repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
cash2one/xai
9,156,870,323,949
c979052f95892a654509fe328e07ca46ddad9e1b
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_territories.py
9e1e0edc9aacaed34bdd028bb27f1809b997f02c
[ "MIT" ]
permissive
https://github.com/cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#calss header class _TERRITORIES(): def __init__(self,): self.name = "TERRITORIES" self.definitions = territory self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['territory']
UTF-8
Python
false
false
236
py
37,275
_territories.py
37,266
0.622881
0.622881
0
13
17
30
dangq/glandore
14,663,018,393,479
90ef5d51d831148f7ec3e718145614ae6b3f18c5
3b39969f832d283a2833064a3d7736cbb15bd44b
/owl.py
3fc63b58447bb33a871ab793ffc0f91b69b4c049
[]
no_license
https://github.com/dangq/glandore
070a9cee252ed57da2a5ef5d7a118051417c9627
aaf015c343118a260d38927907c719dbd7c49e64
refs/heads/master
2021-01-01T05:27:50.511297
2016-04-16T08:03:33
2016-04-16T08:03:33
56,372,475
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from rdflib import ConjunctiveGraph, Namespace, exceptions from rdflib import URIRef, RDFS, RDF, BNode import OWL class OntoInspector(object): """Class that includes methods for querying an RDFS/OWL ontology""" def __init__(self, uri, language=""): super(OntoInspector, self).__init__() self.rdfGraph = ConjunctiveGraph() try: self.rdfGraph.parse(uri, format="xml") except: try: self.rdfGraph.parse(uri, format="n3") except: raise exceptions.Error("Could not parse the file! Is it a valid RDF/OWL ontology?") finally: # let's cache some useful info for faster access self.baseURI = self.get_OntologyURI() or uri self.allclasses = self.__getAllClasses(classPredicate) self.toplayer = self.__getTopclasses() self.tree = self.__getTree() def get_OntologyURI(self, ....): # todo pass def __getAllClasses(self, ....): # todo pass def __getTopclasses(self, ....): pass def __getTree(self, ....): # todo pass
UTF-8
Python
false
false
1,163
py
5
owl.py
3
0.567498
0.566638
0
46
24.304348
99
minhax/Autonomous-Farming-Robot-Station
14,920,716,434,182
6c24593875306af8e5b195767206865c0a7090c6
817f5401a8f6a2ecf4fcc073c88fd83661afbdb1
/src/Tests/launchRobot.py
3128f6eb834736f896fcd2ee3e1068fb2f787152
[]
no_license
https://github.com/minhax/Autonomous-Farming-Robot-Station
741a49df30e571f161672b60415700cc2764a27e
e2b8ae9cc8e505c85bd03019a20ad21edb784892
refs/heads/master
2020-04-30T17:31:40.753651
2019-03-07T07:57:01
2019-03-07T07:57:01
176,982,434
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Messages exchange test from src.Robot.IA_Robot.src.Scheduler.Scheduler import * from src.Robot.Navigation_Robot.src.Navigation.NavigationController import * from Common.Parser.parser import Parser from src.Robot.IA_Robot.src.Weeding.WeedingController import * from CommunicationManager.Robot.Robot_CommunicationManager import * def start(): print ("# ------ Robot Part1: sync_navigator ------ #") print("[Main] Loading XML File") # 1) Load XML File and create corresponding commands parser = Parser('../Common/Parser/files/robot.xml') robot = parser.obj print("[Main] Creating Navigating and weeding Controllers") # 2) a) sync_navigator command for the Navigation NavigationController navigation_controller = NavigationController(robot) weeding_controller = WeedingController(robot) print("[Main] Creating Scheduler") # 2) b) Scheduler organizes and invoke commands for the NavigationController and the Task1_Weeding Controller scheduler = Scheduler(navigation_controller, weeding_controller) print(" [Main] Launch RobotCommunicationManager") com_manager = Robot_CommunicationManager.getInstance(scheduler) print("[Main] Launch Socket server") # Launch a server s, always listening com_manager.new_listening_socket_server() '''# 3) Transfer connexion information to server print("[Main] Transferring information concerning robot to server ...") msg = ConfigMsg(const.CLIENT_DEFAULT_PORT, "192.168.14.2", robot.get_robot_id, robot) # Local port on which server can communicate # Robot_CommunicationManager.send_message_to_server(msg) CommunicationManager.send_message_to_localhost(msg, const.CLIENT_DEFAULT_PORT) print(" ... Done") print (" # ------ Robot Part2 : Task1_Weeding ------- #") print("[Main] Initialise commands created") # Task1_Weeding action for the navigation controller includes autonomous vehicle guidance on mapping # command_weeding_navigation = Task1_Weeding(navigation_controller, mapping) # command_weeding_weeding = Task1_Weeding(weeding_controller) # scheduler.store_command(command_weeding_navigation) # scheduler.store_command(command_weeding_weeding) print("[Main] All commands executed") # 4) Execute all commands in the dictionnary #scheduler.execute_commands() ''' if __name__ == '__main__': start()
UTF-8
Python
false
false
2,381
py
37
launchRobot.py
30
0.730785
0.721966
0
52
44.807692
135
scmbuildrelease/gitfusionsrc
14,027,363,204,181
34b4d33e0904cef8a3259978f4d49e4fb6dce24b
292557f00ce989624fc62b5c236f1ecf9d9fb350
/libexec/profiler_merge.py
a9bcfa003f34e7a8e9050b5b71deb0d05525edb2
[]
no_license
https://github.com/scmbuildrelease/gitfusionsrc
eb2f4b92f193656ea827c693f0feb63f4d944859
cf73a2d4facb41009db941a87429cb66ea821ada
refs/heads/master
2020-04-01T22:12:30.631312
2018-10-18T22:50:52
2018-10-18T22:50:52
153,696,211
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#! /usr/bin/env python3.3 """Merge two cProfiler runs into a tab-separated textfile you can read in a spreadsheet. """ from collections import defaultdict import copy import logging import re import p4gf_util # pylint: disable = line-too-long # Some day we'll support Python 3.4 and get its shiny # new Enum support. Until then, here have a fake # replacement. try: from enum import Enum except ImportError: class Enum: """Gee golly I wish we had Python 3.4 Enum.""" def __init__(self): pass # Log level reminder from p4gf_util.apply_log_args(): # verbose = INFO # <nothing> = WARNING # quiet = ERROR # LOG = logging.getLogger("profiler_merge_stdout") # Some of the sample line comments are riduiculously long. # pylint: disable = line-too-long # cProfiler output # # tottime = total time spent in function itself, not anything it calls # cumtime = time spent in function or anything it called # # High cumtime is usually where to start drilling down to find suboptimal # algorithms. # High tottime + very high ncalls is likely a function called in some # O(n^2) or worse loop. Walk up the call chain to find the suboptimality. # -- main/mopdule-wide functions --------------------------------------------- def main(): """Do the thing.""" args = _parse_argv() da = parse_file(args.file_a) db = parse_file(args.file_b) fa = da.sanitize_functions() fb = db.sanitize_functions() merged = MergedStats.from_stats(fa, fb) LOG.warning(str(merged)) def _parse_argv(): """Convert command line into a usable dict.""" parser = p4gf_util.create_arg_parser( add_log_args = True , add_debug_arg = True , desc = "Merge two cProfiler runs into a single spreadsheet." ) parser.add_argument('file_a', metavar='file_a') parser.add_argument('file_b', metavar='file_b') args = parser.parse_args() p4gf_util.apply_log_args(args, LOG) LOG.debug("args={}".format(args)) return args def parse_file(filename): """Read a line into a parsed XXX.""" class State(Enum): """Where are we within the file?""" BEFORE_SUMMARY = "pre summary" IN_SUMMARY = "in summary" IN_CALLERS = "in callers" current_caller = None with open(filename, "r", encoding="utf-8") as fin: state = State.BEFORE_SUMMARY stats = Stats() for line in fin: if state is State.BEFORE_SUMMARY: if SummaryLine.START_PICKET_RE.match(line): state = State.IN_SUMMARY LOG.debug("sl: " + SummaryLine.HEADER) continue elif state is State.IN_SUMMARY: sl = SummaryLine.from_line(line) if sl: LOG.debug("sl: " + str(sl)) stats.add_summary_line(sl) continue elif CallerLine.START_PICKET_RE.match(line): state = State.IN_CALLERS continue elif state is State.IN_CALLERS: caller_line = CallerLine.from_line(line) if caller_line: current_caller = caller_line.caller LOG.debug("cl: " + str(caller_line)) LOG.debug("cl: " + CalleeLine.HEADER) line = caller_line.remainder # intentional fall through to process # remainder as callee callee_line = CalleeLine.from_line(line) if callee_line: stats.add_callee_line(current_caller, callee_line) LOG.debug("cl: " + str(callee_line)) return stats def _ncalls(s): """Un-split any "recursive calls/primitive calls" slashed ncalls values.""" if "/" in s: (recursive_ncalls, primitive_ncalls) = s.split("/") return int(recursive_ncalls) + int(primitive_ncalls) return int(s) def _sanitize_package(orig): """Shorten ridiculously long package paths.""" line = orig # python3.3 packages (pygit2, P4Python) # Do these BEFORE general python3.3, since python3.3 prefix would match site-packages prefix # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/p4python-2015.2.1205721-py3.3-macosx-10.6-intel.egg/P4.py:569(run) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/p4python-2015.2.1205721-py3.3-macosx-10.6-intel.egg/P4.py:749(__flatten) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/p4python-2015.2.1205721-py3.3-macosx-10.6-intel.egg/P4.py:877(insert) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/pygit2/repository.py:58(__init__) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/pygit2/repository.py:71(_common_init) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/site-packages/pytz/__init__.py:245(__str__) python_packages_re = re.compile(r'.*/site-packages/(.*)') m = python_packages_re.match(orig) if m: line = m.group(1) package_module_re = re.compile(r'([^/]+)/(.*)') m = package_module_re.match(line) if m: package = m.group(1) module = m.group(2) for p in ['p4python', 'pygit2']: if p in package: package = p line = package + "/" + module return line # python3.3 library: # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/multiprocessing/synchronize.py:296(is_set) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/os.py:671(__getitem__) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/os.py:694(__iter__) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/re.py:158(search) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/re.py:212(compile) # /Library/Frameworks/Python.framework/Versions/3.3/lib/python3.3/tempfile.py:386(__del__) python33_re = re.compile(r'.*/python3.3/(.*)') m = python33_re.match(line) if m: line = m.group(1) return line # Git Fusion # /Users/zig/Dropbox/git-fusion-main/bin/p4gf_atomic_lock.py:177(update_all_gf_reviews) # /Users/zig/Dropbox/git-fusion-main/bin/p4gf_atomic_lock.py:202(update_repo_reviews) # /Users/zig/Dropbox/git-fusion-main/bin/p4gf_util_p4run_logged.py:49(_log_p4_request) # /Users/zig/Dropbox/git-fusion-main/bin/p4gf_util_p4run_logged.py:55(_log_p4_results) git_fusion_re = re.compile(r'.*/(p4gf_[^/]+)') m = git_fusion_re.match(line) if m: line = m.group(1) return line # Built-in (leave unchanged) # {built-in method chdir} # {built-in method discover_repository} # {built-in method getcwd} # {built-in method getfilesystemencoding} # {built-in method hasattr} # {built-in method isinstance} # {built-in method len} # {built-in method max} # {built-in method poll} # {built-in method proxy} # {built-in method sorted} # {built-in method time} # {method 'acquire' of '_multiprocessing.SemLock' objects} # {method 'add' of 'set' objects} # {method 'append' of 'collections.deque' objects} # {method 'append' of 'list' objects} # {method 'as_array' of 'P4API.P4Map' objects} # {method 'decode' of 'bytes' objects} return line def _sanitize_line_num(orig): """Strip any line numbers.""" # Don't strip list comprehension line numbers. # They can sometimes be significant. for c in ["<listcomp>", "<dictcomp>"]: if c in orig: return orig line_num_re = re.compile(r':\d+') m = line_num_re.search(orig) if not m: return orig return orig[:m.start()] + orig[m.end():] def _sanitize_function(orig): """cProfiler function names include long file paths and line numbers. Shorten file paths. Remove line numbers: they change between test runs. """ line = _sanitize_package(orig) line = _sanitize_line_num(line) return line def _cell(ab, side, attr): """Return a formatted cell.""" if not getattr(ab, side): return " " v = getattr(getattr(ab, side), attr) if isinstance(v, int): return "{:>6d}".format(v) elif isinstance(v, float): return "{:>7.3f}".format(v) else: return str(v) # -- end module-wide --------------------------------------------------------- class Stats(object): """One file's stats, parsed.""" def __init__(self): # list of SummaryLine self.summary_lines = [] # dict[str(caller)] ==> CalleeLine self.callee = defaultdict(list) def add_summary_line(self, summary_line): """Record one SummaryLine.""" self.summary_lines.append(summary_line) def add_callee_line(self, caller, callee_line): """Record one function's call to another.""" self.callee[caller].append(callee_line) def sanitize_functions(self): """Reduce long function names into something small. Strip line numbers: they won't match across different test runs. Return a NEW Stats instance built out of the sanitized names. """ r = Stats() for sl in self.summary_lines: sl2 = copy.copy(sl) sl2.function = _sanitize_function(sl.function) r.summary_lines.append(sl2) for k,v in self.callee.items(): k2 = _sanitize_function(k) v2 = [] for cl in v: cl2 = copy.copy(cl) cl2.function = _sanitize_function(cl.function) v2.append(cl2) r.callee[k2] = v2 return r def __str__(self): l = [] l.append(SummaryLine.HEADER) l.extend([str(sl) for sl in self.summary_lines]) for k in sorted(self.callee.keys()): l.append(k) v = self.callee[k] l.append(CalleeLine.HEADER) l.extend([str(cl) for cl in v]) return "\n".join(l) # -- end Stats --------------------------------------------------------------- class Side(Enum): """File A or File B?""" # pylint:disable=invalid-name A = "a" B = "b" class MergedCalleeDict(defaultdict): """One of these for each caller in MergedStats.""" def __init__(self): defaultdict.__init__(self, AB) class MergedStats(object): """Two file's stats, merged together.""" def __init__(self): # Both data members are dicts: # * key = (sanitized) function name # * val = AB with value or None for the A and B sides. self.summary_lines = defaultdict(AB) self.callee = defaultdict(MergedCalleeDict) def add_summary_line(self, side, summary_line): """Record either a's or b's summary line.""" v = self.summary_lines[summary_line.function] setattr(v, side, summary_line) def add_callee_line(self, side, caller, callee_line): """Record either a's or b's caller line.""" mcd = self.callee[caller] v = mcd[callee_line.function] LOG.debug("add_callee_line side={} caller='{:<30}' callee_line={}".format(side, caller, callee_line)) setattr(v, side, callee_line) @staticmethod def from_stats(a, b): """Merge two Stats into one MergedStats.""" r = MergedStats() r.add_side(Side.A, a) r.add_side(Side.B, b) return r def add_side(self, side, stats): """Add either A or B stats.""" for sl in stats.summary_lines: self.add_summary_line(side, sl) for caller, callee_lines in stats.callee.items(): for cl in callee_lines: self.add_callee_line(side, caller, cl) def _all_functions_sort_key(self): """Assist output sorting by building a dict of function name to file_a's summary cumtime value. Anything not in file_a's summary gets a value of 0. """ r = {} for function, ab in self.summary_lines.items(): if not ab.a: r[function] = 0.0 else: r[function] = ab.a.cumtime LOG.debug("afskey: {:>7.3f} {}".format(r[function],function)) return r def all_functions(self): """Return a list of all functions seen anywhere, in canonical order""" summary = set(self.summary_lines.keys()) afskey = self._all_functions_sort_key() sum_sorted = sorted(list(summary), key=afskey.get, reverse=True) callers = set(self.callee.keys()) callees = set() for mcd in self.callee.values(): callees = set.union(callees, set(mcd.keys())) all_set = set.union(summary, callers, callees) not_sum_set = all_set - summary not_sum_sorted = sorted(list(not_sum_set)) return sum_sorted + not_sum_sorted def __str__(self): # Find the widest function name and format accordingly. sl = self._report_summary_lines() cl = self._report_callee_lines() return "\n".join(sl + ["\n"] + cl) @staticmethod def _format_summary(func_width): """Return a format string for the summary lines at the top. Format specifiers for numeric items are left as STRINGS so that they can handle blank cells. """ return ( "{function:<" + str(func_width) + "}" "\t{ncalls_a:>8}" "\t{ncalls_b:>8}" "\t{cumtime_a:>9}" "\t{cumtime_b:>9}" ) def _report_summary_lines(self): """Return list of lines for "summary" section. Includes header.""" func_order = self.all_functions() func_width = max(len(f) for f in func_order if f in self.summary_lines) lines = [] fmt = self._format_summary(func_width) header = fmt.format( function = "function" , ncalls_a = "ncalls_a" , ncalls_b = "ncalls_b" , cumtime_a = "cumtime_a" , cumtime_b = "cumtime_b" ) lines.append(header) for func in func_order: ab = self.summary_lines.get(func) if not ab: continue line = fmt.format( function = func , ncalls_a = _cell(ab, Side.A, "ncalls") , ncalls_b = _cell(ab, Side.B, "ncalls") , cumtime_a = _cell(ab, Side.A, "cumtime") , cumtime_b = _cell(ab, Side.B, "cumtime") ) lines.append(line) return lines def _report_callee_lines(self): """Return list lines for "caller/callee" section. Includes headers.""" func_order = self.all_functions() func_width = max(len(f) for f in func_order) lines = [] fmt = self._format_callee(func_width + 3) for caller_func in func_order: mcd = self.callee.get(caller_func) if not mcd: LOG.debug("report_callee: SKIP {}".format(caller_func)) continue LOG.debug("report_callee: {}".format(caller_func)) header = fmt.format( function = "-- " + caller_func , ncalls_a = "ncalls_a" , ncalls_b = "ncalls_b" , cumtime_a = "cumtime_a" , cumtime_b = "cumtime_b" ) lines.append(header) for callee_func in func_order: # Ayep, O(n^2) ab = mcd.get(callee_func) if not ab: continue line = fmt.format( function = " " + callee_func , ncalls_a = _cell(ab, Side.A, "ncalls") , ncalls_b = _cell(ab, Side.B, "ncalls") , cumtime_a = _cell(ab, Side.A, "cumtime") , cumtime_b = _cell(ab, Side.B, "cumtime") ) lines.append(line) return lines @staticmethod def _format_callee(func_width): """Return a format string for the callee lines. Format specifiers for numeric items are left as STRINGS so that they can handle blank cells. """ # Unintentional, but both the summary and callee lines # contain the same layout of cells. Keeping the function # calls separate in case I ever need to change 'em. return MergedStats._format_summary(func_width) # -- end MergedStats --------------------------------------------------------- class AB(object): """Mutable tuple to carry two file's record of some row.""" def __init__(self): # pylint:disable=invalid-name self.a = None self.b = None # -- end AB ------------------------------------------------------------------ class SummaryLine(object): """One line in the summary dump of the top 100 function calls: ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 431.769 431.769 /Users/zig/Dropbox/git-fusion-main/bin/p4gf_auth_server.py:291(main_ignores) 5/1 0.000 0.000 431.769 431.769 /Users/zig/Dropbox/git-fusion-main/bin/p4gf_profiler.py:66(wrapper) 16001 0.317 0.000 163.234 0.010 /Users/zig/Dropbox/git-fusion-main/bin/p4gf_branch.py:303(add_to_config) """ # 1:nc 2:tot 3:per 4:cume 5:per 6:func REGEX = re.compile(r'\s*([\d/]+)\s+([\d\.]+)\s+([\d\.]+)\s+([\d\.]+)\s+([\d\.]+)\s+(.*)') START_PICKET_RE = re.compile(r'\s+ncalls\s+tottime\s+percall\s+cumtime\s+percall\s+filename:lineno\(function\)') FORMAT = ( "{ncalls:>6d}" " {tottime:>7.3f}" " {tottime_percall:>7.3f}" " {cumtime:>7.3f}" " {cumtime_percall:>7.3f}" " {function}" ) HEADER = ( "{ncalls:>6}" " {tottime:>7}" " {tottime_percall:>7}" " {cumtime:>7}" " {cumtime_percall:>7}" " {function}").format( ncalls = "ncalls" , tottime = "tottime" , tottime_percall = "percall" , cumtime = "cumtime" , cumtime_percall = "percall" , function = "function" ) def __init__(self, * , ncalls , tottime , tottime_percall , cumtime , cumtime_percall , function ): self.ncalls = int(ncalls) self.tottime = float(tottime) self.tottime_percall = float(tottime_percall) self.cumtime = float(cumtime) self.cumtime_percall = float(cumtime_percall) self.function = str(function).strip() @staticmethod def from_line(line): """Return a new SummaryLine that containas the parsed data from line. Return None if line not a summary line. """ m = SummaryLine.REGEX.match(line) if not m: return None return SummaryLine( ncalls = _ncalls(m.group(1)) , tottime = m.group(2) , tottime_percall = m.group(3) , cumtime = m.group(4) , cumtime_percall = m.group(5) , function = m.group(6) ) def __str__(self): return SummaryLine.FORMAT.format( ncalls = self. ncalls , tottime = self. tottime , tottime_percall = self. tottime_percall , cumtime = self. cumtime , cumtime_percall = self. cumtime_percall , function = self. function ) # -- end SummaryLine --------------------------------------------------------- class CallerLine(object): """The first line in a "what functions were called by this function" dump. Includes one called function's data, too. """ START_PICKET_RE = re.compile(r'\s+ncalls\s+tottime\s+cumtime') REGEX = re.compile(r'(.*)\s+\-\> (.*)') def __init__( self, * , caller , remainder ): self.caller = caller.strip() self.remainder = remainder @staticmethod def from_line(line): """parse""" m = CallerLine.REGEX.match(line) if not m: return None return CallerLine(caller = m.group(1), remainder = m.group(2)) def __str__(self): return self.caller # -- end CallerLine ---------------------------------------------------------- class CalleeLine(object): """A line in the "what functions were called by a function?" dump.""" # ncalls tottime cumtime # 1 0.000 0.044 /Users/zig/Dropbox/git-fusion-main/bin/p4gf_copy_to_git.py:125(all_branches) # 1:ncalls 2:tot 3:cume 4:callee REGEX = re.compile(r'\s+([\d/]+)\s+([\d\.]+)\s+([\d\.]+)\s+(.*)') FORMAT = ( "{ncalls:>6d}" " {tottime:>7.3f}" " {cumtime:>7.3f}" " {function}" ) HEADER = ( "{ncalls:>6}" " {tottime:>7}" " {cumtime:>7}" " {function}" ).format( ncalls = "ncalls" , tottime = "tottime" , cumtime = "cumtime" , function = "function" ) def __init__( self, * , ncalls , tottime , cumtime , function ): self.ncalls = int(ncalls) self.tottime = float(tottime) self.cumtime = float(cumtime) self.function = str(function).strip() @staticmethod def from_line(line): """parse""" m = CalleeLine.REGEX.match(line) if not m: return None return CalleeLine( ncalls = _ncalls(m.group(1)) , tottime = m.group(2) , cumtime = m.group(3) , function = m.group(4) ) def __str__(self): return CalleeLine.FORMAT.format( ncalls = self.ncalls , tottime = self.tottime , cumtime = self.cumtime , function = self.function ) # -- end CalleeLine ---------------------------------------------------------- if __name__ == "__main__": main()
UTF-8
Python
false
false
23,377
py
132
profiler_merge.py
131
0.526115
0.510673
0
635
35.814173
156
zeyuyuyu/HCI-Bake-off-2
4,037,269,271,960
c4ca5b181702e30d2be5f7fb224462bae1203d84
ff246438806c73e3b9e988dd01f92247ba426ffe
/209_bakeoff_2/gesture_source/imageClassification.py
4485df2e3cf929584c12dd2de8832087f4c885e8
[]
no_license
https://github.com/zeyuyuyu/HCI-Bake-off-2
a42c6fb12f02b074e11cda1d9af79759218ed4e2
ad35efd2d44a27cc60ca8101139c56e2eba2447e
refs/heads/master
2020-09-30T06:08:31.154137
2019-12-10T00:10:39
2019-12-10T00:10:39
227,223,786
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import tensorflow as tf #MNIST dataset from keras mnist = tf.keras.datasets.mnist #tuples that have image in x and value in y. (x_train, y_train), (x_test, y_test) = mnist.load_data() #reduces to 0-1 from 0-255 #this may not have much of a change on the output x_train = tf.keras.utils.normalize(x_train, axis=1) x_test = tf.keras.utils.normalize(x_test, axis=1) #Using sequential model with 2 layered neural network with each having 128 neurons model = tf.keras.models.Sequential() model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) model.compile(optimizer= 'adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=3) val_loss, val_acc = model.evaluate(x_test, y_test) print(val_acc, val_loss)
UTF-8
Python
false
false
949
py
5
imageClassification.py
2
0.72392
0.701791
0
29
31.758621
82
eric9687/Image_Classification_Competiton
6,682,969,141,714
3765d7b634edd390fa6866189981b420e11d019f
3c0b68400b224fab5af175c1670e6ad905cbe577
/T2024/p1-image-classifier/train.py
04bb81396d714a6302d553c7fb60a0b79bd2bdd9
[]
no_license
https://github.com/eric9687/Image_Classification_Competiton
7d3d0194cf1d4783b6c1654669b80ffcc6a3918a
cc6c9354550aa8979e18e214ffaeffe74c0789bf
refs/heads/main
2023-07-18T05:23:13.646079
2021-09-04T08:06:29
2021-09-04T08:06:29
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Library from ast import Str from itertools import accumulate import os from logging import critical import numpy as np import pandas as pd import random from PIL import Image from pandas.core.frame import DataFrame from scipy.sparse.construct import rand import torch from torch import nn import torch.nn.functional as F from torch.utils import data from torch.utils.data import Dataset, DataLoader, random_split from torch.cuda.amp import autocast_mode, grad_scaler from torchvision import transforms from torchvision.transforms import Resize, ToTensor, Normalize from sklearn.model_selection import StratifiedKFold from sklearn.metrics import f1_score from adamp import AdamP from tqdm import tqdm # user library import models.create_model import dataset.custom_dataset import losses.f1_loss import losses.Focal_loss import losses.Label_smoothing # Warning ignore import warnings warnings.filterwarnings("ignore") # Image warning ignore from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True # weight and bias import wandb ################################################################################ # seed 고정 def set_seed(random_seed): torch.manual_seed(random_seed) torch.cuda.manual_seed(random_seed) torch.cuda.manual_seed_all(random_seed) # if use multi-GPU torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False set_seed(42) # PyTorch version & Check using cuda print ("PyTorch version:[%s]."%(torch.__version__)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #'cuda:0' print ("device:[%s]."%(device)) ################################################################################ # data.csv, info.csv path TRAIN_PATH = '/opt/ml/input/data/train/data.csv' EVAL_PATH = '/opt/ml/input/data/eval' PATH = '/opt/ml/input/data/checkpoint' # target TARGET = 'class' # transforms transform = transforms.Compose([ transforms.Resize((512,384), Image.BILINEAR), transforms.ToTensor(), transforms.RandomHorizontalFlip(0.5), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.2, 0.2, 0.2)), ]) # wandb init # wandb.login() config = { 'ALPHA' : None, 'batch_size' : 32, 'learning_rate' : 0.002, } # wandb.init(project='test-model',config=config) # wandb.run.name = 'mlp_mixer' # model name MODEL_NAME = 'efficientnet_b4' # epochs NUM_EPOCHS = 20 NUM_CLASSES = 18 PRETRAINED = True # 중앙을 중심으로 지킬앤 하이드 처럼 좌우에 컷믹스 def rand_bbox(size, lam): H = size[2] W = size[3] cut_rat = np.sqrt(1. - lam) cut_w = int(W * cut_rat) cut_h = int(H * cut_rat) cx = np.random.randn() + W//2 cy = np.random.randn() + H//2 # 패치의 4점 bbx1 = np.clip(cx - cut_w // 2, 0, W//2) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W//2) bby2 = np.clip(cy + cut_h // 2, 0, H) return int(bbx1), int(bby1), int(bbx2), int(bby2) ################################################################################ df = pd.read_csv(TRAIN_PATH, index_col=0) # model from mlp_mixer_pytorch import MLPMixer # train torch.cuda.empty_cache() # empty cache stratifiedKFold = StratifiedKFold(n_splits=5, shuffle=True, random_state=0) print('train start') for index, (train_idx, val_idx) in enumerate(stratifiedKFold.split(df['path'],df['class'])): if index == 0: continue print('{idx}th stratifiedKFold'.format(idx=index)) df_train = pd.DataFrame(columns=['path','class']) df_val = pd.DataFrame(columns=['path','class']) for i in train_idx: df_train = df_train.append({'path':df['path'].loc[i], 'class':df['class'].loc[i]}, ignore_index=True) for i in val_idx: df_val = df_val.append({'path':df['path'].loc[i], 'class':df['class'].loc[i]}, ignore_index=True) train_set = dataset.custom_dataset.Custom_Dataset(df_train, target=TARGET, transforms=transform, train=True) val_set = dataset.custom_dataset.Custom_Dataset(df_val, target=TARGET, transforms=transform, train=True) train_loader = DataLoader(train_set, batch_size=32, num_workers=4) val_loader = DataLoader(val_set, batch_size=32, num_workers=4) model = models.create_model.ImgClassifierModel(model_name=MODEL_NAME, num_classes=NUM_CLASSES, pretrained=PRETRAINED) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate']) for s in ['train', 'validation']: if s == 'train': model.train() scaler = grad_scaler.GradScaler() best_f1, best_epoch = 0., 0. stop_count = 0 for epoch in range(NUM_EPOCHS): running_loss = 0.0 running_acc = 0.0 n_iter = 0 epoch_f1 = 0.0 for index, (images, labels) in enumerate(tqdm(train_loader)): images = images.to(device) target = labels.to(device) optimizer.zero_grad() if np.random.random() > 0.5: # Cutmix random_index = torch.randperm(images.size()[0]) target_a = target targeb_b = target[random_index] lam = np.random.beta(1.0, 1.0) bbx1, bby1, bbx2, bby2 = rand_bbox(images.size(), lam) images[:, :, bbx1:bbx2, bby1:bby2] = images[random_index, :, bbx1:bbx2, bby1:bby2] lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (images.size()[-1] * images.size()[-2])) with autocast_mode.autocast(): logits = model(images.float()) loss = criterion(logits, target_a) * lam + criterion(logits, targeb_b) * (1. - lam) _, preds = torch.max(logits, 1) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: with autocast_mode.autocast(): logits = model(images.float()) loss = criterion(logits, target) _, preds = torch.max(logits, 1) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() running_loss += loss.item() * images.size(0) running_acc += torch.sum(preds == target.data) epoch_f1 += f1_score(target.cpu().numpy(), preds.cpu().numpy(), average='macro') n_iter += 1 epoch_loss = running_loss / len(train_loader.dataset) epoch_acc = running_acc / len(train_loader.dataset) epoch_f1 = epoch_f1 / n_iter print(f"epoch: {epoch} - Loss : {epoch_loss:.3f}, Accuracy : {epoch_acc:.3f}, F1-Score : {epoch_f1:.4f}") # wandb.log({'acc' : epoch_acc, 'f1 score' : epoch_f1, 'loss' : epoch_loss,}) if epoch_f1 > best_f1: stop_count = 0 dir = f'/opt/ml/input/data/checkpoint' torch.save(model.state_dict(), f'{dir}/model_saved_{epoch}.pt') best_f1 = epoch_f1 best_epoch = epoch else: stop_count += 1 if stop_count > 2: break else: load_dir = os.path.join(dir, 'model_saved_{best_epoch}.pt') model.load_state_dict(torch.load(load_dir)) model.eval() with torch.no_grad(): val_loss_items = [] val_acc_items = [] val_f1_score = 0.0 v_iter = 0 for val_batch in val_loader: inputs, labels = val_batch inputs = inputs.to(device) labels = labels.to(device) outs = model(inputs) preds = torch.argmax(outs, dim=-1) loss_item = criterion(outs, labels).item() acc_item = (labels == preds).sum().item() val_loss_items.append(loss_item) val_acc_items.append(acc_item) val_f1_score += f1_score(labels.cpu().numpy(), preds.cpu().numpy(), average='macro') v_iter += 1 val_loss = np.sum(val_loss_items) / len(val_loader) val_acc = np.sum(val_acc_items) / len(val_set) val_f1 = np.sum(val_f1_score) / v_iter print(f'val_acc : {val_acc:.3f}, val loss : {val_loss:.3f}, val f1 : {val_f1:.3f}') # wandb.log({'val_acc' : val_acc, 'val_loss' : val_loss, 'val_f1' : val_f1}) del model, optimizer, val_loader, scaler torch.cuda.empty_cache() ################################################################################
UTF-8
Python
false
false
9,204
py
88
train.py
50
0.534317
0.518142
0
281
31.558719
124
pradgap/MachineLearning
5,446,018,538,795
72f513a266c1ce2132f0fcf7e3e4b81a780febc7
a413fb6da5910da9a3202f99c9cc584dca7cf2f2
/Spark/KMeansClustering.py
8710eedfb8e61425fe67a27a723e8db33c025a64
[]
no_license
https://github.com/pradgap/MachineLearning
b96a5770201f96edc11e62d3b3b36d62eb672e30
216042a01452c0198245e85d3dbb85267936dd65
refs/heads/master
2021-01-11T12:27:44.517074
2017-01-02T00:17:18
2017-01-02T00:17:18
76,627,969
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np from numpy import array from math import sqrt from pyspark import SparkConf, SparkContext from pyspark.mllib.clustering import KMeans, KMeansModel def main(sc): rawRdd=sc.textFile('network_PCA_15Features2.csv') # print rdd.count() # rddTrain, rddTest= rdd.randomSplit([.8,.2]) # print 'Done with random split' rdd=rawRdd.map(lambda line: parseData(line)) parsedRdd=rdd.map(lambda line: line[0:-1]) model=KMeans.train(parsedRdd,7,maxIterations=10,runs=10, initializationMode='random') print model.centers error=parsedrdd.map(lambda line:WGSE(line,model)).reduce(lambda a,b:a+b) print 'The error for WGSE is ::' print error clusterCount=rdd.map(lambda line:cluster(line,model)).reduceByKey(lambda a,b: np.add(a,b)) print clusterCount.collect() def WGSE(line,model): predict=model.predict(line) center=model.centers[predict] return sqrt(sum([x**2 for x in (line-center)])) def parseData(line): split=line.split(',') return array([float(x) for x in split]) def cluster(line,model): list=[0]*23 list[int(float(line[-1]))]=1 predict=model.predict(line[0:-1]) # clusterList[predict][line[-1]]=clusterList[predict][line[-1]]+1 return (predict,list) if __name__=="__main__": conf=SparkConf().setAppName('sparkApp') conf=conf.setMaster("local[*]") sc=SparkContext(conf=conf) main(sc)
UTF-8
Python
false
false
1,410
py
5
KMeansClustering.py
4
0.687943
0.671631
0
40
34.25
94
PLUSLEE/_Python_exercises
7,447,473,315,135
1c422da4c943c00b6109c7c9415be6fe4ac7f7b1
d064eb4007ed7c2600e5af7cd125999cab9d1946
/Process-oriented Programming面向过程/_04_loop_code.py
8524ff08cbe4ee00da256c517e3dd2e9028be263
[]
no_license
https://github.com/PLUSLEE/_Python_exercises
5361f5df425c1eae07bcd6a81864bb4c7d3ed1c3
a74008b7f60bb114b94f4c51fe45f039c4aa915f
refs/heads/master
2021-04-03T08:24:47.838485
2018-04-05T15:08:04
2018-04-05T15:08:04
124,406,076
1
0
null
false
2018-03-09T09:18:41
2018-03-08T14:52:56
2018-03-08T14:53:07
2018-03-09T09:17:46
7
0
0
1
Python
false
null
#-*-coding:utf-8-*- print(1+2+3) #for...in循环,依次把list或者tuple中的每一个元素迭代出来 classmate = ["Lee",'CFF','LZ'] for name in classmate: print(name) #输出1-10之和 sum = 0 for x in[1,2,3,4,5,6,7,8,9,10]: sum = sum + x print(sum) #rang()函数可以自动生成序列数,然后通过list()函数将序列数转化为list #生成的数字不包含本身,包含最开的0 ls = list(range(10)) for x in ls: print(x) #同样的方法,输出0-100之和 sum = 0 for x in range(101): sum = sum + x print(sum) #------------------------------------------------------- #while循环,只要条件满足就重复循环 #计算100以内的所有奇数之和 sum = 0 n = 99 while n >0: sum = sum +n n-=2 print(sum) #------------------------------------------------------- #break和continue的用途 ''' break是直接中断循环 continue是跳过当前这次循环,直接执行下一次 ''' #这是一个死循环 while 1: print("Dead")
UTF-8
Python
false
false
1,000
py
30
_04_loop_code.py
27
0.544959
0.491826
0
52
13.115385
56
MihaZelnik/meepleAPI
10,411,000,754,422
32a9a624ce79e2163fcfe672407077fa539b3d0b
3aca0a94e0b599f562362d6aad07e0a8589e0d43
/meeple/apps/utils/analytics.py
3bb16af9c6416dd027ea4bbb12f470251102b93a
[ "BSD-3-Clause" ]
permissive
https://github.com/MihaZelnik/meepleAPI
ec0ae9ed0822c53fc3587247b773134b0786a023
60f364cd7959a91335167d7da674b35d80dcef49
refs/heads/master
2018-01-07T11:17:38.926135
2015-05-14T17:12:49
2015-05-14T17:12:49
34,412,845
1
1
null
false
2015-05-26T19:43:07
2015-04-22T20:02:29
2015-05-01T23:07:04
2015-05-26T19:43:07
1,921
1
1
1
Python
null
null
from django.conf import settings import keen import logging def keen_hit(type, resource, request): if not settings.KEEN_DEBUG: ip = request.META.get('REMOTE_ADDR') user_agent = request.META.get('HTTP_USER_AGENT') try: keen.add_event( "api_hit", { "url": request.path, "type": type, "resource": resource, "ip_address": ip, "user_agent": user_agent } ) except: logging.warning("Couldn't send event to keen")
UTF-8
Python
false
false
629
py
68
analytics.py
41
0.467409
0.467409
0
23
26.347826
58
hitzjd/Balance-Simulate
16,088,947,514,793
4952cf07c79cf23bcfb86e19e1302314aded4808
918b8b356abdaed27ee2dc1ad45503e32d8d8080
/twisted/test/test_defgen.py
c5011bbbea19fe1132fc01079629d571aa2d0f39
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
https://github.com/hitzjd/Balance-Simulate
683c7b424195131e4ec5691e930e0ed909631d0d
22f06f34b0e4dbbf887f2075823dcdf4429e4b8e
refs/heads/master
2020-03-12T09:51:50.704283
2018-04-22T11:27:18
2018-04-22T11:27:18
130,561,072
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import generators, nested_scopes from twisted.internet import reactor from twisted.trial import unittest, util from twisted.internet.defer import waitForDeferred, deferredGenerator, Deferred from twisted.internet import defer def getThing(): d = Deferred() reactor.callLater(0, d.callback, "hi") return d def getOwie(): d = Deferred() def CRAP(): d.errback(ZeroDivisionError('OMG')) reactor.callLater(0, CRAP) return d class DefGenTests(unittest.TestCase): def _genWoosh(self): x = waitForDeferred(getThing()) yield x x = x.getResult() self.assertEquals(x, "hi") ow = waitForDeferred(getOwie()) yield ow try: ow.getResult() except ZeroDivisionError, e: self.assertEquals(str(e), 'OMG') yield "WOOSH" return _genWoosh = deferredGenerator(_genWoosh) def testBasics(self): return self._genWoosh().addCallback(self.assertEqual, 'WOOSH') def testBuggyGen(self): def _genError(): yield waitForDeferred(getThing()) 1/0 _genError = deferredGenerator(_genError) return self.assertFailure(_genError(), ZeroDivisionError) def testNothing(self): def _genNothing(): if 0: yield 1 _genNothing = deferredGenerator(_genNothing) return _genNothing().addCallback(self.assertEqual, None) def testDeferredYielding(self): # See the comment _deferGenerator about d.callback(Deferred). def _genDeferred(): yield getThing() _genDeferred = deferredGenerator(_genDeferred) return self.assertFailure(_genDeferred(), TypeError) def testHandledTerminalFailure(self): """ Create a Deferred Generator which yields a Deferred which fails and handles the exception which results. Assert that the Deferred Generator does not errback its Deferred. """ class TerminalException(Exception): pass def _genFailure(): x = waitForDeferred(defer.fail(TerminalException("Handled Terminal Failure"))) yield x try: x.getResult() except TerminalException: pass _genFailure = deferredGenerator(_genFailure) return _genFailure().addCallback(self.assertEqual, None) def testHandledTerminalAsyncFailure(self): """ Just like testHandledTerminalFailure, only with a Deferred which fires asynchronously with an error. """ class TerminalException(Exception): pass d = defer.Deferred() def _genFailure(): x = waitForDeferred(d) yield x try: x.getResult() except TerminalException: pass _genFailure = deferredGenerator(_genFailure) deferredGeneratorResultDeferred = _genFailure() d.errback(TerminalException("Handled Terminal Failure")) return deferredGeneratorResultDeferred.addCallback( self.assertEqual, None) def testStackUsage(self): # Make sure we don't blow the stack when yielding immediately # available values def _loop(): for x in range(5000): # Test with yielding a deferred x = waitForDeferred(defer.succeed(1)) yield x x = x.getResult() yield 0 _loop = deferredGenerator(_loop) return _loop().addCallback(self.assertEqual, 0) def testStackUsage2(self): def _loop(): for x in range(5000): # Test with yielding a random value yield 1 yield 0 _loop = deferredGenerator(_loop) return _loop().addCallback(self.assertEqual, 0)
UTF-8
Python
false
false
3,906
py
20
test_defgen.py
17
0.602663
0.597286
0
136
27.713235
90
DamienOConnell/MIT-600.1x
14,121,852,477,581
f7307100ceb6d56234408aee7effd1b6fcdaa66e
793de7bd510c0b6509f1413353d912bc8ef9bfb0
/Week_1/turn_right.py
a9f8363183b462165d1f14c8f83ccd334c6f2067
[]
no_license
https://github.com/DamienOConnell/MIT-600.1x
eb24490bb5148348d4b092db5a776a41ec1c6819
319d45bbbea991b9342c99874d8aad1dd6dc5d38
refs/heads/master
2020-06-06T03:37:19.904231
2019-12-15T04:40:17
2019-12-15T04:40:17
192,628,180
0
0
null
false
2019-10-21T09:25:54
2019-06-19T00:05:07
2019-06-19T00:12:07
2019-10-21T09:25:52
524
0
0
0
Python
false
false
#!/usr/bin/env python3 x = input("You are in the Lost Forest, turn right, or left?") while x == "right": x = input("You are in the Lost Forest, turn right, or left?") print ("You have exited the Lost Forest!")
UTF-8
Python
false
false
215
py
62
turn_right.py
57
0.660465
0.655814
0
6
34.833333
65
haru-mingshi052/Melanoma-Classification
15,375,982,964,497
908fa0d56e78c72475f12c37b71e23c081189d51
87bd53e35056e738402c6d4210615f32e57c35ad
/pytorch/data_processing/dataset.py
b9298af01e663fe5cfaab0f9b33e73de3a54f618
[]
no_license
https://github.com/haru-mingshi052/Melanoma-Classification
5124b58d02d175f99c3caa197ce7bb32fa7f9759
7be4bd197b01b4fad54c3e8023e50547b0a9329f
refs/heads/master
2023-04-08T12:51:52.781132
2021-04-19T12:47:16
2021-04-19T12:47:16
354,457,578
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import os import cv2 from torch.utils.data import Dataset """ pytorchのデータセットを作成する関数 """ #================================ # Melanoma Dataset #================================ class MelanomaDataset(Dataset): def __init__(self, df, imfolder, train, transforms, meta_features): self.df = df self.imfolder = imfolder self.transforms = transforms self.train = train self.meta_features = meta_features def __getitem__(self, index): im_path = os.path.join(self.imfolder, self.df.iloc[index]['image_name'] + '.jpg') x = cv2.imread(im_path) meta = np.array(self.df.iloc[index][self.meta_features].values, dtype = np.float32) if self.transforms: x = self.transforms(x) if self.train: y = self.df.iloc[index]['target'] return (x, meta), y else: return (x, meta) def __len__(self): return len(self.df)
UTF-8
Python
false
false
1,037
py
28
dataset.py
24
0.53221
0.528246
0
38
24.605263
91
ErlingLie/Text_prediction
9,998,683,892,378
62621bb929aa5d2f15e41511d73393e834456794
79013dd2eaac23538c79ac4e91c0d6af5d3546f8
/utils.py
d89e416442424e384a947f8b5e1315277c9289bf
[ "MIT" ]
permissive
https://github.com/ErlingLie/Text_prediction
a9e677f23374abe26c6f63aa865da5cc03189eff
2dd9b6f3a59037b8cbd56a5d0a7c4da63091e49b
refs/heads/master
2021-04-04T14:24:58.509734
2020-03-19T14:03:30
2020-03-19T14:03:30
248,464,297
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch import matplotlib.pyplot as plt import numpy as np import pathlib np.random.seed(0) torch.manual_seed(0) # Allow torch/cudnn to optimize/analyze the input/output shape of convolutions # To optimize forward/backward pass. # This will increase model throughput for fixed input shape to the network torch.backends.cudnn.benchmark = True # Cudnn is not deterministic by default. Set this to True if you want # to be sure to reproduce your results torch.backends.cudnn.deterministic = True def to_cuda(elements): """ Transfers every object in elements to GPU VRAM if available. elements can be a object or list/tuple of objects """ if torch.cuda.is_available(): if type(elements) == tuple or type(elements) == list: return [x.cuda() for x in elements] return elements.cuda() return elements def plot_loss(loss_dict: dict, label: str = None, fmt="-"): """ Args: loss_dict: a dictionary where keys are the global step and values are the given loss / accuracy label: a string to use as label in plot legend """ global_steps = list(loss_dict.keys()) loss = list(loss_dict.values()) plt.plot(global_steps, loss, fmt, label=label) def save_checkpoint(state_dict: dict, filepath: pathlib.Path, is_best: bool, max_keep: int = 1): """ Saves state_dict to filepath. Deletes old checkpoints as time passes. If is_best is toggled, saves a checkpoint to best.ckpt """ filepath.parent.mkdir(exist_ok=True, parents=True) list_path = filepath.parent.joinpath("latest_checkpoint") torch.save(state_dict, filepath) if is_best: torch.save(state_dict, filepath.parent.joinpath("best.ckpt")) previous_checkpoints = get_previous_checkpoints(filepath.parent) if filepath.name not in previous_checkpoints: previous_checkpoints = [filepath.name] + previous_checkpoints if len(previous_checkpoints) > max_keep: for ckpt in previous_checkpoints[max_keep:]: path = filepath.parent.joinpath(ckpt) if path.exists(): path.unlink() previous_checkpoints = previous_checkpoints[:max_keep] with open(list_path, 'w') as fp: fp.write("\n".join(previous_checkpoints)) def get_previous_checkpoints(directory: pathlib.Path) -> list: assert directory.is_dir() list_path = directory.joinpath("latest_checkpoint") list_path.touch(exist_ok=True) with open(list_path) as fp: ckpt_list = fp.readlines() return [_.strip() for _ in ckpt_list] def load_best_checkpoint(directory: pathlib.Path): filepath = directory.joinpath("best.ckpt") if not filepath.is_file(): return None return torch.load(directory.joinpath("best.ckpt"))
UTF-8
Python
false
false
2,901
py
11
utils.py
2
0.654257
0.653223
0
79
34.721519
103
felixnego/Test
9,603,546,874,795
89656c93cd8a649e5fbcbb9d39436ee5dc01604d
3b70ed98ed4a657fce1f3f8c9cacb077b8b89462
/Desktop/coding/udemy_python/helloworld/iteration.py
a2d3b74b375062434eeb30a4b0f45a8778cad2f4
[]
no_license
https://github.com/felixnego/Test
24eed4ad1411c76987f3054144a9f56e39fea0de
64bfaecc7c3eaade55b13f571f8c96a5bcc9690a
refs/heads/master
2018-02-12T21:34:19.697229
2017-09-24T19:46:28
2017-09-24T19:46:28
24,300,407
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
string = "1234567890" for char in string: print(char) my_iterator = iter(string) # this is what the for loop is doing behind the scenes print(my_iterator) print(next(my_iterator)) # prints the first element of the string print(next(my_iterator)) # the for loop creates the iterator and keeps using next until it reaches the end # then stops the loop automatically # for char in string IS THE SAME AS for char in iter(string) # CHALLENGE: create a list of items # then create an iterator using the iter function # use a for loop to loop 'n' times, where n is the number of items in your list # each time round the loop, use next() on your list to print the next item # use the len() function rather than counting the number of items in the list print() lista_fel = ["spam", 3, 0, "test", "kylo ren", 12.65] iterator = iter(lista_fel) for item in range(0, len(lista_fel)): print(next(iterator)) # we don't normally use iterators unless we work with special kind of classes
UTF-8
Python
false
false
1,001
py
57
iteration.py
54
0.723277
0.706294
0
30
32.366667
86
AgnieszkaFalenska/IMSnPars
16,209,206,622,570
48efaa53be5fa5146b02e97dee16ba52b7552912
60377d9a9cae6d26e61cd5fa63148f20ed4852e5
/imsnpars/tests/asswap_tests.py
da06968684259aa2c17c802a6922a9a7a06e2cdb
[ "Apache-2.0" ]
permissive
https://github.com/AgnieszkaFalenska/IMSnPars
726ae2cc21e6a3dd024924eaf4599c8a6fbcf240
e2180db93309157b3e3929a5e5c14751df49aff9
refs/heads/master
2021-06-30T07:16:43.462206
2020-12-14T20:57:25
2020-12-14T20:57:25
201,456,673
5
5
Apache-2.0
false
2020-12-14T20:57:26
2019-08-09T11:42:39
2020-12-02T22:00:43
2020-12-14T20:57:26
11,933
2
2
4
Python
false
false
#!/usr/bin/env python # coding=utf-8 ''' Created on 21.08.2017 @author: falensaa ''' import unittest from nparser.trans.tsystem.asswap import ArcStandardWithSwap as ASWS, MPCBuilder from nparser.trans.tsystem.asswap import ArcStandardWithSwapEagerOracle, ArcStandardWithSwapLazyOracle from nparser.trans.tsystem import oracle from tests.examples import * oneWordCorrect = [ ASWS.SHIFT, ASWS.RIGHTARC ] msCollinsCorrect = [ ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.RIGHTARC ] hearingCorrect = [ ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.SWAP, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.SWAP, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.SWAP, ASWS.SWAP, ASWS.LEFTARC, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.RIGHTARC] afterCorrect = [ ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.SWAP, ASWS.LEFTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.RIGHTARC ] class TestASWithSwapStaticOracle(unittest.TestCase): def testOneWordExample(self): """Example: oneWordExample""" system = ASWS() soracle = ArcStandardWithSwapEagerOracle(system) transitions = oracle.buildStaticCorrectTransitions(oneWordExample[1], system, soracle) self.assertEqual(oneWordCorrect, transitions) def testMsCollinsExample(self): """Example: msCollinsExample""" system = ASWS() soracle = ArcStandardWithSwapEagerOracle(system) transitions = oracle.buildStaticCorrectTransitions(msCollinsExample[1], system, soracle) self.assertEqual(msCollinsCorrect, transitions) def testHearingExample(self): """Example: hearingExample""" system = ASWS() soracle = ArcStandardWithSwapEagerOracle(system) transitions = oracle.buildStaticCorrectTransitions(hearingExample[1], system, soracle) self.assertEqual(hearingCorrect, transitions) def testAfterExample(self): """Example: afterExample""" system = ASWS() soracle = ArcStandardWithSwapEagerOracle(system) transitions = oracle.buildStaticCorrectTransitions(afterExample[1], system, soracle) self.assertEqual(afterCorrect, transitions) class TestASWithSwapLazyStaticOracle(unittest.TestCase): def testAfterExample(self): """Example: afterExample""" afterLazyCorrect = [ ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.RIGHTARC ] system = ASWS() soracle = ArcStandardWithSwapLazyOracle(system) transitions = oracle.buildStaticCorrectTransitions(afterExample[1], system, soracle) self.assertEqual(afterLazyCorrect, transitions) def testLetterExample(self): """Example: letterExample""" system = ASWS() lazyoracle = ArcStandardWithSwapLazyOracle(system) letterCorrect = [ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.RIGHTARC, ASWS.SWAP, ASWS.SHIFT, ASWS.SHIFT, ASWS.LEFTARC, ASWS.RIGHTARC, ASWS.RIGHTARC, ASWS.SHIFT, ASWS.RIGHTARC, ASWS.RIGHTARC] lazyTransitions = oracle.buildStaticCorrectTransitions(letterExample[1], system, lazyoracle) self.assertEqual(lazyTransitions, letterCorrect) def testMPC_letter(self): """basic mpc test for letterExample""" tree = letterExample[1] self.assertFalse(tree.isProjective()) builder = MPCBuilder() mpcs = builder.buildMPCs(tree) self.assertEqual(mpcs[1], mpcs[2]) self.assertEqual(mpcs[3], mpcs[4]) self.assertEqual(mpcs[5], mpcs[4]) self.assertEqual(mpcs[3], mpcs[5]) self.assertNotEqual(mpcs[0], mpcs[1]) self.assertNotEqual(mpcs[2], mpcs[3]) self.assertNotEqual(mpcs[5], mpcs[6]) self.assertNotEqual(mpcs[7], mpcs[6]) def testMPC_2(self): """basic mpc test""" tree = datatypes.Tree([1, -1, 5, 4, 1, 4]) self.assertFalse(tree.isProjective()) builder = MPCBuilder() mpcs = builder.buildMPCs(tree) self.assertCountEqual({1: 1, 2: 2, 4: 4, 5: 5, 0: 1, 3: 4}, mpcs) if __name__ == "__main__": unittest.main()
UTF-8
Python
false
false
5,042
py
63
asswap_tests.py
55
0.650337
0.640222
0
124
39.580645
222
ankuraut/ANKIT_HOTEL_YOYO
8,443,905,751,236
160d05bb8a9228838ffe0e6667ea135dd3ddb34f
3b67c6507b8f532cfdce77b03244b5ff0e518a5a
/HOTEL/yoyo/views.py
2d301058c79560cc1e01300f2ab659620f24c9a2
[]
no_license
https://github.com/ankuraut/ANKIT_HOTEL_YOYO
d6aac1575500c4804170b280c271d6706b997da9
a66522d36649c01a12dad63e8df0918ac897c9a3
refs/heads/master
2023-06-29T04:59:09.410355
2021-07-17T05:40:25
2021-07-17T05:40:25
294,930,636
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render , HttpResponse from django.views.generic import ListView, FormView, View #pre-defined from .models import Room, Booking from .forms import AvailableForm from yoyo.functions.available import check_availability # Create your views here. class RoomListView(request): room = Room.objects.all()[0] room_typess = dict(room.ROOM_TYPES) #print('typess=', room_typess) room_values = room_typess.values() #print('typess=', room_values) room_list = [] for room_type in room_typess: room = room_typess.get(room_type) room_url = reverse('yoyo:RoomDetailView', kwargs={'types': room_type}) room_list.append((room, room_url)) context = { "room_list": room_list, } return render(request, 'room_list_view.html', context) class BookingList(ListView): model = Booking template_name = "booking_list_view.html" def get_queryset(self, *args, **kwargs): if self.request.user.is_staff: booking_list = Booking.objects.all() return booking_list else: booking_list = Booking.objects.filter(user=self.request.user) return booking_list class RoomDetailView(View): def get(self, request, *args, **kwargs): types = self.kwargs.get('types',None) form = AvailableForm() room_list = Room.objects.filter(types=types) if len(room_list) > 0: room = room_list[0] room_type = dict(room.ROOM_TYPES).get(room.type, None) context = { 'room_type': room_type, 'form' : form, } return render(request, 'room_detail_view.html', context) else: return HttpResponse(' SORRY FOR THIS CATEGORY') def post(self, request, *args, **kwargs): types = self.kwargs.get('types',None) room_list = Room.objects.filter(types=types) form = AvailableForm(request.POST) if form.is_valid(): data = form.cleaned_data available_rooms = [] for room in room_list: if check_availability(room, data['check_in'], data['check_out']): available_rooms.append(room) if len(available_rooms)>0: room = available_rooms[0] booking = Booking.objects.create( user = self.request.user, room = room, check_in = data['check_in'], check_out = data['check_out'] ) booking.save() return HttpResponse(booking) else: return HttpResponse(' SORRY FOR THIS') #This one is only for admin porpose class BookingView(FormView): form_class = AvailableForm template_name = 'available_form.html' def form_valid(self, form): data = form.cleaned_data room_list = Room.objects.filter(types = data['room_type']) available_rooms = [] for room in room_list: if check_availability(room, data['check_in'], data['check_out']): available_rooms.append(room) if len(available_rooms)>0: room = available_rooms[0] booking = Booking.objects.create( user = self.request.user, room = room, check_in = data['check_in'], check_out = data['check_out'] ) booking.save() return HttpResponse(booking) else: return HttpResponse(' SORRY FOR THIS')
UTF-8
Python
false
false
3,606
py
18
views.py
9
0.56711
0.565169
0
108
32.351852
78
dongjinhai/ssrmgmt
18,305,150,631,955
11474607a6f3023afff2c74b6370d629350853f9
e55a5f0234519686d551dd7b6e2a91123585dc7b
/ssrmgmt/settings/production.py
d58fc59d2e734261ab05ae803a537d4c82caf579
[ "MIT" ]
permissive
https://github.com/dongjinhai/ssrmgmt
51ea2ee4b19a81a51c5df96db2b2858b5aeb6065
a41e595aec503dcb191a20ea8d58233bbb8f2db0
refs/heads/master
2021-10-08T10:13:25.312650
2018-11-19T01:22:44
2018-11-19T01:22:44
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from .base import * # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['*'] # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'ssrmgmt', 'USER': get_env_variable('SSRMGMT_MYSQL_USER'), 'PASSWORD': get_env_variable('SSRMGMT_MYSQL_PASSWORD'), 'HOST': 'db_mysql', 'PORT': '3306', 'OPTIONS': { # 取消外键检查 "init_command": "SET foreign_key_checks = 0;", }, } } # 设置django使用redis做缓存 CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': 'redis://db_redis:6379', # docker部署方式 # 'LOCATION': 'redis://localhost:6379', "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", }, }, } # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'prostatic') # 账户激活域名 USER_DOMAIN = "www.djhmgr.top" # API相关 API_USERNAME = get_env_variable('SSRMGMT_API_USERNAME') API_PASSWORD = get_env_variable('SSRMGMT_API_PASSWORD') # 邮箱设置 EMAIL_HOST = "smtp.163.com" EMAIL_HOST_USER = get_env_variable('SSRMGMT_EMAIL_USER') EMAIL_HOST_PASSWORD = get_env_variable('SSRMGMT_EMAIL_PASSWORD') EMAIL_USE_TLS = False EMAIL_USE_SSL = True EMAIL_PORT = 465 EMAIL_FROM = "ssrmgmt@163.com"
UTF-8
Python
false
false
1,743
py
40
production.py
20
0.632047
0.611869
0
73
22.082192
65
abeja-inc/abeja-platform-cli
18,605,798,366,803
2133aacc834490d7239dca7a6888b02b8cbd0073
28c9b66a45d17435c72fc3e97d77932ae20e9c9a
/abejacli/model/__init__.py
239cc629d949e787b36f88330bc6863e3bf370fa
[ "Apache-2.0" ]
permissive
https://github.com/abeja-inc/abeja-platform-cli
cf2fa497b435ebe598a13126635af481f8c77a80
cd4909a7a4f7898524a543f541544260d0952571
refs/heads/develop
2023-09-01T11:01:38.450596
2023-07-18T02:46:03
2023-07-18T02:46:03
253,412,424
3
1
Apache-2.0
false
2023-07-18T02:16:16
2020-04-06T06:22:32
2023-06-26T04:52:48
2023-07-18T02:16:14
369
3
0
3
Python
false
false
import hashlib def md5file(filename): with open(filename, "rb") as f: content = f.read() return md5digest(content) def md5digest(content: bytes) -> str: return hashlib.md5(content).hexdigest()
UTF-8
Python
false
false
217
py
89
__init__.py
78
0.668203
0.64977
0
11
18.727273
43
ctc316/algorithm-python
8,040,178,791,282
a31911ea86d44d61cc517f4a99207af7bb33fdf2
4111ca5a73a22174f189361bef654c3f91c3b7ed
/Lintcode/G_Practice/Tag_Hash/627. Longest Palindrome.py
0a1e23fdb1ef3689d9879c25a6da7e69d8171140
[ "MIT" ]
permissive
https://github.com/ctc316/algorithm-python
58b541b654509ecf4e9eb8deebfcbdf785699cc4
ac4580d55e05e93e407c6156c9bb801808027d60
refs/heads/master
2020-03-16T06:09:50.130146
2019-08-02T02:50:49
2019-08-02T02:50:49
132,548,222
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class Solution: """ @param s: a string which consists of lowercase or uppercase letters @return: the length of the longest palindromes that can be built """ def longestPalindrome(self, s): counts = {} for ch in s: if ch not in counts: counts[ch] = 1 else: counts[ch] += 1 odd = False length = 0 for cnt in counts.values(): if cnt % 2 == 1: odd = True length += cnt - 1 else: length += cnt if odd: length += 1 return length
UTF-8
Python
false
false
641
py
581
627. Longest Palindrome.py
580
0.455538
0.444618
0
26
23.692308
71
SharmaSapan/self-organizing-feature-maps-clustering
10,565,619,573,419
fb0223881c232f2b7b5a43d1989518f674082817
0bcefa895e98f81a211ae46463569cb4e206d40a
/main.py
f2eaf30c413d4da454a4d84aa3365cf1021b18cd
[]
no_license
https://github.com/SharmaSapan/self-organizing-feature-maps-clustering
33fffc4488cc781398a86a239606f6ed3ce38823
2021c6a6022193895f4d12c72499f09aae34f1dc
refs/heads/master
2023-07-10T06:03:03.935236
2021-08-05T04:02:38
2021-08-05T04:02:38
392,794,625
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import math import random import os # pillow image handling library from PIL import Image import imageio # to create gif in part 1 import numpy as np # to show image in part 2 # Pixel class to store pixel object and its properties. class Pixel: x = 0 # x-coordinate of pixel y = 0 # y-coordinate of pixel # create pixel objects using rgb, if no values given then random colors are assigned def __init__(self, *args): # random pixel generation if no value during object initialization if len(args) == 0: self.r = random.random() self.g = random.random() self.b = random.random() # rgb values given during call if len(args) > 0: self.r = args[0] self.g = args[1] self.b = args[2] # to update rgb values of the object def setNewRGB(self, new_r, new_g, new_b): self.r = new_r self.g = new_g self.b = new_b # find the euclidean distance between this pixel and the given pixel def getEDistance(self, p): distance = math.sqrt(((self.r - p.r)**2) + ((self.g - p.g)**2) + ((self.b - p.b)**2)) return distance # SOFM for colour organization def color(map_width, map_height, arr, epochs, neigh_radius, learning_rate, folder, interval): print("Color Organization started....") for i in range(epochs): lr = learning_rate*pow(math.exp(1), (-1*(i/epochs))) neigh_size = math.ceil(neigh_radius*pow(math.exp(1), (-1*(i/epochs)))) input_pixel = Pixel() # random input space pixel which will be generated after each epoch # pixel to find best matching unit initially r,g,b = 0 and x,y =0 BMU_pixel = Pixel(0, 0, 0) BMU_distance = float('inf') # to calculate best distance between input pixel and BMU #print(BMU_pixel.r,BMU_pixel.x,BMU_pixel.y) for j in range(map_width): for k in range(map_height): if(BMU_distance > input_pixel.getEDistance(arr[j][k])): # if pixel distance from BMU is less, store pixel as the BMU BMU_distance = input_pixel.getEDistance(arr[j][k]) BMU_pixel = arr[j][k] BMU_pixel.x = j BMU_pixel.y = k # colour update at arr with best matching colour in input space by a factor of learning rate b_r = BMU_pixel.r + lr * (input_pixel.r-BMU_pixel.r) # neigbourhood mulitplyer not needed as we are updating at BMU b_g = BMU_pixel.g + lr * (input_pixel.g-BMU_pixel.g) b_b = BMU_pixel.b + lr * (input_pixel.b-BMU_pixel.b) #print(arr[BMU_pixel.x][BMU_pixel.y].r) arr[BMU_pixel.x][BMU_pixel.y].setNewRGB(b_r,b_g,b_b) #print(arr[BMU_pixel.x][BMU_pixel.y].r, BMU_pixel.r,BMU_pixel.x,BMU_pixel.y) #print(y) # from lower quadrant to upward quadrant in circle to update height(y-axis) for y in range(BMU_pixel.y-neigh_radius,BMU_pixel.y+neigh_radius): # updating pixel values at width(x-axis) to the left from BMU according to radius xl = BMU_pixel.x - 1 # get values left of current y-axis till neighbour radius while (((xl-BMU_pixel.x)*(xl-BMU_pixel.x) + (y-BMU_pixel.y)*(y-BMU_pixel.y)) <= (neigh_radius*neigh_radius)): if(xl<map_width and xl>=0 and y<map_height and y>=0): neigh_multi = pow(math.exp(1),(-1*(((arr[xl][y].getEDistance(BMU_pixel))*(arr[xl][y].getEDistance(BMU_pixel)))/(2*neigh_size*neigh_size)))) rl = arr[xl][y].r + neigh_multi * lr * (input_pixel.r-arr[xl][y].r) # if BMU then the difference will be 0 making no change to the BMU pixel colour gl = arr[xl][y].g + neigh_multi * lr * (input_pixel.g-arr[xl][y].g) bl = arr[xl][y].b + neigh_multi * lr * (input_pixel.b-arr[xl][y].b) arr[xl][y].setNewRGB(rl,gl,bl) # update colour of neighbours by a factor neighbourhood multiplyer and learning rate xl = xl-1 # updating pixel values at width to the right from BMU according to radius xr = BMU_pixel.x # get values right of current y-axis till neighbour radius while (((xr-BMU_pixel.x)*(xr-BMU_pixel.x) + (y-BMU_pixel.y)*(y-BMU_pixel.y)) <= (neigh_radius*neigh_radius)): if(xr<map_width and xr>=0 and y<map_height and y>=0): neigh_multi = pow(math.exp(1),(-1*(((arr[xr][y].getEDistance(BMU_pixel))*(arr[xr][y].getEDistance(BMU_pixel)))/(2*neigh_size*neigh_size)))) rr = arr[xr][y].r + neigh_multi * lr * (input_pixel.r-arr[xr][y].r) gr = arr[xr][y].g + neigh_multi * lr * (input_pixel.g-arr[xr][y].g) br = arr[xr][y].b + neigh_multi * lr * (input_pixel.b-arr[xr][y].b) arr[xr][y].setNewRGB(rr,gr,br) #print(x,y,arr[x][y].r) xr = xr+1 # to save image after user provided intervals if i % interval == 0: initial = Image.new('RGB', (map_width, map_height), "black") pix = initial.load() for row in range(map_width): for col in range(map_height): pix[row,col] = (int(arr[row][col].r*255),int(arr[row][col].g*255),int(arr[row][col].b*255)) saveloc = str(i+1) + "th_epoch.jpg" initial.save(os.path.join(folder, saveloc)) print(i, "th epoch saved") initial.save(os.path.join(folder, "final.jpg")) class Unit: x = 0 # x-coordinate of unit y = 0 # y-coordinate of unit # create single sofm unit objects randomly or using 0's, if no values given then random values are assigned def __init__(self, frame_size): # random weight generation during object initialization self.sofm = random.sample(range(0, 256), frame_size) # 64 or 256 depending on frame # to update sofm values of the object def setNew(self, index, value): self.sofm[index] = value # find the euclidean distance between this unit and the given frame def getEDistance(self, frame): distance = 0 for index in range(len(frame)): distance += ((self.sofm[index] - frame[index])**2) sq = math.sqrt(distance) return sq def compression(epochs, learning_rate, neigh_radius, frames, frame_size, sofm_config, sofm_map): for i in range(epochs): lr = learning_rate*pow(math.exp(1), (-1*(i/epochs))) neigh_size = math.ceil(neigh_radius*pow(math.exp(1), (-1*(i/epochs)))) input_frame = random.choice(frames) BMU_frame = Unit(frame_size**2) # random at first but will have copy from network during BMU scan BMU_distance = float('inf') for map_row in range(sofm_config): for map_col in range(sofm_config): if(BMU_distance > (sofm_map[map_row][map_col]).getEDistance(input_frame)): BMU_distance = sofm_map[map_row][map_col].getEDistance(input_frame) BMU_frame = sofm_map[map_row][map_col] BMU_frame.x = map_row BMU_frame.y = map_col for b_index in range(len(BMU_frame.sofm)): new_weight = BMU_frame.sofm[b_index] + lr*(input_frame[b_index]-BMU_frame.sofm[b_index]) sofm_map[BMU_frame.x][BMU_frame.y].setNew(b_index, new_weight) for y in range(BMU_frame.y-neigh_radius,BMU_frame.y+neigh_radius): xl = BMU_frame.x - 1 # get values left of current y-axis till neighbour radius while (((xl-BMU_frame.x)*(xl-BMU_frame.x) + (y-BMU_frame.y)*(y-BMU_frame.y)) <= (neigh_radius*neigh_radius)): if(xl<sofm_config and xl>=0 and y<sofm_config and y>=0): neigh_multi = pow(math.exp(1),(-1*(((sofm_map[xl][y].getEDistance(BMU_frame.sofm))*(sofm_map[xl][y].getEDistance(BMU_frame.sofm)))/(2*neigh_size*neigh_size)))) for xl_index in range(len(BMU_frame.sofm)): new_n_weight = sofm_map[xl][y].sofm[xl_index] + neigh_multi*lr*(input_frame[xl_index]-sofm_map[xl][y].sofm[xl_index]) sofm_map[xl][y].setNew(xl_index, new_n_weight) xl = xl-1 xr = BMU_frame.x # get values right of current y-axis till neighbour radius arc while (((xr-BMU_frame.x)*(xr-BMU_frame.x) + (y-BMU_frame.y)*(y-BMU_frame.y)) <= (neigh_radius*neigh_radius)): if(xr<sofm_config and xr>=0 and y<sofm_config and y>=0): neigh_multi = pow(math.exp(1),(-1*(((sofm_map[xr][y].getEDistance(BMU_frame.sofm))*(sofm_map[xr][y].getEDistance(BMU_frame.sofm)))/(2*neigh_size*neigh_size)))) for xr_index in range(len(BMU_frame.sofm)): new_n_weight = sofm_map[xr][y].sofm[xr_index] + neigh_multi*lr*(input_frame[xr_index]-sofm_map[xr][y].sofm[xr_index]) sofm_map[xr][y].setNew(xr_index, new_n_weight) xr = xr+1 def main(): part = int(input("Enter 1 for part-1 Colour, Enter 2 for part-2 Compression: ")) if part == 1: map_width = int(input("Enter N width for grid (ideally 200-800): ")) map_height = int(input("Enter N height for grid: ")) arr = [] initial = Image.new('RGB', (map_width, map_height), "black") # to create initial image pix = initial.load() # initialize a 2-D list of Pixel objects(should have used a better way, I know) for width in range(map_width): col = [] for height in range(map_height): col.append(Pixel()) col[height].x = width col[height].y = height arr.append(col) # to access values use arr[i][j].x (x for x-coordinate, y for y-coordinate, r,g,b for r,g,b random color respectively) epochs = int(input("Enter number of epochs: ")) neigh_radius = int(input("Enter integer radius: ")) learning_rate = float(input("Enter learning rate: ")) folder = input("Enter folder name to store image: ") interval = int(input("Enter integer interval for image save like 50 or 100 epochs: ")) os.mkdir(folder) # create folder with user provide name for width_p in range(map_width): # paint image for height_p in range(map_height): pix[width_p,height_p] = (int(arr[width_p][height_p].r*255),int(arr[width_p][height_p].g*255),int(arr[width_p][height_p].b*255)) initial.save(os.path.join(folder,"1initial_input_space.jpg")) color(map_width, map_height, arr, epochs, neigh_radius, learning_rate, folder, interval) # sofm engine images = [] # store gif gifloc = os.path.join(folder, 'colour_gif.gif') for filename in os.listdir(folder): images.append(imageio.imread(os.path.join(folder, filename))) imageio.mimsave(gifloc, images) print("End of run") if part == 2: frame_size = int(input("Enter frame size of 8 or 16: ")) sofm_config = int(input("Enter SOFM map config '16' for 16*16 or '4' for 4*4: ")) image_name = input("Enter name of image file with extension to run test on: ") epochs = int(input("Enter number of epochs: ")) neigh_radius = int(input("Enter neighbour radius for SOFM: ")) learning_rate = float(input("Enter learning rate: ")) savfile = input("Enter name of the file to save binary data: ") + ".bin" print("Running...") im = Image.open(image_name).convert('L') # load image im.save("gray-"+image_name) imgwidth, imgheight = im.size v = list(im.getdata()) frames = [] v_index = 0 for frame_index in range(int(len(v)/(frame_size**2))): # divide data by frame size**2 frame = [] for item_index in range(frame_size**2): # store per frame frame.append(v[item_index+v_index]) v_index += (frame_size**2) frames.append(frame) sofm_map = [] # create a sofm map of sofm_config*sofm_config for sofm_index in range(sofm_config): sofm_col = [] for col_index in range(sofm_config): sofm_col.append(Unit(frame_size**2)) # initialize vector units of sofm with random vectors of frame_size**2 sofm_map.append(sofm_col) # training on the image compression(epochs, learning_rate, neigh_radius, frames, frame_size, sofm_config, sofm_map) trained_sofm_1D = [] # convert sofm map from 2D to 1D to map frames from image for reference in bin for net_index in range(len(sofm_map)): for net_col in range(len(sofm_map[0])): trained_sofm_1D.append(sofm_map[net_index][net_col]) # reference frames which are best matching index of sofm unit to images from frame frame_reference = [] for img_frame_index in range(len(frames)): BMU_dist = float('inf') best_index = 0 d = 0 # distance between frame and unit from sofm for unit_index in range(len(trained_sofm_1D)): d = trained_sofm_1D[unit_index].getEDistance(frames[img_frame_index]) if(BMU_dist > d): BMU_dist = d best_index = unit_index frame_reference.append(best_index) if sofm_config == 4: # conversion to store two indices in one byte for sofm configuration of 4*4 frame_reference_nibble_list = [] for inde in range(0,len(frame_reference),2): # get 0 and 1, then 2 and 3rd index frame_reference_nibble = frame_reference[inde] # for if last and odd length store as it is if inde!=len(frame_reference)-1: frame_reference_nibble = (frame_reference[inde] << 4) | (frame_reference[inde+1]) frame_reference_nibble_list.append(frame_reference_nibble) # NOTE: Code can handle any format but we can only store 0-255 in binary file, # to store image resolution/frame size binary dump only works on max 2040*2040 picture. Please test picture in that resolution. # Codebook format: Width of image(in frames), height of image(in frames), width of single frame, # height of single frame, width of network, height of network, map result from sofm units in 1D, # and indices of map which matches best to each frame of the image width_image_in_frames_to_byte = [int(imgwidth/frame_size)] # binary file can only handle 2040*2040 height_image_in_frames_to_byte = [int(imgheight/frame_size)] width_frame_to_byte = [frame_size] height_frame_to_byte = [frame_size] width_network_to_byte = [sofm_config] height_network_to_byte = [sofm_config] map_to_byte = [] # appending individual values of sofm unit in 1D for sofm_codebook in trained_sofm_1D: for val in sofm_codebook.sofm: map_to_byte.append(int(val)) # data is stored on binary file name provided by user during runtime. with open(savfile,"wb") as binary_file: binary_file.write(bytes(width_image_in_frames_to_byte)) binary_file.write(bytes(height_image_in_frames_to_byte)) binary_file.write(bytes(width_frame_to_byte)) binary_file.write(bytes(height_frame_to_byte)) binary_file.write(bytes(width_network_to_byte)) binary_file.write(bytes(height_network_to_byte)) binary_file.write(bytes(map_to_byte)) # saving map to bytes file if sofm_config == 4: # store one nibble per byte binary_file.write(bytes(frame_reference_nibble_list)) # saving codebook indices, 2 indices per byte else: # else if sofm_config 16 then store one per byte binary_file.write(bytes(frame_reference)) # saving codebook indices # reading data after storing with open(savfile,"rb") as binary_file: data = binary_file.read() print("Codebook saved") # converting binary to usable format. convert_width_image_in_frames_to_byte = convert_height_image_in_frames_to_byte= convert_width_frame_to_byte= convert_height_frame_to_byte= convert_width_network_to_byte= convert_height_network_to_byte = 0 convert_sofm_map_values = [] convert_frame_reference = [] for i in range(len(data)): if i == 0: convert_width_image_in_frames_to_byte = data[i] if i == 1: convert_height_image_in_frames_to_byte = data[i] if i == 2: convert_width_frame_to_byte = data[i] if i == 3: convert_height_frame_to_byte = data[i] if i == 4: convert_width_network_to_byte = data[i] if i == 5: convert_height_network_to_byte = data[i] # getting sofm map values if i > 5 and i <= ((convert_width_network_to_byte*convert_height_network_to_byte*convert_width_frame_to_byte*convert_height_frame_to_byte)+5): convert_sofm_map_values.append(data[i]) # getting codebook indices if i > ((convert_width_network_to_byte *convert_height_network_to_byte*convert_width_frame_to_byte*convert_height_frame_to_byte)+5): if sofm_config == 4: convert_frame_reference.append((data[i] >> 4)) # high nibble convert_frame_reference.append((data[i] & 0x0F)) # low nibble else: convert_frame_reference.append(data[i]) # full byte if sofm configuration is 16*16 image_width = convert_width_image_in_frames_to_byte*convert_width_frame_to_byte image_height = convert_height_image_in_frames_to_byte*convert_height_frame_to_byte network_units = convert_width_frame_to_byte*convert_height_frame_to_byte #64 or 256 convert_map_to_2D = [] # to store sofm map back into 2D unit_vector_i = 0 for map_index in range(convert_width_network_to_byte*convert_height_network_to_byte): convert_unit = [] for iterate in range(network_units): convert_unit.append(convert_sofm_map_values[iterate+unit_vector_i]) unit_vector_i += network_units convert_map_to_2D.append(convert_unit) # reconstruct image frames using sofm map and codebook indices reconstructed_image_frames = [] # which is similar to frames list made from image data for convert_index in convert_frame_reference: reconstructed_image_frames.append(convert_map_to_2D[convert_index]) # add frames from map using index # to see difference between original and compressed accuracy_sum = 0 for frame_in in range(len(reconstructed_image_frames)): for pixel_index in range(len(reconstructed_image_frames[0])): accuracy_sum += ((reconstructed_image_frames[frame_in][pixel_index]-frames[frame_in][pixel_index])**2) accuracy = math.sqrt(accuracy_sum) print(accuracy) # to show image hh = np.asarray(reconstructed_image_frames).reshape(image_height,image_width) imii = Image.fromarray(hh) imii.show() # imii.save("savetest.png") stopped working if __name__ == '__main__' : main()
UTF-8
Python
false
false
19,529
py
2
main.py
1
0.594091
0.583645
0
356
53.859551
212
benkopolis/kmeanstriangleclustering
14,851,996,944,478
9d512b0cc8d4bca0a029a466b02525f429d5886b
366e2cdd40f6afef727cf24f71c70e555410fef5
/app/configs.py
b51147275d50497d1b5a81eb54e94c76273f7961
[]
no_license
https://github.com/benkopolis/kmeanstriangleclustering
20a1060040074dfd28125c8b87b2d387e6bf65f5
8714d70f1a3e6542d44cfe16e29ce97de64622ff
refs/heads/master
2020-12-24T13:17:10.643581
2017-03-22T20:31:07
2017-03-22T20:31:07
32,231,248
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from getfiles import get_fileid, get_filename class Config: """ Basic class for config """ def __init__(self, pipe_name, inputid, outputid): self.pipe_name = pipe_name self.input_id = inputid self.output_id = outputid def to_string(self): """ Converts to comand line params """ if self.pipe_name is not None and len(self.pipe_name) > 0: return "-pipe {}".format(self.pipe_name) else: return "" class ClusteringConfig(Config): """ Comand line config for clustering """ def __init__(self, input, out, picker, distance, iterations, pipeName): Config.__init__(self, pipeName, ["tfidf"], ["clustered", "tclustered"]) self.tfidf = input self.out = out self.picker = picker self.iterations = iterations self.distance = distance def to_string(self): return "-input {} -out {} -iter {} {} {} {}".format( get_filename(self.tfidf), get_filename(self.out), self.iterations, self.distance, self.picker, Config.to_string(self)) class TfidfConfig(Config): """ Tfidf config clas """ def __init__( self, stemFile, stopOut, stopStats, stopIn, tfidf, minVariation, minDocFreq, pipeName): Config.__init__(self, pipeName, ["stem", "stop"], ["tfidf", "stop"]) self.stem = stemFile self.stop_out = stopOut self.stop_in = stopIn self.stop_stats = stopStats self.tfidf = tfidf self.variation = minVariation self.doc_freq = minDocFreq def to_string(self): if self.stop_in is not None: return "-stem {} -istop {} -tfidf {} {}".format( get_filename(self.stem), get_filename(self.stop_in), get_filename(self.tfidf), Config.to_string(self)) else: return \ "-stem {} -stop {} -stop_stats {} -tfidf {} -min_variation {} -min_docfreq {} {}" \ .format(get_filename(self.stem), get_filename(self.stop_out), get_filename(self.stop_stats), get_filename(self.tfidf), self.variation, self.doc_freq, Config.to_string(self)) class RandConfig(Config): """ Rand config class """ def __init__(self, partOne, partTwo, pipe_name): Config.__init__(self, pipe_name, ["clustered", "tclustered"], []) self.first_partition = partOne self.second_partition = partTwo def to_string(self): return "-randindex -pone {} -ptwo {} {}".format( get_filename(self.first_partition), get_filename(self.second_partition), Config.to_string(self)) class VariationOfInformationConfig(Config): """ Variation of information config class """ def __init__(self, partOne, partTwo, pipe_name): Config.__init__(self, pipe_name, ["clustered", "tclustered"], []) self.first_partition = partOne self.second_partition = partTwo def to_string(self): return "-varoi -pone {} -ptwo {} {}".format( get_filename(self.first_partition), get_filename(self.second_partition), Config.to_string(self)) class SilhouetteConfig(Config): """ Silhouette config class """ def __init__(self, partition, tfidf, distance_param, pipe_name): Config.__init__(self, pipe_name, ["tfidf", "clustered", "tclustered"], []) self.partition = partition self.tfidf = tfidf self.distance = distance_param def to_string(self): return "-silhouette -partition {} -tfidf {} {} {}".format( get_filename(self.partition), get_filename(self.tfidf), self.distance, Config.to_string(self))
UTF-8
Python
false
false
4,063
py
201
configs.py
173
0.537042
0.536795
0
128
30.734375
95
robo-monk/jolenejs
4,088,808,872,311
e1bbcf73133bcada1f7f58efb2a74dc500c9e45d
b78dca0ad948d6e2ec11435f951b71774d7d1781
/.pnpm/scripts/build
0d6ff8fb563070a97a1c0dc306803a150aaa7d1b
[]
no_license
https://github.com/robo-monk/jolenejs
ca4d81cba39ad5eaa8eb4df78ccb6b9a35fb4714
89d1525cbd45d039ac3ada31e075a6a21438fed0
refs/heads/master
2023-04-07T12:25:10.240284
2021-04-15T11:40:45
2021-04-15T11:40:45
358,022,840
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/local/bin/python3 from script import * package_manager = pkg_manager c = spawn(f"Bundling with {package_manager}...") shell(f"{package_manager} run build") c.done()
UTF-8
Python
false
false
176
7
build
5
0.704545
0.698864
0
10
16.7
48
Inspector007/EmployeeManagementSystem
2,731,599,226,576
793f8ab08f7c8c2eba80896e42879cc0133029fc
a2898e8922d11c4ac04847373969eea12cfa0a68
/restapi/serializers.py
53c0ec5e773cc4188abadc348b8f51aca7497202
[]
no_license
https://github.com/Inspector007/EmployeeManagementSystem
39c043116782e713fe5e48157637ff08bb617b7f
25cab900d988775af298d39c1c53fb4497b87c7d
refs/heads/master
2020-06-11T08:02:10.174968
2018-11-26T05:23:27
2018-11-26T05:23:27
75,727,730
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib.auth.models import User, Group from rest_framework import serializers from empapp.models import Employee class EmployeeSerializers(serializers.ModelSerializer): class Meta: model = Employee fields = ('empName', 'empEmail', 'empPan') class EmployeeUserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('url', 'username', 'email', 'groups') class EmployeeGroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ('url', 'name')
UTF-8
Python
false
false
582
py
12
serializers.py
7
0.707904
0.707904
0
20
28.15
70
vijay033/LegoMaker
13,048,110,680,502
36fcecc1503eb30911e360bfdbe2a85c282e7389
a9356a0ac1afd3f7237e3ec8ec780bfde58947a4
/LEGOMAKER/server.py
39f06cc4b9334399cf3359d68bd515323d55d201
[]
no_license
https://github.com/vijay033/LegoMaker
8f632820357be1e8c4d1d631535d9c571fe73886
8c53ec91f6968caa85a0d14f1c4075e7ccf06ff0
refs/heads/master
2022-09-12T12:48:04.161362
2020-06-01T01:18:02
2020-06-01T01:18:02
261,515,585
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import zerorpc from image import Image import os import glob from color_generator import Color_Generator from filters import * IP = 'tcp://0.0.0.0' PORT = '4000' class MosaicServer(object): """ Creates a server for generating Mosaics as a service, using zerorpc. """ def __init__(self): super(MosaicServer, self).__init__() color_generator = Color_Generator() def load_color_palettes(): pattern = os.path.dirname(__file__) + '/resources/*.csv' for filename in glob.iglob(pattern): palette_name = os.path.splitext(os.path.basename(filename))[0] color_generator.load_palette(palette_name, filename) load_color_palettes() self.color_generator = color_generator def generate_mosaic(self, input_base64, num_clusters, img_length, tile_size, palette_name): """ Generates a mosaic from a base64 filedata string. """ img = Image(img_length) img \ .load_str(input_base64) \ .apply_filter(QuantizeFilter(num_clusters)) \ .apply_filter(ConstrainPaletteFilter(self.color_generator, palette_name)) \ .apply_filter(BuildMapFilter(tile_size)) output_base64 = img.dump_str_base64('png') print ('image generated..') return output_base64 def main(): server = zerorpc.Server(MosaicServer()) server.bind(IP + ":" + PORT) server.run() if __name__ == '__main__': main()
UTF-8
Python
false
false
1,553
py
21
server.py
6
0.591114
0.577592
0
51
28.45098
95
fzk466569/python_tkinter
3,848,290,718,181
7531f25e4ce9c2e2086453aa9da2993cba5cdeec
4ad0cfa350552458df8a0270038ed436bd1d06f4
/util/__init__.py
5a82d334e231f4dc227935d589427c494c15d429
[]
no_license
https://github.com/fzk466569/python_tkinter
4b2e505f91bc4f73d632bb4fe029bd3a3b07c590
8c63ac171d171cd13c7891426841279f2ef53262
refs/heads/master
2021-01-21T11:26:38.127214
2017-08-31T13:15:27
2017-08-31T13:15:27
102,001,271
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # @Time : 2017/5/3 15:31 import hashlib def md5(str): m = hashlib.md5() m.update(str) return m.hexdigest() if __name__ == '__main__': print(md5('111'.encode('utf-8')))
UTF-8
Python
false
false
231
py
53
__init__.py
53
0.545455
0.467532
0
13
16.846154
37
iskandr/parakeet
9,517,647,549,805
ddbe0f30b12a73f335bc7e82536554524ba8ff98
edf31957838a65e989d5eb5e8118254ac2413fc8
/parakeet/analysis/offset_analysis.py
b6b163fb97b451bba47f1caf75776778a1152030
[ "BSD-3-Clause" ]
permissive
https://github.com/iskandr/parakeet
e35814f9030b9e8508a7049b62f94eee5b8c5296
d9089f999cc4a417d121970b2a447d5e524a3d3b
refs/heads/master
2021-07-18T19:03:05.666898
2019-03-13T17:20:20
2019-03-13T17:20:20
5,889,813
69
7
NOASSERTION
false
2021-07-17T21:43:03
2012-09-20T16:54:18
2021-07-15T15:01:11
2019-03-13T17:20:21
8,168
232
13
1
Python
false
false
from .. import prims from .. syntax import Var, PrimCall, Const from syntax_visitor import SyntaxVisitor class OffsetAnalysis(SyntaxVisitor): """Determine static offset relationships between variables""" def __init__(self): # map from variable 'x' to list of variable offset pairs # [ ('y', 4), ('z', -1), ...] self.known_offsets = {} def update(self, x, y, k): if x == y: assert k == 0, \ "Impossible %s = %s + %d" % (x,y,k) if x in self.known_offsets: x_offsets = self.known_offsets[x] else: x_offsets = set([]) x_offsets.add( (y,k) ) if y in self.known_offsets: y_offsets = self.known_offsets[y] else: y_offsets = set([]) for (z, k2) in y_offsets: x_offsets.add( (z, k2 + k) ) self.known_offsets[x] = x_offsets self.known_offsets[y] = y_offsets def visit_merge(self, merge): for (k, (l,r)) in merge.iteritems(): if l.__class__ is Var and \ r.__class__ is Var and \ l.name in self.known_offsets and \ r.name in self.known_offsets: left = self.known_offsets[l.name] right = self.known_offsets[r.name] self.known_offsets[k] = left.intersection(right) def visit_PrimCall(self, expr): if expr.prim is prims.add: x, y = expr.args if x.__class__ is Var and y.__class__ is Const: return (x.name, int(y.value)) elif y.__class__ is Var and x.__class__ is Const: return (y.name, int(x.value)) elif expr.prim is prims.subtract: x, y = expr.args if x.__class__ is Var and y.__class__ is Const: return (x.name, -int(y.value)) return None def visit_Assign(self, stmt): if stmt.lhs.__class__ is Var: if stmt.rhs.__class__ is PrimCall: rhs = self.visit_PrimCall(stmt.rhs) if rhs is not None: x = stmt.lhs.name (y, offset) = rhs self.update(x, y, offset) self.update(x, y, offset) self.update(y, x, -offset) elif stmt.rhs.__class__ is Var: x = stmt.lhs.name y = stmt.rhs.name self.update(x, y, 0) self.update(y, x, 0) def visit_fn(self, fn): SyntaxVisitor.visit_fn(self, fn) return self.known_offsets
UTF-8
Python
false
false
2,299
py
321
offset_analysis.py
315
0.555894
0.552849
0
77
28.844156
63
kaifsadri/AdventOfCode2020
6,665,789,289,553
4bd37e01ad88bd4ef3229ed13e586827bbfad934
a7fde19cd8fd33552bebfa945bed9e6d557ccea6
/03_1.py
4cfa4f57cd88e652fc058c7cd0852c5c92ae5c55
[]
no_license
https://github.com/kaifsadri/AdventOfCode2020
cfe4667bc6f781c459190887ba107d0b9e4e3be6
e9cab48f5841c029d3984616ac0ac2f61a14f1b4
refs/heads/main
2023-02-04T11:07:24.918261
2020-12-27T01:22:52
2020-12-27T01:22:52
318,400,525
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
L = open("input_03.txt").readlines() right = 3 down = 1 x, y = 0, 0 l = len(L[0]) - 1 result = 0 while y < len(L): if "#" == L[y][x % l]: result += 1 x += right y += down print(f"Answer is: {result}")
UTF-8
Python
false
false
224
py
41
03_1.py
41
0.477679
0.433036
0
16
13.0625
36
OnabanjoTitus/Python
8,744,553,438,789
3b26131a34ea9298655d5133668b6bde1c688ffd
79a19dcb0b3485416b5a216a0c762756d744c6eb
/chapter3Exercises/Palindromes.py
abc184c51c26cbfc1c2f433c11609af0d837d863
[]
no_license
https://github.com/OnabanjoTitus/Python
a18b51395428c6f8fcd0a6009256f253efea38a0
6e1fbd2e73d0af0da8503ae10d8afad810127468
refs/heads/main
2023-04-19T03:09:31.033037
2021-04-25T22:02:43
2021-04-25T22:02:43
330,201,801
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import SeparatingTheDigitsInAnInteger if SeparatingTheDigitsInAnInteger.number1 == SeparatingTheDigitsInAnInteger.number8 and \ SeparatingTheDigitsInAnInteger.number3 == SeparatingTheDigitsInAnInteger.number7: print(SeparatingTheDigitsInAnInteger.number, "Is a palindrome") else: print(SeparatingTheDigitsInAnInteger.number, "Is not a Palindrome")
UTF-8
Python
false
false
368
py
35
Palindromes.py
35
0.826087
0.815217
0
6
59.666667
89
jannotti/special-a-sudoku
16,123,307,230,174
493d1443f237f793c4f941e10953f7ec3ae44e58
8c66216bf7ca7a05c1535142e400cf6962df7288
/check.py
0b6d17ba069357cc338d6121b1b74263a6f03e85
[]
no_license
https://github.com/jannotti/special-a-sudoku
2376b53f6cf31d98a4698c4f50ae3df66995afa2
35026f31a8b447fd1301667afbde7661c92be30b
refs/heads/master
2020-03-23T09:53:16.340741
2018-08-17T12:14:54
2018-08-17T12:14:54
141,413,199
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def digits(s): d=[] for ch in s: if ch.isdigit(): d.append(int(ch)) else: d.append(None) return d def board(d): for row in range(9): a = d[row*9:(row+1)*9] b.append(string_int(a)) return b def row_ok (digits,r): for row in range(9): mylist = [] for k in b: if k not in mylist: mylist.append(k) else: if type(k) == int: return True return False def box_ok (board,b): myset = [] lst = [] for row in range(4): for row in board: a = d[row*3:(row+1)*3] b.append(row_int(a)) for row in board: lst.append(row[co]) return not repeat_int(lst) for col in range(4): for col in lst: c = d[col*3:(col+1)*3] d.append(col_int(c)) return not repeat_int(bc) print(row_ok(["12345_"],1)) print(row_ok([[1,2,None,2],[1,2,3,4],[1,2,2,3]],3))
UTF-8
Python
false
false
967
py
19
check.py
10
0.475698
0.44364
0
44
20.977273
51
tjslezak/pyform
14,568,529,082,874
d462b8f7ba848756bbefb7eab25856d485fe2107
d3ac994d49db9a6f44fe91d427362f7f7fd02329
/outline_analysis/read_tps_outlines.py
23975e2a4668c2fdc05d3fe877b08e84ef6021ea
[ "BSD-3-Clause" ]
permissive
https://github.com/tjslezak/pyform
8794e9e1e3ceae804a02a89eef9233fe4154c91c
4741f29b506e13817b3f959385f8c998ba6af6a9
refs/heads/master
2021-09-07T00:04:55.560534
2018-02-13T21:31:49
2018-02-13T21:31:49
103,463,758
0
1
BSD-3-Clause
false
2018-02-13T21:31:50
2017-09-13T23:59:02
2017-10-10T01:40:05
2018-02-13T21:31:50
4
0
1
0
Python
false
null
import pandas as pd import numpy as np def pyTPStoDict(tpsPath): tpsFile = open(tpsPath, 'r') tpsDict = {'id':[], 'image':[], 'x':[], 'y':[], 'lm':[], 'scale': []} numLand = 0 for line in tpsFile: if line[0] == 'L': numLand = int(line.split('=')[1]) temp = [int(line.split('=')[1])] tpsDict['lm'].extend([item for item in temp for i in range(numLand)]) elif line[:2] == 'IM': imageFu = line.split('=')[1] imageFu.rstrip() imageFu = imageFu.split('.')[0] temp = [imageFu] tpsDict['image'].extend([item for item in temp for i in range(numLand)]) elif line[:2] == 'ID': temp = [int(line.split('=')[1])] tpsDict['id'].extend([item for item in temp for i in range(numLand)]) elif line[0] == 'S': temp = [float(line.split('=')[1])] tpsDict['scale'].extend([item for item in temp for i in range(numLand)]) else: tempxy = line.split(' ') tpsDict['x'].append(float(tempxy[0])) tpsDict['y'].append(float(tempxy[1])) tpsFile.close() return tpsDict def main(): tpsFilePath = "exaSpec.TPS" nativePythonTPS = pyTPStoDict(tpsFilePath) pandasTPS = pd.DataFrame(nativePythonTPS) print(pandasTPS) if __name__ == "__main__": main()
UTF-8
Python
false
false
1,380
py
8
read_tps_outlines.py
3
0.523188
0.513768
0
39
34.384615
84
lishaohsuai/FSK_communication
10,290,741,676,956
0a4dc529d5cb7a9d2a2d27d9cca8264a1b523382
7b552713e527b73e66d21f3d0fb129a56a2ee55e
/source/test_audio.py
a62731c5e99a553752bc8f4fa6291860b24d778d
[]
no_license
https://github.com/lishaohsuai/FSK_communication
4591594686063447a9d6042281755a927560c861
c3929cc4c8cf2147413494b7f3b42e64ff810f97
refs/heads/master
2020-12-02T22:20:39.788698
2017-07-03T14:20:28
2017-07-03T14:20:28
96,117,647
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*-coding='utf-8' import wave from pyaudio import PyAudio,paInt16 from source import decode class audio_test: def __init__(self): self.framerate=48000 self.NUM_SAMPLES=2000#9600# self.channels=1 self.sampwidth = 2 self.TIME = 8 self.chunk = 1024 self.stream = None # self.stream_open() def save_wave_file(self,filename,data): ''' save teh date to the wavefile''' wf=wave.open(filename,'wb') wf.setnchannels(self.channels) wf.setsampwidth(self.sampwidth) # 暂时不清楚这个的作用 wf.setframerate(self.framerate) # 采样频率 wf.writeframes(b"".join(data)) wf.close() def stream_open(self): pa = PyAudio() self.stream=pa.open(format = paInt16,channels=1, rate=self.framerate,input = True, frames_per_buffer=self.NUM_SAMPLES ) # print(type(self.stream)) def stream_clase(self): self.stream.close() def my_record(self): pa = PyAudio() self.stream=pa.open(format = paInt16,channels=1, rate=self.framerate,input = True, frames_per_buffer=self.NUM_SAMPLES ) my_buf=[] count = 0 while count<self.TIME*20:#控制录音事件 string_audio_data = self.stream.read(self.chunk) my_buf.append(string_audio_data) count+=1 print('.',end = " ") print('.') print(my_buf) self.save_wave_file('01.wav', my_buf) return my_buf # stream.close() def play(self): wf=wave.open(r"01.wav",'rb') p=PyAudio() stream=p.open(format=p.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(),rate=wf.getframerate(),output=True) number = wf.getnframes() while True: data = wf.readframes(1024) number = number - self.chunk if (number < self.chunk): break if data=="":break stream.write(data) stream.close() p.terminate() # 释放资源 def ploy_data(y, t ,singal): N_prntbits=singal.l_N_prntbits Fdev=singal.l_Fdev Fbit=singal.l_Fbit Fs=singal.l_Fs N_FFT = len(y) #// 10 pl.subplot(3,1,1) # ff, tt, Sxx = si.spectrogram(y, Fs) # pl.pcolormesh(tt, ff, Sxx) # 时间-频谱图 plt.specgram(y, NFFT=512, Fs=48000, noverlap=480) pl.xlabel('Time (s)') pl.ylabel('Frequency (Hz)') pl.title('Original VCO output versus time') pl.subplot(3,1,2) pl.plot(t[0:Fs*N_prntbits//Fbit],y[0:Fs*N_prntbits//Fbit]) # 时间-幅度 完整波形图 pl.xlabel('Time (s)') pl.ylabel('Amplitude (V)') pl.title('Amplitude of carrier versus time') pl.grid(True) freqs = np.linspace(0, Fs//2, N_FFT//2 + 1) # xs = y[:N_FFT] #* si.hann(N_FFT, sym=0) xf = np.fft.rfft(xs)/N_FFT xfp = 20*np.log10(np.clip(np.abs(xf), 1e-20, 1e100))# cut top and low pl.subplot(3,1,3) pl.plot(freqs,xfp[:len(freqs)])# 频谱图 pl.xlabel('Frequence (s)') pl.ylabel('Amplitude (V)') pl.title('Amplitude & Frequence') pl.grid(True) pl.show() if __name__=="__main__": test= audio_test() test.my_record() print("over") test.play()
UTF-8
Python
false
false
3,490
py
8
test_audio.py
8
0.535798
0.512031
0
110
29.963636
81
asnani04/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
1,692,217,149,799
e406fcd1a13235b7f09de5ba3e38411f218d708d
3c91be419db18ead1f45f824e209418319eda249
/model/screen/fer_demo.py
33d9407c091ea9c44814efb811b6ed904ccebc7e
[ "MIT" ]
permissive
https://github.com/asnani04/Efficient-Facial-Feature-Learning-with-Wide-Ensemble-based-Convolutional-Neural-Networks
0c37845ef7b9df2334bfdd141a373d87784dfa8d
0b77fdbc4264210ad3f7ab99deb033d5d81bb1cd
refs/heads/master
2022-11-10T20:29:50.282212
2020-06-22T23:09:56
2020-06-22T23:09:56
272,285,864
0
1
MIT
true
2020-06-14T21:24:44
2020-06-14T21:24:43
2020-05-16T21:18:33
2020-06-06T04:03:26
116,932
0
0
0
null
false
false
#!/usr/bin/env python # -*- coding: utf-8 -*- """ GUI of the facial expression recognition (FER) demo """ __author__ = "Henrique Siqueira" __email__ = "siqueira.hc@outlook.com" __license__ = "MIT license" __version__ = "1.0" # External Libraries import numpy as np import cv2 # Modules from model.utils import uimage class FERDemo: """ This class implements the GUI of the facial expression recognition (FER) demo. """ # Default values _DEFAULT_SCREEN_SIZE_ID = 1 _DEFAULT_WINDOW_NAME = "Siqueira_et_al_AAAI_2020" _DEFAULT_DISPLAY_INDIVIDUAL_CLASSIFICATION = False _DEFAULT_DISPLAY_GRAPH_ENSEMBLE = True # Display _SCREEN_SIZE = [(1920, 1080), (1440, 900), (1024, 768)] _TEXT_PARAM_SCALE = [0.9, 0.8, 0.7] _TEXT_PARAM_THICKNESS = [2, 2, 2] _INPUT_IMAGE_SCALE_MAX = 0.9 _INPUT_IMAGE_SCALE_MIN = 0.4 # Display: blocks _BLOCK_NUM_BLOCKS = 10 # Ensemble size _BLOCK_INIT_POS_TEXT_NETWORK = [(0, 30), (0, 20), (0, 20)] _BLOCK_INIT_POS_IMAGE = [(4, 170), (4, 145), (4, 125)] _BLOCK_IMAGE_SIZE = [(100, 100), (75, 75), (60, 60)] _BLOCK_INIT_POS_TEXT_EMOTION = [(300, 55), (240, 45), (195, 40)] _BLOCK_INIT_POS_TEXT_AROUSAL = [(470, 40), (380, 25), (300, 25)] _BLOCK_INIT_POS_TEXT_VALENCE = [(470, 85), (380, 65), (300, 55)] _BLOCK_INIT_POS_BAR_AROUSAL = [(550, 15), (450, 5), (350, 7)] _BLOCK_FINAL_POS_BAR_AROUSAL = [(920, 45), (700, 30), (500, 27)] _BLOCK_INIT_POS_BAR_VALENCE = [(550, 60), (450, 45), (350, 42)] _BLOCK_FINAL_POS_BAR_VALENCE = [(920, 90), (700, 70), (500, 62)] # Ensemble only >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> _BLOCK_INIT_POS_TEXT_NETWORK_ENSEMBLE = [(10, 50), (10, 40), (10, 40)] _BLOCK_INIT_POS_IMAGE_ENSEMBLE = [(80, 10), (60, 10), (60, 10)] _BLOCK_IMAGE_SIZE_ENSEMBLE = [(200, 200), (150, 150), (120, 120)] _BLOCK_INIT_POS_TEXT_EMOTION_ENSEMBLE = [(10, 350), (10, 270), (10, 220)] _BLOCK_INIT_POS_TEXT_ACTIVATION = [(10, 420), (10, 330), (10, 260)] _BLOCK_INIT_POS_TEXT_PLEASANT = [(10, 500), (10, 410), (10, 320)] _BLOCK_INIT_POS_TEXT_UNPLEASANT = [(10, 580), (10, 490), (10, 380)] _BLOCK_INIT_POS_BAR_ACTIVATION = [(10, 435), (10, 345), (10, 270)] _BLOCK_FINAL_POS_BAR_ACTIVATION = [(600, 465), (450, 370), (300, 290)] _BLOCK_INIT_POS_BAR_PLEASANT = [(10, 515), (10, 425), (10, 330)] _BLOCK_FINAL_POS_BAR_PLEASANT = [(600, 545), (450, 450), (300, 350)] _BLOCK_INIT_POS_BAR_UNPLEASANT = [(10, 595), (10, 505), (10, 390)] _BLOCK_FINAL_POS_BAR_UNPLEASANT = [(600, 635), (450, 530), (300, 410)] _BLOCK_INIT_POS_GRAPH = [(660, 10), (580, 10), (460, 10)] _BLOCK_SAMPLE_GRAPH = 16 _BLOCK_THICKNESS_GRAPH = [3, 3, 3] _BLOCK_FONT_SIZE_GRAPH = [14, 12, 10] _BLOCK_OFFSET_GRAPH = [60, 60, 40] _BLOCK_SIZE_GRAPH = [(8, 3.2), (7, 3), (5, 2.5)] # Ensemble only <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # Display: maximum values _MAX_AROUSAL = 1.0 _MAX_VALENCE = 1.0 # Colours GREYSCALE _COLOUR_G_DARK_GREY = 50 # Colours BGR _COLOUR_BGR_GREEN = (0, 255, 0) _COLOUR_BGR_RED = (0, 0, 255) _COLOUR_BGR_WHITE = (255, 255, 255) _COLOUR_BGR_BLACK = (0, 0, 0) _COLOUR_BGR_ORANGE = (0, 125, 255) _COLOUR_BGR_BLUE = (255, 0, 0) _COLOUR_BGR_DARK_RED = (0, 0, 130) _COLOUR_BGR_DARK_GREEN = (60, 130, 0) _COLOUR_BGR_DARK_BLUE = (130, 60, 0) _COLOUR_BGR_DARK_GREY = (50, 50, 50) # Messages _TEXT_BLANK_INPUT = "No frame to process." _TEXT_NO_FACE = "No face has been detected." _TEXT_ENSEMBLE = "Ensemble:" _TEXT_BRANCH = "Branch {}:" _TEXT_AROUSAL = "Aro:" _TEXT_VALENCE = "Val:" _TEXT_ACTIVATION = "Activation:" _TEXT_PLEASANT = "Pleasant:" _TEXT_UNPLEASANT = "Unpleasant:" _TEXT_ACTIVATION_WITHOUT_TWO_DOTS = "Activation" _TEXT_PLEASANT_UNPLEASANT = "Pleasant / Unpleasant" def __init__(self, window_name=_DEFAULT_WINDOW_NAME, screen_size=_DEFAULT_SCREEN_SIZE_ID, display_individual_classification=_DEFAULT_DISPLAY_INDIVIDUAL_CLASSIFICATION, display_graph_ensemble=_DEFAULT_DISPLAY_GRAPH_ENSEMBLE): """ Initialize GUI of the FER demo. :param window_name: (string) The name of the window :param screen_size: ((int, int)) Tuple of int values for width and height, respectively. """ # Screen components self._fer = None self._input_image = None self._background = None self._plot_arousal = [] self._plot_valence = [] # Screen self._window_name = window_name self._screen_size = screen_size - 1 self._width, self._height = FERDemo._SCREEN_SIZE[self._screen_size] self._display_individual_classification = display_individual_classification self._display_graph_ensemble = display_graph_ensemble # Container parameters self._container_width, self._container_height = (int(self._width // 2), int(self._height)) self._container_center_position = np.array([self._container_width // 2, self._container_height // 2], dtype=np.int) self._input_container = None self._output_container = None self._input_container_initial_position = np.array([0, 0], dtype=np.int) self._output_container_initial_position = np.array([0, self._width // 2], dtype=np.int) # Output blocks self._output_block_height = (self._container_height // FERDemo._BLOCK_NUM_BLOCKS) self._output_block_height_ensemble = self._container_height self._output_block_width = self._container_width # Screen initialization self._draw_background() self._screen = self._get_container(0, 0, self._height, self._width) self._blank_screen() cv2.namedWindow(self._window_name, cv2.WINDOW_AUTOSIZE) def _blank_screen(self): """ Create a blank screen without an input image and outputs. """ self._draw_input_container(True) self._draw_output_container(True) self._draw_screen() def _draw_screen(self): self._screen[:, :self._output_container_initial_position[1], :] = self._input_container self._screen[:, self._output_container_initial_position[1]:, :] = self._output_container def _draw_input_container(self, is_blank): self._input_container = self._get_container(0, 0, self._container_height, self._container_width) if is_blank: uimage.draw_text(self._input_container, FERDemo._TEXT_BLANK_INPUT, self._container_center_position - 60, FERDemo._COLOUR_BGR_WHITE, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) else: # Compute resize factor 'f' h, w, c = self._fer.input_image.shape h_c, w_c, c_c = self._input_container.shape h_ratio = h / h_c w_ratio = w / w_c if h_ratio > w_ratio: if h < (self._container_height * FERDemo._INPUT_IMAGE_SCALE_MIN): f = (self._container_height * FERDemo._INPUT_IMAGE_SCALE_MIN) / float(h) else: f = (self._container_height * FERDemo._INPUT_IMAGE_SCALE_MAX) / float(h) else: if w < (self._container_height * FERDemo._INPUT_IMAGE_SCALE_MIN): f = (self._container_width * FERDemo._INPUT_IMAGE_SCALE_MIN) / float(w) else: f = (self._container_width * FERDemo._INPUT_IMAGE_SCALE_MAX) / float(w) # Resize input image self._input_image = uimage.resize(self._fer.input_image, f=f) # Set input image to the container h, w, c = self._input_image.shape x = int((self._container_height // 2) - (h // 2)) y = int((self._container_width // 2) - (w // 2)) self._input_container[x:(x + h), y:(y + w), :] = self._input_image def _draw_output_container(self, is_blank): self._output_container = self._get_container(0, self._output_container_initial_position[1], self._container_height, self._container_width) if is_blank: uimage.draw_text(self._output_container, FERDemo._TEXT_BLANK_INPUT, self._container_center_position - 60, FERDemo._COLOUR_BGR_WHITE, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) else: if self._fer.face_image is None: uimage.draw_text(self._output_container, FERDemo._TEXT_NO_FACE, self._container_center_position - 210, FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) else: # Display ensemble and individual classifications if self._display_individual_classification: # Resize face image face_image = uimage.resize(self._fer.face_image, FERDemo._BLOCK_IMAGE_SIZE[self._screen_size]) # Generate block of the ensemble prediction block = self._generate_block(FERDemo._TEXT_ENSEMBLE, self._fer.list_emotion[-1], self._fer.list_affect[-1][0], self._fer.list_affect[-1][1], face_image=face_image, x=0, y=self._output_container_initial_position[1]) # Draw block ot the ensemble prediction uimage.draw_image(self._output_container, block, (0, 0)) # Branches for branch in range(len(self._fer.list_emotion) - 1): # Superimpose saliency map on input face image grad_cam = self._fer.get_grad_cam(branch) if not (grad_cam is None): grad_cam = uimage.superimpose(grad_cam, face_image) # Generate block of the branch prediction block = self._generate_block(FERDemo._TEXT_BRANCH.format(branch + 1), self._fer.list_emotion[branch], self._fer.list_affect[branch][0], self._fer.list_affect[branch][1], grad_cam, x=self._output_block_height * (branch + 1), y=self._output_container_initial_position[1]) # Draw block of the branch prediction uimage.draw_image(self._output_container, block, (self._output_block_height * (branch + 1), 0)) # Display ensemble classification in detail else: # Ensemble face_image = uimage.resize(self._fer.face_image, FERDemo._BLOCK_IMAGE_SIZE_ENSEMBLE[self._screen_size]) block = self._generate_block_ensemble(FERDemo._TEXT_ENSEMBLE, self._fer.list_emotion[-1], self._fer.list_affect[-1][0], self._fer.list_affect[-1][1], face_image=face_image, x=0, y=self._output_container_initial_position[1]) uimage.draw_image(self._output_container, block, (0, 0)) def _generate_block(self, network_name, emotion, valence, arousal, face_image=None, x=0, y=0): block = self._get_container(x, y, self._output_block_height, self._output_block_width) # Image if not (face_image is None): uimage.draw_image(block, face_image, FERDemo._BLOCK_INIT_POS_IMAGE[self._screen_size]) # Text: Ensemble uimage.draw_text(block, network_name, FERDemo._BLOCK_INIT_POS_TEXT_NETWORK[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Emotion uimage.draw_text(block, emotion, FERDemo._BLOCK_INIT_POS_TEXT_EMOTION[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Arousal uimage.draw_text(block, FERDemo._TEXT_AROUSAL, FERDemo._BLOCK_INIT_POS_TEXT_AROUSAL[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Valence uimage.draw_text(block, FERDemo._TEXT_VALENCE, FERDemo._BLOCK_INIT_POS_TEXT_VALENCE[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Bar: Arousal uimage.draw_horizontal_bar(block, arousal, FERDemo._MAX_AROUSAL, FERDemo._BLOCK_INIT_POS_BAR_AROUSAL[self._screen_size], FERDemo._BLOCK_FINAL_POS_BAR_AROUSAL[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size], FERDemo._COLOUR_BGR_DARK_BLUE) # Bar: Valence uimage.draw_horizontal_bar(block, np.abs(valence), FERDemo._MAX_VALENCE, FERDemo._BLOCK_INIT_POS_BAR_VALENCE[self._screen_size], FERDemo._BLOCK_FINAL_POS_BAR_VALENCE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size], FERDemo._COLOUR_BGR_DARK_RED if valence < 0.0 else FERDemo._COLOUR_BGR_DARK_GREEN) return block def _generate_block_ensemble(self, network_name, emotion, valence, arousal, face_image=None, x=0, y=0): block = self._get_container(x, y, self._output_block_height_ensemble, self._output_block_width) # Image if not (face_image is None): uimage.draw_image(block, face_image, FERDemo._BLOCK_INIT_POS_IMAGE_ENSEMBLE[self._screen_size]) # Text: Ensemble uimage.draw_text(block, network_name, FERDemo._BLOCK_INIT_POS_TEXT_NETWORK_ENSEMBLE[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Emotion uimage.draw_text(block, emotion, FERDemo._BLOCK_INIT_POS_TEXT_EMOTION_ENSEMBLE[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Activation uimage.draw_text(block, FERDemo._TEXT_ACTIVATION + " {:.2f}".format(arousal), FERDemo._BLOCK_INIT_POS_TEXT_ACTIVATION[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Pleasant uimage.draw_text(block, FERDemo._TEXT_PLEASANT + (" 0.00" if valence < 0 else " {:.2f}".format(valence)), FERDemo._BLOCK_INIT_POS_TEXT_PLEASANT[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Text: Unpleasant uimage.draw_text(block, FERDemo._TEXT_UNPLEASANT + (" {:.2f}".format(valence) if valence < 0 else " 0.00"), FERDemo._BLOCK_INIT_POS_TEXT_UNPLEASANT[self._screen_size], FERDemo._COLOUR_BGR_BLACK, FERDemo._TEXT_PARAM_SCALE[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size]) # Bar: Activation uimage.draw_horizontal_bar(block, arousal, FERDemo._MAX_AROUSAL, FERDemo._BLOCK_INIT_POS_BAR_ACTIVATION[self._screen_size], FERDemo._BLOCK_FINAL_POS_BAR_ACTIVATION[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size], FERDemo._COLOUR_BGR_DARK_BLUE) # Bar: Pleasant uimage.draw_horizontal_bar(block, 0.0 if valence < 0.0 else valence, FERDemo._MAX_VALENCE, FERDemo._BLOCK_INIT_POS_BAR_PLEASANT[self._screen_size], FERDemo._BLOCK_FINAL_POS_BAR_PLEASANT[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size], FERDemo._COLOUR_BGR_DARK_GREEN) # Bar: Unpleasant uimage.draw_horizontal_bar(block, np.abs(valence) if valence < 0.0 else 0.0, FERDemo._MAX_VALENCE, FERDemo._BLOCK_INIT_POS_BAR_UNPLEASANT[self._screen_size], FERDemo._BLOCK_FINAL_POS_BAR_UNPLEASANT[self._screen_size], FERDemo._TEXT_PARAM_THICKNESS[self._screen_size], FERDemo._COLOUR_BGR_DARK_RED) # Plot: Arousal and Valence if self._display_graph_ensemble: self._plot_arousal.append(arousal) self._plot_valence.append(valence) uimage.draw_graph(block, self._plot_arousal, self._plot_valence, FERDemo._BLOCK_INIT_POS_GRAPH[self._screen_size], FERDemo._BLOCK_SAMPLE_GRAPH, FERDemo._TEXT_ACTIVATION_WITHOUT_TWO_DOTS, FERDemo._TEXT_PLEASANT_UNPLEASANT, FERDemo._COLOUR_BGR_BLUE, FERDemo._COLOUR_BGR_ORANGE, FERDemo._BLOCK_THICKNESS_GRAPH[self._screen_size], FERDemo._BLOCK_OFFSET_GRAPH[self._screen_size], FERDemo._BLOCK_FONT_SIZE_GRAPH[self._screen_size], FERDemo._COLOUR_BGR_DARK_GREY, FERDemo._BLOCK_SIZE_GRAPH[self._screen_size]) return block def _draw_background(self): if (self._fer is None) or (self._fer.input_image is None): self._background = np.ones((self._height, self._width, 3), dtype=np.uint8) * FERDemo._COLOUR_G_DARK_GREY else: # Resize self._background = uimage.resize(self._fer.input_image, f=np.maximum( np.maximum(self._fer.input_image.shape[0] / self._height, self._fer.input_image.shape[1] / self._width), np.maximum(self._height / self._fer.input_image.shape[0], self._width / self._fer.input_image.shape[1]) ))[: self._height,:self._width,:] # Blur self._background = uimage.blur(uimage.blur(self._background, 40), 20) # Brightness mean = np.mean(self._background) gamma = 0.75 if mean > 100 else 1.5 mean = mean if mean > 50 else 100 self._background = np.clip((gamma * self._background) + mean, 0, 255).astype(np.uint8) def _get_container(self, x, y, h, w): return np.array(self._background[x:x+h, y:y+w, :]) def update(self, fer): """ Update screen. :param fer: (model.ml.fer.FER) An FER object. :return: void """ self._fer = fer # Background self._draw_background() self._draw_input_container(self._fer is None) self._draw_output_container(self._fer is None) self._draw_screen() def show(self): cv2.imshow(self._window_name, self._screen) def save(self): cv2.imwrite("new_image.jpg", self._screen) def is_running(self): return (cv2.waitKey(1) != 27) and (cv2.getWindowProperty(self._window_name, cv2.WND_PROP_VISIBLE) >= 1) def quit(self): cv2.destroyWindow(self._window_name)
UTF-8
Python
false
false
22,090
py
17
fer_demo.py
15
0.515844
0.488411
0
466
46.403433
243
goodok/sympy
3,229,815,412,790
b8f2cb5959aefc41ec35ab0a8f2b51d9b23757bf
270547cf06736356d7a6cdabd22a8395edaa8b59
/sympy/polys/tests/test_partfrac.py
4f4093373196f1c887bfb381e3b09574f3e9679c
[ "BSD-3-Clause" ]
permissive
https://github.com/goodok/sympy
f56fcc4a862ad3d4c5c09ad792ac576dc8f74594
de84ed2139125a755ea7b6ba91d945d9fbbe5ed9
refs/heads/master
2021-01-16T18:50:41.860305
2012-03-20T22:40:49
2012-03-20T22:40:49
1,414,177
3
0
null
true
2013-01-18T08:19:10
2011-02-26T09:19:37
2012-12-25T06:38:07
2012-05-10T17:51:55
180
null
0
2
Python
null
null
"""Tests for algorithms for partial fraction decomposition of rational functions. """ from sympy.polys.partfrac import ( apart_undetermined_coeffs, apart_full_decomposition, apart, ) from sympy import S, Poly, E, pi, I, Matrix, Eq, RootSum, Lambda, factor, together from sympy.utilities.pytest import raises from sympy.abc import x, y, a, b, c def test_apart(): assert apart(1) == 1 assert apart(1, x) == 1 f, g = (x**2 + 1)/(x + 1), 2/(x + 1) + x - 1 assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x+2)/(x+1), 1/(1 + x) - 1/(2 + x) assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x+1)/(x+5), -1/(5 + x)/4 + 1/(1 + x)/4 assert apart(f, full=False) == g assert apart(f, full=True) == g assert apart((E*x+2)/(x-pi)*(x-1), x) == \ 2 - E + E*pi + E*x + (E*pi + 2)*(pi - 1)/(x - pi) assert apart(Eq((x**2 + 1)/(x + 1), x), x) == Eq(x - 1 + 2/(x + 1), x) raises(NotImplementedError, "apart(1/(x + 1)/(y + 2))") def test_apart_matrix(): M = Matrix(2, 2, lambda i, j: 1/(x + i + 1)/(x + j)) assert apart(M) == Matrix([ [1/x - 1/(x + 1), (x + 1)**(-2) ], [1/(2*x) - (S(1)/2)/(x + 2), 1/(x + 1) - 1/(x + 2)], ]) def test_apart_symbolic(): f = a*x**4 + (2*b + 2*a*c)*x**3 + (4*b*c - a**2 + a*c**2)*x**2 + (-2*a*b + 2*b*c**2)*x - b**2 g = a**2*x**4 + (2*a*b + 2*c*a**2)*x**3 + (4*a*b*c + b**2 + a**2*c**2)*x**2 + (2*c*b**2 + 2*a*b*c**2)*x + b**2*c**2 assert apart(f/g, x) == 1/a - 1/(x + c)**2 - b**2/(a*(a*x + b)**2) assert apart(1/((x + a)*(x + b)*(x + c)), x) == \ 1/((a - c)*(b - c)*(c + x)) - 1/((a - b)*(b - c)*(b + x)) + 1/((a - b)*(a - c)*(a + x)) def test_apart_extension(): f = 2/(x**2 + 1) g = I/(x + I) - I/(x - I) assert apart(f, extension=I) == g assert apart(f, gaussian=True) == g f = x/((x - 2)*(x + I)) assert factor(together(apart(f))) == f def test_apart_full(): f = 1/(x**2 + 1) assert apart(f, full=False) == f assert apart(f, full=True) == -RootSum(x**2 + 1, Lambda(a, a/(x - a)), auto=False)/2 f = 1/(x**3 + x + 1) assert apart(f, full=False) == f assert apart(f, full=True) == RootSum(x**3 + x + 1, Lambda(a, (6*a**2/31 - 9*a/31 + S(4)/31)/(x - a)), auto=False) f = 1/(x**5 + 1) assert apart(f, full=False) == \ (-S(1)/5)*((x**3 - 2*x**2 + 3*x - 4)/(x**4 - x**3 + x**2 - x + 1)) + (S(1)/5)/(x + 1) assert apart(f, full=True) == \ -RootSum(x**4 - x**3 + x**2 - x + 1, Lambda(a, a/(x - a)), auto=False)/5 + (S(1)/5)/(x + 1) def test_apart_undetermined_coeffs(): p = Poly(2*x - 3) q = Poly(x**9 - x**8 - x**6 + x**5 - 2*x**2 + 3*x - 1) r = (-x**7 - x**6 - x**5 + 4)/(x**8 - x**5 - 2*x + 1) + 1/(x - 1) assert apart_undetermined_coeffs(p, q) == r p = Poly(1, x, domain='ZZ[a,b]') q = Poly((x + a)*(x + b), x, domain='ZZ[a,b]') r = 1/((x + b)*(a - b)) + 1/((x + a)*(b - a)) assert apart_undetermined_coeffs(p, q) == r
UTF-8
Python
false
false
3,066
py
212
test_partfrac.py
157
0.458252
0.403131
0
97
30.608247
119
arozans/idenface
3,427,383,907,518
608fe16ce7dd258db1337f7683189d416db31cd1
604005d7d1d5473e5c92ae93bd9e606a47e796dc
/test/data/tfrecord/conftest.py
e2bd4ea97c50d9cc83298ca77ffd8e79f60a363e
[]
no_license
https://github.com/arozans/idenface
278fe98c0360efdd73c617e7728fba27b35a2eda
fd3cdd0d1e112634a35b5f571d1acedf518ff3dc
refs/heads/master
2020-04-30T12:10:48.018092
2019-07-09T20:54:24
2019-07-09T20:54:24
176,820,147
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pytest from src.utils import utils, consts from testing_utils import tf_helpers tol = 1.e-2 @pytest.fixture() def thor_image_path(patched_home_dir): import urllib.request thor_path = patched_home_dir / "downloaded/thor_is_here.png" thor_path.parent.mkdir() image_address = 'https://i.stack.imgur.com/Cr57x.png' # image_address = 'https://liquipedia.net/commons/images/0/0d/ThorCE.jpg' urllib.request.urlretrieve(image_address, thor_path) assert utils.check_filepath(thor_path, exists=True, is_directory=False, is_empty=False) yield str(thor_path) thor_path.unlink() def _check_paired_result(first_batch, expected_images_values, labels): left_images, right_images, pair_labels, left_labels, right_labels = tf_helpers.unpack_batch(first_batch) assert len(left_images) == len(right_images) == len(pair_labels) == len(left_labels) == len( right_labels) == len(expected_images_values[0]) for left_image, left_expected in zip(left_images, expected_images_values[0]): assert np.allclose(left_image + 0.5, left_expected, rtol=tol, atol=tol) for right_image, right_expected in zip(right_images, expected_images_values[1]): assert np.allclose(right_image + 0.5, right_expected, rtol=tol, atol=tol) assert (pair_labels == labels[consts.PAIR_LABEL]).all() assert (left_labels == labels[consts.LEFT_FEATURE_LABEL]).all() assert (right_labels == labels[consts.RIGHT_FEATURE_LABEL]).all() def _check_result(first_batch, expected_images_values, labels): images, unpack_labels = tf_helpers.unpack_batch(first_batch) assert len(images) == len(unpack_labels) == len(expected_images_values) for image, expected in zip(images, expected_images_values): assert np.allclose(image + 0.5, expected, rtol=tol, atol=tol) assert (unpack_labels == labels[consts.LABELS]).all()
UTF-8
Python
false
false
1,893
py
91
conftest.py
89
0.708399
0.700475
0
41
45.170732
108
kinggodhj/assignment
2,336,462,254,927
fad9187fd562a1d7b64414a709cb4e3cde088d36
d54efcf18d2860adc7980bda3b7c77f74014b830
/test_custom.py
6b753f1570dfbc48f5114ab694cf4426c2cfdaab
[]
no_license
https://github.com/kinggodhj/assignment
30717d149f7f74ee653659a8b27699f76ac29ba5
e8791f32080341a4cd318325ed13ca19234f7ee0
refs/heads/master
2023-05-28T00:19:21.986520
2021-06-09T15:01:05
2021-06-09T15:01:05
373,506,264
0
0
null
false
2021-06-07T12:12:26
2021-06-03T12:52:40
2021-06-07T10:04:17
2021-06-07T12:12:25
311,548
0
0
0
Python
false
false
import sys import argparse import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import math from nltk.translate.bleu_score import sentence_bleu import time import pdb from model_custom import Seq2SeqTransformer, create_mask, greedy_decode, greedy_decode2 from prepare import build_vocab, setup DEVICE = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu') parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=1) parser.add_argument('--max_len', type=int, default=100) parser.add_argument('--emb_size', type=int, default=64) parser.add_argument('--nhead', type=int, default=8) parser.add_argument('--ffd_dim', type=int, default=64) parser.add_argument('--num_encoder_layers', type=int, default=1) parser.add_argument('--num_decoder_layers', type=int, default=1) parser.add_argument('--path', type=str, default='./model/') parser.add_argument('--epochs', type=int, default=50) args = parser.parse_args() MAX_LEN = args.max_len EMB_SIZE = args.emb_size NHEAD = args.nhead FFN_HID_DIM = args.ffd_dim NUM_ENCODER_LAYERS = args.num_encoder_layers NUM_DECODER_LAYERS = args.num_decoder_layers NUM_EPOCHS = args.epochs PATH = args.path sys.stdout = open('./generated/batch/%spremodel%s%s%s'%(args.batch_size, NUM_EPOCHS, EMB_SIZE, NUM_ENCODER_LAYERS), 'w') def get_bleu(model, vocab, test_iter): model.eval() bleu = 0 losses = 0 for idx, (src, tgt) in enumerate(test_iter): src = src.to(DEVICE) tgt = tgt.to(DEVICE) tgt_input = tgt[:-1, :] src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input, PAD) tgt_out = tgt[1:,:] ys = greedy_decode(model, src, src_mask, MAX_LEN, BOS, EOS) logits = greedy_decode2(model, src, src_mask, tgt_out.size(0), BOS, EOS) loss_fn = torch.nn.CrossEntropyLoss() loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) losses += loss.item() target = tgt.tolist() target = sum(target, []) target = list(map(str, target)) target = target[1:-1] pred = ys.tolist() pred = sum(pred, []) pred = pred[1:-1] generated = [] for p in pred: generated.append(vocab.itos[p]) print(*generated, sep=" ") def evaluate(model, test_iter): model.eval() losses = 0 for idx, (src, tgt) in enumerate(test_iter): src = src.to(DEVICE) tgt = tgt.to(DEVICE) tgt_input = tgt[:-1, :] src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input, PAD) logits = model(src, tgt_input, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, src_padding_mask) tgt_out = tgt[1:,:] loss_fn = torch.nn.CrossEntropyLoss() loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1)) losses += loss.item() return losses / len(test_iter) if __name__ == "__main__": train_data, voca_x, voca_y = setup("./train_x.0.txt", "./train_y.0.txt", MAX_LEN) source_file = "./test_source.txt" target_file = "./test_target.txt" test_data, _, _ = setup(source_file, target_file, MAX_LEN) train_iter = DataLoader(train_data, batch_size=1, shuffle=True, collate_fn=train_data.get_batch) test_iter = DataLoader(test_data, batch_size=1, shuffle=True, collate_fn=test_data.get_batch) SRC_VOCAB_SIZE = len(voca_x) TGT_VOCAB_SIZE = len(voca_y) EOS = voca_x['<eos>'] BOS = voca_x['<bos>'] PAD = voca_x['<pad>'] transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, NHEAD, EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE, FFN_HID_DIM) transformer = transformer.to(DEVICE) transformer.load_state_dict(torch.load(PATH)) #train_bleu = get_bleu(transformer, train_iter) get_bleu(transformer, voca_y, test_iter) #loss = evaluate(transformer, test_iter) #ppl = math.exp(loss) #train_loss = evaluate(transformer, train_iter) #train_ppl = math.exp(train_loss) #print('Train PPL:', train_ppl, 'Test PPL:', ppl)
UTF-8
Python
false
false
4,417
py
16
test_custom.py
6
0.616482
0.607426
0
135
30.718519
138
cjkpl/python-webpack-boilerplate
1,425,929,164,511
1afddc3cd0160d690921cffb501fcf3a16fa2878
f4b42f433d201aada16858e7bd99be771d2026f6
/tests/tests_django/es6_scss/test_npm_commands.py
044db33b57f894dae53c66340c52930d2e22bb3e
[]
no_license
https://github.com/cjkpl/python-webpack-boilerplate
24517d0efc85e5d2b66c2b25f17b40bebde4102c
322210e308df7ea3a9d9cef1fe2809916dc28ff8
refs/heads/master
2023-06-01T08:06:02.835579
2021-06-19T03:56:33
2021-06-19T03:56:33
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re def test_npm(npm_project_path, npm_build_commands): js_path = npm_project_path / "build" / "js" js_files = list(js_path.glob("*.*")) js_files = [js_file.name for js_file in js_files] assert len(js_files) > 0 js_files = ", ".join(js_files) assert re.findall(r"app[.\w]*?.js", js_files) assert re.findall(r"app2[.\w]*?.js", js_files) css_path = npm_project_path / "build" / "css" css_files = list(css_path.glob("*.*")) css_files = [css_file.name for css_file in css_files] assert len(css_files) > 0 css_files = ", ".join(css_files) assert re.findall(r"app[.\w]*?.css", css_files) vendor_path = npm_project_path / "vendors" / "images" img_files = list(vendor_path.glob("*.*")) img_files = [img_file.name for img_file in img_files] assert len(img_files) > 0 img_files = ", ".join(img_files) assert re.findall(r"sample.jpg", img_files) assert re.findall(r"webpack.png", img_files)
UTF-8
Python
false
false
971
py
34
test_npm_commands.py
15
0.609681
0.605561
0
27
34.962963
57
rryanburton/django-movies
18,253,611,027,729
1a0296eeba97d5987e0df96f1e2ab0d034aa60b2
98618afe8b9d012fb95c0a145cf403a5756883aa
/movieratings/movieapp/migrations/0003_auto_20151012_0502.py
cb9f0f246799eac172d95d42f7c12eac513b7224
[]
no_license
https://github.com/rryanburton/django-movies
0dfa371046c0ac1be999266ca4cb7dbc2773b636
8ec346d71a45042a345acbd3e4cb3bd0d0105cf9
refs/heads/master
2021-01-10T04:25:44.271106
2015-10-15T04:33:13
2015-10-15T04:33:13
43,751,023
0
0
null
false
2015-10-15T04:33:13
2015-10-06T13:04:54
2015-10-06T21:10:58
2015-10-15T04:33:13
236
0
0
0
Python
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('movieapp', '0002_auto_20151010_0205'), ] operations = [ migrations.RemoveField( model_name='rater', name='id', ), migrations.AddField( model_name='rater', name='user', field=models.OneToOneField(serialize=False, default='', to=settings.AUTH_USER_MODEL, primary_key=True), preserve_default=False, ), ]
UTF-8
Python
false
false
697
py
15
0003_auto_20151012_0502.py
7
0.601148
0.576758
0
26
25.807692
115
andreeaeliade/socks_project
12,025,908,452,189
e7e7ea473f2b632cc1027a2fdda4b292b56f6509
c0955a5d2c52a602668f2f74872c6edb19e50cba
/deployments.py
6f50d450cfbf26d8b904601842e7428ace454c2c
[]
no_license
https://github.com/andreeaeliade/socks_project
61a62eaeade2feaddc40d3df8b2b14d25217ec4a
d963f2ee6de1aa9f7eb71f8b8a0c207ad5051b3e
refs/heads/main
2023-04-19T11:13:41.704838
2021-05-12T12:46:48
2021-05-12T12:46:48
366,696,826
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from kubernetes import client, config from kubernetes.client import configuration import sys def main(): contexts, active_context = config.list_kube_config_contexts() if not contexts: print("Cannot find any context in kube-config file.") return config.load_kube_config(context=active_context["name"]) api = client.AppsV1Api() if len(sys.argv) == 1 : ret=api.list_deployment_for_all_namespaces() print ("List deployments for all namespaces") else: ret = api.list_namespaced_deployment(namespace= sys.argv[1]) print ("List deployments for " + sys.argv[1] + " namespace" ) max_name_length = 4 for item in ret.items: if len(item.metadata.name) > max_name_length: max_name_length = len(item.metadata.name) max_name_length +=1 print ("NAME".ljust(max_name_length) + "DATE IMAGES" ) for item in ret.items: print (item.metadata.name.ljust(max_name_length) + str(item.status.conditions[0].last_update_time) + " " + item.spec.template.spec.containers[0].image ) for container in item.spec.template.spec.containers[1:]: print ((" " * (max_name_length + 2 + len(str(item.status.conditions[0].last_update_time)))) + container.image) if __name__ == '__main__': main()
UTF-8
Python
false
false
1,252
py
3
deployments.py
1
0.67492
0.666134
0
32
37.1875
156
Kylep342/hello-world
3,427,383,924,441
622098b962bb592dd515dbdba4856a6ef28a84f0
0546019a6142812753685a196b96d32866bce038
/Think_Python/ch9_exercises/odometer_check.py
ae09acc48e65b80f2d90860d7f102727fc1769e1
[]
no_license
https://github.com/Kylep342/hello-world
e29e62a1c06fb4022ebf371e00b51ad136bc90ba
867f4e1cec62b124ab4965476cf7027945e3bf9b
refs/heads/master
2017-12-01T03:19:06.105636
2017-08-20T15:15:56
2017-08-20T15:15:56
60,642,144
0
0
null
false
2017-08-13T05:49:30
2016-06-07T19:55:05
2016-06-07T19:55:05
2017-08-13T05:49:30
1
0
0
0
null
null
null
def is_palindrome(i, start, length): s = str(i)[start:start + length] return s[::-1] == s def odometer_check(i): return (is_palindrome(i, 2, 4) and is_palindrome(i + 1, 1, 5) and is_palindrome(i + 2, 1, 4) and is_palindrome(i + 3, 0, 6)) def check_all(): i = 100000 while i < 999996: if odometer_check(i): print(i) i += 1 check_all()
UTF-8
Python
false
false
410
py
19
odometer_check.py
18
0.521951
0.460976
0
19
20.578947
38
daanwierstra/pybrain
618,475,302,135
ef172456c93547442655c77ea952107008d6a3b3
08058cfaeeac83bc5aab8174e8722b93b72f40b3
/pybrain/rl/agents/egreedy.py
a9a866fdfa910933eab2e828d2d0da06d7ae3a25
[ "BSD-3-Clause" ]
permissive
https://github.com/daanwierstra/pybrain
032e1d5cd3e74d380fdc55a8850d3744d2804a73
d5d223879831b44b1512b082480e93b612927035
refs/heads/master
2021-01-18T19:04:41.513439
2009-10-13T13:17:26
2009-10-13T13:17:26
289,777
3
1
null
null
null
null
null
null
null
null
null
null
null
null
null
from learning import LearningAgent from scipy import random, array class EpsilonGreedyAgent(LearningAgent): def __init__(self, module, learner): LearningAgent.__init__(self, module, learner) self.epsilon = 0.5 self.epsilondecay = 0.9999 def getAction(self): """ activates the module with the last observation and stores the result as last action. """ # get greedy action action = LearningAgent.getAction(self) # explore by chance if random.random() < self.epsilon: action = array([random.randint(self.module.numActions)]) # reduce epsilon self.epsilon *= self.epsilondecay return action
UTF-8
Python
false
false
752
py
150
egreedy.py
142
0.603723
0.594415
0
24
29.916667
100
narthollis/SysStat
13,176,959,674,728
fb04ef966f72cf2503161ea4f9b757e4e2fc7f49
9d8bcb7e5c8788b5136abf9ada46a3ee9685eb4d
/monitor/dispatcher.py
a57d6195fdecbfd46f2a4c746f6b84cad3b85968
[]
no_license
https://github.com/narthollis/SysStat
36ea0ef6953dcfaafa3f7dbb5c81a3c4d6310b15
f9d2ae107d25b8474bdd5c256b967130fa167621
refs/heads/master
2021-01-01T08:56:44.045247
2011-09-05T15:07:11
2011-09-05T15:07:11
2,327,443
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import hashlib from configparser import NoOptionError from socketserver import StreamRequestHandler from datetime import datetime class Dispatcher(StreamRequestHandler): def log(self, msg): print("%s %s" % (datetime.now().isoformat(), msg)) def boundry(self, item): data = "%s-%s-%s" % (datetime.now(), self.client_address[0], item.decode()) return hashlib.sha1(data.encode()).hexdigest() def handle(self): self.log("New Connection from %s" % (self.client_address[0],)) self.active = True # Receive the greeting and process it, fail if its wrong self.data = self.rfile.readline().strip() if not self.data.startswith(b'HELLO'): return # Find out who the client claims to be (junk, identifier) = self.data.split(b' ') self.log("%s identified as %s" % ( self.client_address[0], identifier.decode()) ) # Recieve the access code, fail if its wrong or if the cleint didnt ident # with as a valid client self.data = self.rfile.readline().strip() try: if not self.server.config.get('authorization', identifier.decode()) == \ self.data.decode(): return except NoOptionError: return self.wfile.write(b'OK\n') self.wfile.flush() while self.active: self.data = self.rfile.readline().strip() if self.data == b'CLOSE': return elif self.data.startswith(b'GET'): (junk, item) = self.data.split(b' ') key = item.decode().lower() if key in self.server.modules.keys(): self.server.modules[key].reset() self.server.modules[key].run() boundry = self.boundry(item) response = "SENDING %s ----%s----\n" % (key, boundry) response+= "%s" % (self.server.modules[key],) response+= "\n----%s---- FINISHED\n" % (boundry, ) self.wfile.write(response.encode()) self.wfile.flush() else: self.wfile.write(b'ERROR 100 --- UNKNOWN MODULE\n') self.wfile.flush() elif self.data.startswith(b'LIST'): try: (junk, item) = self.data.split(b' ') except ValueError: self.wfile.write(b'ERROR 200 --- UNKNOWN LIST\n') if item == b'ALL': boundry = self.boundry(b'list all') response = "LIST ALL ----%s----\n" % (boundry, ) response+= "\n".join(self.server.modules.keys()) response+= "\n----%s---- FINISHED\n" % (boundry, ) self.wfile.write(response.encode()) self.wfile.flush() elif item.decode().lower() in self.server.modules.keys(): boundry = self.boundry(('list %s' % item).encode()) key = item.decode().lower() try: response = "LIST %s ----%s----\n" % (key, boundry) response+= "\n".join(self.server.modules[key].getlist()) response+= "\n----%s---- FINISHED\n" % (boundry, ) self.wfile.write(response.encode()) except AttributeError as e: print(e) self.wfile.write(b'ERROR 210 --- MODULE DOSE NOT SUPPORT LIST\n') finally: self.wfile.flush() else: self.wfile.write(b'ERROR 200 --- UNKNOWN LIST\n') self.wfile.flush() else: self.wfile.write(b'ERROR 000 -- UNKNOWN COMMAND\n') self.wfile.flush()
UTF-8
Python
false
false
3,459
py
16
dispatcher.py
13
0.555363
0.54987
0
103
32.582524
79
ajaygalagali/codes_python_for_everybody_coursera
13,804,024,893,082
ea93328dd83846ca5dc786e95a9556a2e3ce2f9d
d51383bf37f5af1593b9fd8c3a72284ed03067c1
/Access Web Data/urllibLearn.py
fd3a8aeee1db7e6ec7c4b099c8349cfca3f798fe
[]
no_license
https://github.com/ajaygalagali/codes_python_for_everybody_coursera
dd47bf172418b8eb896cc849c901b345b5fb1a2c
6549f98c5174b3004f50024261ba9f68a28e6787
refs/heads/master
2022-11-07T15:27:31.739403
2020-06-27T02:53:00
2020-06-27T02:53:00
273,063,806
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import urllib.error,urllib.request,urllib.parse import re fhand = urllib.request.urlopen('https://www.quora.com') numList = list() for line in fhand: tempList = re.findall('https://(w.+")+',line.decode()) if tempList.__sizeof__() < 1: continue for i in tempList: numList.append(i) for i in numList: print(i) # print(urllib.parse.urlencode({'adress':'this is test, yes'}))
UTF-8
Python
false
false
407
py
24
urllibLearn.py
22
0.648649
0.646192
0
15
26.066667
63
hacktoon/dale
10,393,820,895,991
67452336c8d9246c352ab2447b6177a67d2d4f58
4ba448fe3437076ea4a6f2e932344c5521a54a52
/dale/exceptions/__init__.py
8a4b410edca3c7f03c6f5a66ee465ad83cd79633
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
https://github.com/hacktoon/dale
2f2284b5532b5c64cd904bc2571bb5365b714e6e
5b8e82ba82a6238a4ca8aed554330d7b430ab2f3
refs/heads/master
2018-12-11T11:55:53.232910
2018-12-02T22:12:44
2018-12-02T22:12:44
111,252,562
7
0
null
null
null
null
null
null
null
null
null
null
null
null
null
class BaseError(Exception): pass class LexingError(BaseError): def __init__(self, index=None): super().__init__("Invalid syntax") self.index = index class ParsingError(BaseError): def __init__(self): super().__init__() class UnexpectedTokenError(LexingError): def __init__(self, token, expected_tokens=None): message = "Unexpected {!r} token.\n".format(token.id) if expected_tokens: message += "Expected token(s): {!r}".format(str(expected_tokens)) super().__init__(message) self.index = token.index[0] class UnexpectedTokenValueError(LexingError): def __init__(self, token, expected_tokens=None, expected_values=None): tpl = "Found a {!r} token with value {!r}.\n" message = tpl.format(token.id, token.value) if expected_tokens: message += "Expected {!r} token(s)".format(str(expected_tokens)) if expected_values: message += ", with value(s): {!r}".format(str(expected_values)) super().__init__(message) self.index = token.index[0] class UnexpectedEOFError(LexingError): pass class ExpectedValueError(ParsingError): pass
UTF-8
Python
false
false
1,202
py
26
__init__.py
15
0.616473
0.614809
0
42
27.619048
77
Jackil-R/datacamp-python-data-engineer-track
7,997,229,122,468
37c426ee5cf55ce75f80532361ceefdc8a96f325
0cdca7d5e466597acb809418802aafe4036c175e
/10.Object-Oriented Programming in Python/Ch3-Integrating with Standard Python.py
adf2fa1590b8caa777ab2e50b1d987765daa1158
[]
no_license
https://github.com/Jackil-R/datacamp-python-data-engineer-track
313566e463d9d5d714b654eac3e39ddb857d2170
8f58fe443dab91555b66264fa8e4557bec29fdbe
refs/heads/master
2023-02-19T18:47:41.439883
2021-01-19T23:00:00
2021-01-19T23:00:00
325,276,762
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Chapter 3 Integrating with Standard Python # Operator overloading: comparison print("=========================================================") # Overloading equality print("=========================================================") # Checking class equality print("=========================================================") # Comparison and inheritance print("=========================================================") # Operator overloading: string representation print("=========================================================") # String formatting review print("=========================================================") # String representation of objects print("=========================================================") # Exceptions print("=========================================================") # Catching exceptions print("=========================================================") # Custom exceptions print("=========================================================") # Handling exception hierarchies print("=========================================================")
UTF-8
Python
false
false
1,123
py
113
Ch3-Integrating with Standard Python.py
27
0.308994
0.308103
0
56
19.071429
66
jennyslu/trivia_app
4,449,586,126,143
f6134b1577c53be1b789edae9fff64650f05fc1a
8f0d19080adff48b2a8cb2685a680e681fd592ed
/backend/flaskr/models.py
f5ca4baeac109c041824611d82a74332c65cfce8
[]
no_license
https://github.com/jennyslu/trivia_app
b73566e12f2624adc957562a6cfa2c088666792b
ef74c0d03645fedc5b36f0abcce08a84b9093255
refs/heads/master
2021-07-04T06:57:46.156879
2020-08-21T05:10:08
2020-08-21T05:10:08
235,240,781
0
0
null
false
2021-05-06T19:52:25
2020-01-21T02:34:35
2020-08-21T05:10:27
2021-05-06T19:52:25
202
0
0
2
JavaScript
false
false
from flask_sqlalchemy import SQLAlchemy from sqlalchemy import Column, Integer, String db = SQLAlchemy() def setup_db(app): """ Bind flask application and SQLAlchemy service together. """ db.app = app db.init_app(app) db.create_all() class Question(db.Model): __tablename__ = 'questions' id = Column(Integer, primary_key=True) question = Column(String) answer = Column(String) difficulty = Column(Integer) # actually category ID category = Column(db.Integer, db.ForeignKey('categories.id'), nullable=False) question_category = db.relationship('Category', backref='question_category') def __init__(self, question, answer, category, difficulty): self.question = question self.answer = answer self.category = category self.difficulty = difficulty def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { 'id': self.id, 'question': self.question, 'answer': self.answer, 'difficulty': self.difficulty, 'category': self.category, 'category_name': self.question_category.name } class Category(db.Model): __tablename__ = 'categories' id = Column(Integer, primary_key=True) name = Column(String) questions = db.relationship('Question', backref='category_questions') def __init__(self, name): self.name = name def format(self): return {'id': self.id, 'name': self.name}
UTF-8
Python
false
false
1,729
py
19
models.py
14
0.598612
0.598612
0
66
25.19697
76
gulshalla/algorithms
14,302,241,126,102
f3e0c4593d31a1881886a8d6eca86291e653548e
025f7d55e2f1c31249a639c14b19ab605292ed30
/algorithms/math/happy_numbers.py
d572aac5e0a4f7529da6fd2d4ef16987cf46b31f
[ "MIT" ]
permissive
https://github.com/gulshalla/algorithms
98ed9724552419c599f37ed8cc25467274e0be98
6ef4866fa4b5a9e5a440ddbc3a620307bd522e11
refs/heads/master
2020-04-27T03:09:31.135352
2019-12-17T07:11:49
2019-12-17T07:11:49
174,016,906
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
''' Write an algorithm to determine if a number is "happy". A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers. Example: Input: 19 Output: true Explanation: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1 ''' def happy_numbers(n): mem = set() while True: n = sum([int(x)**2 for x in str(n)]) if n in mem: return False elif n == 1: return True mem.add(n) def happy_numbers_v2(n): orig = set() while 1: sum = 0 while n > 0: sum += (n % 10) ** 2 n /= 10 if sum == 1: return True else: if sum in orig: return False orig.add(sum) n = sum
UTF-8
Python
false
false
1,071
py
471
happy_numbers.py
470
0.545285
0.505135
0
44
22.772727
93
AccentDesign/django-sagepaypi
4,483,945,873,743
cf55c3d308e58d2c1c38129b40f9f6178b90e611
85169df1604bc381d694946e821e11c97bbd8773
/tests/test_gateway.py
2bce927e9356c6522898a4a6d3b0f6cfe677745c
[ "MIT" ]
permissive
https://github.com/AccentDesign/django-sagepaypi
dbf62c569d37201a2c76e4b253cb9e6b6a7dc62b
afb419b25f9819f4a7d09a12a3bb3ac4cd4745c6
refs/heads/master
2020-04-21T19:42:35.571754
2019-12-11T16:54:49
2019-12-11T16:54:49
169,816,952
0
2
MIT
false
2019-03-06T15:03:22
2019-02-09T00:32:13
2019-02-11T12:59:04
2019-03-06T15:03:22
75
0
0
0
CSS
false
null
import dateutil import mock from django.test import override_settings from sagepaypi.gateway import default_gateway, SagepayGateway from tests.mocks import MockResponse from tests.test_case import AppTestCase def mocked_gone_response(*args, **kwargs): return MockResponse({}, 500) def mocked_success_requests(*args, **kwargs): if args[0] == 'https://pi-test.sagepay.com/api/v1/merchant-session-keys': return MockResponse({ 'merchantSessionKey': 'unique-key', 'expiry': '2015-08-11T11:45:16.285+01:00' }, 201) else: return MockResponse({}, 201) @override_settings(SAGEPAYPI_VENDOR_NAME='vendor') @override_settings(SAGEPAYPI_INTEGRATION_KEY='user') @override_settings(SAGEPAYPI_INTEGRATION_PASSWORD='pass') @override_settings(SAGEPAYPI_TEST_MODE=True) class TestGateway(AppTestCase): def test_default_gateway(self): self.assertTrue(isinstance(default_gateway, SagepayGateway)) def test_basic_auth(self): auth = default_gateway.basic_auth() self.assertEqual(auth.username, 'user') self.assertEqual(auth.password, 'pass') def test_vendor_name(self): vendor_name = default_gateway.vendor_name() self.assertEqual(vendor_name, 'vendor') def test_api_url__when_dev(self): url = default_gateway.api_url() self.assertEqual(url, 'https://pi-test.sagepay.com/api/v1') @override_settings(SAGEPAYPI_TEST_MODE=False) def test_api_url__when_live(self): url = default_gateway.api_url() self.assertEqual(url, 'https://pi-live.sagepay.com/api/v1') @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_get_merchant_session_key(self, mock_post): default_gateway.get_merchant_session_key() self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/merchant-session-keys', auth=default_gateway.basic_auth(), json={'vendorName': 'vendor'} ), mock_post.call_args_list ) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_get_merchant_session_key(self, mock_post): merchant_session_key = default_gateway.get_merchant_session_key() self.assertEqual(merchant_session_key[0], 'unique-key') self.assertEqual(merchant_session_key[1], dateutil.parser.parse('2015-08-11T11:45:16.285+01:00')) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_gone_response) def test_get_merchant_session_key__returns_none_when_http_error(self, mock_post): merchant_session_key = default_gateway.get_merchant_session_key() self.assertIsNone(merchant_session_key) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_create_card_identifier(self, mock_post): default_gateway.create_card_identifier({'foo': 1}) self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/merchant-session-keys', auth=default_gateway.basic_auth(), json={'vendorName': 'vendor'} ), mock_post.call_args_list ) self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/card-identifiers', headers={'Authorization': 'Bearer unique-key'}, json={'foo': 1} ), mock_post.call_args_list ) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_get_3d_secure_status(self, mock_post): default_gateway.get_3d_secure_status('123', {'foo': 1}) self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/transactions/123/3d-secure', auth=default_gateway.basic_auth(), json={'foo': 1} ), mock_post.call_args_list ) @mock.patch('sagepaypi.gateway.requests.get', side_effect=mocked_success_requests) def test_get_transaction_outcome(self, mock_get): default_gateway.get_transaction_outcome('123') self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/transactions/123', auth=default_gateway.basic_auth() ), mock_get.call_args_list ) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_submit_transaction(self, mock_post): default_gateway.submit_transaction({'foo': 1}) self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/transactions', auth=default_gateway.basic_auth(), json={'foo': 1} ), mock_post.call_args_list ) @mock.patch('sagepaypi.gateway.requests.post', side_effect=mocked_success_requests) def test_submit_transaction_instruction(self, mock_post): default_gateway.submit_transaction_instruction('123', {'foo': 1}) self.assertIn( mock.call( 'https://pi-test.sagepay.com/api/v1/transactions/123/instructions', auth=default_gateway.basic_auth(), json={'foo': 1} ), mock_post.call_args_list )
UTF-8
Python
false
false
5,390
py
65
test_gateway.py
44
0.619666
0.602412
0
151
34.695364
105
AChris07/slackwolf-gm
10,127,532,933,496
cd5220b66fcff8d8a95e4d2c66e72b4061b29e91
a2ef94e2f1836f4e598d267118d64cb9c5ead755
/slackwolf/api/dao/user_dao.py
f0359fec0d204de71abf4b7c6199a3caf92b8215
[]
no_license
https://github.com/AChris07/slackwolf-gm
adf608267177c09518527cde18116297db03aaed
fdcd9d169fa8037953972e2c4baa50cffd90627f
refs/heads/master
2022-12-11T16:32:20.897198
2020-07-16T03:22:01
2020-07-16T03:22:01
81,918,278
0
0
null
false
2022-12-08T11:03:42
2017-02-14T07:33:29
2020-07-16T04:07:00
2022-12-08T11:03:41
13,276
0
0
4
Python
false
false
from typing import List from .team_dao import TeamDao import slackwolf.db as db from slackwolf.db.entities.team import Team from slackwolf.db.entities.user import User class UserDao: """User DAO Interface object""" def __init__(self): self.__session = db.session def find(self, id: int) -> User: """Find by Id""" return self.__session.query(User).get(id) def find_by_sid(self, team_sid: str, slack_id: str) -> User: """Find by team and user Slack Id""" return self.__session.query(User).\ join(Team).\ filter(Team.slack_id == team_sid).\ filter(User.slack_id == slack_id).\ first() def find_all(self) -> List[User]: """Find all users""" return self.__session.query(User).all() def save(self, user: User) -> None: """Save the given user""" self.__session.add(user) self.__session.commit() def update(self, id: int, **kwargs) -> None: """Given a user Id, update the user""" self.__session.query(User).\ filter(User.id == id).\ update(kwargs) self.__session.commit() def get_or_create_by_sid(self, team_sid: str, slack_id: str, username: str) -> User: """Find or create a user by team and user Slack Id""" user = self.find_by_sid(team_sid, slack_id) if not user: user = User(slack_id=slack_id, username=username) team = TeamDao().find_by_sid(team_sid) user.team = team self.save(user) return user
UTF-8
Python
false
false
1,679
py
32
user_dao.py
31
0.536629
0.536629
0
54
30.092593
64
aslemen/morepo
13,408,887,919,752
df3b06b2f01cd17bc3413a9a4dd6a7b159e0a30c
9aa095ce1ceed0b7a78e6879d912e73f384db59d
/morepo/inputters/morep_json.py
d3d9b0ac9ce0356854d9256b0f2e86bc39708a1a
[ "MIT" ]
permissive
https://github.com/aslemen/morepo
235d2cfeeb25b83b5ae3f6c07ea907112c92f94c
1c7e8d114da471ea250604b7a53e92d192c8349a
refs/heads/master
2020-03-08T03:58:54.916251
2018-08-06T10:48:45
2018-08-06T10:48:45
127,907,877
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json import glob import typing import numbers import packaging.version as vers import morepo.objects as objs import morepo.dbio as dbio import morepo.filters.WTL as wtl import BTrees.OOBTree as oob import persistent.list as pl import persistent.dict as pd def extract_from_stream(stream) -> typing.List[dict]: """ Extract morep.json data from a stream. Arguments --------- stream: A stream """ jsdata: dict = json.load(stream) # check the version # --- if vers.Version(jsdata["version"]) < vers.Version("1.1"): raise Exception() res: typing.List[dict] = jsdata["content"] return res # END def extract_from_files(root_dir: str, extension: str = "morep.json"): files_path = glob.iglob(root_dir + ".".join((r"/**/*", extension)), recursive = True) res_list = [] for fp in files_path: with open(fp) as stream: res_list.extend(extract_from_stream(stream)) return res_list JSON_TYPE_to_MOREP = { "book": objs.Morep_Bib_Book, "proceedings": objs.Morep_Bib_Proceedings, "journal": objs.Morep_Bib_Journal, "inbook": objs.Morep_Bib_Inbook, "inproceedings": objs.Morep_Bib_Inproceedings, "paper": objs.Morep_Bib_Paper, "presentation": objs.Morep_Bib_Presentation, "thesis": objs.Morep_Bib_Thesis } def convert_list_to_PersistentList_recursively(item: typing.Any) -> pl.PersistentList: if isinstance(item, list): return pl.PersistentList(map(convert_list_to_PersistentList_recursively, item)) else: return item def convert_dict_to_OOBTree_recursively(item: typing.Any) -> oob.BTree: if isinstance(item, dict): res = oob.BTree() for k, v in item.items(): res[k] = convert_dict_to_OOBTree_recursively(v) else: return item def convert_subitems_to_Persistent_recursively(item: typing.Any): res = None if isinstance(item, numbers.Number) or isinstance(item, str) or isinstance(item, bool): res = item elif isinstance(item, list): res = pl.PersistentList() for subitem in item: res.append(convert_subitems_to_Persistent_recursively(subitem)) elif isinstance(item, dict): res = pd.PersistentDict() for subitem in item.items(): key, val = subitem res[convert_subitems_to_Persistent_recursively(key)] = \ convert_subitems_to_Persistent_recursively(val) else: res = str(item) return res def convert_to_Morep_Base(record_raw: typing.Dict) -> objs.Morep_Bib_Base: entity = JSON_TYPE_to_MOREP[record_raw["work_type"]]() for k, v in record_raw.items(): setattr(entity, k, convert_subitems_to_Persistent_recursively(v)) return entity def convert_records_to_Morep_Base(records_raw: typing.Iterator[dict]) -> typing.Iterator[objs.Morep_Bib_Base]: return map(convert_to_Morep_Base, records_raw)
UTF-8
Python
false
false
3,015
py
19
morep_json.py
17
0.641128
0.640464
0
106
27.433962
110
MichaelPinatton/301Redirect-Screaming-Frog
12,429,635,383,512
06f908642017f55b578426577a230bb72f9cdc64
ca07a979c321925146c0eb392bc3977fcbaf7f33
/app.py
ec0234796d12e102b561cdb190b71f389bf68d31
[]
no_license
https://github.com/MichaelPinatton/301Redirect-Screaming-Frog
70269ca51dae0aa045a820444c93372d796f02ff
a0186581607cfed40ac84a3a89de0df879c1427a
refs/heads/master
2023-05-09T05:00:35.169818
2021-04-19T16:24:55
2021-04-19T16:24:55
359,112,211
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import pandas as pd import streamlit as st import os import base64 from io import BytesIO import xlsxwriter st.set_page_config( page_title="Correspondance des Redirections 301 - Screaming Frog", page_icon="🐶", ) #Import CSV st.title('Correspondance des Redirections 301 - Screaming Frog') st.markdown('') st.markdown('') st.write("Correspondance automatique des 301 grâce au crawler Screaming Frog.") st.write("Fichiers nécessaires : Export CSV des 301 + Export CSV des inlinks vers 301") st.write("➤ [Explications et démo en vidéo](https://www.loom.com/share/f65ef1c236e1426dbb1d547765724617)") st.write("By [@MichaelPinatton](https://twitter.com/michaelpinatton)") st.markdown('## ** ① Chargez le fichier CSV des 301 **') st.markdown('') upload1 = st.file_uploader("Choisissez votre fichier (CSV): ", key="1") if upload1 is not None: df_301 = pd.read_csv(upload1) st.write('Aperçu :') st.write(df_301.head()) else: pass st.markdown('## ** ② Chargez le fichier CSV des inlinks 301 **') st.markdown('') upload2 = st.file_uploader("Choisissez votre fichier (CSV): ", key="2") if upload2 is not None: df_inlinks = pd.read_csv(upload2) st.write('Aperçu :') st.write(df_inlinks.head()) else: pass #Reorganize DF if upload1 is not None and upload2 is not None: df_301 = df_301[['Address', 'Redirect URL', 'Status Code']] df_301 = df_301.rename({'Address': 'URL Redirigée','Redirect URL': 'URL Finale'}, axis=1) df_inlinks = df_inlinks[['Source', 'Destination', 'Anchor', 'Link Position']] df_inlinks = df_inlinks.rename({'Source': 'URL Source','Destination': 'URL Redirigée'}, axis=1) #Regroup data in 1DF df = pd.merge(df_inlinks, df_301, how='right', on=['URL Redirigée']) df = df[["URL Source", "URL Redirigée", "URL Finale", "Status Code", "Anchor", "Link Position"]] df = df.rename({"URL Finale": "URL Finale (à remplacer dans l'URL source)"}, axis=1) #Export in XLSX st.markdown('## **③ Téléchargez le fichier XLSX**') st.markdown('') def to_excel(df): output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, sheet_name="Pages en 301 avec l'URL Source") workbook = writer.book center = workbook.add_format({'align': 'center'}) worksheet = writer.sheets["Pages en 301 avec l'URL Source"] worksheet.set_column('A:A', 10) worksheet.set_column('B:D', 70) worksheet.set_column('E:E', 15, center) worksheet.set_column('F:G', 20) writer.save() processed_data = output.getvalue() return processed_data def get_table_download_link(df): """Generates a link allowing the data in a given panda dataframe to be downloaded in: dataframe out: href string """ val = to_excel(df) b64 = base64.b64encode(val) return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="Redirections_301_Full.xlsx">➤ Cliquez pour télécharger</a>' # decode b'abc' => abc st.markdown(get_table_download_link(df), unsafe_allow_html=True) else: pass
UTF-8
Python
false
false
3,174
py
2
app.py
1
0.657343
0.62206
0
90
33.966667
171
drankincms/boostedhiggs
12,506,944,801,630
2db5c7ce584016ec81335ca1b4c54b1504973c5f
f2f26e263da6d3cfe66e78fc326744ac512ff7f9
/test/make_trig_eff.py
09df428f726353c7dcc86335b8d4299995de8bc6
[]
no_license
https://github.com/drankincms/boostedhiggs
64b231a18abd49eee82630501df1ae815d58569f
31d15d7dc165c3eb081793d79a3770973b7abc21
refs/heads/dev
2023-06-25T18:04:01.088815
2021-10-26T15:36:13
2021-10-26T15:36:13
227,409,855
0
4
null
true
2022-04-15T17:41:58
2019-12-11T16:22:26
2021-10-26T15:36:27
2022-04-15T17:41:58
24,813
0
3
0
Python
false
false
from __future__ import print_function, division import gzip import json import os import uproot import matplotlib.pyplot as plt import numpy as np from coffea import hist from coffea.util import load, save import pickle import gzip import math import argparse #import processmap #from hists_map import * plt.rcParams.update({ 'font.size': 14, 'axes.titlesize': 18, 'axes.labelsize': 18, 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'text.usetex': False, }) fill_opts = { 'edgecolor': (0,0,0,0.3), 'alpha': 0.8 } err_opts = { #'linestyle':'-', 'marker': '.', 'markersize': 10., 'color':'k', 'elinewidth': 1, 'emarker': '-' } chanlist = ["hadhad", "hadel", "hadmu"] histnames = { 'hadhad': "trigeff_m", 'hadel': "trigeff_m", 'hadmu': "trigeff_m", } varcuts_data = { "hadhad": {"region": "hadhad_signal_0", "trig_pass_ref": [0.5, 1.5]}, "hadel": {"region": "hadel_signal_0", "trig_pass_ref": [0.5, 1.5], "jet_msd": [40.,None]}, "hadmu": {"region": "hadmu_signal_0", "trig_pass_ref": [0.5, 1.5], "jet_msd": [40.,None]}, } varcuts_mc = { "hadhad": {"region": "hadhad_signal_0", "trig_pass_ref": [0.5, 1.5]}, "hadel": {"region": "hadel_signal_0", "trig_pass_ref": [0.5, 1.5], "jet_msd": [40.,None]}, "hadmu": {"region": "hadmu_signal_0", "trig_pass_ref": [0.5, 1.5], "jet_msd": [40.,None]}, } var1names = { "hadhad": "jet_pt", "hadel": "jet_pt", "hadmu": "jet_pt", } var1labels = { "hadhad": "$p_{T}(jet)$", "hadel": "$p_{T}(jet)$", "hadmu": "$p_{T}(jet)$", } rebin1 = { "hadhad": [200.,250.,300.,350.,400.,450.,500.,550.,600.,650.,950.], "hadel": [200.,250.,300.,350.,400.,500.,950.], "hadmu": [200.,250.,300.,350.,400.,500.,950.], } var2names = { "hadhad": "jet_msd", "hadel": "lep_pt", "hadmu": "lep_pt", } var2labels = { "hadhad": "$m_{SD}(jet)$", "hadel": "$p_{T}(e)$", "hadmu": "$p_{T}(\mu)$", } rebin2 = { "hadhad": [0.,10.,20.,30.,40.,50.,60.,70.,80.,90.,100.], "hadel": [20.,32.,44.,56.,68.,92.,116.,140.], "hadmu": [20.,32.,44.,56.,68.,92.,116.,140.], } numsels = { "hadhad": {"trig_pass": [0.5, 1.5]}, "hadel": {"trig_pass": [0.5, 1.5]}, "hadmu": {"trig_pass": [0.5, 1.5]}, } #overflow_behavior = 'all' overflow_behavior = 'over' def getTrigEff(h,var1_name,var2_name,vars_cut,num_sel,rebins1,rebins2): #def drawTrigEff(h,var1_name,var1_label,var2_name,var2_label,vars_cut,num_sel,plot_title,plot_label): print(h) #print(h.values()) exceptions = [var1_name,var2_name,'dataset'] for var,val in vars_cut.items(): exceptions.append(var) for var,val in num_sel.items(): exceptions.append(var) print(exceptions) x = h.sum(*[ax for ax in h.axes() if ax.name not in exceptions],overflow='all') if var1_name in num_sel.keys() or var2_name in num_sel.keys(): print("%s and %s cannot be a variable in numerator selection"%(var1_name,var2_name)) return for var,val in vars_cut.items(): if var!=var1_name and var!=var2_name: print('integrating ',var,val[0],val[1]) if (len(val)==2): x = x.integrate(var,slice(val[0],val[1]))#,overflow=overflow_behavior) elif(type(val) is str): x = x.integrate(var,val)#,overflow=overflow_behavior) elif(len(val)==1): x = x.integrate(var,val[0])#,overflow=overflow_behavior) x_num = x.copy() #x_num = x_num.sum(*[ax for ax in x_num.axes() if ax.name in num_sel],overflow='all') #same axes as numerator #x_num.clear() xlist = [] for var,val in num_sel.items(): if var!=var1_name and var!=var2_name: print('integrating ',var,val) print(var,val) if (len(val)==2): #xlist.append(x.integrate(var,slice(val[0],val[1])))#,overflow=overflow_behavior)) x_num = x_num.integrate(var,slice(val[0],val[1]))#,overflow=overflow_behavior)) elif(len(val)==1): #xlist.append(x.integrate(var,val[0]))#,overflow=overflow_behavior)) x_num = x_num.integrate(var,val[0])#,overflow=overflow_behavior)) #for xadd in xlist: # x_num.add(xadd) x = x.sum(*[ax for ax in x.axes() if ax.name in num_sel],overflow='none') #print(x.values()) #print(x_num.values()) x = x.sum(*["dataset"],overflow='allnan') x_num = x_num.sum(*["dataset"],overflow='allnan') #x = x.rebin(var1_name, hist.Bin(var1_name+"_new", var1_name+"_new", rebins1)) #x = x.rebin(var2_name, hist.Bin(var2_name+"_new", var2_name+"_new", rebins2)) #x_num = x_num.rebin(var1_name, hist.Bin(var1_name+"_new", var1_name+"_new", rebins1)) #x_num = x_num.rebin(var2_name, hist.Bin(var2_name+"_new", var2_name+"_new", rebins2)) x = x.rebin(var1_name, hist.Bin(var1_name, var1_name, rebins1)) x = x.rebin(var2_name, hist.Bin(var2_name, var2_name, rebins2)) x_num = x_num.rebin(var1_name, hist.Bin(var1_name, var1_name, rebins1)) x_num = x_num.rebin(var2_name, hist.Bin(var2_name, var2_name, rebins2)) x_bins = x.axis(var1_name).edges() y_bins = x.axis(var2_name).edges() den_arr = np.array(x.values(overflow='all')[()]) num_arr = np.array(x_num.values(overflow='all')[()]) if ([ax.name for ax in x.axes()][0]==var1_name): den_arr = np.transpose(den_arr) num_arr = np.transpose(num_arr) den_arr[:][1] = den_arr[:][1] + den_arr[:][0] den_arr[:][-2] = den_arr[:][-2] + den_arr[:][-1] num_arr[:][1] = num_arr[:][1] + num_arr[:][0] num_arr[:][-2] = num_arr[:][-2] + num_arr[:][-1] den_arr[1][:] = den_arr[1][:] + den_arr[0][:] den_arr[-2][:] = den_arr[-2][:] + den_arr[-1][:] num_arr[1][:] = num_arr[1][:] + num_arr[0][:] num_arr[-2][:] = num_arr[-2][:] + num_arr[-1][:] den_arr = np.delete(den_arr,-1,0) den_arr = np.delete(den_arr,0,0) den_arr = np.delete(den_arr,-1,1) den_arr = np.delete(den_arr,0,1) num_arr = np.delete(num_arr,-1,0) num_arr = np.delete(num_arr,0,0) num_arr = np.delete(num_arr,-1,1) num_arr = np.delete(num_arr,0,1) print(num_arr) print(den_arr) print(x_bins) print(y_bins) eff_range_arr = hist.clopper_pearson_interval(num_arr, den_arr) return np.transpose(np.divide(num_arr,den_arr, out=np.zeros_like(num_arr), where=den_arr!=0)),x_bins,y_bins,np.transpose(eff_range_arr,[0,2,1]) def getHists(filename_data,filename_mc,hadel_w,hadmu_w,hadhad_w): eff_hists_data = {} eff_hists_mc = {} eff_hists_data_int = {} eff_hists_mc_int = {} x_bins = {} y_bins = {} chan_w = {'hadhad':hadhad_w,'hadel':hadel_w,'hadmu':hadmu_w} for chan in chanlist: h_trig = None for f_d in filename_data: # open hists hists_unmapped_data = load('%s.coffea'%f_d) # map to hists for key in hists_unmapped_data: if (key==histnames[chan]): if not h_trig: h_trig = hists_unmapped_data[key] else: h_trig = h_trig + hists_unmapped_data[key] print(f_d) eff_hists_data[chan],_,_,eff_hists_data_int[chan] = getTrigEff(h_trig,var1names[chan],var2names[chan],varcuts_data[chan],numsels[chan],rebin1[chan],rebin2[chan]) #drawTrigEff(h_trig,args.var1name,args.var1label,args.var2name,args.var2label,vars_cuts,num_sels,args.title,args.label) h_trig = None if (len(chan_w[chan]) != len(filename_mc)): chan_w[chan] = [1. for f in filename_mc] for i,f_m in enumerate(filename_mc): # open hists hists_unmapped_mc = load('%s.coffea'%f_m) # map to hists for key in hists_unmapped_mc: if (key==histnames[chan]): if (chan_w[chan][i] != 1.): hists_unmapped_mc[key].scale(chan_w[chan][i]) if not h_trig: h_trig = hists_unmapped_mc[key] else: h_trig = h_trig + hists_unmapped_mc[key] print(f_m) eff_hists_mc[chan],x_bins[chan],y_bins[chan],eff_hists_mc_int[chan] = getTrigEff(h_trig,var1names[chan],var2names[chan],varcuts_mc[chan],numsels[chan],rebin1[chan],rebin2[chan]) #drawTrigEff(h_trig,args.var1name,args.var1label,args.var2name,args.var2label,vars_cuts,num_sels,args.title,args.label) return eff_hists_data,eff_hists_mc,x_bins,y_bins,eff_hists_data_int,eff_hists_mc_int if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--hists_data', dest='hists_data', default="hists_data", help="hists pickle name (data)", nargs='+') parser.add_argument('--hists_mc', dest='hists_mc', default="hists_mc", help="hists pickle name (MC)", nargs='+') parser.add_argument('--hadel_w', dest='hadel_w', default=[1.], help="HadEl File Weights (MC)", nargs='+', type=float) parser.add_argument('--hadmu_w', dest='hadmu_w', default=[1.], help="HadMu File Weights (MC)", nargs='+', type=float) parser.add_argument('--hadhad_w', dest='hadhad_w', default=[1.], help="HadHad File Weights (MC)", nargs='+', type=float) #parser.add_argument('--histname', dest='histname', default="trigeff", help="hist name") parser.add_argument('--tag', dest='tag', default="trig_sf_debug", help="tag") parser.add_argument('--output', dest='output', default="../boostedhiggs/data/trig_sf_corr", help="output") parser.add_argument('--year', dest='year', default="2017", help="year") #parser.add_argument('--varname', dest='varname', default="", help="varname") #parser.add_argument('--varlabel', dest='varlabel', default="", help="varlabel") #parser.add_argument('--varcuts', dest='varcuts', default="", help="varcuts", nargs='+') #parser.add_argument('--numsel', dest='numsel', default="", help="numsel", nargs='+') #parser.add_argument('--title', dest='title', default="", help="title") #parser.add_argument('--label', dest='label', default="", help="label") args = parser.parse_args() #python make_trig_eff.py --hists_data ../condor/May27_Trig/hists_trig_Run2017CDEF --hists_mc ../condor/May27_Trig/hists_trig_QCD eff_hists_data,eff_hists_mc,x_bins,y_bins,eff_hists_data_int,eff_hists_mc_int = getHists(args.hists_data,args.hists_mc,args.hadel_w,args.hadmu_w,args.hadhad_w) h_trig_sf = {} arr_sf = {} arr_sf_up = {} arr_sf_down = {} h_trig_eff_mc = {} h_trig_eff_data = {} for chan in chanlist: h_trig_sf[args.year+"_trigsf_"+chan+"_nom"] = hist.Hist("Trigger Scale Factor (%s) Nominal"%chan, hist.Bin(var1names[chan], var1labels[chan], x_bins[chan]), hist.Bin(var2names[chan], var2labels[chan], y_bins[chan]), ) h_trig_sf[args.year+"_trigsf_"+chan+"_up"] = hist.Hist("Trigger Scale Factor (%s) Up"%chan, hist.Bin(var1names[chan], var1labels[chan], x_bins[chan]), hist.Bin(var2names[chan], var2labels[chan], y_bins[chan]), ) h_trig_sf[args.year+"_trigsf_"+chan+"_down"] = hist.Hist("Trigger Scale Factor (%s) Down"%chan, hist.Bin(var1names[chan], var1labels[chan], x_bins[chan]), hist.Bin(var2names[chan], var2labels[chan], y_bins[chan]), ) h_trig_eff_mc[chan] = hist.Hist("Trigger Efficiency, MC (%s)"%chan, hist.Bin(var1names[chan], var1labels[chan], x_bins[chan]), hist.Bin(var2names[chan], var2labels[chan], y_bins[chan]), ) h_trig_eff_data[chan] = hist.Hist("Trigger Efficiency, Data (%s)"%chan, hist.Bin(var1names[chan], var1labels[chan], x_bins[chan]), hist.Bin(var2names[chan], var2labels[chan], y_bins[chan]), ) inputs = {} inputs_up = {} inputs_down = {} inputs_mc = {} inputs_data = {} inputs[var1names[chan]] = np.array([(x_bins[chan][ix]+x_bins[chan][ix+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs[var2names[chan]] = np.array([(y_bins[chan][iy]+y_bins[chan][iy+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_up[var1names[chan]] = np.array([(x_bins[chan][ix]+x_bins[chan][ix+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_up[var2names[chan]] = np.array([(y_bins[chan][iy]+y_bins[chan][iy+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_down[var1names[chan]] = np.array([(x_bins[chan][ix]+x_bins[chan][ix+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_down[var2names[chan]] = np.array([(y_bins[chan][iy]+y_bins[chan][iy+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_mc[var1names[chan]] = np.array([(x_bins[chan][ix]+x_bins[chan][ix+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_mc[var2names[chan]] = np.array([(y_bins[chan][iy]+y_bins[chan][iy+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_data[var1names[chan]] = np.array([(x_bins[chan][ix]+x_bins[chan][ix+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs_data[var2names[chan]] = np.array([(y_bins[chan][iy]+y_bins[chan][iy+1])/2. for ix in range(len(x_bins[chan])-1) for iy in range(len(y_bins[chan])-1)]) inputs["weight"] = np.divide(eff_hists_data[chan],eff_hists_mc[chan],out=np.ones_like(eff_hists_data[chan]), where=eff_hists_mc[chan]!=0.).flatten() inputs_up["weight"] = np.divide(eff_hists_data_int[chan][1],eff_hists_mc_int[chan][0],out=np.ones_like(eff_hists_data_int[chan][1]), where=eff_hists_mc_int[chan][0]!=0.).flatten() inputs_down["weight"] = np.divide(eff_hists_data_int[chan][0],eff_hists_mc_int[chan][1],out=np.ones_like(eff_hists_data_int[chan][0]), where=eff_hists_mc_int[chan][1]!=0.).flatten() arr_sf[chan] = inputs["weight"] arr_sf_up[chan] = inputs_up["weight"] arr_sf_down[chan] = inputs_down["weight"] inputs_mc["weight"] = eff_hists_mc[chan].flatten() inputs_data["weight"] = eff_hists_data[chan].flatten() h_trig_sf[args.year+"_trigsf_"+chan+"_nom"].fill(**inputs) h_trig_sf[args.year+"_trigsf_"+chan+"_up"].fill(**inputs_up) h_trig_sf[args.year+"_trigsf_"+chan+"_down"].fill(**inputs_down) h_trig_eff_mc[chan].fill(**inputs_mc) h_trig_eff_data[chan].fill(**inputs_data) for chan in chanlist: fig,ax = plt.subplots(1,1, figsize=(8,8)) hist.plot2d(h_trig_sf[args.year+"_trigsf_"+chan+"_nom"], ax=ax, clear=True, xaxis=var1names[chan], ) for i in range(len(y_bins[chan])-1): for j in range(len(x_bins[chan])-1): ax.text((x_bins[chan][j]+x_bins[chan][j+1])/2.,(y_bins[chan][i]+y_bins[chan][i+1])/2., "{:0.2f}".format(np.reshape(arr_sf[chan],(len(x_bins[chan])-1,len(y_bins[chan])-1))[j,i]) if eff_hists_mc[chan][j,i]>0. else "", color="k", ha="center", va="center")#, fontweight="bold") fig.savefig("%s/trig_sf_debug_%s.pdf"%(args.tag,chan)) for chan in chanlist: fig,ax = plt.subplots(1,1, figsize=(8,8)) hist.plot2d(h_trig_sf[args.year+"_trigsf_"+chan+"_up"], ax=ax, clear=True, xaxis=var1names[chan], ) for i in range(len(y_bins[chan])-1): for j in range(len(x_bins[chan])-1): ax.text((x_bins[chan][j]+x_bins[chan][j+1])/2.,(y_bins[chan][i]+y_bins[chan][i+1])/2., "{:0.2f}".format(np.reshape(arr_sf_up[chan]-arr_sf[chan],(len(x_bins[chan])-1,len(y_bins[chan])-1))[j,i]) if eff_hists_mc_int[chan][0][j,i]>0. else "", color="k", ha="center", va="center")#, fontweight="bold") fig.savefig("%s/trig_sf_debug_up_%s.pdf"%(args.tag,chan)) for chan in chanlist: fig,ax = plt.subplots(1,1, figsize=(8,8)) hist.plot2d(h_trig_sf[args.year+"_trigsf_"+chan+"_down"], ax=ax, clear=True, xaxis=var1names[chan], ) for i in range(len(y_bins[chan])-1): for j in range(len(x_bins[chan])-1): ax.text((x_bins[chan][j]+x_bins[chan][j+1])/2.,(y_bins[chan][i]+y_bins[chan][i+1])/2., "{:0.2f}".format(np.reshape(arr_sf_down[chan]-arr_sf[chan],(len(x_bins[chan])-1,len(y_bins[chan])-1))[j,i]) if eff_hists_mc_int[chan][1][j,i]>0. else "", color="k", ha="center", va="center")#, fontweight="bold") fig.savefig("%s/trig_sf_debug_down_%s.pdf"%(args.tag,chan)) for chan in chanlist: fig,ax = plt.subplots(1,1, figsize=(8,8)) hist.plot2d(h_trig_eff_data[chan], ax=ax, clear=True, xaxis=var1names[chan], ) for i in range(len(y_bins[chan])-1): for j in range(len(x_bins[chan])-1): ax.text((x_bins[chan][j]+x_bins[chan][j+1])/2.,(y_bins[chan][i]+y_bins[chan][i+1])/2., "{:0.2f}".format(eff_hists_data[chan][j,i]) if eff_hists_data[chan][j,i]>0. else "", color="k", ha="center", va="center")#, fontweight="bold") fig.savefig("%s/trig_eff_data_debug_%s.pdf"%(args.tag,chan)) for chan in chanlist: fig,ax = plt.subplots(1,1, figsize=(8,8)) hist.plot2d(h_trig_eff_mc[chan], ax=ax, clear=True, xaxis=var1names[chan], ) for i in range(len(y_bins[chan])-1): for j in range(len(x_bins[chan])-1): ax.text((x_bins[chan][j]+x_bins[chan][j+1])/2.,(y_bins[chan][i]+y_bins[chan][i+1])/2., "{:0.2f}".format(eff_hists_mc[chan][j,i]) if eff_hists_mc[chan][j,i]>0. else "", color="k", ha="center", va="center")#, fontweight="bold") fig.savefig("%s/trig_eff_mc_debug_%s.pdf"%(args.tag,chan)) print(h_trig_sf) save(h_trig_sf,"%s_%s.coffea"%(args.output,args.year))
UTF-8
Python
false
false
18,869
py
48
make_trig_eff.py
35
0.551699
0.524193
0
395
46.76962
256
davidb-github/daily-journal-server
16,758,962,399,061
4ee5345bbd9ec4457448b9255961a3ed20ed5158
bccfb63ca0aff929497df545c96276a02f00c8c0
/entries/request.py
a617992ee83d7df019794302b2d00912a6f2b775
[]
no_license
https://github.com/davidb-github/daily-journal-server
b945b6b1098bfeb650b7c70b9fd5914fe27c70ed
1d0007128c6fb51e962958e3869bd493f733e327
refs/heads/main
2023-02-18T09:16:26.219635
2021-01-20T15:24:25
2021-01-20T15:24:25
331,330,411
0
0
null
false
2021-01-20T15:24:26
2021-01-20T14:25:36
2021-01-20T14:25:54
2021-01-20T15:24:26
0
0
0
0
Python
false
false
import sqlite3 import json from models import Entry def get_all_entries(): #open a connection to db with sqlite3.connect("./dailyjournal.db") as conn: # setup row and cursor conn.row_factory = sqlite3.Row db_cursor = conn.cursor() # select query db_cursor.execute(""" SELECT e.id, e.date, e.concept, e.entry, e.mood_id FROM entries AS e """) # init an emply list to hold customer representations entries = [] # convert rows of data into python list dataset = db_cursor.fetchall() # iterate list returned from database for row in dataset: entry = Entry(row['id'], row['date'], row['concept'], row['entry'], row['mood_id']) entries.append(entry.__dict__) # Use `json` package to properly serialize list as JSON return json.dumps(entries)
UTF-8
Python
false
false
982
py
5
request.py
5
0.547862
0.544807
0
39
24.205128
65
SanjoyPator1/ImageProcessingSkillsTrackDataCamp
1,211,180,829,294
2f3bc01f7492b8beac490c54f041d938eaeee22a
3deb8547395318885455a1094bf32291ee84c5fd
/C03_Image_Processing_With_Keras/04EvaluatingClassifier.py
a1afe2e78050897ca272388b0a33f5051fa6af6c
[]
no_license
https://github.com/SanjoyPator1/ImageProcessingSkillsTrackDataCamp
1978520dae29e89533d840af81e2252711f51bc0
a6b7eb1b9ad193336ea02b81619de0b437940744
refs/heads/master
2022-12-28T12:44:30.096203
2020-10-04T16:15:02
2020-10-04T16:15:02
298,842,849
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
test_labels = array([[0., 0., 1.], [0., 1., 0.], [0., 0., 1.], [0., 1., 0.], [0., 0., 1.], [0., 0., 1.], [0., 0., 1.], [0., 1., 0.]]) predictions = array([[0., 0., 1.], [0., 1., 0.], [0., 0., 1.], [1., 0., 0.], [0., 0., 1.], [1., 0., 0.], [0., 0., 1.], [0., 1., 0.]]) # Calculate the number of correct predictions number_correct = (test_labels*predictions).sum() print(number_correct) # Calculate the proportion of correct predictions proportion_correct = number_correct / (len(predictions)) print(proportion_correct)
UTF-8
Python
false
false
623
py
41
04EvaluatingClassifier.py
38
0.449438
0.372392
0
28
21.214286
56
FychanTW/automation_PO
1,889,785,611,360
aa8595df23a014f247ddc720381b69a1ff3964be
370913383bb160539819c02bb2bd918548867ac4
/src/AboutWindow_GUI.py
a630dcf74a2a6537b39af464415d1f7a69727645
[]
no_license
https://github.com/FychanTW/automation_PO
c6f6beb13641cb736a47851e834eaee2b7fc9f4f
314081aa3354f67d7117e6be3648d0cef72b2e69
refs/heads/main
2023-08-23T13:36:39.685594
2021-10-31T09:46:48
2021-10-31T09:46:48
418,862,024
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'AboutWindow.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_AboutWindow(object): def setupUi(self, AboutWindow): AboutWindow.setObjectName("AboutWindow") AboutWindow.resize(364, 475) font = QtGui.QFont() font.setFamily("Arial") AboutWindow.setFont(font) self.centralwidget = QtWidgets.QWidget(AboutWindow) self.centralwidget.setObjectName("centralwidget") self.groupBox = QtWidgets.QGroupBox(self.centralwidget) self.groupBox.setGeometry(QtCore.QRect(30, 40, 311, 121)) font = QtGui.QFont() font.setFamily("Arial") self.groupBox.setFont(font) self.groupBox.setObjectName("groupBox") self.label = QtWidgets.QLabel(self.groupBox) self.label.setGeometry(QtCore.QRect(20, 20, 271, 91)) self.label.setWordWrap(True) self.label.setObjectName("label") self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_2.setGeometry(QtCore.QRect(30, 280, 311, 91)) font = QtGui.QFont() font.setFamily("Arial") self.groupBox_2.setFont(font) self.groupBox_2.setObjectName("groupBox_2") self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_3.setGeometry(QtCore.QRect(30, 180, 311, 81)) font = QtGui.QFont() font.setFamily("Arial") self.groupBox_3.setFont(font) self.groupBox_3.setObjectName("groupBox_3") self.label_2 = QtWidgets.QLabel(self.groupBox_3) self.label_2.setGeometry(QtCore.QRect(30, 20, 291, 51)) self.label_2.setWordWrap(True) self.label_2.setObjectName("label_2") AboutWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(AboutWindow) self.statusbar.setObjectName("statusbar") AboutWindow.setStatusBar(self.statusbar) self.retranslateUi(AboutWindow) QtCore.QMetaObject.connectSlotsByName(AboutWindow) def retranslateUi(self, AboutWindow): _translate = QtCore.QCoreApplication.translate AboutWindow.setWindowTitle(_translate("AboutWindow", "About")) self.groupBox.setTitle(_translate("AboutWindow", "About this program")) self.label.setText(_translate("AboutWindow", "This program provides a quick access to an internal used Trello system for procurement process initiated in D Lab, Institute of Science, Nagoya University.")) self.groupBox_2.setTitle(_translate("AboutWindow", "License")) self.groupBox_3.setTitle(_translate("AboutWindow", "Authors")) self.label_2.setText(_translate("AboutWindow", "<html><head/><body><p>Feng-Yueh Chan, GitHub: FychanTW</p><p>Yui Kanaoka, GitHub: yuikanaoka</p></body></html>"))
UTF-8
Python
false
false
3,038
py
13
AboutWindow_GUI.py
9
0.686307
0.659645
0
64
46.46875
212
dflemin3/diskpy
18,107,582,123,213
9e48ae227baaf9aa1d0e6a12b1bd79d13469fc76
919d9f3f071238fe5b64aa217f54a896bcd8ac85
/diskpy/clumps/simclumps/_simclumps.py
633bb7126bf09a9d68978a40761f6bf392e44bd0
[ "MIT" ]
permissive
https://github.com/dflemin3/diskpy
5a54d0216db93adeae79ab60cb88a091af7b5073
9a89562f6dda0b904439872136a04b90ea5cbc4e
refs/heads/master
2021-01-18T08:47:37.442028
2015-11-04T21:14:04
2015-11-04T21:14:04
40,382,686
1
0
null
true
2015-11-04T21:04:34
2015-08-07T22:03:12
2015-08-07T22:03:13
2015-11-04T21:04:34
4,716
0
0
0
Python
null
null
# -*- coding: utf-8 -*- """ Defines all the data classes for storing, managing, organizing, and accessing clumps. Created on Thu May 7 21:38:26 2015 @author: ibackus """ import pynbody as pb SimArray = pb.array.SimArray SimSnap = pb.snapshot.SimSnap import numpy as np from warnings import warn def newSimgroup(simlist): """ Generates a new simgroup object from a list of clumplists. """ nSims = len(simlist) simgrp = simgroup(nSims) for i, s in enumerate(simlist): simgrp[i] = newSim(s) return simgrp def newSim(clumplist): """ Generates a sim object from a list of clump dictionaries for an entire simulation. """ if len(clumplist) < 1: return sim(0) nClumps = len(clumplist) s = sim(nClumps) for i, cl in enumerate(clumplist): s[i] = newClump(cl) return s def newClump(clumpDict): """ Generates a new clump object from a clump dictionary (see clumps.blank_clump and clumps.build_clumps). """ # Number of timesteps in this simulation nt = len(clumpDict['pos']) # ---Compatability--- # Deal with an unfortunate name convention. pynbody uses 'vel' by default # to refer to 3D velocity, whereas clumpDicts may use 'v' if 'v' in clumpDict: clumpDict['vel'] = clumpDict.pop('v') if 'm' in clumpDict: clumpDict['mass'] = clumpDict.pop('m') # NaN values for N are unnatural--make them zeros if 'N' in clumpDict: clumpDict['N'][np.isnan(clumpDict['N'])] = 0 # Initialize a blank clump cl = clump(nt) # Load all the arrays that are created by default in clump.__init__ unloaded_keys = set(clumpDict.keys()) for k in cl.keys(): if k in clumpDict.keys(): cl[k] = clumpDict[k] unloaded_keys.remove(k) # Try to load any new arrays which are present in clumpDict for k in clumpDict.keys(): if k in unloaded_keys: unloaded_keys.remove(k) v = clumpDict[k] if np.ndim(v) > 1: ndim = v.shape[1] else: ndim = 1 cl._create_array(k, ndim, v.dtype) cl[k] = v if len(unloaded_keys) > 0: warn('Could not load {0} into clump'.format(unloaded_keys)) return cl def clump(nt): """ Generates a clump object, which is basically just a pynbody SimSnap where time steps are represented by particles. **ARGUMENTS** nt : int Number of time steps in the simulation """ cl = pb.new(s=nt) cl._create_arrays(['r_clump', 'time', 'm', 'T', 'rho'], ndim=1,\ dtype=float) cl._create_arrays(['L'], ndim=3, dtype=float) cl._create_array('N', dtype=int) return cl class sim(np.ndarray): """ The sim class. sims are basically just numpy arrays containing clump objects. It stores data for all the clumps in a given simulation (for all available time steps). Additionally, slicing can be done in different ways (see below) To initialize a blank sim object: >>> s = sim(nClumps) To generate a sim object from a list of clumpDicts for a simulation (ie the output of :func:`clumps.clump_tracker`) >>> s = newSim(clumplist) Where nClumps is the number of clumps in the simulation Accessing different quantites: >>> s = newSim(clumplist) # create sim object from clumplist >>> x = s('x', t=slice(None)) # get x for all clumps at all times # Get the mass for the first time step at which the clumps exist >>> m0 = s('mass',t=0,clumpexist=True) # Get velocity for the final timestep at which a clump exists >>> vf = s('vel', t=-1, clumpexist=True) # Get masses of all clumps at end of simulation >>> all_masses = s('mass', t=-1) >>> mask = ~np.isnan(all_masses) >>> mf = all_masses[mask] Print available keys: >>> s.keys() Select a sub-group of clumps by normal array slicing: >>> s1 = s[0:10] **CALL FUNCTION ARGUMENTS** s(key, t=None, clumpexist=False, clump=None) key : str Clump key to access t : slicer Anything that can be used to slice a numpy array, eg [1,2,4] or slice(0,-1). Slices according to the simulation time clumpexist : bool Filter out all quantities by whether the clump exists at that time. e.g., this makes it easy to select the first timestep when a clump exists clump : slicer Anything that can be used to slice a numpy array, eg [1,2,4] or slice(0,-1). Slices by clump number """ def __new__(subtype, shape, buffer=None, offset=0, \ strides=None, order=None): dtype = object obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset, \ strides, order) return obj def __array_finalize__(self, obj): if obj is None: newSim return def __call__(self, key, t=None, clumpexist=False, clump=None): """ """ # --------------------------------------- # Initialize # --------------------------------------- s = _simslice(self, clump) test_array = s[0][0][key] units = _getunits(test_array) dim = _getdim(test_array) nt = _getnt(s, t) if nt <= 0: # Nothing matches t return None nClumps = len(s) dummy = s[0][0][key] dtype = dummy.dtype outarray = self._init_array(nClumps, nt, dim, dtype, units) usemask = np.ones(nClumps, dtype=bool) # --------------------------------------- # Access the data # --------------------------------------- for iClump, cl in enumerate(s): if clumpexist: # only look at the times where the clump exists cl = cl[cl['exists']] if t is not None: try: cl = cl[t] except IndexError: cl = [] nt_use = len(cl) if nt_use > 0: if nt > 1: outarray[iClump, 0:nt_use] = cl[key] else: outarray[iClump] = cl[key] else: usemask[iClump] = False # --------------------------------------- # Filter/return data # --------------------------------------- if clumpexist: return outarray[usemask] else: return outarray def __repr__(self): printstr = "sim object. {0} clumps, {1} time steps".format(\ self.nClumps(), self.nt()) return printstr def __str__(self): return self.__repr__() def _init_array(self, nClumps, nt=0, dim=0, dtype=float, units=None): """ Initialize a blank array for multi-clump slicing. Default fill values are NaN for floats, -1 for ints, and 0 otherwise. This is useful for automatically flagging when clumps do not exist **ARGUMENTS** nClumps : int Number of clumps nt : int Number of time steps dim : int Dimension of the array. IE 3 for 'vel' or 1 for 'x' dtype : dtype dtype of the array units : (see pynbody.units) Units for the array **RETURNS** An array of a shape suitable for nClumps, nt, and dim """ shape = [nClumps] if nt > 1: shape.append(nt) if dim > 1: shape.append(dim) if np.issubdtype(dtype, float): fill_val = np.nan elif np.issubdtype(dtype, int): fill_val = -1 else: fill_val = 0 outarray = SimArray(fill_val*np.ones(shape, dtype=dtype), units) return outarray def keys(self): """ Return keys present in all clumps """ return _keys(self) def nClumps(self): """ Returns the number of clumps in the simulation """ return len(self) def nt(self): """ Returns the number of timesteps in the simulation """ if self.nClumps() > 0: return len(self[0]) else: return 0 class simgroup(np.ndarray): """ The simgroup class. Basically just an array containing a bunch of sim objects. Meant to contain information for clumps in a suite of simulations To initialize a blank sim group: >>> sgrp = simgroup(nSims) To initialize from a list of simulations (ie a list of the outputs from :func:`clumps.clumptracker`): >>> sgrp = newSimgroup(simlist) Accessing different quantites: >>> s = newSimgroup(simlist) # create sim object from simlist >>> x = s('x', t=slice(None)) # get x for all clumps at all times # Get the mass for the first time step at which the clumps exist >>> m0 = s('mass',t=0,clumpexist=True) # Get velocity for the final timestep at which a clump exists >>> vf = s('vel', t=-1, clumpexist=True) # Get masses of all clumps at end of simulation >>> all_masses = s('mass', t=-1) >>> mask = ~np.isnan(all_masses) >>> mf = all_masses[mask] Print available keys: >>> s.keys() Select a sub-group of simulations by normal array slicing: >>> s1 = s[0:10] **CALL FUNCTION ARGUMENTS** s(key, t=None, clumpexist=False, clump=None, sims=None) key : str Clump key to access t : slicer Anything that can be used to slice a numpy array, eg [1,2,4] or slice(0,-1). Slices according to the simulation time clumpexist : bool Filter out all quantities by whether the clump exists at that time. e.g., this makes it easy to select the first timestep when a clump exists clump : slicer Anything that can be used to slice a numpy array, eg [1,2,4] or slice(0,-1). Slices by clump number sims : slicer Anything that can be used to slice a numpy array, eg [1,2,4] or slice(0,-1). Slices by simulation number """ def __new__(subtype, shape, buffer=None, offset=0, \ strides=None, order=None): dtype = sim obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset, \ strides, order) return obj def __array_finalize__(self, obj): return def __call__(self, key, t=None, clumpexist=False, clump=None, sims=None): """ Call documentation for simgroups """ # Slice the simulation group is needed simgrp = _simgroupslice(self, sims) # No simulations were selected if len(simgrp) < 1: return None # Loop through all the simulations at generate the request arrays outlist = [] for iSim, s in enumerate(simgrp): if len(s) > 0: # The simulation has a clump. Now generate the requested array val = s(key,t,clumpexist,clump) else: # The simulation has no clumps val = None # Append output (if it's not None) if val is not None: if len(val) > 0: outlist.append(val) # Concatenate the list of output arrays into a single SimArray outarray = arraylistcat(outlist) return outarray def __repr__(self): printstr = 'simgroup object. {0} simulations, {1} clumps'.format(\ self.nsim(), self.nClumps()) return printstr def __str__(self): return self.__repr__() def keys(self): """ Return keys present in all clumps """ return _keys(self) def nsim(self): """ Return the number of simulations present here """ return len(self) def nClumps(self): n = 0 for simulation in self: n += simulation.nClumps() return n def _keys(obj): """ Return the clump keys present in all things here """ k = [] if len(obj) > 0: # There is at least one thing for x in obj: # Make sure keys() is defined if hasattr(x, 'keys'): k.extend(x.keys()) k = list(set(k)) k.sort() return k @pb.derived_array def exists(sim): """ Defines a pynbody derived array which determines the time steps a clump exists at """ return (sim['N'] > 0) def len2(x): """ A modified version of len() to work with numbers. Numbers have a length of 1 """ if hasattr(x, '__len__'): length = len(x) elif isinstance(x, (int,float,long,complex)): length = 1 return length def arraylistcat(arraylist): """ Concatenate a list of like arrays (or SimArrays) into a single array. Concatenates along the first dimension Returns None for an empty list """ if len(arraylist) < 1: return None nx = 0 for x in arraylist: nx += len(x) dummy = arraylist[0] shape = list(dummy.shape) shape[0] = nx units = _getunits(dummy) outarray = SimArray(np.zeros(shape), units) counter = 0 for array in arraylist: outarray[counter:counter+len(array)] = array counter += len(array) return outarray def _simslice(simulation, clump=None): """ A method for slicing a sim, guaranteeing a sim object is returned. clump is anything that can be used to slice an array """ if clump is None: # No slicing required s = simulation else: # Slice according to clump s = simulation[clump] if not isinstance(s, sim): # Cast s as a sim object dummy = sim(1) dummy[0] = s s = dummy return s def _simgroupslice(simgrp, sims=None): """ A method for slicing a simgroup, guaranteeing a simgroup object is returned. sims is anything that can be used to slice an array """ if sims is None: # No slicing required s = simgrp else: # Slice according to sims s = simgrp[sims] if not isinstance(s, simgroup): # Cast s as a sim object dummy = simgroup(1) dummy[0] = s s = dummy return s def _getunits(x): """ Attempts to get the units of x. If x has not units, None is returned """ if pb.units.has_units(x): units = x.units else: units = None return units def _getdim(x): """ Get the dimension of an array x. IE, for 'vel' dim=3, for 'z', dim=1 For x shape (N,) dim = 0 For x shape (N,m) dim = m For x shape (N1, N2, ...,m) dim = m """ if np.ndim(x) > 1: dim = x.shape[-1] else: dim = 0 return dim def _getnt(simulation, t=None): """ Get the total number of time steps the slicer t will create for a simulation """ nt_sim = simulation.nt() if t is not None: dummy = np.zeros(nt_sim) nt = len2(dummy[t]) else: nt = nt_sim return nt
UTF-8
Python
false
false
17,119
py
35
_simclumps.py
33
0.491734
0.484841
0
661
24.900151
80
myracheng/treehacks19
17,549,236,408,152
14136fe5c094bccac9bb60496b08ceaab45c8685
af4c325a5a20cb054f22723af9a693cdf8cda3e5
/mysite/env/lib/python3.6/io.py
c3e531188f9c386d17f05fb666c54deb8ae9d757
[]
no_license
https://github.com/myracheng/treehacks19
aff1d6356f480dfdc4ca75f286fbcbd29c110a35
9e2d9195f749415eddcfabaceed0f9d911b12c7e
refs/heads/master
2020-07-04T11:07:02.833157
2019-02-17T19:24:08
2019-02-17T19:24:08
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
/Users/gracelu/anaconda3/lib/python3.6/io.py
UTF-8
Python
true
false
44
py
324
io.py
205
0.818182
0.75
0
1
44
44
ravikrranjan/learning-python
13,194,139,574,102
a409c32fcd83e4afe42ace8c7a3cae07bfbb047e
1caff4eaf08d96c7a6f594499ec8664fc1b8cfe8
/while_loop.py
634945566842fa44487282a24dcf4ab08294fdb5
[]
no_license
https://github.com/ravikrranjan/learning-python
f94598454e0a58a6fcce79fb3eea75402e2eac4a
17d7628f12cec87913d79914d5c8b40b409bd371
refs/heads/master
2021-05-17T02:19:54.391310
2020-05-19T16:48:09
2020-05-19T16:48:09
250,573,197
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
number = 8 guess = int(input("I'm thinking a number between zero to ten, Can I gusess ? ")) while True: if guess == number: break else: guess = int(input('Nope, Try agian :')) print("You gussed it, I was thinking about", number)
UTF-8
Python
false
false
257
py
38
while_loop.py
34
0.614786
0.610895
0
10
24.5
80
akumar01/uoicorr
8,254,927,176,621
d1ea846d44a15a9899e50e052a3f2350e2f4208f
30ebe031cc175c544f261333ee393bafa48ddef6
/uoicorr_exp4.py
9db85ed77ebcb5f47a22d8eda0b3d64ecf618345
[]
no_license
https://github.com/akumar01/uoicorr
7709cc8e62341c6b2c216f344f4279f4df7fde3e
b2b62dab3284f7bb5740131704e9331226328097
refs/heads/master
2020-04-08T13:06:08.288014
2019-05-01T23:06:04
2019-05-01T23:06:04
159,375,575
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import argparse import numpy as np import h5py import time from scipy.linalg import block_diag from sklearn.metrics import r2_score from sklearn.linear_model import ElasticNetCV from PyUoI.UoI_Lasso import UoI_Lasso ### parse arguments ### parser = argparse.ArgumentParser() parser.add_argument('--n_features', type=int, default=20) parser.add_argument('--kappa', type=float, default=0.3) parser.add_argument('--reps', type=int, default=50) parser.add_argument('--sparsity', type=float, default=1.) parser.add_argument('--LST', type=float, default=0.75) parser.add_argument('--results_file', default='results.h5') args = parser.parse_args() # number of features n_features = args.n_features # inverse signal-to-noise ratio kappa = args.kappa # sparsity of within block features sparsity = args.sparsity # number of repetitions reps = args.reps # lower selection threshold LST = args.LST # filename for results results_file = args.results_file # set up other variables n_samples = 5 * n_features # number of training samples n_nonzero_beta = int(sparsity * n_features) # number of nonzero parameters # correlations and selection thresholds Ls = np.array([0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]) # set up results file results = h5py.File(results_file, 'w') # result arrays: fits betas = np.zeros((reps, n_features)) beta_hats_uoi = np.zeros((reps, Ls.size, n_features)) beta_hats_enet = np.zeros((reps, Ls.size, n_features)) # result arrays: explained variance performance r2_uoi = np.zeros((reps, Ls.size)) r2_enet = np.zeros((reps, Ls.size)) r2_true = np.zeros((reps, Ls.size)) for rep in range(reps): # choose true parameters beta = np.random.uniform(low=0, high=10, size=(n_features, 1)) # determine sparsity indicies mask = np.zeros(n_features) mask[:n_nonzero_beta] = np.ones(n_nonzero_beta) np.random.shuffle(mask) # apply mask to parameters to set them equal to zero beta = beta * mask[..., np.newaxis] betas[rep, :] = beta.ravel() # iterate over correlation strengths for L_idx, L in enumerate(Ls): # create covariance matrix for block indices = np.arange(n_features) distances = np.abs(np.subtract.outer(indices, indices)) Sigma = np.exp(-distances/L) # draw samples X = np.random.multivariate_normal(mean=np.zeros(n_features), cov=Sigma, size=n_samples) X_test = np.random.multivariate_normal(mean=np.zeros(n_features), cov=Sigma, size=n_samples) # signal and noise variance signal_variance = np.sum(Sigma * np.dot(beta, beta.T)) noise_variance = kappa * signal_variance # draw noise noise = np.random.normal(loc=0, scale=np.sqrt(noise_variance), size=(n_samples, 1)) noise_test = np.random.normal(loc=0, scale=np.sqrt(noise_variance), size=(n_samples, 1)) # response variable y = np.dot(X, beta) + noise y_test = np.dot(X_test, beta) + noise_test # apply uoi lasso start = time.time() uoi = UoI_Lasso( normalize=True, n_boots_sel=48, n_boots_est=48, selection_thres_min=LST, n_selection_thres=48, estimation_score='BIC' ) uoi.fit(X, y.ravel()) beta_hat_uoi = uoi.coef_ print('uoi: ', time.time() - start) start = time.time() # apply elastic net enet = ElasticNetCV( l1_ratio=[0.01, .1, .5, .7, .9, .95, .99, 1], normalize=True, tol=1e-7, max_iter = 100000 ) enet.fit(X, y.ravel()) beta_hat_enet = enet.coef_ print('enet: ', time.time() - start) # store fits beta_hats_uoi[rep, L_idx, :] = beta_hat_uoi beta_hats_enet[rep, L_idx, :] = beta_hat_enet # calculate test performance r2_uoi[rep, L_idx] = r2_score( y_test, np.dot(X_test, beta_hat_uoi) ) r2_enet[rep, L_idx] = r2_score( y_test, np.dot(X_test, beta_hat_enet) ) r2_true[rep, L_idx] = r2_score( y_test, np.dot(X_test, beta) ) # store results in h5 file results['betas'] = betas results['beta_hats_uoi'] = beta_hats_uoi results['beta_hats_enet'] = beta_hats_enet results['r2_uoi'] = r2_uoi results['r2_enet'] = r2_enet results['r2_true'] = r2_true results.close()
UTF-8
Python
false
false
3,992
py
77
uoicorr_exp4.py
35
0.687625
0.664579
0
126
30.690476
94
asteen27/netbox-bgp
12,360,915,880,310
42ef12455beb3e3c5544f5e26d1936b730bfe18d
2055463aab9d8272cfcfa3b6831b77e9b4893cd4
/netbox_bgp/migrations/0009_netbox_bgp.py
83f70cb73972f71b016566dba1c237772f1e8eda
[ "Apache-2.0" ]
permissive
https://github.com/asteen27/netbox-bgp
b22421f9f0c7e90e2979c95897981ad4a2034261
8ee7a80484fe008408bbdc83a3da4bf2f2e50c8b
refs/heads/main
2023-07-12T22:13:36.617871
2021-08-16T18:41:55
2021-08-16T18:41:55
396,925,486
0
0
Apache-2.0
true
2021-08-16T18:40:42
2021-08-16T18:40:42
2021-08-13T17:51:29
2021-07-16T06:40:50
2,889
0
0
0
null
false
false
# Generated by Django 3.1.3 on 2021-04-21 05:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('netbox_bgp', '0008_netbox_bgp'), ] operations = [ migrations.AlterField( model_name='bgpsession', name='peer_group', field=models.ManyToManyField(blank=True, to='netbox_bgp.BGPPeerGroup'), ), ]
UTF-8
Python
false
false
422
py
24
0009_netbox_bgp.py
23
0.604265
0.559242
0
18
22.444444
83
mcdaviddj/eyeExtend-Connect
6,691,559,053,529
7d3bdffbe6fef3638631de9096e0ee38ff40a8c7
e37acaf3732f937c2f9be7c26a2a3ce58ef0d962
/AzureAD/AzureAD 1.0.0/aad_test.py
b5128ceb2e3c9bb4812808da3d842e6c8a974622
[ "MIT" ]
permissive
https://github.com/mcdaviddj/eyeExtend-Connect
3d76546841a90a5390fa76d5a2148377226dbb3a
e1638210dda134ac481e763cc7c5b50241180089
refs/heads/encode_session_id
2023-08-01T05:58:31.313912
2021-09-28T16:33:23
2021-09-28T16:33:23
411,360,942
1
0
null
false
2021-09-28T16:37:33
2021-09-28T16:34:42
2021-09-28T16:35:28
2021-09-28T16:35:35
0
0
0
1
Python
false
false
''' Copyright © 2020 Forescout Technologies, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' # v1.0.0 Azure Active Directory Test # Keith Gilbert from urllib import request, parse logging.info("****************************** params: {}".format(params)) # Values for system.conf passed to params response = {} if ("connect_authorization_token" in params) and params["connect_authorization_token"] != "": access_token = params["connect_authorization_token"] if "connect_azuread_test_user" in params and params["connect_azuread_test_user"] != "": test_user = params["connect_azuread_test_user"] user_url_start = "https://graph.microsoft.com/v1.0/users?$filter=startswith(userPrincipalName%2C+\'" user_url_end = "\')" user_url = user_url_start + test_user + user_url_end user_header = {"Authorization": "Bearer " + str(access_token)} req2 = request.Request(user_url, headers=user_header) resp2 = request.urlopen(req2, context=ssl_context) req2_response = json.loads(resp2.read()) logging.info("******************************req2_response = {}".format(str(req2_response))) if resp2.getcode() == 200 and req2_response["value"]: logging.info("****************************** resp2.getcode() == 200") response["succeeded"] = True response["result_msg"] = "Successful connection : Test User = " + test_user + " >> " + str(req2_response["value"]) else: response["succeeded"] = True response["result_msg"] = "Successful connection : Test User doesn't exist" else: response["succeeded"] = True response["result_msg"] = "Successful connection : Test User not defined" else: response["succeeded"] = False response["result_msg"] = "Failed connection : couldn't connect to login.microsoftonline server."
UTF-8
Python
false
false
2,720
py
236
aad_test.py
147
0.718279
0.708349
0
54
49.37037
117
CellarDoorMedia/Lockr-CA
8,005,819,086,899
f4451e8744396d4d358c9490d079f21a682a44ac
d801b8de0e905ed668c49dd18022f705bf6a4032
/script/uuid
55327b037f8ea5411ea6512fef58b234a564d4cd
[]
no_license
https://github.com/CellarDoorMedia/Lockr-CA
3c50ed383e4ef38c062669a8a8f85499331de1d5
5dfc2067ba01fd37a67c3875dd46694bd4235428
refs/heads/master
2021-01-24T23:57:19.890919
2016-05-19T21:10:21
2016-05-19T21:10:21
59,155,939
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python2 import uuid print str(uuid.uuid4())
UTF-8
Python
false
false
62
5
uuid
3
0.693548
0.66129
0
5
11.2
23
wsljmlin/spider
3,831,110,868,976
05fec7cc8efb429f3fe49221afb3d5882549b88d
5b9e7e8ff630bf73a30b80a452b2753f9b1b1904
/spiderManager/route/spider.py
75a720cb829e7c2afb51d299c1d976dc485ba20f
[]
no_license
https://github.com/wsljmlin/spider
b6fe9727de6c39145bae7e11349a5f98f057f5d0
63e1e938050b9399c4363f4a54d8f15d56e6368d
refs/heads/master
2021-01-22T20:00:22.165610
2017-03-17T05:33:37
2017-03-17T05:33:37
85,274,543
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python #encoding=UTF-8 import sys import os import time import re import types import json from bs4 import BeautifulSoup from flask import Blueprint from flask import render_template from flask import request from model.loginVerify import requireLogin from flask_wtf import Form from wtforms import form from wtforms import TextField, StringField, SelectField, SubmitField, PasswordField, validators from wtforms.validators import DataRequired from model.spiderModel import spiderModel from model.spiderCron import spiderCron from model.mysqldb import db from spiderModel.spiderTool import spiderTool from config import spiderModelPath from config import runtimeSave sys.path.append(spiderModelPath) class sourceForm(Form): source = SelectField(u'视频源:', validators=[validators.Length(min=1, max=25)]) type = SelectField(u'视频分类:', validators=[validators.Length(min=1, max=25)]) spiderModel = SelectField(u'爬虫模块:', validators=[validators.Length(min=1, max=25)]) example = SelectField(u'示例种子:') url = StringField(u'播放地址:') submitButton = SubmitField(u'开始爬取') class cronForm(Form): cron_id = StringField(u'定时id:', validators=[validators.Length(min=1, max=25)]) name = StringField(u'节目名称:', validators=[validators.Length(min=1, max=25)]) url = StringField(u'种子url:', validators=[validators.Length(min=1, max=25)]) spider = StringField(u'爬虫模块:', validators=[validators.Length(min=1, max=25)]) runTime = StringField(u'执行时间:') submitButton = SubmitField(u'保存') class mfspForm(Form): type = SelectField(u'视频分类:',validators=[validators.Length(min=1, max=25)]) word = StringField(u'搜索内容:',validators=[validators.Length(min=1, max=25)]) submitButton = SubmitField(u'开始搜索') bp = Blueprint('spider', __name__) @bp.route('/') @requireLogin def spider(): return render_template('spider/spider.html') @bp.route('/cron') @requireLogin def all(): totalPage =1 return render_template('spider/spiderCron.html',totalPage=totalPage, runtimeSave=runtimeSave) @bp.route('/find',methods=['GET', 'POST']) @requireLogin def find(): getKeys = request.args.keys() name = "%%" pageNum = 1 totalPage = 1 pageListNum = 20 if "nameGet" in getKeys: name = "%" + request.args.get("nameGet") + "%" if "pageNum" in getKeys: pageNum = int(request.args.get("pageNum").encode('utf8')) SpiderCron = spiderCron() data =[{"cron_id": u.id, "name": u.name, "url": u.url, "spider": u.spider, "runTime": {u.runTime: runtimeSave[int(str(u.runTime).encode('utf8'))]}} for u in db.session.query(spiderCron).filter(spiderCron.name.ilike(name))] totalPage = len(data)//pageListNum if len(data) % pageListNum > 0: totalPage += 1 if int(pageNum) > totalPage: pageNum = 1 pageData = [] beginIndex = pageListNum*(pageNum-1) endIndex = pageListNum*pageNum if endIndex > len(data): endIndex = len(data) for i in range(beginIndex, endIndex): pageData.append(data[i]) rtData = {"totalPage": totalPage, "pageNum": pageNum, "data": pageData} rtStr = json.dumps(rtData) return rtStr @bp.route('/album',methods=['GET', 'POST']) @requireLogin def album(): jsonData = "" nameSave = "" urlSave = "" spiderSave = "" form = sourceForm() form.source.choices = [(u.source, u.source) for u in db.session.query(spiderModel.source).group_by(spiderModel.source)] form.type.choices = [(u.type, u.type) for u in db.session.query(spiderModel.type).group_by(spiderModel.type)] form.spiderModel.choices = [(u.spider, u.spider) for u in db.session.query(spiderModel.spider).group_by(spiderModel.spider)] form.example.choices = [(u.url, u.url) for u in db.session.query(spiderModel.url).group_by(spiderModel.url)] form.submitButton = u'开始爬取' if form.validate_on_submit(): requestForm = request.form keyList = requestForm.keys() source = "" type = "" spiderF = "" example = "" submitButton = "" url = "" if "source" in keyList: source = requestForm["source"] if "type" in keyList: type = requestForm["type"] if "spiderModel" in keyList: spiderModelName = requestForm["spiderModel"] if "example" in keyList: example = requestForm["example"] if 'submitButton' in keyList: submitButton = requestForm['submitButton'] if 'url' in keyList: url = requestForm['url'] if submitButton == '1' and source != "": form.type.choices = [(u.type, u.type) for u in db.session.query(spiderModel.type).filter(spiderModel.source == source).group_by(spiderModel.type)] form.spiderModel.choices = [(u.spider, u.spider) for u in db.session.query(spiderModel.spider).filter(spiderModel.source == source).group_by(spiderModel.spider)] elif submitButton == '2' and type != "" and source != "": form.spiderModel.choices = [(u.spider, u.spider) for u in db.session.query(spiderModel.spider).filter(spiderModel.source == source, spiderModel.type == type).group_by(spiderModel.spider)] if len(form.spiderModel.choices) == 1: form.example.choices = [(u.url, u.url) for u in db.session.query(spiderModel.url).filter(spiderModel.source == source, spiderModel.type == type).group_by(spiderModel.url)] elif submitButton == '3'and spiderModelName != "" and type != "" and source != "": form.spiderModel.choices = [(spiderModelName, spiderModelName) ] form.type.choices = [(u.type, u.type) for u in db.session.query(spiderModel.type).filter(spiderModel.spider == spiderModelName).group_by(spiderModel.type)] form.example.choices = [(u.url, u.url) for u in db.session.query(spiderModel.url).filter(spiderModel.spider == spiderModelName).group_by(spiderModel.url)] elif submitButton != '1' and submitButton != '2' and url != "": spider_class = "" modelList = os.listdir(spiderModelPath) if spiderModelName + ".py" not in modelList: jsonData = u"{'msg':'该爬取模块不存在!'}" else: try: spider_module = __import__(spiderModelName) spider_class = eval("spider_module." + spiderModelName + "()") except:# IOError, e: jsonData = u"{'msg':'该爬取模块无法初始化!'}" if spider_class != "": try: spider_class.seedList = [url] spider_class.seedSpider() jsonData = spider_class.jsonData urlSave = url spiderSave = spiderModelName nameSave = spider_class.program['name'] if jsonData == "": jsonData = u"{'msg':'爬取失败,请选用其他模块,或联系工程师!'}" except:# IOError, e: jsonData = u"{'msg':'爬取失败,请选用其他模块,或联系工程师!'}" elif submitButton != '1' and submitButton != '2' and url == "": jsonData = u"{'msg':'url不能为空!'}" return render_template('spider/spiderTmp.html', form=form, jsonData=jsonData, urlSave=urlSave, nameSave=nameSave, spiderSave=spiderSave, runtimeSave=runtimeSave) @bp.route('/shangchuan', methods=['GET', 'POST']) @requireLogin def shangchuan(): jsonData = "" postKeys = request.form.keys() if 'jsonData' in postKeys: jsonData = request.form['jsonData'] if type(jsonData) == types.UnicodeType: jsonData = jsonData.encode('utf8') if jsonData != "": fileName = 'data' + os.path.sep + time.strftime('cron_manager_spider_tmp_%Y%m%d%H%M%S.txt', time.localtime(time.time())) openFile = open(fileName,'w') openFile.write(str(jsonData)) jsonData = u"{'msg':'数据已经上传,请耐心等待!'}" return jsonData jsonData = u"{'msg':'上传数据异常!'}" return jsonData @bp.route('/save', methods=['GET', 'POST']) @requireLogin def save(): postKeys = request.form.keys() id = "" name = "" url = "" spiderF = "" runtime = "" delete = False if "idSave" in postKeys: id = request.form["idSave"] if "delete" in postKeys: delete = True if id != "": SpiderCron = db.session.query(spiderCron).filter(spiderCron.id == id).first() else: SpiderCron = spiderCron() if "nameSave" in postKeys: name = request.form["nameSave"] SpiderCron.name = name if "urlSave" in postKeys: url = request.form["urlSave"] SpiderCron.url = url if "spiderSave" in postKeys: spiderF = request.form["spiderSave"] SpiderCron.spider = spiderF if "runtimeSave" in postKeys: runtime = request.form["runtimeSave"] SpiderCron.runTime = runtime if id == "": db.session.add(SpiderCron) elif id != "" and delete: db.session.delete(SpiderCron) db.session.commit() return "Data base connected." @bp.route('/cronData', methods=['GET', 'POST']) def cronData(): getKeys = request.args.keys() if 'runTime' in getKeys: runTime = request.args['runTime'] listData = [{'spider': u.spider, 'url': u.url} for u in db.session.query(spiderCron).filter(spiderCron.runTime == str(runTime))] strData = json.dumps(listData) return strData else: return "" @bp.route('/mfsp',methods=['GET', 'POST']) @requireLogin def mfsp(): form = mfspForm() form.type.choices=[('1', u'电影'),('2', u'电视剧'),('5', u'动漫'),('4', u'综艺'), ( '9',u'纪录片')] data = [] if form.validate_on_submit(): requestForm = request.form keyList = requestForm.keys() word = "" type = "" if "word" in keyList: word = requestForm["word"] if "type" in keyList: type = requestForm["type"] if word != "" and type != "": seed = "http://www.beevideo.tv/api/video2.0/video_search.action?channelId=%s&searchKey=%s" %(type, word) doc = spiderTool.getHtmlBody(seed) soup = BeautifulSoup(doc, from_encoding="utf8") video_list_p = soup.find('video_list') if video_list_p is not None: video_list = video_list_p.find_all('video_item') for each in video_list: item = {} url = "" name = "" type = "" id = each.find('id') if id is not None: id_num = id.get_text() url = 'http://www.beevideo.tv/api/video2.0/video_detail_info.action?videoId=' + id_num name_tag = each.find('name') if name_tag: name = name_tag.get_text() type_tag = each.find('channel') if type_tag: type = type_tag.get_text() if name != "" and type != "" and url != "": item = {"name":name, "type": type, "url": url} data.append(item) return render_template('spider/mfsp.html',form=form, data=data)
UTF-8
Python
false
false
11,859
py
130
spider.py
65
0.584367
0.579249
0
282
38.882979
199
nestorwheelock/stripe-python
5,437,428,615,225
f83ba02da02e8dcbaedf2e116cb424263e049e09
1b0fb627d3412dc8dedb6246e5d71ea30831f737
/tests/api_resources/test_invoice.py
aebf317cbe406b4eecfe7cf348d35f9ec0cf28a4
[ "MIT" ]
permissive
https://github.com/nestorwheelock/stripe-python
ee00f8b01d325b935ef548fbd8a536900cd808c9
2be8e47a1e24f1394038d478b7e17b3962bb1b92
refs/heads/master
2020-03-22T00:33:22.087701
2018-06-29T09:50:33
2018-06-29T09:50:33
139,252,114
1
0
null
true
2018-06-30T13:34:21
2018-06-30T13:34:21
2018-06-30T01:49:43
2018-06-29T11:59:20
1,672
0
0
0
null
false
null
from __future__ import absolute_import, division, print_function import stripe from tests.helper import StripeTestCase TEST_RESOURCE_ID = 'in_123' class InvoiceTest(StripeTestCase): def test_is_listable(self): resources = stripe.Invoice.list() self.assert_requested( 'get', '/v1/invoices' ) self.assertIsInstance(resources.data, list) self.assertIsInstance(resources.data[0], stripe.Invoice) def test_is_retrievable(self): resource = stripe.Invoice.retrieve(TEST_RESOURCE_ID) self.assert_requested( 'get', '/v1/invoices/%s' % TEST_RESOURCE_ID ) self.assertIsInstance(resource, stripe.Invoice) def test_is_creatable(self): resource = stripe.Invoice.create( customer='cus_123' ) self.assert_requested( 'post', '/v1/invoices' ) self.assertIsInstance(resource, stripe.Invoice) def test_is_saveable(self): resource = stripe.Invoice.retrieve(TEST_RESOURCE_ID) resource.metadata['key'] = 'value' resource.save() self.assert_requested( 'post', '/v1/invoices/%s' % resource.id ) def test_is_modifiable(self): resource = stripe.Invoice.modify( TEST_RESOURCE_ID, metadata={'key': 'value'} ) self.assert_requested( 'post', '/v1/invoices/%s' % TEST_RESOURCE_ID ) self.assertIsInstance(resource, stripe.Invoice) def test_can_pay(self): resource = stripe.Invoice.retrieve(TEST_RESOURCE_ID) resource = resource.pay() self.assert_requested( 'post', '/v1/invoices/%s/pay' % resource.id ) self.assertIsInstance(resource, stripe.Invoice) def test_can_upcoming(self): resource = stripe.Invoice.upcoming() self.assert_requested( 'get', '/v1/invoices/upcoming' ) self.assertIsInstance(resource, stripe.Invoice) def test_can_upcoming_and_subscription_items(self): resource = stripe.Invoice.upcoming( subscription_items=[ {"plan": "foo", "quantity": 3} ] ) self.assert_requested( 'get', '/v1/invoices/upcoming', { 'subscription_items': { "0": { "plan": "foo", "quantity": 3, }, }, }, ) self.assertIsInstance(resource, stripe.Invoice)
UTF-8
Python
false
false
2,669
py
37
test_invoice.py
35
0.536905
0.530161
0
93
27.698925
64
chenbiningbo/programming_learning
19,207,093,759,066
0fae41a0235ed99eb360c0e59f6d3cb82d3c38f7
d42a65c149b004228fd72586a0f79b17b0545e92
/MIT_learning/session5_dataanlysis_panda/Problem/problem5_cus_demo.py
87bcc29738347533f5cbd3fc01f9d5b85cec2ef7
[]
no_license
https://github.com/chenbiningbo/programming_learning
34a642823c6bc8d54c4b912fa51a4ad6e9f23c15
2cfb2ca509d7d1ccc4779be4d7a35625010cb98a
refs/heads/master
2020-12-27T12:51:05.640281
2020-02-18T14:02:40
2020-02-18T14:02:40
237,903,158
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Problem 5 ''' HSBD Bank has hired Mario, a data analyst, to do some data analysis to help the company to better understand the customers' demographic characteristics. The upper management has some questions, and Mario must find the answer by analyzing the data available. To start, please run the cell below to get the data provided by the bank (it might take a few seconds to finish running). ''' # Run this cell but DO NOT MODIFY # Do not modify this part, it belongs to the question #------------------------------------------------------------------------------------------------------------------ import pandas as pd url='https://raw.githubusercontent.com/juliencohensolal/BankMarketing/master/rawData/bank-additional-full.csv' data = pd.read_csv(url,sep=";") # use sep="," for coma separation. Age = data['age'] data = data[['age', 'job', 'marital']].copy() #------------------------------------------------------------------------------------------------------------------ data.to_csv("../Problem/pro_data.csv") ''' The series Age (defined in the cell above) contains information about the customers' age. Write a script that prints the customers' age every 5,000th customers. This means printing the value associated to the 5,000th element in the series, the 10,000th element, the 15,000th element, and so on. ''' # Write your script for 5.1 here total_count = Age.count() i=5000 while i < total_count: print('The age of the '+str(i)+' th customer is '+str(Age.iloc[i])) i+=5000 #5.2 # Print the name of all the columns in the dataframe print(data.columns.values) # Print the shape of the dataframe to understand the size of data print(data.shape) # In one line of code, print the average, the median, the maximum and the minimum age of the customers. print('average Age:'+str(Age.mean())+' median Age: '+str(Age.median())+' max Age: '+str(Age.max())+'min Age:'+str(Age.min())) #5.3 # Create a new column called normalized_age that contains the age of each customer divided by the maximum age. max_age = Age.max() data['normalized_age'] = data.apply(lambda x : x.age/max_age, axis=1) # Print the job information for all customers between index 500 and index 515 (including 500 and 515). for i in range(500,516): customer = data.iloc[i] print(str(i)+' '+customer.job) # Delete the marital column from the dataframe data6 = data.drop(columns=['marital']) print(data6) # Save the dataframe as an excel file to your local computer and name it Problem5. # FIX_ME data6.to_csv('../Problem/Problem5.csv')
UTF-8
Python
false
false
2,535
py
93
problem5_cus_demo.py
66
0.663511
0.641026
0
59
41.983051
125
jpinzonc/Senators_votes
16,131,897,209,217
2d5ac1aafd5106b3e98cbf5ec0c3d3276ed62278
4117b0d34ef77835367b2770a14c3b4c36ec4bba
/map_app/senate_env/lib/python3.6/codecs.py
ae5990c6674c2dda50c20c778f0c34cd21531ea1
[]
no_license
https://github.com/jpinzonc/Senators_votes
e10d7f00a07edf84295152e607cd048f27556b71
4d62a92ad0327443df408b43c4676b6e9ca7ca46
refs/heads/master
2022-07-10T11:01:14.439674
2019-05-25T01:24:50
2019-05-25T01:24:50
97,988,403
0
0
null
false
2022-06-21T21:12:52
2017-07-21T21:37:17
2019-05-25T01:24:57
2022-06-21T21:12:51
40,702
0
0
6
Python
false
false
/Users/jpinzon/anaconda3/lib/python3.6/codecs.py
UTF-8
Python
false
false
48
py
129
codecs.py
53
0.833333
0.770833
0
1
48
48
snehananth/bookstore
8,031,588,892,159
9f6c25a0175c41ca21068c1efae4ededb2687fc5
28c5a2b3734ed2bf66da598a0bd6343b2b5a0d5e
/book/urls.py
40b286489f45f3cd71bad147b63e10800338cbdc
[]
no_license
https://github.com/snehananth/bookstore
703095bc41b9101174e6d5b39b9d2f45a4535337
6c6992c97925f7c182754700287e21d31e0ca954
refs/heads/master
2021-08-08T15:07:37.208864
2017-11-10T15:18:40
2017-11-10T15:18:40
110,231,419
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.conf.urls import url from .views import BookDetail,BookListView urlpatterns = [ url(r'^book/$', BookListView.as_view()), url(r'^bookupdate/(?P<id>[0-9]+)/$', BookDetail.as_view()), ]
UTF-8
Python
false
false
203
py
15
urls.py
15
0.669951
0.660099
0
7
28.142857
63
active-sludge/TodoLoo
14,877,766,716,685
f60b27a78ca7f55f115e1d213ee90c891d1bde48
b251ab344b3e3ba81ffb44b4a14992257ff370bb
/todo/tests.py
b244f6b8171f62c44a58b2ef3d2c802c0c2e7e43
[]
no_license
https://github.com/active-sludge/TodoLoo
62201b2082e43c61431d1abf0c0c04f5267dfec4
68800dc75019dc257640dd9f75fbfa2c708effea
refs/heads/main
2023-08-23T07:52:01.034397
2021-10-12T13:59:30
2021-10-12T13:59:30
410,530,396
0
0
null
false
2021-10-12T13:57:54
2021-09-26T11:16:02
2021-10-12T13:52:11
2021-10-12T13:54:22
1,460
0
0
1
JavaScript
false
false
from django.test import TestCase, Client from django.contrib.auth.models import User from todo.models import Article, Todo from django.urls import reverse c = Client() class ViewTestsCase(TestCase): def setUp(self): self.credentials = { 'username': 'testuser', 'password': 'secret'} User.objects.create_user(**self.credentials) def test_home_page_accessed_successfully(self): response = c.get('/') self.assertEqual(response.status_code, 200) def test_user_lands_on_home_after_login(self): c.login(username='testuser', password='secret') response = self.client.get(reverse('currenttodos')) self.assertEqual(response.status_code, 302) def test_view_url_exists_at_desired_location(self): c.login(username='testuser', password='secret') response = self.client.get(reverse('currenttodos')) self.assertEqual(response.status_code, 302) class LogInTestCase(TestCase): def setUp(self): self.credentials = { 'username': 'testuser', 'password': 'secret'} User.objects.create_user(**self.credentials) def test_login(self): # send login data response = self.client.post('/login/', self.credentials, follow=True) # should be logged in now self.assertTrue(response.context['user'].is_active) class TodoTestCase(TestCase): @classmethod def setUpTestData(cls): user = User.objects.create_user(username='testuser', password='12345') Todo.objects.create( title="Buy milk", memo="Low fat if possible", user=user ) def test_todo_has_title(self): todo = Todo.objects.get(id=1) self.assertTrue(todo.title) def test_todo_has_memo(self): todo = Todo.objects.get(id=1) self.assertTrue(todo.memo) def test_todo_has_user(self): todo = Todo.objects.get(id=1) self.assertTrue(todo.user) def test_update_todo_memo(self): todo = Todo.objects.get(id=1) todo.memo = "New Memo" todo.save() self.assertEqual(todo.memo, 'New Memo') class ArticleTestCase(TestCase): def setUp(self): self.credentials = { 'username': 'testuser', 'password': 'secret'} User.objects.create_user(**self.credentials) c.post('/login/', self.credentials, follow=True) Article.objects.create( article_id="324212", article_title="Example article Title", article_abstract="Example article abstract that is a little bit longer", author_list="Ben, Sen, O", keyword_list="Aids, covid", pub_date="01.02.2004 00:00:00" ) def test_when_api_called_articles_are_saved(self): response = c.get('refresh/') articles_saved = Article.objects.exists() self.assertTrue(response.status_code, 200) self.assertTrue(articles_saved) def test_bookmarked_article_becomes_todo(self): response = c.get('/bookmark/324212/') todo = Todo.objects.all() self.assertTrue(response.status_code, 200) self.assertTrue(todo)
UTF-8
Python
false
false
3,228
py
11
tests.py
7
0.61772
0.60223
0
108
28.888889
84
OpenITI/openiti
16,415,365,026,211
2fc32f57df61f30be6925c27e4fc4655a98d2242
1b62a2c48dec8449bf146ec2a572bb58994873c5
/build/lib/openiti/release/collect_openITI_version.py
a5d3ade23442fa95185b33985387fe962c340123
[ "MIT" ]
permissive
https://github.com/OpenITI/openiti
32bac70f87e85623d9f3463edfbb32986fe7b33e
5ebec640c634ef57569d7ef4e1dc0dd1b188dcb3
refs/heads/master
2023-03-15T21:26:56.600717
2023-03-08T12:00:02
2023-03-08T12:00:02
224,496,178
10
3
null
null
null
null
null
null
null
null
null
null
null
null
null
# Copies all data from the XXXXAH directories to a single directory in order to publish a version of OpenITI. import os import shutil import sys import re def copy_ah_data(source_dir, dest_dir): # All XXXXAH direcortories ah_dirs = os.listdir(source_dir) for ad in ah_dirs: # Get the path to the "data" folder (in each XXXXAH dir) data_path = os.path.join(source_dir, ad, "data") # If the data directory exists (for cases the "data" dir is not available, like 1475AH) if os.path.exists(data_path): # Get the list of directories in "data" directory cur_dirs = os.listdir(data_path) # Copy the dirs in "/data" for cpy_d in cur_dirs: # Source is the path to the current folder in data folder (cpy_d) that will be copied, # Target is a join of the target path (given as input) and the current folder (cpy_d) shutil.copytree(os.path.join(data_path, cpy_d), os.path.join(dest_dir, cpy_d)) for root, dirs, files in os.walk(os.path.join(dest_dir, cpy_d)): # texts = [f for f in files if # os.path.isfile(os.path.join(dest_dir, cpy_d, f)) and # re.search("^\d{4}\w+\.\w+\.\w+-\w{4}(\.(mARkdown|inProgress|completed))?$", f)] # texts_noExt = set([re.split("\.(mARkdown|inProgress|completed)", t)[0] for t in texts]) for f in files: no_ext_file = re.split("\.(mARkdown|inProgress|completed)", f)[0] no_ext_path = os.path.join(root, no_ext_file) if f.endswith(".mARkdown"): if os.path.exists(no_ext_path + ".completed"): # try: os.remove(no_ext_path + ".completed") # except OSError: # pass if os.path.exists(no_ext_path + ".inProgress"): # try: os.remove(no_ext_path + ".inProgress") # except OSError: # pass elif f.endswith(".completed"): # try: if os.path.exists(no_ext_path + ".inProgress"): os.remove(no_ext_path + ".inProgress") # except OSError: # pass elif f.endswith(".inProgress"): # try: os.remove(os.path.join(root, f)) # except OSError: # pass else: print("%s repository doesn't have any 'data' directory!" % ad) if __name__ == '__main__': source = input("Enter the source directory: ") target = input("Enter the target directory: ") if len(sys.argv) > 0: if not os.path.exists(source): print("source directory doesn't exists. Re-run the script and give the source!") else: copy_ah_data(source, target) else: print("Give the path to the script...!")
UTF-8
Python
false
false
3,331
py
84
collect_openITI_version.py
59
0.47193
0.469228
0
71
45.901408
109
dagamargit/ejemplos-tkinter
5,841,155,526,624
5635fec7a5380de3b7508475649f392c0606f4e6
97738198d0eda1baa0e0f8fa961564bc72112723
/ej20_canvas_id_tags.py
adaa44945af83edb21903c8001b7ecf20f3b774a
[]
no_license
https://github.com/dagamargit/ejemplos-tkinter
2eaf4b56097d1c4b2e37080393df2907e9620cb8
64cb99b8df3ad32c1bfd0ce81bae8496edc66415
refs/heads/master
2021-07-17T05:24:22.434180
2021-02-20T17:28:02
2021-02-20T17:28:02
239,290,374
2
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import tkinter as tk from tkinter import ttk class Aplicacion: def __init__(self): self.ventana1=tk.Tk() self.crear_botones() self.canvas1=tk.Canvas(self.ventana1, width=600, height=400, background="black") self.canvas1.grid(column=0, row=1) self.linea=self.canvas1.create_line(0, 0, 100,50, fill="white") self.rectangulo=self.canvas1.create_rectangle(150,10, 300,110, fill="white") self.ovalo=self.canvas1.create_oval(400,10,500,150, fill="red") self.canvas1.create_rectangle(100,300,150,350,fill="#aaaaaa", tag="cuadrado") self.canvas1.create_rectangle(200,300,250,350,fill="#555555", tag="cuadrado") self.canvas1.create_rectangle(300,300,350,350,fill="#cccccc", tag="cuadrado") self.ventana1.mainloop() def crear_botones(self): self.labelframe1=ttk.LabelFrame(self.ventana1,text="opciones") self.labelframe1.grid(column=0, row=0, sticky="w", padx=5, pady=5) self.boton1=ttk.Button(self.labelframe1, text="borrar linea", command=self.borrar_linea) self.boton1.grid(column=0, row=0, padx=5) self.boton2=ttk.Button(self.labelframe1, text="borrar rectángulo", command=self.borrar_rectangulo) self.boton2.grid(column=1, row=0, padx=5) self.boton3=ttk.Button(self.labelframe1, text="borrar óvalo", command=self.borrar_ovalo) self.boton3.grid(column=2, row=0, padx=5) self.boton4=ttk.Button(self.labelframe1, text="borrar todos los cuadrados", command=self.borrar_cuadrados) self.boton4.grid(column=3, row=0, padx=5) self.boton5=ttk.Button(self.labelframe1, text="borrar todos", command=self.borrar_todos) self.boton5.grid(column=4, row=0, padx=5) def borrar_linea(self): self.canvas1.delete(self.linea) def borrar_rectangulo(self): self.canvas1.delete(self.rectangulo) def borrar_ovalo(self): self.canvas1.delete(self.ovalo) def borrar_cuadrados(self): self.canvas1.delete("cuadrado") def borrar_todos(self): self.canvas1.delete(tk.ALL) aplicacion1=Aplicacion()
UTF-8
Python
false
false
2,143
py
50
ej20_canvas_id_tags.py
49
0.66978
0.60766
0
47
44.574468
114
sidyvan/autoescola
12,919,261,669,247
345fcfb40b0eb094417799f99ddbbc85cb10e669
f7e076242848e48285670c248f4106a3348a1ca9
/autoescolaweb/cliente/migrations/0002_auto_20170224_1734.py
720c8966aceedbfe24731720923b25fd56a25c2b
[]
no_license
https://github.com/sidyvan/autoescola
181e3a2b49a99004f4351490651354a26a9af671
f5370a2a6a3b1ab6ab07a5a617f1985f300c02c0
refs/heads/master
2017-08-03T20:07:23.948264
2017-03-11T16:40:08
2017-03-11T16:40:08
81,997,520
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-24 20:34 from __future__ import unicode_literals import cliente.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cliente', '0001_initial'), ] operations = [ migrations.AddField( model_name='autoescola', name='logo', field=models.ImageField(blank=True, default='', null=True, upload_to=cliente.models.upload_location), ), migrations.AddField( model_name='autoescolauser', name='foto', field=models.ImageField(blank=True, default='', null=True, upload_to=cliente.models.upload_location), ), ]
UTF-8
Python
false
false
745
py
20
0002_auto_20170224_1734.py
11
0.612081
0.583893
0
26
27.653846
113
mabuix/stock_ver2
6,992,206,769,478
cffb9d2e71759a9d0793b85ab2da39f644bb2a52
4d6b32ecc1e9d10de309e56c3c896baafb66bed7
/stock_app/stock_crawl/stock_crawl/spiders/fundamentals_crawl.py
5633a3efb6f32ab83883ed517f4e52dd4e10653c
[]
no_license
https://github.com/mabuix/stock_ver2
4a6a45e740ade05ad86fc92a5af65543e9e1999e
32daf879b10fea82c5a8c710afa870a5af3a5ee0
refs/heads/master
2020-04-07T11:23:40.781615
2018-03-07T08:59:24
2018-03-07T08:59:24
124,207,025
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from scrapy.spiders import CrawlSpider, Rule from scrapy.linkextractors import LinkExtractor import os # ItemのFundamentalsクラスをインポート. from stock_crawl.items import Fundamentals class FundamentalsCrawlSpider(CrawlSpider): # Spiderの名前. name = 'fundamentals_crawl' # クロール対象とするドメインのリスト. allowed_domains = ['stocks.finance.yahoo.co.jp'] code_file_path = '../../code.txt' # ファイルの存在チェック. is_file_exist = os.path.exists(code_file_path) if not is_file_exist: raise FileNotFoundError('証券コードの読み込みファイルがありません。') url = 'https://stocks.finance.yahoo.co.jp/stocks/detail/?code=' # クロールを開始するURLのリスト. start_urls = [] # スクレイピング対象銘柄コードをファイルから読み込んで、銘柄紹介ページURLのリストを作る. with open(code_file_path, 'r') as codes: for code in codes: start_urls.append(url + code.rstrip()) def parse(self, response): """ 銘柄詳細のページからファンダメンタル情報を抜き出す. """ # Fundamentalsオブジェクトを作成. item = Fundamentals() code = response.css('#stockinf > div.stocksDtl.clearFix > div.forAddPortfolio > dl > dt::text').extract_first() item['code'] = int(code) # 先頭から、「【」まで抽出 item['name'] = response.css('title::text').re_first('^[^【]*') market_capitalization = response.css('#rfindex > div.chartFinance > div:nth-child(1) > dl > dd > strong::text').extract_first() item['market_capitalization'] = int(market_capitalization.replace(',', '')) outstanding_shares = response.css('#rfindex > div.chartFinance > div:nth-child(2) > dl > dd > strong::text').extract_first() item['outstanding_shares'] = int(outstanding_shares.replace(',', '')) yield item # Itemをyieldして、データを抽出する.
UTF-8
Python
false
false
2,057
py
16
fundamentals_crawl.py
13
0.651435
0.650264
0
45
36.955556
135
lmeribal/portfolio
14,740,327,762,669
57bb63c9a628b92098c648050ad9dd5d4e84e44a
e992b23dbf791e2b1fa562dc5b5cf678e54419cd
/infopole/teensComments/Татарстан/Облако тегов.py
ec61374d94d68417b6694ab3e6559b9178694eb2
[]
no_license
https://github.com/lmeribal/portfolio
4815ceaf508dd1cc0597f42403c92fcbc4c5f991
1adb77d5c6a5f1a52881180fe7fdae9f8db250b6
refs/heads/master
2022-03-21T16:45:03.301439
2019-10-28T21:17:54
2019-10-28T21:17:54
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import matplotlib.pyplot as plt import re from wordcloud import WordCloud, STOPWORDS import pandas as pd text = [] f = open('post.txt','r') for line in f: line.replace('на ','') line.replace('ты ','') line.replace('как ','') line.replace('анон','') line.replace('Анон','') line.replace('админ','') line.replace('если','') line.replace('ты ','') line.replace('он ','') line.replace('из ','') line.replace('что ','') line.replace('мне ','') line.replace('бы ','') line.replace('вы ','') line.replace('то ','') line.replace('все ','') line.replace('еще ','') line.replace('че ','') line.replace('На ','') line.replace('ну ','') line.replace('не ','') line.replace('Не ','') line.replace('ask','') line.replace('кто ','') line.replace('как ','') line.replace('но ','') line.replace('Ребят ','') line.replace('от ','') line.replace('Aнон ','') line.replace('Анoн','') line.replace('на ','') line.replace('На','') line.replace('ты ','') line.replace('Ты','') line.replace('Так ','') line.replace('для ','') line.replace('Не анон','') line.replace('Анонимно','') line.replace('уже ','') line = re.sub(r'анон','',line) line = re.sub(r'Анон','',line) line = re.sub(r'АНОН','',line) line = re.sub(r'не','',line) line = re.sub(r'на','',line) line = re.sub(r'что','',line) line = re.sub(r'ты','',line) line = re.sub(r'из ','',line) line = re.sub(r'как ','',line) line = re.sub(r'кто','',line) line = re.sub(r'это','',line) line = re.sub(r'то ','',line) line = re.sub(r'вы ','',line) line = re.sub(r'есть ','',line) line = re.sub(r'не ','',line) line = re.sub(r'так ','',line) line = re.sub(r'все ','',line) line = re.sub(r'по ','',line) line = re.sub(r'он ','',line) line = re.sub(r'Не ','',line) line = re.sub(r'когда ','',line) line = re.sub(r'если ','',line) line = re.sub(r'ask','',line) line = re.sub(r'имно ','',line) line = re.sub(r'но ','',line) line = re.sub(r'за ','',line) line = re.sub(r'Как','',line) line = re.sub(r'ну ','',line) line = re.sub(r'vk','',line) line = re.sub(r'очень ','',line) line = re.sub(r'го ','',line) line = re.sub(r'тебя ','',line) line = re.sub(r'школе ','',line) line = re.sub(r'или ','',line) line = re.sub(r'же ','',line) line = re.sub(r'меня ','',line) line = re.sub(r'вас ','',line) line = re.sub(r'вам ','',line) line = re.sub(r'че ','',line) line = re.sub(r'бы ','',line) line = re.sub(r'до ','',line) line = re.sub(r'Ну ','',line) line = re.sub(r'еще ','',line) line = re.sub(r'тебя ','',line) line = re.sub(r'от ','',line) line = re.sub(r'про ','',line) line = re.sub(r'мы ','',line) line = re.sub(r'Ребят ','',line) line = re.sub(r'Ну ','',line) line = re.sub(r'имно','',line) line = re.sub(r'Админ ','',line) line = re.sub(r'Когда ','',line) line = re.sub(r'только ','',line) line = re.sub(r'для ','',line) line = re.sub(r'почему ','',line) line = re.sub(r'да ','',line) line = re.sub(r'всем ','',line) line = re.sub(r'всех ','',line) line = re.sub(r'школы ','',line) line = re.sub(r'ни ','',line) line = re.sub(r'где ','',line) line = re.sub(r'так ','',line) line = re.sub(r'Если ','',line) line = re.sub(r'Есть ','',line) line = re.sub(r'Давайте ','',line) line = re.sub(r'класс ','',line) line = re.sub(r'Арсен ','',line) line = re.sub(r'пожалуйста ','',line) line = re.sub(r'хочу ','',line) line = re.sub(r'Все ','',line) line = re.sub(r'нравится ','',line) line = re.sub(r'шк ','',line) line = re.sub(r'нибудь ','',line) line = re.sub(r'будет ','',line) line = re.sub(r'Диа ','',line) line = re.sub(r'http','',line) line = re.sub(r'com','',line) line = re.sub(r'себя ','',line) line = re.sub(r'тебе ','',line) line = re.sub(r'ли ','',line) line = re.sub(r'Вы ','',line) line = re.sub(r'Нравится ','',line) line = re.sub(r'сегодня ','',line) line = re.sub(r'Так ','',line) line = re.sub(r'пишите ','',line) line = re.sub(r'кому ','',line) line = re.sub(r'лс ','',line) line = re.sub(r'Пожалуйста ','',line) line = re.sub(r'шей ','',line) line = re.sub(r'Почему ','',line) line = re.sub(r'Такой ','',line) line = re.sub(r'ребят ','',line) line = re.sub(r'может ','',line) line = re.sub(r'было ','',line) line = re.sub(r'такой ','',line) line = re.sub(r'На ','',line) line = re.sub(r'тут ','',line) line = re.sub(r'ШК ','',line) line = re.sub(r'Ты ','',line) line = re.sub(r'Го ','',line) line = re.sub(r'админ','',line) line = re.sub(r'Ребята ','',line) line = re.sub(r'вообще ','',line) line = re.sub(r'пожалуйста','',line) line = re.sub(r'ребят','',line) line = re.sub(r'класса ','',line) line = re.sub(r'им ','',line) line = re.sub(r'люди ','',line) line = re.sub(r'которые ','',line) line = re.sub(r'был ','',line) line = re.sub(r'школу ','',line) line = re.sub(r'школа ','',line) line = re.sub(r'сейчас ','',line) line = re.sub(r'лс','',line) line = re.sub(r'то ','',line) line = re.sub(r'ее ','',line) line = re.sub(r'писать ','',line) line = re.sub(r'классов ','',line) line = re.sub(r'девушка','',line) line = re.sub(r'привет ','',line) line = re.sub(r'Он ','',line) line = re.sub(r'школы ','',line) line = re.sub(r'их ','',line) line = re.sub(r'Да ','',line) line = re.sub(r'шей ','',line) line = re.sub(r'бесит ','',line) line = re.sub(r'Хуснутдинова ','',line) line = re.sub(r'Закирова ','',line) line = re.sub(r'школе','',line) line = re.sub(r'школы','',line) line = re.sub(r'группу ','',line) line = re.sub(r'то ','',line) line = re.sub(r'ТО ','',line) line = re.sub(r'самый ','',line) line = re.sub(r'такие ','',line) line = re.sub(r'без ','',line) line = re.sub(r'очень ','',line) line = re.sub(r'завтра ','',line) line = re.sub(r'вроде ','',line) line = re.sub(r'там ','',line) line = re.sub(r'Че ','',line) line = re.sub(r'день ','',line) line = re.sub(r'зачем ','',line) line = re.sub(r'Мерикова ','',line) line = re.sub(r'такая ','',line) line = re.sub(r'спасибо ','',line) line = re.sub(r'всё ','',line) line = re.sub(r'чем ','',line) line = re.sub(r'раз ','',line) line = re.sub(r'со ','',line) line = re.sub(r'её ','',line) line = re.sub(r'зю ','',line) line = re.sub(r'была ','',line) line = re.sub(r'буду ','',line) line = re.sub(r'быть ','',line) line = re.sub(r'хотя ','',line) line = re.sub(r'да ','',line) line = re.sub(r'Артур ','',line) line = re.sub(r'Но ','',line) line = re.sub(r'классы ','',line) line = re.sub(r'девочек ','',line) line = re.sub(r'каждый ','',line) line = re.sub(r'удачи ','',line) line = re.sub(r'то','',line) line = re.sub(r'вас ','',line) line = re.sub(r'девочка ','',line) line = re.sub(r'пост ','',line) line = re.sub(r'теперь ','',line) line = re.sub(r'какой ','',line) line = re.sub(r'Жора ','',line) line = re.sub(r'класс ','',line) text.append(line) text = "".join(text) wordcloud = WordCloud(font_path='/Library/Fonts/Verdana.ttf', relative_scaling = 1.0, stopwords = {'to', 'of'} # set or space-separated string ).generate(text) plt.imshow(wordcloud) plt.axis("off") plt.show()
UTF-8
Python
false
false
8,481
py
69
Облако тегов.py
25
0.50864
0.50838
0
234
31.897436
78
krishchow/CtCi
4,200,478,035,378
0a09a98aed433f49745cb2030e5220db4a27eef3
171a946e13cdbc08cfb9925449b85d2bea9ffa5b
/continSum.py
c05daea228b373f6df16efe1333335b1dd11013d
[]
no_license
https://github.com/krishchow/CtCi
cf48b5153afda67d5b3216163188f0d13e00c6ca
139085f467d32804fbc623dc64b0bee9927eeac7
refs/heads/master
2020-07-10T20:05:56.613454
2019-09-24T05:49:32
2019-09-24T05:49:32
204,357,953
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def continousSum(array: list): current,maximum=float('-inf'),float('-inf') for i in array: current = max(i, current+i) maximum = max(maximum, current) return maximum assert continousSum([-2, -3, 4, -1, -2, 1, 5, -3]) == 7
UTF-8
Python
false
false
250
py
12
continSum.py
11
0.592
0.556
0
8
30.375
55
enolfc/os-cloud-ur
19,061,064,879,295
b63ecc179866ab735680c7f298ac3c353e52a23c
4d3f79abd81128155b47041b58bc61155141031c
/ceilometer2ur/__init__.py
21d267bcdbd4bfd9dfd2097ea02b40d9701b6099
[]
no_license
https://github.com/enolfc/os-cloud-ur
192288704bb1ca49052a7adaad30f07022535bd6
68b8de95454b083cc86e23d441a88c0ba10f81bd
refs/heads/master
2016-03-06T02:59:36.255348
2014-01-21T12:33:47
2014-01-21T12:33:47
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Copyright 2014 Spanish National Research Council # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ## Fields in the Cloud Accounting Usage Record UR_FIELDS = ['VMUUID', 'SiteName', 'MachineName', 'LocalUserId', 'LocalGroupId', 'GlobalUserName', 'FQAN', 'Status', 'StartTime', 'EndTime', 'SuspendDuration', 'WallDuration', 'CpuDuration', 'CpuCount', 'NetworkType', 'NetworkInbound', 'NetworkOutbound', 'Memory', 'Disk', 'StorageRecordId', 'ImageId', 'CloudType' ]
UTF-8
Python
false
false
1,036
py
7
__init__.py
6
0.694015
0.686293
0
22
46.090909
75
explosion/spaCy
128,849,065,873
c916b3e2b5e980f926fb2cd0e6bbf00aa952145d
55f6a9b8f90ae308a90739fd8f77f4e7cd10ff19
/spacy/lang/fa/examples.py
9c6fb0345e3251d690f234c5e68b39275da27d40
[ "MIT" ]
permissive
https://github.com/explosion/spaCy
cce07ee403aa398de7ba8941a2c11d22aea68021
3e4264899c3b12f8eabc5cd700146177a34824d0
refs/heads/master
2023-08-31T07:18:13.598768
2023-08-30T09:58:14
2023-08-30T09:58:14
21,467,110
26,348
4,983
MIT
false
2023-09-13T17:56:22
2014-07-03T15:15:40
2023-09-13T17:12:06
2023-09-13T17:56:22
201,927
27,077
4,242
92
Python
false
false
""" Example sentences to test spaCy and its language models. >>> from spacy.lang.fa.examples import sentences >>> docs = nlp.pipe(sentences) """ sentences = [ "این یک جمله نمونه می باشد.", "قرار ما، امروز ساعت ۲:۳۰ بعدازظهر هست!", "دیروز علی به من ۲۰۰۰.۱﷼ پول نقد داد.", "چطور می‌توان از تهران به کاشان رفت؟", "حدود ۸۰٪ هوا از نیتروژن تشکیل شده است.", ]
UTF-8
Python
false
false
515
py
1,102
examples.py
784
0.649867
0.623342
0
15
24.133333
56
litex-hub/fpga_101
7,060,926,281,947
8a2d4e2c8f8572ee5ed1f6b7daa1ea03988eb606
badff67fdb081297cec78d8bb3383d19c3a0c439
/lab001/solutions/s004.py
f0f9e0476fbcd91db03e75ae5fdfa88e5ade7cc7
[ "BSD-2-Clause" ]
permissive
https://github.com/litex-hub/fpga_101
67635edb6a8b84e2bbf3f0972130e06981f5ea50
1e9c8d270e5c9d91c601b6a68a5466941340b964
refs/heads/master
2022-12-12T20:27:22.612261
2022-12-02T07:45:41
2022-12-02T07:45:41
128,534,747
285
50
BSD-2-Clause
false
2022-03-28T14:33:53
2018-04-07T14:13:01
2022-03-28T11:05:07
2022-03-28T14:33:51
3,669
246
37
2
Python
false
false
#!/usr/bin/env python3 from migen import * from litex.build.generic_platform import * from litex.build.xilinx import XilinxPlatform # IOs ---------------------------------------------------------------------------------------------- _io = [ ("user_led", 0, Pins("H17"), IOStandard("LVCMOS33")), ("user_led", 1, Pins("K15"), IOStandard("LVCMOS33")), ("user_led", 2, Pins("J13"), IOStandard("LVCMOS33")), ("user_led", 3, Pins("N14"), IOStandard("LVCMOS33")), ("user_led", 4, Pins("R18"), IOStandard("LVCMOS33")), ("user_led", 5, Pins("V17"), IOStandard("LVCMOS33")), ("user_led", 6, Pins("U17"), IOStandard("LVCMOS33")), ("user_led", 7, Pins("U16"), IOStandard("LVCMOS33")), ("user_led", 8, Pins("V16"), IOStandard("LVCMOS33")), ("user_led", 9, Pins("T15"), IOStandard("LVCMOS33")), ("user_led", 10, Pins("U14"), IOStandard("LVCMOS33")), ("user_led", 11, Pins("T16"), IOStandard("LVCMOS33")), ("user_led", 12, Pins("V15"), IOStandard("LVCMOS33")), ("user_led", 13, Pins("V14"), IOStandard("LVCMOS33")), ("user_led", 14, Pins("V12"), IOStandard("LVCMOS33")), ("user_led", 15, Pins("V11"), IOStandard("LVCMOS33")), ("user_sw", 0, Pins("J15"), IOStandard("LVCMOS33")), ("user_sw", 1, Pins("L16"), IOStandard("LVCMOS33")), ("user_sw", 2, Pins("M13"), IOStandard("LVCMOS33")), ("user_sw", 3, Pins("R15"), IOStandard("LVCMOS33")), ("user_sw", 4, Pins("R17"), IOStandard("LVCMOS33")), ("user_sw", 5, Pins("T18"), IOStandard("LVCMOS33")), ("user_sw", 6, Pins("U18"), IOStandard("LVCMOS33")), ("user_sw", 7, Pins("R13"), IOStandard("LVCMOS33")), ("user_sw", 8, Pins("T8"), IOStandard("LVCMOS33")), ("user_sw", 9, Pins("U8"), IOStandard("LVCMOS33")), ("user_sw", 10, Pins("R16"), IOStandard("LVCMOS33")), ("user_sw", 11, Pins("T13"), IOStandard("LVCMOS33")), ("user_sw", 12, Pins("H6"), IOStandard("LVCMOS33")), ("user_sw", 13, Pins("U12"), IOStandard("LVCMOS33")), ("user_sw", 14, Pins("U11"), IOStandard("LVCMOS33")), ("user_sw", 15, Pins("V10"), IOStandard("LVCMOS33")), ("user_btn", 0, Pins("N17"), IOStandard("LVCMOS33")), ("clk100", 0, Pins("E3"), IOStandard("LVCMOS33")), ("cpu_reset", 0, Pins("C12"), IOStandard("LVCMOS33")), ] # Platform ----------------------------------------------------------------------------------------- class Platform(XilinxPlatform): default_clk_name = "clk100" default_clk_period = 10.0 def __init__(self): XilinxPlatform.__init__(self, "xc7a100t-CSG324-1", _io, toolchain="vivado") def do_finalize(self, fragment): XilinxPlatform.do_finalize(self, fragment) # Design ------------------------------------------------------------------------------------------- # Create our platform (fpga interface) platform = Platform() # Create our module (fpga description) class Switches(Module): def __init__(self, platform): # synchronous assignments self.sync += [] # combinatorial assignements for i in range(0, 8): led = platform.request("user_led", i) sw = platform.request("user_sw", i) self.comb += led.eq(~sw) for i in range(8, 16): led = platform.request("user_led", i) sw = platform.request("user_sw", i) self.comb += led.eq(sw) module = Switches(platform) # Build -------------------------------------------------------------------------------------------- platform.build(module)
UTF-8
Python
false
false
3,535
py
31
s004.py
25
0.519378
0.461103
0
88
39.159091
100
zzq5271137/learn_python
4,509,715,668,538
992c46e091ea4de4bca88e9f86e1b3e204a32b4e
b01b437d3a80251aa3e36edd67b8ecdb90ec0e28
/15-虚拟环境/02-virtualenvwrapper_intro.py
6bb56bcf64eb5a41f14fb9afd5ffd011be4333c2
[]
no_license
https://github.com/zzq5271137/learn_python
e8ddce04c7022542bad25d8d18d4863246fe7842
2ebca15948568e761d46b5152e8de3fa82720dba
refs/heads/master
2023-04-23T09:14:38.853949
2021-05-02T17:29:11
2021-05-02T17:29:11
271,830,802
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" virtualenvwrapper介绍 """ """ virtualenvwrapper这个软件可以让我们管理虚拟环境变得简单, 不用再跑到某个目录下通过virtualenv来创建虚拟环境, 也不用再跑到某个虚拟环境的具体目录下去启动虚拟环境; 安装virtualenvwrapper: 1. Linux: pip install virtualenvwrapper 2. Windows: pip install virtualenvwrapper-win virtualenvwrapper的基本使用: 1. 创建虚拟环境: 执行"mkvirtualenv 虚拟环境的名字"命令; 执行这个命令后, 会在你当前用户下(C:/Users/用户名)创建一个"Envs"的文件夹(如果不存在的话), 然后将这个虚拟环境安装到这个目录下; 如果你当前机器的环境变量的配置中, Python3/Scripts的查找路径在Python2/Scripts的前面, 那么将会使用Python3作为这个虚拟环境的解释器; 如果Python2/Scripts的查找路径在Python3/Scripts的前面, 那么将会使用Python2作为这个虚拟环境的解释器(以上讨论的情景是在你的机器上安装了Python2和Python3, 并且他们都安装了virtualenvwrapper的情况下); 2. 进入虚拟环境: 执行"workon 虚拟环境的名字"命令; 它会去"C:/Users/用户名/Envs"文件夹下去找相应名字的虚拟环境(无论你控制台当前处在什么目录下, 都可以); 只执行"workon"命令, 会列出"C:/Users/用户名/Envs"文件夹下所有已安装的虚拟环境; (Powershell和Cmder好像不太行, 得用CMD执行该命令) 3. 退出虚拟环境: 无论你在哪个虚拟环境中, 无论你控制台当前处在什么目录下, 只需要执行"deactivate"命令, 就可以退出当前的虚拟环境; 这个执行的"deactivate"命令并不是在虚拟环境的Scripts目录下查找的, 而是在你系统配置的系统变量中, 你的配置的Python3/Scripts目录下查找的; 所以, 无论你在任何目录下, 执行"deactivate"命令, 都会退出虚拟环境; 4. 删除虚拟环境: rmvirtualenv 虚拟环境的名字 5. 列出所有虚拟环境: lsvirtualenv 6. 进入到当前Python环境所在目录: 执行"cdvirtualenv"命令; 执行这个命令, 会让你cd到当前Python环境所在的目录, 不论你是系统级的Python环境, 还是虚拟环境(不论该虚拟环境是在C:/Users/用户名/Envs下, 还是别的自己创建的地方), 都有用; 7. 修改mkvirtualenv的默认路径: 在环境变量配置中, 添加一个参数WORKON_HOME, 将这个参数的值设置为你想要的路径; 8. 创建虚拟环境时指定Python解释器版本: mkvirtualenv --python==Python解释器的绝对路径 虚拟环境的名字 """
UTF-8
Python
false
false
2,649
py
174
02-virtualenvwrapper_intro.py
169
0.79418
0.780696
0
45
30.311111
73
jperkelens/pants
12,807,592,510,630
1e496e72bcfacdd7a43f7dff2f8aeab2a944bdad
f6d08f2ac89f0dae24c39d9c827484cfb8aefcea
/tests/python/pants_test/logging/native_engine_logging_integration_test.py
7ab1487800ba906f3668368810130c589601b37b
[ "Apache-2.0" ]
permissive
https://github.com/jperkelens/pants
51f26f395a645655e9bdf89b666dee61823a1ba7
b7ad997b5ef9175cc5e22e36574d8590bc8da120
refs/heads/master
2020-12-23T02:44:53.078141
2020-08-22T15:55:07
2020-08-22T15:55:07
237,007,066
0
0
Apache-2.0
true
2020-01-29T14:51:12
2020-01-29T14:51:11
2020-01-29T07:52:26
2020-01-29T07:52:23
100,831
0
0
0
null
false
false
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.testutil.pants_integration_test import PantsIntegrationTest, read_pantsd_log from pants_test.pantsd.pantsd_integration_test_base import PantsDaemonIntegrationTestBase class NativeEngineLoggingTest(PantsIntegrationTest): @classmethod def use_pantsd_env_var(cls): """Some of the tests here expect to read the standard error after an intentional failure. However, when pantsd is enabled, these errors are logged to logs/exceptions.<pid>.log So stderr appears empty. (see #7320) """ return False def test_native_logging(self) -> None: expected_msg = r"\[DEBUG\] Launching \d+ root" pants_run = self.run_pants(["-linfo", "list", "3rdparty::"]) self.assertNotRegex(pants_run.stderr, expected_msg) pants_run = self.run_pants(["-ldebug", "list", "3rdparty::"]) self.assertRegex(pants_run.stderr, expected_msg) class PantsdNativeLoggingTest(PantsDaemonIntegrationTestBase): def test_pantsd_file_logging(self) -> None: with self.pantsd_successful_run_context("debug") as ctx: daemon_run = ctx.runner(["list", "3rdparty::"]) ctx.checker.assert_started() assert "[DEBUG] connecting to pantsd on port" in daemon_run.stderr_data pantsd_log = "\n".join(read_pantsd_log(ctx.workdir)) assert "[DEBUG] logging initialized" in pantsd_log
UTF-8
Python
false
false
1,534
py
36
native_engine_logging_integration_test.py
33
0.685789
0.677314
0
35
42.828571
97
Baobao211195/python-tutorial
944,892,805,692
5a2dfd29b7e292602614c1124d265adad324c4ef
53a7643811aa67c201821c41dcfae24a738e3709
/Clazz/compare_static_method_class_method.py
246075c154c8e7411b3b3057c293defc906b2640
[]
no_license
https://github.com/Baobao211195/python-tutorial
50f39cc4c68c22cbb3cea011a37277785911fa10
1a15bbdbaafe5c01d773a24241b67a5f4a454ceb
refs/heads/master
2023-03-15T17:22:13.258356
2020-01-05T14:47:53
2020-01-05T14:47:53
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- class A(object): def foo(self, x): print("executing foo(%s, %s)" % (self, x)) @classmethod def class_foo(cls, x): print("executing class_foo(%s, %s)" % (cls, x)) @staticmethod def static_foo(x): print("executing static_foo(%s)" % x) if __name__ == '__main__': a = A() print("initial object") a.foo(1) print("salary_fsoft" > "salay_cmc") print("calling class method by instance") a.class_foo(1) # print("calling class method by Class of object") # A.class_foo(1) # print("calling static method by instance") a.static_foo(1) # # print("calling static method by Class") # A.static_foo(1) # # print("========================================") # print(a.foo(1))
UTF-8
Python
false
false
805
py
166
compare_static_method_class_method.py
150
0.513043
0.504348
0
36
21.361111
55
biocore/empress
2,276,332,669,204
62f952fa742167ad721ac5e33e4c4f88c903c2e5
c91e506d4a251dc9c9354804284f4b540d942c70
/empress/_plot_utils.py
57ed8c5d4ac0a46bfe930fab27391602000c691b
[ "MIT", "Apache-2.0", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "CC0-1.0", "BSD-3-Clause" ]
permissive
https://github.com/biocore/empress
76d3cef31683457a4a6a79f76e83d37b3dc2b0cc
cc3975a71c931f2d356856fb5ee9669b3f83f150
refs/heads/master
2022-06-29T00:30:28.364512
2022-05-23T14:38:45
2022-05-23T14:38:45
111,137,123
48
31
BSD-3-Clause
false
2022-08-22T23:00:54
2017-11-17T18:25:37
2022-05-23T14:48:50
2022-05-31T01:56:17
48,032
33
29
144
JavaScript
false
false
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, empress development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os import pkg_resources from bp import parse_newick import numpy as np import pandas as pd from scipy.spatial.distance import euclidean SUPPORT_FILES = pkg_resources.resource_filename('empress', 'support_files') TEMPLATES = os.path.join(SUPPORT_FILES, 'templates') def get_bp(newickfmt): """Loads a bp.BP tree from a QIIME 2 NewickFormat object. This function, along with save_viz(), was moved here from _plot.py so it could be reused between different Empress commands. Parameters ---------- newickfmt : q2_types.tree.NewickFormat Returns ------- bp.BP """ with open(str(newickfmt)) as treefile: # The file will still be closed even though we return from within the # with block: see https://stackoverflow.com/a/9885287/10730311. return parse_newick(treefile.readline()) def save_viz(viz, output_dir, q2=True): """Saves an Empress visualization to a filepath. Parameters ---------- viz : empress.Empress output_dir : str q2 : bool """ with open(os.path.join(output_dir, 'empress.html'), 'w') as htmlfile: htmlfile.write(str(viz)) viz.copy_support_files(output_dir) if q2: import q2templates index = os.path.join(TEMPLATES, 'index.html') q2templates.render(index, output_dir) def prepare_pcoa(pcoa, number_of_features): """Selects top N biplot features by magnitude (coped from q2-emperor). Parameters ---------- pcoa : skbio.stats.ordination.OrdinationResults number_of_features : int Returns ------- skbio.stats.ordination.OrdinationResults """ feats = pcoa.features.copy() # in cases where the axes are all zero there might be all-NA # columns feats.fillna(0, inplace=True) origin = np.zeros_like(feats.columns) feats['importance'] = feats.apply(euclidean, axis=1, args=(origin,)) feats.sort_values('importance', inplace=True, ascending=False) feats.drop(['importance'], inplace=True, axis=1) pcoa.features = feats[:number_of_features].copy() return pcoa def check_and_process_files(output_dir, tree_file, feature_metadata): """Initial checks and processing of files for standalone CLI plotting. Parameters ---------- output_dir : str tree_file : str fm_file : str Returns ------- bp.Tree pd.DataFrame """ if os.path.isdir(output_dir): raise OSError("Output directory already exists!") with open(str(tree_file), "r") as f: tree_newick = parse_newick(f.readline()) if feature_metadata is not None: feature_metadata = pd.read_csv(feature_metadata, sep="\t", index_col=0) return tree_newick, feature_metadata
UTF-8
Python
false
false
3,088
py
74
_plot_utils.py
59
0.629858
0.618523
0
107
27.859813
79
elitumgroup/erp-maeq-v11
14,413,910,295,012
0ffb38ccfddba485872104798ff0cf1161ee1afb
71ca130e51f181aae025e15efd004c0f89237ef2
/eliterp_purchases/__manifest__.py
795329a72cd53c8fdf7a5a1e77e01b7d822eaa4b
[]
no_license
https://github.com/elitumgroup/erp-maeq-v11
cf0e2f91926b4a3350802b16ca018299f6f6a6b0
8e0243818968a63d8212c08f75ce431bcf33346c
refs/heads/master
2021-06-04T19:23:02.576851
2021-01-04T15:53:48
2021-01-04T15:53:48
157,874,880
2
2
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 Elitumdevelop S.A, Ing. Mario Rangel # License LGPL-3.0 or later (http://www.gnu.org/licenses/lgpl.html). { 'name': "Módulo de Compras", 'summary': "Compras.", 'author': "Ing. Mario Rangel, Elitumgroup S.A", 'website': "http://www.elitumgroup.com", 'category': "Personalization", 'license': "LGPL-3", 'version': "1.0", 'depends': [ 'base', 'eliterp_accounting', 'purchase', 'purchase_requisition', 'stock', 'product', 'contacts', 'stock_account', ], 'data': [ 'data/sequences.xml', 'security/ir.model.access.csv', 'security/purchases_security.xml', 'views/in_invoice_views.xml', 'views/supplier_views.xml', 'views/purchase_requisition_views.xml', 'views/purchase_order_views.xml', 'views/menus.xml', 'views/dashboard.xml', ], 'init_xml': [], 'update_xml': [], 'installable': True, 'active': False, }
UTF-8
Python
false
false
1,039
py
242
__manifest__.py
102
0.550096
0.540462
0
38
26.315789
68
jinghaoxu/yimiauto
18,854,906,447,477
33e1be344618e66eaa7c20fcc5cc8cdc72fff5a4
32c87a4358ad4dd3c10259d648199d608ff8dbd3
/YimiDjango/view_all/page.py
78ce3dc24feb36f719ab54b48ea5b8080282586d
[]
no_license
https://github.com/jinghaoxu/yimiauto
baef5a5686b2965704f27aaed531fee3d4920ab2
4a3f969ba5c30117f38b83dc7ab10d0c76de8547
refs/heads/master
2021-09-10T04:38:17.346926
2018-03-21T01:46:28
2018-03-21T01:54:13
126,105,151
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render_to_response """ 返回页面 """ # 首页 def index(request): return render_to_response('index.html') # 用例集 def suite(request): return render_to_response('suite.html') # 用例 def case(request): try: suiteid = request.GET.get('suiteid') except: suiteid = False try: modularid = request.GET.get('modularid') except: modularid = False return render_to_response('case.html', {'suiteid': suiteid, 'modularid': modularid}) # 用例报告 def case_report(request): return render_to_response('case_report.html') # 用例集报告 def suite_report(request): return render_to_response('suite_report.html') # 模块 def modular(request): return render_to_response('modular.html')
UTF-8
Python
false
false
798
py
46
page.py
37
0.659151
0.659151
0
43
16.534884
88
mrdutta27/Liquid-Helium-Simulations-Summer-2015
16,758,962,394,972
d4e87fe07af26ca4040d0e80b0f0b3738f30b1bb
36b0a4ee431ad6a2dfd2df046564d3ec620a18f9
/simulation_data/Wavenumber_Z0/Old Data/bad data/color scatter.py
e59aaa11e6da7d3ea1e4263047b244d3e5475648
[]
no_license
https://github.com/mrdutta27/Liquid-Helium-Simulations-Summer-2015
a1db6be533936fd0d8f0a0e2ea05bd9919d5f6ac
78af9633a9f719c91f3f571bb28093a0f25f4cab
refs/heads/master
2021-01-10T06:47:57.499277
2015-08-13T21:31:24
2015-08-13T21:38:14
35,980,761
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import csv import matplotlib.pyplot as plt import pylab as p import numpy as np data = csv.reader(open(r'C:\Users\Suryabrata\Dropbox\Yale\Summer 2015\McKinsey Research\SimulationData\Wavenumber\Particle Sim\bolometer\all_bolometer.csv', 'rb'), delimiter=",", quotechar='|') #Prompt Signal Rate vs All Signal Rate x_pos, y_pos, time = [],[],[] wavenumber=float(2.2) depth=float(.45) for row in data: #if float(row[1]) == float(depth) and float(row[0])==float(wavenumber): #phonon at depth 0 if float(row[1]) == float(depth): #phonon at depth 0 x_pos.append(float(row[3])) y_pos.append(float(row[4])) time.append(float(row[2])) hist, xedges, yedges = np.histogram2d(x_pos, y_pos, range=[[-.5,.5],[-.5,.5]], bins=21) import plotly.plotly as py from plotly.graph_objs import * data = Data([ Heatmap( z=hist ) ]) py.image.save_as({'data': data}, r"C:\Users\Suryabrata\Dropbox\Yale\Summer 2015\McKinsey Research\SimulationData\Wavenumber\Particle Sim\plots\Heatmaps\Heatmap_z.45.png") print x_pos
UTF-8
Python
false
false
1,082
py
11,117
color scatter.py
15
0.671904
0.644177
0
36
29.083333
193
Code-Institute-Submissions/Poster-Panda
10,574,209,531,249
90defe9a257d71cf354ebb0a3b96bb186de1ae46
3c4327089fae4e666d1ff2e7f3656a88c2f096d9
/wishlist/views.py
0dcd7de7fa89031d84d8f7836b0dc55fcfeebdc7
[]
no_license
https://github.com/Code-Institute-Submissions/Poster-Panda
42ff970ba19d55aeb62638923bdc673db590e2b2
773f734afd9370916b3f4875c9f404c37eb69000
refs/heads/master
2023-07-07T16:05:44.815209
2021-08-09T08:53:12
2021-08-09T08:53:12
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.shortcuts import render, redirect, reverse, get_object_or_404 from django.contrib import messages from django.contrib.auth.decorators import login_required from products.models import Product from profiles.models import UserProfile from wishlist.models import Wishlist, WishlistItem @login_required def view_wishlist(request): """ A view to render all wishlist items """ user = UserProfile.objects.get(user=request.user) wishlist = Wishlist.objects.get(user=user) wishlist_products = WishlistItem.objects.filter(wishlist=wishlist) context = { 'wishlist_products': wishlist_products, } return render(request, 'wishlist/wishlist.html', context) @login_required def add_to_wishlist(request, product_id): """ A view to add products to the wishlist and remove from it """ if request.method == 'GET': # get the wishlist user = UserProfile.objects.get(user=request.user) wishlist = Wishlist.objects.get(user=user) # create a new wishlist item, delete if already in the wishlist if request.user.is_authenticated: product = get_object_or_404(Product, pk=product_id) item = WishlistItem.objects.filter( product=product, wishlist=wishlist) if item.exists(): item.delete() messages.info(request, 'Removed from your wishlist!') else: item = WishlistItem.objects.create( product=product, wishlist=wishlist) messages.info(request, 'Added to your wishlist!') return redirect(reverse('view_wishlist'))
UTF-8
Python
false
false
1,646
py
23
views.py
7
0.669502
0.665857
0
49
32.591837
73
lukeprotag/PathBench
12,498,354,866,001
877fed493c881625f4519622801f10713d0f3114
67cf4d424f84bda5a43123bf086b6be83eb52850
/src/ros/advanced/ros.py
bd0d5243a8db0f31dfba1e0eb564de48e16cfaf3
[ "BSD-3-Clause" ]
permissive
https://github.com/lukeprotag/PathBench
2811df430261b34c78c408c5fcd8d39287d9ac62
101e67674efdfa8e27e1cf7787dac9fdf99552fe
refs/heads/master
2023-07-08T13:18:33.103635
2021-07-30T16:55:49
2021-07-30T16:55:49
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os import sys import argparse from typing import Optional from nptyping import NDArray import numpy as np import cv2 as cv import rospy from nav_msgs.msg import OccupancyGrid, Odometry from geometry_msgs.msg import Twist, PoseWithCovariance # Add PathBench/src to system path for module imports sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from algorithms.algorithm_manager import AlgorithmManager # noqa: E402 from algorithms.configuration.configuration import Configuration # noqa: E402 from algorithms.configuration.entities.agent import Agent # noqa: E402 from algorithms.configuration.entities.goal import Goal # noqa: E402 from algorithms.configuration.maps.dense_map import DenseMap # noqa: E402 from algorithms.configuration.maps.ros_map import RosMap # noqa: E402 from simulator.services.debug import DebugLevel # noqa: E402 from simulator.services.services import Services # noqa: E402 from simulator.simulator import Simulator # noqa: E402 from structures import Size, Point # noqa: E402 import utility.math as m # noqa: E402 from utility.misc import flatten # noqa: E402 from utility.argparse import add_configuration_flags # noqa: E402 from utility.threading import Lock # noqa: E402 class Ros: INFLATE: int = 2 # radius of agent for extended walls. INIT_MAP_SIZE: int = 128 # maximum map size for the first received map (this determines the scaling factor for all subsequent map updates). MAP_SIZE: int = 256 # the overall map size, can be as big as you like. Note, the initial map fragment will be located at the center of this 'big' map. TRAVERSABLE_THRESHOLD: int = 30 # weight grid values above this value are considered to be obstacles _sim: Optional[Simulator] # simulator _grid: Optional[NDArray[(MAP_SIZE, MAP_SIZE), np.float32]] # weight grid, shape (width, height), weight bounds: (0, 100), unmapped: -1 _size: Optional[Size] # size of the 'big' map (MAP_SIZE, MAP_SIZE). _res: Optional[float] # map resolution (determined by initial map fragment). _scale: Optional[float] # scale factor from raw map fragment to PathBench OGM grid (same factor for both x and y-axis) _agent: Optional[PoseWithCovariance] # latest agent pose data _agent_lock: Lock _grid_lock: Lock def __init__(self) -> None: self._grid = None self._sim = None self._origin = None self._size = None self._res = None self._scale = None self._agent = None self._agent_lock = Lock() self._grid_lock = Lock() # initialise ROS node rospy.init_node("path_bench", log_level=rospy.INFO) rospy.Subscriber("/map", OccupancyGrid, self._set_slam) rospy.Subscriber('/odom', Odometry, self._update_agent) self.pubs = { "vel": rospy.Publisher("/cmd_vel", Twist, queue_size=10), # velocity } def _set_slam(self, msg: OccupancyGrid) -> None: map_info = msg.info grid_data = msg.data if self._size is None: # init # self._size = Size(self.MAP_SIZE, self.MAP_SIZE) self._res = map_info.resolution self._scale = self.INIT_MAP_SIZE / map_info.height if (self.INIT_MAP_SIZE / map_info.width) < self._scale: self._scale = self.INIT_MAP_SIZE / map_info.width # convert raw grid data into a matrix for future processing (compression) raw_grid = np.empty((map_info.height, map_info.width), dtype=np.float32) for i in range(len(grid_data)): col = i % map_info.width row = int((i - col) / map_info.width) raw_grid[row, col] = grid_data[i] # compress the map to a suitable size (maintains aspect ratio) raw_grid = cv.resize(raw_grid, None, fx=self._scale, fy=self._scale, interpolation=cv.INTER_AREA) if self._origin is None: # init # # set the origin to the big map origin, use the raw grid origin with # negative grid position to retrieve the big map's origin in world coordinates self._origin = Point(map_info.origin.position.x, map_info.origin.position.y) init_map_size = Size(*raw_grid.shape[::-1]) map_origin_pos = Point((init_map_size.width - self._size.width) // 2, (init_map_size.height - self._size.height) // 2) self._origin = self._grid_to_world(map_origin_pos) # get position of big map origin in current raw map start = self._world_to_grid(self._origin, origin=Point(map_info.origin.position.x, map_info.origin.position.y)) # take an offsetted, potentially cropped view of the current raw map grid = np.full(self._size, -1) for i in range(start[0], start[0] + self._size.width): for j in range(start[1], start[1] + self._size.height): if i >= 0 and j >= 0 and i < raw_grid.shape[1] and j < raw_grid.shape[0]: grid[i - start[0]][j - start[1]] = raw_grid[j][i] # hacky work-around for not having extended walls implemented. Here we manually # extend the walls, by placing obstacles (works just as well, but should still # ideally implement extended walls). INVALID_VALUE = -2 grid_walls_extended = np.full(self._size, INVALID_VALUE) for idx in np.ndindex(grid_walls_extended.shape): if grid_walls_extended[idx] == INVALID_VALUE: grid_walls_extended[idx] = grid[idx] if grid[idx] > self.TRAVERSABLE_THRESHOLD: for i in range(-self.INFLATE, self.INFLATE+1): for j in range(-self.INFLATE, self.INFLATE+1): grid_walls_extended[(idx[0]+i, idx[1]+j)] = grid[idx] # make new grid accessible. # Note, it's up to the user / algorithm to request a map update for thread # safety, e.g. via `self._sim.services.algorithm.map.request_update()`. self.grid = grid_walls_extended @property def grid(self) -> str: return 'grid' @grid.setter def grid(self, value: NDArray[(MAP_SIZE, MAP_SIZE), np.float32]) -> None: self._grid_lock.acquire() self._grid = value self._grid_lock.release() @grid.getter def grid(self) -> Optional[NDArray[(MAP_SIZE, MAP_SIZE), np.float32]]: self._grid_lock.acquire() grid = self._grid self._grid_lock.release() return grid def _update_agent(self, msg: Odometry) -> None: self.agent = msg.pose @property def agent(self) -> str: return 'agent' @agent.setter def agent(self, value: PoseWithCovariance) -> None: self._agent_lock.acquire() self._agent = value self._agent_lock.release() @agent.getter def agent(self) -> Optional[PoseWithCovariance]: self._agent_lock.acquire() agent = self._agent self._agent_lock.release() return agent @staticmethod def unit_vector(v): return v / np.linalg.norm(v) @staticmethod def angle(v1, v2): v1 = unit_vector(v1) v2 = unit_vector(v2) return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0)) def _send_way_point(self, wp: Point) -> None: """ Sends velocity commands to get the robot to move to the given way point. """ goal_tresh = 0.1 angle_tresh = 0.1 sleep = 0.01 max_it = 1000 rot_multiplier = 5 forward_multiplier = 0.5 found = False wp = np.array(self._grid_to_world(wp)) rospy.loginfo("Sending waypoint: {}".format(wp)) for _ in range(max_it): agent_pos = np.array([self.agent.pose.position.x, self.agent.pose.position.y]) q_agent_orientation = self.agent.pose.orientation q_agent_orientation = [q_agent_orientation.x, q_agent_orientation.y, q_agent_orientation.z, q_agent_orientation.w] agent_rot = m.euler_from_quaternion(q_agent_orientation, axes='sxyz')[0] goal_dir = wp - agent_pos goal_rot = np.arctan2(goal_dir[1], goal_dir[0]) angle_left = np.sign(goal_rot - agent_rot) * (np.abs(goal_rot - agent_rot) % np.pi) dist_left = np.linalg.norm(goal_dir) # rotate if not np.abs(angle_left) < angle_tresh: rot_speed = np.clip(angle_left * rot_multiplier, -1, 1) self._send_vel_msg(rot=rot_speed) rospy.sleep(sleep) continue # go forward if not dist_left < goal_tresh: forward_speed = np.clip(dist_left * forward_multiplier, 0, 0.5) self._send_vel_msg(vel=forward_speed) rospy.sleep(sleep) continue else: found = True break # stop self._send_vel_msg() rospy.loginfo("Waypoint found: {}".format(found)) def _send_vel_msg(self, vel=None, rot=None) -> None: """ Send velocity. """ if not vel: vel = 0 if not rot: rot = 0 vel = [vel, 0, 0] rot = [0, 0, rot] vel_msg = Twist() vel_msg.linear.x, vel_msg.linear.y, vel_msg.linear.z = vel vel_msg.angular.x, vel_msg.angular.y, vel_msg.angular.z = rot self.pubs["vel"].publish(vel_msg) def _map_update_requested(self) -> None: """ Map update was requested. """ pass def _world_to_grid(self, world_pos: Point, origin: Optional[Point] = None) -> Point: """ Converts from meters coordinates to PathBench's grid coordinates (`self.grid`). """ # bottom-left corner of the grid to convert to if origin is None: origin = self._origin grid_pos = world_pos grid_pos = grid_pos - origin grid_pos = grid_pos / self._res grid_pos = grid_pos * self._scale grid_pos = Point(*np.rint(grid_pos.values)) return grid_pos def _grid_to_world(self, grid_pos: Point) -> Point: """ Converts PathBench's grid coordinates (`self.grid`) to meters coordinates. """ world_pos = grid_pos world_pos = world_pos / self._scale world_pos = world_pos * self._res world_pos = world_pos + self._origin return world_pos def _setup_sim(self, config: Optional[Configuration] = None, goal: Optional[Point] = None) -> Simulator: """ Sets up the simulator (e.g. algorithm and map configuration). """ while self.grid is None or self.agent is None: rospy.loginfo("Waiting for grid and agent to initialise...") rospy.sleep(0.5) if config is None: config = Configuration() # general config.simulator_graphics = True config.simulator_key_frame_speed = 0.16 config.simulator_key_frame_skip = 20 config.get_agent_position = lambda: self._world_to_grid(Point(self.agent.pose.position.x, self.agent.pose.position.y)) config.visualiser_simulator_config = False # hide the simulator config window # algorithm if config.algorithm_name is None: config.algorithm_name = "WPN-view" config.simulator_algorithm_type, config.simulator_testing_type, config.simulator_algorithm_parameters = config.algorithms[config.algorithm_name] # map goal = Goal(Point(0, 0) if goal is None else goal) agent = Agent(self._world_to_grid(Point(self.agent.pose.position.x, self.agent.pose.position.y)), radius=self.INFLATE) mp = RosMap(agent, goal, lambda: self.grid, traversable_threshold=self.TRAVERSABLE_THRESHOLD, unmapped_value=-1, wp_publish=self._send_way_point, update_requested=self._map_update_requested, name="ROS Map") config.maps = {mp.name: mp} config.simulator_initial_map = list(config.maps.values())[0] config.map_name = list(config.maps.keys())[0] # create the simulator s = Services(config) s.algorithm.map.request_update() sim = Simulator(s) return sim def start(self, config: Optional[Configuration] = None, goal: Optional[Point] = None) -> None: """ Start the simulator. """ rospy.loginfo("Starting simulator") self._sim = self._setup_sim(config, goal) self._sim.start() def main() -> bool: parser = argparse.ArgumentParser(prog="ros.py", description="PathBench 2D ROS extension runner", formatter_class=argparse.RawTextHelpFormatter) configurers: List[Callable[[Configuration, argparse.Namespace], bool]] = [] configurers.append(add_configuration_flags(parser, visualiser_flags=True, algorithms_flags=True, multiple_algorithms_specifiable=False)) parser.add_argument("-g", "--goal", nargs=2, type=int, help="goal position \"x y\"") args = parser.parse_args() print("args:{}".format(args)) config = Configuration() for c in configurers: if not c(config, args): return False if args.algorithm: config.algorithm_name = list(config.algorithms.keys())[0] config.simulator_algorithm_type, config.simulator_testing_type, config.simulator_algorithm_parameters = config.algorithms[config.algorithm_name] goal = Point(*args.goal) if args.goal else None ros = Ros() ros.start(config, goal) return True if __name__ == "__main__": ret = main() exit_code = 0 if ret else 1 sys.exit(exit_code)
UTF-8
Python
false
false
13,960
py
20
ros.py
13
0.602722
0.592335
0
368
36.934783
156
AndreiErofeev/RaifHack_by_Crystal
670,014,913,925
3dc480f758b00a73b054441e971ee033b4f3bc31
4108281fd9bae04ac72c7802f8d8d5724ed920d5
/model/predict.py
74e58dcd1a7897b51df4f7148fa4396f6722d03b
[]
no_license
https://github.com/AndreiErofeev/RaifHack_by_Crystal
feec90a26efbf1becf45945cc1c30d057b2313a1
16feaf13bb196ab0e03cee4b4de6cc0e28e78a18
refs/heads/main
2023-08-07T19:37:40.584910
2021-10-03T00:34:42
2021-10-03T00:34:42
409,711,320
0
0
null
false
2021-10-04T12:01:28
2021-09-23T18:59:15
2021-10-03T00:37:41
2021-10-04T12:01:27
294
0
0
1
Python
false
false
import xgboost as xgb import pandas as pd import numpy as np import pickle from .featuretransforming import floor_cleaning, feature_transformer def predict(data_test, modelname = 'model.pkl', outname = '../submit.csv'): data_test = floor_cleaning(data_test) features = ['id', 'floor', 'city', 'lat', 'lng', 'reform_count_of_houses_1000', 'reform_count_of_houses_500', 'reform_house_population_1000', 'reform_mean_year_building_1000', 'price_type'] + \ data_test.filter(regex='osm.*').columns.to_list() + ['total_square', 'realty_type', 'region'] features.remove('osm_city_nearest_name') f_transf_t = feature_transformer(data_test, features, mode='test') X_subm = f_transf_t.transform( fill_features_mean=['reform_house_population_1000', 'reform_mean_year_building_1000', 'floor'], drop_cols=['city', 'id'], cat_features=['realty_type']) X_subm = X_subm.drop(columns=['region', 'price_type']) with open(modelname, 'rb') as f: models = pickle.load(f) X_subm['zero_preds'] = models['pt_zeros_model'].predict(X_subm) y_subm = np.exp(models['pt_ones_model'].predict(X_subm)) * models['magic_factor'] df_to_submit = pd.DataFrame(data=np.array([data_test['id'].values, y_subm]).T, columns=['id', 'per_square_meter_price']) df_to_submit.to_csv(outname)
UTF-8
Python
false
false
1,382
py
10
predict.py
8
0.638929
0.622287
0
30
45.1
113
davidbrouillette/KDigitalPortland-PingPong
10,909,216,978,794
6d991bf44defef112e02d02bb3f008f531e018dd
230f4e4f33c712a011f5b812815130d48131e9da
/v1/python/textObject.py
6a04efe120891df0a9d7b28953971a502c4dc3a8
[]
no_license
https://github.com/davidbrouillette/KDigitalPortland-PingPong
f04b091ba6f04896e475f90457271c73adff6e76
5501d68497ba56e095dc464945e19cbf9b798ec3
refs/heads/master
2020-03-26T12:18:35.974989
2018-08-16T20:30:43
2018-08-16T20:30:43
144,885,972
1
0
null
false
2018-08-16T20:30:44
2018-08-15T17:57:41
2018-08-16T20:17:32
2018-08-16T20:30:44
25
1
1
0
Python
false
null
import pygame class TextObject: def __init__(self, id, text, x, y, fontSize=50): self.id = id self.pos = (x,y) self.text = text self.color = (255,117,73) self.font = pygame.font.SysFont("lato", fontSize, True) self.bounds = self.getSurface(self.text) def draw(self, surface, centralized=False): textSurface, self.bounds = self.getSurface(self.text) pos = (self.pos[0] - self.bounds.width // 2, self.pos[1]) surface.blit(textSurface, pos) def getSurface(self, text): textSurface = self.font.render(text, False, self.color) return textSurface, textSurface.get_rect() def update(self): pass
UTF-8
Python
false
false
726
py
31
textObject.py
27
0.589532
0.571625
0
22
31.909091
65
orange-eng/internship
7,275,674,638,480
298fd91c4c11b07213690053948e4442d60c37b1
f0adf5afb93b7f0a67802e876a02e898cd92a172
/Tencent/Filters/video_cut copy.py
fd2353be2ae4592acb231e86512b91ed688e2de3
[ "Apache-2.0" ]
permissive
https://github.com/orange-eng/internship
9a2f746b3d50673038481392100d375f6eec82d3
c8c566df453d3a4bdf692338f74916ae15792fa1
refs/heads/main
2023-07-18T11:46:36.659858
2021-08-31T09:39:10
2021-08-31T09:39:10
358,230,295
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import cv2 import numpy as np cap = cv2.VideoCapture(0) # Check if camera opened successfully if (cap.isOpened()== False): print("Error opening video stream or file") frameNum = 0 # Read until video is completed while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() frameNum += 1 if ret == True: tempframe = frame if(frameNum==1): previousframe = cv2.cvtColor(tempframe, cv2.COLOR_BGR2GRAY) print(111) if(frameNum>=2): currentframe = cv2.cvtColor(tempframe, cv2.COLOR_BGR2GRAY) currentframe = cv2.absdiff(currentframe,previousframe) median = cv2.medianBlur(currentframe,3) # img = cv2.imread("E:/chinese_ocr-master/4.png") # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, threshold_frame = cv2.threshold(currentframe, 20, 255, cv2.THRESH_BINARY) gauss_image = cv2.GaussianBlur(threshold_frame, (3, 3), 0) print(222) # Display the resulting frame cv2.imshow('原图',frame) cv2.imshow('Frame',currentframe) cv2.imshow('median',median) # Press Q on keyboard to exit if cv2.waitKey(33) & 0xFF == ord('q'): break previousframe = cv2.cvtColor(tempframe, cv2.COLOR_BGR2GRAY) # Break the loop else: break # When everything done, release the video capture object cap.release() # Closes all the frames cv2.destroyAllWindows()
UTF-8
Python
false
false
1,459
py
172
video_cut copy.py
135
0.635739
0.602062
0
49
28.653061
86
UdeS-CoBIUS/G4Conservation
8,727,373,590,338
fd16382579dfee6cf7aceeb2a3cc1a19f38d047a
9dd4d6da5bb878d6d67e6d6a632e23d566183175
/scripts/review/pG4AnnotationCentro.py
9fc03e08cd61524fd912b5fe5aae733faa53290a
[]
no_license
https://github.com/UdeS-CoBIUS/G4Conservation
3b6dd072ef99cbb5b91af4ac30a8500fcc8433d0
386fb776d7aa4f0055bb4b6a2aeeca23948973ee
refs/heads/master
2023-08-24T20:30:03.671649
2021-10-13T14:31:40
2021-10-13T14:31:40
375,058,383
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*-:v import os import argparse import pandas as pd from pprint import pprint """ Copyright: Copyright Universite of Sherbrooke, departement of biochemistry and departement of computation. Date: Jully 2020 Description: This script reads all ouput files from G4RNA Screener under the name 'Sequences_WT_xxxxx.csv'. Overlapping windows will be merged. Here are the columns in the output : Strand, Chromosome, locStart, locEnd, GeneID, Location, TranscriptID, meancGcC, meanG4H, meanG4NN, pG4Start, pG4End, G4Sequence. """ def mergeOverlappingSequences(dfTmp): """Merge the sequences of overlaping windows. :param dfTmp: contain overlaping windows. :type dfTmp: dataFrame :returns: seq, sequence merged. :rtype: string """ dfTmp = dfTmp.sort_values(by=['wStart']) seq = str(dfTmp.seqG4.iloc[0]) for w in range(1,len(dfTmp)): stepTmp = int(dfTmp.wStart.iloc[w] - dfTmp.wEnd.iloc[w-1])-1 # convert to int elsewise it's a float wSeq = dfTmp.seqG4.iloc[w] seq += wSeq[-stepTmp:] return seq def getInfo(df): """Retrieves informations of a windows and parse it into a dictionary. As gene windows and junction windows are not formated the same way, this function aims to parse them into the same type of dictionary. :param df: contain all overlaping windows. :type df: dataFrame :returns: dico, contains all infromation for one window. :rtype: dictionary """ geneDesc = df.geneDesc.iloc[0] geneDescSplit = geneDesc.split(':') dico = {'Gene' : [geneDescSplit[0]], 'meancGcC' : [df.cGcC.mean()], 'meanG4H' : [df.G4H.mean()], 'meanG4NN' : [df.G4NN.mean()], 'pG4Start' : [min(df.wStart)], 'pG4End' : [max(df.wEnd)]} # dico['Chromosome'] = [geneDescSplit[0]] # dico['Strand'] = [geneDescSplit[2]] return dico def mergeWindows(df): """Merge overlaping windows. :param df: contain overlaping windows. :type df: dataFrame :returns: pG4, contains the pG4 which is the merge of overlaping windows. :rtype: dictionary """ pG4rSeq = mergeOverlappingSequences(df) if len(pG4rSeq) >= 20: dicoInfo = getInfo(df) pG4Start = dicoInfo['pG4Start'][0] pG4End = dicoInfo['pG4End'][0] pG4 = {} pG4 = dicoInfo pG4['pG4Start'] = [min(pG4Start, pG4End)] pG4['pG4End'] = [max(pG4Start, pG4End)] pG4['Sequence'] = [pG4rSeq] pG4['Description'] = [df.geneDesc.iloc[0]] else: pG4 = {} return pG4 def filterOnScores(dicoParam, dfWindows): """Filter the windows based on thresholds. :param dicoParam: contains all parameters that were given to g4rna screener. :type dicoParam: dictionnary :param dfWindows: contains all windows of all genes from one specie. :type dfWindows: dataframe :returns: dfWindows, with only windows upper thresholds. :rtype: dataFrame """ dfWindows = dfWindows[ dfWindows.cGcC >= dicoParam["cGcC"] ].dropna() dfWindows = dfWindows[ dfWindows.G4H >= dicoParam["G4H"] ].dropna() dfWindows = dfWindows[ dfWindows.G4NN >= dicoParam["G4NN"] ].dropna() return dfWindows def mergeG4(df, dicoParam): """Browses all junction window to find those that are overlapping. Here we browse all junctions windows. We will only kept those that overlap the 100 nucleotid. Indeed, if the window over thresholds don't overlap this position, it only in a gene and not a junction. :param df: contains all windows. :type df: dataFrame :param dicoParam: contains all parameters that were given to g4rna screener. :type dicoParam: dictionnary :returns: dfpG4, contain all pG4 for that strand. :rtype: dataFrame """ dfTmp = pd.DataFrame() dfpG4 = pd.DataFrame() dfTmp = dfTmp.append(df[0:1]) # store the first window if len(df) == 1: pG4 = mergeWindows(dfTmp) dfTmp = pd.DataFrame.from_dict(pG4) dfpG4 = dfpG4.append(dfTmp) else: for w in range(1,len(df)): # w for window pG4 = mergeWindows(dfTmp) # browses all windows over thresholds, exept the first one if (df.geneDesc.iloc[w] == df.geneDesc.iloc[w-1] and (df.wStart.iloc[w] >= df.wStart.iloc[w-1] and \ df.wStart.iloc[w] <= df.wEnd.iloc[w-1])): # if window overlap, add window at the current pG4 dfTmp = dfTmp.append(df[w:w+1]) if w == len(df)-1: pG4 = mergeWindows(dfTmp) dfTmp = pd.DataFrame.from_dict(pG4) dfpG4 = dfpG4.append(dfTmp) else: # new pG4 pG4 = mergeWindows(dfTmp) dfTmp = pd.DataFrame.from_dict(pG4) dfpG4 = dfpG4.append(dfTmp) dfTmp = df.iloc[w:w+1] if w == len(df)-1 : pG4 = mergeWindows(dfTmp) dfTmp = pd.DataFrame.from_dict(pG4) dfpG4 = dfpG4.append(dfTmp) return dfpG4 def merge(filename, dicoParam, repro): dfpG42 = pd.DataFrame() try: dfWindows = pd.read_csv(filename, sep='\t', index_col=0) except: # print("This file couldn't be converted in data frame : " + filename) pass else: # dataFrame with all windows from G4RNA Screener if filename == '/home/anais/Documents/Projet/G4Conservation/reviewTRCentro/saccharomyces_cerevisiae/CSVFile/Sequences_centromere_00001.csv': print(dfWindows) dfWindows.columns = ['geneDesc','cGcC', 'G4H','seqG4','wStart', 'wEnd', 'G4NN'] dfWindows = filterOnScores(dicoParam, dfWindows) if filename == '/home/anais/Documents/Projet/G4Conservation/reviewTRCentro/saccharomyces_cerevisiae/CSVFile/Sequences_centromere_00001.csv': print(dfWindows) print('---------') dfpG42 = dfpG42.append(mergeG4(dfWindows, dicoParam)) dfpG42['Repro'] = repro return dfpG42 def main(dicoParam, directory, repro): dfpG4MonoGene = pd.DataFrame() dfpG4DiGene = pd.DataFrame() dfpG4TriGene = pd.DataFrame() dfpG4WT = pd.DataFrame() for path, dirs, files in os.walk(directory): for file in files: if '_00' in file and '.csv' in file and 'centro' in file: inputfile = directory+'/CSVFile/'+file print(inputfile) if '_Mono_' in file: dfpG4MonoGene = dfpG4MonoGene.append(merge(inputfile, dicoParam, repro)) dfpG4MonoGene = dfpG4MonoGene.reset_index(drop=True) elif '_Tri_' in file: dfpG4TriGene = dfpG4TriGene.append(merge(inputfile, dicoParam, repro)) dfpG4TriGene = dfpG4TriGene.reset_index(drop=True) elif 'Sequences_centromere' in file: dfpG4WT = dfpG4WT.append(merge(inputfile, dicoParam, repro)) dfpG4WT = dfpG4WT.reset_index(drop=True) if len(dfpG4MonoGene) > 0: dfpG4MonoGene = dfpG4MonoGene.drop_duplicates(subset=None, keep='first', inplace=False) dfpG4MonoGene = dfpG4MonoGene.reset_index(drop=True) if len(dfpG4TriGene) > 0: dfpG4TriGene = dfpG4TriGene.drop_duplicates(subset=None, keep='first', inplace=False) dfpG4TriGene = dfpG4TriGene.reset_index(drop=True) if len(dfpG4WT) > 0: dfpG4WT = dfpG4WT.drop_duplicates(subset=None, keep='first', inplace=False) dfpG4WT = dfpG4WT.reset_index(drop=True) # dfpG4MonoGene.to_csv(path_or_buf=directory+'/pG4_Shuffle_Mono_Micro.csv', header=True, index=None, sep='\t') # dfpG4TriGene.to_csv(path_or_buf=directory+'/pG4_Shuffle_Tri_Micro.csv', header=True, index=None, sep='\t') # dfpG4WT.to_csv(path_or_buf=directory+'/pG4_Shuffle_WT_Micro.csv', header=True, index=None, sep='\t') dfpG4MonoGene.to_csv(path_or_buf=directory+'/pG4_Shuffle_Mono_Centro.csv', header=True, index=None, sep='\t') dfpG4TriGene.to_csv(path_or_buf=directory+'/pG4_Shuffle_Tri_Centro.csv', header=True, index=None, sep='\t') dfpG4WT.to_csv(path_or_buf=directory+'/pG4_Shuffle_WT_Centro.csv', header=True, index=None, sep='\t') def createDicoParam(arg): """Retrieves arguments and put them in a dictionary. :param arg: contains all arguments given to the script, those are principaly parameters from G4RNA Screener. :type arg: arg_parser :returns: dicoParam, contains all arguments given to the script. :rtype: dictionary """ dicoParam = {"G4H" : float(arg.THRESHOLD_G4H), "cGcC" : float(arg.THRESHOLD_CGCC), "G4NN" : float(arg.THRESHOLD_G4NN), "windowLength" : int(arg.WINDOW), "step" : int(arg.STEP)} return dicoParam def build_arg_parser(): parser = argparse.ArgumentParser(description = 'G4Annotation') # parser.add_argument ('-p', '--path', default = '/home/vana2406/scratch/'+\ # 'G4Conservation/reviewTRCentro/') parser.add_argument ('-p', '--path', default = '/home/anais/Documents/Projet/'+\ 'G4Conservation/reviewTRCentro/') parser.add_argument ('-sp', '--specie', default = \ 'escherichia_coli_str_k_12_substr_mg1655') parser.add_argument ('-r', '--repro', default = '1') parser.add_argument ('-G4H', '--THRESHOLD_G4H', default = 0.9) parser.add_argument ('-CGCC', '--THRESHOLD_CGCC', default = 4.5) parser.add_argument ('-G4NN', '--THRESHOLD_G4NN', default = 0.5) parser.add_argument ('-W', '--WINDOW', default = 60) parser.add_argument ('-S', '--STEP', default = 10) return parser if __name__ == '__main__': parser = build_arg_parser() arg = parser.parse_args() sp = arg.specie repro = arg.repro if repro == 'Wt': path = arg.path+sp else: path = arg.path+sp+'/Repro'+repro print("specie : " + sp) dicoParam = createDicoParam(arg) main(dicoParam, path, repro) print("\tDone")
UTF-8
Python
false
false
9,025
py
94
pG4AnnotationCentro.py
36
0.701496
0.678449
0
262
33.446565
142
ShenghuiXue/django
11,905,649,354,783
0629fa0847b5093dce354f97c315e19809e9d40a
a9d06b567bea638123b03ca3685cad0c40414fb9
/python_basics/list.py
d5ca141479e53300ef031421bfaac030cbd9fef7
[]
no_license
https://github.com/ShenghuiXue/django
a1cc3f198c0dd83e555525478ebd43713ad89ae0
53dc175f5d00f6ddb4eb7a42807ce31e6b444327
refs/heads/master
2020-03-22T10:05:57.723645
2018-07-05T17:35:28
2018-07-05T17:35:28
139,880,798
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
matrix = [[1,2,3],[4,5,6],[7,8,9]] # list comprehesion first_col = [row[0] for row in matrix] print (first_col)
UTF-8
Python
false
false
113
py
6
list.py
5
0.619469
0.530973
0
5
21.6
38
hkristen/datacube-core
6,390,911,382,554
14afff4feacc4db0669bec61820343c02f2f42eb
8cb57b10a3ccfdf55c4eb2cc2136dcee5750524c
/datacube/index/_datasets.py
a42f6049050535b6b45372d4c5c10ffabb8a0dcc
[ "Apache-2.0" ]
permissive
https://github.com/hkristen/datacube-core
bc88f0f84f9199887d02068dca7d895e4207bbf6
7c1563c086a71c6bea9349af2439459f61a35a94
refs/heads/develop
2021-01-23T00:20:12.579584
2017-03-29T08:10:35
2017-03-29T08:10:35
85,717,021
0
1
null
true
2017-03-21T15:12:29
2017-03-21T15:12:29
2017-03-20T05:47:58
2017-03-21T05:10:49
34,192
0
0
0
null
null
null
# coding=utf-8 """ API for dataset indexing, access and search. """ from __future__ import absolute_import import logging import warnings from collections import namedtuple from uuid import UUID from cachetools.func import lru_cache from datacube import compat from datacube.index.fields import Field from datacube.model import Dataset, DatasetType, MetadataType from datacube.utils import InvalidDocException, jsonify_document, changes from datacube.utils.changes import get_doc_changes, check_doc_unchanged from . import fields from .exceptions import DuplicateRecordError _LOG = logging.getLogger(__name__) try: from typing import Any, Iterable, Mapping, Set, Tuple, Union except ImportError: pass # It's a public api, so we can't reorganise old methods. # pylint: disable=too-many-public-methods, too-many-lines class MetadataTypeResource(object): def __init__(self, db): """ :type db: datacube.index.postgres._connections.PostgresDb """ self._db = db def from_doc(self, definition): """ :param dict definition: :rtype: datacube.model.MetadataType """ MetadataType.validate(definition) return self._make(definition) def add(self, metadata_type, allow_table_lock=False): """ :param datacube.model.MetadataType metadata_type: :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slightly slower and cannot be done in a transaction. :rtype: datacube.model.MetadataType """ # This column duplication is getting out of hand: MetadataType.validate(metadata_type.definition) existing = self.get_by_name(metadata_type.name) if existing: # They've passed us the same one again. Make sure it matches what is stored. check_doc_unchanged( existing.definition, jsonify_document(metadata_type.definition), 'Metadata Type {}'.format(metadata_type.name) ) else: with self._db.connect() as connection: connection.add_metadata_type( name=metadata_type.name, definition=metadata_type.definition, concurrently=not allow_table_lock ) return self.get_by_name(metadata_type.name) def can_update(self, metadata_type, allow_unsafe_updates=False): """ Check if metadata type can be updated. Return bool,safe_changes,unsafe_changes Safe updates currently allow new search fields to be added, description to be changed. :param datacube.model.MetadataType metadata_type: updated MetadataType :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :rtype: bool,list[change],list[change] """ MetadataType.validate(metadata_type.definition) existing = self.get_by_name(metadata_type.name) if not existing: raise ValueError('Unknown metadata type %s, cannot update – did you intend to add it?' % metadata_type.name) updates_allowed = { ('description',): changes.allow_any, # You can add new fields safely but not modify existing ones. ('dataset',): changes.allow_extension, ('dataset', 'search_fields'): changes.allow_extension } doc_changes = get_doc_changes(existing.definition, jsonify_document(metadata_type.definition)) good_changes, bad_changes = changes.classify_changes(doc_changes, updates_allowed) return allow_unsafe_updates or not bad_changes, good_changes, bad_changes def update(self, metadata_type, allow_unsafe_updates=False, allow_table_lock=False): """ Update a metadata type from the document. Unsafe changes will throw a ValueError by default. Safe updates currently allow new search fields to be added, description to be changed. :param datacube.model.MetadataType metadata_type: updated MetadataType :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slower and cannot be done in a transaction. :rtype: datacube.model.MetadataType """ can_update, safe_changes, unsafe_changes = self.can_update(metadata_type, allow_unsafe_updates) if not safe_changes and not unsafe_changes: _LOG.info("No changes detected for metadata type %s", metadata_type.name) return if not can_update: full_message = "Unsafe changes at " + ", ".join(".".join(offset) for offset, _, _ in unsafe_changes) raise ValueError(full_message) _LOG.info("Updating metadata type %s", metadata_type.name) for offset, old_val, new_val in safe_changes: _LOG.info("Safe change from %r to %r", old_val, new_val) for offset, old_val, new_val in unsafe_changes: _LOG.info("Unsafe change from %r to %r", old_val, new_val) with self._db.connect() as connection: connection.update_metadata_type( name=metadata_type.name, definition=metadata_type.definition, concurrently=not allow_table_lock ) self.get_by_name_unsafe.cache_clear() self.get_unsafe.cache_clear() def update_document(self, definition, allow_unsafe_updates=False): """ Update a metadata type from the document. Unsafe changes will throw a ValueError by default. Safe updates currently allow new search fields to be added, description to be changed. :param dict definition: Updated definition :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :rtype: datacube.model.MetadataType """ return self.update(self.from_doc(definition), allow_unsafe_updates=allow_unsafe_updates) def get(self, id_): """ :rtype: datacube.model.MetadataType """ try: return self.get_unsafe(id_) except KeyError: return None def get_by_name(self, name): """ :rtype: datacube.model.MetadataType """ try: return self.get_by_name_unsafe(name) except KeyError: return None @lru_cache() def get_unsafe(self, id_): with self._db.connect() as connection: record = connection.get_metadata_type(id_) if record is None: raise KeyError('%s is not a valid MetadataType id') return self._make_from_query_row(record) @lru_cache() def get_by_name_unsafe(self, name): with self._db.connect() as connection: record = connection.get_metadata_type_by_name(name) if not record: raise KeyError('%s is not a valid MetadataType name' % name) return self._make_from_query_row(record) def check_field_indexes(self, allow_table_lock=False, rebuild_all=None, rebuild_views=False, rebuild_indexes=False): """ Create or replace per-field indexes and views. :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slightly slower and cannot be done in a transaction. """ if rebuild_all is not None: warnings.warn( "The rebuild_all option of check_field_indexes() is deprecated.", "Instead, use rebuild_views=True or rebuild_indexes=True as needed.", DeprecationWarning) rebuild_views = rebuild_indexes = rebuild_all with self._db.connect() as connection: connection.check_dynamic_fields( concurrently=not allow_table_lock, rebuild_indexes=rebuild_indexes, rebuild_views=rebuild_views, ) def get_all(self): """ Retrieve all Metadata Types :rtype: iter[datacube.model.MetadataType] """ with self._db.connect() as connection: return self._make_many(connection.get_all_metadata_types()) def _make_many(self, query_rows): """ :rtype: list[datacube.model.MetadataType] """ return (self._make_from_query_row(c) for c in query_rows) def _make_from_query_row(self, query_row): """ :rtype: datacube.model.MetadataType """ return self._make(query_row['definition'], query_row['id']) def _make(self, definition, id_=None): """ :param dict definition: :param int id_: :rtype: datacube.model.MetadataType """ return MetadataType( definition, dataset_search_fields=self._db.get_dataset_fields(definition['dataset']['search_fields']), id_=id_ ) class ProductResource(object): """ :type _db: datacube.index.postgres._connections.PostgresDb :type metadata_type_resource: MetadataTypeResource """ def __init__(self, db, metadata_type_resource): """ :type db: datacube.index.postgres._connections.PostgresDb :type metadata_type_resource: MetadataTypeResource """ self._db = db self.metadata_type_resource = metadata_type_resource def from_doc(self, definition): """ Create a Product from its definitions :param dict definition: product definition document :rtype: datacube.model.DatasetType """ # This column duplication is getting out of hand: DatasetType.validate(definition) metadata_type = definition['metadata_type'] # They either specified the name of a metadata type, or specified a metadata type. # Is it a name? if isinstance(metadata_type, compat.string_types): metadata_type = self.metadata_type_resource.get_by_name(metadata_type) else: # Otherwise they embedded a document, add it if needed: metadata_type = self.metadata_type_resource.from_doc(metadata_type) definition = definition.copy() definition['metadata_type'] = metadata_type.name if not metadata_type: raise InvalidDocException('Unknown metadata type: %r' % definition['metadata_type']) return DatasetType(metadata_type, definition) def add(self, type_, allow_table_lock=False): """ Add a Product. :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slightly slower and cannot be done in a transaction. :param datacube.model.DatasetType type_: Product to add :rtype: datacube.model.DatasetType """ DatasetType.validate(type_.definition) existing = self.get_by_name(type_.name) if existing: check_doc_unchanged( existing.definition, jsonify_document(type_.definition), 'Metadata Type {}'.format(type_.name) ) else: metadata_type = self.metadata_type_resource.get_by_name(type_.metadata_type.name) if metadata_type is None: _LOG.warning('Adding metadata_type "%s" as it doesn\'t exist.', type_.metadata_type.name) metadata_type = self.metadata_type_resource.add(type_.metadata_type, allow_table_lock=allow_table_lock) with self._db.connect() as connection: connection.add_dataset_type( name=type_.name, metadata=type_.metadata_doc, metadata_type_id=metadata_type.id, search_fields=metadata_type.dataset_fields, definition=type_.definition, concurrently=not allow_table_lock, ) return self.get_by_name(type_.name) def can_update(self, product, allow_unsafe_updates=False): """ Check if product can be updated. Return bool,safe_changes,unsafe_changes (An unsafe change is anything that may potentially make the product incompatible with existing datasets of that type) :param datacube.model.DatasetType product: Product to update :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :rtype: bool,list[change],list[change] """ DatasetType.validate(product.definition) existing = self.get_by_name(product.name) if not existing: raise ValueError('Unknown product %s, cannot update – did you intend to add it?' % product.name) updates_allowed = { ('description',): changes.allow_any, ('metadata_type',): changes.allow_any, # You can safely make the match rules looser but not tighter. # Tightening them could exclude datasets already matched to the product. # (which would make search results wrong) ('metadata',): changes.allow_truncation } doc_changes = get_doc_changes(existing.definition, jsonify_document(product.definition)) good_changes, bad_changes = changes.classify_changes(doc_changes, updates_allowed) return allow_unsafe_updates or not bad_changes, good_changes, bad_changes def update(self, product, allow_unsafe_updates=False, allow_table_lock=False): """ Update a product. Unsafe changes will throw a ValueError by default. (An unsafe change is anything that may potentially make the product incompatible with existing datasets of that type) :param datacube.model.DatasetType product: Product to update :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slower and cannot be done in a transaction. :rtype: datacube.model.DatasetType """ can_update, safe_changes, unsafe_changes = self.can_update(product, allow_unsafe_updates) if not safe_changes and not unsafe_changes: _LOG.info("No changes detected for product %s", product.name) return if not can_update: full_message = "Unsafe changes at " + ", ".join(".".join(offset) for offset, _, _ in unsafe_changes) raise ValueError(full_message) _LOG.info("Updating product %s", product.name) for offset, old_val, new_val in safe_changes: _LOG.info("Safe change from %r to %r", old_val, new_val) for offset, old_val, new_val in unsafe_changes: _LOG.info("Unsafe change from %r to %r", old_val, new_val) existing = self.get_by_name(product.name) changing_metadata_type = product.metadata_type.name != existing.metadata_type.name if changing_metadata_type: raise ValueError("Unsafe change: cannot (currently) switch metadata types for a product") # TODO: Ask Jeremy WTF is going on here # If the two metadata types declare the same field with different postgres expressions # we can't safely change it. # (Replacing the index would cause all existing users to have no effective index) # for name, field in existing.metadata_type.dataset_fields.items(): # new_field = type_.metadata_type.dataset_fields.get(name) # if new_field and (new_field.sql_expression != field.sql_expression): # declare_unsafe( # ('metadata_type',), # 'Metadata type change results in incompatible index ' # 'for {!r} ({!r} → {!r})'.format( # name, field.sql_expression, new_field.sql_expression # ) # ) metadata_type = self.metadata_type_resource.get_by_name(product.metadata_type.name) # TODO: should we add metadata type here? assert metadata_type, "TODO: should we add metadata type here?" with self._db.connect() as conn: conn.update_dataset_type( name=product.name, metadata=product.metadata_doc, metadata_type_id=metadata_type.id, search_fields=metadata_type.dataset_fields, definition=product.definition, update_metadata_type=changing_metadata_type, concurrently=not allow_table_lock ) self.get_by_name_unsafe.cache_clear() self.get_unsafe.cache_clear() def update_document(self, definition, allow_unsafe_updates=False, allow_table_lock=False): """ Update a Product using its definition :param bool allow_unsafe_updates: Allow unsafe changes. Use with caution. :param dict definition: product definition document :param allow_table_lock: Allow an exclusive lock to be taken on the table while creating the indexes. This will halt other user's requests until completed. If false, creation will be slower and cannot be done in a transaction. :rtype: datacube.model.DatasetType """ type_ = self.from_doc(definition) return self.update( type_, allow_unsafe_updates=allow_unsafe_updates, allow_table_lock=allow_table_lock, ) def add_document(self, definition): """ Add a Product using its difinition :param dict definition: product definition document :rtype: datacube.model.DatasetType """ type_ = self.from_doc(definition) return self.add(type_) def get(self, id_): """ Retrieve Product by id :param int id_: id of the Product :rtype: datacube.model.DatasetType """ try: return self.get_unsafe(id_) except KeyError: return None def get_by_name(self, name): """ Retrieve Product by name :param str name: name of the Product :rtype: datacube.model.DatasetType """ try: return self.get_by_name_unsafe(name) except KeyError: return None @lru_cache() def get_unsafe(self, id_): with self._db.connect() as connection: result = connection.get_dataset_type(id_) if not result: raise KeyError('"%s" is not a valid Product id' % id_) return self._make(result) @lru_cache() def get_by_name_unsafe(self, name): with self._db.connect() as connection: result = connection.get_dataset_type_by_name(name) if not result: raise KeyError('"%s" is not a valid Product name' % name) return self._make(result) def get_with_fields(self, field_names): """ Return dataset types that have all the given fields. :param tuple[str] field_names: :rtype: __generator[DatasetType] """ for type_ in self.get_all(): for name in field_names: if name not in type_.metadata_type.dataset_fields: break else: yield type_ def search(self, **query): """ Return dataset types that have all the given fields. :param dict query: :rtype: __generator[DatasetType] """ for type_, q in self.search_robust(**query): if not q: yield type_ def search_robust(self, **query): """ Return dataset types that match match-able fields and dict of remaining un-matchable fields. :param dict query: :rtype: __generator[(DatasetType, dict)] """ def _listify(v): return v if isinstance(v, list) else [v] for type_ in self.get_all(): remaining_matchable = query.copy() # If they specified specific product/metadata-types, we can quickly skip non-matches. if type_.name not in _listify(remaining_matchable.pop('product', type_.name)): continue if type_.metadata_type.name not in _listify(remaining_matchable.pop('metadata_type', type_.metadata_type.name)): continue # Check that all the keys they specified match this product. for key, value in list(remaining_matchable.items()): field = type_.metadata_type.dataset_fields.get(key) if not field: # This type doesn't have that field, so it cannot match. break if not hasattr(field, 'extract'): # non-document/native field continue if field.extract(type_.metadata_doc) is None: # It has this field but it's not defined in the type doc, so it's unmatchable. continue expr = fields.as_expression(field, value) if expr.evaluate(type_.metadata_doc): remaining_matchable.pop(key) else: # A property doesn't match this type, skip to next type. break else: yield type_, remaining_matchable def get_all(self): # type: () -> Iterable[DatasetType] """ Retrieve all Products :rtype: iter[datacube.model.DatasetType] """ with self._db.connect() as connection: return (self._make(record) for record in connection.get_all_dataset_types()) def _make_many(self, query_rows): return (self._make(c) for c in query_rows) def _make(self, query_row): """ :rtype datacube.model.DatasetType """ return DatasetType( definition=query_row['definition'], metadata_type=self.metadata_type_resource.get(query_row['metadata_type_ref']), id_=query_row['id'], ) class DatasetResource(object): """ :type _db: datacube.index.postgres._connections.PostgresDb :type types: datacube.index._datasets.ProductResource """ def __init__(self, db, dataset_type_resource): """ :type db: datacube.index.postgres._connections.PostgresDb :type dataset_type_resource: datacube.index._datasets.ProductResource """ self._db = db self.types = dataset_type_resource def get(self, id_, include_sources=False): """ Get dataset by id :param UUID id_: id of the dataset to retrieve :param bool include_sources: get the full provenance graph? :rtype: datacube.model.Dataset """ if isinstance(id_, compat.string_types): id_ = UUID(id_) with self._db.connect() as connection: if not include_sources: dataset = connection.get_dataset(id_) return self._make(dataset, full_info=True) if dataset else None datasets = {result['id']: (self._make(result, full_info=True), result) for result in connection.get_dataset_sources(id_)} if not datasets: # No dataset found return None for dataset, result in datasets.values(): dataset.metadata_doc['lineage']['source_datasets'] = { classifier: datasets[source][0].metadata_doc for source, classifier in zip(result['sources'], result['classes']) if source } dataset.sources = { classifier: datasets[source][0] for source, classifier in zip(result['sources'], result['classes']) if source } return datasets[id_][0] def get_derived(self, id_): """ Get all derived datasets :param UUID id_: dataset id :rtype: list[datacube.model.Dataset] """ with self._db.connect() as connection: return [self._make(result, full_info=True) for result in connection.get_derived_datasets(id_)] def has(self, id_): """ Have we already indexed this dataset? :param typing.Union[UUID, str] id_: dataset id :rtype: bool """ with self._db.connect() as connection: return connection.contains_dataset(id_) def add(self, dataset, skip_sources=False, sources_policy='verify'): """ Ensure a dataset is in the index. Add it if not present. :param datacube.model.Dataset dataset: dataset to add :param str sources_policy: one of 'verify' - verify the metadata, 'ensure' - add if doesn't exist, 'skip' - skip :param bool skip_sources: don't attempt to index source datasets (use when sources are already indexed) :rtype: datacube.model.Dataset """ if skip_sources: warnings.warn('"skip_sources" is deprecated, use "sources_policy"', DeprecationWarning) sources_policy = 'skip' self._add_sources(dataset, sources_policy) sources_tmp = dataset.type.dataset_reader(dataset.metadata_doc).sources dataset.type.dataset_reader(dataset.metadata_doc).sources = {} try: _LOG.info('Indexing %s', dataset.id) if not self._try_add(dataset): existing = self.get(dataset.id) if existing: check_doc_unchanged( existing.metadata_doc, jsonify_document(dataset.metadata_doc), 'Dataset {}'.format(dataset.id) ) # reinsert attempt? try updating the location if dataset.local_uri: try: with self._db.connect() as connection: connection.ensure_dataset_location(dataset.id, dataset.local_uri) except DuplicateRecordError as e: _LOG.warning(str(e)) finally: dataset.type.dataset_reader(dataset.metadata_doc).sources = sources_tmp return dataset def search_product_duplicates(self, product, *group_fields): # type: (DatasetType, Iterable[Union[str, Field]]) -> Iterable[tuple, Set[UUID]] """ Find dataset ids who have duplicates of the given set of field names. Product is always inserted as the first grouping field. Returns each set of those field values and the datasets that have them. """ def load_field(f): # type: (Union[str, Field]) -> Field if isinstance(f, compat.string_types): return product.metadata_type.dataset_fields[f] assert isinstance(f, Field), "Not a field: %r" % (f,) return f group_fields = [load_field(f) for f in group_fields] result_type = namedtuple('search_result', (f.name for f in group_fields)) expressions = [product.metadata_type.dataset_fields.get('product') == product.name] with self._db.connect() as connection: for record in connection.get_duplicates(group_fields, expressions): dataset_ids = set(record[0]) grouped_fields = tuple(record[1:]) yield result_type(*grouped_fields), dataset_ids def _add_sources(self, dataset, sources_policy='verify'): if dataset.sources is None: raise ValueError("Dataset has missing (None) sources. Was this loaded without include_sources=True?") if sources_policy == 'ensure': for source in dataset.sources.values(): if not self.has(source.id): self.add(source, sources_policy=sources_policy) elif sources_policy == 'verify': for source in dataset.sources.values(): self.add(source, sources_policy=sources_policy) elif sources_policy != 'skip': raise ValueError('sources_policy must be one of ("verify", "ensure", "skip")') def can_update(self, dataset, updates_allowed=None): """ Check if dataset can be updated. Return bool,safe_changes,unsafe_changes :param datacube.model.Dataset dataset: Dataset to update :param dict updates_allowed: Allowed updates :rtype: bool,list[change],list[change] """ existing = self.get(dataset.id, include_sources=True) if not existing: raise ValueError('Unknown dataset %s, cannot update – did you intend to add it?' % dataset.id) if dataset.type.name != existing.type.name: raise ValueError('Changing product is not supported. From %s to %s in %s' % (existing.type.name, dataset.type.name, dataset.id)) # TODO: figure out (un)safe changes from metadata type? allowed = { # can always add more metadata tuple(): changes.allow_extension, } allowed.update(updates_allowed or {}) doc_changes = get_doc_changes(existing.metadata_doc, jsonify_document(dataset.metadata_doc)) good_changes, bad_changes = changes.classify_changes(doc_changes, allowed) return not bad_changes, good_changes, bad_changes def update(self, dataset, updates_allowed=None): """ Update dataset metadata and location :param datacube.model.Dataset dataset: Dataset to update :param updates_allowed: Allowed updates :return: """ existing = self.get(dataset.id) can_update, safe_changes, unsafe_changes = self.can_update(dataset, updates_allowed) if not safe_changes and not unsafe_changes: if dataset.local_uri != existing.local_uri: with self._db.begin() as transaction: transaction.ensure_dataset_location(dataset.id, dataset.local_uri) _LOG.info("No changes detected for dataset %s", dataset.id) return if not can_update: full_message = "Unsafe changes at " + ", ".join(".".join(offset) for offset, _, _ in unsafe_changes) raise ValueError(full_message) _LOG.info("Updating dataset %s", dataset.id) for offset, old_val, new_val in safe_changes: _LOG.info("Safe change from %r to %r", old_val, new_val) for offset, old_val, new_val in unsafe_changes: _LOG.info("Unsafe change from %r to %r", old_val, new_val) sources_tmp = dataset.type.dataset_reader(dataset.metadata_doc).sources dataset.type.dataset_reader(dataset.metadata_doc).sources = {} try: product = self.types.get_by_name(dataset.type.name) with self._db.begin() as transaction: if not transaction.update_dataset(dataset.metadata_doc, dataset.id, product.id): raise ValueError("Failed to update dataset %s..." % dataset.id) if dataset.local_uri != existing.local_uri: transaction.ensure_dataset_location(dataset.id, dataset.local_uri) finally: dataset.type.dataset_reader(dataset.metadata_doc).sources = sources_tmp return dataset def archive(self, ids): """ Mark datasets as archived :param list[UUID] ids: list of dataset ids to archive """ with self._db.begin() as transaction: for id_ in ids: transaction.archive_dataset(id_) def restore(self, ids): """ Mark datasets as not archived :param list[UUID] ids: list of dataset ids to restore """ with self._db.begin() as transaction: for id_ in ids: transaction.restore_dataset(id_) def get_field_names(self, type_name=None): """ :param str type_name: :rtype: set[str] """ if type_name is None: types = self.types.get_all() else: types = [self.types.get_by_name(type_name)] out = set() for type_ in types: out.update(type_.metadata_type.dataset_fields) return out def get_locations(self, id_): """ :param typing.Union[UUID, str] id_: dataset id :rtype: list[str] """ if isinstance(id_, Dataset): warnings.warn("Passing dataset is deprecated after 1.2.2, pass dataset.id", DeprecationWarning) id_ = id_.id with self._db.connect() as connection: return connection.get_locations(id_) def add_location(self, id_, uri): """ Add a location to the dataset if it doesn't already exist. :param typing.Union[UUID, str] id_: dataset id :param str uri: fully qualified uri :returns bool: Was one added? """ if isinstance(id_, Dataset): warnings.warn("Passing dataset is deprecated after 1.2.2, pass dataset.id", DeprecationWarning) id_ = id_.id with self._db.connect() as connection: try: connection.ensure_dataset_location(id_, uri) return True except DuplicateRecordError: return False def get_datasets_for_location(self, uri): with self._db.connect() as connection: return (self._make(row) for row in connection.get_datasets_for_location(uri)) def remove_location(self, id_, uri): """ Remove a location from the dataset if it exists. :param typing.Union[UUID, str] id_: dataset id :param str uri: fully qualified uri :returns bool: Was one removed? """ if isinstance(id_, Dataset): warnings.warn("Passing dataset is deprecated after 1.2.2, pass dataset.id", DeprecationWarning) id_ = id_.id with self._db.connect() as connection: was_removed = connection.remove_location(id_, uri) return was_removed def _make(self, dataset_res, full_info=False): """ :rtype datacube.model.Dataset :param bool full_info: Include all available fields """ uri = dataset_res.uri return Dataset( self.types.get(dataset_res.dataset_type_ref), dataset_res.metadata, # We guarantee that this property on the class is only a local uri. uri if uri and uri.startswith('file:') else None, indexed_by=dataset_res.added_by if full_info else None, indexed_time=dataset_res.added if full_info else None, archived_time=dataset_res.archived ) def _make_many(self, query_result): """ :rtype list[datacube.model.Dataset] """ return (self._make(dataset) for dataset in query_result) def search_by_metadata(self, metadata): """ Perform a search using arbitrary metadata, returning results as Dataset objects. Caution – slow! This will usually not use indexes. :param dict metadata: :rtype: list[datacube.model.Dataset] """ with self._db.connect() as connection: for dataset in self._make_many(connection.search_datasets_by_metadata(metadata)): yield dataset def search(self, **query): """ Perform a search, returning results as Dataset objects. :param dict[str,str|float|datacube.model.Range] query: :rtype: __generator[datacube.model.Dataset] """ source_filter = query.pop('source_filter', None) for _, datasets in self._do_search_by_product(query, source_filter=source_filter): for dataset in self._make_many(datasets): yield dataset def search_by_product(self, **query): """ Perform a search, returning datasets grouped by product type. :param dict[str,str|float|datacube.model.Range] query: :rtype: __generator[(datacube.model.DatasetType, __generator[datacube.model.Dataset])]] """ for product, datasets in self._do_search_by_product(query): yield product, self._make_many(datasets) def search_returning(self, field_names, **query): """ Perform a search, returning only the specified fields. This method can be faster than normal search() if you don't need all fields of each dataset. It also allows for returning rows other than datasets, such as a row per uri when requesting field 'uri'. :param tuple[str] field_names: :param dict[str,str|float|datacube.model.Range] query: :returns __generator[tuple]: sequence of results, each result is a namedtuple of your requested fields """ result_type = namedtuple('search_result', field_names) for _, results in self._do_search_by_product(query, return_fields=True, select_field_names=field_names): for columns in results: yield result_type(*columns) def count(self, **query): """ Perform a search, returning count of results. :param dict[str,str|float|datacube.model.Range] query: :rtype: int """ # This may be optimised into one query in the future. result = 0 for product_type, count in self._do_count_by_product(query): result += count return result def count_by_product(self, **query): """ Perform a search, returning a count of for each matching product type. :param dict[str,str|float|datacube.model.Range] query: :returns: Sequence of (product, count) :rtype: __generator[(datacube.model.DatasetType, int)]] """ return self._do_count_by_product(query) def count_by_product_through_time(self, period, **query): """ Perform a search, returning counts for each product grouped in time slices of the given period. :param dict[str,str|float|datacube.model.Range] query: :param str period: Time range for each slice: '1 month', '1 day' etc. :returns: For each matching product type, a list of time ranges and their count. :rtype: __generator[(datacube.model.DatasetType, list[(datetime.datetime, datetime.datetime), int)]] """ return self._do_time_count(period, query) def count_product_through_time(self, period, **query): """ Perform a search, returning counts for a single product grouped in time slices of the given period. Will raise an error if the search terms match more than one product. :param dict[str,str|float|datacube.model.Range] query: :param str period: Time range for each slice: '1 month', '1 day' etc. :returns: For each matching product type, a list of time ranges and their count. :rtype: list[(str, list[(datetime.datetime, datetime.datetime), int)]] """ return next(self._do_time_count(period, query, ensure_single=True))[1] def _try_add(self, dataset): was_inserted = False product = self.types.get_by_name(dataset.type.name) if product is None: _LOG.warning('Adding product "%s" as it doesn\'t exist.', dataset.type.name) product = self.types.add(dataset.type) if dataset.sources is None: raise ValueError("Dataset has missing (None) sources. Was this loaded without include_sources=True?") with self._db.begin() as transaction: try: was_inserted = transaction.insert_dataset(dataset.metadata_doc, dataset.id, product.id) for classifier, source_dataset in dataset.sources.items(): transaction.insert_dataset_source(classifier, dataset.id, source_dataset.id) # try to update location in the same transaction as insertion. # if insertion fails we'll try updating location later # if insertion succeeds the location bit can't possibly fail if dataset.local_uri: transaction.ensure_dataset_location(dataset.id, dataset.local_uri) except DuplicateRecordError as e: _LOG.warning(str(e)) return was_inserted def _get_dataset_types(self, q): types = set() if 'product' in q.keys(): types.add(self.types.get_by_name(q['product'])) else: # Otherwise search any metadata type that has all the given search fields. types = self.types.get_with_fields(tuple(q.keys())) if not types: raise ValueError('No type of dataset has fields: %r', tuple(q.keys())) return types def _get_product_queries(self, query): for product, q in self.types.search_robust(**query): q['dataset_type_id'] = product.id yield q, product def _do_search_by_product(self, query, return_fields=False, select_field_names=None, with_source_ids=False, source_filter=None): if source_filter: product_queries = list(self._get_product_queries(source_filter)) if not product_queries: # No products match our source filter, so there will be no search results regardless. _LOG.info("No products match source filter") return if len(product_queries) > 1: raise RuntimeError("Multi-product source filters are not supported. Try adding 'product' field") source_queries, source_product = product_queries[0] dataset_fields = source_product.metadata_type.dataset_fields source_exprs = tuple(fields.to_expressions(dataset_fields.get, **source_queries)) else: source_exprs = None product_queries = list(self._get_product_queries(query)) with self._db.connect() as connection: for q, product in product_queries: dataset_fields = product.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) select_fields = None if return_fields: # if no fields specified, select all if select_field_names is None: select_fields = tuple(field for name, field in dataset_fields.items() if not field.affects_row_selection) else: select_fields = tuple(dataset_fields[field_name] for field_name in select_field_names) yield (product, connection.search_datasets( query_exprs, source_exprs, select_fields=select_fields, with_source_ids=with_source_ids )) def _do_count_by_product(self, query): product_queries = self._get_product_queries(query) with self._db.connect() as connection: for q, product in product_queries: dataset_fields = product.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) count = connection.count_datasets(query_exprs) if count > 0: yield product, count def _do_time_count(self, period, query, ensure_single=False): if 'time' not in query: raise ValueError('Counting through time requires a "time" range query argument') query = dict(query) start, end = query['time'] del query['time'] product_queries = list(self._get_product_queries(query)) if ensure_single: if len(product_queries) == 0: raise ValueError('No products match search terms: %r' % query) if len(product_queries) > 1: raise ValueError('Multiple products match single query search: %r' % ([dt.name for q, dt in product_queries],)) with self._db.connect() as connection: for q, product in product_queries: dataset_fields = product.metadata_type.dataset_fields query_exprs = tuple(fields.to_expressions(dataset_fields.get, **q)) yield product, list(connection.count_datasets_through_time( start, end, period, dataset_fields.get('time'), query_exprs )) def search_summaries(self, **query): """ Perform a search, returning just the search fields of each dataset. :param dict[str,str|float|datacube.model.Range] query: :rtype: __generator[dict] """ for _, results in self._do_search_by_product(query, return_fields=True): for columns in results: yield dict(columns) def search_eager(self, **query): """ Perform a search, returning results as Dataset objects. :param dict[str,str|float|datacube.model.Range] query: :rtype: list[datacube.model.Dataset] """ return list(self.search(**query))
UTF-8
Python
false
false
46,500
py
23
_datasets.py
14
0.592988
0.592428
0
1,172
38.667235
120
achacha/AOS
3,693,671,898,419
1542a46418102dcb78c5525d8703f5f205599d9e
23553b6bcf0a278776f0a651b24a3c6a22a702f9
/ALibrary/call_gather_headers.py
36f0b093c53062952ffa51be7745b19e4dcf99f9
[]
no_license
https://github.com/achacha/AOS
24ace04a4228de4d0295379d84cb936c2a33511b
bea07af94f23982d4fceb10a9cf70a7e5467355f
refs/heads/master
2020-05-17T12:20:35.667655
2016-02-10T13:33:43
2016-02-10T13:33:43
3,578,772
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python import os,sys; BASE_ALIBRARY_PATH=os.path.dirname(os.path.abspath(sys.argv[0])); #print("BASE_ALIBRARY_PATH="+BASE_ALIBRARY_PATH); BASE_ENV_PATH=os.path.normpath(os.path.join(BASE_ALIBRARY_PATH,"..","_devtools","bin")); params=""; for param in sys.argv[1:]: params = params + param + " "; os.chdir(BASE_ENV_PATH); os.system(os.path.join(BASE_ENV_PATH, "gather_headers.py "+params));
UTF-8
Python
false
false
414
py
731
call_gather_headers.py
615
0.678744
0.673913
0
13
30.230769
88
Buor/python-codewars-solutions
13,572,096,682,866
8cd91cd6248b089a01989e083a87e0315fe52cfd
dc37b0ba02bcb195a71988563ec461e3181c2811
/kyu6/highest_scoring_word.py
8d93350d8363e3c15810408987507896764aef92
[]
no_license
https://github.com/Buor/python-codewars-solutions
08506a24791adea4be8cb7c4479e40ffd604975f
965218cf18ed132aa2b2f570e165fae79b73e4f0
refs/heads/master
2023-08-13T02:01:29.151321
2021-09-10T11:36:21
2021-09-10T11:36:21
402,838,622
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# https://www.codewars.com/kata/57eb8fcdf670e99d9b000272 from functools import reduce high = lambda x: max(x.split(" "), key=lambda y: reduce(lambda z, q: z + q, map(lambda w: ord(w), y)) - len(y) * 96)
UTF-8
Python
false
false
202
py
10
highest_scoring_word.py
10
0.688119
0.60396
0
3
66.666667
116
dgretton/pyhamilton
2,920,577,794,780
bd766a7e7e29e47a9ca663e8f494bb897cb293b1
e08bb81a0018d234cc78f365cc4aa64409ef5425
/examples/96_head_pickup_eject.py
b1d50d806989a3d22f93361b77276e46843d800e
[ "MIT" ]
permissive
https://github.com/dgretton/pyhamilton
d3b9ffcdbcd8c50f412d27ef5710e6e1dd3c5265
4688977308789876ab8163af6f704aa118ab39bd
refs/heads/master
2023-08-07T16:19:42.086216
2023-07-24T17:51:16
2023-07-24T17:51:16
134,626,220
134
35
MIT
false
2023-05-20T14:50:02
2018-05-23T21:14:49
2023-05-05T15:22:55
2023-05-20T14:50:01
66,642
116
28
2
Python
false
false
import os from pyhamilton import (HamiltonInterface, LayoutManager, ResourceType, Tip96, INITIALIZE, PICKUP96, EJECT96) layfile = os.path.abspath(os.path.join('.', '96_head_pickup_eject.lay')) lmgr = LayoutManager(layfile) tip_name_from_line = lambda line: LayoutManager.layline_first_field(line) tip_name_condition = lambda line: LayoutManager.field_starts_with(tip_name_from_line(line), 'STF_L_') tips_type = ResourceType(Tip96, tip_name_condition, tip_name_from_line) tips = lmgr.assign_unused_resource(tips_type) if __name__ == '__main__': with HamiltonInterface() as hammy: print('INITIALIZED!!', hammy.wait_on_response(hammy.send_command(INITIALIZE))) labware = str(tips.layout_name()) labware_poss = '; '.join([labware + ',' + str(i+1) for i in range(96)]) + ';' # A dictionary can be unpacked into the command... cmd_dict = {'labwarePositions':labware_poss} id = hammy.send_command(PICKUP96, **cmd_dict) print(hammy.wait_on_response(id, raise_first_exception=True)) # Or the command fields can be specified with keyword arguments id = hammy.send_command(EJECT96, labwarePositions=labware_poss) print(hammy.wait_on_response(id, raise_first_exception=True))
UTF-8
Python
false
false
1,257
py
46
96_head_pickup_eject.py
30
0.693715
0.680191
0
24
51.375
101
AayushDangol123/rasa-chatbot
515,396,081,820
d484feb6c4927ebe475a2e59c4e4b45389cfd59d
ad0ffa148f9379878efee7574b194f8e4a9a12bf
/actions.py
11e1e45e2ba4ab2f5f87478a5ce6e1df264e0415
[]
no_license
https://github.com/AayushDangol123/rasa-chatbot
a127b5c1a6e11668a5989c0a88b70a8b7a8618f1
02c905150e7a0142b6c02539db97f4d05e9cfeea
refs/heads/main
2023-03-12T15:34:07.685193
2021-03-05T07:23:32
2021-03-05T07:23:32
344,373,849
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/custom-actions # This is a simple example for a custom action which utters "Hello World!" # from typing import Any, Text, Dict, List # # from rasa_sdk import Action, Tracker # from rasa_sdk.executor import CollectingDispatcher # # # class ActionHelloWorld(Action): # # def name(self) -> Text: # return "action_hello_world" # # def run(self, dispatcher: CollectingDispatcher, # tracker: Tracker, # domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # # dispatcher.utter_message(text="Hello World!") # # return [] from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher import csv class actionfindengr(Action): def name(self) -> Text: return "action_findengr" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any] ) -> List[Dict[Text, Any]]: # get the location slot location = tracker.get_slot('location') # read the CSV file with open('data/Engineering colllege.csv','r',encoding = "utf-8") as file: reader = csv.DictReader(file) # get a list of universities in the desired location output = [row for row in reader if row['location'] == location] if output: reply = f"This is a list of universities in {location}:" reply += "\n- " + "\n- ".join([item['College'] for item in output]) # utter the message dispatcher.utter_message(reply) else: # the list is empty dispatcher.utter_message(f"I could not find universities in {location}")
UTF-8
Python
false
false
1,881
py
5
actions.py
1
0.629984
0.629452
0
56
32.589286
84
yicheng-li/yc
5,463,198,444,978
5e3acc44d5dda53a40d768df6ed662a84acde3e6
d20a2832be223b98a869f97813f5e22f6889abc5
/new_hg_new/train_parsing_vgg.py
80bb2d18aea5448597ed2edbf9a38dd05ae57caf
[]
no_license
https://github.com/yicheng-li/yc
c66e9743ad446bc0addba4ea2cc0f637a8137049
a45092e4d13f6e50d9bd8b66383c5a595aa37b61
refs/heads/master
2018-02-07T09:37:54.435081
2017-08-08T02:49:34
2017-08-08T02:49:34
95,753,149
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from __future__ import print_function import argparse from datetime import datetime import os import sys import time import tensorflow as tf import numpy as np os.environ["CUDA_VISIBLE_DEVICES"]="0" from utils import * from vgg16 import vggnet ### parameters setting RANDOM_SEED = 1234 N_CLASSES = 20 INPUT_SIZE = (321, 321) BATCH_SIZE = 1 DECAY_STEPS = 7000 # 30462 trainning img MIRROR = False SCALE = False SAVE_NUM_IMAGES = 1 LEARNING_RATE = 1e-5 MOMENTUM = 0.9 NUM_STEPS = 20001 DECAY_RATE = 0.9 SAVE_PRED_EVERY = 500 DATA_DIR = './datasets/human' LIST_PATH = './datasets/human/list/train.txt' RESTORE_FROM = './model' #'./model/' SNAPSHOT_DIR = './checkpoint' LOG_DIR = './logs' def main(): tf.set_random_seed(RANDOM_SEED) # Create queue coordinator. coord = tf.train.Coordinator() # Load reader. with tf.name_scope("create_inputs"): reader = ImageReader(DATA_DIR, LIST_PATH, INPUT_SIZE, SCALE, MIRROR, coord) image_batch, label_batch = reader.dequeue(BATCH_SIZE) # Create Networks raw_output = vggnet(image_batch) # Predictions. raw_prediction = tf.reshape(raw_output, [-1, N_CLASSES]) label_proc = prepare_label(label_batch, tf.stack(raw_output.get_shape()[1:3]), one_hot=False) # [batch_size, h, w] raw_gt = tf.reshape(label_proc, [-1,]) indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, N_CLASSES - 1)), 1) gt = tf.cast(tf.gather(raw_gt, indices), tf.int32) prediction = tf.gather(raw_prediction, indices) # Pixel-wise softmax loss. loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt)) # Loss summary loss_summary = tf.summary.scalar("loss_softmax", loss) # Processed predictions: for visualisation. raw_output_up = tf.image.resize_bilinear(raw_output, tf.shape(image_batch)[1:3,]) raw_output_up = tf.argmax(raw_output_up, dimension=3) pred = tf.expand_dims(raw_output_up, dim=3) # Image summary. images_summary = tf.py_func(inv_preprocess, [image_batch, SAVE_NUM_IMAGES], tf.uint8) labels_summary = tf.py_func(decode_labels, [label_batch, SAVE_NUM_IMAGES], tf.uint8) preds_summary = tf.py_func(decode_labels, [pred, SAVE_NUM_IMAGES], tf.uint8) total_summary = tf.summary.image('images', tf.concat([images_summary, labels_summary, preds_summary], 2), max_outputs=SAVE_NUM_IMAGES) # Concatenate row-wise. summary_writer = tf.summary.FileWriter(LOG_DIR, graph=tf.get_default_graph()) # Define loss and optimisation parameters. base_lr = tf.constant(LEARNING_RATE) step_ph = tf.placeholder(dtype=tf.float32, shape=()) learning_rate = tf.train.exponential_decay(base_lr, step_ph, DECAY_STEPS, DECAY_RATE, staircase=True) optim = tf.train.MomentumOptimizer(learning_rate, MOMENTUM).minimize(loss) # Set up tf session and initialize variables. config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) init = tf.global_variables_initializer() sess.run(init) # Saver for storing checkpoints of the model. # Restore variables all_trainable = tf.trainable_variables() all_saver_var = tf.global_variables() saver = tf.train.Saver(var_list=all_saver_var, max_to_keep=10) # Load variables if the checkpoint is provided. if RESTORE_FROM is not None: loader = tf.train.Saver(var_list=all_trainable) load(loader, sess, RESTORE_FROM) # Start queue threads. threads = tf.train.start_queue_runners(coord=coord, sess=sess) # Iterate over training steps. for step in range(NUM_STEPS): start_time = time.time() feed_dict = { step_ph : step } loss_value = 0 # Apply gradients. if step % SAVE_PRED_EVERY == 0: summary, loss_value, lr, _ = sess.run([total_summary, loss, learning_rate, optim], feed_dict=feed_dict) summary_writer.add_summary(summary, step) save(saver, sess, SNAPSHOT_DIR, step) else: summary_str, loss_value, lr, _ = sess.run([loss_summary, loss, learning_rate, optim], feed_dict=feed_dict) summary_writer.add_summary(summary_str, step) duration = time.time() - start_time print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step) \t learning_rate = {:f}'.format(step, loss_value, duration, lr)) coord.request_stop() coord.join(threads) if __name__ == '__main__': main()
UTF-8
Python
false
false
4,514
py
29
train_parsing_vgg.py
15
0.659504
0.645326
0
124
35.403226
125
zx490336534/Spider_Basics
8,847,632,635,216
340b873584086a2097a680291f56a87b91dd8e6b
15c07658420771267db5f56b295064beaa79db46
/06-requests/正式课/requests_test.py
277c0251274ce070d7defaadbdd55ce11a2b67af
[]
no_license
https://github.com/zx490336534/Spider_Basics
4dab606d7b72fa3eb1eb0b5467f12d523b029c93
aa3f723b8887c33af73dbf2bbad70d059a584201
refs/heads/master
2021-05-12T09:41:08.877423
2018-02-05T12:24:36
2018-02-05T12:24:36
117,328,894
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import urllib3 from requests.cookies import RequestsCookieJar urllib3.disable_warnings() #基础用法 # url = 'https://httpbin.org' # r = requests.get(url) # print(r.text) #提交get参数 # payload = {'key1':'value1','key2':'value2'} # r = requests.get('https://httpbin.org/get',params=payload) # print(r.text) #等价于 # r = requests.get('https://httpbin.org/get?key1=value1&key2=value2') # print(r.text) # # data = { # "key1": "value1", # "key2": "value2" # } # headers = { # "Connection": "keep-alive", # "Referer": "httpbin.org", # "User-Agent": "Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.83 Safari/535.11", # } # url = 'https://httpbin.org/post' # r = requests.post(url,data=data,headers=headers) # print(r.text) # print(r.json()) ''' json转字符串 data = {'k':'v'} json.dumps(data) 字符串转json s = '{'k':'v'}' json.loads(s) ''' #取消自动跳转,302跳转 # r = requests.get('http://github.com',allow_redirects=True,verify=False) # print(r.status_code) #超时,会报错 # r = requests.get('http://github.com',timeout = 0.001,verify=False) # print(r.status_code) #代理 proxies = {'http':'127.0.0.1:8080','https':'127.0.0.1:8080'} r = requests.get('http://httpbin.org/',proxies=proxies) # print(r.status_code) #状态码 # r = requests.get('http://httpbin.org/') # if r.status_code == 200: # print('成功') # else: # print('失败') STATUS_CODES_OK = 101 STATUS_CODES_ERROR = 102 status = 0 if status == STATUS_CODES_OK: pass elif status == STATUS_CODES_ERROR: pass else: pass #使用session s = requests.session() r = s.get('http://httpbin.org') # print(r.status_code) #cookie ''' cookie 遵循这样一个原则 子域可以访问父域的cookie,但是父域不能访问子域 test.httpbin.org 可以访问httpbin.org的所有cookie,反之不能,同级域名也不行 子目录可以访问父目录,电脑上父目录不能访问子目录的 ''' jar = RequestsCookieJar() jar.set('tasty_cookie','yum',domain='httpbin.org',path='/cookies') jar.set('gross_cookie','blech',domain='httpbin.org',path='elsewhere') jar.set('root_cookie','root',path='/') jar.set('default_cookie','default') url = 'http://httpbin.org/cookies' r = requests.get(url,cookies=jar) # print(r.text) #编码 r = requests.get('http://www.baidu.com') print(r.encoding) #r.content 返回的是b'',即字符串 content = r.content print(content) print(content.decode('utf-8')) #r.text返回str'' text = r.text print(text) print(text.encode('raw_unicode_escape').decode('utf-8')) print(text.encode('iso-8859-1').decode('utf-8')) print(text.encode(r.encoding).decode('utf-8')) #r.encoding有可能为None ''' requests.util 模块 select_proxy 方法 中可以看出,代理的先后顺序为 譬如:http://httpbin.org/ 这个地址 1、匹配 http://httpbin.org ,ps: 后面没有 / 2、匹配 http 3、all://httpbin.org 4、all '''
UTF-8
Python
false
false
2,987
py
39
requests_test.py
29
0.663261
0.629588
0
131
19.183206
124
epan626/python_exam
4,355,096,844,449
b7d3a99158346fe31ae01b6771340e3c5e83bf96
f10d59dfbb6b8c316b83493ea41f440dbc43b9e1
/python_exam/apps/products/migrations/0004_auto_20161216_2011.py
6cae56cd97ce63be63afb2248d073eeda6ba0576
[]
no_license
https://github.com/epan626/python_exam
ca929e6984a07fceaa852d56cd833c42de61282d
7e64c378402673cead7c07333dbaced749b44230
refs/heads/master
2021-01-12T08:47:10.636861
2016-12-16T22:13:37
2016-12-16T22:13:37
76,689,026
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-16 20:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0003_product_user'), ] operations = [ migrations.AlterField( model_name='product', name='user', field=models.ManyToManyField(default=1, related_name='user_products', to='regandlogin.User'), ), ]
UTF-8
Python
false
false
500
py
10
0004_auto_20161216_2011.py
5
0.612
0.568
0
20
24
105
LuisPerez64/Prac
15,066,745,309,594
0aef95ec83b6557730f1209e040987b26a2f30f1
0734ea587e68ff5fc5068514ba63492a0cd0cbc7
/python/implementations/data_structures/core/default_dict.py
d39a2ab2cfc8dcaa4db91bb6154218524bf69a5b
[]
no_license
https://github.com/LuisPerez64/Prac
735756a3bfa7b33f2fcba5bdb92abb58d3a71dc1
ef2c7fcb65c574317c83c3f632e066b96222b5f3
refs/heads/master
2021-01-18T03:43:08.566645
2020-11-12T04:47:16
2020-11-12T04:47:16
44,716,313
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
""" Base implementation of the defaultdict object extending the base dict class. """ __all__ = ["DefaultDict"] from typing import Callable class DefaultDict(dict): def __init__(self, missing_func: Callable, **kwargs): self.missing_func = missing_func super(DefaultDict, self).__init__(**kwargs) def __missing__(self, key): res = self.missing_func(key) super(DefaultDict, self).__setitem__(key, res) return res # super(DefaultDict, self).__getitem__(key)
UTF-8
Python
false
false
508
py
493
default_dict.py
415
0.639764
0.639764
0
18
27.222222
76
hhhernandez/pym
9,783,935,533,581
befa3c74a96bf3bce451039b1f59eecb35f1799b
69fcb7c7eb2485f2ffd0f2a2d7858d97b4fe4275
/python/PYM.py
1596897f31b5420c06111488cd3c75f8e1bd970f
[]
no_license
https://github.com/hhhernandez/pym
3fdf8f57f4ac7cc57cc15ca77ae2cef2e29eceae
5eccf449c7548175dbc2eb34b6dfa722573f00f3
refs/heads/master
2020-03-24T05:31:06.576519
2017-10-08T10:36:05
2017-10-08T10:36:05
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 10 17:03:41 2017 @author: valle """ def PYM_image_transformation(original, filename): "This function performs the PYM calculation and returns a new frame" h, w = original[:,:,0].shape # get original image shape pym = np.zeros((h, w),np.int) # blank b/w image for storing pym image red = np.zeros((h, w),np.int) # blank array for red blue = np.zeros((h, w),np.int) # blank array for blue # Specific channels red = (original[:,:,2]).astype('float') # reading red channel from original image (NIR) blue = (original[:,:,0]).astype('float') # reading blue channel from original image (blue) # PYM calculation max_sc = np.amax(red - blue/2) pym = ((red - blue/2)*255/max_sc).astype('uint8') # computing new channel pym[red - blue/2 < 0] = 0 # setting limit # False color image False_color_image = np.zeros((h, w,3),np.uint8) # make a blank RGB image False_color_image[:,:,1] = pym False_color_image[:,:,2] = 255 - pym f_image = "FALSE_COLOR_" + filename f_dest = "FALSE_COLOR/" + f_image cv2.imwrite(f_dest, False_color_image) return pym # return the image def PYM_leaf_area_estimation(filename, include_holes=True): image_source = cv2.imread(filename) # import source image # Image transformation and storage t = PYM_image_transformation(image_source, filename) # Transform image with PYM_image_transformation function r_image = "NEW_CHANNEL_" + filename # Filename of the new image (visual checking) r_dest = "NEW_CHANNEL/" + r_image # Folder cv2.imwrite(r_dest, t) # saving image # Image analysis ret,thresh1 = cv2.threshold(t, 0, 255, cv2.THRESH_OTSU) # OTSU's thresholding kernel_open = np.ones((6,6),np.uint8) # large kernel kernel_mid = np.ones((4,4),np.uint8) # medium kernel kernel_close = np.ones((2,2),np.uint8) # small kernel kernel_veryclose = np.ones((1,1),np.uint8) # tiny petit erosion = cv2.erode(thresh1, kernel_veryclose,iterations = 1) # edge erosion opening = cv2.morphologyEx(erosion, cv2.MORPH_OPEN, kernel_open) # removing noise around the plant closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel_mid) # removing noise inside the plant contours, hierarchy = cv2.findContours(closing,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # finding plant contours # aa, contours, hierarchy = cv2.findContours(closing,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # with an older version of opencv if include_holes==1: # Counting all pixels inside the largest area areas = [] # list for contour in contours: ar = cv2.contourArea(contour) areas.append(ar) sorted_area = sorted(areas, key=int, reverse = True) leaf_area = sorted_area[0] # largest area, plant area by definition leaf_area_index = areas.index(leaf_area) # finding area index cnt = contours[leaf_area_index] # plant contours, with holes included cv2.drawContours(closing, [cnt], 0,(255,0,0),-1) # drawing contours with holes included if include_holes==0: # Counting all pixels detected cv2.drawContours(closing, contours, -1, (255, 255, 255), -1) # drawing contours without including holes leaf_area = (closing > 127).sum() # couting plants pixels # Image storage image_finale = "OUTPUT_" + filename # Filename of the output image dest_finale = "OUTPUT/" + image_finale # Folder cv2.imwrite(dest_finale, closing) # Saving image return leaf_area # Plant area is returned as output of the function def PYM_folder(dirname, include_holes): os.chdir(dirname) # updating current directory try: os.mkdir("FALSE_COLOR") # creating a new folder to save FALSE_COLOR images os.mkdir("NEW_CHANNEL") # creating a new folder to save NEW_CHANNEL images os.mkdir("OUTPUT") # creating a new folder to save OUTPUT images except Exception: pass fname = "out.csv" file = open(fname, "wb") writer = csv.writer(file) writer.writerow(('plant_ID', 'leaf_area_pixel')) i=0 types = ('*.png', '*.jpg') # checked formats files_g = [] for files in types: files_g.extend(glob.glob(files)) for filename in files_g: # loop for found files i+=1 fi = cv2.imread(filename) # reading image plant_id = filename[:-4] # picture's name is also plant ID, after removal of 4 last characters (".jpg" or ".png") try: leaf_area_pixel = PYM_leaf_area_estimation(filename, include_holes) # using precendtly declared function writer.writerow((plant_id, leaf_area_pixel)) # storing computed leaf_area except IndexError: pass file.close()
UTF-8
Python
false
false
4,902
py
2
PYM.py
2
0.639331
0.618931
0
117
40.769231
129