 or e:01 if e.isdigit(): if int(e) == self.item.episode: epmatch = 3 else: skip = True return skip, ispack + epmatch + packmatch def scraperesults(self, page, tree, query=None): for row in tree.findall(".//div[@class='nblock']/div/div[2]"): a = row.find(".//a") if a is None: continue link = a.get("href") name = a.get("title") years = row.findall(".//span") if len(years) > 1: ryear = re.search("([0-9]{4})", years[1].text) if ryear: year = int(ryear.group(1)) if len(years) <= 1 or not ryear: year = "-1" if norm(name) == norm(self.item.title) and \ (self.item.show or (self.ignoreyear or self.item.year is None or self.item.year == year)): self.found = True p = self.request(domain + link, referer=domain) e = htmlement.fromstring(p) self.scrapepage(p, e) break if query and not self.found: pages = tree.findall(".//div[@class='pagin']/a") for page in pages: if "sonra" in page.text.lower(): if self.found: break query = dict(urlparse.parse_qsl(urlparse.urlparse(page.get("href")).query)) self.scraperesults(self.request(domain + "/find.php", query, referer=domain)) def scrapepage(self, page, tree): subs = tree.findall(".//div[@id='altyazilar']/div/div") for s in subs: desc = s.find(".//div[@class='ripdiv']") xname = s.find(".//div[@class='fl']/a") alcd = s.find(".//div[@class='alcd']") if xname is None: continue if alcd is None: continue if desc is None: continue alcd = elementsrc(alcd) name = xname.get("title") link = xname.get("href") desc = elementsrc(desc) skip, priority = self.checkpriority(alcd) if skip: continue tran = elementsrc(s.find(".//div[@class='alcevirmen']/a")) iso = "tr" qualrate = "4" aldil = s.find(".//div[@class='aldil']/span") if aldil is not None: cls = aldil.get("class") riso = re.search('flag([a-z]{2})', cls) if riso is not None: iso = riso.group(1) qual = s.find(".//div[@class='fl']/span") if qual is not None: qual = qual.get("class") if isinstance(qual, (str, unicode)): qual = qual.replace("kal", "") if qual.isdigit(): qualrate = qual namestr = "%s, %s, %s, %s" % (name, alcd, desc, tran) sub = self.sub(namestr, iso) sub.download(domain + link) sub.priority = priority if qual: sub.rating = quals[qualrate] self.addsub(sub) def find(self, query): q = {"cat": "sub", "find": query} page = self.request(domain + "/find.php", q, referer=domain) tree = htmlement.fromstring(page) title = tree.find(".//title") if "arama" in title.text.lower(): self.scraperesults(page, tree, q) else: self.scrapepage(page, tree) def download(self, link): page = self.request(link, referer=domain) tree = htmlement.fromstring(page) idid = tree.find(".//input[@name='idid']").get("value") alid = tree.find(".//input[@name='altid']").get("value") sdid = tree.find(".//input[@name='sidid']").get("value") data = { "idid": idid, "altid": alid, "sidid": sdid } remfile = self.request(domain + "/ind", data=data, referer=link, method="POST", text=False) fname = remfile.headers["Content-Disposition"] fname = re.search('filename=(.*)', fname) fname = fname.group(1) fname = os.path.join(self.path, fname) with open(fname, "wb") as f: f.write(remfile.content) self.addfile(fname)
UTF-8
Python
false
false
9,071
py
80
service.py
49
0.474589
0.467203
0
250
34.284
99
nehaiyer/nlu-assignment1
5,162,550,735,791
54b955514797e444271e1aa95135d658d5a4270a
89bc5fa4d267fbd796c88c6e60550d9e4c68c0e5
/S1_bigram.py
8e6198437565e82f98f181bb06e76de0177940b1
[]
no_license
https://github.com/nehaiyer/nlu-assignment1
8e373deee32f16880141268cbe55633017d8dcc4
d95e79eb705037a67e8d127e7d27a97d46ab1a68
refs/heads/master
2021-01-24T13:01:12.102595
2018-03-04T09:14:41
2018-03-04T09:14:41
123,161,929
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 27 17:14:30 2018 @author: neha """ import nltk from nltk.corpus import gutenberg import numpy as np import string from nltk.corpus import brown import random def load(): train=[] test=[] for c in brown.categories(): sent=brown.sents(categories=c) s=[] for str1 in sent: s.append(str1) str2=[] for i in s: str2.append(' '.join(i)) str3='' for i in str2: str3= str3+ ' <s> '+ i punctuation={'`','\''} for c in punctuation: str3= str3.replace(c,"") str3=' '.join(str3.split()) # str3 = '<s> The Fulton County Grand Jury said Friday an investigation of Atlantas recent primary election produced no evidence that any irregularities took place . <s> The jury further said in term-end presentments that the City Executive Committee , which had over-all charge of the election , deserves the praise and thanks of the City of Atlanta for the manner in which the election was conducted . <s> The September-October term jury had been charged by Fulton Superior Court Judge Durwood Pye to investigate reports of possible irregularities in the hard-fought primary which was won by Mayor-nominate Ivan Allen Jr. .' words = str3.split(' ') train.append(words[:round(len(words)*0.8)]) test.append(words[-round(len(words)*0.2):]) train = [item for sublist in train for item in sublist] test = [item for sublist in test for item in sublist] return train,test def cal_ngram(train,n): ngrams = {} #n=2 for index, word in enumerate(train): if index < len(train)-(n-1): w=[] for i in range(n): w.append(train[index+i]) ngram = tuple(w) # print(ngram) if ngram in ngrams: ngrams[ ngram ] = ngrams[ ngram ] + 1 else: ngrams[ ngram ] = 1 # sorted_ngrams = sorted(ngrams.items(), key = lambda pair:pair[1], reverse = True) return ngrams def cal_ngram_list(ngrams): ngrams_list=[] for key,value in ngrams.items(): ngrams_list.append(key) return ngrams_list def unknown(unigrams,train): unknown_list=[] for key, value in unigrams.items(): if value < 2: unknown_list.append(key[0]) for index, word in enumerate(unigrams): if train[index] == key[0]: train[index] = '<UKN>' if len(unknown_list)==500: break return train,unknown_list def cal_probab(ngrams,n_1grams,n): prob = {} for key, value in ngrams.items(): n_1key=[] for k in range(0,n-1): n_1key.append(key[k]) prob[key] = value/(n_1grams[tuple(n_1key)]) return prob def cal_unigram_probab(ngrams,N): prob = {} for key, value in ngrams.items(): prob[key] = value/N return prob def check_existence(key,ngram_list,train_prob,n): found=0 nfound=0 alpha=1; t_prob=-1 for i in reversed(range(len(ngram_list))): # print(i) # print(key) # k=[] # k.append(key) if key in ngram_list[i]: prob = train_prob[i] t_prob = alpha*prob[key] # print('break') found=found+1 break else: key=key[i:n] # print(key) alpha=alpha*0.4 if t_prob==-1: # print('unknown') ukn=tuple(['<UKN>']) nfound=nfound+1 prob = train_prob[0] t_prob=alpha*prob[ukn]/0.4 return t_prob def cal_probab_test(tngram,ngram_list,train_prob,n): t_prob=0 for key, value in tngram.items(): # print(key) prob = check_existence(key,ngram_list,train_prob,n) # print(prob) t_prob = t_prob + np.log2(prob) return t_prob def cal_perplexity(test,ngram_list,train_prob,n): tngram={} tngram=cal_ngram(test,n) tN=len(test) tprob=cal_probab_test(tngram,ngram_list,train_prob,n) perplexity=2 ** (tprob*(-1/tN)) return perplexity def init(train,n): N=len(train) unigrams=cal_ngram(train,1) #replace some vocab with <UKN> train,unknown_list = unknown(unigrams,train) #get all ngrams and their counts ngram=[] for i in range(n): # print(i) ngram.append(cal_ngram(train,i+1)) #calculate 1 to n gram's probabilities train_prob=[] train_prob.append(cal_unigram_probab(ngram[0],N)) for i in range(1,n): # print(i) train_prob.append(cal_probab(ngram[i],ngram[i-1],i+1)) #calculate ngram lists ngram_list=[] for i in range(n): ngram_list.append(cal_ngram_list(ngram[i])) return N,n,train,unknown_list,ngram,train_prob,ngram_list train,test=load() n=2 N,n,train,unknown_list,ngram,train_prob,ngram_list=init(train,n) perplexity = cal_perplexity(test,ngram_list,train_prob,n) print('Perplexity: ',perplexity)
UTF-8
Python
false
false
5,242
py
5
S1_bigram.py
3
0.566387
0.55227
0
194
26.020619
633
bi3mer/qd_dda_level_generation
1,520,418,452,079
d337bcc89aaee4ce804b5d820265f4b2a1c3f9d2
2bb5ec0ff4676d24e9a2fe000afa3a8ecd843c46
/Utility/Icarus/Fitness.py
4200dc6de0b79b3f86a69960a27f0a695e3e71ce
[]
no_license
https://github.com/bi3mer/qd_dda_level_generation
85f2f6030688b19a7c4c40220019009087df0ddc
463ca6335868bd3424ecdb47c79e3120a4f41cee
refs/heads/main
2023-09-06T04:46:40.150802
2021-11-01T17:32:27
2021-11-01T17:32:27
327,395,831
0
0
null
false
2021-05-04T15:35:39
2021-01-06T18:22:08
2021-05-04T14:43:09
2021-05-04T15:35:39
638
0
0
0
Python
false
false
from .SummervilleAgent import percent_completable def build_slow_fitness_function(grammar): def slow_fitness(slices): # at this point, Icarus slices should be rows bad_transitions = grammar.count_bad_n_grams(slices) play_slices = list(slices) # add an area for the player to start at the bottom play_slices.insert(0, '----------------') play_slices.insert(0, '################') # extend the top by copying the blocks # should ensure the player can jump up above the top but not by landing on what was therex play_slices.append(play_slices[-1]) play_slices.append(play_slices[-1]) levelStr = list(reversed(play_slices)) return percent_completable((1, len(play_slices) - 2, -1), levelStr) return slow_fitness
UTF-8
Python
false
false
818
py
66
Fitness.py
64
0.632029
0.623472
0
22
36.181818
98
hector-han/pythonweb
14,233,521,650,689
d9ead1b89c605b2aa3d65e3553d5383ecfddb877
1330be11e79f58c7d0a8b427546b258a14f0e2d4
/wechat/urls.py
da87f7425470fe10dde0705e3493ec3a08d7d74a
[]
no_license
https://github.com/hector-han/pythonweb
68cca4861e1c911fe7b27193ca7b31f4475aeafb
baf1af5a1207b90e24e7370f4ae27e2b33aaaed5
refs/heads/master
2022-08-08T03:22:53.225781
2022-07-31T09:13:38
2022-07-31T09:13:38
156,961,628
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.urls import path from . import views urlpatterns = [ path('main', views.wechat_main, name='wechat_main'), ]
UTF-8
Python
false
false
126
py
7
urls.py
5
0.690476
0.690476
0
6
19.833333
56
Y0URFR13ND/Hot-Board
16,140,487,140,931
9b39cf0aadef2cd330d39682b7aec030fc57079d
965e75eb296f97ccb0e1dd27bdf323a559b60b11
/Software/pyApplication/vcp_handler.py
7bace7818ffa3bedc2282d0d2b18a0d4bf60574b
[]
no_license
https://github.com/Y0URFR13ND/Hot-Board
8851c038a7921e2c1c35143b368ad1136dd87c36
a943e9d2141f623d358388ce7535276c50303101
refs/heads/master
2023-02-13T03:09:19.257778
2020-12-02T07:27:46
2020-12-02T07:27:46
292,227,353
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# ****************************************** # file: vcp_handler.py # project: Hot-Board # author: Nils Jäggi # description: communication with the Hardware itself # ****************************************** import glob import sys import serial # python -m pip install pyserial class VirtualComPort(): def __init__(self,switch_Identifier: str ,number_of_digits: int): # protocoll constants self.numberOfDigits = number_of_digits self.switchIdentifier = switch_Identifier # create vcp object self.ser = serial.Serial() def start_hot_board(self, com: str, baud: int = 115200) -> bool: """ opens the comport :returns: flag if it worked or not """ self.ser.port = com self.ser.baudrate = baud self.ser.timeout = 0 # try opening vcp try: self.ser.open() return True except serial.SerialException: return False def check_switch_state(self) -> int: # read serial port buffer serData = self.ser.read( len(self.switchIdentifier)+self.numberOfDigits ).decode('ascii') # if data is valid if self.switchIdentifier in serData: # get the switch number. can be 1 or more digits retVal = 0 for i in range(self.numberOfDigits): retVal += int( serData[(i+1)*(-1)] ) * pow(10,i) return retVal else: return -1 def get_buffer_value(self): """Returns serial buffer convertet to Ascii""" serData = self.ser.read(256).decode('ascii') return serData def get_available_serial_ports(self) -> list: """ Lists serial port names :raises EnvironmentError: On unsupported or unknown platforms :returns: A list of the serial ports available on the system """ if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(256)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: s = serial.Serial(port) s.close() result.append(port) except (OSError, serial.SerialException): pass return result
UTF-8
Python
false
false
2,682
py
40
vcp_handler.py
3
0.541589
0.533756
0
79
32.924051
97
techkids-c4e/c4e5
13,262,859,038,959
55bf4c6e128558675ab21db1631f0340875590ee
b9a8164b946f1967e3c2cde0d8c0060ee6cc7366
/Phuong Anh/Lesson 5/L5 - Dictionary Ex.py
33bae5994fcaf48e9e99a90376af9d52314530d1
[]
no_license
https://github.com/techkids-c4e/c4e5
d91bb2b4f791ddd978fc486028373a655a3accd2
83df2b5718192f9340c6b9edeb0b2a7ff0b9e148
refs/heads/master
2020-12-25T10:41:19.485635
2016-12-09T07:09:57
2016-12-09T07:09:57
61,489,855
0
4
null
null
null
null
null
null
null
null
null
null
null
null
null
#Wave 1: print('Wave 1:') teacher_list = [{"Name":"Tran Quang Hiep","class":"C4E3","session number":"10","rate":"100","month salary":"1,000"}, {"Name":"Nguyen Quang Huy","class":"C4E1","session number":"10","rate":"200","month salary":"2,000"}, {"Name":"Tran Thu Ha","class":"C4E2","session number":"8","rate":"100","month salary":"800"}, {"Name":"Nguyen Ha San","class":"Android","session number":"5","rate":"200","month salary":"1,000"}, {"Name":"Nguyen Ha San","class":"iOS","session number":"8","rate":"100","month salary":"800"}] for i in teacher_list: print(i["Name"], 'teached:', i["session number"], "salary:", i["month salary"]) #in gia tri trong list theo dang dict. #Wave 2: print('Wave 2:') string = input("Please enter your information (Name, session number, rate): ") a = string.split() b = {"Name":a[0], "session number":a[1], "rate":a[2]} teacher_list.append(b) def data_extract(name, session, salary): print(b["Name"], 'teached:', b["session number"], "salary:", b["rate"]) x = data_extract(b["Name"],b["session number"],b["rate"]) #Wave 5: print("Wave 5") input_name = input("Please enter teacher name: ") def payroll(name): pay_roll = 'name not found' for i in teacher_list: if input_name == i["Name"]: pay_roll = int(i["session number"]) * int(i["rate"]) break return pay_roll print(payroll(input_name))
UTF-8
Python
false
false
1,498
py
412
L5 - Dictionary Ex.py
336
0.570093
0.533378
0
35
40.914286
122
lithium/django18-template
2,319,282,380,986
46ef9dc0595452f9eb34d3080722f45102fb9d9b
d1ddda48764785f903f1d5883651210091c1cf82
/apps/mainsite/settings/fragments/defaults/email.py
5ab0cc1370a39a1c61336eb87b8eae02283b03e5
[]
no_license
https://github.com/lithium/django18-template
2144d38e310ce4428cb1594c52a1e77ea8156a29
501f2feb2d7d7a233aaa260c95aa8f0f86fd035c
refs/heads/master
2021-01-10T08:10:51.551031
2016-02-12T03:21:48
2016-02-12T03:21:48
43,374,235
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
### # # Email # ### DEFAULT_FROM_EMAIL = 'webmaster@localhost' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
UTF-8
Python
false
false
125
py
11
email.py
8
0.712
0.712
0
8
14.75
61
Jusan-zyh/zqh_riscv
17,368,847,763,319
a2154f39108f246034898d5cc114a5a96c043f72
b627da650f75bdcf7e0dc0ef5c4419cf53a1d690
/src/zqh_amba/zqh_tilelink_2_axi4_parameters.py
f77b294d9d599fad774644911f57cb5d2f7f40c7
[]
no_license
https://github.com/Jusan-zyh/zqh_riscv
4aa8a4c51e19fb786ba0c2a120722f1382994a52
bccde2f81b42ac258b92c21bb450ec6ff848387a
refs/heads/main
2023-08-06T12:56:52.420302
2021-09-21T01:25:41
2021-09-21T01:25:41
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import os from phgl_imp import * from zqh_tilelink.zqh_tilelink_atomic_transform_parameters import zqh_tilelink_atomic_transform_parameter class zqh_tilelink_2_axi4_parameter(parameter): def set_par(self): super(zqh_tilelink_2_axi4_parameter, self).set_par() self.par('aw_id_max_num', 1) self.par('ar_id_max_num', 1) self.par('atomic_en', 0) self.par('atomic', zqh_tilelink_atomic_transform_parameter())
UTF-8
Python
false
false
460
py
295
zqh_tilelink_2_axi4_parameters.py
224
0.691304
0.676087
0
12
37.333333
105
y-oksaku/Competitive-Programming
9,277,129,408,746
040c69e54a888d290388b9e7ace73765d16a77bb
bf99b1b14e9ca1ad40645a7423f23ef32f4a62e6
/AtCoder/abc/007b.py
7e3215a086df3151fe76cfda94be1a3ff43a1176
[]
no_license
https://github.com/y-oksaku/Competitive-Programming
3f9c1953956d1d1dfbf46d5a87b56550ff3ab3db
a3ff52f538329bed034d3008e051f30442aaadae
refs/heads/master
2021-06-11T16:14:12.635947
2021-05-04T08:18:35
2021-05-04T08:18:35
188,639,647
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
A = input() if len(A) == 1 and A[0] == 'a' : print('-1') else : print('a')
UTF-8
Python
false
false
83
py
1,459
007b.py
1,456
0.421687
0.385542
0
6
13
32
824zzy/Leetcode
13,769,665,176,327
16663bf9c1b774d4a5853b6f10e9070f8f39bfed
a34ec07c3464369a88e68c9006fa1115f5b61e5f
/K_DynamicProgramming/Knapsack/01-Knapsack/L1_740_Delete_and_Earn.py
1b7edc7382be775a9534f95225eae08cc190fceb
[]
no_license
https://github.com/824zzy/Leetcode
9220f2fb13e03d601d2b471b5cfa0c2364dbdf41
93b7f4448a366a709214c271a570c3399f5fc4d3
refs/heads/master
2023-06-27T02:53:51.812177
2023-06-16T16:25:39
2023-06-16T16:25:39
69,733,624
14
3
null
false
2022-05-25T06:48:38
2016-10-01T10:56:07
2022-05-10T23:28:02
2022-05-25T06:48:37
2,707
4
1
0
Python
false
false
""" https://leetcode.com/problems/delete-and-earn/ 1. use hash table for calculating score and sorted keys as A 2. At i-th number, we can skip it or select it, if we select it then check if next number needs to be deleted. """ class Solution: def deleteAndEarn(self, A: List[int]) -> int: cnt = Counter(A) A = [k for k, v in sorted(cnt.items())] @cache def dp(i): if i==len(A): return 0 ans = dp(i+1) # skip if i<len(A)-1 and A[i]+1==A[i+1]: # select and delete return max(ans, cnt[A[i]]*A[i]+dp(i+2)) else: # select and not delete return max(ans, cnt[A[i]]*A[i]+dp(i+1)) return dp(0)
UTF-8
Python
false
false
726
py
1,842
L1_740_Delete_and_Earn.py
1,795
0.53719
0.523416
0
19
37.263158
110
rtloftin/HAL
11,510,512,358,163
017f5f7f59c7dd6198c83d5e91aec812cb5ecb67
fe3f88bf0344b3408b808a3d9aa3d30b9233a8a6
/navigation/expert.py
021a6352ba663f0f4dd6170f393322433ada88f5
[]
no_license
https://github.com/rtloftin/HAL
45c500877911144b539a11c9f582b864752da0d3
381c019a3c930d943672a65ae651e5a4f52686f8
refs/heads/master
2020-03-20T02:41:09.954395
2019-01-16T00:16:45
2019-01-16T00:16:45
137,120,524
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Defines an agent that acts optimally in a given navigation environment. """ import numpy as np import tensorflow as tf from .environment import Action class Expert: """ An agent that generates optimal actions for navigation tasks in a specific environment. """ def __init__(self, env): """ Initializes the agent by computing the optimal policies for each task in the environment. :param env: the environment the expert needs to act in """ # Capture the height of the environment, for computing state indices self._height = env.height # Define the transition model transitions = np.empty([env.width * env.height, len(Action)], dtype=np.int32) def index(x, y): return (x * env.height) + y def valid(x, y): if x < 0 or x >= env.width: return False if y < 0 or y >= env.height: return False if env.occupied[x, y]: return False return True for x in range(env.width): for y in range(env.height): cell = index(x, y) transitions[cell, Action.STAY] = cell transitions[cell, Action.UP] = index(x, y + 1) if valid(x, y + 1) else cell transitions[cell, Action.DOWN] = index(x, y - 1) if valid(x, y - 1) else cell transitions[cell, Action.LEFT] = index(x - 1, y) if valid(x - 1, y) else cell transitions[cell, Action.RIGHT] = index(x + 1, y) if valid(x + 1, y) else cell # Define value iteration graph graph = tf.Graph() with graph.as_default(): reward_input = tf.placeholder(dtype=tf.float32, shape=[env.width * env.height]) def update(q, t): v = tf.reduce_max(q, axis=1) n = tf.gather(v, transitions) return n + tf.expand_dims(reward_input, axis=1), t + 1 def limit(q, t): return t < 4 * (env.width + env.height) value_output, _ = tf.while_loop(limit, update, [tf.zeros_like(transitions, dtype=tf.float32), 0]) # Compute the optimal policies self._policies = dict() self._policy = None gpu_options = tf.GPUOptions(allow_growth=True) config = tf.ConfigProto(gpu_options=gpu_options) with tf.Session(graph=graph, config=config) as sess: reward = np.empty(env.width * env.height, dtype=np.float32) for name, task in env.tasks: # Initialize reward function for x in range(env.width): for y in range(env.height): reward[index(x, y)] = 1.0 if task.complete(x, y) else 0.0 # Compute value function values = sess.run(value_output, feed_dict={reward_input: reward}) # Construct policy max = np.max(values, axis=1) policy = [] for s in range(env.width * env.height): actions = [] for a in range(len(Action)): if values[s, a] == max[s]: actions.append(a) policy.append(actions) self._policies[name] = policy def task(self, name): """ Sets the task the expert is currently performing :param name: the name of the task """ self._policy = self._policies[name] def act(self, x, y): """ Samples an expert action for the current state and task. :return: the sampled action """ return np.random.choice(self._policy[(self._height * x) + y])
UTF-8
Python
false
false
3,773
py
74
expert.py
74
0.532202
0.524781
0
119
30.705882
109
fvelotti/myScripts
4,767,413,716,782
bb8eae85a6e9a6b59cbd0b8609a0f72d0d7f09de
002f72085a6a1ea6beb0f05d959b093de7478e2c
/LHC_injection/plot_lhc_beams.py
3ef92d67cee591558c43da1094eca6de8a6f6b4c
[]
no_license
https://github.com/fvelotti/myScripts
02ba44ac76194024d2f1e6e3180cfe8368f0dbdf
ceb869a1a80d01b9aed44fe0fd24c4998c899ac2
refs/heads/master
2017-05-06T00:45:50.402990
2017-05-04T08:51:53
2017-05-04T08:51:53
12,155,006
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import matplotlib.pyplot as plt import dump_library as dp path = '/afs/cern.ch/work/f/fvelotti/private/lhc/' twiss_old_b1 = 'twiss_lhc_old_b1.tfs' twiss_old_b2 = 'twiss_lhc_old_b2.tfs' variables = ['name', 's', 'x', 'y', 'betx', 'bety', 'dx', 'dy', 'mux', 'muy'] name_b1o, s_b1o, x_b1o, y_b1o, betx_b1o, bety_b1o, dx_b1o, dy_b1o, mux_b1o, muy_b1o = dp.get_twiss_var(twiss_old_b1, path, variables) name_b2o, s_b2o, x_b2o, y_b2o, betx_b2o, bety_b2o, dx_b2o, dy_b2o, mux_b2o, muy_b2o = dp.get_twiss_var(twiss_old_b2, path, variables) mom_off_ti2 = 1.6e-3 mom_off_ti8 = -2.2e-3 disp_orbit_b1 = mom_off_ti2 * np.array(dx_b1o) / np.sqrt(7.3e-9 * np.array(betx_b1o)) disp_orbit_b2 = mom_off_ti8 * np.array(dx_b2o) / np.sqrt(7.3e-9 * np.array(betx_b2o)) plt.figure(1) plt.plot(np.array(s_b1o) * 1e-3, disp_orbit_b1) plt.plot(np.array(s_b1o) * 1e-3, -1 * disp_orbit_b1) plt.xlabel('s (km)') plt.ylabel(r'$\delta_p$D$_x/\sigma_{\beta}$') plt.minorticks_on() plt.title(r'Beam 1 (TI2), $\delta_p=$%1.1e' % mom_off_ti2) plt.figure(2) plt.plot(np.array(s_b2o) * 1e-3, disp_orbit_b2) plt.plot(np.array(s_b2o) * 1e-3, -1 * disp_orbit_b2) plt.xlabel('s (km)') plt.ylabel(r'$\delta_p$D$_x/\sigma_{\beta}$') plt.minorticks_on() plt.title('Beam 2 (TI8), $\delta_p=$%1.1e' % (-1 * mom_off_ti8)) plt.show()
UTF-8
Python
false
false
1,319
py
915
plot_lhc_beams.py
348
0.636846
0.576952
0
43
29.674419
133
Hryts-hub/eventmaster
4,277,787,433,672
11e590108409b7c019fc147f5a2f6445498bb56c
696bca4311caddbef8b55a3466417d28b81c7bfd
/comrades/management/commands/country.py
2becb009710e1806e187b8270c30fa12ba8a6404
[]
no_license
https://github.com/Hryts-hub/eventmaster
98d40e708f9ff3a0b92c90b743d99be3bf66b0e9
34cbde942d28ddde12272d67493a1ba81d0b4cd3
refs/heads/master
2023-07-25T10:38:00.965219
2021-09-09T10:05:41
2021-09-09T10:05:41
334,152,626
0
0
null
false
2021-02-21T08:28:14
2021-01-29T13:24:12
2021-02-20T10:35:46
2021-02-21T08:28:05
125
0
0
1
Python
false
false
from django.core.management.base import BaseCommand from events.services import get_countries from comrades.models import Country class Command(BaseCommand): def handle(self, *args, **options): slugs, list_country = get_countries() country_fields = [ Country(slug=slugs[i], country_name=list_country[i]) for i in range(0, len(slugs)) ] Country.objects.bulk_create(country_fields)
UTF-8
Python
false
false
443
py
27
country.py
25
0.670429
0.668172
0
13
33
64
zwen000/CSc44500-HW4
14,053,133,012,848
415649637be1cad7d41ede1ab0f3a9796501140f
136d228e6b6193b457b8f46601b350b1349492b3
/BDM_HW4_Wen2.py
e54d2d365c41763310e775651bc1758ec3dceccc
[]
no_license
https://github.com/zwen000/CSc44500-HW4
540515aea6c59a4fb930007525d5fb6300d4624d
b93230705294f0a3063525c3875d9ee910ec41cc
refs/heads/main
2023-01-23T12:44:02.899568
2020-11-17T05:12:03
2020-11-17T05:12:03
312,475,182
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from pyspark import SparkContext import sys import csv if __name__=='__main__': def parseCSV(idx, part): if idx == 0: next(part) for p in csv.reader(part): yield ("\""+p[1]+"\"", p[0].split("-")[0], p[7]) path_in = sys.argv[1] if len(sys.argv)>1 else "complaints_small.csv" path_out = sys.argv[2] if len(sys.argv)>2 else "hw4_output" sc = SparkContext.getOrCreate() rows= sc.textFile(path_in, use_unicode=False).mapPartitionsWithIndex(parseCSV)\ .map(lambda x: ((x[0], x[1], x[2]), 1))\ .reduceByKey(lambda x,y: x+y)\ .map(lambda x:(x[0][:2],x[1]))\ .groupByKey()\ .mapValues(lambda x: (str(sum(x)), str(len(x)), str(int(float(max(x))/sum(x)*100))))\ .sortByKey()\ .map(lambda x:(x[0]+x[1]))\ .map(lambda x: (", ".join(x)))\ .collect() sc.parallelize(rows).saveAsTextFile(path_out)
UTF-8
Python
false
false
958
py
2
BDM_HW4_Wen2.py
2
0.525052
0.502088
0
26
35.807692
97
ShazwanX9/Hamming_Numbers
2,894,807,972,771
e6c07b6e78ee30fb582439abef0b0fe4bf948a76
f3708130135e9c7e6fe2bd12ad6487a5b0ae14e6
/hamming_numbers.py
a4bd2674eb4fd5ba6f00aefd237fbff1c3298b8b
[]
no_license
https://github.com/ShazwanX9/Hamming_Numbers
e0db06e2bf5f04cd8bdaec0bc87e0cf0843923ee
37b1b8de919d5d384cd37d312049d9fd4913e912
refs/heads/main
2023-07-16T07:47:57.520799
2021-08-31T16:09:45
2021-08-31T16:09:45
401,765,105
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" In computer science, regular numbers are often called Hamming numbers, after Richard Hamming, who proposed the problem of finding computer algorithms for generating these numbers in ascending order. In number theory, these numbers are called 5-smooth, because they can be characterized as having only 2, 3, or 5 as prime factors. """ class Hamming: __doc__ = __doc__ @staticmethod def get_nth(n): """ :param n: int nth position :return: int nth Hamming Nummber """ if n <= 0: raise ValueError("n should be more than 0 (positive integer)") table = [1] * n i, j, k = 0, 0, 0 ri, rj, rk = 2, 3, 5 for ref in range(1, n): table[ref] = min(ri, min(rj, rk)) if table[ref] == ri: i += 1 ri = 2 * table[i] if table[ref] == rj: j+= 1 rj = 3 * table[j] if table[ref] == rk: k += 1 rk = 5 * table[k] return table[-1] @staticmethod def is_hamming_number(n): """ :param n: int positive integer to test :return: bool the number is hamming number or not """ if n <= 0: raise ValueError("n should be more than 0 (positive integer)") ref = n while ref>1: if ref%2==0: ref//=2 elif ref%3==0: ref//=3 elif ref%5==0: ref//=5 else: return False return True if __name__ == "__main__": print("Testing for " + __file__) ############################################################################### RES = ( -1, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54 ) ############################################################################### print("\nTesting get_nth: ") for n in range(1, len(RES)): check = Hamming.get_nth(n) if n%5==1: print("\n\t", end='') print(check, "==", RES[n], check==RES[n], end = " : ") print() ############################################################################### print("\nTesting is_hamming_number:\n") ############# print("\tShould Return True") for n in range(1, len(RES)): if Hamming.is_hamming_number(RES[n]): print("\t\t==>", True) break else: print("\t\t==>", False) ############# print("\tShould Return False") for n in range(11, 20): if n not in RES: if Hamming.is_hamming_number(n): print("\t\t==>", True) break else: print("\t\t==>", False) ############# print("\tShould Return True") for i in range(20, 50): if Hamming.is_hamming_number(Hamming.get_nth(n)): print("\t\t==>", True) break else: print("\t\t==>", False) ###############################################################################
UTF-8
Python
false
false
3,195
py
2
hamming_numbers.py
1
0.404069
0.376526
0
113
26.274336
104
foru120/PythonRepository
4,956,392,264,768
08a0ad4ec4cbb2f276e1179c4ea4d6f2484f328e
f8ad6963bfc851657ea50c6a036cfad29cdd7f60
/Books/DeepLearningLearningFromTheFounderOfKeras/chapter4/chapter4_2.py
169e6b99e6419949c52106331c23e305c0b8e016
[]
no_license
https://github.com/foru120/PythonRepository
e1ab0265c0f50ef2e9acdf7447237c913560692b
db6b6be0f9fb91b0a81a3b6a2ec5631daab10f98
refs/heads/master
2021-01-01T06:53:11.728109
2019-04-25T13:52:50
2019-04-25T13:52:50
97,541,222
4
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#todo K-겹 교차 검증 #todo - 데이터를 동일한 크기를 가진 K 개 분할로 나누고, 각 분할 i에 대해 남은 K - 1개의 분할로 모델을 훈련하고 분할 i에서 모델을 평가한다. #todo 최종 점수는 이렇게 얻은 K개의 점수를 평균한다. #todo 이 방법은 모델의 성능이 데이터 분할에 따라 편차가 클 때 도움이 되고, 홀드아웃 검증처럼 모델의 튜닝에 별개의 검증 세트를 사용한다. import numpy as np k = 4 data = [] test_data = data[int(len(data) * 0.7):] data = data[:int(len(data) * 0.7)] num_validation_samples = len(data) // k class get_model: def train(self, x): pass def evaluation(self, x): pass validation_scores = [] for fold in range(k): validation_data = data[num_validation_samples * fold: num_validation_samples * (fold + 1)] training_data = data[:num_validation_samples * fold] + data[num_validation_samples * (fold + 1):] model = get_model() # 훈련되지 않은 새로운 모델 생성 model.train(training_data) validation_score = model.evaluation(validation_data) validation_scores.append(validation_score) validation_score = np.average(validation_scores) model = get_model() model.train(data) # 테스트 데이터를 제외한 전체 데이터로 최종 모델을 훈련 test_score = model.evaluation(test_data) #todo 셔플링을 사용한 반복 K-겹 교차 검증 #todo - 이 방법은 비교적 가용 데이터가 적고 가능한 정확하게 모델을 평가하고자 할 때 사용한다. #todo 캐글 경연에서는 이 방법이 아주 크게 도움이 된다. #todo 이 방법은 K-겹 교차 검증을 여러 번 적용하되 K 개의 분할로 나누기 전에 매번 데이터를 무작위로 섞는다. #todo 최종 점수는 모든 K-겹 교차 검증을 실행해서 얻은 점수의 평균이 된다. #todo 결국 PxK(P는 반복 횟수)의 모델을 훈련하고 평가하므로 비용이 매우 많이 든다.
UTF-8
Python
false
false
2,027
py
577
chapter4_2.py
541
0.667154
0.661302
0
42
31.571429
101
fclintj/bash_setup
14,242,111,559,692
9a845e0873fff89d1a618b25dfce20e5dcfb8eee
9dce72b2a41433602b710e00470115ca364970f9
/.autokey/unicode/rarrow.py
371b0462ff89f79a12c967e7ea66fe8834688f28
[]
no_license
https://github.com/fclintj/bash_setup
7213c2a0a672f4a29d2aa1329df7bfcc902e7353
8e71a744302d604724bfab0e2bab843cd8867322
refs/heads/master
2021-01-02T08:38:00.518288
2018-09-28T06:10:54
2018-09-28T06:10:54
99,036,013
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# → U+2192 keyboard.send_keys("<ctrl>+<shift>+u+" + "2192") keyboard.send_keys("<ctrl>"+" ")
UTF-8
Python
false
false
95
py
60
rarrow.py
35
0.591398
0.505376
0
3
30
48
hw233/lolita_son
8,830,452,781,327
d48f995fbd283433642c3466a5da7443609e93ee
8d6227b76789f4e64a8fda38c5b678114c81fd36
/firefly/utils/interfaces.py
eb05a1d8ced6187ab77f3e7494104d7e391a7916
[ "MIT" ]
permissive
https://github.com/hw233/lolita_son
2a2ddeb70bda323c6cf4c1ca1defa25c018c9801
8205dff0d423aaedfa7fca8790d1d6fe50213e6e
refs/heads/master
2021-02-13T10:44:11.393406
2019-04-23T15:19:35
2019-04-23T15:19:35
244,689,286
0
1
MIT
true
2020-03-03T16:42:02
2020-03-03T16:42:02
2019-04-23T15:19:42
2019-04-23T15:19:40
17,647
0
0
0
null
false
false
#coding:utf8 ''' Created on 2013-10-17 @author: lan (www.9miao.com) ''' from __future__ import division, absolute_import from zope.interface import Interface class IDataPackProtoc(Interface): def getHeadlength(): """获取数据包的长度 """ pass def unpack(): '''解包 ''' def pack(): '''打包数据包 '''
UTF-8
Python
false
false
427
py
248
interfaces.py
231
0.496222
0.471033
0
24
14.708333
48
Alex1820209/AprendiendoPython
9,285,719,336,837
76ec0acebb5fd7b29f8a5d6e28390afb64da2e4b
d1c58b834a9d86b9447eb984213ffd56ec1cbdcb
/GuiaPython/compara.py
0d9e737fa36c423d2ce7b8c38cc98daae347ec42
[]
no_license
https://github.com/Alex1820209/AprendiendoPython
201f4228220c09c4c3260ef2172d4dbd0a30e183
1b5642dcaa2caf13303d3ede48b94293f82a91fd
refs/heads/master
2020-08-01T09:06:35.852829
2019-09-25T21:33:48
2019-09-25T21:33:48
210,944,026
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
numero1 =input("Numero 1: ") numero2=input("Numero 2: ") #se muestran los valores salida="Numeros proporcionados: {} y {}. {}." if (numero1==numero2): #se mete a esta funcion si los capturados son iguales print(salida.format(numero1, numero2,"Los numeros son iguales")) else: #se usa un if dentro de otro (condiciones anidadas) #si los numeros son iguales. if numero1>numero2: #se hace si el primer valor es mayor al segundo print(salida.format(numero1, numero2, "el mayor es el primero")) else: #si no es asi el segundo es mayor print(salida.format(numero1, numero2, "el mayor es el segundo"))
UTF-8
Python
false
false
669
py
10
compara.py
9
0.660688
0.639761
0
16
39.6875
72
xingxingdegit/learnpython
14,972,255,994,655
ddd2afd21a88adeb95c0c0683ca7a1b14ffe7223
618389bc0bb267785af72ccc9e1cf0dcec874861
/2.7/threadling/test2.py
b9113c626bd252f85134e12ea0c77dacbc2fd5b6
[]
no_license
https://github.com/xingxingdegit/learnpython
4479cb24d77af6b0bc50ee5cadd49a85848113e9
4a353363e5040c8a8c6a48cf3654583fbd1c54a4
refs/heads/master
2020-02-29T15:05:57.991568
2017-03-30T03:24:08
2017-03-30T03:24:08
65,520,341
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # # --*-- cofing: utf-8 --*-- # import threading,time i = 100 lock = threading.Lock() def push(tid): global i check = True while check: # lock.acquire() if i > 0: i -= 1 print 'i is:',i,'the tid is:',tid else: print 'nothing','the tid is:',tid check = False # lock.release() time.sleep(0.5) for x in range(10): new_thread = threading.Thread(target=push,args=(x,)) new_thread.start()
UTF-8
Python
false
false
531
py
47
test2.py
43
0.495292
0.47646
0
26
18.769231
56
fmhr/procon
4,973,572,174,651
e967242d5223ad33cda44cca35aa6848694d7dff
a3c70d94274216451520905d83685cc3c6315473
/atcoder/ABC/012/abc12c.py
7b6ad8d55d0ecb3f14fcf5290e514c8e321ece72
[]
no_license
https://github.com/fmhr/procon
b939827f03d8a5c0e2faada81ae14c11f861909d
e8bea807b9cc8b8781fc21c5e64ab20e4b453283
refs/heads/master
2019-08-27T10:53:57.594751
2019-01-28T09:05:06
2019-01-28T09:05:06
59,471,219
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- def main(): n = 2025-int(input()) x = [] for i in range(1, 10, 1): if n%i==0 and n//i<10: print(i, 'x', n//i) if __name__=='__main__': main()
UTF-8
Python
false
false
228
py
11,142
abc12c.py
777
0.421053
0.368421
0
14
15.285714
31
OMalenfantThuot/scripts_raman
9,887,014,741,332
57d8788700f0047bb42d2c7f8e36075f2911a2ea
5660cc796ba00f5090c7de6208c2e0a77c2328ba
/utils/functions/gramschmidt.py
a25bd32ad43e68be72b93b735fccbc39728a0748
[]
no_license
https://github.com/OMalenfantThuot/scripts_raman
ac65fec1c5ac97a13b8c222e02241f02393f7709
2fd42a4b09d33fcf96da4b4d3340f67d21428b18
refs/heads/master
2023-07-19T20:11:10.457974
2023-07-18T18:15:26
2023-07-18T18:15:26
193,724,148
1
1
null
false
2023-08-28T20:00:38
2019-06-25T14:29:42
2021-12-14T20:08:26
2023-08-28T20:00:37
17,462
1
1
0
Python
false
false
import numpy as np def gramschmidt(basis, normalize=True): basis = [np.array(vec, dtype=np.float64) for vec in basis] nvectors = len(basis) ndim = len(basis[0]) for vec in basis: assert len(vec) == ndim new_basis = [] for i in range(nvectors): new_vec = basis[i].copy() for vec in new_basis: new_vec -= proj(basis[i], vec) if normalize: new_vec /= np.linalg.norm(new_vec) new_basis.append(new_vec) return np.array(new_basis) def proj(v, u): return np.dot(v, u) / np.dot(u,u) * u
UTF-8
Python
false
false
583
py
71
gramschmidt.py
69
0.567753
0.562607
0
22
25.5
62
smutch/gpu_tests
1,434,519,100,451
ffd6abef4c171c66c2a2f5f4a895d51b1e7dd1e2
c09bf27d535f52c1c613b843a54b4f8853e560b7
/test.py
ca2e0068a4349dbe79b46eb7824f001ae65dad04
[]
no_license
https://github.com/smutch/gpu_tests
2f14c4b7ce969e04a2e4694503da513990311d8f
f9df91357d89310b1679e3a7c855e9b23ea32839
refs/heads/master
2020-04-21T07:02:07.926383
2019-02-06T09:36:22
2019-02-06T09:36:22
169,382,095
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys sys.path.insert(0, "build/lib") from mpi4py import MPI import pygpu_tests if MPI.COMM_WORLD.rank == 0: print(f"Running test with {MPI.COMM_WORLD.size} ranks...") pygpu_tests.init_cuda()
UTF-8
Python
false
false
204
py
7
test.py
2
0.710784
0.696078
0
10
19.4
62
vedantshr/python-learning
14,216,341,782,672
7019978851bf125c1db556b47650040e58f7900c
f5bf67a840af96182fafaf9528fac2b83fed62fa
/learning/armstrongno.py
02a53dab85e7c4492624b8de5355bb4a89416355
[]
no_license
https://github.com/vedantshr/python-learning
4a6d4e2d230d8db4b4370a7ef9375bf4c4dc96c2
637efb29f2f13c47cd3d9b402735b15657392835
refs/heads/main
2023-06-28T04:24:25.215630
2021-07-28T15:13:11
2021-07-28T15:13:11
281,611,580
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def armstrong(ip): n = 0 for i in range(len(ip)): n = n + int(ip[i])**len(ip) if n == int(ip): return True else: return False if __name__ == "__main__": ip = input() ip2 = input() print (armstrong(ip)) print (armstrong(ip2))
UTF-8
Python
false
false
283
py
136
armstrongno.py
86
0.480565
0.469965
0
15
17.933333
35
CiiMAV/python-cdr
11,759,620,466,043
79c2a896e856771bb462f8aae1f643156213e53e
f65ebbcf5baf0cb649b28df191b38a75fbdb71fe
/test/sensor_accel_cdr.py
a81fafcad457a15c635066ce8d63a5a02ffa1b19
[]
no_license
https://github.com/CiiMAV/python-cdr
c59bafd9b0ae2eaf5777f874cafe28e36b2be2f9
1cfa4ea30694b4e7173bdc0f63d2e8a2ce0dca22
refs/heads/master
2020-03-13T06:28:32.340915
2018-06-25T10:20:18
2018-06-25T10:20:18
131,005,536
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import ctypes import sys lib = ctypes.cdll.LoadLibrary('./sensor_accel_cdr.so') class sensor_accel(object): """docstring for sensor_accel""" def __init__(self): lib.sensor_accel_new.restype = ctypes.c_void_p lib.sensor_accel_deserialize.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.c_int] lib.sensor_accel_deserialize.restype = ctypes.c_void_p lib.get_m_x.argtype = ctypes.c_void_p lib.get_m_x.restype = ctypes.c_float self.obj = lib.sensor_accel_new() self.m_x = 0 def get_m_x(self): self.m_x = lib.get_m_x(self.obj) return self.m_x; def deserialize(self,data,length): lib.sensor_accel_deserialize(self.obj,data,length ) self.get_m_x()
UTF-8
Python
false
false
694
py
18
sensor_accel_cdr.py
17
0.681556
0.680115
0
20
32.6
90
askemottelson/minigit
1,520,418,425,058
0246f38a8434ff5b4800ba36b76be9228116b8b9
9965abf48dacdf15cf7c2b3b7fb7450dfcbdd2c1
/gui/clonedialog.py
1f29cb666219d8c17ddaeb322efed55a032974bd
[]
no_license
https://github.com/askemottelson/minigit
c72d5c98827fa57aed5639f1550d7181947553ba
7468eead89f68d6a80cb0d5ad5dba0ce22cecb02
refs/heads/master
2016-08-04T04:29:48.543996
2014-12-07T14:37:31
2014-12-07T14:37:31
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from PyQt4 import QtCore, QtGui from clone import Ui_CloneDialog class CloneDialog(): url = "" path = "" def __init__(self, parent): self.parent = parent def urlSelected(self): root = str(QtGui.QFileDialog.getExistingDirectory(self.parent, "Select Directory")) self.clonedialog_ui.path.setText(root) def setup(self): self.clonedialog = QtGui.QDialog(self.parent) self.clonedialog_ui = Ui_CloneDialog() self.clonedialog_ui.setupUi(self.clonedialog) self.clonedialog_ui.browseButton.clicked.connect(self.urlSelected) self.clonedialog.exec_() self.url = self.clonedialog_ui.url.text() self.path = self.clonedialog_ui.path.text() def result(self): return (self.url, self.path)
UTF-8
Python
false
false
744
py
13
clonedialog.py
8
0.700269
0.698925
0
32
22.28125
87
anitabaral/Exercism-exercises
18,098,992,209,019
78310c21b47e2dc37e896f4e05cec0c133691294
10815fbddf1d85fbdf2655c1b41977496aa28a6f
/robot_name.py
2dbc69ab107f223f6c2b27494c73bf00e36a9e5a
[]
no_license
https://github.com/anitabaral/Exercism-exercises
983d6b6ce1c0ee8f0d70d5dbe8ab59e8e8b3e878
81034e5174ef6933e07bc595c9dd708265faeaaf
refs/heads/master
2023-05-30T17:22:38.143483
2021-06-14T08:33:47
2021-06-14T08:33:47
363,824,732
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import random import string class Robot: def __init__(self): random.seed() self.reset() def reset(self): self.get_name() def get_name(self): text = [] for _ in range(2): text.append(random.choice(string.ascii_uppercase)) for _ in range(3): text.append(random.choice(string.digits)) self.name = "".join(text)
UTF-8
Python
false
false
403
py
39
robot_name.py
39
0.543424
0.538462
0
18
21.388889
62
bibongbong/pythonCookBook
16,630,113,411,239
e90b83216d5bd040546fe3d9450c4855128bbce3
6d8f60ea657cdc4d82ae6f9272e3614a9ac6e525
/learningStuff/getUrl_multiThread.py
ff30bf643f0a5e53e15b151c436afc088f3d1d74
[]
no_license
https://github.com/bibongbong/pythonCookBook
4d6dc3904a1afa1250304b66ec99a98c1a80649f
c92c75f2d5256de0bb2ec879a7d6484a22cc6bcd
refs/heads/master
2021-06-10T01:37:26.178698
2021-06-01T13:52:18
2021-06-01T13:52:18
152,709,122
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#################################################################### # File: getUrl.py # Function: Learning to how to get the specific URL, and parse the HTML page to get the content you want # #################################################################### import urllib.request import operator from bs4 import BeautifulSoup import asyncio # testNum = [3,5,11,12,26,29,15] #testNum = [11, 16, 19, 22, 25, 30, 8] testNum = [8, 10, 17, 20, 27, 30, 1] startUrl = 'http://kaijiang.zhcw.com/zhcw/inc/ssq/ssq_wqhg.jsp' serverUrl = 'http://kaijiang.zhcw.com/' isNeedProxy = True def getWinNum(tr): win_num = [] all_td = tr.find_all("td") for em in all_td[2]: if em.string.isdigit(): win_num.append(int(em.string)) return win_num def getWinDate(tr): all_td = tr.find_all("td") winDate = all_td[0].string return winDate def getnextPageUrl(i): return "http://kaijiang.zhcw.com/zhcw/inc/ssq/ssq_wqhg.jsp?pageNum="+str(i) def getLastPageNum(all_tr): nextPageTr = all_tr[-1] all_strong = nextPageTr.find_all("strong") nextPageItem = all_strong[5].a return nextPageItem['href'][35:] def getResponse(currentUrl): print("current url is %s " % (currentUrl)) if isNeedProxy: # set the http proxy proxy_handler = urllib.request.ProxyHandler({"http": 'http://135.245.248.89:8000'}) opener = urllib.request.build_opener(proxy_handler) urllib.request.install_opener(opener) print("getResponse ",currentUrl) # open the zhcw ShuangSeQiu page response = urllib.request.urlopen(currentUrl) html = response.read() soup = BeautifulSoup(html, "html.parser") return soup def loopAllWinNumInCurrentPage(all_tr,myNum): #loop all winNum in current page for tr in all_tr[2:-1]: winNum = getWinNum(tr) if winNum == myNum: winDate = getWinDate(tr) isFound = True print("Found: %s" % winNum) print(winDate) raise StopIteration def searchFirstPage(currentUrl, myNum): soup = getResponse(currentUrl) all_tr = soup.find_all("tr") isFound = False loopAllWinNumInCurrentPage(all_tr,myNum) lastPageNum = getLastPageNum(all_tr) return lastPageNum def searchPage(i, myNum): print(i) currentUrl = getnextPageUrl(i) soup = yield from getResponse(currentUrl) all_tr = soup.find_all("tr") isFound = False loopAllWinNumInCurrentPage(all_tr,myNum) lastPage = searchFirstPage(startUrl, testNum) print("lastPage ",lastPage) loop = asyncio.get_event_loop() tasks = [searchPage(i, testNum) for i in range(int(lastPage))] loop.run_until_complete(asyncio.wait(tasks)) loop.close()
UTF-8
Python
false
false
2,840
py
80
getUrl_multiThread.py
80
0.601408
0.57993
0
105
25.028571
104
Renjiewu/2019-3d-
11,184,094,877,899
292100defb8ac84c6e43675a4170fb50e2e56556
c249a7472d64b0bac788aa1d106958e94b888bfc
/rs1_1.py
c653a657a40f456e7996e48a6180bfe22d151111
[]
no_license
https://github.com/Renjiewu/2019-3d-
88fe444fd7795d75d1044d47999eb00dbfd75551
a2e71e5ef1c934a3fc38117ac37bfec4f13939bc
refs/heads/master
2020-09-20T06:41:02.264820
2019-11-27T10:28:13
2019-11-27T10:28:13
224,402,171
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Jul 7 17:58:18 2019 @author: w3321 """ import pyrealsense2 as rs import numpy as np import cv2 from . import rs1_cv as rs1 import math import time import os from . import square_distance_angle as da import pandas as pd from .. import output2 as op from .. import find pc = rs.pointcloud() # We want the points object to be persistent so we can display the last cloud when a frame drops points = rs.points() imgk=np.ones([550,550,3],np.uint8)*255 pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.depth,640,480,rs.format.z16,30) config.enable_stream(rs.stream.color,640,480,rs.format.bgr8,30) # Start streaming # Create an align object # rs.align allows us to perform alignment of depth frames to others frames # The "align_to" is the stream type to which we plan to align depth frames. align_to = rs.stream.color align = rs.align(align_to) global vtx def GetLineLength(p1,p2): '''计算边长''' length = math.pow((p2[0]-p1[0]),2) + math.pow((p2[1]-p1[1]),2)+ math.pow((p2[2]-p1[2]),2) length = math.sqrt(length) return length depth_pixel = [320, 240] def draw_circle(event,x,y,flags,param): global depth_pixel if event == cv2.EVENT_MOUSEMOVE: depth_pixel = [x, y] def get_deep(): while True: frames = pipeline.wait_for_frames() aligned_frames = align.process(frames) depth_frame = aligned_frames.get_depth_frame() color_frame = aligned_frames.get_color_frame() if not depth_frame or not color_frame: continue break return depth_frame,color_frame def get_xyz(p): global vtx i=p[1]*640+p[0] p1=[np.float(vtx[i][0]),np.float(vtx[i][1]),np.float(vtx[i][2])] return p1 def get_one(path1): global vtx #time.sleep(5) start=time.time() pipe_profile=pipeline.start(config) depth_sensor = pipe_profile.get_device().first_depth_sensor() depth_sensor.set_option(rs.option.visual_preset,1) depth_sensor = pipe_profile.get_device().first_depth_sensor() depth_sensor.set_option(rs.option.visual_preset,1) sensor = pipe_profile.get_device().query_sensors()[1] sensor.set_option(rs.option.enable_auto_exposure,1) sensor.set_option(rs.option.backlight_compensation,0.000) sensor.set_option(rs.option.brightness,0.000) sensor.set_option(rs.option.contrast,50.000) sensor.set_option(rs.option.gain,61.000) sensor.set_option(rs.option.gamma,220.000) sensor.set_option(rs.option.hue,0.000) sensor.set_option(rs.option.saturation,68.000) sensor.set_option(rs.option.sharpness,50.000) cv2.namedWindow('depth_frame') cv2.setMouseCallback('depth_frame',draw_circle) while True: depth_frame1,color_frame1=get_deep() depth_frame2,color_frame2=get_deep() depth_frame,color_frame=get_deep() img_color = np.asanyarray(color_frame.get_data()) img_test =img_color.copy() img_depth1 = np.asanyarray(depth_frame1.get_data()) img_depth2 = np.asanyarray(depth_frame2.get_data()) img_depth = np.asanyarray(depth_frame.get_data()) img_depthx=(img_depth1+img_depth2+img_depth)//3 depth_colormap1 = cv2.applyColorMap(cv2.convertScaleAbs(img_depth1, alpha=0.03), cv2.COLORMAP_BONE) depth_colormap2 = cv2.applyColorMap(cv2.convertScaleAbs(img_depth2, alpha=0.03), cv2.COLORMAP_BONE) depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(img_depth, alpha=0.03), cv2.COLORMAP_BONE) p,imgf=rs1.rs1_cv(depth_colormap1,depth_colormap2,depth_colormap) # Intrinsics & Extrinsics depth_intrin = depth_frame.profile.as_video_stream_profile().intrinsics color_intrin = color_frame.profile.as_video_stream_profile().intrinsics depth_to_color_extrin = depth_frame.profile.get_extrinsics_to(color_frame.profile) # Depth scale - units of the values inside a depth frame, i.e how to convert the value to units of 1 meter depth_sensor = pipe_profile.get_device().first_depth_sensor() depth_scale = depth_sensor.get_depth_scale() # Map depth to color depth_point = rs.rs2_deproject_pixel_to_point(depth_intrin, depth_pixel, depth_scale) color_point = rs.rs2_transform_point_to_point(depth_to_color_extrin, depth_point) color_pixel = rs.rs2_project_point_to_pixel(color_intrin, color_point) #print ('depth: ',color_point) #print ('depth: ',color_pixel) x1,y1=depth_pixel pc.map_to(color_frame) points = pc.calculate(depth_frame) v, t = points.get_vertices(), points.get_texture_coordinates() vtx = np.asanyarray(v).view(np.float32).reshape(-1, 3) # xyz tex = np.asanyarray(t).view(np.float32).reshape(-1, 2) # uv i = y1*640+x1 ''' i0=p[0][1]*640+p[0][0] i1=p[1][1]*640+p[1][0] i2=p[2][1]*640+p[2][0] i3=p[3][1]*640+p[3][0] p0=[np.float(vtx[i0][0]),np.float(vtx[i0][1]),np.float(vtx[i0][2])]#左下 p1=[np.float(vtx[i1][0]),np.float(vtx[i1][1]),np.float(vtx[i1][2])]#右下 p2=[np.float(vtx[i2][0]),np.float(vtx[i2][1]),np.float(vtx[i2][2])]#左上 p3=[np.float(vtx[i3][0]),np.float(vtx[i3][1]),np.float(vtx[i3][2])]#右上 ''' p0=get_xyz(p[0]) p1=get_xyz(p[1]) p2=get_xyz(p[2]) p3=get_xyz(p[3]) l0=GetLineLength(p0,p1) l1=GetLineLength(p0,p2) l2=GetLineLength(p1,p3) if l0==0: continue r=550/l0#mm/xlength l1_1=int(r*l1)#左边像素长度 l2_1=int(r*l2)#右边像素长度 #print(r,p0,p1,p2,p3) pts1 = np.float32([[0,550],[550,550],[0,550-l1_1],[550,550-l2_1]]) pts2 = np.float32([[p[0][0],p[0][1]],[p[1][0],p[1][1]],[p[2][0],p[2][1]],[p[3][0],p[3][1]]]) M = cv2.getPerspectiveTransform(pts1,pts2) dst = cv2.warpPerspective(imgk,M,(640,480)) dst=cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY) imgn, cnt, h = cv2.findContours(dst, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if cnt: cnt=cnt[0] cv2.drawContours(img_color, [cnt], 0, (0,255,0), 1) approx = cv2.approxPolyDP(cnt,8,True) cv2.drawContours(img_color, [approx], 0, (0,0,255), 3) a=np.asarray(approx) a=a.reshape(-1,2) #print(tuple(a[0])) ''' cv2.circle(img_color,tuple(a[0]),5,(255,0,0),-1) cv2.circle(img_color,tuple(a[1]),5,(255,0,0),-1) cv2.circle(img_color,tuple(a[2]),5,(255,0,0),-1) cv2.circle(img_color,tuple(a[3]),5,(255,0,0),-1) ''' #print ('depth: ',[np.float(vtx[i][0]),np.float(vtx[i][1]),np.float(vtx[i][2])]) cv2.circle(img_color,(x1,y1), 8, [255,0,255], thickness=-1) cv2.putText(img_color,"Dis:"+str(img_depth[y1,x1]), (40,40), cv2.FONT_HERSHEY_SIMPLEX, 1.2,[255,0,255]) cv2.putText(img_color,"X:"+str(np.float(vtx[i][0])), (80,80), cv2.FONT_HERSHEY_SIMPLEX, 1.2,[255,0,255]) cv2.putText(img_color,"Y:"+str(np.float(vtx[i][1])), (80,120), cv2.FONT_HERSHEY_SIMPLEX, 1.2,[255,0,255]) cv2.putText(img_color,"Z:"+str(np.float(vtx[i][2])), (80,160), cv2.FONT_HERSHEY_SIMPLEX, 1.2,[255,0,255]) cv2.imshow('depth_frame',img_color) #cv2.imshow('3',depth_colormap) cv2.imshow('4',imgf) #cv2.imshow('5',dst) key = cv2.waitKey(1) end=time.time() if (end-start)>5: #data = pd.DataFrame(img_depth) #data.to_csv('./1.csv',index = False) #if key & 0xFF == ord('q'): break cv2.destroyAllWindows() pipeline.stop() cv2.imwrite(path1+'/test_image/img_test.jpg',img_test) return r,p0,p1,p2,p3,img_depth,img_test def find_p(imgs): m=find.find(imgs) n=[] b=0 for i in m: if imgs[int(i[0,0]),int(i[0,1])] !=0: #print([int(i[0,0]),int(i[0,1])]) n+=[int(i[0,0]),int(i[0,1])] if n==[]: b=1 n=np.asarray(n).reshape(-1,2) return n,b def fake_det(img,pm0): p=0 if (img[pm0[1]+30,pm0[0]]!=0): if abs(int(img[pm0[1]+30,pm0[0]])-int(img[pm0[1],pm0[0]]))<700: if abs(int(img[pm0[1],pm0[0]])-int(img[pm0[1]+30,pm0[0]]))>350: #print(abs(int(img[pm0[1],pm0[0]])-int(img[pm0[1]+30,pm0[0]]))) print('error') p=1 return p def out(list,p0,p1,p2,p3,img): z=[['ZA001',0,0,0,0], ['ZA002',0,0,0,0], ['ZA003',0,0,0,0], ['ZA004',0,0,0,0], ['ZA005',0,0,0,0], ['ZB001',0,0,0,0], ['ZB002',0,0,0,0], ['ZB003',0,0,0,0], ['ZB004',0,0,0,0], ['ZB005',0,0,0,0], ['ZB006',0,0,0,0], ['ZB007',0,0,0,0], ['ZB008',0,0,0,0], ['ZB009',0,0,0,0], ['ZB010',0,0,0,0], ['ZC001',0,0,0,0], ['ZC002',0,0,0,0], ['ZC003',0,0,0,0], ['ZC004',0,0,0,0], ['ZC005',0,0,0,0], ['ZC006',0,0,0,0], ['ZC007',0,0,0,0], ['ZC008',0,0,0,0], ['ZC009',0,0,0,0], ['ZC010',0,0,0,0], ['ZC011',0,0,0,0], ['ZC012',0,0,0,0], ['ZC013',0,0,0,0], ['ZC014',0,0,0,0], ['ZC015',0,0,0,0], ['ZC016',0,0,0,0], ['ZC017',0,0,0,0], ['ZC018',0,0,0,0], ['ZC019',0,0,0,0], ['ZC020',0,0,0,0], ['ZC021',0,0,0,0], ['ZC022',0,0,0,0], ['ZC023',0,0,0,0], ['CA001',0,0,0,0], ['CA002',0,0,0,0], ['CA003',0,0,0,0], ['CA004',0,0,0,0], ['CD001',0,0,0,0], ['CD002',0,0,0,0], ['CD003',0,0,0,0], ['CD004',0,0,0,0], ['CD005',0,0,0,0], ['CD006',0,0,0,0]] b=[['ZA001',1,0,15], ['ZA002',0,0,42], ['ZA003',1,1,20], ['ZA004',0,1,25], ['ZA005',1,0,35], ['ZB001',0,0,32], ['ZB002',0,0,32], ['ZB003',0,0,20], ['ZB004',1,0,15], ['ZB005',0,0,25], ['ZB006',0,0,40], ['ZB007',1,0,20], ['ZB008',0,0,32], ['ZB009',0,1,30], ['ZB010',1,0,20], ['ZC001',0,1,15], ['ZC002',0,1,15], ['ZC003',0,1,15], ['ZC004',0,1,15], ['ZC005',0,0,15], ['ZC006',0,1,15], ['ZC007',0,1,15], ['ZC008',0,1,15], ['ZC009',0,1,15], ['ZC010',0,1,15], ['ZC011',1,1,15], ['ZC012',1,1,15], ['ZC013',0,1,15], ['ZC014',0,0,15], ['ZC015',0,0,32], ['ZC016',0,0,32], ['ZC017',0,0,32], ['ZC018',0,0,32], ['ZC019',0,0,32], ['ZC020',0,0,32], ['ZC021',0,0,32], ['ZC022',0,0,32], ['ZC023',0,0,32], ['CA001',0,0,32], ['CA002',0,0,32], ['CA003',0,0,32], ['CA004',0,0,32], ['CD001',0,0,32], ['CD002',0,0,32], ['CD003',0,0,32], ['CD004',0,0,32], ['CD005',0,0,32], ['CD006',0,0,32]] for i in list[1:]: zr=0. y1=int(i[1]) x1=int(i[2]) y2=int(i[3]) x2=int(i[4]) x=(x1+x2)//2 y=(y1+y2)//2 p=[x,y] p10=[x-5,y] p11=[x+5,y] if b[int(i[6]-1)][2]==1: imgs=img[y1:y2,x1:x2] m,c=find_p(imgs) if c==0: #print(m) j=m.shape[0]//2 pm0=[m[j][1]+x1,m[j][0]+y1] ''' depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(img, alpha=0.03), cv2.COLORMAP_BONE) for l in m: cv2.circle(depth_colormap,(int(l[1])+x1,int(l[0])+y1), 1, [0,0,255], thickness=-1) #img_color=cv2.imread('../../vision_output/output/result/img_test.jpg') #cv2.circle(img_color,(x,y), 8, [255,0,255], thickness=-1) cv2.circle(depth_colormap,(pm0[0],pm0[1]), 2, [255,0,255], thickness=-1) cv2.circle(depth_colormap,(pm0[0],pm0[1]+10), 2, [255,0,255], thickness=-1) cv2.imshow('1',depth_colormap) cv2.waitKey() cv2.destroyAllWindows() ''' else: print('s') pm0=p else: pm0=p fd=fake_det(img,pm0) if fd ==1: continue pm=get_xyz(pm0) p21=get_xyz(p10) p22=get_xyz(p11) zb=da.finddistan(p0,p2,p1,pm) if b[int(i[6]-1)][1]==1: zr=da.findangle(p0,p2,p1,p21,p22) if (b[int(i[6]-1)][0]=='ZC011') or (b[int(i[6]-1)][0]=='ZC011'): pass elif img[p10[1],p10[0]]<img[p11[1],p11[0]]: zr=180-zr z[int(i[6]-1)][4]+=1 z[int(i[6]-1)][1]+=zb[0] z[int(i[6]-1)][2]+=zb[1]-b[int(i[6]-1)][3] z[int(i[6]-1)][3]+=zr return z ''' path=os.path.dirname(os.path.abspath(__file__)) path1=os.path.normpath(path+'../../../vision_output/output') start1=time.time() r,p0,p1,p2,p3,img_d,img_c=get_one(path1) op.tf_dete(pth=path1) #pipeline.stop() #print(r,p0,p1,p2,p3) #print(path1) #os.system('python '+path1) data=pd.read_csv(path1+'/result/img_test.jpg.csv',header=None) list=data.values.tolist() z=out(list,p0,p1,p2,p3,img_d) zc=np.asanyarray(z).reshape(-1,4) print(zc) end1=time.time() print(end1-start1) '''
UTF-8
Python
false
false
13,887
py
5
rs1_1.py
5
0.511092
0.407255
0
402
32.430348
114
mrerren/Workshop-Python-101
1,992,864,851,537
a7c8a24deefcbe885d014286807e1c060d423026
2b7f99469ebf47efddc522503df0742cef2abd10
/8-OOP/2-Class/lat31.py
1fdb44bf436a7a961c9807e2fde79febe5501e8c
[]
no_license
https://github.com/mrerren/Workshop-Python-101
961c15ed972cc6b3bc3cd9cf36b8f915794751ca
5a870d0664f3119348c12c01ab76968055d4a6c1
refs/heads/master
2023-03-05T10:43:49.830222
2020-12-18T08:54:12
2020-12-18T08:54:12
321,860,883
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# lat31.py class Orang: pass org = Orang() print(org)
UTF-8
Python
false
false
59
py
69
lat31.py
46
0.627119
0.59322
0
7
7.571429
13
444thLiao/my_toolkit
19,155,554,146,969
3fa5b7b0e26f8fcfcef8376d3a32a505cd49b06c
9ea705a75261fc8a128f016e0af37ee413ad98d7
/vis_for/newick/draw_tanglegram.py
6d82242460e6b606bc438cc6e3cf5d6bca6a6a4e
[]
no_license
https://github.com/444thLiao/my_toolkit
a3ec207f36978d8fe40278b43d3e7b63e00d690b
a5b7cda90d28d98edf90456dca34da3824aa5ce7
refs/heads/master
2020-05-09T12:11:45.161286
2020-05-08T07:38:11
2020-05-08T07:38:11
181,104,919
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" This script is mainly written for tanglegram which connect leafs from two dendrograms. Further, it also implement some useful transferring function from iTOL. for adding color to the leaves of the dendrogram. you could use the iTOL file.. or something simpler like removing the description """ from collections import defaultdict import click import os import plotly import plotly.graph_objs as go from tqdm import tqdm from Tree_for.api_IO import read_tree from Tree_for.plotly_draw_newick_tree import main as get_plotly_data_from_newick def get_leafs(newick): t = read_tree(newick, format='auto') return t.get_leaf_names() def get_preferred_scale(newick1, newick2): t1 = read_tree(newick1, format='auto') t2 = read_tree(newick2, format='auto') num_1 = len(t1.get_leaf_names()) num_2 = len(t2.get_leaf_names()) yscale = num_1 / num_2 return 1 / yscale def parse_color_scheme_files(file, extra_set=False,get_raw_name=False): """ :param file: :param extra_set: :param get_raw_name: :return: """ lines = open(file).read().split('\n') lines = [_ for _ in lines if _] field_labels = [_ for _ in lines if _.startswith("FIELD_LABELS")] field_colors = [_ for _ in lines if _.startswith("FIELD_COLORS")] name2color = {} sep_indicator = [_ for _ in lines if _.startswith("SEPARATOR")][0] sep_indicator = sep_indicator.split(' ')[-1] s2s = {"TAB": '\t', "COMMA": ',', "SPACE": ' '} sep = s2s.get(sep_indicator, ',') if field_labels and field_colors: colors = field_colors[0].split('\t')[1:] anno_names = field_labels[0].split('\t')[1:] _name2data = [_ for _ in lines[lines.index("DATA") + 1:] if _ and not _.startswith('#')] for line in _name2data: line.strip('\n') vs = line.split('\t') name = vs[0] color = [c for c, _ in zip(colors, vs[1:]) if str(_) != '0'] if color: name2color[name] = color[0] # would overlap.. be careful.. else: lines = [_ for _ in lines[lines.index("DATA") + 1:] if _ and not _.startswith('#')] c2name = {} for line in lines: values = line.split(sep) name = values[0] if "range" in line: color = values[2] c2name[color] = values[-1] else: color = values[1] name2color[name] = color if get_raw_name: return c2name if str(extra_set) == 'rename': new_name2color = {k.split('_')[-1].replace('.', 'v'): v for k, v in name2color.items()} name2color = new_name2color.copy() return name2color def main(newick1, newick2, color_file1, color_file2, l_legnth='max', sep='_', extra_set=False, identical=False): left_leaves = get_leafs(newick1) right_leaves = get_leafs(newick2) yscale = get_preferred_scale(newick1, newick2) fig = plotly.subplots.make_subplots(rows=1, cols=3, shared_yaxes=True, horizontal_spacing=0.05/3) # get dendrogram parts tqdm.write('drawing dendrograms') datas, labels, _, labels_draw_text, labels_x, labels_y = get_plotly_data_from_newick(newick1, fixed_length=l_legnth, yscale=yscale) datas2, labels2, _, labels_draw_text2, labels_x2, labels_y2 = get_plotly_data_from_newick(newick2, fixed_length=l_legnth) # add colors or something else into above datas l2color = {_: '#000000' for _ in labels_draw_text} r2color = {_: '#000000' for _ in labels_draw_text2} l2color.update(parse_color_scheme_files(color_file1, extra_set=False)) r2color.update(parse_color_scheme_files(color_file2, extra_set=extra_set)) # add color into generated trace tqdm.write('adding color') name2trace = {_['name']: _ for _ in datas if _['name'] is not None} for l, color in l2color.items(): if color != '#00000' and l in labels_draw_text: trace = name2trace[l] trace['line']['color'] = color name2trace = {_['name']: _ for _ in datas2 if _['name'] is not None} for r, color in r2color.items(): if color != '#00000' and r in labels_draw_text2: trace = name2trace[r] trace['line']['color'] = color # add dendrogram parts into figure. # data1/newick1 would be the left, data2/newick2 would be the right and the leaves of it will point to left # for _ in datas: fig.add_traces(datas, rows=[1] * len(datas), cols=[1] * len(datas)) # for _ in datas2: fig.add_traces(datas2, rows=[1] * len(datas2), cols=[3] * len(datas2)) # init data of middle part # get the y-coordinate information from below. put them into two dict. left_data = {k:v for k,v in dict(zip(labels_draw_text, labels_y)).items() if k in left_leaves} right_data = {k:v for k,v in dict(zip(labels_draw_text2, labels_y2)).items() if k in right_leaves} # get mapping relationship, default is from left to the right.. one to multi # so, the leaf names from the left tree should be the part of right, separate with `underline` or `space` l2r = defaultdict(list) for leaf1 in left_data.keys(): if identical: leaf2s = [r for r in right_data.keys() if leaf1 == r] else: leaf2s = [r for r in right_data.keys() if leaf1.split(sep)[0] == r] l2r[leaf1] = leaf2s # init the data from above mapping dict c2data = defaultdict(lambda: ([], [])) for l, color in l2color.items(): _xs = c2data[color][0] _ys = c2data[color][1] rs = l2r.get(l, []) l_y = left_data.get(l, 0) for r in rs: r_y = right_data[r] _xs += [0, 1, None] _ys += [l_y, r_y, None] for color, (_xs, _ys) in c2data.items(): trace = go.Scatter(x=_xs, y=_ys, mode='lines', line=dict(color=color, ), hoverinfo='none', showlegend=True) fig.add_traces([trace], rows=[1], cols=[2]) fig.layout.xaxis3.autorange = 'reversed' fig.layout.xaxis.showticklabels = False fig.layout.xaxis2.showticklabels = False fig.layout.xaxis3.showticklabels = False fig.layout.xaxis.zeroline = False fig.layout.xaxis2.zeroline = False fig.layout.xaxis3.zeroline = False fig.layout.yaxis.zeroline = False fig.layout.yaxis.showticklabels = False return fig @click.command() @click.option("-newick1", help="first tree file, would be placed on the left") @click.option("-newick2", help="second tree file, would be placed on the right") @click.option("-output", "output_file", help="the path of html output ") @click.option("-cf1", help="the file for color annotation to first tree and the links") @click.option("-cf2", help="the file for color annotation to second tree ") @click.option("-length", default="max", help="the length of leaves you want to extend to. normally all leaves will extend to identical length which similar to the longest one") @click.option("-sep", default="_", help="the separator which used to . ") @click.option("-extra_set", "extra_set", is_flag=True, default=False) @click.option("-identical", "identical", is_flag=True, default=False,help='if the leaf names are identical. you should pass this parameter or redundant lines will show up ') def cli(newick1, newick2, output_file, cf1, cf2, length, sep, extra_set,identical): fig = main(newick1=newick1, newick2=newick2, color_file1=cf1, color_file2=cf2, l_legnth=length, sep=sep, extra_set=extra_set, identical=identical) fig.layout.width = 1400 fig.layout.height = 3000 if not exists(dirname(output_file)): os.makedirs(dirname(output_file)) fig.write_html(output_file) if __name__ == '__main__': from os.path import dirname, join, exists example_dir = join(dirname(dirname(dirname(__file__))), 'example', 'tanglegram') newick1 = join(example_dir, 'nxrA.newick') newick2 = join(example_dir, 'species.txt') color_file1 = join(example_dir, 'gene_annotation.txt') color_file2 = join(example_dir, 'phylum_annotate.txt') fig = main(newick1, newick2, color_file1, color_file2, l_legnth='max', sep='_', extra_set='rename') fig.layout.width = 1400 fig.layout.height = 3000 fig.write_html(join(example_dir, 'p.html'))
UTF-8
Python
false
false
8,875
py
35
draw_tanglegram.py
30
0.58738
0.566535
0
217
39.898618
176
udemirezen/rational_activations
6,012,954,218,353
ed9e090bd0b27670529672ad6d04bcd92f4118a1
22ad9abeb6c9bcddb6ee127309cd1afce9e1cf3c
/rational/torch/rationals.py
2551ab2c8038a17dd89087ea537af0a9196e9539
[ "MIT" ]
permissive
https://github.com/udemirezen/rational_activations
8e9abf3475d78251ddb8e9f0b37bd6bbf8135dbb
5bc4ade862eb8967e940afb15d33e0d6653668cc
refs/heads/master
2023-08-11T15:38:01.254359
2021-08-10T13:23:22
2021-08-10T13:23:22
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Rational Activation Functions for Pytorch ========================================= This module allows you to create Rational Neural Networks using Learnable Rational activation functions with Pytorch networks. """ import torch from torch._C import device import torch.nn as nn from torch.cuda import is_available as torch_cuda_available from rational.utils.get_weights import get_parameters from rational.utils.warnings import RationalWarning from rational._base.rational_base import Rational_base from rational.torch.rational_pytorch_functions import Rational_PYTORCH_A_F, \ Rational_PYTORCH_B_F, Rational_PYTORCH_C_F, Rational_PYTORCH_D_F, \ Rational_NONSAFE_F, Rational_CUDA_NONSAFE_F, _get_xps if torch_cuda_available(): try: from rational.torch.rational_cuda_functions import Rational_CUDA_A_F, \ Rational_CUDA_B_F, Rational_CUDA_C_F, Rational_CUDA_D_F except ImportError: pass class Rational(Rational_base, nn.Module): """ Rational activation function inherited from ``torch.nn.Module``. Arguments: approx_func (str): The name of the approximated function for initialisation. \ The different initialable functions are available in \ `rational.rationals_config.json`. \n Default ``leaky_relu``. degrees (tuple of int): The degrees of the numerator (P) and denominator (Q).\n Default ``(5, 4)`` cuda (bool): Use GPU CUDA version. \n If ``None``, use cuda if available on the machine\n Default ``None`` version (str): Version of Rational to use. Rational(x) = P(x)/Q(x)\n `A`: Q(x) = 1 + \|b_1.x\| + \|b_2.x\| + ... + \|b_n.x\|\n `B`: Q(x) = 1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `C`: Q(x) = 0.1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `D`: like `B` with noise\n Default ``A`` trainable (bool): If the weights are trainable, i.e, if they are updated during \ backward pass\n Default ``True`` Returns: Module: Rational module """ def __init__(self, approx_func="leaky_relu", degrees=(5, 4), cuda=None, version="A", trainable=True, train_numerator=True, train_denominator=True, name=None): if name is None: name = approx_func super().__init__(name) if cuda is None: cuda = torch_cuda_available() if cuda is True: device = "cuda" elif cuda is False: device = "cpu" else: device = cuda w_numerator, w_denominator = get_parameters(version, degrees, approx_func) self.numerator = nn.Parameter(torch.FloatTensor(w_numerator).to(device), requires_grad=trainable and train_numerator) self.denominator = nn.Parameter(torch.FloatTensor(w_denominator).to(device), requires_grad=trainable and train_denominator) self.register_parameter("numerator", self.numerator) self.register_parameter("denominator", self.denominator) self.device = device self.degrees = degrees self.version = version self.training = trainable self.init_approximation = approx_func self._saving_input = False if "cuda" in str(device): if version == "A": rational_func = Rational_CUDA_A_F elif version == "B": rational_func = Rational_CUDA_B_F elif version == "C": rational_func = Rational_CUDA_C_F elif version == "D": rational_func = Rational_CUDA_D_F elif version == "N": rational_func = Rational_CUDA_NONSAFE_F else: raise NotImplementedError(f"version {version} not implemented") if 'apply' in dir(rational_func): self.activation_function = rational_func.apply else: self.activation_function = rational_func else: if version == "A": rational_func = Rational_PYTORCH_A_F elif version == "B": rational_func = Rational_PYTORCH_B_F elif version == "C": rational_func = Rational_PYTORCH_C_F elif version == "D": rational_func = Rational_PYTORCH_D_F elif version == "N": rational_func = Rational_NONSAFE_F else: raise NotImplementedError(f"version {version} not implemented") self.activation_function = rational_func def forward(self, x): return self.activation_function(x, self.numerator, self.denominator, self.training) def _cpu(self): if self.version == "A": rational_func = Rational_PYTORCH_A_F elif self.version == "B": rational_func = Rational_PYTORCH_B_F elif self.version == "C": rational_func = Rational_PYTORCH_C_F elif self.version == "D": rational_func = Rational_PYTORCH_D_F elif self.version == "N": rational_func = Rational_NONSAFE_F else: raise ValueError("version %s not implemented" % self.version) self.activation_function = rational_func self.device = "cpu" def _cuda(self, device): if self.version == "A": rational_func = Rational_CUDA_A_F elif self.version == "B": rational_func = Rational_CUDA_B_F elif self.version == "C": rational_func = Rational_CUDA_C_F elif self.version == "D": rational_func = Rational_CUDA_D_F elif self.version == "N": rational_func = Rational_CUDA_NONSAFE_F else: raise ValueError("version %s not implemented" % self.version) if "cuda" in str(device): self.device = f"{device}" else: self.device = f"cuda:{device}" if 'apply' in dir(rational_func): self.activation_function = rational_func.apply else: self.activation_function = rational_func def _to(self, device): """ Moves the rational function to its specific device. \n Arguments: device (torch device): The device for the rational """ if "cpu" in str(device): self.cpu() elif "cuda" in str(device): self.cuda(device) def _apply(self, fn): if "Module.cpu" in str(fn): self._cpu() elif "Module.cuda" in str(fn): device = fn.__closure__[0].cell_contents self._cuda(device) elif "Module.to" in str(fn): for clos in fn.__closure__: if type(clos.cell_contents) is torch.device: device = clos.cell_contents self.device = str(device) self._to(device) break return super()._apply(fn) def numpy(self): """ Returns a numpy version of this activation function. """ from rational.numpy import Rational as Rational_numpy rational_n = Rational_numpy(self.init_approximation, self.degrees, self.version) rational_n.numerator = self.numerator.tolist() rational_n.denominator = self.denominator.tolist() return rational_n def _from_old(self, old_rational_func): self.version = old_rational_func.version self.degrees = old_rational_func.degrees self.numerator = old_rational_func.numerator self.denominator = old_rational_func.denominator if "center" in dir(old_rational_func) and old_rational_func.center != 0: print("Found a non zero center, please adapt the bias of the", "previous layer to have an equivalent neural network") self.training = old_rational_func.training if "init_approximation" not in dir("init_approximation"): self.init_approximation = "leaky_relu" else: self.init_approximation = old_rational_func.init_approximation if "cuda" in str(self.device): if self.version == "A": rational_func = Rational_CUDA_A_F elif self.version == "B": self.rational_func = Rational_CUDA_B_F elif self.version == "C": rational_func = Rational_CUDA_C_F elif self.version == "D": rational_func = Rational_CUDA_D_F elif self.version == "N": rational_func = Rational_CUDA_NONSAFE_F else: raise ValueError("version %s not implemented" % self.version) if 'apply' in dir(rational_func): self.activation_function = rational_func.apply else: self.activation_function = rational_func else: if self.version == "A": rational_func = Rational_PYTORCH_A_F elif self.version == "B": rational_func = Rational_PYTORCH_B_F elif self.version == "C": rational_func = Rational_PYTORCH_C_F elif self.version == "D": rational_func = Rational_PYTORCH_D_F elif self.version == "N": rational_func = Rational_NONSAFE_F else: raise ValueError("version %s not implemented" % self.version) self.activation_function = rational_func self._handle_retrieve_mode = None self.distribution = None return self def change_version(self, version): assert version in ["A", "B", "C", "D"] if version == self.version: print(f"This Rational function has already the correct type {self.version}") return if "cuda" in str(self.device): if version == "A": rational_func = Rational_CUDA_A_F elif version == "B": rational_func = Rational_CUDA_B_F elif version == "C": rational_func = Rational_CUDA_C_F elif version == "D": rational_func = Rational_CUDA_D_F elif self.version == "N": rational_func = Rational_CUDA_NONSAFE_F else: raise ValueError("version %s not implemented" % version) if 'apply' in dir(rational_func): self.activation_function = rational_func.apply else: self.activation_function = rational_func self.version = version else: if version == "A": rational_func = Rational_PYTORCH_A_F elif version == "B": rational_func = Rational_PYTORCH_B_F elif version == "C": rational_func = Rational_PYTORCH_C_F elif version == "D": rational_func = Rational_PYTORCH_D_F elif self.version == "N": rational_func = Rational_NONSAFE_F else: raise ValueError("version %s not implemented" % self.version) self.activation_function = rational_func self.version = version def input_retrieve_mode(self, auto_stop=False, max_saves=1000, bin_width=0.1): """ Will retrieve the distribution of the input in self.distribution. \n This will slow down the function, as it has to retrieve the input \ dist.\n Arguments: auto_stop (bool): If True, the retrieving will stop after `max_saves` \ calls to forward.\n Else, use :meth:`torch.Rational.training_mode`.\n Default ``False`` max_saves (int): The range on which the curves of the functions are fitted \ together.\n Default ``1000`` """ if self._handle_retrieve_mode is not None: # print("Already in retrieve mode") return if "cuda" in self.device: from rational.utils.histograms_cupy import Histogram else: from rational.utils.histograms_numpy import Histogram self.distribution = Histogram(bin_width) # print("Retrieving input from now on.") if auto_stop: self.inputs_saved = 0 self._handle_retrieve_mode = self.register_forward_hook(_save_input_auto_stop) self._max_saves = max_saves else: self._handle_retrieve_mode = self.register_forward_hook(_save_input) def clear_hist(self): self.inputs_saved = 0 bin_width = self.distribution.bin_size if "cuda" in self.device: from rational.utils.histograms_cupy import Histogram else: from rational.utils.histograms_numpy import Histogram self.distribution = Histogram(bin_width) def training_mode(self): """ Stops retrieving the distribution of the input in `self.distribution`. """ # print("Training mode, no longer retrieving the input.") if self._handle_retrieve_mode is not None: self._handle_retrieve_mode.remove() self._handle_retrieve_mode = None @classmethod def save_all_inputs(self, save, auto_stop=False, max_saves=10000, bin_width="auto"): """ Have every rational save every input. Arguments: save (bool): If True, every instanciated rational function will \ retrieve its input, else, it won't. auto_stop (bool): If True, the retrieving will stop after `max_saves` \ calls to forward.\n Else, use :meth:`torch.Rational.training_mode`.\n Default ``True`` max_saves (int): The range on which the curves of the functions are fitted \ together.\n Default ``10000`` bin_width (float or "auto"): The size of the histogram's bin width to store the input \ in.\n If `"auto"`, then automatically determines the bin width \ to have ~100 bins.\n Default ``"auto"`` """ if save: for rat in self.list: rat._saving_input = True rat.input_retrieve_mode(auto_stop, max_saves, bin_width=bin_width) else: for rat in self.list: rat._saving_input = False rat.training_mode() @property def saving_input(self): return self._saving_input @saving_input.setter def saving_input(self, new_value): if new_value is True: self._saving_input = True self.input_retrieve_mode() elif new_value is False: self._saving_input = False self.training_mode() else: print("saving_input of rationals should be set with booleans") class AugmentedRational(nn.Module): """ Augmented Rational activation function inherited from ``Rational`` Arguments: approx_func (str): The name of the approximated function for initialisation. \ The different initialable functions are available in `rational.rationals_config.json`. \n Default ``leaky_relu``. degrees (tuple of int): The degrees of the numerator (P) and denominator (Q).\n Default ``(5, 4)`` cuda (bool): Use GPU CUDA version. If None, use cuda if available on the machine\n Default ``None`` version (str): Version of Rational to use. Rational(x) = P(x)/Q(x)\n `A`: Q(x) = 1 + \|b_1.x\| + \|b_2.x\| + ... + \|b_n.x\|\n `B`: Q(x) = 1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `C`: Q(x) = 0.1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `D`: like `B` with noise\n Default ``A`` trainable (bool): If the weights are trainable, i.e, if they are updated during backward pass\n Default ``True`` Returns: Module: Augmented Rational module """ def __init__(self, approx_func="leaky_relu", degrees=(5, 4), cuda=None, version="A", trainable=True, train_numerator=True, train_denominator=True): super(AugmentedRational, self).__init__() self.in_bias = nn.Parameter(torch.FloatTensor([0.0])) self.out_bias = nn.Parameter(torch.FloatTensor([0.0])) self.vertical_scale = nn.Parameter(torch.FloatTensor([1.0])) self.horizontal_scale = nn.Parameter(torch.FloatTensor([1.0])) def forward(self, x): x = self.horizontal_scale * x + self.in_bias out = self.activation_function(x, self.numerator, self.denominator, self.training) return self.vertical_scale * out + self.out_bias class RationalNonSafe(Rational_base, nn.Module): """ Rational activation function inherited from ``torch.nn.Module`` Arguments: approx_func (str): The name of the approximated function for initialisation. \ The different initialable functions are available in \ `rational.rationals_config.json`. \n Default ``leaky_relu``. degrees (tuple of int): The degrees of the numerator (P) and denominator (Q).\n Default ``(5, 4)`` cuda (bool): Use GPU CUDA version. \n If ``None``, use cuda if available on the machine\n Default ``None`` version (str): Version of Rational to use. Rational(x) = P(x)/Q(x)\n `A`: Q(x) = 1 + \|b_1.x\| + \|b_2.x\| + ... + \|b_n.x\|\n `B`: Q(x) = 1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `C`: Q(x) = 0.1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `D`: like `B` with noise\n Default ``A`` trainable (bool): If the weights are trainable, i.e, if they are updated during \ backward pass\n Default ``True`` Returns: Module: Rational module """ def __init__(self, degrees=(5, 4), cuda=None, trainable=True, train_numerator=True, train_denominator=True): super().__init__() if cuda is None: cuda = torch_cuda_available() if cuda is True: device = "cuda" elif cuda is False: device = "cpu" else: device = cuda self.numerator = nn.Parameter(torch.tensor([ 0., 1.01130152, -0.25022214, -0.10285302, 0.02551535]).to(device), requires_grad=True) self.denominator = nn.Parameter(torch.tensor([-0.24248419, 0.07964891, -0.02110156]).to(device), requires_grad=True) # self.numerator = nn.Parameter(torch.ones(degrees[0]+1).to(device), # requires_grad=True) # self.denominator = nn.Parameter(torch.ones(degrees[1]).to(device), # requires_grad=True) self.register_parameter("numerator", self.numerator) self.register_parameter("denominator", self.denominator) self.device = device self.degrees = degrees self.training = trainable self.version = "NonSafe" # # def forward(self, x, y): # z = x.view(-1) # len_num, len_deno = len(self.numerator), len(self.denominator) # # xps = torch.vander(z, max(len_num, len_deno), increasing=True) # xps = _get_xps(z, len_num, len_deno).to(self.numerator.device) # numerator = xps.mul(self.numerator).sum(1) # denominator = xps[:, 1:len_deno+1].mul(self.denominator).sum(1) * y.to(self.numerator.device) # return (numerator - denominator).view(x.shape) def forward(self, x): z = x.view(-1) len_num, len_deno = len(self.numerator), len(self.denominator) # xps = torch.vander(z, max(len_num, len_deno), increasing=True) xps = _get_xps(z, len_num, len_deno).to(self.numerator.device) numerator = xps.mul(self.numerator).sum(1) denominator = xps[:, 1:len_deno+1].mul(self.denominator).sum(1) return numerator.div(1 + denominator).view(x.shape) def fit(self, x, y): """ Linear regression trick to calculate the numerator and denominator \ based on x and y """ from sklearn import linear_model clf = linear_model.LinearRegression(fit_intercept=False) [np.ones_like(x), x, x**2, x**3, x**4, -y*x, -y*x**2, -y*x**3].T clf.fit(np.array(), y) class EmbeddedRational(Rational, nn.Module): nb_rats = 2 list = [] def __init__(self, approx_func="leaky_relu", degrees=(3, 2), cuda=None, version="A", *args, **kwargs): super().__init__(approx_func, degrees) if approx_func == "leaky_relu": approx_func += "_0.1" RationalWarning.warn("Using a leaky_relu_0.1 to make " \ "EmbeddedRational approx leaky_relu") self.init_approximation = approx_func self.degrees=degrees self.cuda = cuda self.version = version self.successive_rats = [] for i in range(self.nb_rats): rat = Rational(approx_func, degrees, cuda, version, *args, **kwargs) self.add_module(f"rational_{i}", rat) self.successive_rats.append(rat) self.list.append(self) del self.numerator del self.denominator self.numerators = [rat.numerator for rat in self.successive_rats] self.denominators = [rat.denominator for rat in self.successive_rats] def forward(self, x): for rat in self.successive_rats: x = rat(x) return x def _apply(self, fn): for rat in self.successive_rats: for clos in fn.__closure__: if type(clos.cell_contents) is torch.device: device = clos.cell_contents rat.device = device break return super()._apply(fn) def numpy(self): from rational.numpy import EmbeddedRational as ERational_numpy ERational_numpy.nb_rats = self.nb_rats erational_n = ERational_numpy(self.init_approximation, self.degrees, self.version) for trat, nrat in zip(self.successive_rats, erational_n.successive_rats): nrat.numerator = trat.numerator.tolist() nrat.denominator = trat.denominator.tolist() return erational_n def __repr__(self): return (f"Embedded Rational Activation Function (PYTORCH version " f"{self.version}) of degrees {self.degrees} running on " f"{self.device}") # @property() # def list(self): class RecurrentRational(): """ Recurrent rational activation function - wrapper for Rational Arguments: approx_func (str): The name of the approximated function for initialisation. \ The different initialable functions are available in \ `rational.rationals_config.json`. \n Default ``leaky_relu`` degrees (tuple of int): The degrees of the numerator (P) and denominator (Q).\n Default ``(5, 4)`` cuda (bool): Use GPU CUDA version. \n If ``None``, use cuda if available on the machine\n Default ``None`` version (str): Version of Rational to use. Rational(x) = P(x)/Q(x)\n `A`: Q(x) = 1 + \|b_1.x\| + \|b_2.x\| + ... + \|b_n.x\|\n `B`: Q(x) = 1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `C`: Q(x) = 0.1 + \|b_1.x + b_2.x + ... + b_n.x\|\n `D`: like `B` with noise\n Default ``A`` trainable (bool): If the weights are trainable, i.e, if they are updated during \ backward pass\n Default ``True`` Returns: Module: Rational module """ def __init__(self, approx_func="leaky_relu", degrees=(5, 4), cuda=None, version="A", trainable=True, train_numerator=True, train_denominator=True): self.rational = Rational(approx_func=approx_func, degrees=degrees, cuda=cuda, version=version, trainable=trainable, train_numerator=train_numerator, train_denominator=train_denominator) def __call__(self, *args, **kwargs): return RecurrentRationalModule(self.rational) class RecurrentRationalModule(nn.Module): def __init__(self, rational): super(RecurrentRationalModule, self).__init__() self.rational = rational self._handle_retrieve_mode = None self.distribution = None def forward(self, x): return self.rational(x) def __repr__(self): return (f"Recurrent Rational Activation Function (PYTORCH version " f"{self.rational.version}) of degrees {self.rational.degrees} running on " f"{self.rational.device}") def cpu(self): return self.rational.cpu() def cuda(self): return self.rational.cuda() def numpy(self): return self.rational.numpy() def fit(self, function, x=None, show=False): return self.rational.fit(function=function, x=x, show=show) def input_retrieve_mode(self, auto_stop=True, max_saves=10000, bin_width=0.01): """ Will retrieve the distribution of the input in self.distribution. \n This will slow down the function, as it has to retrieve the input \ dist.\n Arguments: auto_stop (bool): If True, the retrieving will stop after `max_saves` \ calls to forward.\n Else, use :meth:`torch.Rational.training_mode`.\n Default ``True`` max_saves (int): The range on which the curves of the functions are fitted \ together.\n Default ``10000`` """ if self._handle_retrieve_mode is not None: # print("Already in retrieve mode") return from rational.utils.histograms_cupy import Histogram as hist1 self.distribution = hist1(bin_width) # print("Retrieving input from now on.") if auto_stop: self.inputs_saved = 0 self._handle_retrieve_mode = self.register_forward_hook(_save_input_auto_stop) self._max_saves = max_saves else: self._handle_retrieve_mode = self.register_forward_hook(_save_input) def training_mode(self): """ Stops retrieving the distribution of the input in `self.distribution`. """ print("Training mode, no longer retrieving the input.") self._handle_retrieve_mode.remove() self._handle_retrieve_mode = None def show(self, input_range=None, display=True): return self.rational.show(input_range=input_range, display=display) def _save_input(self, input, output): self.distribution.fill_n(input[0]) def _save_input_auto_stop(self, input, output): self.inputs_saved += 1 self.distribution.fill_n(input[0]) if self.inputs_saved > self._max_saves: self.training_mode()
UTF-8
Python
false
false
28,724
py
85
rationals.py
55
0.53645
0.529488
0
726
38.564738
121