repo_name
stringlengths 7
111
| __id__
int64 16.6k
19,705B
| blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 5
151
| content_id
stringlengths 40
40
| detected_licenses
list | license_type
stringclasses 2
values | repo_url
stringlengths 26
130
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
42
| visit_date
timestamp[ns] | revision_date
timestamp[ns] | committer_date
timestamp[ns] | github_id
int64 14.6k
687M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 12
values | gha_fork
bool 2
classes | gha_event_created_at
timestamp[ns] | gha_created_at
timestamp[ns] | gha_updated_at
timestamp[ns] | gha_pushed_at
timestamp[ns] | gha_size
int64 0
10.2M
⌀ | gha_stargazers_count
int32 0
178k
⌀ | gha_forks_count
int32 0
88.9k
⌀ | gha_open_issues_count
int32 0
2.72k
⌀ | gha_language
stringlengths 1
16
⌀ | gha_archived
bool 1
class | gha_disabled
bool 1
class | content
stringlengths 10
2.95M
| src_encoding
stringclasses 5
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 10
2.95M
| extension
stringclasses 19
values | num_repo_files
int64 1
202k
| filename
stringlengths 4
112
| num_lang_files
int64 1
202k
| alphanum_fraction
float64 0.26
0.89
| alpha_fraction
float64 0.2
0.89
| hex_fraction
float64 0
0.09
| num_lines
int32 1
93.6k
| avg_line_length
float64 4.57
103
| max_line_length
int64 7
931
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GafferHQ/gaffer | 11,338,713,680,519 | 3e9336d5f12ac401379a720fea095a331efb41ef | 6146e33102797407ede06ce2daa56c28fdfa2812 | /python/GafferImageUI/ImageTransformUI.py | f2f7e56eddf5930961f93affe4387334f5df06d4 | [
"BSD-3-Clause"
]
| permissive | https://github.com/GafferHQ/gaffer | e1eb78ba8682bfbb7b17586d6e7b47988c3b7d64 | 59cab96598c59b90bee6d3fc1806492a5c03b4f1 | refs/heads/main | 2023-09-01T17:36:45.227956 | 2023-08-30T09:10:56 | 2023-08-30T09:10:56 | 9,043,124 | 707 | 144 | BSD-3-Clause | false | 2023-09-14T09:05:37 | 2013-03-27T00:04:53 | 2023-09-13T21:09:28 | 2023-09-14T09:05:36 | 74,700 | 880 | 196 | 333 | Python | false | false | ##########################################################################
#
# Copyright (c) 2014, Image Engine Design Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above
# copyright notice, this list of conditions and the following
# disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with
# the distribution.
#
# * Neither the name of John Haddon nor the names of
# any other contributors to this software may be used to endorse or
# promote products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
##########################################################################
import itertools
import Gaffer
import GafferUI
import GafferImage
Gaffer.Metadata.registerNode(
GafferImage.ImageTransform,
"description",
"""
Scales, rotates and translates an image within its display window.
Note that although the format is not changed, the data window is
expanded to include the portions of the image which have been
transformed outside of the display window, and these out-of-frame
pixels can still be used by downstream nodes.
""",
plugs = {
"transform" : [
"description",
"""
The transformation to be applied to the image. The translate
and pivot values are specified in pixels, and the rotate
value is specified in degrees.
""",
"plugValueWidget:type", "GafferUI.LayoutPlugValueWidget",
],
"filter" : [
"description",
"""
The pixel filter used when transforming the image. Each
filter provides different tradeoffs between sharpness and
the danger of aliasing or ringing.
""",
"plugValueWidget:type", "GafferUI.PresetsPlugValueWidget",
] + list( itertools.chain(
# Disk doesn't make much sense as a resizing filter, and also causes artifacts because
# its default width is small enough to fall into the gaps between pixels.
*[ ( "preset:" + x.title(), x ) for x in GafferImage.FilterAlgo.filterNames() if x != "disk" ]
) ),
"invert" : [
"description",
"""
Apply the inverse transformation to the image.
"""
],
"concatenate" : [
"description",
"""
Combines the processing for a series of ImageTransforms so that
transformation and filtering is only applied once. This gives better
image quality and performance.
> Note : When concatenation is in effect, the filter settings on upstream
> ImageTransforms are ignored.
""",
"layout:section", "Node",
"layout:index", -1,
],
}
)
| UTF-8 | Python | false | false | 3,646 | py | 1,694 | ImageTransformUI.py | 1,585 | 0.689248 | 0.687877 | 0 | 117 | 30.162393 | 97 |
anncarln/start-python | 2,723,009,278,879 | 9ec81bb08e54a284ec60bf92994e105b4e6d6f99 | e79e3974f877be62f96bb575bbe84c5fe70e68b7 | /ex026.py | 327e9c006144f5b725acb0ba826f49b57f4f6b08 | []
| no_license | https://github.com/anncarln/start-python | 885ea5b8da8533035ab90edc1e7b52741421b76a | 964f3ed54a2a05f3999bb30bdcd93dbdf816d0e0 | refs/heads/master | 2023-06-29T01:57:47.190743 | 2021-08-08T03:18:31 | 2021-08-08T03:18:31 | 282,767,791 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | frase = str(input('Digite a frase que você deseja analisar: ')).strip()
frase1 = frase.upper()
print(f"A letra A aparece {frase1.count('A')} vezes nessa frase")
print(f"A primeira letra A apareceu na posição {frase1.find('A')+1}")
print(f"A última letra A apareceu na posição {frase1.rfind('A')+1}")
| UTF-8 | Python | false | false | 312 | py | 80 | ex026.py | 80 | 0.696078 | 0.676471 | 0 | 5 | 59 | 71 |
otacake/ML | 755,914,283,856 | 925f04089db99ab5cd4b5c1997cd1c15163a9991 | 632a161c20cab566a63c5920a9e8b0f5635abee6 | /sec3/Iris_training_logistic.py | 1c9cfa781d8ee0d7b5ae53cfe07af08c5e9646e4 | []
| no_license | https://github.com/otacake/ML | 70eb32c6bad13dedb16a2f75e205fe2fb39e49a4 | d26651db97b33241e2b22c52b5be6341c17b23f1 | refs/heads/master | 2023-01-06T18:28:20.751254 | 2020-11-07T16:22:52 | 2020-11-07T16:22:52 | 274,142,870 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from sklearn import datasets
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, test_idx=None,resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0],
y=X[y == cl, 1],
alpha=0.8,
c=colors[idx],
marker=markers[idx],
label=cl,
edgecolor='black')
if test_idx:
X_test,y_test = X[test_idx,:],y[test_idx]
plt.scatter(X_test[:,0],X_test[:,1],c='',alpha=1.0,linewidths=1,marker="o",s=55,label="test set")
iris = datasets.load_iris()
#iris.dataで特徴量を出せる
#iris.targetでクラスラベルのベクトルを出せる、もう数値化されてる
X = iris.data[:,[2,3]]
y = iris.target
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=1,stratify=y)
#ここから特徴量の標準化をする
from sklearn.preprocessing import StandardScaler #オブジェクト
sc = StandardScaler()
sc.fit(X_train) #ここで平均と標準偏差をベクトルごとに出してる
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
#ここまででようやく下準備ができたといえるみたい?(実際はもっと大変)
from sklearn.linear_model import Perceptron
ppn = Perceptron(n_iter_no_change=40,eta0=0.1,random_state=1,shuffle=True)
ppn.fit(X_train_std,y_train)
y_pred = ppn.predict(X_test_std)
n = len(y_test)
for i in range(n):
print("predict:",str(y_pred[i]),"ans:",str(y_test[i]))
X_combined_std = np.vstack((X_train_std,X_test_std))
y_combined = np.hstack((y_train,y_test))
plot_decision_regions(X=X_combined_std,y=y_combined,classifier=ppn,test_idx=range(105,150))
plt.show() | UTF-8 | Python | false | false | 2,626 | py | 21 | Iris_training_logistic.py | 20 | 0.628631 | 0.603734 | 0 | 76 | 30.723684 | 105 |
hugo1840/car-classification-with-sklearn | 3,616,362,489,504 | 0040d9640981d6b16be19238303947ca650610c4 | ac84c76cf2663548991962584d0b875c10881b75 | /car_vanilla_evaluator.py | 5f67a7b95a5829e91b1290a15311720c263297d8 | []
| no_license | https://github.com/hugo1840/car-classification-with-sklearn | 103e384201ab29b390d7234606b497eac3d1e946 | a8681344ac5579c94a0fb0f164afc9e7a2df6bce | refs/heads/master | 2021-09-05T05:06:00.431515 | 2018-01-24T08:40:41 | 2018-01-24T08:40:41 | 118,736,870 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
Created on Sat Dec 30 12:56:10 2017
@author: Hugot
"""
import numpy as np
# Part 1 : load data
Xt = np.genfromtxt('car.data', delimiter=',', dtype=[
'U15','U15','U15', 'U15','U15','U15','U15'], names=(
'buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety',
'class'))
#dict_buying = {'low':1, 'med':2, 'high':3, 'vhigh':4}
#dict_maint = {'low':1, 'med':2, 'high':3, 'vhigh':4}
#dict_doors = {'2':2, '3':3, '4':4, '5more':5}
#dict_persons = {'2':2, '4':4, 'more':5}
#dict_lug_boot = {'small':1, 'med':2, 'big':3}
#dict_safety = {'low':1, 'med':2, 'high':3}
#dict_class = {'unacc':0, 'acc':1, 'good':2, 'vgood':3}
# ordered encoding : (i - 0.5)/N
dict_buying = {'low':0.125, 'med':0.375, 'high':0.625, 'vhigh':0.875}
dict_maint = {'low':0.125, 'med':0.375, 'high':0.625, 'vhigh':0.875}
dict_doors = {'2':0.125, '3':0.375, '4':0.625, '5more':0.875}
dict_persons = {'2':0.167, '4':0.500, 'more':0.833}
dict_lug_boot = {'small':0.167, 'med':0.500, 'big':0.833}
dict_safety = {'low':0.167, 'med':0.500, 'high':0.833}
dict_class = {'unacc':0, 'acc':1, 'good':2, 'vgood':3}
#Xtt=Xt[0:3] # row 0,1,2
#Xtt_num = np.zeros((3,7), dtype = np.int)
data = np.zeros((Xt.shape[0],7), dtype=np.float)
rr = 0
for row in Xt:
# print(row)
data[rr,:] = np.array([dict_buying[row[0]], dict_maint[row[1]],
dict_doors[row[2]], dict_persons[row[3]], dict_lug_boot[row[4]],
dict_safety[row[5]], dict_class[row[6]]])
rr = rr + 1
# Part 2: training set = 1210 & test set = 518
np.random.seed(10)
set_perm = np.random.permutation(range(data.shape[0]))
ind_train = set_perm[0:1210]
ind_test = set_perm[1210:]
X_train = data[ind_train,0:6]
y_train = data[ind_train,6]
X_test = data[ind_test,0:6]
y_test = data[ind_test,6]
# Part 3: standardization
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X_train)
#print('X scaler mean: ', scaler.mean_)
#print('X scaler variance: ', scaler.var_)
standardized_X = scaler.transform(X_train)
# Part 4: feature selection
from sklearn.ensemble import ExtraTreesClassifier
slct = ExtraTreesClassifier()
slct.fit(X_train, y_train)
# display the relative importance of each attribute
print('\n\nfeature_importances:')
print(slct.feature_importances_)
# Part 5: decision tree classifier
from sklearn import tree
#from sklearn.tree import DecisionTreeClassifier
# fit a ID3 model to the data : 'entropy', or CART model: 'gini'
# change max_depth & min_samples_leaf to simplify the tree
clf = tree.DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
#clf.fit(standardized_X, y_train)
clf.fit(X_train, y_train)
print('\n\nDecision_tree_classifier:')
print(clf)
from sklearn import metrics
std_X_test = scaler.transform(X_test)
expected_clf = y_test
#predicted_clf = clf.predict(std_X_test)
predicted_clf = clf.predict(X_test)
# summarize the fit of the model
print('\n\nDecision_tree_classifier_prediction_summary:')
print(metrics.classification_report(expected_clf, predicted_clf))
print(metrics.confusion_matrix(expected_clf, predicted_clf))
# visualization
# D:\Anaconda3\Library\bin\graphviz
import graphviz
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety'],
class_names=['unacc', 'acc', 'good', 'vgood'],
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("cars_tree")
# Part 6: Naive Bayes classifier
from sklearn.naive_bayes import GaussianNB
nby = GaussianNB()
nby.fit(X_train, y_train)
print('\n\nNaive_bayes_classifier:')
print(nby)
# make predictions
expected_nby = y_test
predicted_nby = nby.predict(X_test)
# summarize the fit of the model
print('\n\nNaive_bayes_classifier_prediction_summary:')
print(metrics.classification_report(expected_nby, predicted_nby))
print(metrics.confusion_matrix(expected_nby, predicted_nby))
# Part 7: k Nearest Neighbors classifier
from sklearn.neighbors import KNeighborsClassifier
# fit a k-nearest neighbor model to the data
knb = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
knb.fit(X_train, y_train)
print('\n\nK_nearest_neighbors_classifier:')
print(knb)
# make predictions
expected_knb = y_test
predicted_knb = knb.predict(X_test)
# summarize the fit of the model
print('\n\nK_neighbors_classifier_prediction_summary:')
print(metrics.classification_report(expected_knb, predicted_knb))
print(metrics.confusion_matrix(expected_knb, predicted_knb))
# Part 8: support vector machine classifier
from sklearn.svm import SVC
# fit a SVM model to the data
svmc = SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
svmc.fit(X_train, y_train)
print('\n\nSVM_classifier:')
print(svmc)
# make predictions
expected_svmc = y_test
predicted_svmc = svmc.predict(X_test)
# summarize the fit of the model
print('\n\nSVM_classifier_prediction_summary:')
print(metrics.classification_report(expected_svmc, predicted_svmc))
print(metrics.confusion_matrix(expected_svmc, predicted_svmc))
# Part 9: Multilayer Peceptron classifier
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(solver='lbfgs', alpha=1e-5,
hidden_layer_sizes=(5, 3), random_state=1)
mlp.fit(X_train, y_train)
print('\n\nMLP_classifier:')
print(mlp)
# make predictions
expected_mlp = y_test
predicted_mlp = mlp.predict(X_test)
# summarize the fit of the model
print('\n\nMLP_classifier_prediction_summary:')
print(metrics.classification_report(expected_mlp, predicted_mlp))
print(metrics.confusion_matrix(expected_mlp, predicted_mlp)) | UTF-8 | Python | false | false | 6,325 | py | 3 | car_vanilla_evaluator.py | 2 | 0.673992 | 0.636364 | 0 | 185 | 33.194595 | 103 |
dmanchon/storydraw_api | 12,678,743,484,931 | 0e2df0d050514a923dd5f6335ee358b6f9f1f2ef | e3f45e0e3b2fb30155d5469aef15e1f557cf7172 | /api/views.py | c590017ab6152a0955e7241cf5cebe44cc9502ef | []
| no_license | https://github.com/dmanchon/storydraw_api | 74183f5678274289bf6ec841fb313e4122a3b27f | 063db0f44e990e9c64382c526298fb6ed01b75d4 | refs/heads/master | 2020-12-31T02:42:15.996453 | 2016-04-12T18:22:00 | 2016-04-12T18:22:00 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from api.models import Game
from api.serializers import GameSerializer
from rest_framework import viewsets
from rest_framework.response import Response
class GameViewSet(viewsets.ViewSet):
def list(self, request):
"""
API endpoint that allows users to be viewed or edited.
"""
queryset = Game.objects.all().order_by('-start_date')
serializer = GameSerializer
return Response(serializer.data)
def retrieve(self, request, key=None):
return True
def create(self, request):
return True
| UTF-8 | Python | false | false | 562 | py | 7 | views.py | 7 | 0.681495 | 0.681495 | 0 | 20 | 27.1 | 62 |
triumphpc/profileApp | 7,816,840,488,828 | f8a7a604f7e1c183e7913c79cc23ff156f500280 | 8273a4db2e955c1300ce46f39a9de6a4816a90e8 | /profileDjango/profileApp/admin.py | 405f6ab228dc75753133de2a012cbdd8b1dfd66e | []
| no_license | https://github.com/triumphpc/profileApp | 859e1f761164476b0f1a31f78ac1df88bc300374 | 65da33d1c93aa81496cf215b91f641c7ded5e4d5 | refs/heads/master | 2019-03-12T21:40:45.184859 | 2017-09-11T18:39:13 | 2017-09-11T18:39:13 | 102,396,801 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.contrib import admin
from profileApp.models import ProfileVk
@admin.register(ProfileVk)
class ProfileAppAdmin(admin.ModelAdmin):
list_display = ('phoneNumber', 'firstName', 'secondName', 'isOnline')
list_filter = ['phoneNumber']
from profileApp.models import City
@admin.register(City)
class ProfileAppCityAdmin(admin.ModelAdmin):
list_display = ['title']
from profileApp.models import Education
@admin.register(Education)
class ProfileAppEducationAdmin(admin.ModelAdmin):
list_display = ['universityName']
from profileApp.models import Occupation
@admin.register(Occupation)
class ProfileAppOccupationAdmin(admin.ModelAdmin):
list_display = ['type', 'name']
from profileApp.models import Militery
@admin.register(Militery)
class ProfileAppMiliteryAdmin(admin.ModelAdmin):
list_display = ['unit']
from profileApp.models import Schools
@admin.register(Schools)
class ProfileAppSchoolAdmin(admin.ModelAdmin):
pass
from profileApp.models import Universities
@admin.register(Universities)
class ProfileAppUniversityAdmin(admin.ModelAdmin):
pass
from profileApp.models import Country
@admin.register(Country)
class ProfileAppCountryAdmin(admin.ModelAdmin):
pass | UTF-8 | Python | false | false | 1,214 | py | 8 | admin.py | 7 | 0.793245 | 0.793245 | 0 | 44 | 26.613636 | 73 |
treetrnk/flask_writer | 10,694,468,601,258 | 2848b410fdae298a1df80f01252fbde8e61ef2c5 | f9abe32ae9a9dd25a01187dde74d98214ca32de4 | /migrations/versions/44077c9504c9_definitions.py | c44303c1c4c9b1dc6f12df85cda1a90a9a25c6ac | []
| no_license | https://github.com/treetrnk/flask_writer | 79bdab2f952d2667d92824b5abab0876b69ff97d | c7b7443b5afc065626850bbde21a38aa30570d1e | refs/heads/master | 2023-09-03T11:41:41.412642 | 2023-08-31T18:54:55 | 2023-08-31T18:54:55 | 181,212,814 | 5 | 3 | null | false | 2023-02-16T04:40:38 | 2019-04-13T18:28:35 | 2023-01-09T16:17:26 | 2023-02-16T04:40:36 | 17,190 | 5 | 3 | 3 | Python | false | false | """definitions
Revision ID: 44077c9504c9
Revises: 67240b207c34
Create Date: 2019-07-28 05:24:34.831541
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '44077c9504c9'
down_revision = '67240b207c34'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('definition',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('name', sa.String(length=150), nullable=False),
sa.Column('body', sa.String(length=5000), nullable=False),
sa.Column('hidden_body', sa.String(length=5000), nullable=False),
sa.PrimaryKeyConstraint('id')
)
op.create_table('tags_defs',
sa.Column('tag_id', sa.Integer(), nullable=False),
sa.Column('definition_id', sa.Integer(), nullable=False),
sa.ForeignKeyConstraint(['definition_id'], ['definition.id'], ),
sa.ForeignKeyConstraint(['tag_id'], ['tag.id'], ),
sa.PrimaryKeyConstraint('tag_id', 'definition_id')
)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_table('tags_defs')
op.drop_table('definition')
# ### end Alembic commands ###
| UTF-8 | Python | false | false | 1,251 | py | 110 | 44077c9504c9_definitions.py | 48 | 0.668265 | 0.611511 | 0 | 42 | 28.785714 | 69 |
bganglia/pigar | 17,051,020,166,939 | 1ea3515bc04f9608bc1becc9ccb151add0c31d80 | a2c7a9a42fc2904131b4fb96ac1b12556263878e | /pigar/pypi.py | 8641255fcbc56e83ceaff846dc6ad16a627c5493 | [
"BSD-3-Clause"
]
| permissive | https://github.com/bganglia/pigar | 6f2c98cc8902b79f83546d3947352e0eac59e734 | 3a656a4b8ba1c2050b33213f1c002dfb9ebc9a24 | refs/heads/master | 2020-12-02T09:00:42.143289 | 2020-01-02T05:53:57 | 2020-01-02T05:53:57 | 230,955,096 | 0 | 0 | NOASSERTION | true | 2019-12-30T17:34:41 | 2019-12-30T17:34:40 | 2019-12-27T23:27:48 | 2019-08-28T04:00:34 | 14,695 | 0 | 0 | 0 | null | false | false | # -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import
import gzip
import json
import collections
import io
import threading
import multiprocessing
from multiprocessing import Queue as ProcessSharableQueue
try: # py2
from HTMLParser import HTMLParser
from urlparse import urljoin
from Queue import Empty, Queue as ThreadSharableQueue
except ImportError: # py3
from html.parser import HTMLParser
from urllib.parse import urljoin
from queue import Empty, Queue as ThreadSharableQueue
import concurrent.futures
import requests
from .db import database, Database
from .unpack import top_level
from .log import logger
from .utils import Color, compare_version, cmp_to_key, binary_type
PYPI_URL = 'https://pypi.org'
PKG_URL = urljoin(PYPI_URL, '/pypi/{0}')
PKGS_URL = urljoin(PYPI_URL, '/simple/')
PKG_INFO_URL = urljoin(PYPI_URL, '/pypi/{0}/json')
ACCEPTABLE_EXT = ('.whl', '.egg', '.tar.gz', '.tar.bz2', '.zip')
def search_names(names, installed_pkgs):
"""Search package information by names(`import XXX`).
"""
dler = Downloader()
results = collections.defaultdict(list)
not_found = list()
for name in names:
logger.info('Searching package name for "{0}" ...'.format(name))
# If exists in local environment, do not check on the PyPI.
if name in installed_pkgs:
results[name].append(list(installed_pkgs[name]) + ['local'])
# Check information on the PyPI.
else:
rows = None
with database() as db:
rows = db.query_all(name)
if rows:
for row in rows:
version = dler.download_package(row.package).version()
results[name].append((row.package, version, 'PyPI'))
else:
not_found.append(name)
return results, not_found
def check_latest_version(package):
"""Check package latest version in PyPI."""
return Downloader().download_package(package).version()
def update_db():
"""Update database."""
print(Color.BLUE('Starting update database ...'))
print(Color.YELLOW('The process will take a long time!!!'))
logger.info('Crawling "{0}" ...'.format(PKGS_URL))
try:
updater = Updater()
except Exception:
logger.error("Fail to fetch all packages: ", exc_info=True)
print(Color.RED('Operation aborted'))
return
try:
updater.run()
updater.wait()
except (KeyboardInterrupt, SystemExit):
# FIXME(damnever): the fucking signal..
updater.cancel()
print(Color.BLUE('Operation canceled!'))
else:
print(Color.BLUE('Operation done!'))
class Updater(object):
_CPU_NUM = multiprocessing.cpu_count() # C*2+1? The bandwidth matters..
def __init__(self, proc_num=_CPU_NUM):
self._proc_num = proc_num
downloader = Downloader()
index = downloader.download_index()
downloader.close()
threads_total = self._proc_num * 6
if threads_total < 24:
threads_total = 24
self._threads_per_proc = threads_total // self._proc_num
# XXX(damnever): using the magic __new__???
self._thread_updater = None
if proc_num == 1:
pkg_names = ThreadSharableQueue()
_extract_pkg_names(index, pkg_names.put)
self._thread_updater = ThreadPoolUpdater(
pkg_names, threads_total)
else:
self._pkg_names = ProcessSharableQueue()
t = threading.Thread(
target=_extract_pkg_names,
args=(index, self._pkg_names.put)
)
t.daemon = True
t.start()
self._feed_thread = t
self._procs = []
with database():
pass
def run(self):
if self._thread_updater is not None:
self._thread_updater.run()
return
for _ in range(self._proc_num):
proc = multiprocessing.Process(
target=self._proc_main,
args=(self._pkg_names, self._threads_per_proc),
)
proc.daemon = True
proc.start()
self._procs.append(proc)
def wait(self):
if self._thread_updater is not None:
return self._thread_updater.wait()
self._feed_thread.join()
[proc.join() for proc in self._procs]
def cancel(self):
if self._thread_updater is not None:
return self._thread_updater.cancel()
[proc.terminate() for proc in self._procs]
[proc.join(timeout=1) for proc in self._procs]
def _proc_main(self, pkg_names, workernum):
tupdater = ThreadPoolUpdater(pkg_names, workernum)
tupdater.run()
tupdater.wait()
class ThreadPoolUpdater(object):
def __init__(self, pkg_names, workernum=24):
self._max_workers = workernum
self._pkg_names = pkg_names
self._futures = []
def run(self):
with concurrent.futures.ThreadPoolExecutor(
max_workers=self._max_workers) as executor:
# Incase of unexpected error happens.
for _ in range(self._max_workers*3):
future = executor.submit(self.extract_and_update)
self._futures.append(future)
def wait(self):
for future in concurrent.futures.as_completed(self._futures):
try:
error = future.exception()
except concurrent.futures.CancelledError:
break
if error is not None:
logger.error('Unexpected error: {}'.format(error))
def cancel(self):
for future in self._futures:
future.cancel()
def extract_and_update(self):
dler = Downloader()
db = Database()
try:
while 1:
try:
pkg_name = self._pkg_names.get(block=False)
logger.info('Processing package: %s', pkg_name)
pkg = dler.download_package(pkg_name)
top_levels = pkg.top_levels()
db.insert_package_with_imports(pkg_name, top_levels)
except (requests.RequestException, KeyError) as e:
logger.error(
('Maybe package "%s" is no longer available'
' or it is non-standard: %r'), pkg_name, e)
except Empty:
pass
except Exception:
logger.debug('Thread exited:', exc_info=True)
raise
finally:
dler.close()
db.close()
class Downloader(object):
_HEADERS = {
'Accept': '*/*',
'Accept-Encoding': 'gzip',
'Accept-Language': 'en-US,en;q=0.8,zh-CN;q=0.6,zh;q=0.4',
'User-Agent': ('Mozilla/5.0 (X11; Linux x86_64; rv:13.0) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/44.0.2403.157 Safari/537.36'),
}
def __init__(self):
self._session = requests.Session()
def download(self, url, try_decode=True):
# XXX(damnever): timeout?
resp = self._session.get(url, headers=self._HEADERS)
resp.raise_for_status()
data = resp.content
if 'gzip' == resp.headers.get('Content-Encoding'):
try:
with gzip.GzipFile(fileobj=io.BytesIO(data)) as gz:
data = gz.read()
except (OSError, IOError): # Not a gzip file
pass
if try_decode and isinstance(data, binary_type):
data = data.decode('utf-8')
return data
def download_index(self):
return self.download(PKGS_URL)
def download_package(self, name):
pkg_info = self.download(PKG_INFO_URL.format(name))
return Package(name, json.loads(pkg_info), self)
def close(self):
self._session.close()
class Package(object):
def __init__(self, name, pkg_info, downloader):
self._name = name
self._pkg_info = pkg_info
self._downloader = downloader
def version(self):
info = self._pkg_info
try:
latest = info['info'].get('version', None)
if latest is not None:
return latest
latest = sorted(info['releases'], key=cmp_to_key(compare_version))
latest = latest[-1]
return latest
except KeyError:
return 'unknown'
def top_levels(self):
# Extracting names which can be imported.
url = None
for item in self._pkg_info['urls']:
if item['filename'].endswith(ACCEPTABLE_EXT):
url = item['url']
break
if url is None:
return []
pkg = self._downloader.download(url, try_decode=False)
try:
return top_level(url, pkg)
except Exception:
return []
def _extract_pkg_names(html, put):
"""Extract data from html."""
class PackageNameParser(HTMLParser):
def handle_starttag(self, tag, attrs):
if tag == 'a':
attrs = dict(attrs)
if attrs.get('href', None):
name = attrs['href'].strip('/').split('/')[-1]
put(name)
PackageNameParser().feed(html)
| UTF-8 | Python | false | false | 9,396 | py | 2 | pypi.py | 1 | 0.561196 | 0.554704 | 0 | 296 | 30.743243 | 78 |
Rahulrajsr2714/simple-eccomerce-django-project | 14,302,241,104,838 | 6eb3393b9865346a8135531b0b5c247b2b85a272 | 5a90a0c641ae4bc215a9bf0769c5fac0eacb8426 | /customer/urls.py | f856e70e73bacd1f2c775067e52aac9cc104b2bf | []
| no_license | https://github.com/Rahulrajsr2714/simple-eccomerce-django-project | 8a1f3d6554815d5e90c381ff2c70d351791eee09 | 1785f2e7373f337fec188902e9fd54bdc798901e | refs/heads/master | 2022-12-09T21:53:15.072169 | 2020-09-12T18:29:56 | 2020-09-12T18:29:56 | 294,997,041 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.urls import path
from . import views
from django.views.generic import RedirectView
urlpatterns = [
path('', RedirectView.as_view(url='products')),
path('registercustomer', views.registercustomer, name='registercustomer'),
path('logout', views.logoutcustomer, name='logoutcustomer'),
path('logincustomer', views.logincustomer, name='logincustomer'),
path('products', views.homepage, name='products'),
path('addtocart', views.addproducttocart, name='addtocart'),
path('removefromcart', views.removeproductfromcart, name='removefromcart'),
path('viewcustomercart', views.viewcustomercart, name='viewcustomercart'),
path('removefromcartpage/<int:cart_item_id>',
views.removeproductcartpage, name='removeproductcartpage'),
path('checkoutcustomer', views.checkoutcustomer, name='checkoutcustomer'),
path('markpaymentsuccess', views.markpaymentsuccess, name='markpaymentsuccess'),
path('viewproduct/<int:product_id>',
views.viewproductdetails, name='viewproductdetails'),
]
| UTF-8 | Python | false | false | 1,047 | py | 9 | urls.py | 3 | 0.741165 | 0.741165 | 0 | 21 | 48.857143 | 84 |
IvanovVitalii/project_ssw | 15,152,644,666,626 | f3064cc2f05339b9ea8b3316f927f54980d8f616 | d0356e1bfb7c8bcbc8afdb80aa55c5ee66af9b4b | /project_ssw/alias/models.py | eeea15630591e09f47fdaf8f200d963ca921a611 | []
| no_license | https://github.com/IvanovVitalii/project_ssw | 7efd60f84090610170627d1912d0fea67ed97e5f | de69a5a8bca862581cd5b37db9e1154052dc3a44 | refs/heads/main | 2023-06-30T19:10:33.838705 | 2021-07-30T07:07:33 | 2021-07-30T07:07:33 | 381,144,656 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.db import models
class Alias(models.Model):
alias = models.CharField(max_length=24)
target = models.CharField(max_length=24)
start = models.DateTimeField()
end = models.DateTimeField(default=None, null=True)
| UTF-8 | Python | false | false | 238 | py | 10 | models.py | 8 | 0.726891 | 0.710084 | 0 | 8 | 28.75 | 55 |
cjacques01/portfolio | 1,005,022,371,983 | 909b80353e604352da8940f9c79c0100197a2cfd | 8cd560b3ee8bea9da35b46b8089c65ea6bf34886 | /blog/views.py | 7b1c054eb356a3542bde4c7576d2219b3daf55fd | []
| no_license | https://github.com/cjacques01/portfolio | d9d88289c62774ebecae3e0cd96df789ced1e2ee | 1b605820dcb57514489d799b44bdf685e41be745 | refs/heads/master | 2022-12-13T13:16:59.107759 | 2020-02-24T04:00:53 | 2020-02-24T04:00:53 | 242,603,810 | 0 | 0 | null | false | 2022-12-08T03:40:32 | 2020-02-23T22:49:55 | 2020-02-24T04:01:14 | 2022-12-08T03:40:32 | 12,069 | 0 | 0 | 2 | HTML | false | false | from django.shortcuts import render, get_object_or_404
from django.views import generic
from django.http import Http404
from . import models
from django.contrib import messages
# Create your views here.
class BlogList(generic.ListView):
paginate_by = 5
model=models.Blog
def detail(request, blog_id):
detailblog = get_object_or_404(models.Blog, pk=blog_id)
return render(request, 'blog/blog_detail.html', {'blog':detailblog})
| UTF-8 | Python | false | false | 447 | py | 12 | views.py | 4 | 0.749441 | 0.727069 | 0 | 17 | 25.294118 | 72 |
gungui98/INT3414---Reinforcement-Learning | 7,284,264,574,929 | 3c60c7e2a863700fd3ecc20d38b6870796b7b008 | 5c8f862e07409b06c00eef48d5ef25b8e86828c8 | /Tic-Tac-Toe/testAI.py | 166a3e82947912e46e0916acff4955b0b7481040 | [
"MIT"
]
| permissive | https://github.com/gungui98/INT3414---Reinforcement-Learning | fba4a87c6bbff47b3bc74188f187252ad52ddca4 | 38bce513bdac861c9f864ebeff8387e8fde2c96d | refs/heads/master | 2021-05-10T18:56:52.969638 | 2018-02-06T04:51:18 | 2018-02-06T04:51:18 | 118,138,998 | 0 | 2 | MIT | false | 2018-02-05T15:29:06 | 2018-01-19T15:01:03 | 2018-01-21T13:03:46 | 2018-02-05T15:29:05 | 745 | 0 | 2 | 0 | Python | false | null | from env4 import TicTacToeEnv as env
from AI import AI
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def csv_to_arr(file):
df=pd.read_csv(file,sep=',',header=None)
return(df.values)
env=env()
player1=AI(env,1)
player2=AI(env,2)
player1.q=csv_to_arr('data2.csv')
player2.q=csv_to_arr('data1.csv')
done=False
win=0
loss=0
draw=0
list1=[]
list2=[]
for i in range(10000):
env.reset()
player1.reset()
player2.reset()
done=False
reward=0
while (done==False):
reward,done=player1.nextState()
if (reward==1):
win=win+1
if (reward==-1):
loss=loss+1
if ((reward==0) & (done==True)):
draw=draw+1
list1=list1+[win-loss]
list2=list2+[i]
#env.show_board()
if (done):
break
reward,done=player2.nextState()
if ((reward==0) & (done==True)):
draw=draw+1
print('win=',win)
print('loss=',loss)
print('draw=',draw)
plt.plot(list2,list1)
plt.show() | UTF-8 | Python | false | false | 939 | py | 19 | testAI.py | 14 | 0.640043 | 0.599574 | 0 | 46 | 18.456522 | 41 |
nyucel/kriptografi | 9,182,640,119,544 | a9ec064bcb55b36178280f531ec3b54564b97f5a | 512d928c138008406733d48bdedc00bf006ed984 | /final/140401016/final.py | e739ece3cabe1bfddc16309cceccfbcedf95a3e4 | [
"Unlicense"
]
| permissive | https://github.com/nyucel/kriptografi | 4bb73ada2088777cd3df5656c6695daf045d9fc9 | 10325e745da5cc77bc9a80d94600fd9ff7c21ee5 | refs/heads/master | 2022-11-12T10:56:03.525223 | 2020-06-26T09:13:02 | 2020-06-26T09:13:02 | 255,692,683 | 9 | 54 | Unlicense | false | 2020-06-26T09:13:03 | 2020-04-14T18:30:27 | 2020-06-26T09:12:47 | 2020-06-26T09:13:03 | 217 | 6 | 30 | 0 | Python | false | false | import random
import time
def generate_bit(n):
p = random.getrandbits(n)
bin = format(p, 'b').zfill(n)
return bin
def and_bit(block1, block2):
res = ""
if len(block1) == len(block2):
for i in range(len(block1)):
res = res + str(int(block1[i]) & int(block2[i]))
return (res)
else:
print("AND Operation Failure!")
def or_bit(block1, block2):
res = ""
if len(block1) == len(block2):
for i in range(len(block1)):
res = res + str(int(block1[i]) | int(block2[i]))
return (res)
else:
print("OR Operation Failure!")
def xor_bit(block1, block2):
res = ""
if len(block1) == len(block2):
for i in range(len(block1)):
res = res + str(int(block1[i]) ^ int(block2[i]))
return (res)
else:
print("XOR Operation Failure!")
def not_bit(block):
mask = "11111111"
res = ""
if len(block) == len(mask):
for i in range(len(block)):
res = res + str(int(block[i]) ^ int(mask[i]))
return (res)
else:
print("NOT Operation Failure!")
def add_bit(block1, block2):
res = ""
add = 0
for i in range(len(block1)-1, -1, -1):
flag = int(block1[i]) + int(block2[i]) + add
if flag >= 2:
add = 1
res = res + str(flag % 2)
else:
add = 0
res = res + str(flag)
return ''.join(reversed(res))
def right_shift_bit(k, block):
k = int(k % (len(block) / 2))
block_list = []
for i in range(len(block)):
block_list.append(block[i])
for i in range(k):
for j in range(len(block)-1, 0, -1):
block_list[j] = block_list[j-1]
block_list[0] = 0
result_block = ""
for e in block_list:
result_block = result_block + str(e)
return result_block
def select_next_function(i, block1, block2, block3):
if i%4 == 0:
return or_bit(and_bit(block1, block2), and_bit(block1, not_bit(block3)))
elif i%4 == 1:
return xor_bit(xor_bit(block1, block2), block3)
elif i%4 == 2:
return or_bit(and_bit(not_bit(block1), block2), and_bit(block3, block2))
else:
return or_bit(or_bit(and_bit(block1,block2),and_bit(block1,block3)),and_bit(block2,block3))
def k_value(i):
K = ["10010011","11000010","11001100","01000100",
"01011010","00101001","01101001","10001110"]
return K[i%8]
def check_first_eight(unCheck):
if unCheck[0:8] == "00000000":
return True
return False
def hash(before_hash):
block1 = before_hash[0:8]
block2 = before_hash[8:16]
block3 = before_hash[16:24]
block4 = before_hash[24:32]
W = [block1, block2, block3, block4]
for i in range(32):
f_result = select_next_function(i,block1,block2,block3)
shifted_block1 = right_shift_bit(i+1,block1)
w = W[i%4]
k = k_value(i)
operated = add_bit(k,add_bit(w,add_bit(shifted_block1,add_bit(block4,f_result))))
block4 = block3
block3 = right_shift_bit(i+1,block2)
block2 = block1
block1 = operated
hashed = block1 + block2 + block3 + block4
return hashed
def final(filepath):
f = open(filepath, "r")
before_hash = f.read()
f.close()
return hash(before_hash)
def start_block_chain():
f = open("HASHSUM.txt", "w")
f.write("NO RASTGELE-SAYI ONCEKI-BLOK-OZETI")
f.close()
start_time = time.time()
for i in range(99):
if(time.time()-start_time > 600):
print("10DK süre sınırı aşıldı.")
break
filepath_read = "%.3d" % (i + 1)
hashed = final("%s.txt" % (filepath_read))
flag = False
while flag is False:
random = generate_bit(32)
before_hash = add_bit(random, hashed)
after_hash = hash(before_hash)
flag = check_first_eight(after_hash)
filepath_write = "%.3d" % (i + 2)
f = open("%s.txt" % (filepath_write), "w")
f.write(after_hash)
f.close()
f = open("HASHSUM.txt", "a")
hashSum = "\n%.3d %s %s" % (i + 2, random, hashed)
f.write(hashSum)
f.close()
start_block_chain()
| UTF-8 | Python | false | false | 4,399 | py | 64 | final.py | 54 | 0.525273 | 0.477687 | 0 | 147 | 27.863946 | 99 |
skiran252/quantizing_model_script | 10,385,230,934,508 | 971e28e32686bb5621fefb2d3402b48488200e79 | 119125857c9c594d51a14173a1c24e47a311085c | /transform.py | 7bd6f8a072d58f181465da84d54befccaa9d71ef | []
| no_license | https://github.com/skiran252/quantizing_model_script | 4a9d96aa76921b9404f2b5568c64405121862976 | 45447101c1adf47bc8f0189df1598cfd1be5073c | refs/heads/main | 2023-04-23T12:29:51.634669 | 2021-05-21T12:38:33 | 2021-05-21T12:38:33 | 369,531,148 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import torch
import numpy as np
from simpletransformers.model import TransformerModel
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import onnx
import onnxruntime
model = TransformerModel(
"roberta", "Roberta_evaluator_6", args=({"fp16": False}), num_labels=2,use_cuda=False
)
tokenizer = RobertaTokenizer.from_pretrained("Roberta_evaluator_6")
question = "who is the father of the nation?"
answer = "Mahatma Gandhi"
input_data = tokenizer(
text=question,
text_pair=answer,
padding="max_length",
max_length=512,
truncation=True,
return_tensors="pt",
)
torch.onnx.export(
model.model,
(input_data["input_ids"], input_data["attention_mask"]),
"roberta.onnx",
opset_version=11,
input_names=["input_ids", "attention_mask"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size", 1: "sentence_length"},
"output": {0: "batch_size"},
},
) | UTF-8 | Python | false | false | 955 | py | 4 | transform.py | 3 | 0.685864 | 0.672251 | 0 | 38 | 24.157895 | 89 |
Jimyfar/bbs | 11,458,972,769,699 | 2f22b4651b83ddfbfbecdc7b029c2109d39810ee | 71ba8b6ec24e905d9f70d92f95ef4295df9944fb | /routes/setting.py | 9e136719c5a74e41cfc5bfe05e3e5762bce385e3 | []
| no_license | https://github.com/Jimyfar/bbs | 688c5b6bc6461ffbc4f04a383806bf45860a2ca3 | 1389107c29dfb53bdbfeabd7338de3f74685deea | refs/heads/master | 2020-06-16T10:35:36.352525 | 2019-07-08T13:44:21 | 2019-07-08T13:44:21 | 195,542,261 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import os
import uuid
from flask import (
render_template,
request,
redirect,
url_for,
Blueprint,
)
from werkzeug.datastructures import FileStorage
import config
from models.user import User
from routes import current_user
from utils import log
main = Blueprint('setting', __name__)
@main.route('/')
def index():
print('running setting route')
u = current_user()
if u is None:
return redirect(url_for('.index'))
else:
return render_template(
'setting.html',
user=u,
alert_error=None,
alert_success=None,
)
@main.route('/update_username_and_signature', methods=['POST'])
def update_username_and_signature():
username = request.form.get('username', '')
signature = request.form.get('signature', '')
u = current_user()
if signature == '':
# 签名为空时使用默认签名
signature = config.default_signature
if not User.validate_name(username):
username = u.username
User.update(u.id, username=username, signature=signature)
return redirect(url_for(".index"))
@main.route('/update_password', methods=['POST'])
def update_password():
old_password = request.form.get('old_password', '')
new_password = request.form.get('new_password', '')
u = current_user()
form = dict(
username=u.username,
password=old_password,
)
# 用验证登录的方法判断用户原密码是否正确
if User.validate_login(form) is not None and User.validate_password(new_password):
User.update(u.id, password=User.salted_password(new_password))
return render_template(
'setting.html',
user=u,
alert_error=None,
alert_success='修改密码成功',
)
else:
return render_template(
'setting.html',
user=u,
alert_error="修改密码失败",
alert_success=None,
)
@main.route('/image/add', methods=['POST'])
def avatar_add():
file: FileStorage = request.files['avatar']
# file = request.files['avatar']
# filename = file.filename
# ../../root/.ssh/authorized_keys
# images/../../root/.ssh/authorized_keys
# filename = secure_filename(file.filename)
suffix = file.filename.split('.')[-1]
# filename = '{}.{}'.format(str(uuid.uuid4()), suffix)
filename = str(uuid.uuid4())
path = os.path.join('images', filename)
file.save(path)
u = current_user()
User.update(u.id, image='/images/{}'.format(filename))
return redirect(url_for('setting.index'))
| UTF-8 | Python | false | false | 2,636 | py | 17 | setting.py | 8 | 0.607759 | 0.606583 | 0 | 97 | 25.298969 | 86 |
alirahatmayo/PlayFaction | 893,353,248,243 | 4331f57f17b638853022bb41090da46a92e382d3 | 46f47e43a08cebde519b9efa97911b0fd8fdd241 | /account/api/serializers.py | e8eee8ef46c0284db7fa3d22ac37798ca445284d | []
| no_license | https://github.com/alirahatmayo/PlayFaction | 7615c2f1cb95aa921ed843df93273cda81e0bd82 | 433ceedef356339063306ce6faed4906b837b025 | refs/heads/master | 2020-04-21T14:34:03.945962 | 2019-02-20T17:39:56 | 2019-02-20T17:39:56 | 169,639,252 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from rest_framework import serializers
from transaction.api.serializers import TransactionSerializer
from account.models import Account
'''
Serializer -> converts into JSON
Serializer ->does Validations on data
'''
class AccountSerializer(serializers.ModelSerializer):
transfer_from = TransactionSerializer(many= True)
transfer_to = TransactionSerializer(many= True)
class Meta:
model = Account
fields = [
'id',
'account_title',
'balance',
'remarks',
'transfer_from',
'transfer_to'
]
read_only_fields = ['id']
# def after_transaction_balance(self, amount, sender, receiver):
# sender_person = Account.objects.filter(user_id=sender)
# sender_balance =
# sender_balance
# receiver_balance = Account.objects.filter(user_id=receiver)
| UTF-8 | Python | false | false | 887 | py | 38 | serializers.py | 38 | 0.639233 | 0.639233 | 0 | 34 | 25.058824 | 69 |
ossuchas/aplinechatbot | 11,106,785,461,141 | c5601513565507ed26df7c757ff6853c1a6adac1 | 4c408e04c630080f4a404ae7e37005b7881840cf | /models/chatbot_mst_user.py | aec8d910771b2577433cec929d43c4b8fb446c27 | []
| no_license | https://github.com/ossuchas/aplinechatbot | 9849560493a31a65ca1ab8438e001aed1b604e01 | a538aaaf6a029ddf5384defb8ab45fd8628a6115 | refs/heads/master | 2021-12-04T11:53:20.964858 | 2021-11-16T07:44:43 | 2021-11-16T07:44:43 | 217,653,051 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from db import db
from typing import List
from datetime import datetime
class MstUserModel(db.Model):
__tablename__ = "chatbot_mst_user"
user_id = db.Column(db.Integer, primary_key=True)
user_token_Id = db.Column(db.String(255))
user_name = db.Column(db.String(255))
user_full_name = db.Column(db.String(255))
user_type = db.Column(db.String(10))
user_position = db.Column(db.String(100))
user_sub_no = db.Column(db.String(10))
user_emp_id = db.Column(db.String(50))
user_empcode = db.Column(db.String(50))
user_status = db.Column(db.String(2))
createby = db.Column(db.String(20))
createdate = db.Column(db.DateTime)
modifyby = db.Column(db.String(20))
modifydate = db.Column(db.DateTime)
@classmethod
def find_by_id(cls, _user_id: int) -> "MstUserModel":
return cls.query.filter_by(user_id=_user_id).first()
@classmethod
def find_by_empcode(cls, _user_empcode: str) -> "MstUserModel":
return cls.query.filter_by(user_empcode=_user_empcode).first()
@classmethod
def find_by_token_id(cls, _user_token_id: str) -> "MstUserModel":
return cls.query.filter_by(user_token_Id=_user_token_id).first()
@classmethod
def check_auth_by_token_id(cls, _user_token_id: int) -> "MstUserModel":
return cls.query.filter_by(user_token_Id=_user_token_id, user_status='A').first()
@classmethod
def check_VIP_auth_by_token_id(cls, _user_token_id: int) -> "MstUserModel":
return cls.query.filter_by(user_token_Id=_user_token_id, user_status='A', user_type='VIP').first()
@classmethod
def check_VIP2_auth_by_token_id(cls, _user_token_id: int) -> "MstUserModel":
return cls.query.filter_by(user_token_Id=_user_token_id, user_status='A', user_type='VIP2').first()
@classmethod
def check_clevel_auth_by_token_id(cls, _user_token_id: int) -> "MstUserModel":
return cls.query.filter(cls.user_token_Id == _user_token_id,
cls.user_status == 'A',
cls.user_type.like('VIP%')).first()
@classmethod
def find_user_listrole(cls) -> List["MstUserModel"]:
return cls.query.filter(cls.user_status == 'A',
cls.user_position.notin_(('C Level', 'MD', 'CEO', 'FI', 'Head Off'))).all()
def save_to_db(self) -> None:
db.session.add(self)
db.session.commit()
def delete_from_db(self) -> None:
db.session.delete(self)
db.session.commit()
| UTF-8 | Python | false | false | 2,592 | py | 81 | chatbot_mst_user.py | 76 | 0.60841 | 0.597994 | 0 | 65 | 37.876923 | 107 |
AVS18/beta23_techbuddies | 15,736,760,209,468 | 4854550496080fb3f0220f18910780accdfb6e76 | 073eaa4971acf86a43a29aa6461175129af89d17 | /base/urls.py | edba34121e6346f9dcb342b81213cba68d227bcb | []
| no_license | https://github.com/AVS18/beta23_techbuddies | 55db9ea9918999cbb6eda83e7d4817980d27a34f | 53cfc14f37d31032c849dd87ef740bc4200b317f | refs/heads/master | 2023-01-11T06:35:15.379907 | 2020-11-19T10:20:53 | 2020-11-19T10:20:53 | 308,706,302 | 0 | 0 | null | false | 2020-11-02T19:55:21 | 2020-10-30T17:58:10 | 2020-11-02T19:51:28 | 2020-11-02T19:52:05 | 1,146 | 0 | 0 | 0 | JavaScript | false | false | from django.contrib import admin
from django.urls import path, include
from . import views
urlpatterns = [
path('',views.home,name="home"),
path('contact',views.contact,name="contact"),
path('login',views.login,name="login"),
path('register',views.register,name="register"),
path('logout',views.logout,name="logout"),
path('dashboard',views.dashboard,name="dashboard"),
path('profile',views.profile,name="profile"),
path('display',views.display,name="display"),
path('plasma_contact/<str:other>',views.plasma_contact,name="plasma_contact"),
path('displayContact',views.displayContact,name="displayContact"),
path('statusUpdate/<str:id>/<str:status>',views.statusUpdate,name="statusUpdate"),
path('filter',views.filter,name="filter")
]
| UTF-8 | Python | false | false | 783 | py | 20 | urls.py | 13 | 0.706258 | 0.706258 | 0 | 17 | 45.058824 | 86 |
an10nimus/MyCodeForces | 3,547,643,006,353 | 66c80b2874f791c51bec2f8e9a8f34791dc3b451 | 41d52e12d62e1935317e87e03639fdfdd5008419 | /Round_640_Div_4/G/G.py | f840e35236cda49d6b73864076a27c1282c5e28b | [
"MIT"
]
| permissive | https://github.com/an10nimus/MyCodeForces | f971718cbc393f812e7c45e4a1b6f558d8019c8b | aef134222fe3218d28de308e7ef8a57d40b69179 | refs/heads/master | 2022-11-13T07:35:10.907765 | 2020-06-25T16:59:30 | 2020-06-25T16:59:30 | 264,267,763 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | PATTERN = {
0: [1, 4, 2, 5, 3],
1: [1, 4, 2, 6, 3, 5],
2: [1, 4, 2, 6, 3, 7, 5],
3: [1, 5, 2, 6, 3, 7, 4, 8],
4: [1, 4, 2, 5, 3, 7, 9, 6, 8]
}
def solve(n):
if n < 4:
ans = -1
elif n == 4:
ans = [2, 4, 1, 3]
else:
ans = []
common = (n // 5) - 1
mod = n%5
for jj in range(common):
ans += [jj*5 + k for k in PATTERN[0]]
ans += [(common)*5 + k for k in PATTERN[mod]]
return ans
def output(arr):
if isinstance(arr, list):
print(' '.join(str(k) for k in arr))
else:
print(arr)
t = int(input())
for ___ in range(t):
n = int(input())
ans = solve(n)
output(ans)
| UTF-8 | Python | false | false | 705 | py | 32 | G.py | 26 | 0.404255 | 0.329078 | 0 | 33 | 20.333333 | 53 |
AlexGrasley/Web-Movie-Database | 19,610,820,709,237 | 8935b63eba80addd95206b059c4be9ee92781b5a | 0733eb7f9128194cdc41dfa7778a8ec4834425a9 | /backend/migrations/migrate.py | 4e897416d38604a3437ce168ee0fab90c38be29a | []
| no_license | https://github.com/AlexGrasley/Web-Movie-Database | cdebe3372c05f7e4c23b5a60ee1fb98595b320d0 | 1ec176298a20d4e1d54a32f0e24e4247b605a9ad | refs/heads/master | 2022-03-18T02:44:54.599465 | 2019-12-05T03:41:26 | 2019-12-05T03:41:26 | 211,689,620 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import mysql.connector as mariadb
import sys
import os
from enum import Enum
import time
up_end = ".up.sql"
down_end = ".down.sql"
# Order matters here
migrations = [
"theaters",
"rooms",
"movies",
"customers",
"showings",
"tickets",
]
def get_args():
up_or_down = sys.argv[1]
if up_or_down not in ["up", "down", "loop", "data"]:
print("You must migrate up or down. (or `loop` for both)", file=sys.stderr)
sys.exit(2)
return up_or_down
def connect():
mariadb_connection = mariadb.connect(
user=os.environ['MOVIE_USER'], password=os.environ['MOVIE_PASS'], database=os.environ['MOVIE_DB'])
return mariadb_connection
def load_queries(migrations, use_up: bool, multi=False):
queries = []
for name in migrations:
name = f"./{name}{up_end if use_up else down_end}"
file = open(name, "r")
text = file.readlines()
data = ""
if multi:
for line in text:
queries.append(line.rstrip())
else:
for line in text:
data += line
queries.append(data)
return queries
def up(conn):
queries = load_queries(migrations, True)
run_queries(conn, queries)
def down(conn):
queries = load_queries(migrations, False)
queries = queries[::-1]
run_queries(conn, queries)
def dummy_data(conn):
queries = load_queries(["data"], True, True)
run_queries(conn, queries)
def run_queries(conn, queries):
for query in queries:
print(query)
try:
conn.execute(query)
except Exception as e:
print("Error executing query:", query, e, file=sys.stderr)
def main():
up_or_down = get_args()
connection = connect()
cursor = connection.cursor(buffered=True)
if up_or_down == "up":
print("Going Up!")
up(cursor)
elif up_or_down == "down":
print("Going Down!")
down(cursor)
elif up_or_down == "loop":
print("You may now begin the push-up section.")
print("Down")
down(cursor)
print("Up")
up(cursor)
elif up_or_down == "data":
print("Going Dumb!")
dummy_data(cursor)
else:
raise ValueError("Unreachable code reached.")
if __name__ == "__main__":
main()
| UTF-8 | Python | false | false | 2,331 | py | 39 | migrate.py | 34 | 0.573145 | 0.571858 | 0 | 105 | 21.2 | 106 |
oshadmon/foglamp-south-wind-sensors | 2,680,059,626,990 | b99b7a24bf512cf17f9f980552f2dd8505115793 | 1a85fa9c101e45262df385695e97727ab0fbe01a | /python/foglamp/plugins/south/wind_sensors/ina219.py | 52c4fe06f4ad433a1cb15106f0f1fae9be53d551 | [
"Apache-2.0"
]
| permissive | https://github.com/oshadmon/foglamp-south-wind-sensors | 2a69d95a2c4061012ba4009d2322068ebd82e800 | eb89096facd1f4ae7fee12b998b4f7193efabdeb | refs/heads/master | 2020-04-10T19:12:46.689142 | 2018-12-17T18:38:37 | 2018-12-17T18:38:37 | 161,227,106 | 0 | 0 | null | false | 2018-12-10T20:06:31 | 2018-12-10T19:38:11 | 2018-12-10T20:04:39 | 2018-12-10T20:06:30 | 0 | 0 | 0 | 0 | Python | false | null | # Based on - https://github.com/adafruit/Adafruit_CircuitPython_INA219/blob/master/adafruit_ina219.py
from pyftdi.i2c import I2cController, I2cNackError, I2cPort
try:
import struct
except ImportError:
import ustruct as struct
#pylint: disable=bad-whitespace
# Internal constants:
_INA219_DEFAULT_ADDRESS = 0x44
_REG_CONFIG = 0x00
_REG_SHUNTVOLTAGE = 0x01
_REG_BUSVOLTAGE = 0x02
_REG_POWER = 0x03
_REG_CURRENT = 0x04
_REG_CALIBRATION = 0x05
_CONFIG_BVOLTAGERANGE_32V = 0x2000
_CONFIG_SADCRES_12BIT_1S_532US = 0x0018
_CONFIG_GAIN_8_320MV = 0x1800
_CONFIG_BADCRES_12BIT = 0x0400
_CONFIG_MODE_SANDBVOLT_CONTINUOUS = 0x0007
"""
=== _to_signed function ===
"""
def _to_signed(num:int=0)->int:
if num > 0x7FFF:
num -= 0x10000
return num
class INA219:
def __init__(self, i2c):
self.slave=self.__i2c_slave_port(i2c)
self.i2c_addr =_INA219_DEFAULT_ADDRESS
# Multiplier in mA used to determine current from raw reading
self._current_lsb = 0
# Multiplier in W used to determine power from raw reading
self._power_lsb = 0
# Set chip to known config values to start
self._cal_value = 4096
# call set_calibration_32V_2A
self.set_calibration_32V_2A()
def __i2c_slave_port(self, i2c:I2cController=None)->I2cPort:
"""
Get slave port
:args:
i2c:pyftdi.i2c.I2cController - I2C controller object
:param:
slave:pyftdi.i2c.I2cPort -
:return:
slave port object
"""
try:
slave = i2c.get_port(_INA219_DEFAULT_ADDRESS)
except:
print('Unable to get Port for %s' %_INA219_DEFAULT_ADDRESS)
exit(1)
return slave
def _write_register(self, reg:int=0x00, value:int=0):
"""
Write to register
:args:
reg:int - register to write to
value:int - value to write to register
:param:
seq:bytearray - bytearry of value
"""
seq = bytearray([(value >> 8) & 0xFF, value & 0xFF])
self.slave.write_to(reg, seq)
def _read_register(self, reg:int=0x00)->int:
"""
Read from register
:args:
reg:int - register to read from
:param:
buff : - raw result from read
:return:
result from read
"""
buf = self.slave.read_from(reg, 3)
return (buf[0] << 8) | (buf[1])
def set_calibration_32V_2A(self):
"""
Configures to INA219 to be able to measure up to 32V and 2A of current.
Counter overflow occurs at 3.2A.
"""
# By default we use a pretty huge range for the input voltage,
# which probably isn't the most appropriate choice for system
# that don't use a lot of power. But all of the calculations
# are shown below if you want to change the settings. You will
# also need to change any relevant register settings, such as
# setting the VBUS_MAX to 16V instead of 32V, etc.
# VBUS_MAX = 32V (Assumes 32V, can also be set to 16V)
# VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be 0.16, 0.08, 0.04)
# RSHUNT = 0.1 (Resistor value in ohms)
# 1. Determine max possible current
# MaxPossible_I = VSHUNT_MAX / RSHUNT
# MaxPossible_I = 3.2A
# 2. Determine max expected current
# MaxExpected_I = 2.0A
# 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
# MinimumLSB = MaxExpected_I/32767
# MinimumLSB = 0.000061 (61uA per bit)
# MaximumLSB = MaxExpected_I/4096
# MaximumLSB = 0,000488 (488uA per bit)
# 4. Choose an LSB between the min and max values
# (Preferrably a roundish number close to MinLSB)
# CurrentLSB = 0.0001 (100uA per bit)
self._current_lsb = .1 # Current LSB = 100uA per bit
# 5. Compute the calibration register
# Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
# Cal = 4096 (0x1000)
self._cal_value = 4096
# 6. Calculate the power LSB
# PowerLSB = 20 * CurrentLSB
# PowerLSB = 0.002 (2mW per bit)
self._power_lsb = .002 # Power LSB = 2mW per bit
# 7. Compute the maximum current and shunt voltage values before overflow
#
# Max_Current = Current_LSB * 32767
# Max_Current = 3.2767A before overflow
#
# If Max_Current > Max_Possible_I then
# Max_Current_Before_Overflow = MaxPossible_I
# Else
# Max_Current_Before_Overflow = Max_Current
# End If
#
# Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
# Max_ShuntVoltage = 0.32V
#
# If Max_ShuntVoltage >= VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Else
# Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
# End If
# 8. Compute the Maximum Power
# MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
# MaximumPower = 3.2 * 32V
# MaximumPower = 102.4W
# Set Calibration register to 'Cal' calculated above
self._write_register(_REG_CALIBRATION, self._cal_value)
# Set Config register to take into account the settings above
config = _CONFIG_BVOLTAGERANGE_32V | \
_CONFIG_GAIN_8_320MV | \
_CONFIG_BADCRES_12BIT | \
_CONFIG_SADCRES_12BIT_1S_532US | \
_CONFIG_MODE_SANDBVOLT_CONTINUOUS
self._write_register(_REG_CONFIG, config)
def shunt_voltage(self):
"""
The shunt voltage (between V+ and V-) in Volts (so +-.327V)
:param:
raw_shunt_voltage:int - raw shunt voltage returnd
shunt_voltage_mv:int - shunt voltage
:return:
shunt voltage in least signficant bit is 10uV which is 0.00001 volts
"""
raw_shunt_voltage = self._read_register(_REG_SHUNTVOLTAGE)
shunt_voltage_mv = _to_signed(raw_shunt_voltage)
return shunt_voltage_mv * 0.00001
def bus_voltage(self):
"""
The bus voltage (between V- and GND) in Volts
:param:
raw_voltage:int - raw bus voltage
voltage_mv:int - bus voltage
:return:
bus voltage signficant bit is 4mV
"""
raw_voltage=self._read_register(_REG_BUSVOLTAGE)
voltage_mv = _to_signed(raw_voltage)
return voltage_mv * 0.001
def current_value(self):
"""
current through the shunt resistor in milliamps
:param:
raw_current;int raw current
:return:
current in milliamps
"""
self._write_register(_REG_CALIBRATION, self._cal_value)
raw_current=self._read_register(_REG_CURRENT)
raw_current=_to_signed(raw_current)
return raw_current * self._current_lsb
if __name__ == '__main__':
i2c=I2cController()
i2c.set_retry_count(1)
i2c.configure('ftdi://ftdi:232h:FT2BZGR5/')
gd=INA219(i2c)
print("Bus Voltage: {} V".format(gd.bus_voltage()))
print("Shunt Voltage: {} mV".format(gd.shunt_voltage() / 1000))
print("Current: {} mA".format(gd.current_value()))
| UTF-8 | Python | false | false | 7,353 | py | 4 | ina219.py | 2 | 0.586563 | 0.540868 | 0 | 217 | 32.884793 | 101 |
rjwen2045458/UoE_CPSLP | 18,502,719,131,186 | 60f800b0ff527818a283388f669fb53a558fea04 | 4d59e2b420e44d4524002a9dc0a33dbafadfbc69 | /CPSLP4.12/wordfreq.py | 95b8910194bdfa800bd2642aaf5845092db42f2a | []
| no_license | https://github.com/rjwen2045458/UoE_CPSLP | e458dab42333b3fdd9322900457763c71af1f8d2 | 220fe3bf8ec35ec800c383129a5e9d97c75298d3 | refs/heads/master | 2023-02-21T04:30:22.781613 | 2021-01-28T17:24:06 | 2021-01-28T17:24:06 | 333,824,813 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | def get_word_frequencies(filename):
# Empty dictionary for word frequencies
freqs = {}
# Read in the file
with open(filename, 'r') as f:
for line in f:
for word in line.split():
if word in freqs:
freqs[word] += 1
else:
freqs[word] = 1
return freqs | UTF-8 | Python | false | false | 342 | py | 26 | wordfreq.py | 18 | 0.51462 | 0.508772 | 0 | 13 | 25.384615 | 43 |
Pupation/GalaxyGallery | 17,703,855,228,937 | da294adc83fbaec4f7b4ba5c0db05bca163061b1 | be63aab08119daa41bb0cd18121e2b2ea8815131 | /core/misc/chatbox/__init__.py | 68795ecbb48d09d94bf63ea65b438dba30d125a1 | []
| no_license | https://github.com/Pupation/GalaxyGallery | 034f3742dd0e4609846f6a62983b33b234291ecd | 109e0916983fe1e1eb21ac7f46d74c0955869663 | refs/heads/master | 2023-08-26T05:52:19.924253 | 2021-11-15T01:53:48 | 2021-11-15T01:53:48 | 415,851,807 | 3 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
from fastapi import APIRouter
chatbox_router = APIRouter(
prefix='/chatbox',
tags=['chat']
)
from .chatbox import *
| UTF-8 | Python | false | false | 128 | py | 70 | __init__.py | 66 | 0.671875 | 0.671875 | 0 | 9 | 13.111111 | 29 |
abiraja2004/tw | 6,021,544,197,634 | d5b7e5f5f102e85498ed51c8d33e40f268a3ba9f | 97e3e5747bd786e04616a3ffd49e12742c0688be | /frontend/gnip/pipeline.py | 5414c29949d6c89d1b576adcec46c05a154dad88 | [
"Apache-2.0"
]
| permissive | https://github.com/abiraja2004/tw | 26dc3692392f9b1b94ae06ddff70bec0f92ac21a | 7c82278dce578dd73fb6fa465aed8585af224445 | refs/heads/master | 2020-03-08T09:39:04.428444 | 2016-01-28T02:28:54 | 2016-01-28T02:28:54 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from utils import MyThread
from Queue import Queue, Empty
from pprint import pprint
import traceback
class Pipeline(object):
class Stage(object):
def processItem(self, item):
return item
class DummyTimedStage(object):
def __init__(self, t):
self.t=t
def processItem(self, item):
time.sleep(self.t)
return item
class StageThread(MyThread):
def __init__(self, stage, queues):
MyThread.__init__(self)
self.stage = stage
self.source_queue = queues[0]
self.next_queue = queues[1]
self.errors_queue = queues[2]
self.finish_flag = False
stage.items_processed = 0
def stopWorking(self):
self.source_queue.join()
self.finish_flag = True
def run(self):
while not self.finish_flag:
try:
item = self.source_queue.get(True, 1)
try:
item = self.stage.processItem(item)
except Exception, e:
error_string = traceback.format_exc()
self.errors_queue.put({"item": item, "error": error_string, "stage": self.__class__.__name__})
item = None
pprint(error_string)
self.stage.items_processed += 1
self.source_queue.task_done()
if item: self.next_queue.put(item)
except Empty, e:
pass
def __init__(self):
self.source_queue = Queue()
self.output_queue = self.source_queue
self.errors_queue = Queue()
self.stages = []
self.stage_queues = {}
self.stage_threads = {}
def getSourceQueue(self):
return self.source_queue
def appendStage(self, stage):
self.stages.append(stage)
if len(self.stages) > 1: #no es el primer stage
self.stage_queues[stage] = (self.stage_queues[self.stages[-2]][1], Queue(), self.errors_queue)
else:
self.stage_queues[stage] = (self.source_queue, Queue(), self.errors_queue)
self.output_queue = self.stage_queues[stage][1]
self.stage_threads[stage] = Pipeline.StageThread(stage, self.stage_queues[stage])
self.stage_threads[stage].setName(stage.__class__.__name__)
def startWorking(self):
for stage in self.stages:
self.stage_threads[stage].start()
def stopWorking(self):
for stage in self.stages:
if self.stage_threads[stage].isAlive():
self.stage_threads[stage].stopWorking()
self.stage_threads[stage].join()
"""
def join(self):
self.source_queue.join()
for stage in self.stages:
self.stage_queues[stage][1].join()
"""
def getStats(self):
res = {}
res['Stage Count'] = len(self.stages)
res['Errors Queue Count'] = self.errors_queue.qsize()
res['Stages'] = []
for stage in self.stages:
d = {}
d['Stage Class'] = stage.__class__.__name__
d['Items Processed'] = stage.items_processed
d['Source Queue count'] = self.stage_queues[stage][0].qsize()
d['Output Queue count'] = self.stage_queues[stage][1].qsize()
res['Stages'].append(d)
res['Output Queue Size'] = self.output_queue.qsize()
return res
| UTF-8 | Python | false | false | 3,619 | py | 88 | pipeline.py | 53 | 0.520586 | 0.516994 | 0 | 104 | 33.798077 | 118 |
filipedc82/tddfirst | 3,985,729,676,268 | 1f4826ac8571b78923c14f016b8b1da48f0556c8 | d722d0936bf821ec1580dcf0e1a99ff6f7c17a54 | /products/urls.py | 252a72019d3e65d7b6336d6f82b5e74a8025fe9f | []
| no_license | https://github.com/filipedc82/tddfirst | 5088981168c1c73aa2e0a4386283fefd73f7c1bf | badcd5e9b8dcb327903d75c2d5a20587226123f0 | refs/heads/master | 2016-09-09T20:30:08.900676 | 2015-05-07T17:03:25 | 2015-05-07T17:03:25 | 31,426,859 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | __author__ = 'Filipe'
from django.conf.urls import patterns, include, url
# from django import views
from .views import home_page, ProductListView
urlpatterns = patterns('',
# Examples:
url(r'^$', ProductListView.as_view(), name='product_list'),
)
| UTF-8 | Python | false | false | 274 | py | 33 | urls.py | 17 | 0.656934 | 0.656934 | 0 | 11 | 22.909091 | 63 |
marcospsviana/sysweb-venda-stoq | 13,984,413,552,867 | d29f7ba1283b9b547cfc0e94ee04810201fa002b | 9af423160aee10041045100abde5e66a78304137 | /sistema/sysweb.py | 1bddd8cf70ac17dd58c6242b70356cdecc55582c | []
| no_license | https://github.com/marcospsviana/sysweb-venda-stoq | e93c872608a18fe2f6eed69914c14d5d6a550110 | adc02f3560c54b7beaf88a2f1b30a055243f5c07 | refs/heads/master | 2018-11-13T03:17:12.806793 | 2018-10-23T13:20:52 | 2018-10-23T13:20:52 | 145,180,161 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_migrate import Migrate, MigrateCommand
from flask_script import Manager
app = Flask('sistema')
db = SQLAlchemy(app)
manager = Manager(app)
manager.add_command('db', MigrateCommand)
app.config.from_pyfile('config.py')
migrate = Migrate(app, db)
from views import *
if __name__ == '__main__':
manager.run()
| UTF-8 | Python | false | false | 390 | py | 15 | sysweb.py | 6 | 0.735897 | 0.735897 | 0 | 18 | 20.611111 | 49 |
Sweenpet/mic-tac-toe | 14,688,788,165,777 | b4fa0e567b6e2a0467b3bd907f0b3af994853048 | b242ae576323f4d4c0cb954afd3d64e3b35065ad | /mic_tac_toe/resource_locators/content_type.py | 9882ff44e2773e98de2b671b17f4092526e8e37e | []
| no_license | https://github.com/Sweenpet/mic-tac-toe | 4c85e8ff1661eeff1f4d0860c411d9b898297600 | a225ea3f8ce570b59c1315b2c9a3d4e2a3d70bd8 | refs/heads/master | 2020-03-27T21:14:15.763763 | 2018-10-28T21:21:43 | 2018-10-28T21:21:43 | 147,127,005 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from enum import Enum
class ContentType(Enum):
"""Document type, XLS, PDF, etc"""
XLSX = 1
| UTF-8 | Python | false | false | 102 | py | 26 | content_type.py | 21 | 0.627451 | 0.617647 | 0 | 6 | 15.833333 | 38 |
lijinlongweb/index.py | 11,081,015,646,356 | 167b3cc8aad8d3ee1cac37840049df24d37d1af2 | 8d0456a86ec21bcdcff899ef947b2172d627f318 | /indexpy/__init__.py | 6cb0c71af7c8c63056d3d5e13557dce6677ca756 | [
"Apache-2.0"
]
| permissive | https://github.com/lijinlongweb/index.py | 6443a2fd5756248ac7ade312936e495c703c60f7 | 819daf95a6432eac9c037b32234ba0105c80378e | refs/heads/master | 2022-04-21T21:30:35.294680 | 2020-04-25T06:59:36 | 2020-04-25T06:59:36 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import sys
import logging
import importlib
from .utils import State
from .applications import Index
from .config import here, Config
__all__ = ["logger", "Index", "Config"]
app = Index()
logger = logging.getLogger("indexpy")
# global state
g = State()
sys.path.insert(0, here)
# loading preset functions
importlib.import_module("indexpy.preset")
| UTF-8 | Python | false | false | 350 | py | 62 | __init__.py | 44 | 0.737143 | 0.734286 | 0 | 18 | 18.444444 | 41 |
ddasilva/attendance | 8,873,402,458,214 | ac05d6006133aa35081c95f41b65ecfaa8ae7346 | 8ebd4566eade160fa9d6a7edce62eeda287bea3d | /tests.py | 803a5350a1e580f661cd4ff0f2a6da92dd2f4534 | []
| no_license | https://github.com/ddasilva/attendance | 2e664f87027b9fa51ca69e0b9608932c0bf2b347 | d4d41e3b13d4d98fc833d3b22a2e51c5e4e699df | refs/heads/master | 2020-03-27T11:21:51.044076 | 2018-08-28T17:25:39 | 2018-08-28T17:25:39 | 146,481,811 | 1 | 0 | null | true | 2018-08-28T17:20:30 | 2018-08-28T17:20:30 | 2018-08-28T13:36:31 | 2018-08-28T13:36:30 | 0 | 0 | 0 | 0 | null | false | null | #!/usr/bin/env python3
import os
import re
import unittest
class ReadmeTests(unittest.TestCase):
"""Unit tests for README.md"""
def test_readme_file_exists(self):
self.assertTrue(os.path.exists('README.md'))
def test_readme_matches_regexp(self):
with open('README.md') as fh:
contents = fh.read()
self.assertTrue(
re.match(
'(.*)It has been \d+ day(s?) since I missed a class(.*)',
contents
)
)
if __name__ == '__main__':
unittest.main()
| UTF-8 | Python | false | false | 574 | py | 2 | tests.py | 1 | 0.533101 | 0.531359 | 0 | 27 | 20.259259 | 73 |
avman44/final-project-stepik-selenium-python | 6,768,868,492,222 | 07adf55a9756e58d292ed7155040b520b4183e21 | 03adbc8014d33fbb4fef158e9daa0d6383e5235b | /pages/basket_page.py | a94ded1af89d0afea8e99067e7bc11f90b5b25be | []
| no_license | https://github.com/avman44/final-project-stepik-selenium-python | 6b66bfd619b2af452ed2a6264c9f15336b143eb9 | e0eb7384ec184ec61b0318aec0a8851cf0baf014 | refs/heads/master | 2023-03-20T03:59:51.237161 | 2021-03-11T15:25:02 | 2021-03-11T15:25:02 | 342,881,524 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from .base_page import BasePage
from .locators import BasketPageLocators
class BasketPage(BasePage):
def should_be_empty_basket(self):
self.should_be_no_items_in_basket()
self.should_be_message_about_basket_is_empty()
def should_be_no_items_in_basket(self):
assert self.is_not_element_present(*BasketPageLocators.BASKET_ITEMS), \
"There is an item in the basket, but should not be"
def should_be_message_about_basket_is_empty(self):
assert self.is_element_present(*BasketPageLocators.BASKET_IS_EMPTY_MESSAGE), \
"Missing message \"basket is empty\""
| UTF-8 | Python | false | false | 621 | py | 6 | basket_page.py | 4 | 0.695652 | 0.695652 | 0 | 15 | 40.4 | 86 |
danhaus/quadcopter-autopilot | 1,778,116,473,708 | de25c2d6ed8f44482dcf5443d9fbcecd03d836bc | 3efbfb5ab2968909c4fde860487d7b75f5d24659 | /src/hyper_propelled_cow/scripts/controller_simple | 7a4ba8283c767881962b441edcc709ca709c646d | []
| no_license | https://github.com/danhaus/quadcopter-autopilot | 83d3ec5e05d1d1c81bfdc1d593452ba53708e0f6 | 5a096ffbb073fad67673886209cf0574a58cbbb3 | refs/heads/master | 2021-03-22T00:57:15.914707 | 2018-08-07T22:37:15 | 2018-08-07T22:37:15 | 119,521,702 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
import rospy
import time
from std_msgs.msg import Int16, Int32
import propelled_cow.PID_control as _PID
class Controller(object):
"""docstring for Controller"""
def __init__(self):
self.distance_demand = rospy.get_param('distance_treshold')
self.PID_vals = rospy.get_param('distance')
self.controller = _PID.PID(self.PID_vals['Kp'], self.PID_vals['Ki'], self.PID_vals['Kd'], 2, 0) # THE LAST TWO VALUES NEEDS TO BE ADJUSTED
self.throttle_pub = rospy.Publisher('PWM_throttle', Int16, queue_size=2)
self.servo_pub = rospy.Publisher('servo_angle', Int16, queue_size=10)
rospy.init_node('controller', anonymous=True)
self.PWM_limits = rospy.get_param('PWM')
self.PWM_current = self.PWM_limits['min']
# Start countdown.
i = 10
rospy.logwarn("Take off counter started.")
while (i > 0):
rospy.logwarn("Countdown: " + str(i))
time.sleep(1)
i = i - 1
rospy.logwarn("Launched.")
self.start = time.time()
rospy.Subscriber('distance_fused', Int16, self.main_control)
rospy.spin() # IT MIGHT NOT NEED TO BE HERE
def main_control(self, data):
self.distance = data.data
err = self.distance_demand - self.distance
PWM_correction = -self.controller.update_PID(err)
PWM_raw = self.PWM_current + PWM_correction
self.PWM_current = _PID.saturation(PWM_raw, self.PWM_limits['min'], self.PWM_limits['max'])
self.throttle_pub.publish(self.PWM_current)
# drop the bean bag if the drone is higher than 700 mm and the autopilot runs for at lest 10 secs
if (self.distance >= (self.distance_demand - 100 )): # if the drone is higher than 800 - 100 mm
now = time.time()
if (now - self.start > 10): # if the drone is in the air for more than 10 secs
self.servo_pub.publish(170)
if __name__ == '__main__':
controller = Controller()
| UTF-8 | Python | false | false | 1,804 | 47 | controller_simple | 27 | 0.689024 | 0.666297 | 0 | 52 | 33.692308 | 140 |
|
ggonzaleze/Programming101 | 14,328,010,936,144 | a91d37423b018b260c7a919558e993d2ce289a09 | ddf709da01a4a4f53e547de9671c159d06385250 | /MaxInList.py | cc5bfd7757fcb631865b17b1555ab3f57d7f0e2d | []
| no_license | https://github.com/ggonzaleze/Programming101 | 53ef2bb76af181d3193f10222c472198279623e8 | 025de1ccd278aabf71deb1a22135c208304bcb69 | refs/heads/master | 2021-05-14T23:44:01.939521 | 2017-12-06T04:30:07 | 2017-12-06T04:30:07 | 104,280,422 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from functools import reduce
def max_in_list(numbers):
return reduce(lambda x,y : x if x > y or x == y else y , numbers)
numbers = [-5,10,6,0]
print("The maximum number is: ",max_in_list(numbers))
| UTF-8 | Python | false | false | 210 | py | 59 | MaxInList.py | 56 | 0.647619 | 0.62381 | 0 | 7 | 28 | 69 |
umedoblock/fugou | 13,993,003,452,044 | 3b584d902a186169b2ea4dfa2b20b586c2468ff1 | ee87e89befa0d4bf353dcf682b6467f9daaf657e | /src/foo/baz.py | 143417c8ba0618e5834d06180764cc3e2e4d4246 | [
"BSD-3-Clause",
"MIT"
]
| permissive | https://github.com/umedoblock/fugou | 43046056ce5f20b81d76e3c8e3149717b63708ed | 45d95f20bba6f85764fb686081098d92fc8cdb20 | refs/heads/master | 2021-07-15T15:26:30.856753 | 2018-11-26T23:44:18 | 2018-11-26T23:44:18 | 152,105,228 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from abc import ABCMeta, abstractmethod, abstractproperty
# class Baz_abstract(metaclass=ABCMeta):
class Baz_abstract(object):
def __init__(self):
self.v_abstract = 8
self.p_abstract = 9
dic = self.__dict__
print('Baz_abstract id(__dict__) = {:x}'.format(id(dic)))
print('Baz_abstract.__dict__ =', Baz_abstract.__dict__)
print()
class Baz_base(Baz_abstract):
'''help for Baz_base'''
def __init__(self):
super().__init__()
self.v_base = 8
self.p_base = 9
dic = self.__dict__
print('Baz_base id(__dict__) = {:x}'.format(id(dic)))
print('Baz_base.__dict__ =', Baz_base.__dict__)
print()
class Baz(Baz_base):
'''help for Baz'''
def __init__(self):
super().__init__()
self.v_baz = 8
self.p_baz = 9
dic = self.__dict__
print('Baz id(__dict__) = {:x}'.format(id(dic)))
# del self.v
print(' Baz.__dict__ =', Baz.__dict__)
print()
baz = Baz()
dic = baz.__dict__
print('baz id(__dict__) = {:x}'.format(id(dic)))
dir_ = dir(baz)
for d in dir(baz):
pass
# print('{:>16}'.format(d), getattr(baz, d))
print(dic)
print('dir_ =', type(dir_))
dic = baz.__dict__
print('baz id(__dict__) = {:x}'.format(id(dic)))
| UTF-8 | Python | false | false | 1,297 | py | 279 | baz.py | 67 | 0.509638 | 0.50347 | 0 | 47 | 26.595745 | 65 |
LucasYang-JLL/horizon_2080_fullstack | 9,156,870,276,642 | e95ddd1bbb94a1dc22dc4fe6365c7e6d6fa1fa4a | d4ac7a8e5844df254957c1a52170173a765a9b69 | /horizon_2080/users/views.py | c3eca38e65af41d88166084b55d94cf27c1de362 | []
| no_license | https://github.com/LucasYang-JLL/horizon_2080_fullstack | cbd417e325d0542a74934ad8e6b30d14be0c66c3 | 888c10013b473e0312a0847a80f4088214619cf2 | refs/heads/master | 2021-07-08T16:45:47.528947 | 2019-04-17T06:42:00 | 2019-04-17T06:42:00 | 153,553,962 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.http import HttpResponseRedirect
from django.http import JsonResponse
from django.contrib.auth import logout
from rest_framework import generics
def Logout(request):
logout(request)
# Redirect to a success page.
return HttpResponseRedirect("/landing")
def UserQuery(request):
userID = request.user.name # my user id
# Return json response
return JsonResponse({"user": request.user.name})
def UserAndSubsetQuery(request):
userID = request.user.name # my user id
userArr = request.user.report_to_me.all() # the users that report to me
nameList = []
for user in userArr:
nameList.append({"name": user.name, "department": user.department})
return JsonResponse({"userList": nameList})
def ActionAccess(request):
actionAccessArr = request.user.own_action_from.all()
nameList = []
for user in actionAccessArr:
nameList.append({"name": user.name, "department": user.department})
return JsonResponse({"userList": nameList}) | UTF-8 | Python | false | false | 1,006 | py | 162 | views.py | 147 | 0.7167 | 0.7167 | 0 | 29 | 33.724138 | 75 |
yash-analytics/HackerRank_Solutions | 8,435,315,801,386 | 0fa40cacf5cc0e528353583b82984ec4929e1e4c | 0685e1ae8e50f9211ca7675b73633757c188bb80 | /10_Days_of_Statistics/Day 1/Quartiles.py | 5e8400c1017ade8b3f5a631a9b037b45b12dd31f | []
| no_license | https://github.com/yash-analytics/HackerRank_Solutions | 48f398cee065cb4c4d54efdec82e1bbee59c4e5b | 5dbd2b65f80414354c9d027aab054582f9f1b9f8 | refs/heads/master | 2023-08-25T02:08:59.483089 | 2020-05-27T17:19:29 | 2020-05-27T17:19:29 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Getting the input
no_of_elements = int(input())
elements = list(map(int, input().split()))
elements.sort()
# Defining Median
def median(my_list):
length = len(my_list)
if (length % 2 == 0):
return ((my_list[length // 2 - 1] + my_list[length // 2] / 2))
else:
return int(my_list[length // 2])
# Separating case for odd and even
if (no_of_elements % 2 == 0):
print(median(elements[0:no_of_elements // 2]))
print(median(elements))
print(median(elements[no_of_elements // 2:]))
else:
print(median(elements[0:(no_of_elements - 1) // 2]))
print(median(elements))
print(median(elements[(no_of_elements + 1) // 2:])) | UTF-8 | Python | false | false | 668 | py | 40 | Quartiles.py | 36 | 0.607784 | 0.582335 | 0 | 26 | 24.730769 | 70 |
spolichnowski/Blog-1 | 8,203,387,535,482 | 104268e1551be99ffcd7d0d78ad1f9a87ebb9171 | 02736f7d0419462ab8b336394645640e99e00c5a | /articles/forms.py | b785d20333548132ce5f2781d838aa728ca7ffdf | []
| no_license | https://github.com/spolichnowski/Blog-1 | a5016d002de2f2a80cad1f0de6ecb3b84fb8139b | a735e682841909592b188a4b45f1114a3938a06c | refs/heads/master | 2021-01-19T00:03:23.425483 | 2016-11-05T10:37:24 | 2016-11-05T10:37:24 | 72,918,688 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django import forms
class EmailMessageForm(forms.Form):
name = forms.CharField(max_length=70)
from_email = forms.EmailField()
message = forms.CharField(required=True,
widget=forms.Textarea)
| UTF-8 | Python | false | false | 239 | py | 6 | forms.py | 3 | 0.65272 | 0.644351 | 0 | 8 | 28.875 | 52 |
linbaiwpi/RoadNet-RT | 18,846,316,525,750 | 1fe0c9e8b8b3bf2e0ebc2dca653fe31d523d85df | f24c5cd5957473f497f4089bc9ff9a72b5814a68 | /roadnet/net.py | b341d6af7d8be0892790aade4981d3436202cdc5 | [
"MIT"
]
| permissive | https://github.com/linbaiwpi/RoadNet-RT | d7faec43475300b94a185d874532af0a1e284ab0 | 624a1051e0502b60abe6122450ea53f80e9e4f8a | refs/heads/main | 2023-04-19T02:47:32.829009 | 2021-05-11T20:54:07 | 2021-05-11T20:54:07 | 310,941,805 | 12 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import keras as K
import keras.layers as L
import keras.models as M
import tensorflow as tf
def resnetLayer(x_in, filters, strides, name):
# main branch
x = L.Conv2D(filters=filters, kernel_size=3, strides=strides, padding="same", name=name+"_conv1")(x_in)
x = L.BatchNormalization(name=name+"_bn1")(x)
x = L.ReLU(name=name+"_relu1")(x)
x = L.Conv2D(filters=filters, kernel_size=3, strides=1, padding="same", name=name+"_conv2")(x)
x = L.BatchNormalization(name=name+"_bn2")(x)
# shortcut
x_sc = L.Conv2D(filters=filters, kernel_size=3, strides=strides, padding="same", name=name+"_conv_sc")(x_in)
x_sc = L.BatchNormalization(name=name+"_bn_sc")(x_sc)
# add
x = L.add([x, x_sc])
x = L.ReLU(name=name+"_relu2")(x)
return x
def ConvBNReLU(x, filter=64, kernel_size=3, strides=1, use_bias=True, name="ConvBNReLU"):
x = L.Conv2D(filters=filter, kernel_size=kernel_size, strides=(strides, strides),
padding="same", use_bias=use_bias, name=name+"_conv")(x)
x = L.BatchNormalization(name=name+"_bn")(x)
x = L.ReLU(name=name+"_relu")(x)
return x
def atrousConvBNReLU(x, filter=64, kernel_size=3, strides=1, dilation_rate=2, use_bias=True, name="aConvBNReLU"):
x = L.Conv2D(filters=filter, kernel_size=kernel_size, strides=(strides, strides), dilation_rate=(dilation_rate, dilation_rate),
padding="same", use_bias=use_bias, name=name+"_conv")(x)
x = L.BatchNormalization(name=name+"_bn")(x)
x = L.ReLU(name=name+"_relu")(x)
return x
def AttentionRefinement(x, out_channel=64):
x = ConvBNReLU(x, out_channel, 3, 1, use_bias=False, name="ARM")
x_sc = L.GlobalAveragePooling2D(data_format='channels_last', name="avg_pool")(x)
x_sc = L.Reshape((1, 1, out_channel))(x_sc)
x_sc = L.Conv2D(out_channel, 1, strides=1, padding="same", name="ARM_1x1")(x_sc)
x_sc = L.Activation('sigmoid')(x_sc)
x = L.multiply([x_sc, x])
return x
def FeatureFusion(sp_out, cp_out):
ffm_cat = L.concatenate([sp_out, cp_out])
ffm_conv = ConvBNReLU(ffm_cat, 64, 1, 1, use_bias=False, name="ffm_conv1")
ffm_cam = L.GlobalAveragePooling2D(data_format='channels_last')(ffm_conv)
ffm_cam = L.Reshape((1, 1, 64))(ffm_cam)
ffm_cam = L.Conv2D(filters=64, kernel_size=1, strides=1, padding="same", use_bias=False, name="ffm_conv2")(ffm_cam)
ffm_cam = L.ReLU()(ffm_cam)
ffm_cam = L.Conv2D(filters=64, kernel_size=1, strides=1, padding="same", use_bias=False, name="ffm_conv3")(ffm_cam)
ffm_cam = L.Activation('sigmoid')(ffm_cam)
ffm_cam = L.multiply([ffm_conv, ffm_cam])
ffm_cam = L.add([ffm_cam, ffm_conv])
return ffm_cam
class roadnet_rt():
def __init__(self, input_shape=(160, 600), num_class=2, activation='sigmoid'):
self.input_shape = input_shape
self.num_class = num_class
self.activation = activation
def build(self):
x_in = L.Input(shape=(self.input_shape[0], self.input_shape[1], 3))
# spatial path
convBnRelu = ConvBNReLU(x_in, 64, 7, 2, use_bias=False, name="convBnRelu")
convBnRelu_1 = ConvBNReLU(convBnRelu, 64, 3, 2, use_bias=False, name="convBnRelu1")
convBnRelu_2 = ConvBNReLU(convBnRelu_1, 64, 3, 2, use_bias=False, name="convBnRelu2")
sp_out = ConvBNReLU(convBnRelu_2, 128, 1, 1, use_bias=False, name="convBnRelu3")
# context path
#x_div_2 = L.Lambda(lambda image: K.backend.resize_images(image, 0.5, 0.5, 'channels_last', 'bilinear'))(x_in)
# x_div_2 = L.Lambda(lambda image: tf.image.resize_images(image, (int(self.input_shape[0]/2), int(self.input_shape[1]/2))))(x_in)
x_div_2 = L.Lambda(lambda image: tf.image.resize(image, (int(self.input_shape[0]/2), int(self.input_shape[1]/2))))(x_in)
cp_x = L.Conv2D(filters=64, kernel_size=3, strides=1, padding="same", use_bias=False, name="cp_conv")(x_div_2)
cp_x = resnetLayer(cp_x, 64, 2, "backbone_1")
cp_x = resnetLayer(cp_x, 128, 2, "backbone_2")
cp_x_1 = atrousConvBNReLU(cp_x, 32, 3, 1, 2, use_bias=False, name="aconv1")
cp_x_2 = atrousConvBNReLU(cp_x, 32, 3, 1, 4, use_bias=False, name="aconv2")
cp_x_3 = atrousConvBNReLU(cp_x, 32, 3, 1, 8, use_bias=False, name="aconv3")
cp_x_4 = atrousConvBNReLU(cp_x, 32, 3, 1, 16, use_bias=False, name="aconv4")
cp_x = L.concatenate([cp_x_1, cp_x_2, cp_x_3, cp_x_4])
cp_arm = AttentionRefinement(cp_x, 64)
cp_out = L.concatenate([cp_arm, cp_x])
# fusion
ffm_cam = FeatureFusion(sp_out, cp_out)
ffm_cam = L.Conv2D(filters=self.num_class, kernel_size=3, strides=1, padding="same", use_bias=False, name="output")(ffm_cam)
x_out = L.Activation(self.activation)(ffm_cam)
x_out = L.UpSampling2D(size=8, interpolation='bilinear', name="upsample")(x_out)
return M.Model(inputs=x_in, outputs=x_out)
# based on BiSeNet_lite, replae the AvePooling to GlobalAvgPooling2D
# move AttentionRefinement to context path
# first conv kernel size = 7
if __name__ == '__main__':
model = BiSeNet_mod4_base3((280, 960), 1).build()
model.summary()
| UTF-8 | Python | false | false | 5,141 | py | 15 | net.py | 12 | 0.634896 | 0.601245 | 0 | 106 | 47.5 | 137 |
hhlgithub/Gaiter | 4,655,744,549,679 | 803e2932d9bac3966899797ca4c54ffc85745f7a | f44cee6652d0699a4426a6a3243ae35d80292c43 | /personal_classifier/ada_boost.py | e37bce4493e996d85fcf9a7b80bffdd39b409e58 | [
"MIT"
]
| permissive | https://github.com/hhlgithub/Gaiter | b89db580d817fa049e30e434390863f5d5e419be | a456ab59b67ed9eaf4896b423c0b09589f28f19f | refs/heads/master | 2017-05-09T11:46:12.399447 | 2014-12-16T13:03:31 | 2014-12-16T13:03:31 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from sklearn.ensemble import AdaBoostClassifier
from personal_classifier import PersonalClassifier
class AdaBoost(PersonalClassifier):
def __init__(self, data_set, labels):
super(AdaBoost, self).__init__(data_set, labels)
def train(self):
x = self.data_set
y = self.labels
clf = AdaBoostClassifier()
clf.fit(x, y)
self.set_classifier(clf) | UTF-8 | Python | false | false | 399 | py | 28 | ada_boost.py | 27 | 0.656642 | 0.656642 | 0 | 16 | 24 | 56 |
SyedUmaidAhmed/Buzzers-and-PIR-Sensor-All-with-Raspberry-Pi- | 1,288,490,191,313 | da360595b8885c64b33f5065c31875a988387038 | 53d6b530227605b007f3a62356e2667a9c897193 | /bz_2.py | c9be7165c657070a72e9e52e8a5d9f5b00a5f1ff | []
| no_license | https://github.com/SyedUmaidAhmed/Buzzers-and-PIR-Sensor-All-with-Raspberry-Pi- | b139b938369a523fc1a1436a47d8eaea4484e664 | 6a6ed9be04c6f5cbe3ff7ee35364f1381fecb6de | refs/heads/main | 2023-03-18T20:14:05.561090 | 2021-02-27T21:06:54 | 2021-02-27T21:06:54 | 342,958,242 | 3 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
BUZZER= 23
buzzState = False
GPIO.setup(BUZZER, GPIO.OUT)
while True:
buzzState = not buzzState
GPIO.output(BUZZER, buzzState)
time.sleep(1) | UTF-8 | Python | false | false | 237 | py | 9 | bz_2.py | 8 | 0.742616 | 0.729958 | 0 | 13 | 17.307692 | 34 |
umarhussain88/rhls_pdf_generator | 9,165,460,248,354 | aa9f1bb5a4ccd6034768c0e081fac1bcfc1463e8 | 2b2bd49738c04db885f9b0ebed4cb7b1ede05be8 | /students/migrations/0001_initial.py | 7517ade3f117d2a78004f057c1b691c005dfa588 | []
| no_license | https://github.com/umarhussain88/rhls_pdf_generator | 62857ebcd39ec0df32b7f9ae2db2f264b550cfc1 | 86cbcaab6f4960320f354783c3d5a5947e50f583 | refs/heads/main | 2023-07-17T14:11:42.348488 | 2021-09-05T22:26:27 | 2021-09-05T22:26:27 | 399,273,471 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.2.6 on 2021-08-25 22:12
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Student',
fields=[
('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('student_id', models.IntegerField()),
('first_name', models.CharField(max_length=255)),
('last_name', models.CharField(max_length=255)),
('school_name', models.CharField(max_length=255)),
('subject_name', models.CharField(max_length=255)),
('time_from', models.CharField(max_length=255)),
('time_to', models.CharField(max_length=255)),
('parents_email', models.CharField(max_length=255)),
],
),
]
| UTF-8 | Python | false | false | 948 | py | 16 | 0001_initial.py | 10 | 0.556962 | 0.518987 | 0 | 28 | 32.857143 | 117 |
tetianakh/playground | 10,737,418,271,493 | 918394a01d86228450d32963b0672b795802be09 | d2642b02511811a6e85f8c004ac72765001b7459 | /django-test/test_project/user_generator.py | e7952ae11a4c0dfe2b50278791b99f79090ef9b0 | []
| no_license | https://github.com/tetianakh/playground | 58920751d647b14e4409e125a3221ce106fe9b00 | 282959bc2f6bb7782192c68e6ceff227ff64a5fc | refs/heads/master | 2021-09-06T20:12:45.360806 | 2018-02-10T22:34:09 | 2018-02-10T22:34:09 | 117,529,602 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from faker import Faker
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_project.settings')
import django
django.setup()
from users.models import User
fake = Faker()
def generate_users(N=10):
for _ in range(N):
user = User(
first_name=fake.first_name(),
last_name=fake.last_name(),
email=fake.email()
)
user.save()
if __name__ == '__main__':
print("Generating some fake users...")
generate_users(20)
print("Done!")
| UTF-8 | Python | false | false | 523 | py | 26 | user_generator.py | 15 | 0.586998 | 0.57935 | 0 | 28 | 17.678571 | 72 |
tastypenguinbacon/just-messing-arround | 7,997,229,124,401 | 5af3982ddee7df965abf44e2046d95fd7686fc42 | e001481b356cdf23ed1a070681ab5385ddc83b39 | /algo/fractal/python-mandelbrot-inverse.py | 18b399fe59fdd5f2b851f45ba74be6fdb580c537 | []
| no_license | https://github.com/tastypenguinbacon/just-messing-arround | 5b276b614ad5be4c7b6dc4c97eb551d1c0da1057 | 12f3efd1c003f550934465bf9c57966479cd4707 | refs/heads/master | 2022-12-24T05:47:47.634229 | 2019-11-30T17:19:50 | 2019-11-30T17:19:50 | 82,855,657 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1.5, 4.5, 2000)
y = np.linspace(2, -2, 1500)
c = np.repeat(np.array([x]), y.size, axis=0) + np.repeat(np.array([y]), x.size, axis=0).T * 1j
c = 1 / c
z = np.zeros(c.shape, dtype=np.complex)
img = np.zeros(c.shape)
for i in range(128):
z = z ** 2 + c
img[np.absolute(z) < 2] += 1
plt.imshow(np.sqrt(img))
plt.show()
| UTF-8 | Python | false | false | 396 | py | 42 | python-mandelbrot-inverse.py | 30 | 0.606061 | 0.545455 | 0 | 17 | 22.235294 | 94 |
instance01/py-S-MCTS | 4,466,766,021,323 | dfe5a99b420cb890b96e538dbd3026f0f7e59f74 | 95cd30d17d99b3827ed926ff5b1e09077e61d729 | /show_profile.py | b15a40b9f8cc34703c976be0f3526ef3c3ba8565 | [
"MIT"
]
| permissive | https://github.com/instance01/py-S-MCTS | 12d3d47541932ed426bf22901603ff6704385b65 | cad67da8bb515126311040674d5e6da77f47c90f | refs/heads/master | 2021-03-13T19:25:00.826462 | 2020-04-16T20:03:22 | 2020-04-16T20:03:22 | 246,704,443 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import pstats
name = '3.profile'
out = pstats.Stats(name)
print('sort by cumulative')
out.sort_stats('cumulative').print_stats(20)
print('sort by total time')
out.sort_stats('time').print_stats(20)
| UTF-8 | Python | false | false | 201 | py | 13 | show_profile.py | 12 | 0.721393 | 0.696517 | 0 | 10 | 19.1 | 44 |
ngglasgow/clamp_ephys | 867,583,395,330 | db6f9a9f6b5eb8d186a6b2c106007d2fca786852 | 2d64c81dad73bd9f03288b9004b589ac5c90d555 | /single_cell_test_analysis.py | 48ad8d4c7723822307e512d20cb8c1cc02352ab4 | [
"MIT"
]
| permissive | https://github.com/ngglasgow/clamp_ephys | 11fa657b4f746b9adb9046fc68ae976e4b0a4efa | 60f1f490837939a0afcf9cf5bdd123fb51546269 | refs/heads/master | 2022-11-04T23:02:50.220537 | 2020-05-26T15:30:29 | 2020-05-26T15:30:29 | 223,270,172 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import clamp_ephys
import pandas as pd
import os
import scipy
import matplotlib
import matplotlib.pyplot as plt
'''####################### SET THE PROPER PATH YOU WANT ########################### '''
paths = clamp_ephys.workflows.file_structure('local', 'Injected_GC_data/VC_pairs')
tables = paths.tables
figures = paths.figures
'''####################### SET PROPER PATH_TO_DATA_NOTES ########################## '''
data_path = os.path.join(os.getcwd(), 'test_data', 'p2_data_notes.csv')
''' ################### SET/CHECK THESE PARAMETERS BEFORE RUNNING ################## '''
lowpass_freq = 500 # Hz
stim_time = 500 # ms
post_stim = 250 # ms, amount of time after stimulus to look for max value
tp_start = 5 # ms, time of start of test pulse
vm_jump = 10 # mV, test pulse voltage jump
pre_tp = 3 # ms, amount of time before test pulse start to get baseline
unit_scaler = -12 # unitless, scaler to get back to A, from pA
amp_factor = 1 # scaler for making plots in pA
fs = 25 # kHz, the sampling frequency
'''#################### THIS LOOP RUNS THE SINGLE CELL ANALYSIS #################### '''
cell_path = os.path.join(os.getcwd(), 'test_data', 'JH200303_c1_light100.ibw')
data = clamp_ephys.workflows.cell(cell_path, fs=fs, path_to_data_notes=data_path, timepoint='p2', amp_factor=amp_factor, drop_sweeps=True)
data.get_raw_peaks(stim_time, post_stim)
data.filter_traces(lowpass_freq)
# collect peak amplitudes and time to peak of all the max peaks
peaks_max = data.get_filtered_peaks(stim_time, post_stim)
time_to_peak_max = (data.peaks_filtered_indices / fs) - stim_time
def plot_half_width(trace, data):
'''plots a trace with the peak identified and the half width drawn
trace: int
index of the trace you want to see
data: data object
needs to be a data object
'''
x = data.traces_filtered[trace]
peak = data.peaks_filtered_indices[trace]
hw_data = data.get_fwhm_peak_max().iloc[trace, 1:].values
fig, axs = plt.subplots()
axs.plot(x)
axs.plot(peak, x[peak], 'x')
axs.hlines(hw_data[0] * -1, hw_data[1], hw_data[2], color='r')
return fig
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# test new class function; collect FWHMs of all the peak IPSCs
halfwidths_peak_max = data.get_fwhm_peak_max()['Max peak half-width (ms)']
# pick an example trace to plot the actual half width of a given peak
%matplotlib widget
fig = plot_half_width(1, data)
import numpy as np # we will use this later, so import it now
from bokeh.io import output_notebook, show
from bokeh.plotting import figure
output_notebook()
trace = data.traces.iloc[:, 0].values
sd = trace[3400 * data.fs:3900 * data.fs].std()
time = np.arange(0, len(trace) / data.fs, 1 / data.fs)
peaks, properties = scipy.signal.find_peaks(trace * -1, prominence=30)
time_peaks = (peaks / data.fs)
wavelet = scipy.signal.ricker(40, 4)
ctime = np.arange(0, len(cwt)/ data.fs, 1 / data.fs)
cwt = scipy.signal.convolve(trace, wavelet)
p = figure(plot_width=800, plot_height=400)
p.line(time, trace, line_width=2)
p.circle(time_peaks, trace[peaks], size=5, line_color="navy", fill_color="orange", fill_alpha=0.5)
p.line(ctime, cwt, color='red')
show(p)
drop_path = '/home/nate/urban/clamp_ephys/test_data/dropped_sweeps.csv'
dropped_sweeps = pd.read_csv(drop_path, index_col=[0])
if data.filename in dropped_sweeps.index:
strsweeps = dropped_sweeps.loc[data.filename].values[0][1:-1].split(', ')
drop_sweeps = [int(sweep) for sweep in strsweeps]
drop_sweeps
show(p)
scipy.signal.convolve() | UTF-8 | Python | false | false | 3,641 | py | 31 | single_cell_test_analysis.py | 22 | 0.63911 | 0.620159 | 0 | 103 | 34.359223 | 138 |
nagyist/ParaView | 14,233,521,636,152 | 43d43111efc48d7f08f09873fdbcf4546275888b | 09d1138225f295ec2e5f3e700b44acedcf73f383 | /Examples/PythonClient/eventdriver.py | 487353c3a71be4cabc3b3f8ce3066042378b3147 | [
"BSD-3-Clause"
]
| permissive | https://github.com/nagyist/ParaView | e86d1ed88a805aecb13f707684103e43d5f6b09f | 6810d701c44b2097baace5ad2c05f81c6d0fd310 | refs/heads/master | 2023-09-04T07:34:57.251637 | 2023-09-03T00:34:36 | 2023-09-03T00:34:57 | 85,244,343 | 0 | 0 | BSD-3-Clause | true | 2023-09-11T15:57:25 | 2017-03-16T21:44:59 | 2022-12-16T20:27:24 | 2023-09-11T15:57:22 | 238,433 | 0 | 0 | 0 | C++ | false | false | from PyQt4 import QtCore, QtNetwork, QtGui
def exit():
import sys
sys.exit(0)
def sendMessage():
global sock, timer
bl = QtCore.QByteArray()
out = QtCore.QDataStream(bl, QtCore.QIODevice.WriteOnly)
out.writeDouble(10)
sock.write(bl)
timer.start(30)
app = QtGui.QApplication(['Event Driver'])
sock = QtNetwork.QTcpSocket()
sock.connectToHost("localhost", 12345)
sock.disconnected.connect(exit)
timer = QtCore.QTimer()
timer.setSingleShot(True)
timer.timeout.connect(sendMessage)
timer.start(30)
app.exec_()
| UTF-8 | Python | false | false | 548 | py | 5,743 | eventdriver.py | 3,836 | 0.713504 | 0.689781 | 0 | 30 | 17.266667 | 60 |
juditacs/deep-morphology | 7,232,724,975,762 | 270d956e12dddd9cd9603d5a3e1c372ce7811ae3 | d36982d5629d31063ffc2bb87ce558316645d6f6 | /deep_morphology/probe.py | 93bc3770930e9e9f0a8e8f14387d9c2978fa2fda | [
"MIT"
]
| permissive | https://github.com/juditacs/deep-morphology | 7ec32c671ce88b291ae04021f7a4e5df8a9649a6 | 090c17e604499a3430ea835a6340fa3abdc6ea83 | refs/heads/master | 2021-05-26T08:08:07.629377 | 2020-11-26T15:34:20 | 2020-11-26T15:34:20 | 128,024,350 | 3 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright © 2018 Judit Acs <judit@sch.bme.hu>
#
# Distributed under terms of the MIT license.
from argparse import ArgumentParser
import os
import gzip
import logging
import platform
import numpy as np
import torch
import torch.nn as nn
from deep_morphology.config import Config, InferenceConfig
from deep_morphology import data as data_module
from deep_morphology import models as model_module
from deep_morphology.utils import find_last_model
from deep_morphology.data.base_data import Vocab
from deep_morphology.models.mlp import MLP
from deep_morphology.models.base import BaseModel
from deep_morphology.experiment import Result
use_cuda = torch.cuda.is_available()
def to_cuda(var):
if use_cuda:
return var.cuda()
return var
def parse_args():
p = ArgumentParser()
p.add_argument("-c", "--config", type=str,
help="YAML config file location")
p.add_argument("--encoder", type=str, default=None)
p.add_argument("--embedding", type=str, default=None)
p.add_argument("--train-file", type=str, default=None)
p.add_argument("--dev-file", type=str, default=None)
p.add_argument("--debug", action="store_true",
help="Do not raise exception when the working "
"directory is not clean.")
return p.parse_args()
class DataWrapper:
def __init__(self, data, labels):
self.data = data
self.labels = labels
self.tgt_field_idx = 1
def batched_iter(self, batch_size):
starts = list(range(0, len(self.data), batch_size))
np.random.shuffle(starts)
for start in starts:
end = start + batch_size
data = self.data[start:end]
labels = self.labels[start:end]
yield (data, labels)
class EmbeddingWrapper(nn.Module):
def __init__(self, train_data, dev_data, embedding_fn):
super().__init__()
self.train_data = []
self.train_labels = []
self.dev_data = []
self.dev_labels = []
self.vocab_label = {}
with open(train_data) as f:
for line in f:
word, label = line.strip().split("\t")
lab_idx = self.vocab_label.setdefault(label, len(self.vocab_label))
self.train_data.append(word)
self.train_labels.append(lab_idx)
with open(dev_data) as f:
for line in f:
word, label = line.strip().split("\t")
lab_idx = self.vocab_label.setdefault(label, len(self.vocab_label))
self.dev_data.append(word)
self.dev_labels.append(lab_idx)
if embedding_fn.endswith('.gz'):
with gzip.open(embedding_fn, "rt") as f:
self.load_embedding(f)
else:
with open(embedding_fn) as f:
self.load_embedding(f)
prev = len(self.train_data)
self.train_data, self.train_labels = self.filter_data(self.train_data, self.train_labels)
self.dev_data, self.dev_labels = self.filter_data(self.dev_data, self.dev_labels)
self.hidden_size = self.embedding.shape[1]
self.embedding_layer = nn.Embedding(len(self.embedding_map), self.hidden_size)
self.embedding_layer.weight = nn.Parameter(torch.from_numpy(self.embedding).float())
self.dropout = nn.Dropout(0.5)
def get_train_data_wrapper(self):
return DataWrapper(self.train_data, self.train_labels)
def get_dev_data_wrapper(self):
return DataWrapper(self.dev_data, self.dev_labels)
def filter_data(self, data, labels):
filt_data = []
filt_labels = []
for d, l in zip(data, labels):
if d in self.embedding_map:
filt_data.append(self.embedding_map[d])
filt_labels.append(l)
return filt_data, filt_labels
def load_embedding(self, stream):
self.embedding_map = {}
vocab = set(self.train_data) | set(self.dev_data)
embedding = []
# first line, may or may not be the dimension info
fd = next(stream).rstrip("\n").split(" ")
if len(fd) > 2:
word = fd[0]
if word in vocab:
vec = list(map(float, fd[1:]))
embedding.append(vec)
self.embedding_map.setdefault(word, len(self.embedding_map))
for line in stream:
fd = line.rstrip("\n").split(" ")
word = fd[0]
if word in vocab:
vec = list(map(float, fd[1:]))
embedding.append(vec)
self.embedding_map.setdefault(word, len(self.embedding_map))
self.embedding = np.array(embedding)
def forward(self, data):
return self.dropout(self.embedding_layer(data))
class Prober(BaseModel):
def __init__(self, config, train_data, dev_data, encoder):
super().__init__(config)
# TODO make sure it's a deep-morphology experiment dir
self.config = Config.from_yaml(config)
self.config.train_file = train_data
self.config.dev_file = dev_data
enc_cfg = InferenceConfig.from_yaml(
os.path.join(encoder, "config.yaml"))
self.update_config(enc_cfg)
self.data_class = getattr(data_module, self.config.dataset_class)
self.train_data = self.data_class(self.config, train_data)
self.dev_data = self.data_class(self.config, dev_data)
self.encoder = self.load_encoder(enc_cfg)
self.relabel_target()
self.train_data.save_vocabs()
self.output_size=len(self.train_data.vocabs.tgt),
self.mlp = self.create_classifier()
# fix encoder
self.criterion = nn.CrossEntropyLoss()
self.result = Result()
def create_classifier(self):
# BiLSTM
enc_size = 2 * self.encoder.hidden_size
# SOPA
if hasattr(self.encoder, 'sopa'):
enc_size = self.encoder.hidden_size
return MLP(
input_size=enc_size,
layers=self.config.mlp_layers,
nonlinearity=self.config.mlp_nonlinearity,
output_size=self.output_size,
)
def load_encoder(self, enc_cfg):
model_class = getattr(model_module, enc_cfg.model)
self.encoder = model_class(enc_cfg, self.dev_data)
model_file = find_last_model(enc_cfg.experiment_dir)
self.encoder.load_state_dict(torch.load(model_file))
if getattr(self.config, 'train_encoder', False) is False:
for param in self.encoder.parameters():
param.requires_grad = False
return self.encoder.encoder
def update_config(self, encoder_cfg):
enc_dir = encoder_cfg.experiment_dir
self.config.encoder_dir = enc_dir
for fn in os.scandir(enc_dir):
if fn.name.startswith("vocab"):
setattr(self.config, fn.name, fn.path)
def relabel_target(self):
vocab = Vocab(frozen=False, constants=[])
labels = []
for raw in self.train_data.raw:
labels.append(vocab[raw.tgt])
self.train_data.mtx.tgt = labels
self.train_data.vocabs.tgt = vocab
vocab.frozen = True
labels = []
for raw in self.dev_data.raw:
labels.append(vocab[raw.tgt])
self.dev_data.mtx.tgt = labels
self.dev_data.vocabs.tgt = vocab
self.train_data.to_idx()
self.dev_data.to_idx()
def compute_loss(self, target, output):
target = to_cuda(torch.LongTensor(target.tgt)).view(-1)
loss = self.criterion(output, target)
return loss
def forward(self, batch):
X = to_cuda(torch.LongTensor(batch.src)).transpose(0, 1)
enc_out = self.encoder(X, batch.src_len)
if len(enc_out) == 2:
output, hidden = enc_out[:2]
elif len(enc_out) == 3: # SOPA
output = enc_out[2]
hidden = enc_out[1]
#output, hidden = self.encoder(X, batch.src_len)[:2]
if getattr(self.config, 'use_lstm_state', False):
mlp_out = self.mlp(hidden[1][-1])
else:
idx = to_cuda(torch.LongTensor(
[b-1 for b in batch.src_len]))
brange = to_cuda(torch.LongTensor(np.arange(len(batch.src))))
mlp_out = self.mlp(output[idx, brange])
return mlp_out
def run_train(self):
train_data = self.train_data
dev_data = self.dev_data
result = self.result
self.init_optimizers()
saved = False
for epoch in range(self.config.epochs):
self.fix_encoder_if_necessary(epoch)
self.train(True)
train_loss, train_acc = self.run_epoch(train_data, do_train=True,
result=result)
result.train_loss.append(train_loss)
result.train_acc.append(train_acc)
self.train(False)
dev_loss, dev_acc = self.run_epoch(dev_data, do_train=False)
result.dev_loss.append(dev_loss)
result.dev_acc.append(dev_acc)
s = self.save_if_best(train_loss, dev_loss, epoch)
saved = saved or s
logging.info("Epoch {}, Train loss: {}, Train acc: {}, "
"Dev loss: {}, Dev acc: {}".format(
epoch+1,
round(train_loss, 4),
round(train_acc * 100, 2),
round(dev_loss, 4),
round(dev_acc * 100, 2),
))
if self.should_early_stop(epoch, result):
logging.info("Early stopping.")
break
if epoch == 0:
self.config.save()
result.save(self.config.experiment_dir)
if saved is False:
self._save(epoch)
def fix_encoder_if_necessary(self, epoch):
if isinstance(self.config.train_encoder, bool):
return
if epoch == self.config.train_encoder:
for param in self.encoder.parameters():
param.requires_grad = False
def __enter__(self):
self.result = Result()
self.result.start()
self.result.node = platform.node()
self.result.parameters = sum(
p.nelement() for p in self.parameters() if p.requires_grad)
if use_cuda:
self.result.gpu = torch.cuda.get_device_name(
torch.cuda.current_device())
else:
self.result.gpu = None
self.result.train_size = len(self.train_data)
self.result.dev_size = len(self.dev_data)
self.config.save()
return self
def __exit__(self, *args):
self.result.epochs_run = len(self.result.train_loss)
self.config.save()
self.result.end()
self.result.save(self.config.experiment_dir)
def _save(self, epoch):
if self.config.overwrite_model is True:
save_path = os.path.join(self.config.experiment_dir, "model")
else:
save_path = os.path.join(
self.config.experiment_dir,
"model.epoch_{}".format("{0:04d}".format(epoch)))
logging.info("Saving model to {}".format(save_path))
torch.save(
{'encoder': self.encoder.state_dict(),
'mlp': self.mlp.state_dict()},
save_path)
class EmbeddingProber(Prober):
def __init__(self, config, train_data, dev_data, embedding):
BaseModel.__init__(self, config)
self.config = Config.from_yaml(config)
self.config.train_file = train_data
self.config.dev_file = dev_data
self.encoder = EmbeddingWrapper(train_data, dev_data, embedding)
self.output_size = len(self.encoder.vocab_label)
self.train_data = self.encoder.get_train_data_wrapper()
self.dev_data = self.encoder.get_dev_data_wrapper()
self.mlp = self.create_classifier()
self.criterion = nn.CrossEntropyLoss()
def create_classifier(self):
enc_size = self.encoder.hidden_size
return MLP(
input_size=enc_size,
layers=self.config.mlp_layers,
nonlinearity=self.config.mlp_nonlinearity,
output_size=self.output_size,
)
def forward(self, batch):
X = to_cuda(torch.LongTensor(batch[0]))
embedded = self.encoder(X)
mlp_out = self.mlp(embedded)
return mlp_out
def compute_loss(self, target, output):
target = to_cuda(torch.LongTensor(target[1])).view(-1)
loss = self.criterion(output, target)
return loss
def main():
args = parse_args()
if args.embedding:
with EmbeddingProber(args.config,
train_data=args.train_file, dev_data=args.dev_file,
embedding=args.embedding) as prober:
prober = to_cuda(prober)
prober.run_train()
elif args.encoder:
with Prober(args.config, encoder=args.encoder,
train_data=args.train_file, dev_data=args.dev_file) as prober:
prober = to_cuda(prober)
prober.run_train()
if __name__ == '__main__':
log_fmt = '%(asctime)s - %(levelname)s - %(message)s'
logging.basicConfig(level=logging.INFO, format=log_fmt)
main()
| UTF-8 | Python | false | false | 13,416 | py | 64 | probe.py | 45 | 0.575997 | 0.572568 | 0 | 368 | 35.453804 | 97 |
kikyou123/DCGAN | 5,128,190,996,595 | bd8bb7ca580012ea4e000d94908759bfb0f7c4aa | 28eeb5db2629583e0e516cb2992efec172b03a36 | /DCGAN_CelebA.py | 01c47d1f2cbf4353a26f361ab2c1dfd5b0d81f86 | []
| no_license | https://github.com/kikyou123/DCGAN | 25113de82d8d8f4b76d0d8a9b0f2b2c09a936fe2 | 334b8b72a34bf31bffa753b3a0964b69dda4685b | refs/heads/master | 2021-06-13T16:49:06.923924 | 2017-03-22T06:28:26 | 2017-03-22T06:28:26 | 85,309,959 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
# coding: utf-8
# In[1]:
import os
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from op import *
from utils import *
from load_hdf import *
# In[2]:
seed = 42
np.random.seed(seed)
tf.set_random_seed(seed)
# In[3]:
dim = 64
batch_size = 100
z_dim = 100
ndfc = 1024
learning_rate = 0.0002
beta1 = 0.5
max_epoch = 25
ntrain = 202458
model_dir = "{}_{}_{}_{}".format('CelebA', batch_size, 64, 64)
data_dir = '/home/data/houruibing/CelebA'
# In[4]:
tr_data, tr_stream = faces(ntrain = ntrain, batch_size = batch_size, data_dir = data_dir )
tr_handle = tr_data.open()
# In[5]:
checkpoint_dir = 'checkpoint/CNN_GAN/CelebA'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# In[6]:
sample_dir = 'generate_images/CNN_GAN/CelebA'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
# In[7]:
log_dir = 'log/CNN_GAN/CelebA'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# In[8]:
sample_z = np.random.uniform(-1, 1, [batch_size, z_dim])
sample_num = batch_size
tr_handle = tr_data.open()
sample_inputs, = tr_data.get_data(tr_handle, slice(0, batch_size))# int 0-255
sample_inputs = transform(sample_inputs)
# In[9]:
# define D-network
def discriminator(image):
"""create a network that discriminates between images from a dataset and g
genetated ones
Args:
image: a batch of real images [batch_size, height, weight, channels]
Rerurns:
A tensor that represents the probability of the real image"""
h1 = lrelu(conv2d(image, dim, name = 'd_h1_conv'))
h2 = lrelu(batch_norm(conv2d(h1, dim * 2, name = 'd_h2_conv'), name = 'd_bn2'))
h3 = lrelu(batch_norm(conv2d(h2, dim * 4, name = 'd_h3_conv'), name = 'd_bn3'))
h4 = lrelu(batch_norm(conv2d(h3, dim * 8, name = 'd_h4_conv'), name = 'd_bn4'))
h5 = linear(flatten(h4), 1, 'd_h5_lin')
#h5 = linear(tf.reshape(h4, [batch_size, -1]), 1, 'd_h5_lin')
#h5 = lrelu(batch_norm(linear(tf.reshape(h4, [batch_size, -1]), ndfc, 'd_h5_lin'), name = 'd_bn5'))
#h6 = linear(h5, 1, 'd_h6_lin')
return sigmoid(h5)
# In[10]:
def generator(z):
"""Create a network that genetates images
Args:
z: input random noise of size [batch_size, dim_z]
Returns:
A deconvolutional network that generated images of size[batch_size, height, weight, channle]"""
h0 = relu(batch_norm(linear(z, dim * 8 * 4 * 4, 'g_h0_lin'), name = 'g_bn0'))
h0 = tf.reshape(h0, [-1, 4, 4, dim * 8])
h1 = relu(batch_norm(deconv2d(h0, [batch_size, 8, 8, dim * 4], name = 'g_h1'), name = 'g_bn1'))
h2 = relu(batch_norm(deconv2d(h1, [batch_size, 16, 16, dim * 2], name = 'g_h2'), name = 'g_bn2'))
h3 = relu(batch_norm(deconv2d(h2, [batch_size, 32, 32, dim], name = 'g_h3'), name = 'g_bn3'))
h4 = deconv2d(h3, [batch_size, 64, 64, 3], name = 'g_h4')
h4 = tf.nn.tanh(h4)
return h4
# In[11]:
def train():
with tf.variable_scope('Gen') as scope:
z = tf.placeholder(tf.float32, shape = [None, z_dim])
z_sum = tf.summary.histogram("z", z)
G = generator(z)
G_sum = tf.summary.image("G", G)
with tf.variable_scope('Disc') as scope:
x = tf.placeholder(tf.float32, shape = [None, 64, 64, 3])
D1 = discriminator(x)
scope.reuse_variables()
D2 = discriminator(G)
d1_sum = tf.summary.histogram("d1", D1)
d2_sum = tf.summary.histogram("d2", D2)
d_loss_real = tf.reduce_mean(-tf.log(D1))
d_loss_fake = tf.reduce_mean(-tf.log(1 - D2))
g_loss = tf.reduce_mean(-tf.log(D2))
d_loss_real_sum = tf.summary.scalar("d_loss_real", d_loss_real)
d_loss_fake_sum = tf.summary.scalar("d_loss_fake", d_loss_fake)
d_loss = d_loss_real + d_loss_fake
g_loss_sum = tf.summary.scalar("g_loss", g_loss)
d_loss_sum = tf.summary.scalar("d_loss", d_loss)
d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = 'Disc')
g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = 'Gen')
d_optim = tf.train.AdamOptimizer(0.0002, beta1 = beta1).minimize(d_loss, var_list = d_params)
g_optim = tf.train.AdamOptimizer(0.001, beta1 = beta1).minimize(g_loss, var_list = g_params)
saver = tf.train.Saver()
config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.6
sess = tf.Session(config = config)
init = tf.global_variables_initializer()
sess.run(init)
g_sum = tf.summary.merge([z_sum, d2_sum, G_sum, d_loss_fake_sum, g_loss_sum])
d_sum = tf.summary.merge([z_sum, d1_sum, d_loss_real_sum, d_loss_sum])
writer = tf.summary.FileWriter(log_dir, sess.graph)
# if load(checkpoint_dir):
# print(" [*] Load SUCCESS")
# else:
# print(" [!] Load failed...")
counter = 1
for epoch in range(max_epoch):
batch_idx = ntrain // batch_size
idx = -1 # each epoch iter time
for imb, in tqdm(tr_stream.get_epoch_iterator(), total = ntrain / batch_size):
idx += 1
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim]).astype(np.float32)
images = transform(imb)
#update D
_, summary_str = sess.run([d_optim, d_sum],
feed_dict = {x: images,
z: batch_z})
writer.add_summary(summary_str, counter)
#update G
_, summary_str = sess.run([g_optim, g_sum],
feed_dict = {z: batch_z})
writer.add_summary(summary_str, counter)
#update G twice
#_, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z})
#writer.add_summary(summary_str, counter)
counter = counter + 1
errD = sess.run(d_loss, {z: batch_z,
x: images})
errG = sess.run(g_loss, {z: batch_z})
print ("Epoch: [%2d] [%4d%4d] d_loss: %.8f, g_loss: %.8f" % (epoch, idx, batch_idx,errD, errG ))
# generate samples
if counter % 100 == 0:
samples, d1_loss, g1_loss = sess.run([G, d_loss, g_loss],
feed_dict = {z: sample_z,
x: sample_inputs})
samples = inverse_transform(samples)
save_images(samples, [4, 8], './{}/train_{:02d}_{:04d}.png'.format(sample_dir, epoch, idx))
print("[Sample] d_loss: %.8f, g_loss: %.8f" % (d1_loss, g1_loss))
# save parameters
if counter % 500 == 0:
save(checkpoint_dir, counter, saver, sess)
sess.close()
# In[12]:
def save(checkpoint_dir, step, saver, sess):
model_name = 'GAN_CNN.model'
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, model_name), global_step = step)
# In[13]:
def load(checkpoint_dir):
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print(" [*] Success to read {}".format(ckpt_name))
return True
else:
print(" [*] Failed to find a checkpoint")
return False
# In[14]:
def main(_):
train()
if __name__ == '__main__':
tf.app.run()
| UTF-8 | Python | false | false | 7,887 | py | 7 | DCGAN_CelebA.py | 7 | 0.563712 | 0.535438 | 0 | 250 | 30.54 | 108 |
rkudache31/django | 2,044,404,474,402 | f295dd77f2144ca4186cb18223731900d4a9decc | 5bc99197b793971c76a69ba78f2db194d47a999a | /homefood/food/migrations/0004_auto_20200517_1434.py | def7407af482f54ec3dcd8b980c021a008d2c5cc | []
| no_license | https://github.com/rkudache31/django | 180abb329ec5b3d1f709616615a1ef7c4d23c08b | 4fab3ba0a1bdf4e0dfd36c24cc66ab195dcb919b | refs/heads/master | 2023-07-17T14:34:36.207475 | 2021-08-25T20:55:28 | 2021-08-25T20:55:28 | 259,901,385 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Generated by Django 3.0.3 on 2020-05-17 09:04
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('food', '0003_item_item_type'),
]
operations = [
migrations.AlterField(
model_name='item',
name='Item_desc',
field=models.CharField(max_length=300),
),
]
| UTF-8 | Python | false | false | 399 | py | 14 | 0004_auto_20200517_1434.py | 7 | 0.551378 | 0.496241 | 0 | 18 | 20.166667 | 51 |
GuyCarver/raspi | 10,668,698,780,839 | 5cbad709642e542f1b7c1cd52d7380055aa20e50 | 6ed530cc9fc7758c1df341c9d624e92539300c6a | /projects/sentrybot/body.py | 9d33418dec75eff09371add799993c2c8bc7b9d7 | []
| no_license | https://github.com/GuyCarver/raspi | aa87bff08969069074a98196574edaa27be8585c | 30dc2b595274cdc5afe07767b584fbb2cfdfa7f1 | refs/heads/master | 2022-11-24T14:05:33.867306 | 2022-11-11T16:20:22 | 2022-11-11T16:20:22 | 109,533,023 | 0 | 0 | null | false | 2020-10-13T04:36:04 | 2017-11-04T21:53:07 | 2020-09-07T15:56:25 | 2020-10-13T04:36:02 | 83,228 | 0 | 0 | 1 | C++ | false | false | #!/usr/bin/env python3
#11/10/2018 11:10 AM
from quicrun import *
from atom import *
#------------------------------------------------------------------------
class part(object):
'''abstract base for a body part. anglepart and speedpart
derive from this to control the value as either a +/-90 deg angle or
0-100 speed.'''
def __init__(self, aPCA, aIndex, aName):
self._pca = aPCA
self._index = aIndex
self._name = aName
self._value = -1.0
self._currentValue = 0.0 #The actual value that may vary from value if rate > 0.
self._rate = 0.0 #Rate of interpolation between _value and _target value.
#This is in units/second. IE: 180 is 180 degrees a second.
self._minmax = self._defminmax
self._center = 0.0
self.value = 0.0 #Set real value and write servo.
self.scale = 1.0 #Scale value
@property
def index( self ): return self._index
@property
def name( self ): return self._name
@property
def center( self ):
return self._center
@center.setter
def center( self, aValue ):
self._center = aValue
@property
def value( self ):
return self._value
@property
def currentValue( self ):
return self._currentValue
@value.setter
def value( self, aValue ):
aValue = min(max(aValue, self._minmax[0] - self._center), self._minmax[1] - self._center)
if aValue != self._value:
self._value = aValue
if self._rate <= 0.0:
self._currentValue = aValue
self.setservo()
@property
def minmax( self ):
return self._minmax
@minmax.setter
def minmax( self, aValue ):
#If tuple just use directly without checking legitimate ranges.
if isinstance(aValue, tuple) or isinstance(aValue, list):
self._minmax = aValue
else:
#otherwise it's considered a single # we use for both min/max.
self._minmax = (max(-aValue, self._defminmax[0]), aValue)
@property
def minmaxforjson( self ):
'''If min == -max then just return max (single value)
otherwise return min/max tuple.'''
if self._minmax[0] == -self._minmax[1]:
return self._minmax[1]
return self._minmax
@property
def rate( self ):
return self._rate
@rate.setter
def rate( self, aValue ):
self._rate = aValue
def off( self ):
'''Turn the servo off.'''
self._pca.off(self._index)
def update( self, aDelta ):
'''Update speed towards target given delta time in seconds.'''
if self._rate > 0.0 and aDelta > 0.0:
diff = self._value - self._currentValue
if abs(diff) > 0.01:
if diff < 0.0:
mm = max
d = -aDelta
else:
mm = min
d = aDelta
diff = mm(self._rate * d, diff)
newvalue = self._currentValue + diff
self._currentValue = mm(newvalue, self._value)
self.setservo()
#------------------------------------------------------------------------
class anglepart(part):
_defminmax = (-100.0, 100.0)
'''Body part that uses an angle value from -90 to 90.'''
def __init__( self, aPCA, aIndex, aName ):
super(anglepart, self).__init__(aPCA, aIndex, aName)
def setservo( self ):
'''Set the servo to current angle.'''
self._pca.setangle(self._index, int(self._currentValue + self._center))
#------------------------------------------------------------------------
class speedpart(part):
_defminmax = (0.0, 100.0)
'''Body part that uses a speed value from 0-100.'''
def __init__( self, aPCA, aIndex, aName ):
super(speedpart, self).__init__(aPCA, aIndex, aName)
def setservo( self ):
'''Set the servo to current speed.'''
v = int(self._currentValue + self._center)
# print('setting', v)
self._pca.set(self._index, v)
#------------------------------------------------------------------------
_ANGLE, _SPEED, _MOTOR, _ATOM = range(4)
_CONSTRUCTORS = {_ANGLE : anglepart, _SPEED : speedpart, _MOTOR : quicrun, _ATOM : atom}
#Default data used to initialize the parts. This will be
# modified by the json data.
#Name, Servo #, Type, Rate, Trim, Range (min, max) or minmax.
_defaultdata = (
("TORSO", 8, _ANGLE, 0.0, 0.0, 90.0),
("HEAD_H", 0, _ANGLE, 0.0, 0.0, 90.0),
("HEAD_V", 1, _ANGLE, 0.0, 0.0, 30.0),
("LARM_H", 2, _ANGLE, 0.0, 0.0, 90.0),
("LARM_V", 3, _ANGLE, 0.0, 0.0, 90.0),
("RARM_H", 5, _ANGLE, 0.0, 0.0, 90.0),
("RARM_V", 6, _ANGLE, 0.0, 0.0, 90.0),
("LLEG", 9, _MOTOR, 20.0, 0.0, 20.0),
("RLEG", 10, _MOTOR, 20.0, 0.0, 20.0),
("GUN", 11, _MOTOR, 25.0, 0.0, (0.0, 100.0)),
("MISSILES", 12, _ANGLE, 10.0, 0.0, 10.0),
("SMOKE", 15, _MOTOR, 1000.0, 0.0, (50.0, 100.0)),
)
_numparts = len(_defaultdata)
_TORSO, _HEAD_H, _HEAD_V, \
_LARM_H, _LARM_V, \
_RARM_H, _RARM_V, \
_LLEG, _RLEG, \
_GUN, _MISSILES, _SMOKE = range(_numparts)
_parts = [None] * _numparts
_initdata = None
def partindex( aName ):
for i, v in enumerate(_defaultdata):
if v[0] == aName:
return i
raise Exception("Part {} not found.".format(aName))
def getpart( aIndex ):
return _parts[aIndex]
def parttype( aPart ):
'''Get part type constructor enum from part type.'''
tp = type(aPart)
for t in _CONSTRUCTORS.items():
if t[1] == tp:
return t[0]
raise Exception('Unknown part type {}.', tp)
def saveparts( aData ):
'''Save part data for each part into the given json dictionary.'''
def makeentry(i, p):
return (_defaultdata[i][0], p.index, parttype(p), p.rate, p.center, p.minmaxforjson)
data = [makeentry(i, p) for i, p in enumerate(_parts)]
aData['parts'] = data
def loadparts( aData ):
'''Load data from given json dictionary.'''
global _initdata
try:
_initdata = aData['parts']
except:
pass
def initparts( aPCA ):
'''Initialize the parts from the _initdata dictionary.
If that is None, use default data.'''
global _initdata
if _initdata == None:
_initdata = _defaultdata
#Create part for given part data.
for pdata in _initdata:
name, index, typ, rate, center, minmax = pdata
part = _CONSTRUCTORS[typ](aPCA, index, name)
part.rate = rate
part.minmax = minmax
part.center = center
part.value = center
pi = partindex(name)
_parts[pi] = part
def setmotordata( aIndex, aRate, aMinMax ):
'''Set the motor data on a part.'''
_parts[aIndex].rate = aRate
_parts[aIndex].minmax = aMinMax
def updateparts( aDelta ):
'''Iterate through parts and call update.'''
for p in _parts:
p.update(aDelta)
def off( aIndex = -1 ):
'''Turn given part off. If no part index given, turn all of them off.'''
if aIndex >= 0:
if _parts[aIndex]:
_parts[aIndex].off()
else:
for p in _parts:
if p:
p.off()
from pca9685 import *
def test( ):
p = pca9865(100)
sleep(2.0)
a = anglepart(p, 5, 'test')
a.minmax = 90.0
a.rate = 90.0
mn, mx = a.minmax
def waitforit( part, aDir, aTarget ):
a.value = aTarget
while(part.currentValue != aTarget):
print(part.currentValue, aTarget)
sleep(0.01)
part.update(0.01 * aDir)
waitforit(a, 1.0, mx)
waitforit(a, 1.0, mn)
a.off()
print('done')
#------------------------------------------------------------------------
if __name__ == '__main__': #Run tests.
test() | UTF-8 | Python | false | false | 7,356 | py | 156 | body.py | 120 | 0.566476 | 0.535481 | 0 | 272 | 26.047794 | 107 |
yuliyabirman/pynd-pubs | 7,550,552,538,196 | 34d0234ec6184516c58f474cfa89514a3adb9ee6 | fd7b81162c68cd1b78fedc1caec829fbebe3dc38 | /src/calc_fitness.py | f3f777a73038dfd3986083bd9f6c7f1b106a72f3 | [
"Apache-2.0"
]
| permissive | https://github.com/yuliyabirman/pynd-pubs | 938972a62934c1771c081a9dba72b1f513a964c3 | 61ee54f152343689169e1e6664edea94beed37cc | refs/heads/master | 2020-12-14T08:53:07.440864 | 2015-11-11T17:16:34 | 2015-11-11T17:16:34 | 45,495,227 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import math
import sys
import pickle
import numpy
from scipy import stats
import os
homedir = os.path.expanduser('~')
def calc_ratio(frequencies):
# find mutant positions
# find WT positions
# map residue positions to mutants and WT
WT_frequency = None
mutant_frequencies = {}
for key, frequency in frequencies.items():
codon = key[1]
if codon == 'WT':
assert WT_frequency == None
WT_frequency = frequency
else:
mutant_frequencies[key] = frequency
# calculate ratio
#ratio = mutant_frequency / WT_frequency
# calculate the ratio of each single-codon mutation relative to the wild-type sequence for each time point on a log2 scale
return {key: numpy.log2(value / float(WT_frequency)) for key, value in mutant_frequencies.items()}
def load_ratios(pickle_file):
with open(pickle_file, 'rb') as f:
freqs = pickle.load(f)
return calc_ratio(freqs)
def calc_regression(times, ratio_list):
# get list of mutants to iterate over
# this will be the union of the mutants across all of the time points
mutants = set()
for ratios in ratio_list:
for mutant, ratios in ratios.items():
mutants.add(mutant)
slopes = {}
# now calculate a regressino for each mutant
for mutant in mutants:
# get ratios with 0.0 for mutants that are not found
new_ratios = []
for ratios in ratio_list:
if mutant in ratios:
new_ratios.append(ratios[mutant])
else:
new_ratios.append(0)
slope, intercept, r_value, p_value, std_err = stats.linregress(times, new_ratios)
slopes[mutant] = slope
return slopes
# TODO: Stop hardcoding
def main(args):
test_name = args[1]
# Day 1, timepoints T0, T1, T2
# for each residue position, find log2 ratio for each time point
# load input files containing the residue position, codon, and frequency
ratios_0 = load_ratios(homedir + "/populations/pop0_" + test_name + "_0.pkl")
ratios_1 = load_ratios(homedir + "/populations/pop1_" + test_name + "_1.pkl")
ratios_2 = load_ratios(homedir + "/populations/pop2_" + test_name + "_2.pkl")
ratios_3 = load_ratios(homedir + "/populations/pop3_" + test_name + "_3.pkl")
ratios_4 = load_ratios(homedir + "/populations/pop4_" + test_name + "_4.pkl")
ratios_5 = load_ratios(homedir + "/populations/pop5_" + test_name + "_5.pkl")
times_day_1 = [0, 2.43, 4.11]
times_day_2 = [0, 2.02, 4.16]
fitness_day_1 = calc_regression(times_day_1, [ratios_0, ratios_1, ratios_2])
fitness_day_2 = calc_regression(times_day_2, [ratios_3, ratios_4, ratios_5])
pickle.dump(fitness_day_1, open(homedir + '/fitness/' + test_name + '_fitness_day_1', 'wb'))
pickle.dump(fitness_day_2, open(homedir + '/fitness/' + test_name + '_fitness_day_2', 'wb'))
# determine selection coefficient, s, for each mutation
# by finding the slope of this ratio to time in WT generations
if __name__ == '__main__':
import sys
main(sys.argv)
| UTF-8 | Python | false | false | 2,931 | py | 22 | calc_fitness.py | 19 | 0.67349 | 0.653019 | 0 | 93 | 30.516129 | 124 |
MrLinNing/FoolsGold | 1,511,828,500,397 | 2a6e62bbbb27a12b552842a5483993f7f29172bc | 501f11db8449149dfe84474b23b56433859bfb49 | /ccs19-eval/vggface-iid-heatmap/iid_heatmap.py | f833180d6ba585bce3f0d99bbb870187e7c6e195 | []
| no_license | https://github.com/MrLinNing/FoolsGold | eff28c036591c06dacb0d59f00e7999fff1c7b54 | db25670a0502d879ffda018992280248a7e1b2b8 | refs/heads/master | 2021-01-05T16:21:05.216670 | 2019-05-16T02:49:10 | 2019-05-16T02:49:10 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
import seaborn as sns
import matplotlib.pylab as plt
import re
import pdb
import pandas as pd
def plot():
toplot = np.zeros((5, 5))
props = [0, 25, 50, 75, 100]
df = pd.read_csv("squeeze-heatmap.csv", header=None)
toplot = df.values
sns.set(font_scale=1.4)
ax = sns.heatmap(toplot,
linewidth=0.5,
annot=True,
annot_kws={"size": 14},
fmt=".3f",
center=0,
cmap='Greys',
xticklabels=props,
yticklabels=props,
vmin=0,
vmax=1
)
plt.xlabel("Honest Shared Data Proportion", fontsize=18)
plt.ylabel("Sybil Shared Data Proportion", fontsize=18)
plt.tight_layout(pad=0.1)
plt.savefig("vgg_iid_heatmap.pdf")
plt.show()
if __name__ == "__main__":
plot()
| UTF-8 | Python | false | false | 809 | py | 100 | iid_heatmap.py | 12 | 0.578492 | 0.543881 | 0 | 40 | 19.225 | 60 |
arkster/gmusic | 2,216,203,134,664 | 7d10d75a38d594b62b57ffc49327e9b37ed3964e | 43d12e8cea8d65d499cd674e0aec7993feac7e2d | /gmusic/media_resources.py | fd66f7cae44c15037891fb3fc26f11d12ee9a305 | []
| no_license | https://github.com/arkster/gmusic | 1ad082cdffc53f5e4b8be9a02dcd1a69d87eeadc | aa817bd14a8f9995e846784eeeecc9735b3545b4 | refs/heads/master | 2021-08-18T02:46:38.452230 | 2020-03-31T05:03:24 | 2020-03-31T05:03:24 | 146,410,728 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
"""
gmusic.media_resources
~~~~~~~~~~~~~~~~~~~~~~
This module queries various radio stations to gather recently played songs on their playlists
"""
from datetime import datetime, timedelta
from random import randint
import asyncio
import aiohttp
import requests
from bs4 import BeautifulSoup
import box
class MediaResources(object):
"""
Main class that queries for songs
"""
def __init__(self, timestamp=None, steps=None):
if not steps:
self.steps = 50000
else:
self.steps = steps
if timestamp:
self.timestamp = timestamp
else:
self.timestamp = None
self.music_list = []
self.radio_stations = {
'cbs_stations': {
'params':
[['action', 'playlist'], ['type', 'json'], ['before']]
,
'headers': {
'DNT': '1',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
'Accept': '*/*',
'Referer': 'http://{}.cbslocal.com/playlist',
'X-Requested-With': 'XMLHttpRequest',
'Connection': 'keep-alive',
},
'urls': {
'wxrt': 'http://wxrt.cbslocal.com/playlist/',
'x1075lasvegas': 'http://x1075.cbslocal.com/playlist',
'kroq': 'http://www.roq.com/playlist/',
'live105': 'http://www.live.com/playlist/',
},
'interval': self.steps * 4,
},
'tunegenie': {
'params': [['since', '2017-08-08T17:00:00-05:00'], ['until', '2017-08-08T18:59:59-05:00']],
'headers': {
'DNT': '1',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
'Accept': '*/*',
'Referer': 'http://{}.tunegenie.com/onair/',
'X-Requested-With': 'XMLHttpRequest',
'Connection': 'keep-alive',
},
'urls': {
'wwyy': 'http://wwyy.tunegenie.com/api/v1/brand/nowplaying/',
'wkqx': 'http://wkqx.tunegenie.com/api/v1/brand/nowplaying/'
},
'interval': self.steps * 4,
},
'iheart': {
'stations': ['star1019', 'dc101'],
# 'stations': ['dc101'],
'data':
[['nextPageToken', 'token'], ['template', 'playlist'], ['offset', '0'],
['limit', '150000'], ],
'headers': {
'DNT': '1',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.8',
'Upgrade-Insecure-Requests': '1',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'Cache-Control': 'max-age=0',
'Connection': 'keep-alive',
},
'next_headers': {
'origin': 'https://{}.iheart.com',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'en-US,en;q=0.8',
'x-requested-with': 'XMLHttpRequest',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36',
'content-type': 'application/x-www-form-urlencoded; charset=UTF-8',
'accept': 'text/html, */*; q=0.01',
'referer': 'https://{}.iheart.com/gmusic/recently-played/',
'dnt': '1',
},
'url': 'https://{}.iheart.com/gmusic/recently-played/',
'next_url': 'https://{}.iheart.com/api/gmusic/load_more/'
}
}
def get_iso_time(self, interval):
now = datetime.now()
for i in range(0, self.steps):
t = now.replace(microsecond=0) - timedelta(hours=interval, minutes=randint(0, 9))
yield t.isoformat()
now = t
def wrapper(self, func, interval):
""" Coroutine wrapper"""
yield from func(interval)
def parse_cbs_station_data(self, data):
""" Adds songs to list for cbs stations """
for each_data in data:
box_data = box.Box(each_data)
for each_song in box_data.data.recentEvents:
self.music_list.append([each_song.artist, each_song.title])
def parse_tunegenie_data(self, data):
""" Adds songs to list for tunegenie stations"""
for each in data:
mbox = box.Box(each)
for eachlist in mbox.response:
if eachlist.artist.startswith('Weekdays,') or eachlist.artist.startswith(
"The Valley's") or eachlist.artist.startswith("Sundays,"):
continue
self.music_list.append([eachlist.artist, eachlist.song])
def run_synchronous_process(self):
""" Routine to scrape recently played song title/artist info in synchronous mode"""
box_radio_stations = box.Box(self.radio_stations)
for station in box_radio_stations.iheart.stations:
content = requests.get(box_radio_stations.iheart.url.format(station),
headers=box_radio_stations.iheart.headers).content
soup = BeautifulSoup(content, 'html.parser', from_encoding='utf-8')
for songinfo in [each.attrs['alt'] for each in soup.find_all() if 'alt' in each.attrs]:
songdetails = songinfo.split(' - ')[::-1]
if songdetails[0].startswith("Hawaii's Alternative") or songdetails[0].startswith('STATION_LOGO') or \
songdetails[0].startswith('{{') or songdetails[0].startswith('iHeartRadio') or songdetails[
0].startswith('Sundays,'):
continue
self.music_list.append(songdetails)
token = \
[each.attrs['data-nextpagetoken'] for each in soup.find_all() if 'data-nextpagetoken' in each.attrs][0]
data = box_radio_stations.iheart.data
interval = box_radio_stations.tunegenie.interval
data[0][1] = token
data[3][1] = interval
url = box_radio_stations.iheart.next_url.format(station)
box_radio_stations.iheart.next_headers.origin = box_radio_stations.iheart.next_headers.origin.format(
station)
iheart_next_content = requests.post(url, headers=box_radio_stations.iheart.next_headers, data=data).content
next_soup = BeautifulSoup(iheart_next_content, 'html.parser', from_encoding='utf-8')
for songinfo in [each.attrs['alt'] for each in next_soup.find_all() if 'alt' in each.attrs]:
songdetails = songinfo.split(' - ')[::-1]
if songdetails[0].startswith("Hawaii's Alternative") or songdetails[0].startswith('STATION_LOGO') or \
songdetails[0].startswith('{{') or songdetails[0].startswith('iHeartRadio') or songdetails[
0].startswith('Sundays,'):
continue
self.music_list.append(songdetails)
async def fetch(self, headers, url, client, params=None, station=None, until=None, since=None):
""" Async fetch method to retrieve song data from urls
:param headers: dict connection header
:param url: string url
:param client: Async client session object
:param params: dict connection parameters
:param station: string station name
:param until: datetime time stamp
:param since: datetime time stamp
:returns coroutine json object
"""
if station == 'tunegenie':
if until:
params[1][1] = until
else:
until = params[0][1]
params[0][1], params[1][1] = since, until
elif station == 'cbs_stations':
params[2][1] = since
async with client.get(url, params=params, headers=headers) as resp:
assert resp.status == 200
return await resp.json()
async def run_loop(self, loop, headers, url, params=None, station=None, interval=None):
""" Async run loop method to fetch data
:param loop: Asyncio event loop
:param headers: dict connection header
:param url: string url
:param params: dict connection parameters
:param station: string station name
:param interval: dict number of iterations to loop through
:returns coroutine asyncio response
"""
until = None
wrap = None
since = None
if station == 'cbs_stations':
if len(params[-1]) == 1:
params[-1].append(self.timestamp)
wrap = self.wrapper(self.get_iso_time, interval)
elif station == 'tunegenie':
wrap = self.wrapper(self.get_iso_time, interval)
tasks = []
async with aiohttp.ClientSession(loop=loop) as client:
for i in range(self.steps):
if station == 'cbs_stations':
since = next(wrap)
elif station == 'tunegenie':
if self.timestamp is None:
until = datetime.now().replace(microsecond=0).isoformat()
since = next(wrap)
task = asyncio.ensure_future(self.fetch(headers, url, client, params, station,
until=until if self.timestamp is None else None,
since=since))
tasks.append(task)
self.timestamp = until
responses = await asyncio.gather(*tasks)
return responses
| UTF-8 | Python | false | false | 10,602 | py | 6 | media_resources.py | 5 | 0.518676 | 0.495284 | 0 | 246 | 42.097561 | 142 |
TJCrisostomo/Automation | 816,043,817,422 | a8fde6a48ba58f76e88e7e713cab2849bbd3baf8 | 81761e416c6164d13c2da6d793d282ce8bc1e3c3 | /myconfig.py | 947e7947c397bf27d8d9254c3f30d1278c44dbc4 | []
| no_license | https://github.com/TJCrisostomo/Automation | 46c9618d825972dfcf0284c61c040df9c86a2465 | 3743b6b8ba34b336849bc5fc89ece96d909ea91e | refs/heads/master | 2021-01-19T09:48:47.265655 | 2017-02-16T08:27:07 | 2017-02-16T08:27:07 | 82,141,378 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # myconfig.py:
var_username = '0468827174'
var_password = 'theHoff34'
var_url = 'https://accounts.amaysim.com.au'
| UTF-8 | Python | false | false | 115 | py | 3 | myconfig.py | 2 | 0.713043 | 0.608696 | 0 | 5 | 22 | 43 |
larry1101/Tesselladou | 1,846,835,952,728 | 4041d518e99f306d9113b45b69e9b335a745169e | 400d2d336d9e3d86ad010e60e1994c786ff4138b | /tessellat.py | 258fee8e35f1523159e77d7baf7b17592ad3e4f1 | []
| no_license | https://github.com/larry1101/Tesselladou | 505cc45a70810a44bb55babb915fd4a5a1974ffa | 516a7dfcfbeb8748ceb1e17e00314350f27ec792 | refs/heads/master | 2021-05-05T23:25:42.019447 | 2018-01-09T07:07:08 | 2018-01-09T07:07:08 | 116,675,742 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import random
import svgwrite
from svgwrite.container import Defs
from svgwrite.gradients import LinearGradient
from svgwrite.shapes import Polygon
fosu = ['#F0FFFD', '#97FBE7', '#53F0C9', '#33BD9B', '#2BA473', '#41D6BF', '#39CDDD',
'#C1FDDE', '#42FF80', '#30C965', '#26C168', '#31D9B3',
]
shinnsha = ['#FF0202', '#FF3C3C', '#F2655E', '#FA8B8B', '#F9B0AC', '#FCDCDA',
'#FB0F26', '#FD3145', '#FC495B', '#FD6C7B', '#F84040', '#FF9EA6',
'#AD0310', '#CF0312', '#B41612']
anntaku = ['#C0C0C0', '#C8CBDE', '#DBE3E2', '#D1D7CC', '#5E6377',
'#DDDDDD', '#C9CDE0', '#CBD3D2', '#C1C7BC', '#7E8397',
'#FFFFFF']
diamond = ['#FF0000', '#FBFB3C', '#13EC18', '#0E02FE', '#6803C2',
'#DDDDDD', '#C9CDE0', '#CBD3D2', '#C1C7BC', '#7E8397',
'#FFFFFF']
tiger = ['#F1DD25', '#F5E86B', '#F9EF9B', '#FDF9D2', '#F4E451',
'#F2B026', '#F3BA43', '#F4C560', '#F7CF7D', '#FBB779',
'#C05F05', '#C59A05', '#AE561C', '#DC6C07', '#B32B09']
sakura = ['#F86381', '#FD6A88', '#FC6382', '#FD718C', '#FD869D',
'#FD97AB', '#FEB1C0', '#FEDEE4', '#FEDEDE', '#FEC9C9',
'#F73E63', '#D2022C', '#CB032C', '#F85C6C', '#FCCCD1']
colors = {'fosu': fosu, 'shinnsha': shinnsha, 'anntaku': anntaku, 'diamond': diamond,'tiger':tiger,'sakura':sakura}
using_color = 'fosu'
dwg = svgwrite.Drawing('%s.svg' % using_color)
patternize = True
pattern_labels_cnt = 2
pattern_file_name = '%s.bmp'%using_color
# pattern_file_name = 'doudou.bmp'
if patternize:
from skimage import io
img = io.imread(pattern_file_name)
width = img.shape[1]
height = img.shape[0]
step_min = 11
step_max = 23
triangle_leftest = 20
else:
width = 1000
height = 600
step_min = 17
step_max = 43
triangle_leftest = 13
uni_left = True
have_gradient = False
gradient_cnt = 3
center_y_rand = True
if patternize:
import math
def get_rgb(rgb_str):
return int(rgb_str[1:3], 16), int(rgb_str[3:5], 16), int(rgb_str[5:], 16)
def hsv2rgb(hsv):
h = float(hsv[0])
s = float(hsv[1])
v = float(hsv[2])
h60 = h / 60.0
h60f = math.floor(h60)
hi = int(h60f) % 6
f = h60 - h60f
p = v * (1 - s)
q = v * (1 - f * s)
t = v * (1 - (1 - f) * s)
r, g, b = 0, 0, 0
if hi == 0:
r, g, b = v, t, p
elif hi == 1:
r, g, b = q, v, p
elif hi == 2:
r, g, b = p, v, t
elif hi == 3:
r, g, b = p, q, v
elif hi == 4:
r, g, b = t, p, v
elif hi == 5:
r, g, b = v, p, q
r, g, b = int(r * 255), int(g * 255), int(b * 255)
return r, g, b
def rgb2hsv(rgb):
if isinstance(rgb, tuple):
r = rgb[0]
g = rgb[1]
b = rgb[2]
else:
raise Exception('Need rgb tuple')
r, g, b = r / 255.0, g / 255.0, b / 255.0
mx = max(r, g, b)
mn = min(r, g, b)
df = mx - mn
if mx == mn:
h = 0
elif mx == r:
h = (60 * ((g - b) / df) + 360) % 360
elif mx == g:
h = (60 * ((b - r) / df) + 120) % 360
elif mx == b:
h = (60 * ((r - g) / df) + 240) % 360
else:
raise Exception('rgb2hsv error')
if mx == 0:
s = 0
else:
s = df / mx
v = mx
return h, s, v
def divide_colors():
for colors_series in colors:
v_tmp = []
for color in colors[colors_series]:
v_tmp.append(rgb2hsv(get_rgb(color))[2])
v_max = max(v_tmp)
v_min = min(v_tmp)
v_d = (v_max - v_min) / pattern_labels_cnt
color_series_tmp = {}
for label in range(pattern_labels_cnt):
color_series_tmp[label] = []
for v_index in range(len(v_tmp)):
try:
color_series_tmp[int((v_tmp[v_index] - v_min) / v_d)].append(colors[colors_series][v_index])
except KeyError:
color_series_tmp[int((v_tmp[v_index] - v_min) / v_d) - 1].append(colors[colors_series][v_index])
colors[colors_series] = color_series_tmp
divide_colors()
def get_color(points):
if patternize:
x_sum = 0
y_sum = 0
for point in points:
x_sum += point[0]
y_sum += point[1]
x_avg = int(x_sum / len(points))
y_avg = int(y_sum / len(points))
img_col_ref = img[y_avg][x_avg]
hsv = rgb2hsv((img_col_ref[0], img_col_ref[1], img_col_ref[2]))
label = int(hsv[2] / (1 / pattern_labels_cnt))
try:
return random.sample(colors[using_color][label], 1)[0]
except KeyError:
return random.sample(colors[using_color][label - 1], 1)[0]
else:
return random.sample(colors[using_color], 1)[0]
if have_gradient:
defs = Defs(id='gradients')
colors_gradient = []
gradient_direction = [(1, 1), (0, 1), (1, 0)]
for gradient_index in range(gradient_cnt):
l_g = LinearGradient((0, 0), random.choice(gradient_direction), id='gradient_%d' % gradient_index)
l_g.add_colors(random.sample(colors[using_color], 2))
defs.add(l_g)
colors_gradient.append('url(#gradient_%d)' % gradient_index)
colors[using_color] += colors_gradient
dwg.add(defs)
# start
x_p0 = []
for i in range(triangle_leftest + 1):
x_p0.append(0)
if uni_left:
y_p0 = []
for i in range(triangle_leftest + 1):
y_p0.append(int(height / triangle_leftest * i))
else:
y_p0 = random.sample(range(1, height), triangle_leftest - 1)
y_p0.sort()
y_p0.insert(0, 0)
y_p0.append(height)
p0 = list(zip(x_p0, y_p0))
while True:
x_p0_max = max(x_p0)
if width - x_p0_max > step_max:
x_p2 = []
for i in range(triangle_leftest):
x_p2.append(random.randint(step_min, step_max))
for i in range(len(x_p2)):
x_p2[i] += x_p0_max
y_p2 = []
for i in range(1, len(y_p0)):
if center_y_rand:
d = y_p0[i] - y_p0[i - 1]
y_p2.append(random.randint(y_p0[i - 1] + int(0.45 * d), y_p0[i - 1] + int(0.55 * d)))
else:
y_p2.append(random.randint(y_p0[i - 1], y_p0[i] - 1))
p2 = list(zip(x_p2, y_p2))
for i in range(len(p2)):
dwg.add(Polygon([p0[i], p2[i], p0[i + 1]], fill=get_color([p0[i], p2[i], p0[i + 1]])))
for i in range(len(p2) - 1):
dwg.add(Polygon([p2[i], p0[i + 1], p2[i + 1]], fill=get_color([p2[i], p0[i + 1], p2[i + 1]])))
x_p2_max = max(x_p2)
if width - x_p2_max > step_max:
x_p1 = []
for i in range(triangle_leftest + 1):
x_p1.append(random.randint(step_min, step_max))
for i in range(len(x_p1)):
x_p1[i] += x_p2_max
y_p1 = []
for i in range(1, len(y_p2)):
if center_y_rand:
d = y_p2[i] - y_p2[i - 1]
y_p1.append(random.randint(y_p2[i - 1] + int(0.45 * d), y_p2[i - 1] + int(0.55 * d)))
else:
y_p1.append(random.randint(y_p2[i - 1], y_p2[i] - 1))
y_p1.insert(0, 0)
y_p1.append(height)
p1 = list(zip(x_p1, y_p1))
for i in range(len(p2)):
dwg.add(Polygon([p1[i], p2[i], p1[i + 1]], fill=get_color([p1[i], p2[i], p1[i + 1]])))
for i in range(len(p2) - 1):
dwg.add(Polygon([p2[i], p1[i + 1], p2[i + 1]], fill=get_color([p2[i], p1[i + 1], p2[i + 1]])))
dwg.add(Polygon([p0[0], p1[0], p2[0]], fill=get_color([p0[0], p1[0], p2[0]])))
dwg.add(Polygon([p0[-1], p1[-1], p2[-1]], fill=get_color([p0[-1], p1[-1], p2[-1]])))
else:
x_p1 = []
for i in range(triangle_leftest + 1):
x_p1.append(width)
y_p1 = []
for i in range(1, len(y_p2)):
if center_y_rand:
d = y_p2[i] - y_p2[i - 1]
y_p1.append(random.randint(y_p2[i - 1] + int(0.45 * d), y_p2[i - 1] + int(0.55 * d)))
else:
y_p1.append(random.randint(y_p2[i - 1], y_p2[i] - 1))
y_p1.insert(0, 0)
y_p1.append(height)
p1 = list(zip(x_p1, y_p1))
for i in range(len(p2)):
dwg.add(Polygon([p1[i], p2[i], p1[i + 1]], fill=get_color([p1[i], p2[i], p1[i + 1]])))
for i in range(len(p2) - 1):
dwg.add(Polygon([p2[i], p1[i + 1], p2[i + 1]], fill=get_color([p2[i], p1[i + 1], p2[i + 1]])))
dwg.add(Polygon([p0[0], p1[0], p2[0]], fill=get_color([p0[0], p1[0], p2[0]])))
dwg.add(Polygon([p0[-1], p1[-1], p2[-1]], fill=get_color([p0[-1], p1[-1], p2[-1]])))
break
else:
x_p2 = []
for i in range(triangle_leftest):
x_p2.append(width)
y_p2 = []
for i in range(1, len(y_p0)):
if center_y_rand:
d = y_p0[i] - y_p0[i - 1]
y_p2.append(random.randint(y_p0[i - 1] + int(0.45 * d), y_p0[i - 1] + int(0.55 * d)))
else:
y_p2.append(random.randint(y_p0[i - 1], y_p0[i] - 1))
p2 = list(zip(x_p2, y_p2))
for i in range(len(p2)):
dwg.add(Polygon([p0[i], p2[i], p0[i + 1]], fill=get_color([p0[i], p2[i], p0[i + 1]])))
for i in range(len(p2) - 1):
dwg.add(Polygon([p2[i], p0[i + 1], p2[i + 1]], fill=get_color([p2[i], p0[i + 1], p2[i + 1]])))
dwg.add(Polygon([p0[0], (width, 0), p2[0]], fill=get_color([p0[0], (width, 0), p2[0]])))
dwg.add(Polygon([p0[-1], (width, height), p2[-1]], fill=get_color([p0[-1], (width, height), p2[-1]])))
break
x_p0 = x_p1.copy()
y_p0 = y_p1.copy()
p0 = list(zip(x_p0, y_p0))
dwg.save()
| UTF-8 | Python | false | false | 10,060 | py | 7 | tessellat.py | 2 | 0.46829 | 0.400795 | 0 | 302 | 32.311258 | 116 |
brianlee389/twilioadapter | 3,796,751,102,717 | c48c0ee931fe8f674910e40ee60c7f2fd2af8b28 | ecfcfa6c3df973f04741e2e12eacccf3bb6ecb21 | /main.py | 3c497499e55bfbd057b309264bf727df897b56fd | []
| no_license | https://github.com/brianlee389/twilioadapter | f3246e2cb29b2d80a3de32f1033317ea1bb46be5 | 26628df29484b4f7078185f0d5a4c04c75e9db2a | refs/heads/master | 2023-01-12T08:17:03.828937 | 2016-04-17T08:07:55 | 2016-04-17T08:07:55 | 56,425,799 | 0 | 0 | null | false | 2022-12-26T20:15:04 | 2016-04-17T08:06:33 | 2016-04-17T08:09:43 | 2022-12-26T20:15:02 | 24 | 0 | 0 | 17 | Python | false | false | #!/usr/bin/env python
import os
import sys
from flask import Flask, request, redirect, jsonify
from twilio.rest import TwilioRestClient
from twilio.util import RequestValidator
from flask import Flask, request, redirect, jsonify
from twilio.rest import TwilioRestClient
from twilio.util import RequestValidator
# Find these values at https://twilio.com/user/account
account_sid = "ACebc67b30866a5d17990ecc0ea0951953"
auth_token = "5332e7343302db39102d795722a3e867"
# secret - 5nnti0xNBNq8u2DUadAzuNztNjlkGF7C
app = Flask(__name__)
@app.route("/", methods=['GET'])
def send_text():
phone = str(request.args.get("phone"))
level = int(request.args.get("level"))
score = int(request.args.get("score"))
message = ""
if phone == None or level == None:
message = message + "Missing arguments"
return (message, 404, "")
if len(phone) != 9 and len(phone) != 10:
message = message + "Invalid phone number"
return (message, 404, "")
leveldescription = "You passed level 1"
if level == 1:
leveldescription = "You passed level 1"
elif level == 2:
leveldescription = "You passed level 2"
elif level == 3:
leveldescription = "You passed level 3"
else:
message = message + " and Invalid level number."
return (message, 404, "")
leveldescription = str(leveldescription) + " with a score of " + str(score)
client = TwilioRestClient(account_sid, auth_token)
message = client.messages.create(to=phone, from_="+17325154058", body=leveldescription)
return ('All good', 200, "")
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=5000)
#if __name__ == "__main__":
# os.environ.setdefault("DJANGO_SETTINGS_MODULE", "gettingstarted.settings")
# from django.core.management import execute_from_command_line
# execute_from_command_line(sys.argv)
| UTF-8 | Python | false | false | 1,794 | py | 3 | main.py | 1 | 0.710702 | 0.658863 | 0 | 59 | 29.389831 | 88 |
kpapag/hua_hospitalServices | 5,480,378,316,195 | 2a02489820d17f2a1ae3f6035910eae241002821 | 023a951bad97aea0b0aba746489805d9353a7c5a | /VirtualEnviromentDjango/hospitalPoject/__init__.py | 3b7f2c4e43239afdf43a2fcbb7bcf7706e2b27ec | []
| no_license | https://github.com/kpapag/hua_hospitalServices | a0b4f37f871c4d14836cb0a3f80494f132a32cd3 | 4303a68d18630c16b7ef842cfd712900cbe406e2 | refs/heads/master | 2021-05-29T15:45:25.945523 | 2015-06-15T18:50:29 | 2015-06-15T18:50:29 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | __author__ = 'abaoubas'
| UTF-8 | Python | false | false | 24 | py | 78 | __init__.py | 31 | 0.583333 | 0.583333 | 0 | 1 | 23 | 23 |
HutchieV/UIRS | 16,372,415,353,877 | 45e87a4385c3a144cfcb601b820ced0f384fb15d | a879bfe59bcf8b820e52d4a7b42b83a742d970c8 | /data/print_decorator.py | ffc1d3a9238600b494a276cdf9f867fc472627f1 | [
"Apache-2.0"
]
| permissive | https://github.com/HutchieV/UIRS | 7ec9f223197de9ef1a42490dc5b6a7bf9326938e | a9d66b6890986445f9060c6e579e8af70d814ada | refs/heads/main | 2023-04-11T04:48:35.038345 | 2021-04-21T14:35:20 | 2021-04-21T14:35:20 | 329,394,319 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from datetime import datetime
class PrintDecorator():
"""
Contains a print decorator for printing time, thread/class, and debug
messages.
"""
def __init__(self, sid=None, pd=False):
if sid:
self.script_id = "[{}]".format(sid)
else:
self.script_id = sid
self.print_debug = pd
def get_time_str(self, v):
if v:
return "[{}]".format(datetime.now().strftime('%H:%M:%S'))
else:
return ""
def get_sid(self, v):
if v:
return self.script_id
else:
return ""
def print_decorator(self, func):
"""
Decorator used to amend the current time to the
start of all calls to print()
"""
def wrapped_func(*args,**kwargs):
debug_id = ""
start_chars = ""
print_time = True
print_sid = True
if "debug" in kwargs:
del kwargs["debug"]
if self.print_debug:
debug_id = " *** debug ***"
else:
return
if "time" in kwargs:
print_time = kwargs["time"]
del kwargs["time"]
if "start" in kwargs:
start_chars = kwargs["start"]
del kwargs["start"]
if "title" in kwargs:
print_sid = kwargs["title"]
del kwargs["title"]
return func("{}{}{}{}".format(start_chars,
self.get_time_str(print_time),
self.get_sid(print_sid),
debug_id),*args,**kwargs)
return wrapped_func
def set_debug(self, debug):
"""
Sets whether or not this class prints debug messages.
"""
self.print_debug = debug
def get_debug(self):
return self.print_debug | UTF-8 | Python | false | false | 1,692 | py | 20 | print_decorator.py | 15 | 0.524823 | 0.524823 | 0 | 71 | 22.84507 | 72 |
dinopetrone/chelseacourtdesigns | 18,915,035,989,384 | a5a8404c74e021f76917fbafd8dbd096f3b855e7 | b650950faa18e9104b17135eba6778247f4de422 | /www/home_carousel/models.py | 59e637d76e25371dbe9b81b4c53de3690726a2eb | []
| no_license | https://github.com/dinopetrone/chelseacourtdesigns | f378bd79667f95000eb9b949c70feb84165f01c2 | edce009401ec3e292304bef7519db1a99a3eb8d3 | refs/heads/master | 2021-06-11T10:28:06.450297 | 2012-08-03T03:49:46 | 2012-08-03T03:49:46 | 5,276,188 | 0 | 0 | null | false | 2021-06-10T17:39:37 | 2012-08-02T18:28:11 | 2014-04-19T02:29:51 | 2021-06-10T17:39:35 | 364 | 1 | 0 | 1 | Python | false | false | from django.db import models
class Carousel(models.Model):
large_img = models.ImageField(upload_to='photos/%d/%m/%h/%s')
def __unicode__(self):
return 'Carousel Item ' + str(self.pk) | UTF-8 | Python | false | false | 199 | py | 32 | models.py | 21 | 0.658291 | 0.658291 | 0 | 6 | 32.333333 | 65 |
satchab/aa | 936,302,904,518 | 239d3da321579dfc3b01da85dd27546c6ab4c5d5 | d40bb0f6a9e94f6e7678384eba0076d163f69008 | /Project/__init__.py | 7bef3b21943fccef11dd890b6683588e331e73ae | []
| no_license | https://github.com/satchab/aa | 0f0bd2f8f5f95a82173b670d1e9e6a5ac9bc221a | e70c2348318737519cb0bae0896a1e0c35273b5e | refs/heads/master | 2022-12-30T16:52:05.126878 | 2019-10-29T06:00:28 | 2019-10-29T06:00:28 | 212,384,377 | 0 | 1 | null | false | 2022-12-15T14:39:19 | 2019-10-02T16:05:59 | 2019-10-29T06:25:03 | 2019-10-29T06:24:54 | 10,016 | 0 | 1 | 1 | Python | false | false | from flask import Flask , request , abort
app = Flask(__name__)
@app.route('/')
def hello():
return 'hello tam' , 200
@app.route('/webhook',methods = ['POST','GET'])
def webhook():
if request.method == 'POST':
print(request.json)
return request.json, 200
elif request.method == 'GET':
return 200
| UTF-8 | Python | false | false | 337 | py | 2 | __init__.py | 2 | 0.593472 | 0.566766 | 0 | 15 | 21.333333 | 47 |
abdallah-nasir/advancing-the-blog-blog-api | 19,507,741,466,892 | 7aad40b0d5f8f78f44efca9f48142a8b86e009a1 | 7fea6a1c0a197f184f48df31e2bb72d64a2ff128 | /blog/posts/forms.py | 40003c9e8cf25dede89a39a42acbb6175ab73952 | []
| no_license | https://github.com/abdallah-nasir/advancing-the-blog-blog-api | daba6809118675eb039e8c7f8f8fb6bfe55eea0f | f1eb9bc50c40aef877c1b5864b45caa3c6cec191 | refs/heads/main | 2023-04-08T05:35:04.813446 | 2021-04-14T12:21:54 | 2021-04-14T12:21:54 | 334,929,607 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django import forms
from .models import *
class PostForm(forms.ModelForm):
class Meta:
model = Post
fields = ["title","body","image"]
class CommentForm(forms.ModelForm):
content = forms.CharField(widget=forms.Textarea,label="")
class Meta:
model = Comments
fields = ["content"]
| UTF-8 | Python | false | false | 344 | py | 23 | forms.py | 15 | 0.616279 | 0.616279 | 0 | 15 | 21.066667 | 61 |
kishkash555/biu-research | 19,490,561,608,736 | a7624466236bd66867a8fe6961100d79defad439 | a87dba2cfe9cbbc93906de64f7d3ae49dd0d3ea5 | /HashNet/HashNet.py | aafbbaf4ce245576bdc5022000eb11572462bc1a | []
| no_license | https://github.com/kishkash555/biu-research | cb7340fff82fe47356b6a532bc2fb239bd977a74 | 0f38e5089c97ee1bf11bb76e8825c1fbb048b5d5 | refs/heads/master | 2020-04-26T17:24:04.871408 | 2019-06-24T12:33:58 | 2019-06-24T12:33:58 | 173,711,836 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import dynet as dy
import xxhash as xx
import numpy as np
from random import randint
from collections import namedtuple, Counter
layer_namedtuple = namedtuple('layer','g,w,b,m,n,hf,type'.split(','))
def hashed_matrix(k,m,n,pc):
"""
create a hashing dynet matrix
"""
def hashed_phi(a, hf, N, K):
r"""
creates a phi matrix from activations a using hash function hf
each entry of phi is a sum of the corresponding a's
$[\phi(\\mathbb{a})]_k = \sum \limits_{j:h(i,j)=k} a_j$
:param a: a (dynet) vector of inputs or activations from previous layer
:param hf: a hash function [0, len(a)] -> len(w)
:param N: number of phi columns (size of output)
:param K: number of phi rows (size of parameter vector)
:return: a dynet matrix phi which can be multiplied by w
"""
# phi = [list() for _ in range(m)]
M = a.dim()[0][1]
a_hits = Counter()
phi = []
for k in range(K):
phi_row = []
for i in range(N):
relevant_indexes = [j for j in range(M) if hf(i,j)==k]
a_hits.update(relevant_indexes)
if len(relevant_indexes):
phi_row.append(dy.esum([a[0][j] for j in relevant_indexes]))
else:
phi_row.append([])
phi.append(phi_row)
return phi
def evaluate_hash_layer(a, hf, W, N):
M = a.dim()[0][1]
holder = []
for j in range(M):
cur = []
for i in range(N):
cur.append(a[0][j]*W[0][hf(i,j)]) # W is stored as a row vector
holder.append(dy.esum(cur))
ret = dy.reshape(dy.concatenate(holder),(1, N))
return ret
def eval_network(params, train_x, train_y):
layer_in = dy.inputTensor(train_x[np.newaxis])
for layer in params:
g = layer.g # the nonlinearity
W, b = layer.w, layer.b
m, n = layer.m, layer.n # the input and output sizes
if layer.type == 'normal':
layer_out = layer_in * W + b
layer_out = g(layer_out)
elif layer.type == 'hashed':
layer_hf = layer.hf
# phi = hashed_phi(layer_in, layer_hf, n, W.dim()[0][1])
layer_out = evaluate_hash_layer(layer_in, layer_hf, W, n)
layer_out = g(layer_out)
elif layer.type == 'final':
layer_out = layer_in * W + b
break
layer_in = layer_out
return layer_out
def calc_loss(params, train_x, train_y):
layer_out = eval_network(params, train_x, train_y)
loss = dy.pickneglogsoftmax(dy.transpose(layer_out),train_y)
return loss, layer_out
def network1(m,n):
"""
a 3- layer MLP of modest width
:param m: the width of the input
:param n: the width of the output
"""
g = dy.tanh
pc = dy.ParameterCollection()
d = 20
w1 = pc.add_parameters((m,d))
b1 = pc.add_parameters((1,d), init=0.)
w2 = pc.add_parameters((d,d))
b2 = pc.add_parameters((1,d), init=0.)
w3 = pc.add_parameters((d,n))
b3 = pc.add_parameters((1,n), init=0.)
layers = [
layer_namedtuple(g,w1,b1,m,d,None,'normal'),
layer_namedtuple(g,w2,b2,d,d,None,'normal'),
layer_namedtuple(None,w3,b3,d,n,None,'final'),
]
return layers, pc
def network2(m,n):
"""
a 3- layer MLP with the middle layer using hashing
:param m: the width of the input
:param n: the width of the output
:param k: the number of parameters k in the hashed matrix
"""
g = dy.tanh
pc = dy.ParameterCollection()
d = 20
k = 40 # represents 90% compression
w1 = pc.add_parameters((m,d))
b1 = pc.add_parameters((1,d), init=0.)
w2 = pc.add_parameters((1,k))
b2 = pc.add_parameters((1,d), init=0.)
w3 = pc.add_parameters((d,n))
b3 = pc.add_parameters((1,n), init=0.)
hf = make_hash(d,d,k)
layers = [
layer_namedtuple(g,w1,b1,m,d,None,'normal'),
layer_namedtuple(g,w2,b2,d,d,hf,'hashed'),
layer_namedtuple(None,w3,b3,d,n,None,'final'),
]
return layers, pc
def train_network(train_data, dev_data, pc, params, out_file=None):
epochs = 100
trainer = dy.SimpleSGDTrainer(pc)
for ep in range(epochs):
i = 0
train_loss = 0.
train_good = 0
# print("EPOCH {}".format(ep))
np.random.shuffle(train_data)
for train_x, train_y in train_data:
dy.renew_cg()
loss, scores = calc_loss(params, train_x, train_y)
train_loss += loss.scalar_value()
pred_class = scores.npvalue()
pred_class = np.argmax(pred_class)
train_good += pred_class == train_y
loss.backward()
trainer.update()
i += 1
#if i % 100 == 1:
dev_loss, dev_acc = check_loss(dev_data, params)
#print("epoch: {}\ttrain_loss: {:.4f}\tdev loss: {:.4f}\tacc: {:.2f}".format(i, train_loss, dev_loss, dev_acc))
msg = "epoch: {}\ttrain_loss: {:.4f}\ttrain_acc: {:.2f}\n".format(ep, train_loss, train_good/i) +\
"epoch: {}\tdev_loss: {:.4f}\tdev_acc: {:.2f}\n".format(ep, dev_loss, dev_acc)
if out_file:
out_file.write(msg)
print(msg)
def check_loss(dev_data, params):
cum_loss = 0.
good = 0
for train_x, train_y in dev_data:
loss, score = calc_loss(params, train_x, train_y)
cum_loss += loss.value()
predicted_class = np.argmax(score.npvalue())
if predicted_class == train_y:
good += 1
s = len(dev_data)
return cum_loss/s, good/s
def make_hash(m,n,k):
"""
create a hash function and return it
the hash takes two input parameters, m and n, which determine the range
allowed in the input 0..m-1, 0..n-1
the output is in the range 0..k-1
:param m: the possible number of the hash's first parameter
:param n: the possible number of the hash's second parameter
"""
my_rand_string = ''.join([chr(randint(0,255)) for _ in range(4)])
def hf(i,j):
if i >= m or j >= n:
raise ValueError("check range: {} < {}, {} < {}?".format(i,m,j,n))
num = i * n + j
h = xx.xxh32_intdigest(my_rand_string+ int_to_str(num))
return h % k
return hf
def int_to_str(n):
bts = ''
while n:
bts += chr(n % 256)
n = n - (n % 256)
n = int(n/256)
return bts
| UTF-8 | Python | false | false | 6,399 | py | 26 | HashNet.py | 19 | 0.556962 | 0.540866 | 0 | 201 | 30.81592 | 119 |
maleadt/tado-charts | 10,359,461,159,576 | 85475d1df4009e14f59865869e7c64be4be0a0f4 | 0ef279313598b67ec4d56abc4f8a257290d69e1a | /bin/plot.py | 786fa2a447656c80d872d37157288f8801df2238 | []
| no_license | https://github.com/maleadt/tado-charts | 82ad8aa7c43a2044ee209601a615c3d0cc1ccf76 | 11270c40d2d8a886b6d2b4c7ece3311050bdaca2 | refs/heads/master | 2021-01-23T01:08:04.810978 | 2017-11-15T12:31:17 | 2017-11-15T12:31:17 | 85,877,904 | 6 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
import os
import sys
import datetime
import pymysql
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.ticker as ticker
import matplotlib.patches as mpatches
from scipy.signal import savgol_filter
import private
if len(sys.argv) > 1:
output_dir = sys.argv[1]
else:
output_dir = os.path.dirname(sys.argv[0])
from enum import Enum
class Resolution(Enum):
COARSE = 1
FINE = 2
def smooth(y, factor=Resolution.FINE):
points = len(y)
if points <= 3:
return y
if factor == Resolution.COARSE:
window_length = 75
polyorder = 1
if factor == Resolution.FINE:
window_length = 31
polyorder = 2
if window_length > points:
window_length = (points if points%2 == 1 else points-1)
if polyorder >= window_length:
polyorder = window_length - 1
return savgol_filter(y, window_length, polyorder)
def plot(zone, timestamps, values, time_lower, time_upper, name):
outsideTemperature, setpoint, temperature, humidity, heatingpower = values
# mask heatingpower==0 for clarity
heatingpower = np.ma.masked_where(heatingpower == 0, heatingpower)
# initialize
fig, ax1 = plt.subplots(figsize=(12,5))
# temperatures
ax1.set_xlim([time_lower, time_upper])
ax1.xaxis.set_major_locator(mdates.HourLocator())
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H'))
ax1.set_ylabel('temperature (°celsius)')
ax1.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax1.yaxis.grid(alpha=0.25)
ax1.plot(timestamps, smooth(outsideTemperature, Resolution.COARSE), label="Outside",
linestyle="solid", color="gray")
ax1.plot(timestamps, setpoint, label="Setpoint",
linestyle="solid", color="lime", alpha=.5)
ax1.plot(timestamps, smooth(temperature), label="Measured",
linestyle="solid", color="orangered")
ax1.legend(loc='lower left', bbox_to_anchor=(0, -0.175, 1, 0), ncol=3,
fancybox=True, shadow=True)
# percentages
ax2 = ax1.twinx()
ax2.set_xlim([time_lower, time_upper])
ax2.set_ylabel('percentage')
ax2.set_ylim([0,100])
ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
p1 = ax2.plot(timestamps, smooth(humidity), label="Humidity",
linestyle="solid", color="darkcyan", alpha=.1,)
ax2.fill_between(timestamps, 0, smooth(humidity), color='darkcyan', alpha=.1)
p2 = ax2.plot(timestamps, heatingpower, label="Heating power",
linestyle="solid", color="orange", alpha=.15)
ax2.fill_between(timestamps, 0, heatingpower, color='orange', alpha=.15)
# the fill_between can't be represented directly in the legend,
# so create proxy agents which don't live in the plot
p1_proxy = mpatches.Patch(color=p1[0].get_color(), alpha=p1[0].get_alpha(), label=p1[0].get_label())
p2_proxy = mpatches.Patch(color=p2[0].get_color(), alpha=p2[0].get_alpha(), label=p2[0].get_label())
ax2.legend(handles=[p1_proxy, p2_proxy],
loc='lower right', bbox_to_anchor=(0, -0.175, 1, 0), ncol=2,
fancybox=True, shadow=True)
# finalize
now = datetime.datetime.now()
ax1.annotate('Last update: {}'.format(now.strftime("%H:%M")),
fontsize=10, color="gray",
xy=(1, 1), xycoords='axes fraction',
horizontalalignment='right', verticalalignment='upper')
plt.tight_layout()
fig.subplots_adjust(bottom=0.15)
plt.savefig("{}/{}.png".format(output_dir, name))
## main
mysql = pymysql.connect(host=os.getenv('MYSQL_HOST', private.mysql_host),
user=os.getenv('MYSQL_USER', private.mysql_user),
password=os.getenv('MYSQL_PASSWORD', private.mysql_password),
db=os.getenv('MYSQL_DATABASE', private.mysql_database))
time_lower = datetime.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
time_upper = time_lower + datetime.timedelta(days=1)
for zone in private.zones:
with mysql.cursor() as cursor:
sql = """
SELECT *
FROM `{}`
WHERE (timestamp >= %s and timestamp < %s)
""".format(zone)
cursor.execute(sql, (time_lower, time_upper))
data = cursor.fetchall()
timestamps = np.asarray(list(map(lambda vals: vals[0], data)))
def convert(val):
if val is None:
# we can't create an array with None, or operations like 'isfinite' break
return float('NaN')
else:
return float(val)
values = np.asarray(list(map(lambda vals: tuple(map(convert, vals[1:])), data))).T
# plot daily chart
plot(zone, timestamps, values, time_lower, time_upper,
"{:04d}{:02d}{:02d}_{}".format(time_lower.year, time_lower.month, time_lower.day, zone))
mysql.close()
| UTF-8 | Python | false | false | 4,979 | py | 9 | plot.py | 4 | 0.628164 | 0.60446 | 0 | 157 | 30.707006 | 104 |
Guyebai/Geeks_DongHua | 2,886,218,030,937 | 564648be126a20b943e2f7ce1da93b8e8dfc9db9 | a4905aa47878f35d4937a4834749caeee3f6e260 | /fix/models.py | 4bde2f395992bf30c4b917e7700fab9a43579a52 | []
| no_license | https://github.com/Guyebai/Geeks_DongHua | e94d05d6dff8b572be4d385132eebf9718c80f8d | d6ca97c0176218948d2f182bcaa6a564c6d7326d | refs/heads/master | 2020-09-10T04:04:26.650834 | 2017-09-26T10:27:58 | 2017-09-26T10:27:58 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # coding=utf-8
from __future__ import unicode_literals
from django.db import models
from django.utils import timezone
from myuser.models import User
from myuser.constants import Sex_Choice
from util import format_time
class Fault(models.Model):
name = models.CharField('故障', max_length=255)
order = models.IntegerField('排序', null=True, blank=True)
class Meta:
verbose_name = '故障列表'
verbose_name_plural = verbose_name
ordering = ('order',)
def __str__(self):
return self.name
def __unicode__(self):
return '%s' % self.name
class Fix(models.Model):
# 预约信息
name = models.CharField('姓名', max_length=255)
dorm_number = models.IntegerField(u'楼号')
tel = models.CharField('电话', max_length=255)
fault = models.ForeignKey(Fault, verbose_name='故障')
mark = models.TextField('备注', blank=True, default='')
appointment_time = models.DateTimeField(u'预约时间', default=timezone.now)
# 维修信息
model = models.CharField(max_length=255, null=True, blank=True)
fixer = models.ForeignKey(User, verbose_name='修理员', null=True, default=None)
fix_time = models.DateTimeField('修理时间', blank=True, null=True)
is_fix = models.BooleanField('是否维修', default=False)
class Meta:
verbose_name = '预约名单'
verbose_name_plural = verbose_name
ordering = ('is_fix', '-appointment_time')
def __str__(self):
return self.name
def __unicode__(self):
return '%s' % self.name
def get_fault(self):
return self.fault.name
def get_appointment_time(self):
return format_time(self.appointment_time)
def get_fix_time(self):
return format_time(self.fix_time)
class Recruit(models.Model):
name = models.CharField('姓名', max_length=255)
sex = models.IntegerField('性别', choices=Sex_Choice)
tel = models.CharField('电话', max_length=255)
major = models.CharField('专业', max_length=255)
desc = models.TextField()
reason = models.TextField(blank=True, null=True)
# Create your models here.
| UTF-8 | Python | false | false | 2,164 | py | 96 | models.py | 70 | 0.655977 | 0.645287 | 0 | 72 | 27.583333 | 80 |
wingtonbrito/test-build | 12,661,563,602,197 | f52f6f7416c4e772e8cf45efd04cedcb16475a61 | d2fab1990bd12cf401cdf93766f2bef3d76c25f9 | /src/dataflow/libs/log.py | 64a1484af9659f9e6a503a0693f8a29b02198c72 | []
| no_license | https://github.com/wingtonbrito/test-build | 26fe3098ad6695e62c754459976f98a3e399e2fc | 261c832b569f52ec4ad370c0d72afce2a5b2c234 | refs/heads/master | 2023-01-06T13:38:02.315272 | 2020-06-09T21:04:09 | 2020-06-09T21:04:09 | 271,098,141 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import apache_beam as beam
import logging
class Log(beam.DoFn):
def __init__(self, func='info'):
self.__func__ = getattr(logging.getLogger(), func)
def process(self, payload):
self.__func__(f'>> logging payload: {payload}')
yield payload
| UTF-8 | Python | false | false | 273 | py | 154 | log.py | 135 | 0.615385 | 0.615385 | 0 | 11 | 23.818182 | 58 |
JackPotte/snottywong | 5,162,550,718,455 | 06db479219bef02fc2a451f4864f23079c3756ed | bf9c643237b8996ddee573bc3fa4bd0f899aab34 | /cgi-bin/votecounter.cgi | 1692919db2da261a89e3bd6b32d66e7e7edc2aa8 | [
"MIT"
]
| permissive | https://github.com/JackPotte/snottywong | c846197d66e94f59f2570f8dd4952fe44ca20b38 | c4f5c3f5322fb73669c16dbd374ff60b3fcd4970 | refs/heads/master | 2021-01-19T23:40:41.628010 | 2017-05-28T23:37:18 | 2017-05-28T23:37:18 | 89,007,737 | 0 | 2 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
# -*- coding: utf-8 -*-
#TODO remove commented out material
#TODO Logging
import sys
import os
import traceback
import cgi
import re
import urllib
import htmllib
import datetime
import MySQLdb
page = ""
def main():
global discussiontype
global page
print """<!doctype html>
<HTML>
<HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<LINK href="greyscale.css" rel="stylesheet" type="text/css">
<LINK href="menubar3.css" rel="stylesheet" type="text/css">
<TITLE>AfD Stats</TITLE>
</HEAD>
<BODY id="no">
<script type="text/javascript" src="/menubar.js"></script>
<br>
<div style="width:875px;">
<H1>AfD Vote Counter</H1>"""
try:
form = cgi.FieldStorage()
if "page" in form:
page = form["page"].value
else:
errorout("Missing required parameter: page.")
fast = True
if "fast" in form:
if form["fast"].value.lower() in ["no", "false", "0", "slow"]:
fast = False
if page == "":
errorout("Missing required parameter: page.")
page = urllib.unquote(page).replace("_", " ")
if os.environ["REMOTE_ADDR"].startswith(("89.151.116.5", "46.236.24", "46.236.7")):
errorout("Your IP address has been flagged for potential abuse. Please post a message to User talk:Scottywong on the English Wikipedia, or alternatively send an email to snottywong.wiki@gmail.com to prove that you are a human, and to explain why you've been consistently making so many queries on this tool.")
f = open("votecounterlog.txt", "a")
f.write("<log><ip>" + os.environ["REMOTE_ADDR"] + "</ip><page>" + page + "</page><timestamp>" + datetime.datetime.today().strftime("%m/%d/%y %H:%M:%S") + "</timestamp></log>\n")
f.close()
if not page.lower().startswith("wikipedia:articles for deletion/"):
errorout("Requested page is not an AfD.")
db = MySQLdb.connect(db='enwiki_p', host="enwiki.labsdb", read_default_file=os.path.expanduser("~/replica.my.cnf"))
cursor = db.cursor()
data = APIget(page)
data = unescape(data)
data = re.sub("<(s|strike|del)>.*?</(s|strike|del)>", "", data, flags=re.IGNORECASE|re.DOTALL) #remove all struck-through text, so that it is ignored
#TODO remove commented out material
#votes = re.findall("\n.*?'{3}?.*?'{3}?.*?\(UTC\)", data[data.find("=="):], re.IGNORECASE)
"""
votes = []
tempdata = data[data.find("=="):]
while True:
part = tempdata.partition("(UTC)")
if not part[1]:
break
votes.append(part[0] + part[1])
tempdata = part[2]
"""
votes = []
voteiter = re.finditer("'{3}?.*?'{3}?.*?((\[\[User.*?\]\].*?\(UTC\))|(\{\{unsigned.*?\}\})|(<!--\s*Template:Unsigned\s*-->))", data[data.find("=="):], re.IGNORECASE)
for i in voteiter:
votes.append(i.group(0))
errors = 0
dupvotes = 0
votedict = {}
spa = {}
for vote in votes:
try:
voter = re.match("\[\[User.*?:(.*?)(?:/|#|\||(?:\]\]))", vote[vote.lower().rfind("[[user"):], re.IGNORECASE)
if not voter:
voter = re.search("\{\{unsigned\|(.*?)(\||(\{\{))", vote, re.IGNORECASE)
if not voter:
voter = re.search("<span class=\"autosigned\">.*?\[\[User:(.*?)\|.*?<!--\s*Template:Unsigned\s*-->", vote, re.IGNORECASE)
if not voter:
continue
voter = voter.group(1).strip()
bolded = re.search("'''(.*?)'''", vote)
if not bolded:
#print "NOT BOLDED - " + cgi.escape(vote) + "<br><br>"
continue
votetype = parsevote(bolded.group(1))
if votetype == None: #Unparseable
#print "UNPARSEABLE - " + bolded.group(1) + " - " + cgi.escape(vote) + "<br><br>"
continue
if voter in votedict.keys():
dupvotes += 1
votedict[voter] = votetype
if not fast:
editcount = getEditCount(voter, cursor)
if editcount < 500 and editcount > 0:
if voter not in spa.keys():
spa[voter] = editcount
#print "SUCCESSFUL " + votetype + " - " + cgi.escape(vote) + "<br><br>"
except:
errors += 1
print sys.exc_info()[0]
print "<br>"
print traceback.print_exc(file=sys.stdout)
print "<br>"
print vote
print "<br>"
continue
print "<H2>" + page + "</H2>"
if len(votedict) == 0:
errorout("No votes were found on this page.")
nominator = APIfirsteditor(page)
if nominator:
if nominator in votedict.keys():
dupvotes += 1
else:
votedict[nominator] = "Delete"
print "<ul>"
for v in ["Keep", "Speedy Keep", "Delete", "Speedy Delete", "Merge", "Redirect", "Transwiki", "Userfy"]:
if votedict.values().count(v):
voterlist = []
for voter in votedict.keys():
if votedict[voter] == v:
voterlist.append(voter)
print "<li><b>" + v + " votes: " + str(votedict.values().count(v)) + "</b> <small>(" + ", ".join(voterlist) + ")</small>"
print "</ul>"
print "<BR>Found " + str(dupvotes) + " potential duplicate vote" + ("" if dupvotes==1 else "s") + ".<BR>"
if spa.keys():
print "<BR>Potential SPA's (voters with less than 500 edits):\n<ul>\n"
for s in spa.keys():
print "<li>" + s + " (" + str(spa[s]) + " edits) (voted " + votedict[s] + ")</li>"
print "</ul>"
if not spa.keys() and not fast:
print "<BR>No potential SPA's found.</BR>"
if fast:
print '<BR><small><a href="votecounter.cgi?page=' + form['page'].value + '&fast=false">Click here to check for possible SPA\'s (can be slow for large AfD\'s)</a></small><BR>'
if errors:
print "<BR>Encountered " + str(errors) + " non-fatal errors while parsing this page.<BR>"
print "<br><br><br><small>Disclaimer: This tool only searches for <b>bolded</b> votes in AfD's, and it may not even find those with 100% accuracy. Please do not rely on the accuracy of this tool for critical applications, and also keep in mind that consensus is not determined by counting votes.</small><br>"
print '<br><small>Bugs, suggestions, questions? Contact the author at <a href="http://en.wikipedia.org/wiki/User_talk:Scottywong">User talk:Scottywong</a></small><br>'
print "</div></BODY>\n</HTML>"
except:
errors += 1
print sys.exc_info()[0]
print "<br>"
print traceback.print_exc(file=sys.stdout)
print "<br>"
def APIget(p):
try:
u = urllib.urlopen("http://en.wikipedia.org/w/api.php?action=query&prop=revisions&titles=" + urllib.quote(p).replace(" ", "_") + "&rvprop=content&format=xml")
xml = u.read()
u.close()
if re.search(r'<page .*? missing="".*?/>', xml):
errorout("Page doesn't exist: " + p)
text = re.search(r'<rev.*?xml:space="preserve">(.*?)</rev>', xml, re.DOTALL).group(1)
return text
except:
#print sys.exc_info()[0]
#print "<br>"
#print traceback.print_exc(file=sys.stdout)
#print "<br>"
errorout("Error getting content of page: " + p)
def APIfirsteditor(p):
try:
u = urllib.urlopen("http://en.wikipedia.org/w/api.php?action=query&prop=revisions&titles=" + urllib.quote(p).replace(" ", "_") + "&rvlimit=1&rvprop=timestamp|user&rvdir=newer&format=xml")
xml = u.read()
u.close()
return re.search("<rev user=\"(.*?)\".*?/>", xml).group(1)
except:
#print sys.exc_info()[0]
#print "<br>"
#print traceback.print_exc(file=sys.stdout)
return None
def getEditCount(username, cursor):
try:
cursor.execute("SELECT COUNT(*) FROM revision_userindex WHERE rev_user_text=%s;", (username))
ec = cursor.fetchall()[0][0]
return int(ec)
except:
return 0
def unescape(s):
p = htmllib.HTMLParser(None)
p.save_bgn()
p.feed(s)
return p.save_end()
def errorout(errorstr):
print "ERROR: " + errorstr + "<br><br>Please try again.<br>"
print '<br><small>Bugs, suggestions, questions? Contact the author at <a href="http://en.wikipedia.org/wiki/User_talk:Scottywong">User talk:Scottywong</a></small><br>'
print "</div></BODY>\n</HTML>"
sys.exit(0)
def parsevote(v):
v = v.lower()
if "comment" in v:
return None
elif "note" in v:
return None
elif "merge" in v:
return "Merge"
elif "redirect" in v:
return "Redirect"
elif "speedy keep" in v:
return "Speedy Keep"
elif "speedy delete" in v:
return "Speedy Delete"
elif "keep" in v:
return "Keep"
elif "delete" in v:
return "Delete"
elif "transwiki" in v:
return "Transwiki"
elif ("userfy" in v) or ("userfied" in v) or ("incubat" in v):
return "Userfy"
else:
return None
main()
| UTF-8 | Python | false | false | 9,643 | cgi | 61 | votecounter.cgi | 30 | 0.530022 | 0.522348 | 0 | 253 | 37.114625 | 322 |
justinro-underscore/MiniInfiniteRunner | 1,795,296,351,764 | 9f2f8d38147eb1ee33bbafb7e1f401917a1db7bd | 909e3310cdf4c03a771c79919301a502b47b4d88 | /ground.py | 0444568c160512f521bc6024dfe49de890bbd587 | []
| no_license | https://github.com/justinro-underscore/MiniInfiniteRunner | 95383cc96c1977a979e59707fc08dce62546ba28 | d6503d217cea7165d131e00b61d1a9bd44c4d934 | refs/heads/main | 2023-04-10T19:03:03.637311 | 2021-04-20T02:39:37 | 2021-04-20T02:39:37 | 358,453,231 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from random import random
from moving_objects.ground_mark import GroundMark
from moving_objects.cactus import Cactus
from constants import height, width, ground_height, init_ground_speed, ground_mark_probability, max_ground_mark_length, init_cactus_space, cactus_space_increment
class Ground:
def __init__(self):
self.ground_speed = init_ground_speed
self.ground_marks = [GroundMark()]
self.curr_ground_length = 0
self.generating_ground_marks = False
self.cacti = []
self.cacti_space = init_cactus_space
self.cactus_wait_count = self.cacti_space
def __move_objects(self):
for moving_object in self.ground_marks + self.cacti:
moving_object.move(self.ground_speed)
if len(self.ground_marks) > 0 and self.ground_marks[0].is_offscreen():
self.ground_marks = self.ground_marks[1:]
if len(self.cacti) > 0 and self.cacti[0].is_offscreen():
self.cacti = self.cacti[1:]
def __generate_ground_marks(self):
# If not currently generating a ground mark...
if not self.generating_ground_marks:
# Set the ground mark length to what is currently shown on screen
self.curr_ground_length += self.ground_speed
# Use linear interpolation to see if we should cut off the ground mark at its current length
probability = self.curr_ground_length / max_ground_mark_length
end_mark = random() < probability
# If we should cut off the mark...
if end_mark:
# Set the ground mark's length to its current length
self.ground_marks[len(self.ground_marks) - 1].length = self.curr_ground_length
# Reset to prepare for generating a new ground mark
self.generating_ground_marks = True
# If currently generating a ground mark and we should place a new ground mark
if self.generating_ground_marks and random() < ground_mark_probability:
# Append a new ground mark to the front of the queue
self.ground_marks += [GroundMark()]
self.curr_ground_length = 0
self.generating_ground_marks = False
def __generate_cacti(self):
return
self.cactus_wait_count -= self.ground_speed
if self.cactus_wait_count < 0:
self.cacti += [Cactus()]
self.cactus_wait_count = self.cacti_space
def update(self):
self.__move_objects()
self.__generate_ground_marks()
self.__generate_cacti()
def increase_speed(self):
self.ground_speed += 1
self.cacti_space += (cactus_space_increment * self.ground_speed) // 3
def render(self, draw):
draw.line((0, height - ground_height, width, height - ground_height), fill=255, width=1)
for ground_mark in self.ground_marks:
ground_mark.render(draw)
for cactus in self.cacti:
cactus.render(draw)
| UTF-8 | Python | false | false | 2,732 | py | 10 | ground.py | 9 | 0.68631 | 0.680088 | 0 | 71 | 37.478873 | 161 |
GraphicalDot/Sportsunity | 16,681,652,994,802 | c66dcf83483e769a9aaacd6c8df5fa07e0b7f109 | 728325025dcd9cef1e94298ddcf0163fe26e8503 | /leagues_elasticsearch.py | 86b5694910b6c1273edbf6c6db20430336e56ed8 | []
| no_license | https://github.com/GraphicalDot/Sportsunity | 6bafdf21f93c14b5e8e58ad196424c530ecd5e21 | 085d7237b849dfec1e59b4236eef10e0ab87179c | refs/heads/master | 2021-03-19T15:18:09.553691 | 2016-04-11T09:03:50 | 2016-04-11T09:03:50 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
import requests
import json
from pyfiglet import figlet_format
from termcolor import cprint
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import connection
ES_CLIENT = connection.get_elastic_search_connection()
class GetTeams:
def __init__(self,renew_indexes=False):
self.settings={'settings': {'analysis': {'analyzer': {'custom_analyzer': {'filter': ['lowercase',
'asciifolding','edge_ngram'],
'tokenizer': 'ngram_tokenizer', 'type':'custom'}},
'filter': {'edge_ngram': {'max_gram': '100',
'min_gram': '2',
'type': 'edge_ngram'}},
'tokenizer': {'ngram_tokenizer': {'max_gram': '100',
'min_gram': '2',
'token_chars': ['letter', 'digit'],
'type': 'edgeNGram'}}}
}}
self.mappings = {'dynamic': 'strict',
'properties': {'league_autocomplete': {'analyzer': 'custom_analyzer', 'type':'string'},
'league_name': {'copy_to': ['league_autocomplete'], 'type': 'string'},
'league_id': {'index': 'not_analyzed', 'type': 'string'},
'season': {'index': 'not_analyzed', 'type': 'long'},
'flag_image':{'index': 'not_analyzed', 'type': 'string'},
'region' : {'index': 'not_analyzed', 'type': 'string'},
}}
if not ES_CLIENT.indices.exists("leagues"):
self.prep_teams_index()
self.index_data()
if renew_indexes:
ES_CLIENT.indices.delete(index="leagues")
self.prep_teams_index()
self.index_data()
def prep_teams_index(self):
ES_CLIENT.indices.create(index="leagues", body=self.settings)
ES_CLIENT.indices.put_mapping(index="leagues", doc_type="leagues", body = {"leagues": self.mappings })
a = "Mappings updated for {0}".format("leagues")
cprint(figlet_format(a, font='starwars'), attrs=['bold'])
def index_data(self):
response = requests.get('http://52.74.75.79:8000/get_football_leagues')
data = json.loads(response.content)
for league in data['data']:
print ES_CLIENT.index(index="leagues", doc_type="leagues", body=league)
if __name__=="__main__":
obj = GetTeams(renew_indexes=True)
| UTF-8 | Python | false | false | 3,431 | py | 63 | leagues_elasticsearch.py | 59 | 0.388808 | 0.382687 | 0 | 69 | 48.594203 | 140 |
anniezhn/CSC210 | 17,566,416,253,317 | 4ddc7555a14250bee4e06bff33ef791189a4dce2 | 41061be9fc4f639594c0d6d5002ad656d78f0276 | /cgi-bin/delete.py | 18e8e5ef1fa4fb98e71b8a49576957816d9b78c1 | []
| no_license | https://github.com/anniezhn/CSC210 | 286f785821df0bef8e4143beaf188e7bc59b704a | 716858302339fd6a2c471ca2550ca64dbe19c204 | refs/heads/master | 2016-09-06T21:51:04.490068 | 2014-12-10T05:54:33 | 2014-12-10T05:54:33 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/python
import cgitb, cgi, os, Cookie, sys
import MySQLdb as mdb
#setup
cgitb.enable()
#retrieve username from cookie
cookie_monster = Cookie.SimpleCookie(os.environ['HTTP_COOKIE'])
username = cookie_monster['user'].value
conn = mdb.connect('localhost', 'tnichol1', 'TeamTAJ2!', 'tnichol1_CSC210') #connect to MySQL
cur = conn.cursor()
#expire all cookies
cookie_monster['session_id'] = ""
cookie_monster['user'] = ""
cookie_monster['session_id']['expires']='Thu, 01 Jan 1970 00:00:00 GMT' #apparently this is the convention
cookie_monster['session_id']['path']='/'
cookie_monster['user']['expires']='Thu, 01 Jan 1970 00:00:00 GMT' #apparently this is the convention
cookie_monster['user']['path']='/'
#remove user from database
cur.execute('SELECT UserID FROM Users WHERE Username=%s;', username)
userID = cur.fetchone()[0]
cur.execute("DELETE FROM Users WHERE Username=%s",username)
conn.commit()
cur.execute("DELETE FROM Passwords WHERE UserID=%s",userID)
conn.commit()
print "Content-type: text/html"
print cookie_monster
print
print "<html>"
print "<head><title>Your account has been deleted</title></head>"
print "<body>"
print "<h1>OK, " + username + ", your account has been deleted. Thank you for using our site.</h1>"
print "<p>Click here to go back to our homepage:</p>"
print '<p><a href="http://tnichols.rochestercs.org">Home Page</a></p>'
print "</body>"
print "</html>"
| UTF-8 | Python | false | false | 1,402 | py | 42 | delete.py | 28 | 0.71398 | 0.690442 | 0 | 41 | 33.170732 | 106 |
th3seus/fbctf-load-test | 5,368,709,123,107 | d2fd13ef100cee1bb485bbcd3495fcdcaa2b1edf | 51b743f2d87207df7b5163d1a20e29522289e26f | /test.py | a417d85ec12bbc780fc8277742b7da9f74f2c46e | []
| no_license | https://github.com/th3seus/fbctf-load-test | 3420acdef18986ae8444af813a4d47c8de677ed2 | be4fa0b483139f6a5fc7366cba3760a64dd4769e | refs/heads/master | 2020-03-23T20:33:40.322553 | 2018-07-24T22:46:53 | 2018-07-24T22:46:53 | 142,048,388 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support import expected_conditions as EC
import time
def team_login(driver, user, password):
""" team login using username and password """
login = driver.find_element_by_link_text("Login")
login.click()
# submit creds
driver.find_element_by_name("team_name").send_keys(user)
driver.find_element_by_name("password").send_keys(password)
# find login button and submit
login = driver.find_element_by_id("login_button")
login.click()
def view_navigation_menu(driver):
""" returns navigation menu element to be used
with other navigation functions """
menu = driver.find_element_by_css_selector(".nav-left")
return menu
def view_tutorial(driver):
""" opens up and steps through tutorial """
nav = view_navigation_menu(driver)
tutorial = driver.find_element_by_css_selector(".fb-init-tutorial")
tutPages = 8
# find nav bar, then click the link to open tutorial
actions = ActionChains(driver)
actions.move_to_element(nav)
time.sleep(2)
actions.click(tutorial)
actions.perform()
# step through tutorial pages
for x in range(0,9):
print "at window %d" % x
time.sleep(2)
nextBtn = False
while nextBtn == False:
nextBtn = False
nextBtn = WebDriverWait(driver, 3).until(find_tutorial_next_button)
print nextBtn
if EC.staleness_of(nextBtn) == False:
actions.move_to_element(nextBtn)
time.sleep(2)
actions.click(nextBtn)
time.sleep(2)
actions.perform()
# tutPages -= 1
else:
nextBtn = False
def find_tutorial_next_button(driver):
print 'looking for button'
btn = driver.find_element_by_css_selector(".cta--yellow")
if btn:
print "found button"
return btn
else:
print 'did not find button'
return False
driver = webdriver.Firefox()
user = "team1"
password = "password3"
# go to homepage
driver.get("https://52.53.207.37/index.php")
assert "Facebook CTF" in driver.title
# login
team_login(driver, user, password)
WebDriverWait(driver, 10).until(EC.title_contains("Facebook CTF | Gameboard"))
assert "Facebook CTF | Gameboard" in driver.title, "not loaded properly"
view_tutorial(driver)
""" try:
view_tutorial(driver)
WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.LINK_TEXT, "Skip to play")))
finally:
print "finally"
time.sleep(15)
driver.close() """
| UTF-8 | Python | false | false | 2,824 | py | 2 | test.py | 2 | 0.660057 | 0.65085 | 0 | 93 | 29.365591 | 99 |
KieranHauser/TorontoCoffee | 6,244,882,478,625 | 5bb2dc359451e2af06f48149fa129115c5a93f9b | 399b7b74fda0d863d59234285aa5ab95efcc5a17 | /shop/urls.py | 70ba52273f7b35f846b828b394856e7476b3c827 | []
| no_license | https://github.com/KieranHauser/TorontoCoffee | 28e871013a35c6e6c3e6c9fec5ab4cd8f0487e6a | 3571eafe13d0fd447a31fa4323caa0eccc8fbd8a | refs/heads/master | 2021-08-07T07:35:25.578249 | 2017-11-07T21:20:10 | 2017-11-07T21:20:10 | 105,454,681 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView
from .views import ShopCreateView, ShopDetailView, ShopListView
urlpatterns = [
url(r'^create/', ShopCreateView.as_view(), name='create'),
url(r'^(?P<slug>[\w-]+)/$', ShopDetailView.as_view(), name='detail'),
url(r'$', ShopListView.as_view(), name='list'),
]
| UTF-8 | Python | false | false | 384 | py | 14 | urls.py | 13 | 0.705729 | 0.705729 | 0 | 10 | 37.4 | 73 |
hydrargyrum/pytat | 12,232,066,877,578 | 716ad811843a07dd25104aa221d417267069bce7 | 494857bc8583ff83fb1e972aa2f460d287576670 | /examples/sample2.py | 882270c61c11c93d105b8f87f7e841905e79253b | [
"WTFPL"
]
| permissive | https://github.com/hydrargyrum/pytat | 3bcbf2ebbf62a4ca3fdd885729aea6f0ef5ca774 | 9a7796177990ae55aa4ea3686bd92d7e91fd3404 | refs/heads/master | 2020-03-27T05:35:46.204018 | 2018-11-11T14:04:11 | 2018-11-11T14:04:11 | 146,033,398 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
import sys
def f():
print(42)
for i in range(2):
print(4, 2)
print(42, file=sys.stderr)
| UTF-8 | Python | false | false | 111 | py | 15 | sample2.py | 13 | 0.531532 | 0.468468 | 0 | 7 | 14.571429 | 30 |
orange21cn/OrcTestToolsKit | 6,640,019,454,947 | fc6e6db131110562ebd61d804e088d76d3c60119 | 4adc1d1b8f9badefcd8c25c6e0e87c6545ccde2c | /OrcApi/Batch/BatchDefMod.py | afb6746181f6da20b52a345b533f664c66b265ad | []
| no_license | https://github.com/orange21cn/OrcTestToolsKit | eb7b67e87a608fb52d7bdcb2b859fa588263c136 | 69b6a3c382a7043872db1282df4be9e413d297d6 | refs/heads/master | 2020-04-15T07:30:35.485214 | 2017-09-30T06:16:17 | 2017-09-30T06:16:17 | 68,078,991 | 5 | 3 | null | null | null | null | null | null | null | null | null | null | null | null | null | # -*- coding: utf-8 -*-
from datetime import datetime
from OrcLib.LibCommon import OrcString
from OrcLib.LibCommon import is_null
from OrcLib.LibException import OrcDatabaseException
from OrcLib.LibDatabase import TabBatchDef
from OrcLib.LibDatabase import gen_id
from OrcLib.LibDatabase import orc_db
from OrcLib.LibLog import OrcLog
class BatchDefMod(TabBatchDef):
"""
Test data management
"""
__session = orc_db.session
def __init__(self):
TabBatchDef.__init__(self)
self.__logger = OrcLog("api.batch.mod.batch_def")
def usr_search(self, p_cond=None):
"""
:param p_cond:
:return:
"""
# 判断输入参数是否为空
cond = p_cond if p_cond else dict()
# 查询条件 like
_like = lambda p_flag: "%%%s%%" % cond[p_flag]
# db session
result = self.__session.query(TabBatchDef)
if 'id' in cond:
# 查询支持多 id
if isinstance(cond["id"], list):
result = result.filter(TabBatchDef.id.in_(cond['id']))
else:
result = result.filter(TabBatchDef.id == cond['id'])
if 'pid' in cond:
result = result.filter(TabBatchDef.pid == cond['pid'])
if 'batch_no' in cond:
result = result.filter(TabBatchDef.batch_no == cond['batch_no'])
if 'batch_name' in cond:
result = result.filter(TabBatchDef.batch_name.ilike(_like('batch_name')))
if 'batch_desc' in cond:
result = result.filter(TabBatchDef.batch_desc.ilike(_like('batch_desc')))
for i in result.all():
print i.to_json()
return result.all()
def usr_search_all(self, p_cond):
"""
查询 batch 所有节点直至根节点
:param p_cond:
:return:
"""
result = list()
for _batch in self.usr_search(p_cond):
if _batch not in result:
# 获取当前用例的根用例组
_root = self.__get_root(_batch)
# 获取根用例组的所有子用例
_tree = self.__get_tree(_root)
# 加入结果树
result.extend(_tree)
return result
def usr_search_tree(self, p_id):
"""
获取节点及其所有子节点
:param p_id:
:return:
"""
batch = self.usr_search(dict(id=p_id))
if batch:
return self.__get_tree(batch[0])
else:
return list()
def usr_search_path(self, p_id):
"""
获取路径至根节点
:param p_id:
:return:
"""
batch_data = self.__session.query(TabBatchDef).filter(TabBatchDef.id == p_id).first()
batch_no = batch_data.case_no if batch_data else None
batch_pid = batch_data.pid if batch_data else None
if batch_pid:
return "%s.%s" % (self.usr_get_path(batch_pid), batch_no)
else:
return batch_no
def __get_root(self, p_item):
"""
:param p_item:
:return:
"""
if p_item.pid is None:
return p_item
_res = self.__session.query(TabBatchDef).filter(TabBatchDef.id == p_item.pid).first()
if _res.pid is None:
return _res
else:
return self.__get_root(_res)
def __get_tree(self, p_item):
"""
:param p_item:
:return:
"""
_tree = [p_item]
_items = self.__session.query(TabBatchDef).filter(TabBatchDef.pid == p_item.id).all()
for _item in _items:
_tree.extend(self.__get_tree(_item))
return _tree
def usr_add(self, p_data):
"""
新增
:param p_data:
:return:
"""
node = TabBatchDef()
# Create id
node.id = gen_id("batch_def")
# batch_no
node.batch_no = self.__create_no()
# batch_type
node.batch_type = p_data['batch_type'] if 'batch_type' in p_data else None
# pid
node.pid = p_data['pid'] if 'pid' in p_data else None
# batch_name
node.batch_name = p_data['batch_name'] if 'batch_name' in p_data else ""
# batch_desc, comment
node.batch_desc = p_data['batch_desc'] if 'batch_desc' in p_data else ""
node.comment = p_data['comment'] if 'comment' in p_data else ""
# create_time, modify_time
node.create_time = datetime.now()
node.modify_time = datetime.now()
try:
self.__session.add(node)
self.__session.commit()
except:
raise OrcDatabaseException
return node
def __create_no(self):
"""
Create a no
:return:
"""
base_no = OrcString.get_data_str()
for _index in range(100):
if 10 < _index:
batch_no = "%s%s" % (base_no, _index + 1)
else:
batch_no = "%s0%s" % (base_no, _index + 1)
_item = self.__session.query(TabBatchDef).filter(TabBatchDef.batch_no == batch_no).first()
if _item is None:
return batch_no
return 1
def usr_update(self, p_cond):
"""
Update
:param p_cond:
:return:
"""
for t_id in p_cond:
if "id" == t_id:
continue
_data = None if is_null(p_cond[t_id]) else p_cond[t_id]
_item = self.__session.query(TabBatchDef).filter(TabBatchDef.id == p_cond['id'])
_item.update({t_id: _data})
self.__session.commit()
def usr_delete(self, p_id):
"""
删除
:param p_id:
:return:
"""
print "-=-=", p_id
self.__session.query(TabBatchDef).filter(TabBatchDef.id == p_id).delete()
self.__session.commit()
def usr_get_path(self, p_id):
_no = self.__session.query(TabBatchDef.batch_no).filter(TabBatchDef.id == p_id).first()[0]
_pid = self.__session.query(TabBatchDef.pid).filter(TabBatchDef.id == p_id).first()[0]
if _pid is None:
return _no
else:
return "%s.%s" % (self.usr_get_path(_pid), _no)
| UTF-8 | Python | false | false | 6,285 | py | 240 | BatchDefMod.py | 212 | 0.512821 | 0.510697 | 0 | 236 | 24.944915 | 102 |
astrosilverio/PokeDB | 3,040,836,859,093 | 8a62c1a828ddc4c8150db5f27e14165c52c1ba68 | 483fcc2e88ddd4828567606bc625c69d95306b7a | /pokedb/storage/__init__.py | 6f44e28d976e65e232bb3a1622efdd0a6345bef1 | []
| no_license | https://github.com/astrosilverio/PokeDB | c5e7eae67867deb6a17b1352a95d8de5ea3c8834 | e2f811e6f135cb761f94faf315f2679273f6003f | refs/heads/master | 2020-03-31T10:39:34.838719 | 2019-01-09T20:42:57 | 2019-01-09T20:42:57 | 152,143,406 | 1 | 0 | null | true | 2019-01-09T20:42:58 | 2018-10-08T20:37:11 | 2018-11-28T22:30:40 | 2019-01-09T20:42:58 | 61 | 0 | 0 | 0 | Python | false | null | """
API to access layer:
`get`
`write`
`sync`
"""
import os
from pokedb.storage.pager import Pager
from pokedb.storage.serializer import serialize, deserialize
DBFILE = os.getenv('DBFILE', 'test.db')
_pager = None
# In-memory storage
_storage = dict()
_temp = dict()
_table_schema = {
'main': ('value',),
}
def start():
global _pager
_pager = Pager(DBFILE)
def get_row(txn_id, table, row_id, page_num):
raw_data = _storage.get(row_id, None)
updated_value = _temp[txn_id].get(row_id, None)
if updated_value:
raw_data = updated_value
if raw_data:
schema = _table_schema.get(table)
data = deserialize(schema, raw_data)
else:
data = None
return {row_id: data}
def write_row(txn_id, table, row_id, data, page_num):
schema = _table_schema.get(table)
raw_data = serialize(schema, data)
_temp[txn_id][row_id] = raw_data
return page_num
def sync(page_num):
_pager.flush_page(page_num)
return page_num
def stop():
if _pager:
return _pager.db_close()
| UTF-8 | Python | false | false | 1,062 | py | 5 | __init__.py | 5 | 0.621469 | 0.621469 | 0 | 59 | 17 | 60 |
mirumee/saleor | 11,802,570,135,609 | acd6fec63c7f9692aecbed15e26af690f8aceb23 | 4d2ecebad4a5144a70ad8e565215b153ef344452 | /saleor/plugins/webhook/tests/test_tasks.py | 9705ea5eef80a8eff0c0c767eb3bf8713104b35e | [
"BSD-3-Clause"
]
| permissive | https://github.com/mirumee/saleor | 6f28ded7e2eb354e9442d7b9c26f6c4c1c3a719f | 1dbde699aaf0a2a7b80b968a76a079f16757c0f6 | refs/heads/main | 2023-09-03T02:12:00.604910 | 2023-03-29T07:05:15 | 2023-03-29T07:05:15 | 8,162,715 | 15,337 | 5,864 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
from decimal import Decimal
from unittest import mock
import pytest
from django.utils import timezone
from freezegun import freeze_time
from graphene import Node
from ....core import EventDeliveryStatus
from ....core.models import EventDelivery, EventPayload
from ....payment import TransactionEventType
from ....payment.interface import TransactionActionData
from ....payment.models import TransactionEvent
from ....payment.transaction_item_calculations import recalculate_transaction_amounts
from ....tests.utils import flush_post_commit_hooks
from ....webhook.event_types import WebhookEventSyncType
from ....webhook.payloads import generate_transaction_action_request_payload
from ..tasks import handle_transaction_request_task, trigger_transaction_request
@pytest.fixture
def mocked_webhook_response():
mocked_post_response = mock.Mock()
mocked_post_response.text = json.dumps({"pspReference": "123"})
mocked_post_response.headers = []
mocked_post_response.status_code = 200
mocked_post_response.ok = True
mocked_post_response.content = json.dumps({"pspReference": "123"})
mocked_post_response.elapsed.total_seconds = lambda: 1 # noqa: E731
return mocked_post_response
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.handle_transaction_request_task.delay")
def test_trigger_transaction_request(
mocked_task,
transaction_item_created_by_app,
staff_user,
permission_manage_payments,
app,
):
# given
event = transaction_item_created_by_app.events.create(
type=TransactionEventType.REFUND_REQUEST
)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook", is_active=True, target_url="http://localhost:3000/"
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction_item_created_by_app,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
# when
trigger_transaction_request(
transaction_data, WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED, staff_user
)
# then
flush_post_commit_hooks()
generated_payload = EventPayload.objects.first()
generated_delivery = EventDelivery.objects.first()
assert generated_payload.payload == generate_transaction_action_request_payload(
transaction_data, staff_user
)
assert generated_delivery.status == EventDeliveryStatus.PENDING
assert (
generated_delivery.event_type
== WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED
)
assert generated_delivery.webhook == webhook
assert generated_delivery.payload == generated_payload
mocked_task.assert_called_once_with(generated_delivery.id, app.name, event.id)
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.handle_transaction_request_task.delay")
def test_trigger_transaction_request_with_webhook_subscription(
mocked_task,
transaction_item_created_by_app,
staff_user,
permission_manage_payments,
app,
):
# given
subscription = """
subscription{
event{
...on TransactionRefundRequested{
transaction{
id
}
action{
amount
actionType
}
}
}
}
"""
event = transaction_item_created_by_app.events.create(
type=TransactionEventType.REFUND_REQUEST
)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url="http://localhost:3000/",
subscription_query=subscription,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction_item_created_by_app,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
# when
trigger_transaction_request(
transaction_data, WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED, staff_user
)
# then
flush_post_commit_hooks()
generated_payload = EventPayload.objects.first()
generated_delivery = EventDelivery.objects.first()
assert generated_payload
assert generated_delivery
assert json.loads(generated_payload.payload) == {
"transaction": {
"id": Node.to_global_id("TransactionItem", transaction_data.transaction.id),
},
"action": {"amount": 10.0, "actionType": "REFUND"},
}
assert generated_delivery.status == EventDeliveryStatus.PENDING
assert (
generated_delivery.event_type
== WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED
)
assert generated_delivery.webhook == webhook
assert generated_delivery.payload == generated_payload
mocked_task.assert_called_once_with(generated_delivery.id, app.name, event.id)
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_only_psp_reference(
mocked_post_request,
transaction_item_generator,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
transaction = transaction_item_generator()
expected_psp_reference = "psp:ref:123"
mocked_webhook_response.text = json.dumps({"pspReference": expected_psp_reference})
mocked_webhook_response.content = json.dumps(
{"pspReference": expected_psp_reference}
)
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
event = transaction.events.create(type=TransactionEventType.REFUND_REQUEST)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert TransactionEvent.objects.count() == 1
event.refresh_from_db()
assert event.psp_reference == expected_psp_reference
mocked_post_request.assert_called_once_with(
target_url, data=payload.encode("utf-8"), headers=mock.ANY, timeout=mock.ANY
)
@pytest.mark.parametrize("status_code", [500, 501, 510])
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.handle_webhook_retry")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_server_error(
mocked_post_request,
mocked_webhook_retry,
status_code,
transaction_item_created_by_app,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
mocked_webhook_response.status_code = status_code
mocked_webhook_response.text = ""
mocked_webhook_response.content = ""
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
event = transaction_item_created_by_app.events.create(
type=TransactionEventType.CHARGE_REQUEST
)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction_item_created_by_app,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert mocked_webhook_retry.called
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_missing_psp_reference(
mocked_post_request,
transaction_item_created_by_app,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
mocked_webhook_response.text = "{}"
mocked_webhook_response.content = "{}"
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
event = transaction_item_created_by_app.events.create(
type=TransactionEventType.REFUND_REQUEST
)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction_item_created_by_app,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_FAILURE
).count()
== 1
)
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_REQUEST
).count()
== 1
)
failure_event = TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_FAILURE
).first()
event.refresh_from_db()
assert event.psp_reference is None
assert failure_event.amount_value == event.amount_value
assert failure_event.transaction_id == event.transaction_id
mocked_post_request.assert_called_once_with(
target_url, data=payload.encode("utf-8"), headers=mock.ANY, timeout=mock.ANY
)
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_missing_required_event_field(
mocked_post_request,
transaction_item_created_by_app,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
expected_psp_reference = "psp:123:111"
mocked_webhook_response.text = json.dumps(
{"pspReference": expected_psp_reference, "amount": 12.00}
)
mocked_webhook_response.content = json.dumps(
{"pspReference": expected_psp_reference, "amount": 12.00}
)
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
event = transaction_item_created_by_app.events.create(
type=TransactionEventType.REFUND_REQUEST
)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction_item_created_by_app,
action_type="refund",
action_value=Decimal("10.00"),
event=event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_FAILURE
).count()
== 1
)
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_REQUEST
).count()
== 1
)
failure_event = TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_FAILURE
).first()
event.refresh_from_db()
assert event.psp_reference is None
assert failure_event.amount_value == event.amount_value
assert failure_event.transaction_id == event.transaction_id
mocked_post_request.assert_called_once_with(
target_url, data=payload.encode("utf-8"), headers=mock.ANY, timeout=mock.ANY
)
@freeze_time("2022-06-11 12:50")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_result_event(
mocked_post_request,
transaction_item_generator,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
transaction = transaction_item_generator()
request_psp_reference = "psp:123:111"
event_amount = 12.00
event_type = TransactionEventType.CHARGE_SUCCESS
event_time = "2022-11-18T13:25:58.169685+00:00"
event_url = "http://localhost:3000/event/ref123"
event_cause = "No cause"
response_payload = {
"pspReference": request_psp_reference,
"amount": event_amount,
"result": event_type.upper(),
"time": event_time,
"externalUrl": event_url,
"message": event_cause,
}
mocked_webhook_response.text = json.dumps(response_payload)
mocked_webhook_response.content = json.dumps(response_payload)
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
request_event = transaction.events.create(type=TransactionEventType.CHARGE_REQUEST)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction,
action_type="refund",
action_value=Decimal("10.00"),
event=request_event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert TransactionEvent.objects.all().count() == 2
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.CHARGE_REQUEST
).count()
== 1
)
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.CHARGE_SUCCESS
).count()
== 1
)
success_event = TransactionEvent.objects.filter(
type=TransactionEventType.CHARGE_SUCCESS
).first()
assert success_event
request_event.refresh_from_db()
assert request_event.psp_reference == request_psp_reference
assert success_event.psp_reference == request_psp_reference
assert success_event.amount_value == event_amount
assert success_event.created_at.isoformat() == event_time
assert success_event.external_url == event_url
assert success_event.message == event_cause
mocked_post_request.assert_called_once_with(
target_url, data=payload.encode("utf-8"), headers=mock.ANY, timeout=mock.ANY
)
@freeze_time("2022-06-11T17:50:00+00:00")
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_with_only_required_fields_for_result_event(
mocked_post_request,
transaction_item_generator,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
transaction = transaction_item_generator()
request_psp_reference = "psp:123:111"
request_event = transaction.events.create(type=TransactionEventType.REFUND_REQUEST)
response_payload = {
"pspReference": request_psp_reference,
"result": TransactionEventType.REFUND_SUCCESS.upper(),
"amount": str(request_event.amount_value),
}
mocked_webhook_response.text = json.dumps(response_payload)
mocked_webhook_response.content = json.dumps(response_payload)
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction,
action_type="refund",
action_value=Decimal("10.00"),
event=request_event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_REFUND_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
assert TransactionEvent.objects.all().count() == 2
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_REQUEST
).count()
== 1
)
assert (
TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_SUCCESS
).count()
== 1
)
success_event = TransactionEvent.objects.filter(
type=TransactionEventType.REFUND_SUCCESS
).first()
request_event.refresh_from_db()
assert success_event
assert request_event.psp_reference == request_psp_reference
assert success_event.type == TransactionEventType.REFUND_SUCCESS
assert success_event.psp_reference == request_psp_reference
assert success_event.amount_value == request_event.amount_value
assert success_event.created_at == timezone.now()
assert success_event.external_url == ""
assert success_event.message == ""
mocked_post_request.assert_called_once_with(
target_url, data=payload.encode("utf-8"), headers=mock.ANY, timeout=mock.ANY
)
@freeze_time("2022-06-11 12:50")
@mock.patch(
"saleor.payment.utils.recalculate_transaction_amounts",
wraps=recalculate_transaction_amounts,
)
@mock.patch("saleor.plugins.webhook.tasks.requests.post")
def test_handle_transaction_request_task_calls_recalculation_of_amounts(
mocked_post_request,
mocked_recalculation,
transaction_item_generator,
permission_manage_payments,
staff_user,
mocked_webhook_response,
app,
):
# given
transaction = transaction_item_generator()
request_psp_reference = "psp:123:111"
event_amount = 12.00
event_type = TransactionEventType.CHARGE_SUCCESS
event_time = "2022-11-18T13:25:58.169685+00:00"
event_url = "http://localhost:3000/event/ref123"
event_cause = "No cause"
response_payload = {
"pspReference": request_psp_reference,
"amount": event_amount,
"result": event_type.upper(),
"time": event_time,
"externalUrl": event_url,
"message": event_cause,
}
mocked_webhook_response.text = json.dumps(response_payload)
mocked_webhook_response.content = json.dumps(response_payload)
mocked_post_request.return_value = mocked_webhook_response
target_url = "http://localhost:3000/"
request_event = transaction.events.create(type=TransactionEventType.CHARGE_REQUEST)
app.permissions.set([permission_manage_payments])
webhook = app.webhooks.create(
name="webhook",
is_active=True,
target_url=target_url,
)
webhook.events.create(event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED)
transaction_data = TransactionActionData(
transaction=transaction,
action_type="charge",
action_value=Decimal("12.00"),
event=request_event,
transaction_app_owner=app,
)
payload = generate_transaction_action_request_payload(transaction_data, staff_user)
event_payload = EventPayload.objects.create(payload=payload)
delivery = EventDelivery.objects.create(
status=EventDeliveryStatus.PENDING,
event_type=WebhookEventSyncType.TRANSACTION_CHARGE_REQUESTED,
payload=event_payload,
webhook=webhook,
)
# when
handle_transaction_request_task(delivery.id, app.name, transaction_data.event.id)
# then
mocked_recalculation.assert_called_once_with(transaction)
transaction.refresh_from_db()
assert transaction.charged_value == event_amount
| UTF-8 | Python | false | false | 22,515 | py | 67 | test_tasks.py | 61 | 0.688696 | 0.673951 | 0 | 686 | 31.8207 | 88 |
darkreapyre/NeOS-0.0.0-00 | 6,871,947,703,361 | 8b01738e8bcaacf562e80d38955ea27024e968be | 4fe0c90217656ff9f449c1278a9956d71e5769b0 | /core/clients/python/api_bindings/cb2_api/objects/node_role.py | 172f5911d9e9f64ce1184c058587447f2ca868f0 | [
"Apache-2.0"
]
| permissive | https://github.com/darkreapyre/NeOS-0.0.0-00 | f7335935a058700cc7a3aff20fba203fa1d3d727 | fdaddf3350edac74ee7c31f34843f0296d8e1d84 | refs/heads/master | 2016-09-06T20:34:18.263522 | 2014-10-12T00:54:17 | 2014-10-12T00:54:17 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Copyright 2014, Dell
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cb2_api.endpoint import EndPoint
from apiobject import ApiObject
class Node_RoleEP(EndPoint):
'''
https://github.com/opencrowbar/core/blob/master/doc/devguide/api/node_roles.md
'''
__endpoint = "/api/v2/node_roles"
__apiObjectType = "Node_Role"
def __init__(self, session):
self.session = session
self.endpoint = Node_RoleEP.__endpoint
super(Node_RoleEP, self).__init__(session)
class Node_Role(ApiObject):
'''
Node_role object
'''
def __init__(self, json={}):
self.available = None
self.cohort = None
self.updated_at = None
self.created_at = None
self.runlog = None
self.order = None
self.state = None
self.node_id = None
self.status = None
self.run_count = None
self.deployment_id = None
self.role_id = None
self.id = None
self.__dict__ = json
super(Node_Role, self).__init__()
class Enums_Role():
'''
TODO
'''
| UTF-8 | Python | false | false | 1,648 | py | 490 | node_role.py | 58 | 0.615291 | 0.609223 | 0 | 56 | 27.964286 | 82 |
Walkerlikesfish/leetleet | 523,986,042,418 | 0694183dbfaf47e38e96cce2a060beae85557bcf | 3f39fd28584ede3e606438892eaa4e61e826f6c3 | /leetPy/leet_131.py | aa6c34437c6028d41a23586f4dce5b1b0db4b585 | []
| no_license | https://github.com/Walkerlikesfish/leetleet | d3d4e1a2554b0f1967f58819fde1cc1713d6df9a | 477511951ce9a13ff87e1901559d999b7a9b38c7 | refs/heads/master | 2020-03-22T22:57:19.207535 | 2019-05-19T10:17:03 | 2019-05-19T10:17:03 | 140,780,989 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
class Solution(object):
def partition(self, s):
"""
:type s: str
:rtype: List[List[str]]
"""
self.n = len(s)
self.res = []
self.s = s
if not s:
return []
if len(s) == 1:
return [[s]]
self.dfs(1, [0])
return self.res
def is_hw(self, s):
# print s
i = 0
n = len(s)
while i<n/2:
if s[i] != s[n-1-i]:
return False
i+=1
return True
def dfs(self, cn, cur_set):
if cn == self.n:
if len(cur_set)>1 and not self.is_hw(self.s[cur_set[-2]:cur_set[-1]]):
return
cur_set.append(cn)
if not self.is_hw(self.s[cur_set[-2]:cur_set[-1]]):
return
else:
cur_sp = []
for i in range(1, len(cur_set)):
sub_str = self.s[cur_set[i-1]:cur_set[i]]
cur_sp.append(sub_str)
self.res.append(cur_sp)
else:
if len(cur_set) > 1:
if not self.is_hw(self.s[cur_set[-2]:cur_set[-1]]):
return
new_set = list(cur_set)
new_set.append(cn)
self.dfs(cn+1, cur_set)
self.dfs(cn+1, new_set)
def stringToString(input):
return input[1:-1].decode('string_escape')
def string2dArrayToString(input):
return json.dumps(input)
def main():
import sys
while True:
try:
line = sys.stdin.readline().rstrip('\n')
s = stringToString(line)
ret = Solution().partition(s)
out = string2dArrayToString(ret)
print out
except StopIteration:
break
if __name__ == '__main__':
main() | UTF-8 | Python | false | false | 1,834 | py | 182 | leet_131.py | 181 | 0.442203 | 0.429662 | 0 | 79 | 22.227848 | 82 |
quynhdtn/WECDenoiser | 19,172,734,044,574 | 4737faf2209cc38efeb777b3ca78a144383d0222 | 30752189f5bb42581b4fcb3ee9721903427ee767 | /nn/Connection.py | c529180d7e649beb9925a21c6f5a4ece0ba1c6de | []
| no_license | https://github.com/quynhdtn/WECDenoiser | 7511c87af3a226beee1bd70165845bb343e94f22 | bd57d8a2408926562961f23a15bb4c604a375a73 | refs/heads/master | 2021-01-10T04:50:26.145725 | 2016-03-04T09:34:58 | 2016-03-04T09:34:58 | 53,056,487 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from nn.Functions import DotTransferFunction, SigmoidActivateFunction, WeightInit
import theano.tensor as T
import theano as th
import numpy as np
__author__ = 'quynhdo'
# implement the connection between two layers
class Connection:
def __init__(self, scr, dst, transfer_func=DotTransferFunction, activate_func=SigmoidActivateFunction, use_bias=True,
idx="", initial_w=None, initial_b=None,
w_lamda=1.0, rng = None):
'''
:param scr: source layers, can be a single layer of a list of layer, if is a list of layer then we have to concatenate the units
of the source layers to process in the connection
:param dst: destination layer
:param transfer_func: usually the Dot func to get the net input
:param activate_func: activate function
:param use_bias:
:param idx: index of the connnection
:param initial_w: initial value for weights
:param initial_b: initial value for bias
:param w_lamda: initial value to init the weight
:return:
'''
self.scr = scr # source layer
self.dst = dst # destination layer
self.activate_func = activate_func # transfer function
self.transfer_func = transfer_func # activate function
self.W = None
self.b = None
if isinstance(self.scr, list): # if there are more than one src layers
self.size_in = np.sum([l.size for l in self.scr]) # then input size of the connection equals to the sum of all scr layers
else:
self.size_in = self.scr.size
self.size_out = self.dst.size
if initial_w is not None:
self.W = initial_w
else:
self.W = th.shared(value=np.asarray(WeightInit(self.size_in, self.size_out, w_lamda, rng), dtype=th.config.floatX)
, name='W'+idx, borrow=True)
self.params = [self.W]
if use_bias:
if initial_b is not None:
self.b = initial_b
else:
self.b = th.shared(value=np.zeros(dst.size, dtype=th.config.floatX), name="b" + idx, borrow=True )
self.params.append(self.b)
# Start the connection, calculate the unit values of the dst layer from the scr layer
def start(self):
xx = None
start_sparse_idx = -1
if isinstance(self.scr, list): # we only allow sparse layers to occur at the end...
for i in range(len(self.scr)):
if th.sparse.basic._is_sparse_variable(self.scr[i].units):
start_sparse_idx = i
break
if start_sparse_idx > 0:
xx = T.concatenate([self.scr[i].units for i in range (start_sparse_idx)], axis=1)
xx = th.sparse.hstack((th.sparse.csr_from_dense(xx),self.scr[start_sparse_idx].units))
for j in range(start_sparse_idx+1,len(self.scr)):
xx = th.sparse.hstack(xx, self.scr[j].units)
if start_sparse_idx == 0:
xx = self.scr[0].units
for j in range(1,len(self.scr)):
xx = th.sparse.hstack(xx, self.scr[j].units)
if start_sparse_idx < 0:
xx = T.concatenate([self.scr[i].units for i in range (len(self.scr))], axis=1)
else:
xx = self.scr.units
self.dst.units = self.activate_func(self.transfer_func(xx, self.W, self.b))
def getOutput(self, x):
'''
only work when x is a single varibale, not a list
:param x:
:return:
'''
return self.activate_func(self.transfer_func(x, self.W, self.b))
| UTF-8 | Python | false | false | 3,685 | py | 9 | Connection.py | 7 | 0.584532 | 0.581547 | 0 | 92 | 39.054348 | 136 |
fandipj98/Social-Media-Prediction | 17,154,099,393,799 | 8114d2702f2c3f40443429410c1aeb0204b34e12 | 16404ea73768335255abe89adea850176255a3ef | /kmeans.py | 393fb457aed4152c7970266f36b73667ddee4922 | []
| no_license | https://github.com/fandipj98/Social-Media-Prediction | 7daf5a13d73493b6c1cb4ad4eff370eee203bca4 | ffa9fc1b781cdc9d55ca118351fe05b123b2a162 | refs/heads/master | 2022-03-27T17:17:56.418339 | 2019-12-11T14:14:58 | 2019-12-11T14:14:58 | 215,304,469 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
import csv
trainingSet=[]
with open('data_km.csv','r') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(10000):
trainingSet.append(dataset[x])
with open('data_tugas_km.csv', 'r') as csvfileTest:
linesTest = csv.reader(csvfileTest)
datasetTest = list(linesTest)
# def predict(data, centroids):
# distances = []
# for unit in data:
# for center in centroids:
# distances.append(np.sum((unit - center) ** 2))
# distances = np.reshape(distances, data.shape)
# closest_centroid = [np.argmin(dist) for dist in distances]
# print(closest_centroid)
trainData = np.array(trainingSet)
# print(trainData)
categoryGet = trainData[:,0].astype(float)
# print(categoryGet)
subcategoryGet = trainData[:,1].astype(float)
# print(subcategoryGet)
labelGet = trainData[:,2].astype(float)
# print(labelGet)
cscGet = trainData[:,0:2].astype(float)
testData = np.array(datasetTest)
# print(testData)
testDataGet = testData[:,0:2].astype(float)
# print(testDataGet)
# plt.scatter(subcategoryGet, labelGet)
# plt.show()
kmeans = KMeans(n_clusters=3).fit(cscGet)
centroid = kmeans.cluster_centers_
print(centroid)
# TRAIN DATA
# plt.scatter(cscGet[:,0], cscGet[:,1])
# plt.scatter(centroid[:,0], centroid[:,1], marker='*', c='g', s=150)
# plt.show()
# predict(testDataGet, centroid)
test = kmeans.predict(testDataGet)
print(test)
closest_centroid = []
for x in range(len(testDataGet)):
diff = centroid - testDataGet[x,:]
# print(diff)
dist = np.sqrt(np.sum(diff**2, axis=-1))
# print(dist)
closest_centroid.append(centroid[np.argmin(dist),])
# print(centroid)
for x in range(len(closest_centroid)):
print (closest_centroid[x])
plt.scatter(testDataGet[:,0], testDataGet[:,1])
plt.scatter(centroid[:,0], centroid[:,1], marker='*', c='g', s=150)
plt.show()
# Cari Center
# wcss = []
# for i in range(1, 11):
# kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=1000, n_init=10, random_state=0)
# kmeans.fit(cscGet)
# wcss.append(kmeans.inertia_)
# plt.plot(range(1, 11), wcss)
# plt.title('Elbow Method')
# plt.xlabel('Number of clusters')
# plt.ylabel('WCSS')
# plt.show()
# kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
# pred_y = kmeans.fit_predict(categoryGet)
# print(pred_y)
| UTF-8 | Python | false | false | 2,546 | py | 41 | kmeans.py | 17 | 0.67282 | 0.653181 | 0 | 93 | 26.365591 | 95 |
raczandras/szkriptnyelvek | 5,282,809,776,829 | a65a9dad17587e5ca8d7d411f36b675be1d08359 | 2384ecfba2f96b44aad463360444389b1c517263 | /HF/8/hangrendenum.py | 8fc40851777952d835ac1570e41811f456280252 | []
| no_license | https://github.com/raczandras/szkriptnyelvek | 9176f511ec3552385176dd122459633d41d0db8f | efe3dec3288f71e18c48150a9c849ef34fffb766 | refs/heads/master | 2023-01-11T02:29:03.023309 | 2020-11-12T14:33:29 | 2020-11-12T14:33:29 | 296,817,986 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
from enum import Enum
class Beturendek(Enum):
MELYHANGOK = 'aáoóuú'
MAGASHANGOK = 'eéiíöőüű'
class Hangrendek(Enum):
SEMMILYEN = 0
MÉLY = 1
MAGAS = 2
VEGYES = 3
def hangrend(word):
mely = False
magas = False
eredmeny = 0
for c in word:
if c in Beturendek.MELYHANGOK.value and not bool(mely):
mely = True
eredmeny += 1
elif c in Beturendek.MAGASHANGOK.value and not bool(magas):
magas = True
eredmeny += 2
return eredmeny
def main():
words = ["ablak", "erkély", "kisvasút", "magas", "mély", "zrt"]
for w in words:
print( w + " -> " + Hangrendek(hangrend(w)).name )
if __name__ == "__main__":
main()
| UTF-8 | Python | false | false | 771 | py | 64 | hangrendenum.py | 62 | 0.562005 | 0.551451 | 0 | 39 | 18.435897 | 67 |
rivrproject/rivr | 18,511,309,090,514 | b39c45082fdf514cf7a806179ccca4128d281b56 | 5f38be02781b0ee6bd3bf09ad4bf77c3b525e212 | /rivr/router.py | aaef833ea63c49f9a103e797a0b7d8a22d737f27 | [
"BSD-3-Clause",
"LicenseRef-scancode-unknown-license-reference",
"BSD-2-Clause"
]
| permissive | https://github.com/rivrproject/rivr | a474c7bf24a8a0076fb75129ee9a657421532ac8 | b4f7eb481cc28ae48169f1d3982b896b7cfd5c91 | refs/heads/master | 2021-07-03T01:51:48.676645 | 2020-11-05T18:26:03 | 2020-11-05T18:26:03 | 506,574 | 3 | 0 | NOASSERTION | false | 2020-10-10T15:31:51 | 2010-02-07T13:49:53 | 2020-10-10T13:51:53 | 2020-10-10T13:52:08 | 253 | 10 | 1 | 7 | Python | false | false | import re
from typing import Any, Callable, Dict, Iterable, Optional, Tuple
from rivr.http import Http404, Request, Response, ResponsePermanentRedirect
from rivr.importlib import import_module
class Resolver404(Http404):
pass
class ViewDoesNotExist(Exception):
pass
class RegexURL(object):
def __init__(self, regex: str):
self.regex = re.compile(regex, re.UNICODE)
def resolve(
self, path: str
) -> Optional[Tuple[Callable, Iterable[Any], Dict[str, Any]]]:
match = self.regex.search(path)
if match:
return self.match_found(path, match)
return None
def match_found(
self, path: str, match
) -> Optional[Tuple[Callable, Iterable[Any], Dict[str, Any]]]:
raise NotImplementedError
class RegexURLPattern(RegexURL):
def __init__(
self,
regex: str,
callback: Callable[..., Response],
kwargs={},
name: Optional[str] = None,
prefix: Optional[str] = None,
):
super(RegexURLPattern, self).__init__(regex)
if callable(callback):
self._callback = callback
else:
self._callback = None
self._callback_str = callback
self.default_kwargs = kwargs
self.name = name
self.add_prefix(prefix)
def match_found(
self, path: str, match
) -> Optional[Tuple[Callable, Iterable[Any], Dict[str, Any]]]:
kwargs = match.groupdict()
if kwargs:
args: Iterable = tuple()
else:
args = match.groups()
kwargs.update(self.default_kwargs)
return self.callback, args, kwargs
@property
def callback(self):
if self._callback is not None:
return self._callback
try:
self._callback = import_module(self._callback_str)
except ImportError as e:
raise ViewDoesNotExist(
'Could not import %s (%s)' % (self._callback_str, str(e))
)
return self._callback
def add_prefix(self, prefix):
if prefix and hasattr(self, '_callback_str'):
self._callback_str = prefix + '.' + self._callback_str
class RegexURLResolver(RegexURL):
def __init__(self, regex, router, kwargs={}):
super(RegexURLResolver, self).__init__(regex)
if callable(router):
self._router = router
else:
self._router = None
self._router_str = router
self.default_kwargs = kwargs
def match_found(
self, path: str, match
) -> Optional[Tuple[Callable, Iterable[Any], Dict[str, Any]]]:
new_path = path[match.end() :]
try:
callback, args, kwargs = self.router.resolve(new_path)
except Http404:
return None
kwargs.update(self.default_kwargs)
return callback, args, kwargs
@property
def router(self):
if self._router is not None:
return self._router
try:
self._router = import_module(self._router_str)
except ImportError as e:
raise Http404(
'Could not import %s. Error was: %s' % (self._router_str, str(e))
)
return self._router
class BaseRouter(object):
def __init__(self, *urls):
"""
Router takes URLs which you can register on creation.
Example::
router = rivr.Router(
(r'^$', index),
(r'^test/$', test),
)
"""
self.urlpatterns = []
try:
if isinstance(urls[0], str):
prefix = urls[0]
urls = urls[1:]
else:
prefix = None
except IndexError:
prefix = None
for t in urls:
if isinstance(t, (list, tuple)):
t = url(*t)
if prefix and hasattr(t, 'add_prefix'):
t.add_prefix(prefix)
self.urlpatterns.append(t)
def __iadd__(self, router):
self.urlpatterns.__iadd__(router.urlpatterns)
def __isub__(self, router):
self.urlpatterns.__isub__(router.urlpatterns)
def append(self, url):
self.urlpatterns.append(url)
def register(self, *t):
"""
Register a URL pattern with a view. This can either be used as a
decorator, or it can be used as a method with a view.
Decorator Example::
@router.register(r'^$')
def view(request):
return Response()
View Example::
router.register(r'^$', view)
"""
if isinstance(t, (list, tuple)):
if len(t) == 1:
def func(view):
self.register(t[0], view)
return view
return func
t = url(*t)
self.append(t)
class Router(BaseRouter):
append_slash = True
"""
When append_slash is True, if the request URL does not match any patterns
in the router and it doesn't end in a slash. The router will HTTP redirect
any issues to the same URL with a slash appended.
"""
def resolve(self, path: str) -> Tuple[Callable, Iterable[Any], Dict[str, Any]]:
for pattern in self.urlpatterns:
result = pattern.resolve(path)
if result is not None:
return result
raise Resolver404('No URL pattern matched.')
def __call__(self, request: Request) -> Response:
if self.append_slash and (not request.path.endswith('/')):
if (not self.is_valid_path(request.path)) and self.is_valid_path(
request.path + '/'
):
return ResponsePermanentRedirect(request.path + '/')
result = RegexURLResolver(r'^/', self).resolve(request.path)
if result:
callback, args, kwargs = result
return callback(request, *args, **kwargs)
raise Resolver404('No URL pattern matched.')
def is_valid_path(self, path: str) -> bool:
try:
self.resolve(path)
return True
except Resolver404:
return False
class Domain(BaseRouter):
APPEND_SLASH = True
def resolve(self, path: str) -> Tuple[Callable, Iterable[Any], Dict[str, Any]]:
for pattern in self.urlpatterns:
result = pattern.resolve(path)
if result is not None:
return result
raise Resolver404('No URL pattern matched.')
def __call__(self, request: Request) -> Response:
host = ':'.join(request.host.split(':')[:-1])
url = host + request.path
if self.APPEND_SLASH and (not url.endswith('/')):
if (not self.is_valid_url(url)) and self.is_valid_url(url + '/'):
return ResponsePermanentRedirect(url + '/')
result = self.resolve(url)
if result:
callback, args, kwargs = result
return callback(request, *args, **kwargs)
raise Resolver404('No URL pattern matched.')
def is_valid_url(self, path: str) -> bool:
try:
self.resolve(path)
return True
except Resolver404:
return False
# Shortcuts
def url(regex, view: Callable[..., Response], kwargs={}, name=None, prefix=None):
if isinstance(view, list):
return RegexURLResolver(regex, view[0], kwargs)
as_view = getattr(view, 'as_view', None)
if as_view and callable(as_view):
view = as_view()
return RegexURLPattern(regex, view, kwargs, name, prefix)
def include(router):
return [router]
| UTF-8 | Python | false | false | 7,652 | py | 47 | router.py | 34 | 0.553973 | 0.548745 | 0 | 282 | 26.134752 | 83 |
XRSHEERAN/Algorithms | 8,650,064,181,024 | 285b475c08e748f2aa69671eb6f98ee85622c3d4 | 781c65db3fadb9cb9511468dc0c17e9d985297f4 | /TopInterview/4SumII.py.py | 76ad7414d0a84c7a66c2081dded74ac8d8dc4478 | []
| no_license | https://github.com/XRSHEERAN/Algorithms | 37b38a8e80c6e1b28fca5b386f654f4a3851544c | da60a684655e9c890bbf8ee0c234fc2432ad9ec1 | refs/heads/master | 2018-11-02T04:52:36.434798 | 2018-10-04T18:26:14 | 2018-10-04T18:26:14 | 113,063,020 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | class Solution:
def fourSumCount(self, A, B, C, D):
"""
:type A: List[int]
:type B: List[int]
:type C: List[int]
:type D: List[int]
:rtype: int
"""
mapping={}
for i in A:
for j in B:
temp=i+j
if temp not in mapping:
mapping[temp]=1
else:
mapping[temp]+=1
mapping2={}
for i in C:
for j in D:
temp=i+j
if temp not in mapping2:
mapping2[temp]=1
else:
mapping2[temp]+=1
count=0
for i in mapping:
if -1*i in mapping2:
count+=mapping[i]*mapping2[-1*i]
return count
| UTF-8 | Python | false | false | 812 | py | 51 | 4SumII.py.py | 46 | 0.380542 | 0.364532 | 0 | 31 | 25.193548 | 48 |
tiduswr/Algoritimos_P1_UEPB_CCEA_CAMPUS_VII | 17,617,955,862,707 | e8253915fe86f37f442bafd2fc6f8096964b1e79 | 8394f555a2cba1e90b2cbdd85ced0346487be8ac | /Lista 06/lista06ex08.py | 1829c10b8e8e552e9b710cf1205057c943a5d7b6 | []
| no_license | https://github.com/tiduswr/Algoritimos_P1_UEPB_CCEA_CAMPUS_VII | f44ad786db73aa9009dd6196e364ee363cabb692 | 8b74b0782a73cea32b5382a2f893615afdf16017 | refs/heads/master | 2022-03-10T18:22:44.697323 | 2019-11-21T05:09:18 | 2019-11-21T05:09:18 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | lin = 3
col = 6
matriz = []
somaimpar = 0
media2_4 = 0
print('=' * 50)
print('{:^50}'.format('Questão 08 Lista 06!'))
print('=' * 50)
for i in range(lin):
matriz.append([0] * col)
for i in range(lin):
for j in range(col):
matriz[i][j] = float(input('Matriz[{}][{}]: '.format(i+1, j+1)))
for i in range(lin):
for j in range(col):
if ((j + 1) % 2) > 0:
somaimpar = somaimpar + matriz[i][j]
if (j + 1) == 2 or (j + 1) == 4:
media2_4 = media2_4 + matriz[i][j]
if (j + 1) == 6:
matriz[i][j] = matriz[i][0] + matriz[i][1]
print('=' * 50)
print('{:^50}'.format('RESULTADOS'))
print('=' * 50)
print('\n* A soma de todos os elementos das colunas Impares\né igual a: {:.2f}'.format(somaimpar))
print('* A media de todos os elementos da Segunda e Quarta\ncoluna é igual a: {:.2f}\n'.format(media2_4/(lin*2)))
print('Matriz Modificada:\n')
for j in range(col):
print('|','{:^8}'.format('Coluna_'+str(j+1)), end = ' ')
if (j + 1) == col:
print('|', end = '')
print()
for i in range(lin):
for j in range(col):
print('|', '{:^8.2f}'.format(matriz[i][j]), end = ' ')
if (j + 1) == col:
print('|', end = '')
print() | UTF-8 | Python | false | false | 1,242 | py | 122 | lista06ex08.py | 122 | 0.508475 | 0.467312 | 0 | 47 | 25.382979 | 113 |
personalbrian/self-playing-snake | 7,713,761,265,469 | 209465d3b8fd72e9ba1a50b8679788330aab0065 | 4cc751e4dc2688af3709c9ed26075f627ea33944 | /venv/Lib/site-packages/IPython/terminal/tests/test_interactivshell.py | 5a00780cc6cefc9720119a8c3ab708a3f82fd1f4 | []
| no_license | https://github.com/personalbrian/self-playing-snake | 6a485328292d4971636cc4d033839ffc16d7f6ec | db4cf9b88b73c2494c35e599c2c23faaff7a3b73 | refs/heads/main | 2023-04-17T08:11:06.501719 | 2021-05-03T08:06:32 | 2021-05-03T08:06:32 | 362,734,451 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | version https://git-lfs.github.com/spec/v1
oid sha256:34ac6aa27eff0ff5eb776a5538fc557ff5ee671b2f53cf1c04680380340d80a2
size 6888
| UTF-8 | Python | false | false | 129 | py | 3,892 | test_interactivshell.py | 3,212 | 0.883721 | 0.51938 | 0 | 3 | 42 | 75 |
gesco/TG_PY | 16,346,645,547,972 | 39b3df6d2ca6edeb7e30b6fabe81d87dcd88ec3d | 99a5d68411c02a78a0bb1c0a4e4d167116aca413 | /02_InputProcessingAndOutput/program_0211.py | bb9b344692d31892e9456758692e29a1fd216ee9 | []
| no_license | https://github.com/gesco/TG_PY | 19c3fcada4d530ff065e71e12f281ee56dd08eb4 | af80f15da27448603d1fececbf71b620ff3d77a5 | refs/heads/main | 2023-02-12T22:20:52.085426 | 2021-01-09T16:52:53 | 2021-01-09T16:52:53 | 323,755,566 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # Create variables to reference two strings.
first_name = 'Kathryn'
last_name = 'Marino'
# Display the values referenced by the variables.
print(first_name, last_nameg)
# OUTPUT
# Kathryn Marino
| UTF-8 | Python | false | false | 197 | py | 7 | program_0211.py | 7 | 0.751269 | 0.751269 | 0 | 9 | 20.888889 | 49 |
zengxio/auto | 13,348,758,365,297 | dbfd5fdc0ae3943dbfb76e94aa290cb2cb1aaa11 | 1da5738176c97cc931abbc8abb9fbe1953389dc5 | /autoclient/Course_system/lib/Login.py | 01936eb56d8f311f6eb6224b81fbf8c602da6681 | []
| no_license | https://github.com/zengxio/auto | ed25db07c513e3e3c7cec3125e39c4429de4d52b | 14f101afe97ac1257a7afc804a9aac75de3a0376 | refs/heads/master | 2020-03-12T21:25:15.301984 | 2018-04-24T09:16:15 | 2018-04-24T09:16:15 | 130,827,649 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python
#coding:utf-8
from Course_system.lib import Open_file
class login():
def __init__(self,username,password):
self.username=username
self.password=password
def login_func(self):
userdata=Open_file.Open_file_class()
read_file=userdata.read()
if self.username in read_file and read_file[self.username].get('password') :
if self.password==read_file[self.username]['password']:
if not read_file[self.username]['login']:
read_file[self.username]['login']=True
print('login successfully')
flag=True
return read_file[self.username]
else:
print('password error,please re-enter')
else:
print('user is not exists,please re-enter')
if __name__ == '__main__':
l=login('zxafy','123456')
print(l.login_func()) | UTF-8 | Python | false | false | 925 | py | 21 | Login.py | 21 | 0.571892 | 0.564324 | 0 | 31 | 28.870968 | 84 |
srio/paper-guigay-resources | 12,893,491,858,132 | 2aedc8f56fb337227192ae45c2166de5042a0a1e | cd028ec879c4c1538aaee528d706817f5ca68412 | /scripts/crystal_data.py | e830fabae8e463b3d0712b0ca584b9da0c9ab77e | [
"MIT"
]
| permissive | https://github.com/srio/paper-guigay-resources | 5d0b0f06618eb941d7a5c34079e2c854a334e9b9 | 4c7d379a975b5ae034c5595c6222d5ff94c39460 | refs/heads/main | 2023-03-29T23:44:29.167969 | 2021-04-09T08:32:44 | 2021-04-09T08:32:44 | 332,707,764 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #
# example of using xraylib to get crystal data
#
# see:
# http://dx.doi.org/10.1016/j.sab.2011.09.011 (paper)
# https://github.com/tschoonj/xraylib/ (code)
# http://lvserver.ugent.be/xraylib-web (web interface, but crystals not included!)
#
#
# import block
#
import xraylib
import numpy as np
import scipy.constants.codata
def get_crystal_data(crystal_id="Si",hkl=[1,1,1],photon_energy_in_keV=12.398,verbose=True):
#
# get crystal data for silicon crystal
#
cryst = xraylib.Crystal_GetCrystal(crystal_id)
# print some info
if verbose:
print (" Unit cell dimensions [A] are %f %f %f" % (cryst['a'],cryst['b'],cryst['c']))
print (" Unit cell angles are %f %f %f" % (cryst['alpha'],cryst['beta'],cryst['gamma']))
print (" Unit cell volume [A] is %f" % (cryst['volume']) )
#
# define miller indices and compute dSpacing
#
hh = hkl[0]
kk = hkl[1]
ll = hkl[2]
debyeWaller = 1.0
rel_angle = 1.0 # ratio of (incident angle)/(bragg angle) -> we work at Bragg angle
dspacing = xraylib.Crystal_dSpacing(cryst,hh,kk,ll )
if verbose: print("dspacing: %f A \n"%dspacing)
#
# define energy and get Bragg angle
#
ener = photon_energy_in_keV # 12.398 # keV
braggAngle = xraylib.Bragg_angle(cryst,ener,hh,kk,ll )
if verbose: print("Bragg angle: %f degrees \n"%(braggAngle*180/np.pi))
#
# get the structure factor (at a given energy)
#
f0 = xraylib.Crystal_F_H_StructureFactor(cryst, ener, 0, 0, 0, debyeWaller, 1.0)
fH = xraylib.Crystal_F_H_StructureFactor(cryst, ener, hh, kk, ll, debyeWaller, 1.0)
if verbose: print("f0: (%f , %f) \n"%(f0.real,f0.imag))
if verbose: print("fH: (%f , %f) \n"%(fH.real,fH.imag))
#
# convert structure factor in chi (or psi) = - classical_e_radius wavelength^2 fH /(pi volume)
#
codata = scipy.constants.codata.physical_constants
codata_c, tmp1, tmp2 = codata["speed of light in vacuum"]
codata_h, tmp1, tmp2 = codata["Planck constant"]
codata_ec, tmp1, tmp2 = codata["elementary charge"]
codata_r, tmp1, tmp2 = codata["classical electron radius"]
ev2meter = codata_h*codata_c/codata_ec
wavelength = ev2meter/(ener*1e3)
if verbose: print("Photon energy: %f keV \n"%ener)
if verbose: print("Photon wavelength: %f A \n"%(1e10*wavelength))
volume = cryst['volume'] *1e-10*1e-10*1e-10 # volume of silicon unit cell in m^3
cte = - codata_r * wavelength*wavelength/(np.pi * volume)
chi0 = cte*f0
chiH = cte*fH
if verbose: print("chi0: (%e , %e) \n"%(chi0.real,chi0.imag))
if verbose: print("chiH: (%e , %e) \n"%(chiH.real,chiH.imag))
return braggAngle, np.conjugate(chi0), np.conjugate(chiH)
if __name__ == "__main__":
# theta, chi0, chiH = get_crystal_data("Si",hkl=[1,1,1],photon_energy_in_keV=12.398,verbose=True)
theta, chi0, chiH = get_crystal_data("Si", hkl=[1, 1, 1], photon_energy_in_keV=17.0, verbose=True)
| UTF-8 | Python | false | false | 3,017 | py | 16 | crystal_data.py | 2 | 0.623467 | 0.591316 | 0 | 92 | 31.793478 | 102 |
geohot/tinygrad | 1,984,274,934,195 | a4886f23fd169927c420ed7e9a4982f4a0e71f86 | 180aa89910e8c1fc65652b26fc6be9243e5ce96b | /models/resnet.py | 972fb6aa4127f8077c4be630c34c0e57fb0bbe5d | [
"MIT"
]
| permissive | https://github.com/geohot/tinygrad | 04521e22deb0e4cb41c3662a00ed177a5701c81c | 89b529c07f8ed1eae672faa6f2940c51a153ce0b | refs/heads/master | 2023-08-26T17:27:47.942097 | 2023-08-26T13:34:15 | 2023-08-26T13:34:15 | 305,144,746 | 17,772 | 2,343 | null | null | null | null | null | null | null | null | null | null | null | null | null | import tinygrad.nn as nn
from extra.utils import get_child
class BasicBlock:
expansion = 1
def __init__(self, in_planes, planes, stride=1, groups=1, base_width=64):
assert groups == 1 and base_width == 64, "BasicBlock only supports groups=1 and base_width=64"
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = []
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = [
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
]
def __call__(self, x):
out = self.bn1(self.conv1(x)).relu()
out = self.bn2(self.conv2(out))
out = out + x.sequential(self.downsample)
out = out.relu()
return out
class Bottleneck:
# NOTE: stride_in_1x1=False, this is the v1.5 variant
expansion = 4
def __init__(self, in_planes, planes, stride=1, stride_in_1x1=False, groups=1, base_width=64):
width = int(planes * (base_width / 64.0)) * groups
# NOTE: the original implementation places stride at the first convolution (self.conv1), control with stride_in_1x1
self.conv1 = nn.Conv2d(in_planes, width, kernel_size=1, stride=stride if stride_in_1x1 else 1, bias=False)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, padding=1, stride=1 if stride_in_1x1 else stride, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.downsample = []
if stride != 1 or in_planes != self.expansion*planes:
self.downsample = [
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
]
def __call__(self, x):
out = self.bn1(self.conv1(x)).relu()
out = self.bn2(self.conv2(out)).relu()
out = self.bn3(self.conv3(out))
out = out + x.sequential(self.downsample)
out = out.relu()
return out
class ResNet:
def __init__(self, num, num_classes=None, groups=1, width_per_group=64, stride_in_1x1=False):
self.num = num
self.block = {
18: BasicBlock,
34: BasicBlock,
50: Bottleneck,
101: Bottleneck,
152: Bottleneck
}[num]
self.num_blocks = {
18: [2,2,2,2],
34: [3,4,6,3],
50: [3,4,6,3],
101: [3,4,23,3],
152: [3,8,36,3]
}[num]
self.in_planes = 64
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, bias=False, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(self.block, 64, self.num_blocks[0], stride=1, stride_in_1x1=stride_in_1x1)
self.layer2 = self._make_layer(self.block, 128, self.num_blocks[1], stride=2, stride_in_1x1=stride_in_1x1)
self.layer3 = self._make_layer(self.block, 256, self.num_blocks[2], stride=2, stride_in_1x1=stride_in_1x1)
self.layer4 = self._make_layer(self.block, 512, self.num_blocks[3], stride=2, stride_in_1x1=stride_in_1x1)
self.fc = nn.Linear(512 * self.block.expansion, num_classes) if num_classes is not None else None
def _make_layer(self, block, planes, num_blocks, stride, stride_in_1x1):
strides = [stride] + [1] * (num_blocks-1)
layers = []
for stride in strides:
if block == Bottleneck:
layers.append(block(self.in_planes, planes, stride, stride_in_1x1, self.groups, self.base_width))
else:
layers.append(block(self.in_planes, planes, stride, self.groups, self.base_width))
self.in_planes = planes * block.expansion
return layers
def forward(self, x):
is_feature_only = self.fc is None
if is_feature_only: features = []
out = self.bn1(self.conv1(x)).relu()
out = out.pad2d([1,1,1,1]).max_pool2d((3,3), 2)
out = out.sequential(self.layer1)
if is_feature_only: features.append(out)
out = out.sequential(self.layer2)
if is_feature_only: features.append(out)
out = out.sequential(self.layer3)
if is_feature_only: features.append(out)
out = out.sequential(self.layer4)
if is_feature_only: features.append(out)
if not is_feature_only:
out = out.mean([2,3])
out = self.fc(out).log_softmax()
return out
return features
def __call__(self, x):
return self.forward(x)
def load_from_pretrained(self):
# TODO replace with fake torch load
model_urls = {
(18, 1, 64): 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
(34, 1, 64): 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
(50, 1, 64): 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
(50, 32, 4): 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
(101, 1, 64): 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
(152, 1, 64): 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
self.url = model_urls[(self.num, self.groups, self.base_width)]
from torch.hub import load_state_dict_from_url
state_dict = load_state_dict_from_url(self.url, progress=True)
for k, v in state_dict.items():
obj = get_child(self, k)
dat = v.detach().numpy()
if 'fc.' in k and obj.shape != dat.shape:
print("skipping fully connected layer")
continue # Skip FC if transfer learning
# TODO: remove or when #777 is merged
assert obj.shape == dat.shape or (obj.shape == (1,) and dat.shape == ()), (k, obj.shape, dat.shape)
obj.assign(dat)
ResNet18 = lambda num_classes=1000: ResNet(18, num_classes=num_classes)
ResNet34 = lambda num_classes=1000: ResNet(34, num_classes=num_classes)
ResNet50 = lambda num_classes=1000: ResNet(50, num_classes=num_classes)
ResNet101 = lambda num_classes=1000: ResNet(101, num_classes=num_classes)
ResNet152 = lambda num_classes=1000: ResNet(152, num_classes=num_classes)
ResNeXt50_32X4D = lambda num_classes=1000: ResNet(50, num_classes=num_classes, groups=32, width_per_group=4) | UTF-8 | Python | false | false | 6,300 | py | 181 | resnet.py | 166 | 0.658889 | 0.603333 | 0 | 153 | 40.183007 | 132 |
Dearyyyyy/TCG | 19,078,244,762,876 | 4712940fadd388e623fe820845d58b82aa9c22cc | ba602dc67ad7bb50133aeb312f3c6c54627b3dec | /data/3921/AC_py/508183.py | dd42196616efcbb3891deb084f98ea74bdc2c237 | []
| no_license | https://github.com/Dearyyyyy/TCG | 0d21d89275906157372d775f33309ce337e6bc95 | 7b80de16de2d3f5d95a7c4ed95d45a9e38882e67 | refs/heads/master | 2020-12-27T23:19:44.845918 | 2020-02-04T01:59:23 | 2020-02-04T01:59:23 | 238,101,032 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | # coding=utf-8
import sys
def ss(s):
if len(s)<2:
return True
if s[0]==s[-1]:
return ss(s[1:-1])
else:
return False
n=int(input())
for i in range(n):
s=[str(i) for i in input()]
if ss(s)==True:
print('YES')
else:
print('NO') | UTF-8 | Python | false | false | 288 | py | 898 | 508183.py | 652 | 0.482639 | 0.461806 | 0 | 16 | 17.0625 | 31 |
andreishabanski/Labs | 14,482,629,759,264 | c2eda155c9391ececc646c432fe2110babfa13f1 | af9d64a207a22853fe9bb02b2b326441454c68a8 | /8 semester/SAIO/lab7/lab7.py | 9f9ef90eb752d78f3cdf3ae7a85c64b98a88c739 | [
"MIT"
]
| permissive | https://github.com/andreishabanski/Labs | 89f5a9a865580d03c94c56cd94bcf26ae50ef5a8 | 3ac775945bff5801642183c48de1e839685d5aa4 | refs/heads/master | 2016-03-25T19:54:54.055492 | 2015-05-24T06:49:20 | 2015-05-24T06:49:20 | 12,844,548 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | from __future__ import print_function
from algoritms import DestinationCalculator
from common.utils import print_matrix
def main():
# table = [
# [2, 10, 9, 7],
# [15, 4, 14, 8],
# [13, 14, 16, 11],
# [4, 15, 13, 19],
# ]
# table = [
# [2, -1, 9, 4],
# [3, 2, 5, 1],
# [13, 0, -3, 4],
# [5, 6, 1, 2],
# ]
# table = [[6, 4, 13, 4, 19, 15, 11, 8],
# [17, 15, 18, 14, 0, 7, 18, 7],
# [3, 5, 11, 9, 7, 7, 18, 16],
# [17, 10, 16, 19, 9, 6, 1, 5],
# [14, 2, 10, 14, 11, 6, 4, 10],
# [17, 11, 17, 12, 1, 10, 6, 19],
# [13, 1, 4, 2, 2, 7, 2, 14],
# [12, 15, 19, 11, 13, 1, 7, 8]]
# table = [[2, 4, 0, 3, 8, -1, 6, 5],
# [8, 6, 3, 4, 2, 0, 0, 4],
# [8, -4, 3, 2, 7, 3, 1, 0],
# [2, 4, 9, 5, 3, 0, 3, 8],
# [5, 2, 7, 3, -1, 0, 3, 2],
# [3, 2, 5, 1, 5, 3, 0, 1],
# [2, 1, 0, -3, 1, 2, 7, 0],
# [1, 6, 4, 0, 0, 9, 1, 7]]
table = [
[3, -3, 4, 5, 8, 1],
[-1, 0, 2, 4, 5, 6],
[7, 3, 8, -1, 10, 15],
[-1, 5, 9, 12, 4, 3],
[2, 2, 12, 4, 3, 2],
[1, 4, 3, 4, 20, 3]
]
calculator = DestinationCalculator(table)
x = calculator.calculator()
print('\nSolution:')
print('Cost = {}'.format(sum(table[i][j]*x[i][j] for i in xrange(0, len(table)) for j in xrange(0, len(table)))))
print('X = ')
print_matrix(x)
if __name__ == '__main__':
main()
| UTF-8 | Python | false | false | 1,512 | py | 437 | lab7.py | 159 | 0.365079 | 0.201058 | 0 | 58 | 25.068966 | 117 |
sxu11/Inference_Stem_Cell_Dynamics | 2,413,771,652,256 | a2de87d4ede835f581dcc546a2b6d3f5d47f4d2e | 22241442f216859e99560cbf33c75f8385c75dcd | /raw_data/diversities.py | ce9f6bcdb1043ef69943dc29ec99da2225eee18d | []
| no_license | https://github.com/sxu11/Inference_Stem_Cell_Dynamics | 611274d39ebbd36ca1b67f4ec6b10dc7f005d67c | ea9ae43a86e7e48883e93284ca1cfa14e5965ac4 | refs/heads/master | 2020-04-25T00:56:48.869758 | 2019-05-24T05:47:52 | 2019-05-24T05:47:52 | 172,393,925 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null |
import pandas as pd
pd.set_option('display.width', 3000)
pd.set_option('display.max_columns', 3000)
df = pd.read_csv('abunds/zh33.csv')
cell_types = ['T', 'B', 'Mon', 'Gr', 'NK']
times = ['1m', '2m', '3m', '4.5m', '6.5m', '9.5m']
ts = [float(x[:-1]) for x in times]
cols = {}
for time in times:
cols[time] = []
for col in df.columns.values:
if (time in col) and ('node' not in col):
cols[time].append(col)
cols['6.5m'] = ['6.5m T', '6.5m B', '6.5m NK overall', '6.5m Mon', '6.5m Gr']
def alph_diversity(arr):
return sum(arr>0)
def gamm_diversity(arr):
return 5
def beta_diversity(arr):
return gamm_diversity(arr) - alph_diversity(arr)
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
'''https://ecopy.readthedocs.io/en/latest/diversity.html'''
import ecopy
# for time in times:
# print cols[time]
D_alpha, D_beta, D_gamma = ecopy.div_partition(df[cols['6.5m']].transpose(),
method='spRich')
# print D_alpha, D_beta, D_gamma
#
#
# df_tmp = df[cols['6.5m']]
# df_tmp = df_tmp[(df_tmp.T != 0).any()]
# print df_tmp.shape
# quit()
#
# tmps = []
# for i in range(5):
# tmps.append(sum(df_tmp[cols['6.5m'][i]]>0))
# print sum(tmps)/5.
# quit()
alphs, betas, gammas = [], [], []
for time in times:
D_alpha, D_beta, D_gamma = ecopy.div_partition(df[cols[time]].transpose(),
method='spRich')
alphs.append(D_alpha)
betas.append(D_beta)
gammas.append(D_gamma)
matplotlib.rc('xtick', labelsize=12)
matplotlib.rc('ytick', labelsize=12)
fig, ax1 = plt.subplots()
ax1.plot(ts, alphs, label=r'$\alpha$')
ax1.plot(ts, gammas, label=r'$\gamma$')
ax1.set_xlabel('month', fontsize=16)
ax1.set_ylabel(r'$\alpha$ and $\gamma$ diversity', fontsize=16)
plt.legend(loc=(.8,.8), fontsize=14)
#
ax2 = ax1.twinx()
ax2.plot(ts, betas, 'k--', label=r'$\beta$')
ax2.set_ylabel(r'$\beta$ diversity', fontsize=16)
plt.legend(loc=(.8,.72), fontsize=14)
plt.tight_layout()
plt.show()
# T_cols, B_cols, Mon_cols, Gr_cols, NK_cols = [], [], [], [], []
# for col in df.columns.values:
# if 'T' in col:
# T_cols.append(col)
# elif 'B' in col:
# B_cols.append(col)
# elif 'Mon' in col:
# Mon_cols.append(col)
# elif 'NK' in col:
# NK_cols.append(col)
# elif 'Gr' in col:
# Gr_cols.append(col)
#
# print T_cols, B_cols, Mon_cols, Gr_cols, NK_cols
# df_T = df[T_cols[:-1]]
# df_B = df[B_cols[:-1]]
#
# print df[Mon_cols] | UTF-8 | Python | false | false | 2,542 | py | 11 | diversities.py | 9 | 0.580645 | 0.551534 | 0 | 97 | 25.195876 | 78 |
fperi/cdk_step_function | 15,934,328,685,403 | 80252fe391ed28109770d64c75b898141ae2f8b1 | 04c9905b1fc9fe2d85aea2624a1f32b461af64f6 | /source/setup.py | de6b601a15e0af485de481676a650ac9d2dde427 | []
| no_license | https://github.com/fperi/cdk_step_function | 1afbd00814e82ab9ce4d68f6f60d2d2d34cf4a86 | b3666b099f19b7d71783942a97a3e0e9e8c4056c | refs/heads/master | 2023-05-01T08:53:26.679259 | 2021-05-08T17:52:22 | 2021-05-08T17:52:22 | 365,563,036 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from setuptools import find_packages, setup
with open("requirements.txt") as stream:
REQUIREMENTS = stream.read().splitlines()
setup(
name="cdk_test",
version="1.0",
description="Test app for cdk deployment",
packages=find_packages(),
python_requires=">=3.6",
install_requires=REQUIREMENTS,
zip_safe=False,
)
| UTF-8 | Python | false | false | 343 | py | 20 | setup.py | 10 | 0.682216 | 0.670554 | 0 | 14 | 23.5 | 46 |
Kreedols/Koostetehnoloogiaprojekt | 8,615,704,432,982 | 04ff9c07b4ea112a5c7574f085f7bae9b2199706 | 71b935c6363593cbca813ac3068b1f6591cf35b9 | /home folder/b.py | 483457299ab82cef7b3bd831e3a2a155a3230fec | []
| no_license | https://github.com/Kreedols/Koostetehnoloogiaprojekt | a2f41970732c0d0913a5aa1b0b21825b9d7d3adb | 0b739c381efbf649470c314d39c60fd32ae1cbf9 | refs/heads/master | 2020-05-21T05:26:37.922579 | 2019-01-09T22:41:49 | 2019-01-09T22:41:49 | 84,576,993 | 3 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import threading
from array import array
from Queue import Queue, Full
import pyaudio
CHUNK_SIZE = 1024
MIN_VOLUME = 500
BUF_MAX_SIZE = CHUNK_SIZE * 10
| UTF-8 | Python | false | false | 155 | py | 44 | b.py | 25 | 0.76129 | 0.703226 | 0 | 10 | 14.5 | 30 |
wmgroot/servicer | 4,492,535,794,467 | 7e79f25329036dea81eeb3ca1f566b8c01ccb9f2 | a749274d74531a0c5806ac672e348c157d84d37a | /test/test_config_loader.py | 2982614ac3d0dc1a187898a89c25009a65bcc419 | [
"BSD-3-Clause"
]
| permissive | https://github.com/wmgroot/servicer | a986e92772dee9831968500b1c36c7efd1eb89e0 | 13313bcaed2b487848f2b483aea13e538a4484cc | refs/heads/master | 2023-05-27T01:35:55.709438 | 2019-10-22T22:06:45 | 2019-10-22T22:06:45 | 138,642,168 | 3 | 1 | BSD-3-Clause | false | 2019-09-02T18:25:49 | 2018-06-25T19:45:07 | 2019-08-20T18:36:53 | 2019-09-02T18:25:49 | 239 | 1 | 1 | 5 | Python | false | false | from unittest import TestCase, mock
from servicer.config_loader import ConfigLoader
class ConfigLoaderTest(TestCase):
def setUp(self):
self.config_loader = ConfigLoader(args={})
class ConfigLoaderClassTest(ConfigLoaderTest):
def test_initialized(self):
pass
class MergeConfigTest(ConfigLoaderTest):
def setUp(self):
super().setUp()
self.config_loader.merge_config = mock.Mock(side_effect=self.config_loader.merge_config)
def test_merges_empty_dicts(self):
from_dict = {}
to_dict = {}
self.config_loader.merge_config(to_dict, from_dict)
self.config_loader.merge_config.assert_has_calls([
mock.call(to_dict, from_dict),
])
self.assertEqual(to_dict, {})
def test_merges_empty_dict_into_non_empty(self):
from_dict = {}
to_dict = { 'foo': 'bar' }
self.config_loader.merge_config(to_dict, from_dict)
self.config_loader.merge_config.assert_has_calls([
mock.call(to_dict, from_dict),
])
self.assertEqual(to_dict, { 'foo': 'bar' })
def test_overwrites_values(self):
from_dict = {
'tacos': 'tacodeli',
}
to_dict = {
'foo': 'bar',
'tacos': 'torchys',
}
self.config_loader.merge_config(to_dict, from_dict)
self.config_loader.merge_config.assert_has_calls([
mock.call(to_dict, from_dict),
])
self.assertEqual(to_dict, {
'foo': 'bar',
'tacos': 'tacodeli',
})
# note: list values are not combined, they are completely overwritten
def test_overwrites_nested_values(self):
from_dict = {
'numbers': [4, 5, 6],
'people': {
'astronaut': 'buzz aldrin',
},
'capitols': [
{ 'brazil': 'not rio de janeiro' },
],
}
to_dict = {
'numbers': [1, 2, 3],
'people': {
'astronaut': 'neil armstrong',
'philosopher': 'socrates',
},
'capitols': [
{ 'france': 'paris' },
{ 'brazil': 'rio de janeiro' },
],
}
self.config_loader.merge_config(to_dict, from_dict)
self.config_loader.merge_config.assert_has_calls([
mock.call(to_dict, from_dict),
])
self.assertEqual(to_dict, {
'numbers': [4, 5, 6],
'people': {
'astronaut': 'buzz aldrin',
'philosopher': 'socrates',
},
'capitols': [
{ 'brazil': 'not rio de janeiro' },
],
})
| UTF-8 | Python | false | false | 2,737 | py | 52 | test_config_loader.py | 45 | 0.505298 | 0.502009 | 0 | 97 | 27.216495 | 96 |
Harry887/ml | 11,708,080,868,378 | 86bb0d3be3d3d94f51ce030178da24ff53807670 | d92e4a0be6e31129fddfcb77453ea845a9ca4100 | /Demo1/optimizer.py | 2e6c73cbd6cfa339c0921e09eb8bea571cdd06b4 | []
| no_license | https://github.com/Harry887/ml | 13f22650136dbef1417094431c5caf2b1c629b13 | 539984fd9bfee9bffda5032ae0d312c0c75a0fbd | refs/heads/master | 2020-04-23T07:32:39.299294 | 2019-02-16T13:54:02 | 2019-02-16T13:54:02 | 171,009,211 | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()
# default network
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20) # hidden layer
self.predict = torch.nn.Linear(20, 1) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
if __name__ == '__main__':
# different nets
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# different optimizers
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # record loss | UTF-8 | Python | false | false | 1,449 | py | 5 | optimizer.py | 5 | 0.612836 | 0.590752 | 0 | 48 | 29.208333 | 82 |
RomanKamen/RomanKamen | 8,821,862,866,787 | e5c5c8703b301eab55ee41c3971d6f9e642781cf | 1b49b0cb4d9c1e6805f1153eab9658dc733d4fd4 | /GameEngine/player.py | 2ae3310ce14bd8fc7390b3a000a03c282ce50107 | []
| no_license | https://github.com/RomanKamen/RomanKamen | b308cc820df990de05cc84f894906c00b844de88 | 1c8b8a5d6dbc8dc5e03f5ff4453cfe772c60a79a | refs/heads/master | 2020-07-09T08:14:50.380811 | 2019-08-24T01:02:39 | 2019-08-24T01:02:39 | 203,923,330 | 0 | 1 | null | null | null | null | null | null | null | null | null | null | null | null | null | from GameEngine.func import deal_damage, game_initialized_only
# TODO: end_act
# TODO: timer decorator
class Player:
def __init__(self, deck):
self.game = None
self.deck = deck
self.client_id = 1
self.side = ''
self.hp = 30
self.armor = 0
self.mana = 0
def init_game(self, game):
self.game = game
def set_side(self, side):
self.side = side
for c in self.deck.cards:
c.side = side
@game_initialized_only
def handle_attack(self, attacker):
deal_damage(self, attacker)
self.game.update()
# @game_initialized_only
# def make_move(self):
# pass
@game_initialized_only
def attack_with_card(self, card, target):
# mb create a decorator
if self.game.current_player is self:
card.attack(target)
else:
# mb assert
print('Not your turn')
@game_initialized_only
def end_act(self):
self.game.end_act()
pass
| UTF-8 | Python | false | false | 1,039 | py | 16 | player.py | 16 | 0.557267 | 0.552454 | 0 | 46 | 21.586957 | 62 |
jhyrkas/canne_synth | 18,605,798,343,209 | 4d1b0d90d93896facfd971aa4fc4ea630c1e8278 | 480128c00099fdba1280172e18039e497dcffb92 | /probably_useful_for_author_only/comp3.py | 0e26e7b8b8dbc282fbfd11f27ff5397e23b5d0d8 | []
| no_license | https://github.com/jhyrkas/canne_synth | acf5cff59f5d7d48967ee3c508204ee4739f1e43 | e780c7b332b00a948a09e6ff1c985d99796013fb | refs/heads/master | 2021-06-11T03:09:42.653769 | 2021-06-03T21:28:36 | 2021-06-03T21:28:36 | 194,894,284 | 0 | 0 | null | true | 2019-07-02T15:56:39 | 2019-07-02T15:56:39 | 2019-06-12T07:33:23 | 2018-09-27T01:12:58 | 14 | 0 | 0 | 0 | null | false | false | import numpy as np
import synth_architecture as sa
import sounddevice as sd
import soundfile as sf
import librosa
import os
import scipy
np.random.seed(20855144)
#np.random.seed(212)
path = 'comp3_audio/'
if not os.path.exists(path) :
os.mkdir(path)
# ARCHITECTURE
a = sa.Architecture('root', np.zeros(8))
a.add_network('channel1_carr', 'root')
a.add_network('channel2_pred', 'root', predictive_feedback_mode=True)
a.add_network('channel3_carr', 'root')
a.add_network('channel3_pred', 'channel3_carr', predictive_feedback_mode=True)
a.add_network('channel4_pred', 'root', predictive_feedback_mode=True)
a.add_network('channel4_car', 'channel4_pred')
a.add_network('channel5_pass', 'root', passthrough_network=True)
carr_names = ['channel1_carr', 'channel3_carr', 'channel4_car']
# NOTES
def gen_params(time, frames, low, high, osc, freq, phase) :
ohm = np.linspace(0, time, frames) * freq * 2.0 * np.pi + phase
if osc == 'sin' :
sig = np.sin(ohm)
elif osc == 'square' :
sig = scipy.signal.square(ohm)
elif osc == 'saw' :
sig = scipy.signal.sawtooth(ohm)
else :
sig = scipy.signal.sawtooth(ohm, width=0.5)
return ((sig + 1.0) / 2.0) * (high - low) + low
osces = ['sin', 'square', 'saw', 'triangle']
audio_length = 30
nframes = a.get_num_frames(audio_length)
params = np.zeros((nframes, 8))
pitches = np.linspace(-24, 12, 12)
for i in range(1, 11) :
# root params
for j in range(8) :
lo,hi = np.random.random(2) * (3.9 + i / 10)
if lo > hi :
lo,hi = hi,lo
osc = osces[np.random.randint(4)]
freq = np.random.random()
phase = np.random.random() * 2.0 * np.pi
params[:,j] = gen_params(audio_length, nframes, lo, hi, osc, freq, phase)
a.update_params('root', params)
# carrier params
for carrier in carr_names :
for j in range(8) :
lo,hi = np.random.random(2) * (8.0 + i * 2.0)
if lo > hi :
lo,hi = hi,lo
osc = osces[np.random.randint(4)]
freq = np.random.random()
phase = np.random.random() * 2.0 * np.pi
params[:,j] = gen_params(audio_length, nframes, lo, hi, osc, freq, phase)
a.update_params(carrier, params)
channels = a.generate_audio(audio_length, pitches[i])
assert(len(channels) == 5)
for channel in range(5) :
sf.write(path + 'channel' + str(channel+1) + '_' + str(i) + '.wav', channels[channel], 44100)
# ONE LAST DRONE
#a.update_params('root', np.random.random(8) * 4.0)
#sf.write(path + 'drone.wav', a.generate_audio(300, -18)[1], 44100)
| UTF-8 | Python | false | false | 2,626 | py | 17 | comp3.py | 16 | 0.606626 | 0.573877 | 0 | 79 | 32.240506 | 101 |
idontknowinder/EVE-Prosper | 11,905,649,364,889 | 03b4cb755c2ab3c5d93bd6a9b12b8efed9bca37a | 15ce0e08d87a602cdbc49e8ebebcbe4a0151f3fd | /Scraps/central_dumpcrunch.py | c1cf4a00cb5ec1b9d504bc413076850a44db2abb | []
| no_license | https://github.com/idontknowinder/EVE-Prosper | 74f7fceedfe08ef0392c78b69537550ac6272d11 | 6d103ace8e2f8cb332fcee83ce08035dc7dc87b4 | refs/heads/master | 2021-01-19T17:17:27.909668 | 2014-05-11T20:24:43 | 2014-05-11T20:24:43 | null | 0 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/Python27/python.exe
##Try 2.0 for processing dump files for loading SQL file
##Designed for UNIX environment
##For win/DOS, install cygwin: http://www.cygwin.com/
## CYGWIN + MYSQLDB:
## --Install all the DB/Python modules for cygwin
## --run: easy_install mysql-python
## --Verify with python terminal: import MySQLdb
##Processes raw dump files from eve central: eve-central.com/dumps
import csv, sys, math, os, gzip, getopt, subprocess, math
import MySQLdb
#NOTES: http://thingsilearned.com/2009/05/03/simple-mysqldb-example/
## Globals ##
DATABASE_HOST = "127.0.0.1"
DATABASE_USER = "root"
DATABASE_NAME = "eve_marketdata"
DATABASE_PASSWD = "bar"
DATABASE_PORT = "3306"
dumpfile = "/central_dumps"
datafile = "2012-01-01.dump" #default file for debug
outfile = "result.csv"
SQL = 0 #default print = CSV
pwd_raw = os.popen("pwd")
pwd = (pwd_raw.read()).rstrip()
cleanlist = {}
globalist = {}
systemFilter="30000142"
def main():
print "running main"
#READ LIST OF FILES FROM DUMP FOLDER#
cmdline = "ls %s%s/*.gz" % (pwd,dumpfile)
try:
filelist_raw = subprocess.call(cmdline, shell=True)
except OSerror:
subprocess.call("mkdir %s" % dumpfile, shell=True, stdout=subprocess.PIPE)
filelist_raw = subprocess.Popen(cmdline, shell=True, stdout=subprocess.PIPE)
output, err = filelist_raw.communicate()
filelist = output.split("\n") #returns list of filenames
filelist.pop() #Removes extra \n empty value from list
for filezip in filelist:
rawdump = gzip.open(filezip)
raw_parse = loadCSV(rawdump)
#parse file
for order,data in raw_parse.iteritems():
buy_or_sell = "sell"
if int(data["bid"]) == 1:
buy_or_sell = "buy"
if data["typeid"] in cleanlist:
if data["systemid"] in cleanlist[data["typeid"]]:
if buy_or_sell in cleanlist[data["typeid"]][data["systemid"]]:
#existing entry case
#general data values
if float(data["price"]) > cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["max"]:
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["max"]=float(data["price"])
if float(data["price"]) < cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["min"]:
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["min"]=float(data["price"])
temp = cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] + int(data["volenter"])
delta = float(data["price"]) - cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["avg"]
R = delta * (int(data["volenter"])/temp)
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["avg"] += R
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["M2"] += (cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] * delta * R)
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] += long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["var"] = cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["M2"]/cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"]
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["stdev"] = math.sqrt(cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["var"])
else:
#typeid AND system exist, but not buy/sell key
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]={}
#initialize general data values#
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["max"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["min"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["avg"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] = long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["region"] = int(data["regionid"])
#initialize running-average values#
temp = long(data["volenter"])
delta = float(data["price"])
R = delta * long(data["volenter"]) / temp
M2 = long(data["volenter"]) * delta * R
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["M2"] = M2
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["var"] = M2/long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["stdev"] = 0
else:
#typeid exists, but not for this system
cleanlist[data["typeid"]][data["systemid"]]={}
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]={}
#initialize general data values#
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["max"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["min"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["avg"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] = long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["region"] = int(data["regionid"])
#initialize running-average values#
temp = long(data["volenter"])
delta = float(data["price"])
R = delta * long(data["volenter"]) / temp
M2 = long(data["volenter"]) * delta * R
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["M2"] = M2
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["var"] = M2/long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["stdev"] = 0
else:
#initialize totally new key
cleanlist[data["typeid"]] = {}
cleanlist[data["typeid"]][data["systemid"]]={}
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]={}
#initialize general data values#
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["max"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["min"] = float(data["price"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["avg"] = float(data["price"]) #o/
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["vol"] = long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["region"] = int(data["regionid"])
#initialize running-average values#
temp = long(data["volenter"])
delta = float(data["price"])
R = delta * long(data["volenter"]) / temp
M2 = long(data["volenter"]) * delta * R
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["M2"] = M2
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["var"] = M2/long(data["volenter"])
cleanlist[data["typeid"]][data["systemid"]][buy_or_sell]["stdev"] = 0
#print output
#print cleanlist["39"][systemFilter] #prints whole price object for [type][location]
outlist = list_izer(cleanlist, filezip)
for line in range(1,15):
if outlist[line][-1] is "":
outlist[line][-1]="NULL"
#cursor.execute("INSERT INTO \'rawdata\' VALUES (%d, %s, %d, %d, %s, %d, %d, %d, %d, NULL)" %/ line) (itemid,order_date,regionID,systemID,order_type,price_max_,price_min,price_avg,price_stdev)
cursor.execute( "INSERT INTO rawdata (itemid,order_date,regionID,systemID,order_type,price_max_,price_min,price_avg,price_stdev) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)" % tuple(outlist[line]))
#cursor.execute("INSERT INTO rawdata (itemid) VALUE (%s)" % outlist[line][0])
#print outlist[line]
rawdump.close()
def list_izer(resultList, filepath):
#takes cleanlist{} and returns a list-list-... array
#filename needed to parse out date key
#Used for CSV output (ill advised)
#build Headder
list_out = []
header = ["itemid","date","region","system","type","max","min","avg","stdev","other"]
list_out.append(header)
#parse date from filename
(dump,filename) = filepath.split("%s/" % dumpfile)
(date,dump) = filename.split(".dump")
for itemid,first_dict in resultList.iteritems():
for system,second_dict in first_dict.iteritems():
for type,root_dict in second_dict.iteritems():
entry = [itemid,date,root_dict["region"],system,type,root_dict["max"],root_dict["min"],root_dict["avg"],root_dict["stdev"],""]
list_out.append(entry)
return list_out
def loadCSV(filename):
#accepts string filename and returns dict-dict object of requested file
parsed_dump ={}
CSV = csv.reader(filename)
fields = CSV.next()
for row in CSV:
items = zip(fields, row) #Strips headder from CSV
item = {}
for (name,value) in items:
item[name] = value.strip() #assigns values to dict using header as keys
if item["orderid"] in parsed_dump:
#repeated order case
#update samples to relevent edge
if item["price"] < parsed_dump[item["orderid"]]["price"] and parsed_dump[item["orderid"]]["bid"] is "1":
#SELL ORDERS: lowest price matters
parsed_dump[item["orderid"]]["price"]=item["price"]
elif item["price"] > parsed_dump[item["orderid"]]["price"] and parsed_dump[item["orderid"]]["bid"] is "0":
#BUY ORDERS: highest price maters
parsed_dump[item["orderid"]]["price"]=item["price"]
else:
parsed_dump[item["orderid"]]=item #builds return dict-dict object
return parsed_dump
#parsed_dump[orderid]={orderid:###,regionid:###,...}
def parseargs(argv):
global dumpfile, datafile,outfile
print "running parseargs"
try:
opts, args = getopt.getopt(argv, "i:d:o:S:h", ["input=","debug=","output=","SQL","help"])
except getopt.GetoptError:
usage()
sys.exit(1)
for opt, arg in opts:
if opt in ('-h', '--help'):
print "help"
usage()
sys.exit(1)
elif opt in ('-i', '--input='):
dumpfile=arg
elif opt in ('-d', '--debug='):
datafile=arg
elif opt in ('-o', '--output='):
outfile=arg
elif opt in ('-S', "--SQL"):
SQL=1
else:
usage()
sys.exit(1)
def initDB():
db = MySQLdb.connect(host=DATABASE_HOST, user=DATABASE_USER, passwd=DATABASE_PASSWD, port=int(DATABASE_PORT), db=DATABASE_NAME)
cursor = db.cursor()
#cursor.exectue("drop database %s; create database %s" % (DATABASE_NAME,DATABASE_NAME) )
#db = MySQLdb.connect(host=DATABASE_HOST, user=DATABASE_USER, passwd=DATABASE_PASSWD, port=int(DATABASE_PORT) db=DATABASE_NAME)
return cursor
class Entry (object):
#stores the various values and running tallies for each vector key
def __init__ (self,data): #takes dict. data from main iterator
self.min
self.max
self.vol
self.avg
self.stdev
if __name__ == "__main__":
parseargs(argv=sys.argv)
cursor=initDB()
main()
| UTF-8 | Python | false | false | 10,383 | py | 58 | central_dumpcrunch.py | 29 | 0.645093 | 0.638255 | 0 | 243 | 41.728395 | 203 |
projx/vm-scripts | 19,112,604,487,642 | 633fdeac1e079414d63ecb2942e8cbac49941703 | e957b965a397c4c1ddfefb8fc0548fdd6726b9ba | /vm-power-mgr.py | 26f9cae96e778c9336e348b90119c5ab1cdd03c4 | []
| no_license | https://github.com/projx/vm-scripts | 28eb18026f633ba118e26d55b640c240c9de384f | 1860d80dade72b176da05f8737c4b3226a589d07 | refs/heads/master | 2020-05-01T12:39:04.321812 | 2019-03-31T20:36:16 | 2019-03-31T20:36:16 | 177,471,490 | 2 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author: Kelvin W
# Date: 2019
# Description: A power saving script for my or your Dell PowerEdge ESXi homelab.
# It can be used to power down, i.e. suspending VMs and shutting down
# the host, then powering it back up via IPMI and resuming the VMs.
from pyVim import connect, task
from pyVmomi import vim
from tools import cli
from tools import tasks
from pprint import pprint
import atexit
import time
import requests
import urllib3
import ssl
import configparser
import os
import subprocess
import argparse
import sys
import re
import logging
import traceback
class logger:
loggingEnabled = False
initialised = False
logger = None
def __init__(self):
if Logger.initialised == False:
logger.setup()
@staticmethod
def setup():
logger.initialised = True
logger.logger = logging.getLogger()
formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.logger.addHandler(console_handler)
logger.logger.setLevel(logging.INFO)
@staticmethod
def set_enabled(status):
logger.loggingEnabled = status
@staticmethod
def debug(str):
if logger.loggingEnabled:
logger.logger.debug(str)
@staticmethod
def info(str):
if logger.loggingEnabled:
logger.logger.info(str)
"""
Consolidates "tasks" returned by calls to pymomi, then allows wait() for the tasks to be completed...
"""
class ESXiTaskManager:
def __init__(self):
self.tasks = []
def add_task(self, task):
self.tasks.append(task)
def add_task_list(self, group):
self.tasks = self.tasks + group
def check(self):
if len(self.tasks):
for task in self.tasks:
logger.info(task.info)
else:
logger.info("No tasks..")
def _progress_output(self, task, progress):
if progress is None:
return
try:
progess = str(progress)
if "error" in progress:
return ## Just return at this point.. the exception handler in waitX() will deal with this
if progress.isdigit():
progress = progress + "%"
logger.info("{} on {}, progress is {}".format(task.info.descriptionId, task.info.entityName, progress))
except (TypeError) as e:
pass
def clear(self):
self.tasks = list()
def wait(self, show_progress=False):
if len(self.tasks) > 0:
try:
if show_progress:
progress_call = self._progress_output
else:
progress_call = None
task.WaitForTasks(tasks=self.tasks, onProgressUpdate=progress_call)
except (Exception) as e:
logger.info("Houston, we have a problem: " + e.msg)
"""
Manages the connection to ESXi/vCenter hosts, including the accessing the server-instance and data contents
"""
class ESXiConnectionManager:
def __init__(self, svr, usr, pss, prt):
self.server_instance = None
try:
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
self.server_instance = connect.SmartConnectNoSSL(host=svr, user=usr, pwd=pss, port=prt)
atexit.register(connect.Disconnect, self.server_instance)
except IOError as ex:
raise SystemExit("unable to connect to vCenter / ESXi host..")
def get_server_instance(self):
return self.server_instance
def get_content(self):
return self.server_instance.RetrieveContent()
"""
Incapsulate functions for identifying and managing the ESXi hosts
"""
class ESXiHostManager:
def __init__(self):
self.hosts = dict()
def get_hosts(self, content, hostnames=[]):
self.hosts = dict()
host_view = content.viewManager.CreateContainerView(content.rootFolder, [vim.HostSystem], True)
## Here we keep a class-local reference to the hosts, filtering for specific hosts if defined in "hostnames"
for host in host_view.view:
if len(hostnames) == 0:
self.hosts[host.name] = host
else:
for hostname in hostnames:
if (host.name == hostname):
self.hosts[host.name] = host
return self.hosts
def shutdown_hosts(self, forced_shutdown=False):
tasks = list()
for key, host in self.hosts.items():
logger.info("Host {} is now being shutdown".format(key))
task = host.ShutdownHost_Task(forced_shutdown)
tasks.append(task)
return tasks
"""
Incapsulate functions for identifying and managing the VMs on ESXi hosts
"""
class ESXiVMManager:
def __init__(self):
self.vms = dict()
def get_vms(self, hosts):
self.vms = dict()
for key, host in hosts.items():
for vm in host.vm:
self.vms[vm.name] = vm
return self.vms
def set_note(self, vm, message):
spec = vim.vm.ConfigSpec()
spec.annotation = message
task = vm.ReconfigVM_Task(spec)
return task
def suspend_vms(self):
task_list = list()
for key, vm in self.vms.items():
logger.info("VM {} is currently {}".format(key, vm.runtime.powerState))
if vm.runtime.powerState == vim.VirtualMachinePowerState.poweredOn:
logger.info("VM {} is being suspended".format(key))
note_task = self.set_note(vm, "SCHEDULED_SUSPEND")
task.WaitForTask(note_task)
vm_task = vm.SuspendVM_Task()
task_list.append(vm_task)
return task_list
def unsuspend_vms(self):
task_list = list()
for key, vm in self.vms.items():
logger.info("VM {} is currently {}".format(key, vm.runtime.powerState))
if vm.runtime.powerState == vim.VirtualMachinePowerState.suspended:
logger.info("VM {} is being unsuspended".format(key))
note_task = self.set_note(vm, "SCHEDULED_UNSUSPEND")
task.WaitForTask(note_task)
vm_task = vm.PowerOnVM_Task()
task_list.append(vm_task)
return task_list
"""
IPMI access by making subsystem calls the ipmitools executable
"""
class IPMIManager:
POWER_OFF = "Off"
POWER_ON = "On"
POWER_UP = "Up/On"
def __init__(self, host, username, password):
self.host = host
self.username = username
self.password = password
def check_powered_on_result(self, result):
result = str(result).lower()
if result == self.POWER_ON.lower():
return True
elif result == self.POWER_UP.lower():
return True
else:
return False
def is_powered_on(self):
result = self.get_power_status()
return self.check_powered_on_result(result)
def power_response_to_str(self, result):
result = str(result)
if result.lower() == self.POWER_UP.lower():
return "Powering UP"
elif result.lower() == self.POWER_ON.lower():
return "Power is ON"
elif result.lower() == self.POWER_OFF.lower():
return "Power is OFF"
else:
return "Power is UNKNOWN"
def get_power_status(self):
try:
cmd = "ipmitool -I lanplus -H {} -U {} -P {} chassis power status".format(self.host, self.username, self.password)
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stderr = result.stderr.decode('UTF-8')
stdout = result.stdout.decode('UTF-8')
if stderr != "":
raise Exception("Call to IPMI failed (check credentials?), " + stderr)
pattern = "Chassis Power is (?P<status>.*)"
result = re.search(pattern, stdout)
return result.group("status")
except subprocess.CalledProcessError as e:
raise Exception("Unable to get power status, error was returned: " + e.output)
def power_on(self):
try:
cmd = "ipmitool -I lanplus -H {} -U {} -P {} chassis power on".format(self.host, self.username, self.password)
result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stderr = result.stderr.decode('UTF-8')
stdout = result.stdout.decode('UTF-8')
if stderr != "":
raise Exception("Call to IPMI failed (check credentials?), " + stderr)
logger.info("IPMI power ON operation, responded with " + stdout)
pattern = ": (?P<status>.*)"
result = re.search(pattern, stdout)
status = self.check_powered_on_result(result.group("status"))
return status
except subprocess.CalledProcessError as e:
raise Exception("Error unable to power on, the following error occured: " + e.output)
"""
A utility for loading the config file, extracting the user-defined settings, and ensuring that mandatory values are present
"""
class ConfigManager:
def __init__(self, path):
"""
Initiate the class, reset all values to default..
"""
self.config_path = path
self.hosts = dict()
def read(self):
mandatory_fields = ["enabled", "esxi_host", "esxi_username", "esxi_password", "esxi_webport", "ipmi_enabled"]
if os.path.exists(self.config_path):
config_parser = configparser.ConfigParser()
config_parser.read(self.config_path)
host_no = 1;
section_name = "HOST"
while config_parser.has_section(section_name + str(host_no)):
host = dict(config_parser.items(section_name + str(host_no)))
for field in mandatory_fields:
if field not in host:
raise Exception("Mandatory config field %s not found in section [HOST%s]" % (field, host_no))
if len(host[field]) == 0:
raise Exception("Mandatory config field %s has no VALUE in section [HOST%s]" % (field, host_no))
if host["enabled"] == "True":
host["enabled"] = True
elif host["enabled"] == "False":
host["enabled"] = False
else:
raise Exception("[HOST%s] setting 'enabled' is invalid, must be True or False (case sensitive)" % (host_no))
if host["ipmi_enabled"] == "True":
host["ipmi_enabled"] = True
elif host["ipmi_enabled"] == "False":
host["ipmi_enabled"] = False
else:
raise Exception("[HOST%s] setting 'ipmi_enabled' is invalid, must be True or False (case sensitive)" % (host_no))
esxi_host = host["esxi_host"]
self.hosts[esxi_host] = host
host_no += 1
else:
raise Exception("Config file does not exist, cannot find " + self.config_path)
class WebManager:
def __init__(self, fqdn):
self.fqdn = fqdn
def test_web_server(self, delay, attempts):
url = "https://{}/ui/#/login".format(self.fqdn)
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
result = None
for count in range(attempts):
try:
result = requests.head(url, verify=False, timeout=5)
## If we get a valid response... great
if result.status_code == 200:
logger.info("{} is NOW accessible, on attempt {}, total delay was {} seconds".format(url, count+1, count*delay))
logger.info("Allowing WebUI time to complete initialisation, delaying {} more seconds".format(delay))
time.sleep(delay)
return True
## An exception is going to happen everytime a request fails, such as timeout or rejected connection
except requests.ConnectionError as e:
logger.info("{} is not responding, please wait - attempt {} of {}, delaying {} seconds".format(url, count + 1, attempts, delay))
finally:
time.sleep(delay)
## If we're post exception, there will be no response, so nothing to do... else only log message if
## we didn't see a 200... this stop the message showing on function exit
if result is not None:
if result.status_code != 200:
logger.info("{} is responding with HTTP {} - attempt {} of {}, delaying {} seconds".format(url, result.status_code, count + 1, attempts, delay))
result.close()
return False
def do_power_on_vms(host_config):
connection_mgr = ESXiConnectionManager(host_config["esxi_host"], host_config["esxi_username"],
host_config["esxi_password"], host_config["esxi_webport"])
host_mgr = ESXiHostManager()
vm_mgr = ESXiVMManager()
task_mgr = ESXiTaskManager()
hosts = host_mgr.get_hosts(connection_mgr.get_content())
## Process and pause VMs
vms = vm_mgr.get_vms(hosts)
task_list = vm_mgr.unsuspend_vms()
task_mgr.add_task_list(task_list)
task_mgr.wait(True)
task_mgr.clear()
def get_config_for_host(esxi_host):
dir_path = os.path.dirname(os.path.realpath(__file__))
config = ConfigManager(dir_path +"/conf/esxi-hosts.conf")
config.read()
if esxi_host not in config.hosts:
raise Exception("Host '{}' not found in the esxi-hosts.conf".format(host))
host_config = config.hosts[esxi_host]
if host_config["enabled"] == False:
raise Exception("Unable to perform action, host '{}' is DISABLED in the esxi-hosts.conf".format(esxi_host))
return host_config
def get_power_status(esxi_host):
logger.info("Loading config")
host_config = get_config_for_host(esxi_host)
if host_config["ipmi_enabled"] == True:
ipmi = IPMIManager(host_config["ipmi_host"], host_config["ipmi_username"], host_config["ipmi_password"])
result = ipmi.get_power_status()
logger.info("Current power status is: " + ipmi.power_response_to_str(result))
return ipmi.check_powered_on_result(result)
def do_shutdown(esxi_host):
logger.info("Loading config")
host_config = get_config_for_host(esxi_host)
connection_mgr = ESXiConnectionManager(host_config["esxi_host"], host_config["esxi_username"], host_config["esxi_password"], host_config["esxi_webport"])
host_mgr = ESXiHostManager()
vm_mgr = ESXiVMManager()
task_mgr = ESXiTaskManager()
hosts = host_mgr.get_hosts(connection_mgr.get_content())
vms = vm_mgr.get_vms(hosts)
task_list = vm_mgr.suspend_vms()
task_mgr.add_task_list(task_list)
task_mgr.wait(True)
task_mgr.clear()
## Process Host...
task_list = host_mgr.shutdown_hosts(True)
task_mgr.add_task_list(task_list)
task_mgr.wait(True)
def do_power_on_host(host_config):
## IPMI Power On Blick
logger.info("Begin IPMI processing")
if host_config["ipmi_enabled"] == True:
logger.info("Sending IPMI power on to " + host_config["esxi_host"])
ipmi = IPMIManager(host_config["ipmi_host"], host_config["ipmi_username"], host_config["ipmi_password"])
result = ipmi.power_on()
return result
else:
logger.info("IPMI is not enabled for {}".format(host_config["esxi_host"]))
return False
def do_poweron(esxi_host):
logger.info("Loading config")
host_config = get_config_for_host(esxi_host)
do_power_on_host(host_config)
logger.info("Beginning checks for WebUI on " + host_config["esxi_host"])
web_check = WebManager(host_config["esxi_host"])
result = web_check.test_web_server(5, 100)
if result == False:
raise Exception("Unable to boot VMs, the WebUI on host '{}' did not respond in time!".format(esxi_host))
## VM Power On Block
do_power_on_vms(host_config)
## End VM
def main():
parser = argparse.ArgumentParser("ESXi/BMC Power Manager")
parser.add_argument("host", help="Name of the ESXi to perform operation on (must match esxi_host in the esxi-host.conf)", action="store")
parser.add_argument("operation", choices=["up", "down", "status"], help="type of power operation to perform")
parser.add_argument("-verbose", "--verbose", help="Output info and debug information, very useful for finding config problems", action='store_true')
args = parser.parse_args()
if args.verbose == True:
logger.set_enabled(True)
host = args.host
operation = args.operation
try:
if operation == "up":
logger.info("Received POWER UP for {}".format(host))
do_poweron(host)
elif operation == "down":
logger.info("Received POWER DOWN for {}".format(host))
do_shutdown(host)
elif operation == "status":
logger.info("Received POWER STATUS for {}".format(host))
result = get_power_status(host)
print(result)
except Exception as e:
logger.info("Exception: " + str(e))
logger.info("Exception Trace: " + traceback.format_exc())
print("Error: " + str(e))
if __name__ == "__main__":
logger.setup()
main() | UTF-8 | Python | false | false | 17,700 | py | 2 | vm-power-mgr.py | 1 | 0.596723 | 0.594633 | 0 | 515 | 33.370874 | 168 |
mlautman/NN_MNEST | 9,105,330,697,142 | 9995d32d752a0da0eb65af3b9e6f2500397f3e21 | f8190ab585debc67632dea51fc66e9b52fb894ed | /src/im_t_wrap_bu.py | 94f6ddb3b2cfeda8116781c4fbdc5629d3aa16e3 | []
| no_license | https://github.com/mlautman/NN_MNEST | a72ba2ab2eba25fbcb4c26d9696bd9c5b5b99888 | 38a59cb8de9bf4b6287d6e45737c1f48f3d9a2a1 | refs/heads/master | 2020-05-20T12:19:06.509973 | 2014-04-25T18:28:32 | 2014-04-25T18:28:32 | 18,905,714 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | from __future__ import division
import numpy as np
from math import sqrt
from src.show_images import show_image_np
# Things we want to output while we run the algo
# sum of get_z_delta for each run (sequential)
# image of get_z_delta
# Image animation as gif.
def _initial_z_t(z_shape):
return np.matrix([0]*z_shape[0]*z_shape[1])
def _initial_mew():
return 1
def _update_mew(mew_o):
return (1 + sqrt(1+4*mew_o**2))/2
def _gamma(mew_n, mew_o):
return (mew_o - 1)/mew_n
def solve_for_z_t(W_T, y_t):
return y_t*np.linalg.pinv(W_T)
def toggle(a):
return 1 if a == 0 else 0
class Image_t:
def __init__(self, label, X, Y, Z, lambda1=.1):
self.label = label
self.lambda1 = lambda1
self.X = X
self.Y = Y
self.Z = Z
self.Z_o = Z
self.mew_o = [None]*X.shape[0]
self.mew_n = [_initial_mew()]*X.shape[0]
def update_lambda(self, lambda1):
self.lambda1 = lambda1
def _compute_gamma(self, index):
self.mew_o = self.mew_n
self.mew_n = _update_mew(self.mew_n)
return _gamma(self.mew_n, self.mew_o)
def _S_lambda(self, u):
u = u[0, :]/max(u.max(), abs(u.min()))
for i, v in enumerate(u.tolist()[0]):
if (v > 0) and (v > self.lambda1):
u[0, i] = (v - self.lambda1 * v)
elif (v < 0) and (v < -self.lambda1):
u[0, i] = (v - self.lambda1 * v)
else:
u[0, i] = 0
return u
def _hangman(self, u, M):
return self._S_lambda(
u - (self.y - u * M)*np.linalg.pinv(M)
)
def update_z_t(self, W, S):
M = W * S
Z_n = self.Z
z_o_i = toggle(self.z_new)
gamma = self._compute_gamma()
self.z[z_o_i] = self._hangman(
self.z[z_n_i] + gamma * (self.z[z_n_i] - self.z[z_o_i]),
M
)
self.z_new = toggle(self.z_new)
def get_z(self):
return self.z[self.z_new]
def get_z_delta(self):
return self.z[self.z_new] - self.z[toggle(self.z_new)]
def estimate_x(self, W):
return self.get_z() * W
def show_x_estimate(self, W):
show_image_np(self.estimate_x(W))
def get_z_t_delta(self):
return self.z[self.z_new] - self.z[self.z_new]
| UTF-8 | Python | false | false | 2,339 | py | 17 | im_t_wrap_bu.py | 14 | 0.519025 | 0.504489 | 0 | 98 | 22.867347 | 68 |
opennorth/open511 | 12,421,045,444,391 | 80c255c1f984223d927fd7f0ceb80cadb587e4dd | 91d950c5522baf7b47ca113d413c4cb35ec9a007 | /open511/utils/serialization.py | 7a93d15f1dcadad040f52350824361144901ab67 | [
"MIT"
]
| permissive | https://github.com/opennorth/open511 | 7f3bde31746717450dc73e2873d9e8d2cc533874 | 3d573f59d7efa06ff1b5419ea5ff4d90a90b3cf8 | refs/heads/master | 2020-06-05T00:55:18.333600 | 2015-11-17T23:33:20 | 2015-11-17T23:34:30 | 12,960,085 | 1 | 0 | null | null | null | null | null | null | null | null | null | null | null | null | null | import json
from lxml import etree
XML_LANG = '{http://www.w3.org/XML/1998/namespace}lang'
XML_BASE = '{http://www.w3.org/XML/1998/namespace}base'
GML_NS = NS_GML = 'http://www.opengis.net/gml'
NS_KML = 'http://www.opengis.net/kml/2.2'
NS_PROTECTED = 'http://open511.org/namespaces/internal-field'
NS_ATOM = "http://www.w3.org/2005/Atom"
NS_AGE = "http://purl.org/atompub/age/1.0"
NS_XHTML = 'http://www.w3.org/1999/xhtml'
NS_GEORSS = 'http://www.georss.org/georss'
NSMAP = {
'gml': NS_GML,
'protected': NS_PROTECTED,
'kml': NS_KML,
'atom': NS_ATOM,
'age': NS_AGE,
'html': NS_XHTML,
'georss': NS_GEORSS
}
def get_base_open511_element(lang=None, base=None, version=None):
elem = etree.Element("open511", nsmap={
'gml': NS_GML,
})
if lang:
elem.set(XML_LANG, lang)
if base:
elem.set(XML_BASE, base)
if version:
elem.set('version', version)
return elem
def make_link(rel, href):
l = etree.Element('link')
l.set('rel', rel)
l.set('href', href)
return l
def is_tmdd(doc):
# Does a given etree Element represent a TMDD document?
return doc.tag != 'open511' and bool(doc.xpath('//FEU'))
def deserialize(s):
s = s.strip()
try:
doc = etree.fromstring(s)
if is_tmdd(doc):
# Transparently convert the TMDD on deserialize
from ..converter.tmdd import tmdd_to_json
return (tmdd_to_json(doc), 'json')
return (doc, 'xml')
except etree.XMLSyntaxError:
try:
return (json.loads(s), 'json')
except ValueError:
raise Exception("Doesn't look like either JSON or XML")
def serialize(obj):
if getattr(obj, 'tag', None):
return etree.tostring(obj, pretty_print=True)
return json.dumps(obj, indent=4) | UTF-8 | Python | false | false | 1,823 | py | 32 | serialization.py | 19 | 0.606692 | 0.586396 | 0 | 65 | 27 | 67 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.