code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def process(i: int, sentence: str, sep_indices: typing.Set[int], scale: int) -> str:
feature = get_feature(sentence[i - 3] if i > 2 else INVALID, sentence[i - 2] if i > 1 else INVALID, sentence[i - 1], sentence[i] if i < len(sentence) else INVALID, sentence[i + 1] if i + 1 < len(sentence) else INVALID, sentence[i + 2] if i + 2 < len(sentence) else INVALID)
positive = i in sep_indices
line = '\t'.join(['%d' % scale if positive else '%d' % -scale] + feature)
return line
|
Outputs an encoded line of features from the given index.
Args:
i (int): index
sentence (str): A sentence
sep_indices (typing.Set[int]): A set of separator indices.
scale (int): A weight scale for the entries.
|
github-repos
|
def plot_rb_data(xdata, ydatas, yavg, yerr, fit, survival_prob, ax=None, show_plt=True):
if (not HAS_MATPLOTLIB):
raise ImportError('The function plot_rb_data needs matplotlib. Run "pip install matplotlib" before.')
if (ax is None):
plt.figure()
ax = plt.gca()
for ydata in ydatas:
ax.plot(xdata, ydata, color='gray', linestyle='none', marker='x')
ax.errorbar(xdata, yavg, yerr=yerr, color='r', linestyle='--', linewidth=3)
ax.plot(xdata, survival_prob(xdata, *fit), color='blue', linestyle='-', linewidth=2)
ax.tick_params(labelsize=14)
ax.set_xlabel('Clifford Length', fontsize=16)
ax.set_ylabel('Z', fontsize=16)
ax.grid(True)
if show_plt:
plt.show()
|
Plot randomized benchmarking data.
Args:
xdata (list): list of subsequence lengths
ydatas (list): list of lists of survival probabilities for each
sequence
yavg (list): mean of the survival probabilities at each sequence
length
yerr (list): error of the survival
fit (list): fit parameters
survival_prob (callable): function that computes survival probability
ax (Axes or None): plot axis (if passed in)
show_plt (bool): display the plot.
Raises:
ImportError: If matplotlib is not installed.
|
codesearchnet
|
def update_all(cls, *criterion, **kwargs):
try:
r = cls.query.filter(*criterion).update(kwargs, 'fetch')
cls.session.commit()
return r
except:
cls.session.rollback()
raise
|
Batch method for updating all instances obeying the criterion
Args:
*criterion: SQLAlchemy query criterion for filtering what
instances to update
**kwargs: The parameters to be updated
Examples:
>>> User.update_all(active=True)
>>> Customer.update_all(Customer.country=='India', active=True)
The second example sets active=True for all customers with
country India.
|
codesearchnet
|
def push_stack(stack, substack, op_id):
if ((substack is not None) and (not isinstance(substack, Stack))):
raise ValueError(('Substack should be type tangent.Stack or None, instead found %s' % type(substack)))
if __debug__:
stack.append((substack, op_id))
else:
stack.append(substack)
|
Proxy of push, where we know we're pushing a stack onto a stack.
Used when differentiating call trees,where sub-functions get their own stack.
See push() for more.
Args:
stack: The stack object, which must support appending values.
substack: The stack to append.
op_id: A unique variable that is also passed into the corresponding pop.
Allows optimization passes to track pairs of pushes and pops.
Raises:
ValueError: If a non-stack value for `substack` is passed.
|
codesearchnet
|
def input(self):
return self._get_node_attribute_at_index(0, 'input_tensors', 'input')
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the *first time*
the operation was called.
Returns:
Input tensor or list of input tensors.
|
github-repos
|
def _show_status_for_work(self, work):
work_count = len(work.work)
work_completed = {}
work_completed_count = 0
for v in itervalues(work.work):
if v['is_completed']:
work_completed_count += 1
worker_id = v['claimed_worker_id']
if worker_id not in work_completed:
work_completed[worker_id] = {
'completed_count': 0,
'last_update': 0.0,
}
work_completed[worker_id]['completed_count'] += 1
work_completed[worker_id]['last_update'] = max(
work_completed[worker_id]['last_update'],
v['claimed_worker_start_time'])
print('Completed {0}/{1} work'.format(work_completed_count,
work_count))
for k in sorted(iterkeys(work_completed)):
last_update_time = time.strftime(
'%Y-%m-%d %H:%M:%S',
time.localtime(work_completed[k]['last_update']))
print('Worker {0}: completed {1} last claimed work at {2}'.format(
k, work_completed[k]['completed_count'], last_update_time))
|
Shows status for given work pieces.
Args:
work: instance of either AttackWorkPieces or DefenseWorkPieces
|
juraj-google-style
|
def _convert_values_to_tf_tensors(sample: rd.RepresentativeSample) -> Mapping[str, core.Tensor]:
tensor_mapping = {}
for name, tensorlike_value in sample.items():
if isinstance(tensorlike_value, core.Tensor):
tensor_value = tensorlike_value
else:
tensor_value = tensor_conversion.convert_to_tensor_v2_with_dispatch(tensorlike_value)
tensor_mapping[name] = tensor_value
return tensor_mapping
|
Converts TensorLike values of `sample` to Tensors.
Creates a copy of `sample`, where each value is converted to Tensors
unless it is already a Tensor.
The values are not converted in-place (i.e. `sample` is not mutated).
Args:
sample: A representative sample, which is a map of {name -> tensorlike
value}.
Returns:
Converted map of {name -> tensor}.
|
github-repos
|
def from_config(cls, config):
return cls(**config)
|
Creates a regularizer from its config.
This method is the reverse of `get_config`,
capable of instantiating the same regularizer from the config
dictionary.
This method is used by saving and loading models to HDF5 formats,
Keras model cloning, some visualization utilities,
and exporting models to and from JSON.
Args:
config: A Python dictionary, typically the output of get_config.
Returns:
A regularizer instance.
|
github-repos
|
def _get_pdf_filenames_at(source_directory):
if not os.path.isdir(source_directory):
raise ValueError("%s is not a directory!" % source_directory)
return [os.path.join(source_directory, filename)
for filename in os.listdir(source_directory)
if filename.endswith(PDF_EXTENSION)]
|
Find all PDF files in the specified directory.
Args:
source_directory (str): The source directory.
Returns:
list(str): Filepaths to all PDF files in the specified directory.
Raises:
ValueError
|
juraj-google-style
|
def get_user_shakes(self):
endpoint = '/api/shakes'
data = self._make_request(verb='GET', endpoint=endpoint)
shakes = [Shake.NewFromJSON(shk) for shk in data['shakes']]
return shakes
|
Get a list of Shake objects for the currently authenticated user.
Returns:
A list of Shake objects.
|
codesearchnet
|
def download_sifts_xml(pdb_id, outdir='', force_rerun=False):
baseURL = 'ftp:
filename = '{}.xml.gz'.format(pdb_id.lower())
outfile = op.join(outdir, filename.split('.')[0] + '.sifts.xml')
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
response = urlopen(baseURL + filename)
with open(outfile, 'wb') as f:
f.write(gzip.decompress(response.read()))
return outfile
|
Download the SIFTS file for a PDB ID.
Args:
pdb_id (str): PDB ID
outdir (str): Output directory, current working directory if not specified.
force_rerun (bool): If the file should be downloaded again even if it exists
Returns:
str: Path to downloaded file
|
juraj-google-style
|
def Open(self, path_spec):
self._file_system = resolver.Resolver.OpenFileSystem(path_spec)
if self._file_system is None:
raise errors.VolumeSystemError('Unable to resolve path specification.')
type_indicator = self._file_system.type_indicator
if type_indicator != definitions.TYPE_INDICATOR_TSK_PARTITION:
raise errors.VolumeSystemError('Unsupported type indicator.')
|
Opens a volume defined by path specification.
Args:
path_spec (PathSpec): a path specification.
Raises:
VolumeSystemError: if the TSK partition virtual file system could not
be resolved.
|
juraj-google-style
|
def __mul__(self, right: torch.Tensor) -> Rotation:
if not isinstance(right, torch.Tensor):
raise TypeError('The other multiplicand must be a Tensor')
if self._rot_mats is not None:
rot_mats = self._rot_mats * right[..., None, None]
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats * right[..., None]
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError('Both rotations are None')
|
Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation.
Args:
right:
The tensor multiplicand
Returns:
The product
|
github-repos
|
def mcast_ip(ip_addr, return_tuple=True):
regex_mcast_ip = __re.compile("^(((2[2-3][4-9])|(23[0-3]))\.((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9]?[0-9]))\.((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9]?[0-9]))\.((25[0-5])|(2[0-4][0-9])|(1[0-9][0-9])|([1-9]?[0-9])))$")
if return_tuple:
while not regex_mcast_ip.match(ip_addr):
print("Not a good multicast IP.")
print("Please try again.")
ip_addr = input("Please enter a multicast IP address in the following format x.x.x.x: ")
return ip_addr
elif not return_tuple:
if not regex_mcast_ip.match(ip_addr):
return False
else:
return True
|
Function to check if a address is multicast
Args:
ip_addr: Multicast IP address in the following format 239.1.1.1
return_tuple: Set to True it returns a IP, set to False returns True or False
Returns: see return_tuple for return options
|
juraj-google-style
|
def execute(self, triple_map, output, **kwargs):
subjects = []
logical_src_iterator = str(triple_map.logicalSource.iterator)
json_object = kwargs.get('obj', self.source)
if (logical_src_iterator == '.'):
results = [None]
else:
json_path_exp = jsonpath_ng.parse(logical_src_iterator)
results = [r.value for r in json_path_exp.find(json_object)][0]
for row in results:
subject = self.generate_term(term_map=triple_map.subjectMap, **kwargs)
for pred_obj_map in triple_map.predicateObjectMap:
predicate = pred_obj_map.predicate
if (pred_obj_map.template is not None):
output.add((subject, predicate, self.generate_term(term_map=pred_obj_map, **kwargs)))
if (pred_obj_map.parentTriplesMap is not None):
self.__handle_parents__(output, parent_map=pred_obj_map.parentTriplesMap, subject=subject, predicate=predicate, obj=row, **kwargs)
if (pred_obj_map.reference is not None):
ref_exp = jsonpath_ng.parse(str(pred_obj_map.reference))
found_objects = [r.value for r in ref_exp.find(row)]
for obj in found_objects:
if rdflib.term._is_valid_uri(obj):
rdf_obj = rdflib.URIRef(str(obj))
else:
rdf_obj = rdflib.Literal(str(obj))
output.add((subject, predicate, rdf_obj))
if (pred_obj_map.constant is not None):
output.add((subject, predicate, pred_obj_map.constant))
subjects.append(subject)
return subjects
|
Method executes mapping between JSON source and
output RDF
Args:
-----
triple_map: SimpleNamespace
|
codesearchnet
|
def is_variable_initialized(ref, name=None):
if ref.dtype._is_ref_dtype:
return gen_state_ops.is_variable_initialized(ref=ref, name=name)
return ref.is_initialized(name=name)
|
Checks whether a tensor has been initialized.
Outputs boolean scalar indicating whether the tensor has been initialized.
Args:
ref: A mutable `Tensor`.
Should be from a `Variable` node. May be uninitialized.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `bool`.
|
github-repos
|
def install_local(self):
folder = self._get_local_folder()
installed = self.installed_dir()
self._check_module(installed.parent)
installed.symlink_to(folder.resolve())
|
Make a symlink in install folder to a local NApp.
Raises:
FileNotFoundError: If NApp is not found.
|
codesearchnet
|
def monitorTUN(self):
packet = self.checkTUN()
if packet:
try:
ret = self._faraday.send(packet)
return ret
except AttributeError as error:
print('AttributeError')
|
Monitors the TUN adapter and sends data over serial port.
Returns:
ret: Number of bytes sent over serial port
|
codesearchnet
|
def detect_arbitrary_send(self, contract):
ret = []
for f in [f for f in contract.functions if f.contract == contract]:
nodes = self.arbitrary_send(f)
if nodes:
ret.append((f, nodes))
return ret
|
Detect arbitrary send
Args:
contract (Contract)
Returns:
list((Function), (list (Node)))
|
juraj-google-style
|
def write_schema_to_file(cls, schema, file_pointer=stdout, folder=MISSING, context=DEFAULT_DICT):
schema = cls._get_schema(schema)
json_schema = cls.generate_json_schema(schema, context=context)
if folder:
schema_filename = getattr(schema.Meta, 'json_schema_filename', '.'.join([schema.__class__.__name__, 'json']))
json_path = os.path.join(folder, schema_filename)
file_pointer = open(json_path, 'w')
json.dump(json_schema, file_pointer, indent=2)
return json_schema
|
Given a Marshmallow schema, create a JSON Schema for it.
Args:
schema (marshmallow.Schema|str): The Marshmallow schema, or the
Python path to one, to create the JSON schema for.
Keyword Args:
file_pointer (file, optional): The pointer to the file to write
this schema to. If not provided, the schema will be dumped to
``sys.stdout``.
folder (str, optional): The folder in which to save the JSON
schema. The name of the schema file can be optionally
controlled my the schema's ``Meta.json_schema_filename``. If
that attribute is not set, the class's name will be used for
the filename. If writing the schema to a specific file is
desired, please pass in a ``file_pointer``.
context (dict, optional): The Marshmallow context to be pushed to
the schema generates the JSONSchema.
Returns:
dict: The JSON schema in dictionary form.
|
codesearchnet
|
def add_arc(self, src, dst, char):
for s_idx in [src, dst]:
if s_idx >= len(self.states):
for i in range(len(self.states), s_idx + 1):
self.states.append(DFAState(i))
for arc in self.states[src].arcs:
if arc.ilabel == self.isyms.__getitem__(char) or char == EPSILON:
self.nfa = True
break
self.states[src].arcs.append(
DFAArc(src, dst, self.isyms.__getitem__(char)))
|
Adds a new Arc
Args:
src (int): The source state identifier
dst (int): The destination state identifier
char (str): The character for the transition
Returns:
None
|
juraj-google-style
|
def get_victim_social_asset(self, main_type, sub_type, unique_id, asset_id, params=None):
params = params or {}
return self.victim_social_asset(main_type, sub_type, unique_id, asset_id, params=params)
|
Args:
main_type:
sub_type:
unique_id:
asset_id:
params:
Return:
|
juraj-google-style
|
def insert_top(self, node):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
self.to_insert_top.append(node)
|
Insert statements at the top of the function body.
Note that multiple calls to `insert_top` will result in the statements
being prepended in that order; this is different behavior from `prepend`.
Args:
node: The statement to prepend.
Raises:
ValueError: If the given node is not a statement.
|
juraj-google-style
|
def get_height_rect(
self, x: int, y: int, width: int, height: int, string: str
) -> int:
string_ = string.encode("utf-8")
return int(
lib.get_height_rect(
self.console_c, x, y, width, height, string_, len(string_)
)
)
|
Return the height of this text word-wrapped into this rectangle.
Args:
x (int): The x coordinate from the left.
y (int): The y coordinate from the top.
width (int): Maximum width to render the text.
height (int): Maximum lines to render the text.
string (str): A Unicode string.
Returns:
int: The number of lines of text once word-wrapped.
|
juraj-google-style
|
class _ConfusionMatrixConditionCount(Metric):
def __init__(self, confusion_matrix_cond, thresholds=None, name=None, dtype=None):
super().__init__(name=name, dtype=dtype)
self._confusion_matrix_cond = confusion_matrix_cond
self.init_thresholds = thresholds
self.thresholds = metrics_utils.parse_init_thresholds(thresholds, default_threshold=0.5)
self._thresholds_distributed_evenly = metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
self.accumulator = self.add_variable(shape=(len(self.thresholds),), initializer=initializers.Zeros(), name='accumulator')
def update_state(self, y_true, y_pred, sample_weight=None):
return metrics_utils.update_confusion_matrix_variables({self._confusion_matrix_cond: self.accumulator}, y_true, y_pred, thresholds=self.thresholds, thresholds_distributed_evenly=self._thresholds_distributed_evenly, sample_weight=sample_weight)
def result(self):
if len(self.thresholds) == 1:
result = self.accumulator[0]
else:
result = self.accumulator
return backend.convert_to_tensor(result)
def get_config(self):
config = {'thresholds': self.init_thresholds}
base_config = super().get_config()
return {**base_config, **config}
|
Calculates the number of the given confusion matrix condition.
Args:
confusion_matrix_cond: One of `metrics_utils.ConfusionMatrix`
conditions.
thresholds: (Optional) Defaults to `0.5`. A float value or a python list
/ tuple of float threshold values in `[0, 1]`. A threshold is
compared with prediction values to determine the truth value of
predictions (i.e., above the threshold is `True`, below is `False`).
One metric value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
|
github-repos
|
def body(self, body):
self._request.body = body
self.add_matcher(matcher('BodyMatcher', body))
|
Defines the body data to match.
``body`` argument can be a ``str``, ``binary`` or a regular expression.
Arguments:
body (str|binary|regex): body data to match.
Returns:
self: current Mock instance.
|
juraj-google-style
|
def _index_to_ansi_values(self, index):
if (self.__class__.__name__[0] == 'F'):
if (index < 8):
index += ANSI_FG_LO_BASE
else:
index += (ANSI_FG_HI_BASE - 8)
elif (index < 8):
index += ANSI_BG_LO_BASE
else:
index += (ANSI_BG_HI_BASE - 8)
return [str(index)]
|
Converts an palette index to the corresponding ANSI color.
Arguments:
index - an int (from 0-15)
Returns:
index as str in a list for compatibility with values.
|
codesearchnet
|
def _calculate_hash(files, root):
file_hash = hashlib.md5()
for fname in sorted(files):
f = os.path.join(root, fname)
file_hash.update((fname + '\x00').encode())
with open(f, 'rb') as fd:
for chunk in iter((lambda : fd.read(4096)), ''):
if (not chunk):
break
file_hash.update(chunk)
file_hash.update('\x00'.encode())
return file_hash.hexdigest()
|
Returns a hash of all of the given files at the given root.
Args:
files (list[str]): file names to include in the hash calculation,
relative to ``root``.
root (str): base directory to analyze files in.
Returns:
str: A hash of the hashes of the given files.
|
codesearchnet
|
def _UpdateProcessingStatus(self, pid, process_status, used_memory):
self._RaiseIfNotRegistered(pid)
if not process_status:
return
process = self._processes_per_pid[pid]
status_indicator = process_status.get('processing_status', None)
self._RaiseIfNotMonitored(pid)
display_name = process_status.get('display_name', '')
number_of_consumed_event_tags = process_status.get(
'number_of_consumed_event_tags', None)
number_of_produced_event_tags = process_status.get(
'number_of_produced_event_tags', None)
number_of_consumed_events = process_status.get(
'number_of_consumed_events', None)
number_of_produced_events = process_status.get(
'number_of_produced_events', None)
number_of_consumed_reports = process_status.get(
'number_of_consumed_reports', None)
number_of_produced_reports = process_status.get(
'number_of_produced_reports', None)
number_of_consumed_sources = process_status.get(
'number_of_consumed_sources', None)
number_of_produced_sources = process_status.get(
'number_of_produced_sources', None)
number_of_consumed_warnings = process_status.get(
'number_of_consumed_warnings', None)
number_of_produced_warnings = process_status.get(
'number_of_produced_warnings', None)
if status_indicator != definitions.STATUS_INDICATOR_IDLE:
last_activity_timestamp = process_status.get(
'last_activity_timestamp', 0.0)
if last_activity_timestamp:
last_activity_timestamp += self._PROCESS_WORKER_TIMEOUT
current_timestamp = time.time()
if current_timestamp > last_activity_timestamp:
logger.error((
'Process {0:s} (PID: {1:d}) has not reported activity within '
'the timeout period.').format(process.name, pid))
status_indicator = definitions.STATUS_INDICATOR_NOT_RESPONDING
self._processing_status.UpdateWorkerStatus(
process.name, status_indicator, pid, used_memory, display_name,
number_of_consumed_sources, number_of_produced_sources,
number_of_consumed_events, number_of_produced_events,
number_of_consumed_event_tags, number_of_produced_event_tags,
number_of_consumed_reports, number_of_produced_reports,
number_of_consumed_warnings, number_of_produced_warnings)
|
Updates the processing status.
Args:
pid (int): process identifier (PID) of the worker process.
process_status (dict[str, object]): status values received from
the worker process.
used_memory (int): size of used memory in bytes.
Raises:
KeyError: if the process is not registered with the engine.
|
juraj-google-style
|
def _ReadRecordAttributeValueOffset(
self, file_object, file_offset, number_of_attribute_values):
offsets_data_size = number_of_attribute_values * 4
offsets_data = file_object.read(offsets_data_size)
context = dtfabric_data_maps.DataTypeMapContext(values={
'number_of_attribute_values': number_of_attribute_values})
data_type_map = self._GetDataTypeMap(
'keychain_record_attribute_value_offsets')
try:
attribute_value_offsets = self._ReadStructureFromByteStream(
offsets_data, file_offset, data_type_map, context=context)
except (ValueError, errors.ParseError) as exception:
raise errors.ParseError((
'Unable to map record attribute value offsets data at offset: '
'0x{0:08x} with error: {1!s}').format(file_offset, exception))
return attribute_value_offsets
|
Reads the record attribute value offsets.
Args:
file_object (file): file-like object.
file_offset (int): offset of the record attribute values offsets relative
to the start of the file.
number_of_attribute_values (int): number of attribute values.
Returns:
keychain_record_attribute_value_offsets: record attribute value offsets.
Raises:
ParseError: if the record attribute value offsets cannot be read.
|
juraj-google-style
|
def update_x(self, x, indices=None):
x = _make_np_bool(x)
if indices is None:
if len(self._x) != len(x):
raise QiskitError("During updating whole x, you can not change "
"the number of qubits.")
self._x = x
else:
if not isinstance(indices, list) and not isinstance(indices, np.ndarray):
indices = [indices]
for p, idx in enumerate(indices):
self._x[idx] = x[p]
return self
|
Update partial or entire x.
Args:
x (numpy.ndarray or list): to-be-updated x
indices (numpy.ndarray or list or optional): to-be-updated qubit indices
Returns:
Pauli: self
Raises:
QiskitError: when updating whole x, the number of qubits must be the same.
|
juraj-google-style
|
def json_to_key_value(json_data, key_field, value_field=None, array=False):
if not isinstance(json_data, list):
json_data = [json_data]
key_value_array = []
for d in json_data:
if d.get(key_field) is not None and value_field is None:
key = key_field
value = d.get(key_field)
elif d.get(key_field) is not None and d.get(value_field) is not None:
key = d.get(key_field)
value = d.get(value_field)
else:
continue
key_value_array.append({'key': key, 'value': value})
if len(key_value_array) == 1 and not array:
return key_value_array[0]
return key_value_array
|
Convert JSON data to a KeyValue/KeyValueArray.
Args:
json_data (dictionary|list): Array/List of JSON data.
key_field (string): Field name for the key.
value_field (string): Field name for the value or use the value of the key field.
array (boolean): Always return array even if only on result.
Returns:
(dictionary|list): A dictionary or list representing a KeyValue or KeyValueArray.
|
juraj-google-style
|
def instantiate(self, cls=None):
if cls is None:
cls = self.cls
if cls is None:
raise TypeError("cls must a class")
return cls.create(*self.args, **self.kwargs)
|
Return an instantiated Expression as
``cls.create(*self.args, **self.kwargs)``
Args:
cls (class): The class of the instantiated expression. If not
given, ``self.cls`` will be used.
|
juraj-google-style
|
def test_torch_export(self, config=None, inputs_dict=None, tolerance=0.0001):
if not self.test_torch_exportable:
self.skipTest(reason='test_torch_exportable=False for this model.')
def recursively_check(eager_outputs, exported_outputs):
is_tested = False
if isinstance(eager_outputs, torch.Tensor):
torch.testing.assert_close(eager_outputs, exported_outputs, atol=tolerance, rtol=tolerance)
return True
elif isinstance(eager_outputs, (tuple, list)):
for eager_output, exported_output in zip(eager_outputs, exported_outputs):
is_tested = is_tested or recursively_check(eager_output, exported_output)
return is_tested
elif isinstance(eager_outputs, dict):
for key in eager_outputs:
is_tested = is_tested or recursively_check(eager_outputs[key], exported_outputs[key])
return is_tested
return is_tested
default_config, default_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config = config or default_config
inputs_dict = inputs_dict or default_inputs_dict
for model_class in self.all_model_classes:
if model_class.__name__.endswith('ForPreTraining'):
continue
with self.subTest(model_class.__name__):
model = model_class(config).eval().to(torch_device)
exported_model = torch.export.export(model, args=(), kwargs=inputs_dict, strict=getattr(self, 'test_torch_exportable_strictly', True))
with torch.no_grad():
torch.manual_seed(1234)
eager_outputs = model(**inputs_dict)
torch.manual_seed(1234)
exported_outputs = exported_model.module().forward(**inputs_dict)
is_tested = recursively_check(eager_outputs, exported_outputs)
self.assertTrue(is_tested, msg=f'No outputs were compared for {model_class.__name__}')
|
Test if model can be exported with torch.export.export()
Args:
config (PretrainedConfig):
Config to use for the model, if None, use default config from model_tester
inputs_dict (dict):
Inputs to use for the model, if None, use default inputs from model_tester
tolerance (float):
`atol` for torch.allclose(), defined in signature for test overriding
|
github-repos
|
def label_total_duration(self, label_list_ids=None):
duration = collections.defaultdict(float)
for label_list in self.label_lists.values():
if label_list_ids is None or label_list.idx in label_list_ids:
for label_value, label_duration in label_list.label_total_duration().items():
duration[label_value] += label_duration
return duration
|
Return a dictionary containing the number of seconds,
every label-value is occurring in this utterance.
Args:
label_list_ids (list): If not None, only labels from label-lists
with an id contained in this
list are considered.
Returns:
dict: A dictionary containing the number of seconds
with the label-value as key.
|
juraj-google-style
|
def retry(func):
def retried_func(*args, **kwargs):
max_tries = 3
tries = 0
while True:
try:
resp = func(*args, **kwargs)
except requests.exceptions.ConnectionError as exc:
exc.msg = 'Connection error for session; exiting'
raise exc
except requests.exceptions.HTTPError as exc:
exc.msg = 'HTTP error for session; exiting'
raise exc
if ((resp.status_code != 200) and (tries < max_tries)):
logger.warning('retrying request; current status code: {}'.format(resp.status_code))
tries += 1
time.sleep((tries ** 2))
continue
break
if (resp.status_code != 200):
error_message = resp.json()['error']['message']
logger.error('HTTP Error code: {}: {}'.format(resp.status_code, error_message))
logger.error('Rule payload: {}'.format(kwargs['rule_payload']))
raise requests.exceptions.HTTPError
return resp
return retried_func
|
Decorator to handle API retries and exceptions. Defaults to three retries.
Args:
func (function): function for decoration
Returns:
decorated function
|
codesearchnet
|
def GetNewSessionID(self):
base = self.runner_args.base_session_id
if (base is None):
base = (self.runner_args.client_id or aff4.ROOT_URN)
base = base.Add('flows')
return rdfvalue.SessionID(base=base, queue=self.runner_args.queue)
|
Returns a random session ID for this flow based on the runner args.
Returns:
A formatted session id URN.
|
codesearchnet
|
def get_browser(browser_name, capabilities=None, **options):
if browser_name == "chrome":
return webdriver.Chrome(desired_capabilities=capabilities, **options)
if browser_name == "edge":
return webdriver.Edge(capabilities=capabilities, **options)
if browser_name in ["ff", "firefox"]:
return webdriver.Firefox(capabilities=capabilities, **options)
if browser_name in ["ie", "internet_explorer"]:
return webdriver.Ie(capabilities=capabilities, **options)
if browser_name == "phantomjs":
return webdriver.PhantomJS(desired_capabilities=capabilities, **options)
if browser_name == "remote":
return webdriver.Remote(desired_capabilities=capabilities, **options)
if browser_name == "safari":
return webdriver.Safari(desired_capabilities=capabilities, **options)
raise ValueError("unsupported browser: {}".format(repr(browser_name)))
|
Returns an instance of the given browser with the given capabilities.
Args:
browser_name (str): The name of the desired browser.
capabilities (Dict[str, str | bool], optional): The desired capabilities of the browser.
Defaults to None.
options: Arbitrary keyword arguments for the browser-specific subclass of
:class:`webdriver.Remote`.
Returns:
WebDriver: An instance of the desired browser.
|
juraj-google-style
|
def c_overturned(step):
(rbot, rtop) = misc.get_rbounds(step)
(cinit, rad) = init_c_overturn(step)
radf = ((((rtop ** 3) + (rbot ** 3)) - (rad ** 3)) ** (1 / 3))
return (cinit, radf)
|
Theoretical overturned concentration.
This compute the resulting composition profile if fractional
crystallization of a SMO is assumed and then a purely radial
overturn happens.
Args:
step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData
instance.
Returns:
tuple of :class:`numpy.array`: the composition and the radial position
at which it is evaluated.
|
codesearchnet
|
def read_counts(node):
cfg.forward(node, cfg.ReachingDefinitions())
rc = ReadCounts()
rc.visit(node)
return rc.n_read
|
Check how many times a variable definition was used.
Args:
node: An AST to analyze.
Returns:
A dictionary from assignment nodes to the number of times the assigned to
variable was used.
|
codesearchnet
|
def is_alias_command(subcommands, args):
if not args:
return False
for subcommand in subcommands:
if args[:2] == ['alias', subcommand]:
return True
return False
|
Check if the user is invoking one of the comments in 'subcommands' in the from az alias .
Args:
subcommands: The list of subcommands to check through.
args: The CLI arguments to process.
Returns:
True if the user is invoking 'az alias {command}'.
|
juraj-google-style
|
def __init__(self, name, default_name=None, values=None) -> None:
if not (default_name is None or isinstance(default_name, str)):
raise TypeError('`default_name` type (%s) is not a string type. You likely meant to pass this into the `values` kwarg.' % type(default_name))
self._name = default_name if name is None else name
self._default_name = default_name
self._values = values
|
Initialize the context manager.
Args:
name: The name argument that is passed to the op function.
default_name: The default name to use if the `name` argument is `None`.
values: The list of `Tensor` arguments that are passed to the op function.
Raises:
TypeError: if `default_name` is passed in but not a string.
|
github-repos
|
def load_primitive(name):
for base_path in get_primitives_paths():
parts = name.split('.')
number_of_parts = len(parts)
for folder_parts in range(number_of_parts):
folder = os.path.join(base_path, *parts[:folder_parts])
filename = ('.'.join(parts[folder_parts:]) + '.json')
json_path = os.path.join(folder, filename)
if os.path.isfile(json_path):
with open(json_path, 'r') as json_file:
LOGGER.debug('Loading primitive %s from %s', name, json_path)
return json.load(json_file)
raise ValueError('Unknown primitive: {}'.format(name))
|
Locate and load the JSON annotation of the given primitive.
All the paths found in PRIMTIVE_PATHS will be scanned to find a JSON file
with the given name, and as soon as a JSON with the given name is found it
is returned.
Args:
name (str): name of the primitive to look for. The name should
correspond to the primitive, not to the filename, as the
`.json` extension will be added dynamically.
Returns:
dict:
The content of the JSON annotation file loaded into a dict.
Raises:
ValueError: A `ValueError` will be raised if the primitive cannot be
found.
|
codesearchnet
|
def get_model_proto(iterator) -> model_pb2.ModelProto:
if isinstance(iterator, iterator_ops.OwnedIterator):
iterator_resource = iterator._iterator_resource
elif isinstance(iterator, dataset_ops.NumpyIterator):
iterator_resource = iterator._iterator._iterator_resource
else:
raise ValueError('Only supports `tf.data.Iterator`-typed `iterator`.')
if not context.executing_eagerly():
raise ValueError(f'{get_model_proto.__name__} is not supported in graph mode.')
model_proto_string_tensor = ged_ops.iterator_get_model_proto(iterator_resource)
model_proto_bytes = model_proto_string_tensor.numpy()
return model_pb2.ModelProto.FromString(model_proto_bytes)
|
Gets the analytical model inside of `iterator` as `model_pb2.ModelProto`.
Args:
iterator: An `iterator_ops.OwnedIterator` or `dataset_ops.NumpyIterator`
Returns:
The model inside of this iterator as a model proto.
Raises:
NotFoundError: If this iterator's autotune is not enabled.
|
github-repos
|
def set_total_channel_deposit(self, registry_address: PaymentNetworkID, token_address: TokenAddress, partner_address: Address, total_deposit: TokenAmount, retry_timeout: NetworkTimeout=DEFAULT_RETRY_TIMEOUT):
chain_state = views.state_from_raiden(self.raiden)
token_addresses = views.get_token_identifiers(chain_state, registry_address)
channel_state = views.get_channelstate_for(chain_state=chain_state, payment_network_id=registry_address, token_address=token_address, partner_address=partner_address)
if (not is_binary_address(token_address)):
raise InvalidAddress('Expected binary address format for token in channel deposit')
if (not is_binary_address(partner_address)):
raise InvalidAddress('Expected binary address format for partner in channel deposit')
if (token_address not in token_addresses):
raise UnknownTokenAddress('Unknown token address')
if (channel_state is None):
raise InvalidAddress('No channel with partner_address for the given token')
if (self.raiden.config['environment_type'] == Environment.PRODUCTION):
per_token_network_deposit_limit = RED_EYES_PER_TOKEN_NETWORK_LIMIT
else:
per_token_network_deposit_limit = UINT256_MAX
token = self.raiden.chain.token(token_address)
token_network_registry = self.raiden.chain.token_network_registry(registry_address)
token_network_address = token_network_registry.get_token_network(token_address)
token_network_proxy = self.raiden.chain.token_network(token_network_address)
channel_proxy = self.raiden.chain.payment_channel(canonical_identifier=channel_state.canonical_identifier)
if (total_deposit == 0):
raise DepositMismatch('Attempted to deposit with total deposit being 0')
addendum = (total_deposit - channel_state.our_state.contract_balance)
total_network_balance = token.balance_of(registry_address)
if ((total_network_balance + addendum) > per_token_network_deposit_limit):
raise DepositOverLimit(f'The deposit of {addendum} will exceed the token network limit of {per_token_network_deposit_limit}')
balance = token.balance_of(self.raiden.address)
functions = token_network_proxy.proxy.contract.functions
deposit_limit = functions.channel_participant_deposit_limit().call()
if (total_deposit > deposit_limit):
raise DepositOverLimit(f'The additional deposit of {addendum} will exceed the channel participant limit of {deposit_limit}')
if (not (balance >= addendum)):
msg = 'Not enough balance to deposit. {} Available={} Needed={}'.format(pex(token_address), balance, addendum)
raise InsufficientFunds(msg)
channel_proxy.set_total_deposit(total_deposit=total_deposit, block_identifier=views.state_from_raiden(self.raiden).block_hash)
target_address = self.raiden.address
waiting.wait_for_participant_newbalance(raiden=self.raiden, payment_network_id=registry_address, token_address=token_address, partner_address=partner_address, target_address=target_address, target_balance=total_deposit, retry_timeout=retry_timeout)
|
Set the `total_deposit` in the channel with the peer at `partner_address` and the
given `token_address` in order to be able to do transfers.
Raises:
InvalidAddress: If either token_address or partner_address is not
20 bytes long.
TransactionThrew: May happen for multiple reasons:
- If the token approval fails, e.g. the token may validate if
account has enough balance for the allowance.
- The deposit failed, e.g. the allowance did not set the token
aside for use and the user spent it before deposit was called.
- The channel was closed/settled between the allowance call and
the deposit call.
AddressWithoutCode: The channel was settled during the deposit
execution.
DepositOverLimit: The total deposit amount is higher than the limit.
|
codesearchnet
|
def create_balanced_geojson(input_file, classes, output_file='balanced.geojson', samples_per_class=None):
if (not output_file.endswith('.geojson')):
output_file += '.geojson'
with open(input_file) as f:
data = geojson.load(f)
sorted_classes = {clss: [] for clss in classes}
for feat in data['features']:
try:
sorted_classes[feat['properties']['class_name']].append(feat)
except KeyError:
continue
if (not samples_per_class):
smallest_class = min(sorted_classes, key=(lambda clss: len(sorted_classes[clss])))
samples_per_class = len(sorted_classes[smallest_class])
try:
samps = [random.sample(feats, samples_per_class) for feats in sorted_classes.values()]
final = [feat for sample in samps for feat in sample]
except ValueError:
raise Exception('Insufficient features in at least one class. Set samples_per_class to None to use maximum amount of features.')
np.random.shuffle(final)
data['features'] = final
with open(output_file, 'wb') as f:
geojson.dump(data, f)
|
Create a geojson comprised of balanced classes from the class_name property in
input_file. Randomly selects polygons from all classes.
Args:
input_file (str): File name
classes (list[str]): Classes in input_file to include in the balanced output file.
Must exactly match the 'class_name' property in the features of input_file.
output_file (str): Name under which to save the balanced output file. Defualts to
balanced.geojson.
samples_per_class (int or None): Number of features to select per class in
input_file. If None will use the smallest class size. Defaults to None.
|
codesearchnet
|
def _ctc_state_trans(label_seq):
with ops.name_scope('ctc_state_trans'):
label_seq = ops.convert_to_tensor(label_seq, name='label_seq')
batch_size = _get_dim(label_seq, 0)
num_labels = _get_dim(label_seq, 1)
num_label_states = num_labels + 1
num_states = 2 * num_label_states
label_states = math_ops.range(num_label_states)
blank_states = label_states + num_label_states
start_to_label = [[1, 0]]
blank_to_label = array_ops_stack.stack([label_states[1:], blank_states[:-1]], 1)
label_to_blank = array_ops_stack.stack([blank_states, label_states], 1)
indices = array_ops.concat([start_to_label, blank_to_label, label_to_blank], 0)
values = array_ops.ones([_get_dim(indices, 0)])
trans = array_ops.scatter_nd(indices, values, shape=[num_states, num_states])
trans += linalg_ops.eye(num_states)
batch_idx = array_ops.zeros_like(label_states[2:])
indices = array_ops_stack.stack([batch_idx, label_states[2:], label_states[1:-1]], 1)
indices = array_ops.tile(array_ops.expand_dims(indices, 0), [batch_size, 1, 1])
batch_idx = array_ops.expand_dims(math_ops.range(batch_size), 1) * [1, 0, 0]
indices += array_ops.expand_dims(batch_idx, 1)
repeats = math_ops.equal(label_seq[:, :-1], label_seq[:, 1:])
values = 1.0 - math_ops.cast(repeats, dtypes.float32)
batched_shape = [batch_size, num_states, num_states]
label_to_label = array_ops.scatter_nd(indices, values, batched_shape)
return array_ops.expand_dims(trans, 0) + label_to_label
|
Computes CTC alignment model transition matrix.
Args:
label_seq: tensor of shape [batch_size, max_seq_length]
Returns:
tensor of shape [batch_size, states, states] with a state transition matrix
computed for each sequence of the batch.
|
github-repos
|
def get_clinvar_id(self, submission_id):
submission_obj = self.clinvar_submission_collection.find_one({'_id': ObjectId(submission_id)})
clinvar_subm_id = submission_obj.get('clinvar_subm_id')
return clinvar_subm_id
|
Returns the official Clinvar submission ID for a submission object
Args:
submission_id(str): submission_id(str) : id of the submission
Returns:
clinvar_subm_id(str): a string with a format: SUB[0-9]. It is obtained from clinvar portal when starting a new submission
|
juraj-google-style
|
def _fetch_certs(request, certs_url):
response = request(certs_url, method='GET')
if response.status != http_client.OK:
raise exceptions.TransportError(
'Could not fetch certificates at {}'.format(certs_url))
return json.loads(response.data.decode('utf-8'))
|
Fetches certificates.
Google-style cerificate endpoints return JSON in the format of
``{'key id': 'x509 certificate'}``.
Args:
request (google.auth.transport.Request): The object used to make
HTTP requests.
certs_url (str): The certificate endpoint URL.
Returns:
Mapping[str, str]: A mapping of public key ID to x.509 certificate
data.
|
juraj-google-style
|
def make_spiral_texture(spirals=6.0, ccw=False, offset=0.0, resolution=1000):
dist = np.sqrt(np.linspace(0., 1., resolution))
if ccw:
direction = 1.
else:
direction = -1.
angle = dist * spirals * np.pi * 2. * direction
spiral_texture = (
(np.cos(angle) * dist / 2.) + 0.5,
(np.sin(angle) * dist / 2.) + 0.5
)
return spiral_texture
|
Makes a texture consisting of a spiral from the origin.
Args:
spirals (float): the number of rotations to make
ccw (bool): make spirals counter-clockwise (default is clockwise)
offset (float): if non-zero, spirals start offset by this amount
resolution (int): number of midpoints along the spiral
Returns:
A texture.
|
juraj-google-style
|
def load_config(self):
logger.debug('loading config file: %s', self.config_file)
if os.path.exists(self.config_file):
with open(self.config_file) as file_handle:
return json.load(file_handle)
else:
logger.error('configuration file is required for eventify')
logger.error('unable to load configuration for service')
raise EventifyConfigError(
'Configuration is required! Missing: %s' % self.config_file
)
|
Load configuration for the service
Args:
config_file: Configuration file path
|
juraj-google-style
|
def set_forced_variation(self, experiment_key, user_id, variation_key):
experiment = self.get_experiment_from_key(experiment_key)
if not experiment:
return False
experiment_id = experiment.id
if variation_key is None:
if user_id in self.forced_variation_map:
experiment_to_variation_map = self.forced_variation_map.get(user_id)
if experiment_id in experiment_to_variation_map:
del(self.forced_variation_map[user_id][experiment_id])
self.logger.debug('Variation mapped to experiment "%s" has been removed for user "%s".' % (
experiment_key,
user_id
))
else:
self.logger.debug('Nothing to remove. Variation mapped to experiment "%s" for user "%s" does not exist.' % (
experiment_key,
user_id
))
else:
self.logger.debug('Nothing to remove. User "%s" does not exist in the forced variation map.' % user_id)
return True
if not validator.is_non_empty_string(variation_key):
self.logger.debug('Variation key is invalid.')
return False
forced_variation = self.get_variation_from_key(experiment_key, variation_key)
if not forced_variation:
return False
variation_id = forced_variation.id
if user_id not in self.forced_variation_map:
self.forced_variation_map[user_id] = {experiment_id: variation_id}
else:
self.forced_variation_map[user_id][experiment_id] = variation_id
self.logger.debug('Set variation "%s" for experiment "%s" and user "%s" in the forced variation map.' % (
variation_id,
experiment_id,
user_id
))
return True
|
Sets users to a map of experiments to forced variations.
Args:
experiment_key: Key for experiment.
user_id: The user ID.
variation_key: Key for variation. If None, then clear the existing experiment-to-variation mapping.
Returns:
A boolean value that indicates if the set completed successfully.
|
juraj-google-style
|
def diff_prettyHtml(self, diffs):
html = []
for (op, data) in diffs:
text = (data.replace("&", "&").replace("<", "<")
.replace(">", ">").replace("\n", "¶<br>"))
if op == self.DIFF_INSERT:
html.append("<ins style=\"background:
elif op == self.DIFF_DELETE:
html.append("<del style=\"background:
elif op == self.DIFF_EQUAL:
html.append("<span>%s</span>" % text)
return "".join(html)
|
Convert a diff array into a pretty HTML report.
Args:
diffs: Array of diff tuples.
Returns:
HTML representation.
|
juraj-google-style
|
def sendto(self, transport, addr):
msg = (bytes(self) + b'\r\n')
logger.debug('%s:%s < %s', *(addr + (self,)))
transport.sendto(msg, addr)
|
Send request to a given address via given transport.
Args:
transport (asyncio.DatagramTransport):
Write transport to send the message on.
addr (Tuple[str, int]):
IP address and port pair to send the message to.
|
codesearchnet
|
def compress(item_list, flag_list):
assert len(item_list) == len(flag_list), (
'lists should correspond. len(item_list)=%r len(flag_list)=%r' %
(len(item_list), len(flag_list)))
filtered_items = list(util_iter.iter_compress(item_list, flag_list))
return filtered_items
|
like np.compress but for lists
Returns items in item list where the corresponding item in flag list is
True
Args:
item_list (list): list of items to mask
flag_list (list): list of booleans used as a mask
Returns:
list : filtered_items - masked items
|
juraj-google-style
|
def parse_value(self, text: str) -> Optional[bool]:
if text == "true":
return True
if text == "false":
return False
|
Parse boolean value.
Args:
text: String representation of the value.
|
juraj-google-style
|
class AveragePooling1D(keras_layers.AveragePooling1D, base.Layer):
def __init__(self, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs):
if strides is None:
raise ValueError('Argument `strides` must not be None.')
super(AveragePooling1D, self).__init__(pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, name=name, **kwargs)
|
Average Pooling layer for 1D inputs.
Args:
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
|
github-repos
|
def reply_all(self, reply_comment):
payload = '{ "Comment": "' + reply_comment + '"}'
endpoint = 'https:
self._make_api_call('post', endpoint, data=payload)
|
Replies to everyone on the email, including those on the CC line.
With great power, comes great responsibility.
Args:
reply_comment: The string comment to send to everyone on the email.
|
juraj-google-style
|
def AddLabels(self, labels):
for label in labels:
if (not self._VALID_LABEL_REGEX.match(label)):
raise ValueError('Unsupported label: "{0:s}". A label must only consist of alphanumeric characters or underscores.'.format(label))
for label in labels:
if (label not in self.labels):
self.labels.append(label)
|
Adds labels to the event tag.
Args:
labels (list[str]): labels.
Raises:
ValueError: if a label is malformed.
|
codesearchnet
|
def __init__(self, xid=None, reason=None, desc=None):
super().__init__(xid)
self.reason = reason
self.desc = desc
|
Assign parameters to object attributes.
Args:
xid (int): Header's xid.
reason (~pyof.v0x04.asynchronous.port_status.PortReason):
Addition, deletion or modification.
desc (~pyof.v0x04.common.port.Port): Port description.
|
juraj-google-style
|
def _restore_volume(self, fade):
self.device.mute = self.mute
if (self.volume == 100):
fixed_vol = self.device.renderingControl.GetOutputFixed([('InstanceID', 0)])['CurrentFixed']
else:
fixed_vol = False
if (not fixed_vol):
self.device.bass = self.bass
self.device.treble = self.treble
self.device.loudness = self.loudness
if fade:
self.device.volume = 0
self.device.ramp_to_volume(self.volume)
else:
self.device.volume = self.volume
|
Reinstate volume.
Args:
fade (bool): Whether volume should be faded up on restore.
|
codesearchnet
|
def run_server(self, blocking=True):
self._server_lock.acquire()
try:
if self._stop_requested:
raise ValueError('Server has already stopped')
if self._server_started:
raise ValueError('Server has already started running')
no_max_message_sizes = [('grpc.max_receive_message_length', -1), ('grpc.max_send_message_length', -1)]
self.server = grpc.server(futures.ThreadPoolExecutor(max_workers=10), options=no_max_message_sizes)
debug_service_pb2_grpc.add_EventListenerServicer_to_server(self, self.server)
self.server.add_insecure_port('[::]:%d' % self._server_port)
self.server.start()
self._server_started = True
finally:
self._server_lock.release()
if blocking:
while not self._stop_requested:
time.sleep(1.0)
|
Start running the server.
Args:
blocking: If `True`, block until `stop_server()` is invoked.
Raises:
ValueError: If server stop has already been requested, or if the server
has already started running.
|
github-repos
|
def reminders_add(self, *, text: str, time: str, **kwargs) -> SlackResponse:
self._validate_xoxp_token()
kwargs.update({"text": text, "time": time})
return self.api_call("reminders.add", json=kwargs)
|
Creates a reminder.
Args:
text (str): The content of the reminder. e.g. 'eat a banana'
time (str): When this reminder should happen:
the Unix timestamp (up to five years from now e.g. '1602288000'),
the number of seconds until the reminder (if within 24 hours),
or a natural language description (Ex. 'in 15 minutes' or 'every Thursday')
|
juraj-google-style
|
def snakecase(string):
string = re.sub(r"[\-\.\s]", '_', str(string))
if not string:
return string
return lowercase(string[0]) + re.sub(r"[A-Z]", lambda matched: '_' + lowercase(matched.group(0)), string[1:])
|
Convert string into snake case.
Join punctuation with underscore
Args:
string: String to convert.
Returns:
string: Snake cased string.
|
juraj-google-style
|
def _ParseUSNChangeJournal(self, parser_mediator, usn_change_journal):
if not usn_change_journal:
return
usn_record_map = self._GetDataTypeMap('usn_record_v2')
usn_record_data = usn_change_journal.read_usn_record()
while usn_record_data:
current_offset = usn_change_journal.get_offset()
try:
usn_record = self._ReadStructureFromByteStream(
usn_record_data, current_offset, usn_record_map)
except (ValueError, errors.ParseError) as exception:
raise errors.ParseError((
'Unable to parse USN record at offset: 0x{0:08x} with error: '
'{1!s}').format(current_offset, exception))
name_offset = usn_record.name_offset - 60
utf16_stream = usn_record.name[name_offset:usn_record.name_size]
try:
name_string = utf16_stream.decode('utf-16-le')
except (UnicodeDecodeError, UnicodeEncodeError) as exception:
name_string = utf16_stream.decode('utf-16-le', errors='replace')
parser_mediator.ProduceExtractionWarning((
'unable to decode USN record name string with error: '
'{0:s}. Characters that cannot be decoded will be replaced '
'with "?" or "\\ufffd".').format(exception))
event_data = NTFSUSNChangeEventData()
event_data.file_attribute_flags = usn_record.file_attribute_flags
event_data.file_reference = usn_record.file_reference
event_data.filename = name_string
event_data.offset = current_offset
event_data.parent_file_reference = usn_record.parent_file_reference
event_data.update_reason_flags = usn_record.update_reason_flags
event_data.update_sequence_number = usn_record.update_sequence_number
event_data.update_source_flags = usn_record.update_source_flags
if not usn_record.update_date_time:
date_time = dfdatetime_semantic_time.SemanticTime('Not set')
else:
date_time = dfdatetime_filetime.Filetime(
timestamp=usn_record.update_date_time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_ENTRY_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
usn_record_data = usn_change_journal.read_usn_record()
|
Parses an USN change journal.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
usn_change_journal (pyfsntsfs.usn_change_journal): USN change journal.
Raises:
ParseError: if an USN change journal record cannot be parsed.
|
juraj-google-style
|
def wait_for_healthy(self, timeout_s=1200, interval=30):
timeout = time.time() + timeout_s
while self.health() != 'HEALTHY':
logging.warning('Waiting for TPU "%s" with state "%s" and health "%s" to become healthy', self.name(), self.state(), self.health())
if time.time() + interval > timeout:
raise RuntimeError('Timed out waiting for TPU "%s" to become healthy' % self.name())
time.sleep(interval)
logging.warning('TPU "%s" is healthy.', self.name())
|
Wait for TPU to become healthy or raise error if timeout reached.
Args:
timeout_s (int): The timeout in seconds for waiting TPU to become healthy.
interval (int): The interval in seconds to poll the TPU for health.
Raises:
RuntimeError: If the TPU doesn't become healthy by the timeout.
|
github-repos
|
def managed_sans(self):
if (not self.__managed_sans):
self.__managed_sans = ManagedSANs(self.__connection)
return self.__managed_sans
|
Gets the Managed SANs API client.
Returns:
ManagedSANs:
|
codesearchnet
|
def deprecated(replacement=None, message=None):
def wrap(old):
def wrapped(*args, **kwargs):
msg = ('%s is deprecated' % old.__name__)
if (replacement is not None):
if isinstance(replacement, property):
r = replacement.fget
elif isinstance(replacement, (classmethod, staticmethod)):
r = replacement.__func__
else:
r = replacement
msg += ('; use %s in %s instead.' % (r.__name__, r.__module__))
if (message is not None):
msg += ('\n' + message)
warnings.simplefilter('default')
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return old(*args, **kwargs)
return wrapped
return wrap
|
Decorator to mark classes or functions as deprecated,
with a possible replacement.
Args:
replacement (callable): A replacement class or method.
message (str): A warning message to be displayed.
Returns:
Original function, but with a warning to use the updated class.
|
codesearchnet
|
def from_environment_variables(cls):
ip = os.environ.get('ONEVIEWSDK_IP', '')
image_streamer_ip = os.environ.get('ONEVIEWSDK_IMAGE_STREAMER_IP', '')
api_version = int(os.environ.get('ONEVIEWSDK_API_VERSION', OneViewClient.DEFAULT_API_VERSION))
ssl_certificate = os.environ.get('ONEVIEWSDK_SSL_CERTIFICATE', '')
username = os.environ.get('ONEVIEWSDK_USERNAME', '')
auth_login_domain = os.environ.get('ONEVIEWSDK_AUTH_LOGIN_DOMAIN', '')
password = os.environ.get('ONEVIEWSDK_PASSWORD', '')
proxy = os.environ.get('ONEVIEWSDK_PROXY', '')
sessionID = os.environ.get('ONEVIEWSDK_SESSIONID', '')
timeout = os.environ.get('ONEVIEWSDK_CONNECTION_TIMEOUT')
config = dict(ip=ip, image_streamer_ip=image_streamer_ip, api_version=api_version, ssl_certificate=ssl_certificate, credentials=dict(userName=username, authLoginDomain=auth_login_domain, password=password, sessionID=sessionID), proxy=proxy, timeout=timeout)
return cls(config)
|
Construct OneViewClient using environment variables.
Allowed variables: ONEVIEWSDK_IP (required), ONEVIEWSDK_USERNAME (required), ONEVIEWSDK_PASSWORD (required),
ONEVIEWSDK_AUTH_LOGIN_DOMAIN, ONEVIEWSDK_API_VERSION, ONEVIEWSDK_IMAGE_STREAMER_IP, ONEVIEWSDK_SESSIONID, ONEVIEWSDK_SSL_CERTIFICATE,
ONEVIEWSDK_CONNECTION_TIMEOUT and ONEVIEWSDK_PROXY.
Returns:
OneViewClient:
|
codesearchnet
|
def from_event(cls, ion_event):
if ion_event.value is not None:
args, kwargs = cls._to_constructor_args(ion_event.value)
else:
args, kwargs = (), {}
value = cls(*args, **kwargs)
value.ion_event = ion_event
value.ion_type = ion_event.ion_type
value.ion_annotations = ion_event.annotations
return value
|
Constructs the given native extension from the properties of an event.
Args:
ion_event (IonEvent): The event to construct the native value from.
|
juraj-google-style
|
def Register(self, name, constructor):
precondition.AssertType(name, Text)
if (name in self._constructors):
message = "Duplicated constructors %r and %r for name '%s'"
message %= (constructor, self._constructors[name], name)
raise ValueError(message)
self._constructors[name] = constructor
|
Registers a new constructor in the factory.
Args:
name: A name associated with given constructor.
constructor: A constructor function that creates instances.
Raises:
ValueError: If there already is a constructor associated with given name.
|
codesearchnet
|
def num_rewards(self):
if (not self.is_reward_range_finite):
tf.logging.error('Infinite reward range, `num_rewards returning None`')
return None
if (not self.is_processed_rewards_discrete):
tf.logging.error('Processed rewards are not discrete, `num_rewards` returning None')
return None
(min_reward, max_reward) = self.reward_range
return ((max_reward - min_reward) + 1)
|
Returns the number of distinct rewards.
Returns:
Returns None if the reward range is infinite or the processed rewards
aren't discrete, otherwise returns the number of distinct rewards.
|
codesearchnet
|
def rename(script, label='blank', layer_num=None):
filter_xml = ''.join([
' <filter name="Rename Current Mesh">\n',
' <Param name="newName" ',
'value="{}" '.format(label),
'description="New Label" ',
'type="RichString" ',
'/>\n',
' </filter>\n'])
if isinstance(script, mlx.FilterScript):
if (layer_num is None) or (layer_num == script.current_layer()):
util.write_filter(script, filter_xml)
script.layer_stack[script.current_layer()] = label
else:
cur_layer = script.current_layer()
change(script, layer_num)
util.write_filter(script, filter_xml)
change(script, cur_layer)
script.layer_stack[layer_num] = label
else:
util.write_filter(script, filter_xml)
return None
|
Rename layer label
Can be useful for outputting mlp files, as the output file names use
the labels.
Args:
script: the mlx.FilterScript object or script filename to write
the filter to.
label (str): new label for the mesh layer
layer_num (int): layer number to rename. Default is the
current layer. Not supported on the file base API.
Layer stack:
Renames a layer
MeshLab versions:
2016.12
1.3.4BETA
|
juraj-google-style
|
def set_trunk_groups(self, vid, value=None, default=False, disable=False):
if default:
return self.configure_vlan(vid, 'default trunk group')
if disable:
return self.configure_vlan(vid, 'no trunk group')
current_value = self.get(vid)['trunk_groups']
failure = False
value = make_iterable(value)
for name in set(value).difference(current_value):
if (not self.add_trunk_group(vid, name)):
failure = True
for name in set(current_value).difference(value):
if (not self.remove_trunk_group(vid, name)):
failure = True
return (not failure)
|
Configures the list of trunk groups support on a vlan
This method handles configuring the vlan trunk group value to default
if the default flag is set to True. If the default flag is set
to False, then this method will calculate the set of trunk
group names to be added and to be removed.
EosVersion:
4.13.7M
Args:
vid (str): The VLAN ID to configure
value (str): The list of trunk groups that should be configured
for this vlan id.
default (bool): Configures the trunk group value to default if
this value is true
disable (bool): Negates the trunk group value if set to true
Returns:
True if the operation was successful otherwise False
|
codesearchnet
|
async def addFeedData(self, name, items, seqn=None):
async with await self.snap() as snap:
snap.strict = False
return await snap.addFeedData(name, items, seqn=seqn)
|
Add data using a feed/parser function.
Args:
name (str): The name of the feed record format.
items (list): A list of items to ingest.
seqn ((str,int)): An (iden, offs) tuple for this feed chunk.
Returns:
(int): The next expected offset (or None) if seqn is None.
|
juraj-google-style
|
def jobs(self):
return list(self._cluster_spec.keys())
|
Returns a list of job names in this cluster.
Returns:
A list of strings, corresponding to the names of jobs in this cluster.
|
github-repos
|
def partial_run_setup(self, fetches, feeds=None):
def _feed_fn(feed):
for tensor_type, _, _, feed_fn in _REGISTERED_EXPANSIONS:
if isinstance(feed, tensor_type):
return feed_fn(feed)
raise TypeError(f'Feed argument {feed} has invalid type "{type(feed).__name__}"')
if self._closed:
raise RuntimeError('Attempted to use a closed Session.')
if self.graph.version == 0:
raise RuntimeError('The Session graph is empty. Add operations to the graph before calling run().')
if feeds is None:
feeds = []
feed_list = []
is_list_feed = isinstance(feeds, (list, tuple))
if not is_list_feed:
feeds = [feeds]
for feed in feeds:
for subfeed in _feed_fn(feed):
try:
subfeed_t = self.graph.as_graph_element(subfeed, allow_tensor=True, allow_operation=False)
feed_list.append(subfeed_t._as_tf_output())
except Exception as e:
e.message = f'Cannot interpret argument `feed` key as Tensor: {e.message}'
e.args = (e.message,)
raise e
fetch_handler = _FetchHandler(self._graph, fetches, {})
def _setup_fn(session, feed_list, fetch_list, target_list):
self._extend_graph()
return tf_session.TF_SessionPRunSetup_wrapper(session, feed_list, fetch_list, target_list)
final_fetches = [t._as_tf_output() for t in fetch_handler.fetches()]
final_targets = [op._c_op for op in fetch_handler.targets()]
return self._do_call(_setup_fn, self._session, feed_list, final_fetches, final_targets)
|
Sets up a graph with feeds and fetches for partial run.
NOTE: This function is deprecated and we do not expect adding new
functionality to it. Please do not have your code depending on this
function.
This is EXPERIMENTAL and subject to change.
Note that contrary to `run`, `feeds` only specifies the graph elements.
The tensors will be supplied by the subsequent `partial_run` calls.
Args:
fetches: A single graph element, or a list of graph elements.
feeds: A single graph element, or a list of graph elements.
Returns:
A handle for partial run.
Raises:
RuntimeError: If this `Session` is in an invalid state (e.g. has been
closed).
TypeError: If `fetches` or `feed_dict` keys are of an inappropriate type.
tf.errors.OpError: Or one of its subclasses if a TensorFlow error happens.
|
github-repos
|
def resolve(self, file_path, follow_symlinks=True, allow_fd=False):
if isinstance(file_path, int):
if (allow_fd and (sys.version_info >= (3, 3))):
return self.get_open_file(file_path).get_object()
raise TypeError('path should be string, bytes or os.PathLike (if supported), not int')
if follow_symlinks:
file_path = make_string_path(file_path)
return self.get_object_from_normpath(self.resolve_path(file_path))
return self.lresolve(file_path)
|
Search for the specified filesystem object, resolving all links.
Args:
file_path: Specifies the target FakeFile object to retrieve.
follow_symlinks: If `False`, the link itself is resolved,
otherwise the object linked to.
allow_fd: If `True`, `file_path` may be an open file descriptor
Returns:
The FakeFile object corresponding to `file_path`.
Raises:
IOError: if the object is not found.
|
codesearchnet
|
def shape(self):
if self._dense_shape is None:
return tensor_shape.TensorShape(None)
return tensor_util.constant_value_as_shape(self._dense_shape)
|
Gets the `tf.TensorShape` representing the shape of the dense tensor.
Returns:
A `tf.TensorShape` object.
|
github-repos
|
def mtf_transformer_paper_tr(size):
n = (2 ** size)
hparams = mtf_transformer_base()
hparams.label_smoothing = 0.1
hparams.batch_size = 128
hparams.d_model = 1024
hparams.d_ff = int((4096 * n))
hparams.num_heads = int((8 * n))
hparams.shared_embedding_and_softmax_weights = False
hparams.learning_rate_decay_steps = 51400
return hparams
|
Config for translation experiments.
Train these on translate_enfr_wmt32k_packed for 154000 steps (3 epochs)
The size parameter is an integer that controls the number of heads and the
size of the size of the feedforward hidden layers. Increasing size by 1
doubles each of these.
Args:
size: an integer
Returns:
a hparams object
|
codesearchnet
|
def _starts_with_drive_letter(self, file_path):
colon = self._matching_string(file_path, ':')
return (self.is_windows_fs and len(file_path) >= 2 and
file_path[:1].isalpha and (file_path[1:2]) == colon)
|
Return True if file_path starts with a drive letter.
Args:
file_path: the full path to be examined.
Returns:
`True` if drive letter support is enabled in the filesystem and
the path starts with a drive letter.
|
juraj-google-style
|
def create_db(file_pth):
conn = sqlite3.connect(file_pth)
c = conn.cursor()
c.execute('DROP TABLE IF EXISTS library_spectra_source')
c.execute('CREATE TABLE library_spectra_source (\n id integer PRIMARY KEY,\n name text NOT NULL,\n created_at date,\n parsing_software text\n )')
c.execute('DROP TABLE IF EXISTS metab_compound')
c.execute('CREATE TABLE metab_compound (\n inchikey_id text PRIMARY KEY,\n name text,\n pubchem_id text,\n chemspider_id text,\n other_names text,\n exact_mass real,\n molecular_formula text,\n molecular_weight real,\n compound_class text,\n smiles text,\n created_at date,\n updated_at date\n\n )')
c.execute('DROP TABLE IF EXISTS library_spectra_meta')
c.execute('CREATE TABLE library_spectra_meta (\n id integer PRIMARY KEY,\n name text,\n collision_energy text,\n ms_level real,\n accession text NOT NULL,\n resolution text,\n polarity integer,\n fragmentation_type text,\n precursor_mz real,\n precursor_type text,\n instrument_type text,\n instrument text,\n copyright text,\n column text,\n mass_accuracy real,\n mass_error real,\n origin text,\n splash text,\n retention_index real, \n retention_time real,\n library_spectra_source_id integer NOT NULL,\n inchikey_id text NOT NULL,\n FOREIGN KEY(library_spectra_source_id) REFERENCES library_spectra_source(id),\n FOREIGN KEY(inchikey_id) REFERENCES metab_compound(inchikey_id)\n )')
c.execute('DROP TABLE IF EXISTS library_spectra')
c.execute('CREATE TABLE library_spectra (\n id integer PRIMARY KEY,\n mz real NOT NULL,\n i real NOT NULL,\n other text,\n library_spectra_meta_id integer NOT NULL,\n FOREIGN KEY (library_spectra_meta_id) REFERENCES library_spectra_meta(id)\n )')
c.execute('DROP TABLE IF EXISTS library_spectra_annotation')
c.execute('CREATE TABLE library_spectra_annotation (\n id integer PRIMARY KEY,\n mz real,\n tentative_formula text,\n mass_error real,\n library_spectra_meta_id integer NOT NULL,\n FOREIGN KEY (library_spectra_meta_id) REFERENCES library_spectra_meta(id)\n )')
|
Create an empty SQLite database for library spectra.
Example:
>>> from msp2db.db import create_db
>>> db_pth = 'library.db'
>>> create_db(file_pth=db_pth)
Args:
file_pth (str): File path for SQLite database
|
codesearchnet
|
def __init__(self, ctx, name, member_map, ast):
super().__init__(ctx, name, member_map, ast)
self.real_module = ctx.convert.constant_to_value(ast, subst=datatypes.AliasingDict(), node=ctx.root_node)
|
Initialize the overlay.
Args:
ctx: Instance of context.Context.
name: A string containing the name of the underlying module.
member_map: Dict of str to abstract.BaseValues that provide type
information not available in the underlying module.
ast: An pytd.TypeDeclUnit containing the AST for the underlying module.
Used to access type information for members of the module that are not
explicitly provided by the overlay.
|
github-repos
|
def get_signed_url(self, file_id):
if (not is_valid_uuid(file_id)):
raise StorageArgumentException('Invalid UUID for file_id: {0}'.format(file_id))
return self._authenticated_request.to_endpoint('file/{}/content/secure_link/'.format(file_id)).return_body().get()['signed_url']
|
Get a signed unauthenticated URL.
It can be used to download the file content without the need for a
token. The signed URL expires after 5 seconds.
Args:
file_id (str): The UUID of the file to get the link for.
Returns:
The signed url as a string
Raises:
StorageArgumentException: Invalid arguments
StorageForbiddenException: Server response code 403
StorageNotFoundException: Server response code 404
StorageException: other 400-600 error codes
|
codesearchnet
|
def create_filter(condition: Callable[[ProcessorPart], bool]) -> PartProcessor:
async def filter_with_condition(part: ProcessorPart) -> AsyncIterable[ProcessorPart]:
if condition(part):
yield part
return _PartProcessorWrapper(filter_with_condition)
|
Creates a processor that filters parts based on `condition`.
Args:
condition: a part is returned by this processor iff `condition(part)=True`
Returns:
a processor filtering the input stream
|
github-repos
|
def _container_start_handler_factory(ion_type, before_yield=(lambda c, ctx: None)):
assert ion_type.is_container
@coroutine
def container_start_handler(c, ctx):
before_yield(c, ctx)
(yield)
(yield ctx.event_transition(IonEvent, IonEventType.CONTAINER_START, ion_type, value=None))
return container_start_handler
|
Generates handlers for tokens that begin with container start characters.
Args:
ion_type (IonType): The type of this container.
before_yield (Optional[callable]): Called at initialization. Accepts the first character's ordinal and the
current context; performs any necessary initialization actions.
|
codesearchnet
|
def __init__(self, windowfn, trigger=None, accumulation_mode=None, timestamp_combiner=None, allowed_lateness=0):
if isinstance(windowfn, Windowing):
windowing = windowfn
windowfn = windowing.windowfn
trigger = trigger or windowing.triggerfn
accumulation_mode = accumulation_mode or windowing.accumulation_mode
timestamp_combiner = timestamp_combiner or windowing.timestamp_combiner
self.windowing = Windowing(windowfn, trigger, accumulation_mode, timestamp_combiner, allowed_lateness)
super().__init__(self.WindowIntoFn(self.windowing))
|
Initializes a WindowInto transform.
Args:
windowfn (Windowing, WindowFn): Function to be used for windowing.
trigger: (optional) Trigger used for windowing, or None for default.
accumulation_mode: (optional) Accumulation mode used for windowing,
required for non-trivial triggers.
timestamp_combiner: (optional) Timestamp combniner used for windowing,
or None for default.
|
github-repos
|
def _ScanFileSystem(self, scan_node, base_path_specs):
if not scan_node or not scan_node.path_spec:
raise errors.ScannerError('Invalid or missing file system scan node.')
base_path_specs.append(scan_node.path_spec)
|
Scans a file system scan node for file systems.
Args:
scan_node (SourceScanNode): file system scan node.
base_path_specs (list[PathSpec]): file system base path specifications.
Raises:
ScannerError: if the scan node is invalid.
|
juraj-google-style
|
def list_to_tuple(structure):
def sequence_fn(instance, args):
if isinstance(instance, list):
return tuple(args)
return nest_util.sequence_like(instance, args)
return nest_util.pack_sequence_as(nest_util.Modality.CORE, structure, flatten(structure), False, sequence_fn=sequence_fn)
|
Replace all lists with tuples.
The fork of nest that tf.data uses treats lists as atoms, while
tf.nest treats them as structures to recurse into. Keras has chosen to adopt
the latter convention, and must therefore deeply replace all lists with tuples
before passing structures to Dataset.from_generator.
Args:
structure: A nested structure to be remapped.
Returns:
structure mapped to replace all lists with tuples.
|
github-repos
|
def select_one(self, selector):
result = list(self.select(selector))
if len(result) > 1:
raise ValueError("Found more than one model matching %s: %r" % (selector, result))
if len(result) == 0:
return None
return result[0]
|
Query this document for objects that match the given selector.
Raises an error if more than one object is found. Returns
single matching object, or None if nothing is found
Args:
selector (JSON-like query dictionary) : you can query by type or by
name, e.g. ``{"type": HoverTool}``, ``{"name": "mycircle"}``
Returns:
Model or None
|
juraj-google-style
|
def activate(self, user):
org_user = self.organization.add_user(user, **self.activation_kwargs())
self.invitee = user
self.save()
return org_user
|
Updates the `invitee` value and saves the instance
Provided as a way of extending the behavior.
Args:
user: the newly created user
Returns:
the linking organization user
|
juraj-google-style
|
def get_value_for_datastore(self, model_instance):
value = super(JsonProperty, self).get_value_for_datastore(model_instance)
if not value:
return None
json_value = value
if not isinstance(value, dict):
json_value = value.to_json()
if not json_value:
return None
return datastore_types.Text(json.dumps(
json_value, sort_keys=True, cls=JsonEncoder))
|
Gets value for datastore.
Args:
model_instance: instance of the model class.
Returns:
datastore-compatible value.
|
juraj-google-style
|
def tokenize(self, data, *args, **kwargs):
self.lexer.input(data)
tokens = list()
while True:
token = self.lexer.token()
if not token:
break
tokens.append(token)
return tokens
|
Invoke the lexer on an input string an return the list of tokens.
This is relatively inefficient and should only be used for
testing/debugging as it slurps up all tokens into one list.
Args:
data: The input to be tokenized.
Returns:
A list of LexTokens
|
juraj-google-style
|
def transform_to_mods_mono(marc_xml, uuid, url):
marc_xml = _read_content_or_path(marc_xml)
transformed = xslt_transformation(marc_xml, _absolute_template_path('MARC21slim2MODS3-4-NDK.xsl'))
return _apply_postprocessing(marc_xml=marc_xml, xml=transformed, func=mods_postprocessor.postprocess_monograph, uuid=uuid, url=url)
|
Convert `marc_xml` to MODS data format.
Args:
marc_xml (str): Filename or XML string. Don't use ``\\n`` in case of
filename.
uuid (str): UUID string giving the package ID.
url (str): URL of the publication (public or not).
Returns:
list: Collection of transformed xml strings.
|
codesearchnet
|
def clear_list(self, **kwargs):
path = self._get_id_path('clear')
kwargs.update({'session_id': self.session_id})
payload = {}
response = self._POST(path, kwargs, payload)
self._set_attrs_to_values(response)
return response
|
Clears all of the items within a list. This is an irreversible action
and should be treated with caution.
A valid session id is required.
Args:
confirm: True (do it) | False (don't do it)
Returns:
A dict respresentation of the JSON returned from the API.
|
codesearchnet
|
def __init__(self, min_length=None, max_length=None, empty=True):
super(StringTypeChecker, self).__init__(
iter_type=str, min_length=min_length, max_length=max_length, empty=empty
)
|
Initialization method.
Args:
min_length (int): minimum length of the string (included).
max_length (int): maximum length of the string (included).
empty (bool): whether empty string is allowed.
|
juraj-google-style
|
def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0):
binary = "{0:b}".format(abs(self.value))
binary = ("0" * (64 - (len(binary) % 64))) + binary
if self.value < 0:
binary = binary.replace('1', 'i')
binary = binary.replace('0', '1')
binary = binary.replace('i', '0')
pivot = binary.rfind('0')
binary = binary[0:pivot] + '1' + ('0' * len(binary[pivot + 1:]))
hexadecimal = b''
for i in range(0, len(binary), 8):
byte = binary[i:i + 8]
byte = int(byte, 2)
hexadecimal += struct.pack('!B', byte)
self.length = len(hexadecimal)
super(BigInteger, self).write(ostream, kmip_version=kmip_version)
ostream.write(hexadecimal)
|
Write the encoding of the BigInteger to the output stream.
Args:
ostream (Stream): A buffer to contain the encoded bytes of a
BigInteger object. Usually a BytearrayStream object.
Required.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
|
juraj-google-style
|
def listen_forever(self, timeout_ms=30000, exception_handler=None,
bad_sync_timeout=5):
_bad_sync_timeout = bad_sync_timeout
self.should_listen = True
while (self.should_listen):
try:
self._sync(timeout_ms)
_bad_sync_timeout = bad_sync_timeout
except MatrixRequestError as e:
logger.warning("A MatrixRequestError occured during sync.")
if e.code >= 500:
logger.warning("Problem occured serverside. Waiting %i seconds",
bad_sync_timeout)
sleep(bad_sync_timeout)
_bad_sync_timeout = min(_bad_sync_timeout * 2,
self.bad_sync_timeout_limit)
elif exception_handler is not None:
exception_handler(e)
else:
raise
except Exception as e:
logger.exception("Exception thrown during sync")
if exception_handler is not None:
exception_handler(e)
else:
raise
|
Keep listening for events forever.
Args:
timeout_ms (int): How long to poll the Home Server for before
retrying.
exception_handler (func(exception)): Optional exception handler
function which can be used to handle exceptions in the caller
thread.
bad_sync_timeout (int): Base time to wait after an error before
retrying. Will be increased according to exponential backoff.
|
juraj-google-style
|
def write_updates_to_csv(self, updates):
with open(self._csv_file_name, 'w') as csvfile:
csvwriter = self.csv_writer(csvfile)
csvwriter.writerow(CSV_COLUMN_HEADERS)
for update in updates:
row = [update.name, update.current_version, update.new_version, update.prelease]
csvwriter.writerow(row)
|
Given a list of updates, write the updates out to the provided CSV
file.
Args:
updates (list): List of Update objects.
|
codesearchnet
|
def convert_shape(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting shape ...')
def target_layer(x):
import tensorflow as tf
return tf.shape(x)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
|
Convert shape operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.