code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def of_cte(cls, header: Optional[ContentTransferEncodingHeader]) \
-> 'MessageDecoder':
if header is None:
return _NoopDecoder()
hdr_str = str(header).lower()
custom = cls.registry.get(hdr_str)
if custom is not None:
return custom
elif hdr_str in ('7bit', '8bit'):
return _NoopDecoder()
elif hdr_str == 'quoted-printable':
return _QuotedPrintableDecoder()
elif hdr_str == 'base64':
return _Base64Decoder()
else:
raise NotImplementedError(hdr_str)
|
Return a decoder from the CTE header value.
There is built-in support for ``7bit``, ``8bit``, ``quoted-printable``,
and ``base64`` CTE header values. Decoders can be added or overridden
with the :attr:`.registry` dictionary.
Args:
header: The CTE header value.
|
juraj-google-style
|
def learn(self, iter_n=500, k_step=10):
generative_model, discriminative_model = self.__GAN.train(
self.__true_sampler,
self.__generative_model,
self.__discriminative_model,
iter_n=iter_n,
k_step=k_step
)
self.__generative_model = generative_model
self.__discriminative_model = discriminative_model
|
Learning.
Args:
iter_n: The number of training iterations.
k_step: The number of learning of the `discriminator`.
|
juraj-google-style
|
def save_users(users, path=settings.LOGIN_FILE):
with open(path, "w") as fh:
for username, data in users.items():
pass_line = username + ":" + ":".join([
data["pass_hash"],
data["uid"],
data["gid"],
data["full_name"],
data["home"],
data["shell"]
])
fh.write(pass_line + "\n")
|
Save dictionary with user data to passwd file (default
:attr:`ftp.settings.LOGIN_FILE`).
Args:
users (dict): dictionary with user data. For details look at dict
returned from :func:`load_users`.
path (str, default settings.LOGIN_FILE): path of the file, where the
data will be stored (default :attr:`ftp.settings.LOGIN_FILE`).
|
juraj-google-style
|
def memoizedmethod(method):
method_name = method.__name__
@wraps(method)
def patched(self, *args, **kwargs):
try:
return self._cache[method_name]
except KeyError:
result = self._cache[method_name] = method(
self, *args, **kwargs)
return result
return patched
|
Decorator that caches method result.
Args:
method (function): Method
Returns:
function: Memoized method.
Notes:
Target method class needs as "_cache" attribute (dict).
It is the case of "ObjectIOBase" and all its subclasses.
|
juraj-google-style
|
def __init__(self, num_workers, *unused_args, **unused_kwargs):
super().__init__(*unused_args, **unused_kwargs)
self._num_workers = num_workers
self._successful_ops = util.MovingSum(window_ms=1000, bucket_ms=1000)
self._first_instant = datetime.datetime.now()
self._throttled_secs = Metrics.counter(RampupThrottlingFn, 'cumulativeThrottlingSeconds')
|
Initializes a ramp-up throttler transform.
Args:
num_workers: A hint for the expected number of workers, used to derive
the local rate limit.
|
github-repos
|
def __call__(self, fn):
def output(app, *args, **kwargs):
data = fn(app, *args, **kwargs)
attr = getattr(app, self.attribute)
if isinstance(data, list) and isinstance(attr, list):
getattr(app, self.attribute).extend(data)
elif isinstance(attr, list):
getattr(app, self.attribute).append(data)
else:
setattr(app, self.attribute, data)
return data
return output
|
Implement __call__ function for decorator.
Args:
fn (function): The decorated function.
Returns:
function: The custom decorator function.
|
juraj-google-style
|
def get_file(profile, branch, file_path):
branch_sha = get_branch_sha(profile, branch)
tree = get_files_in_branch(profile, branch_sha)
match = None
for item in tree:
if (item.get('path') == file_path):
match = item
break
file_sha = match.get('sha')
blob = blobs.get_blob(profile, file_sha)
content = blob.get('content')
decoded_content = b64decode(content)
return decoded_content.decode('utf-8')
|
Get a file from a branch.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
branch
The name of a branch.
file_path
The path of the file to fetch.
Returns:
The (UTF-8 encoded) content of the file, as a string.
|
codesearchnet
|
def refs(self, type='all', **kwargs):
path = '%s/%s/refs' % (self.manager.path, self.get_id())
data = {'type': type}
return self.manager.gitlab.http_get(path, query_data=data, **kwargs)
|
List the references the commit is pushed to.
Args:
type (str): The scope of references ('branch', 'tag' or 'all')
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabGetError: If the references could not be retrieved
Returns:
list: The references the commit is pushed to.
|
juraj-google-style
|
def sin(duration: int, amp: complex, freq: float=None, phase: float=0, name: str=None) -> SamplePulse:
if (freq is None):
freq = (1 / duration)
return _sampled_sin_pulse(duration, amp, freq, phase=phase, name=name)
|
Generates sine wave `SamplePulse`.
Args:
duration: Duration of pulse. Must be greater than zero.
amp: Pulse amplitude.
freq: Pulse frequency, units of 1/dt. If `None` defaults to single cycle.
phase: Pulse phase.
name: Name of pulse.
|
codesearchnet
|
def solve2x2(lhs, rhs):
if (np.abs(lhs[(1, 0)]) > np.abs(lhs[(0, 0)])):
ratio = (lhs[(0, 0)] / lhs[(1, 0)])
denominator = (lhs[(0, 1)] - (ratio * lhs[(1, 1)]))
if (denominator == 0.0):
return (True, None, None)
y_val = ((rhs[0] - (ratio * rhs[1])) / denominator)
x_val = ((rhs[1] - (lhs[(1, 1)] * y_val)) / lhs[(1, 0)])
return (False, x_val, y_val)
else:
if (lhs[(0, 0)] == 0.0):
return (True, None, None)
ratio = (lhs[(1, 0)] / lhs[(0, 0)])
denominator = (lhs[(1, 1)] - (ratio * lhs[(0, 1)]))
if (denominator == 0.0):
return (True, None, None)
y_val = ((rhs[1] - (ratio * rhs[0])) / denominator)
x_val = ((rhs[0] - (lhs[(0, 1)] * y_val)) / lhs[(0, 0)])
return (False, x_val, y_val)
|
Solve a square 2 x 2 system via LU factorization.
This is meant to be a stand-in for LAPACK's ``dgesv``, which just wraps
two calls to ``dgetrf`` and ``dgetrs``. We wrap for two reasons:
* We seek to avoid exceptions as part of the control flow (which is
what :func`numpy.linalg.solve` does).
* We seek to avoid excessive type- and size-checking, since this
special case is already known.
Args:
lhs (numpy.ndarray) A ``2 x 2`` array of real numbers.
rhs (numpy.ndarray) A 1D array of 2 real numbers.
Returns:
Tuple[bool, float, float]: A triple of
* A flag indicating if ``lhs`` is a singular matrix.
* The first component of the solution.
* The second component of the solution.
|
codesearchnet
|
def create_application_configuration(self, name, properties, description=None):
if not hasattr(self, 'applicationConfigurations'):
raise NotImplementedError()
cv = ApplicationConfiguration._props(name, properties, description)
res = self.rest_client.session.post(self.applicationConfigurations,
headers = {'Accept' : 'application/json'},
json=cv)
_handle_http_errors(res)
return ApplicationConfiguration(res.json(), self.rest_client)
|
Create an application configuration.
Args:
name (str, optional): Only return application configurations containing property **name** that matches `name`. `name` can be a
.. versionadded 1.12
|
juraj-google-style
|
def export_analytics_data_to_csv(data, output_folder, result_info_key, identifier_keys):
workbook = create_excel_workbook(data, result_info_key, identifier_keys)
suffix = '.csv'
if (not os.path.exists(output_folder)):
os.makedirs(output_folder)
for worksheet in workbook.worksheets:
file_name = utilities.convert_title_to_snake_case(worksheet.title)
file_path = os.path.join(output_folder, (file_name + suffix))
mode = 'w'
if (sys.version_info[0] < 3):
mode = 'wb'
with io.open(file_path, mode) as output_file:
csv_writer = csv.writer(output_file)
for row in worksheet.rows:
csv_writer.writerow([cell.value for cell in row])
print('Saved CSV files to {}'.format(output_folder))
|
Creates CSV files containing data returned by the Analytics API.
Creates one file per requested endpoint and saves it into the
specified output_folder
Args:
data: Analytics API data as a list of dicts
output_folder: Path to a folder to save the CSV files into
|
codesearchnet
|
def get_tensor_num_entries(self, tensor_name, partial_layout=None, mesh_dimension_to_size=None):
shape = self.get_tensor_shape(tensor_name)
num_entries = 1
for dim in shape.dims:
num_entries = (num_entries * dim.value)
if (not partial_layout):
return num_entries
for mtf_dimension_name in self.get_tensor_mtf_dimension_names(tensor_name):
if (mtf_dimension_name not in partial_layout):
continue
mesh_dimension_name = partial_layout[mtf_dimension_name]
mesh_dimension_size = mesh_dimension_to_size[mesh_dimension_name]
num_entries = int(math.ceil((num_entries / mesh_dimension_size)))
return num_entries
|
The number of entries in a tensor.
If partial_layout is specified, then mesh_dimension_to_size must also be. In
this case, the number of entries on a single device is returned.
Args:
tensor_name: a string, name of a tensor in the graph.
partial_layout: an optional {string: string}, from MTF dimension name to
mesh dimension name.
mesh_dimension_to_size: an optional {string: int}, from mesh dimension
name to size.
Returns:
an integer
|
codesearchnet
|
def validate_read(self, address):
if (not any((address.startswith(ns) for ns in self._read_list))):
raise AuthorizationException(address=address)
|
Raises an exception if the address is not allowed to be read in
this context, based on txn inputs.
Args:
address (str): An address to be validated.
Returns:
None
Raises:
AuthorizationException
|
codesearchnet
|
def _ReadMemberFooter(self, file_object):
file_offset = file_object.get_offset()
member_footer = self._ReadStructure(
file_object, file_offset, self._MEMBER_FOOTER_SIZE,
self._MEMBER_FOOTER, 'member footer')
self.uncompressed_data_size = member_footer.uncompressed_data_size
|
Reads a member footer.
Args:
file_object (FileIO): file-like object to read from.
Raises:
FileFormatError: if the member footer cannot be read.
|
juraj-google-style
|
def retrieve(self, block_height, headers=None):
path = (self.path + block_height)
return self.transport.forward_request(method='GET', path=path, headers=None)
|
Retrieves the block with the given ``block_height``.
Args:
block_height (str): height of the block to retrieve.
headers (dict): Optional headers to pass to the request.
Returns:
dict: The block with the given ``block_height``.
|
codesearchnet
|
def GetArtifactPathDependencies(rdf_artifact):
deps = set()
for source in rdf_artifact.sources:
for (arg, value) in iteritems(source.attributes):
paths = []
if (arg in ['path', 'query']):
paths.append(value)
if (arg == 'key_value_pairs'):
paths.extend([x['key'] for x in value])
if (arg in ['keys', 'paths', 'path_list', 'content_regex_list']):
paths.extend(value)
for path in paths:
for match in artifact_utils.INTERPOLATED_REGEX.finditer(path):
deps.add(match.group()[2:(- 2)])
deps.update(GetArtifactParserDependencies(rdf_artifact))
return deps
|
Return a set of knowledgebase path dependencies.
Args:
rdf_artifact: RDF artifact object.
Returns:
A set of strings for the required kb objects e.g.
["users.appdata", "systemroot"]
|
codesearchnet
|
def _coords2idx(self, coords):
x = self._coords2vec(coords)
idx = self._kd.query(x, p=self._metric_p,
distance_upper_bound=self._max_pix_scale)
return idx[1]
|
Converts from sky coordinates to pixel indices.
Args:
coords (:obj:`astropy.coordinates.SkyCoord`): Sky coordinates.
Returns:
Pixel indices of the coordinates, with the same shape as the input
coordinates. Pixels which are outside the map are given an index
equal to the number of pixels in the map.
|
juraj-google-style
|
def indentjoin(strlist, indent='\n ', suffix=''):
indent_ = indent
strlist = list(strlist)
if (len(strlist) == 0):
return ''
return (indent_ + indent_.join([(six.text_type(str_) + suffix) for str_ in strlist]))
|
r"""
Convineince indentjoin
similar to '\n '.join(strlist) but indent is also prefixed
Args:
strlist (?):
indent (str):
suffix (str):
Returns:
str: joined list
|
codesearchnet
|
def init(self, address, hard_reset=False):
self.address = address
if hard_reset:
pass
for i in range(Dongle.PORT_RETRIES):
try:
logger.debug('Setting up BGAPI, attempt {}/{}'.format(i + 1, Dongle.PORT_RETRIES))
self.api = BlueGigaAPI(port=self.address, callbacks=self, baud=Dongle.BAUDRATE, timeout=DEF_TIMEOUT)
self.api.start_daemon()
break
except serial.serialutil.SerialException as e:
logger.debug('Failed to init BlueGigaAPI: {}, attempt {}/{}'.format(e, i + 1, Dongle.PORT_RETRIES))
time.sleep(0.1)
if self.api is None:
return False
time.sleep(0.5)
self.get_supported_connections()
logger.info('Dongle supports {} connections'.format(self.supported_connections))
if self.supported_connections == -1:
logger.error('Failed to retrieve number of supported connections from the dongle! (try reinserting it)')
return False
self.conn_state = {x: self._STATE_IDLE for x in range(self.supported_connections)}
self.reset()
self._cbthread = threading.Thread(target=self._cbthreadfunc)
self._cbthread.setDaemon(True)
self._cbthread_q = Queue()
self._cbthread.start()
return True
|
Open the serial connection to a dongle at the supplied address.
Args:
address (str): the serial port address of the BLED112 dongle, e.g. 'COM5'
hard_reset (bool): not currently used
Returns:
True if a connection with the dongle was established, False otherwise.
|
juraj-google-style
|
def __call__(self, fn):
def loop(app, *args, **kwargs):
r = []
arg_data = app.tcex.playbook.read(getattr(app.args, self.arg))
arg_type = app.tcex.playbook.variable_type(getattr(app.args, self.arg))
if not isinstance(arg_data, list):
arg_data = [arg_data]
if not arg_data:
app.tcex.exit(1, 'No data retrieved for arg ({}).'.format(self.arg))
for s in arg_data:
if s is None and self.default is not None:
s = self.default
app.tcex.log.debug(
'a null input was provided, using default value "{}" instead.'.format(s)
)
if self.fail_on is not None:
if s in self.fail_on:
app.tcex.playbook.exit(
1,
'Arg value for IterateOnArg matched fail_on value ({}).'.format(
self.fail_on
),
)
if (
arg_type not in ['Binary', 'BinaryArray']
and app.tcex.log.getEffectiveLevel() == 10
):
log_string = str(s)
if len(log_string) > 100:
log_string = '{} ...'.format(log_string[:100])
app.tcex.log.debug('input value: {}'.format(log_string))
args_list = list(args)
try:
args_list[0] = s
except IndexError:
args_list.append(s)
args = tuple(args_list)
r.append(fn(app, *args, **kwargs))
return r
return loop
|
Implement __call__ function for decorator.
Args:
fn (function): The decorated function.
Returns:
function: The custom decorator function.
|
juraj-google-style
|
def create(self, batch_outs):
raise NotImplementedError('Must be implemented in subclasses.')
|
Creates the initial results from the first batch outputs.
Args:
batch_outs: A list of batch-level outputs.
|
github-repos
|
def fill_slot(self, filler_pipeline_key, slot, value):
if not isinstance(filler_pipeline_key, db.Key):
filler_pipeline_key = db.Key(filler_pipeline_key)
if _TEST_MODE:
slot._set_value_test(filler_pipeline_key, value)
else:
encoded_value = json.dumps(value,
sort_keys=True,
cls=mr_util.JsonEncoder)
value_text = None
value_blob = None
if len(encoded_value) <= _MAX_JSON_SIZE:
value_text = db.Text(encoded_value)
else:
value_blob = _write_json_blob(encoded_value, filler_pipeline_key.name())
def txn():
slot_record = db.get(slot.key)
if slot_record is None:
raise UnexpectedPipelineError(
'Tried to fill missing slot "%s" '
'by pipeline ID "%s" with value: %r'
% (slot.key, filler_pipeline_key.name(), value))
slot_record.filler = filler_pipeline_key
slot_record.value_text = value_text
slot_record.value_blob = value_blob
slot_record.status = _SlotRecord.FILLED
slot_record.fill_time = self._gettime()
slot_record.put()
task = taskqueue.Task(
url=self.barrier_handler_path,
params=dict(
slot_key=slot.key,
use_barrier_indexes=True),
headers={'X-Ae-Slot-Key': slot.key,
'X-Ae-Filler-Pipeline-Key': filler_pipeline_key})
task.add(queue_name=self.queue_name, transactional=True)
db.run_in_transaction_options(
db.create_transaction_options(propagation=db.ALLOWED), txn)
self.session_filled_output_names.add(slot.name)
|
Fills a slot, enqueueing a task to trigger pending barriers.
Args:
filler_pipeline_key: db.Key or stringified key of the _PipelineRecord
that filled this slot.
slot: The Slot instance to fill.
value: The serializable value to assign.
Raises:
UnexpectedPipelineError if the _SlotRecord for the 'slot' could not
be found in the Datastore.
|
juraj-google-style
|
def search(self, *arg, **kw):
output = {'cant_results': 0, 'matched_terms': defaultdict(set), 'results': {}, 'runtime': 0}
indexes = self.indexes()
models = kw.get('models', list(self._entities.values()))
if (sys.version_info[0] < 3):
models = [(self._entities.get(model, None) if (isinstance(model, str) or isinstance(model, unicode)) else model) for model in models]
models = filter((lambda x: (x is not None)), models)
else:
models = [(self._entities.get(model, None) if (isinstance(model, str) or isinstance(model, str)) else model) for model in models]
models = [x for x in models if (x is not None)]
if ((models == []) or (not models)):
models = list(self._entities.values())
if self.debug:
print('SEARCHING ON MODELS -> ', models)
indexes = [m._pw_index_ for m in models if hasattr(m, '_pw_index_')]
if (indexes == []):
return output
(runtime, cant) = (0, 0)
ma = defaultdict(set)
for index in indexes:
res = index.search(*arg, **kw)
runtime += res['runtime']
cant += res['cant_results']
if (res['cant_results'] > 0):
output['results'][index._name] = {'items': res['results'], 'matched_terms': res['matched_terms']}
for (k, ts) in list(res['matched_terms'].items()):
for t in ts:
ma[k].add(t)
output['cant_results'] = cant
output['matched_terms'] = {k: list(v) for (k, v) in list(ma.items())}
output['runtime'] = runtime
return output
|
A full search function. This allows you to search expression
using the following arguments.
Arg:
query (str): The search string expression.
Optional Args:
- include_entity (bool): include in each result the entity values associated of the fields stored.
- add_wildcards (bool): set it if you want to consider matches that have prefix or suffixes the query.
- something (bool): set `add_willcards` in case of none results for the query.
- fields (list): specified the fields names that you want to consider.
- except_fields (list): specified the fields names to not consider in the search.
- models (list): a list of name of model to search or even the models from the database.
Returns:
(dict): A python dictionary with the results.
|
codesearchnet
|
def Run(self, force=False):
if not self.locked:
raise aff4.LockError("CronJob must be locked for Run() to be called.")
self.KillOldFlows()
current_flow_urn = self.Get(self.Schema.CURRENT_FLOW_URN)
if current_flow_urn:
current_flow = aff4.FACTORY.Open(current_flow_urn, token=self.token)
runner = current_flow.GetRunner()
if not runner.IsRunning():
if runner.context.state == rdf_flow_runner.FlowContext.State.ERROR:
self.Set(
self.Schema.LAST_RUN_STATUS,
rdf_cronjobs.CronJobRunStatus(
status=rdf_cronjobs.CronJobRunStatus.Status.ERROR))
stats_collector_instance.Get().IncrementCounter(
"cron_job_failure", fields=[self.urn.Basename()])
else:
self.Set(
self.Schema.LAST_RUN_STATUS,
rdf_cronjobs.CronJobRunStatus(
status=rdf_cronjobs.CronJobRunStatus.Status.OK))
start_time = self.Get(self.Schema.LAST_RUN_TIME)
elapsed = time.time() - start_time.AsSecondsSinceEpoch()
stats_collector_instance.Get().RecordEvent(
"cron_job_latency", elapsed, fields=[self.urn.Basename()])
self.DeleteAttribute(self.Schema.CURRENT_FLOW_URN)
self.Flush()
if not force and not self.DueToRun():
return
cron_args = self.Get(self.Schema.CRON_ARGS)
cron_args.flow_runner_args.base_session_id = self.urn
flow_urn = flow.StartAFF4Flow(
runner_args=cron_args.flow_runner_args,
args=cron_args.flow_args,
token=self.token,
sync=False)
self.Set(self.Schema.CURRENT_FLOW_URN, flow_urn)
self.Set(self.Schema.LAST_RUN_TIME, rdfvalue.RDFDatetime.Now())
self.Flush()
|
Do the actual work of the Cron.
Will first check if DueToRun is True.
CronJob object must be locked (i.e. opened via OpenWithLock) for Run() to be
called.
Args:
force: If True, the job will run no matter what (i.e. even if DueToRun()
returns False).
Raises:
LockError: if the object is not locked.
|
juraj-google-style
|
def parse(self, key, value):
if (value is not None):
try:
return self._parser(value)
except Exception:
raise ParsingError('Error parsing {}'.format(key))
elif (self._default is not SENTINAL):
return self._default
else:
raise KeyError(key)
|
Parse the environment value for a given key against the schema.
Args:
key: The name of the environment variable.
value: The value to be parsed.
|
codesearchnet
|
def score_intersect(self, term1, term2, **kwargs):
t1_kde = self.kde(term1, **kwargs)
t2_kde = self.kde(term2, **kwargs)
overlap = np.minimum(t1_kde, t2_kde)
return np.trapz(overlap)
|
Compute the geometric area of the overlap between the kernel density
estimates of two terms.
Args:
term1 (str)
term2 (str)
Returns: float
|
juraj-google-style
|
def loopUntil(self, condition=None, timeout: float=0) -> Iterator[object]:
endTime = (time.time() + timeout)
while True:
test = (condition and condition())
if test:
(yield test)
return
elif (timeout and (time.time() > endTime)):
(yield False)
return
else:
(yield test)
self.waitOnUpdate(((endTime - time.time()) if timeout else 0))
|
Iterate until condition is met, with optional timeout in seconds.
The yielded value is that of the condition or False when timed out.
Args:
condition: Predicate function that is tested after every network
update.
timeout: Maximum time in seconds to wait.
If 0 then no timeout is used.
|
codesearchnet
|
def merge(self, decision_point: pg.geno.DecisionPoint, parent_decisions: List[Union[int, List[int], float, None]], global_state: pg.geno.AttributeDict, step: int) -> Union[int, List[int], float]:
|
Implementation of point-wise decision making.
Args:
decision_point: Decision point for recombination.
parent_decisions: A list of parent's decisions. Each item should be an
int as an active single-choice decision, a list of int as active multi-
choice decisions, a float as an active float decision, or None for
inactive decision point (whose parent space is not chosen).
global_state: An optional keyword argument as the global state. Subclass
can omit.
step: An optional keyword argument as the current step. Subclass can omit.
Returns:
An int, list of int or float as the decision made for the decision point.
|
github-repos
|
def ctc_unique_labels(labels, name=None):
with ops.name_scope(name, 'ctc_unique_labels', [labels]):
labels = ops.convert_to_tensor(labels, name='labels')
def _unique(x):
u = array_ops.unique(x)
y = array_ops.pad(u.y, [[0, _get_dim(u.idx, 0) - _get_dim(u.y, 0)]])
y = math_ops.cast(y, dtypes.int64)
return [y, u.idx]
return map_fn.map_fn(_unique, labels, dtype=[dtypes.int64, dtypes.int32])
|
Get unique labels and indices for batched labels for `tf.nn.ctc_loss`.
For use with `tf.nn.ctc_loss` optional argument `unique`: This op can be
used to preprocess labels in input pipeline to for better speed/memory use
computing the ctc loss on TPU.
Example:
ctc_unique_labels([[3, 4, 4, 3]]) ->
unique labels padded with 0: [[3, 4, 0, 0]]
indices of original labels in unique: [0, 1, 1, 0]
Args:
labels: tensor of shape [batch_size, max_label_length] padded with 0.
name: A name for this `Op`. Defaults to "ctc_unique_labels".
Returns:
tuple of
- unique labels, tensor of shape `[batch_size, max_label_length]`
- indices into unique labels, shape `[batch_size, max_label_length]`
|
github-repos
|
def port_add(br, port, may_exist=False, internal=False):
param_may_exist = _param_may_exist(may_exist)
cmd = 'ovs-vsctl {2}add-port {0} {1}'.format(br, port, param_may_exist)
if internal:
cmd += ' -- set interface {0} type=internal'.format(port)
result = __salt__['cmd.run_all'](cmd)
retcode = result['retcode']
return _retcode_to_bool(retcode)
|
Creates on bridge a new port named port.
Returns:
True on success, else False.
Args:
br: A string - bridge name
port: A string - port name
may_exist: Bool, if False - attempting to create a port that exists returns False.
internal: A boolean to create an internal interface if one does not exist.
.. versionadded:: 2016.3.0
CLI Example:
.. code-block:: bash
salt '*' openvswitch.port_add br0 8080
|
codesearchnet
|
def to_batched_tensor_list(element_spec, element):
return _to_tensor_list_helper(lambda state, spec, component: state + spec._to_batched_tensor_list(component), element_spec, element)
|
Returns a tensor list representation of the element.
Args:
element_spec: A nested structure of `tf.TypeSpec` objects representing to
element type specification.
element: The element to convert to tensor list representation.
Returns:
A tensor list representation of `element`.
Raises:
ValueError: If `element_spec` and `element` do not have the same number of
elements or if the two structures are not nested in the same way or the
rank of any of the tensors in the tensor list representation is 0.
TypeError: If `element_spec` and `element` differ in the type of sequence
in any of their substructures.
|
github-repos
|
def detect_shadowing_definitions(self, contract):
result = []
for function in (contract.functions + contract.modifiers):
if (function.contract != contract):
continue
for variable in function.variables:
overshadowed = []
for scope_contract in ([contract] + contract.inheritance):
for scope_function in scope_contract.functions:
if ((variable.name == scope_function.name) and (scope_function.contract == scope_contract)):
overshadowed.append((self.OVERSHADOWED_FUNCTION, scope_contract.name, scope_function))
for scope_modifier in scope_contract.modifiers:
if ((variable.name == scope_modifier.name) and (scope_modifier.contract == scope_contract)):
overshadowed.append((self.OVERSHADOWED_MODIFIER, scope_contract.name, scope_modifier))
for scope_event in scope_contract.events:
if ((variable.name == scope_event.name) and (scope_event.contract == scope_contract)):
overshadowed.append((self.OVERSHADOWED_EVENT, scope_contract.name, scope_event))
for scope_state_variable in scope_contract.variables:
if ((variable.name == scope_state_variable.name) and (scope_state_variable.contract == scope_contract)):
overshadowed.append((self.OVERSHADOWED_STATE_VARIABLE, scope_contract.name, scope_state_variable))
if overshadowed:
result.append((contract.name, function.name, variable, overshadowed))
return result
|
Detects if functions, access modifiers, events, state variables, and local variables are named after
reserved keywords. Any such definitions are returned in a list.
Returns:
list of tuple: (type, contract name, definition)
|
codesearchnet
|
def _validate_state_root(self, state_root):
if self._state_root_regex.fullmatch(state_root) is None:
LOGGER.debug('Invalid state root: %s', state_root)
raise _ResponseFailed(self._status.INVALID_ROOT)
|
Validates a state root, raising a ResponseFailed error if invalid.
Args:
state_root (str): The state_root to validate
Raises:
ResponseFailed: The state_root was invalid, and a status of
INVALID_ROOT will be sent with the response.
|
juraj-google-style
|
def _build_graph(self):
q = data_flow_ops.FIFOQueue(1, 'float')
init = q.enqueue(1.0)
x = q.dequeue()
q_inc = q.enqueue(x + 1)
return (init, q_inc)
|
Builds a graph that enqueues and dequeues a single float.
Returns:
A tuple with the graph init tensor and graph output tensor.
|
github-repos
|
def frag2text(endpoint, stype, selector,
clean=False, raw=False, verbose=False):
try:
return main(endpoint, stype, selector, clean, raw, verbose)
except StandardError as err:
return err
|
returns Markdown text of selected fragment.
Args:
endpoint: URL, file, or HTML string
stype: { 'css' | 'xpath' }
selector: CSS selector or XPath expression
Returns:
Markdown text
Options:
clean: cleans fragment (lxml.html.clean defaults)
raw: returns raw HTML fragment
verbose: show http status, encoding, headers
|
juraj-google-style
|
def parse_content_type(headers: MutableMapping) -> Tuple[(Optional[str], str)]:
content_type = headers.get('content-type')
if (not content_type):
return (None, 'utf-8')
else:
(type_, parameters) = cgi.parse_header(content_type)
encoding = parameters.get('charset', 'utf-8')
return (type_, encoding)
|
Find content-type and encoding of the response
Args:
headers: Response headers
Returns:
:py:class:`tuple` (content-type, encoding)
|
codesearchnet
|
def from_function(cls, function):
module_name = function.__module__
function_name = function.__name__
class_name = ''
function_source_hasher = hashlib.sha1()
try:
source = inspect.getsource(function)
if (sys.version_info[0] >= 3):
source = source.encode()
function_source_hasher.update(source)
function_source_hash = function_source_hasher.digest()
except (IOError, OSError, TypeError):
function_source_hash = b''
return cls(module_name, function_name, class_name, function_source_hash)
|
Create a FunctionDescriptor from a function instance.
This function is used to create the function descriptor from
a python function. If a function is a class function, it should
not be used by this function.
Args:
cls: Current class which is required argument for classmethod.
function: the python function used to create the function
descriptor.
Returns:
The FunctionDescriptor instance created according to the function.
|
codesearchnet
|
def put(self, type: Type[T], item: T) -> None:
LOGGER.info("Getting SinkHandlers for \"{type}\"".format(type=type.__name__))
try:
handlers = self._put_types[type]
except KeyError:
try:
LOGGER.info("Building new SinkHandlers for \"{type}\"".format(type=type.__name__))
handlers = self._put_handlers(type)
except NoConversionError:
handlers = None
self._get_types[type] = handlers
LOGGER.info("Creating new PipelineContext")
context = self._new_context()
LOGGER.info("Sending item \"{item}\" to SourceHandlers".format(item=item))
if handlers is not None:
for handler in handlers:
handler.put(item, context)
|
Puts an objects into the data pipeline. The object may be transformed into a new type for insertion if necessary.
Args:
item: The object to be inserted into the data pipeline.
|
juraj-google-style
|
def _get(self, url, params=None):
if (not params):
params = {}
params.update({'login': self.login, 'key': self.key})
response_json = requests.get((self.api_url + url), params).json()
return self._process_response(response_json)
|
Used by every other method, it makes a GET request with the given params.
Args:
url (str): relative path of a specific service (account_info, ...).
params (:obj:`dict`, optional): contains parameters to be sent in the GET request.
Returns:
dict: results of the response of the GET request.
|
codesearchnet
|
def __init__(self,
top_probs=5):
self.top_probs = top_probs
self._sess = None
self._tf_input_var = None
self._tf_predict_var = None
self._model_name = None
self._latest_ckpt_name = None
self._latest_ckpt_time = None
|
Create a new instance of this model.
`BaseModel` is an interface and should only be instantiated via a
subclass.
Args:
top_probs (int): Number of classes to display per result. For
instance, VGG16 has 1000 classes, we don't want to display a
visualization for every single possibility. Defaults to 5.
|
juraj-google-style
|
def invoice_access(request, access_code):
invoices = commerce.Invoice.objects.filter(user__attendee__access_code=access_code).order_by('-issue_time')
if (not invoices):
raise Http404()
unpaid = invoices.filter(status=commerce.Invoice.STATUS_UNPAID)
paid = invoices.filter(status=commerce.Invoice.STATUS_PAID)
if unpaid:
invoice = unpaid[0]
elif paid:
invoice = paid[0]
else:
invoice = invoices[0]
return redirect('invoice', invoice.id, access_code)
|
Redirects to an invoice for the attendee that matches the given access
code, if any.
If the attendee has multiple invoices, we use the following tie-break:
- If there's an unpaid invoice, show that, otherwise
- If there's a paid invoice, show the most recent one, otherwise
- Show the most recent invoid of all
Arguments:
access_code (castable to int): The access code for the user whose
invoice you want to see.
Returns:
redirect:
Redirect to the selected invoice for that user.
Raises:
Http404: If the user has no invoices.
|
codesearchnet
|
def _req(self, req):
logger.debug('DUT> %s', req)
(self._log and self.pause())
times = 3
res = None
while times:
times = (times - 1)
try:
self._sendline(req)
self._expect(req)
line = None
res = []
while True:
line = self._readline()
logger.debug('Got line %s', line)
if (line == 'Done'):
break
if line:
res.append(line)
break
except:
logger.exception('Failed to send command')
self.close()
self._init()
(self._log and self.resume())
return res
|
Send command and wait for response.
The command will be repeated 3 times at most in case data loss of serial port.
Args:
req (str): Command to send, please do not include new line in the end.
Returns:
[str]: The output lines
|
codesearchnet
|
def _get_snpeff_transcript(self, transcript_info):
transcript = Transcript(
hgnc_symbol = transcript_info.get('Gene_Name'),
transcript_id = transcript_info.get('Feature'),
ensembl_id = transcript_info.get('Gene_ID'),
biotype = transcript_info.get('Transcript_BioType'),
consequence = transcript_info.get('Annotation'),
exon = transcript_info.get('Rank'),
HGVSc = transcript_info.get('HGVS.c'),
HGVSp = transcript_info.get('HGVS.p')
)
return transcript
|
Create a transcript based on the snpeff annotation
Args:
transcript_info (dict): A dict with snpeff info
Returns:
transcript (puzzle.models.Transcript): A Transcripts
|
juraj-google-style
|
def from_index_amount(cls, matrixpos, amt):
f = np.identity(3)
f[matrixpos] += amt
return cls(f)
|
Factory method for constructing a Deformation object
from a matrix position and amount
Args:
matrixpos (tuple): tuple corresponding the matrix position to
have a perturbation added
amt (float): amount to add to the identity matrix at position
matrixpos
|
codesearchnet
|
def add_criterion(self, name, priority, and_or, search_type, value):
criterion = SearchCriteria(name, priority, and_or, search_type, value)
self.criteria.append(criterion)
|
Add a search criteria object to a smart group.
Args:
name: String Criteria type name (e.g. "Application Title")
priority: Int or Str number priority of criterion.
and_or: Str, either "and" or "or".
search_type: String Criteria search type. (e.g. "is", "is
not", "member of", etc). Construct a SmartGroup with the
criteria of interest in the web interface to determine
what range of values are available.
value: String value to search for/against.
|
codesearchnet
|
def _get_error_generator(type, obj, schema_dir=None, version=DEFAULT_VER, default='core'):
if (schema_dir is None):
schema_dir = os.path.abspath((((os.path.dirname(__file__) + '/schemas-') + version) + '/'))
try:
schema_path = find_schema(schema_dir, type)
schema = load_schema(schema_path)
except (KeyError, TypeError):
try:
schema_path = find_schema(schema_dir, default)
schema = load_schema(schema_path)
except (KeyError, TypeError):
if (schema_dir is not None):
return None
raise SchemaInvalidError("Cannot locate a schema for the object's type, nor the base schema ({}.json).".format(default))
if ((type == 'observed-data') and (schema_dir is None)):
schema['allOf'][1]['properties']['objects'] = {'objects': {'type': 'object', 'minProperties': 1}}
validator = load_validator(schema_path, schema)
try:
error_gen = validator.iter_errors(obj)
except schema_exceptions.RefResolutionError:
raise SchemaInvalidError('Invalid JSON schema: a JSON reference failed to resolve')
return error_gen
|
Get a generator for validating against the schema for the given object type.
Args:
type (str): The object type to find the schema for.
obj: The object to be validated.
schema_dir (str): The path in which to search for schemas.
version (str): The version of the STIX specification to validate
against. Only used to find base schemas when schema_dir is None.
default (str): If the schema for the given type cannot be found, use
the one with this name instead.
Returns:
A generator for errors found when validating the object against the
appropriate schema, or None if schema_dir is None and the schema
cannot be found.
|
codesearchnet
|
def distance2bbox(points, distance: torch.Tensor, reg_scale: float) -> torch.Tensor:
reg_scale = abs(reg_scale)
top_left_x = points[..., 0] - (0.5 * reg_scale + distance[..., 0]) * (points[..., 2] / reg_scale)
top_left_y = points[..., 1] - (0.5 * reg_scale + distance[..., 1]) * (points[..., 3] / reg_scale)
bottom_right_x = points[..., 0] + (0.5 * reg_scale + distance[..., 2]) * (points[..., 2] / reg_scale)
bottom_right_y = points[..., 1] + (0.5 * reg_scale + distance[..., 3]) * (points[..., 3] / reg_scale)
bboxes = torch.stack([top_left_x, top_left_y, bottom_right_x, bottom_right_y], -1)
return corners_to_center_format(bboxes)
|
Decodes edge-distances into bounding box coordinates.
Args:
points (`torch.Tensor`):
(batch_size, num_boxes, 4) or (num_boxes, 4) format, representing [x_center, y_center, width, height]
distance (`torch.Tensor`):
(batch_size, num_boxes, 4) or (num_boxes, 4), representing distances from the point to the left, top, right, and bottom boundaries.
reg_scale (`float`):
Controls the curvature of the Weighting Function.
Returns:
`torch.Tensor`: Bounding boxes in (batch_size, num_boxes, 4) or (num_boxes, 4) format, representing [x_center, y_center, width, height]
|
github-repos
|
def has_platform(self, platform):
if platform and not isinstance(platform, dict):
parts = platform.split('/')
if len(parts) > 3 or len(parts) < 1:
raise InvalidArgument(
'"{0}" is not a valid platform descriptor'.format(platform)
)
platform = {'os': parts[0]}
if len(parts) > 2:
platform['variant'] = parts[2]
if len(parts) > 1:
platform['architecture'] = parts[1]
return normalize_platform(
platform, self.client.version()
) in self.attrs['Platforms']
|
Check whether the given platform identifier is available for this
digest.
Args:
platform (str or dict): A string using the ``os[/arch[/variant]]``
format, or a platform dictionary.
Returns:
(bool): ``True`` if the platform is recognized as available,
``False`` otherwise.
Raises:
:py:class:`docker.errors.InvalidArgument`
If the platform argument is not a valid descriptor.
|
juraj-google-style
|
def get_template_object(template_file=''):
jinja_template_paths_obj = []
if TEMPLATES_PATH:
external_templates = pathlib.Path(TEMPLATES_PATH).expanduser().resolve()
assert os.path.isdir(external_templates), 'External template path "{0}" not found'.format(external_templates)
jinja_template_paths_obj.append(external_templates)
jinja_template_paths_obj.append(LOCAL_TEMPLATES)
jinja_template_paths = [str(path) for path in jinja_template_paths_obj]
jinjaenv = jinja2.Environment(loader=jinja2.FileSystemLoader(jinja_template_paths))
try:
template = jinjaenv.get_template(template_file)
except jinja2.TemplateNotFound:
message = 'Unable to find template "{template_file}" in paths {paths}'.format(
template_file=template_file, paths=jinjaenv.loader.searchpath)
LOG.error(message)
raise ForemastTemplateNotFound(message)
return template
|
Retrieve template.
Args:
template_file (str): Name of template file.
Returns:
jinja2.Template: Template ready to render.
Raises:
AssertionError: Configured path for templates does not exist.
:obj:`foremast.exceptions.ForemastTemplateNotFound`: Requested template
is not available.
|
juraj-google-style
|
def load(path: str) -> Callable[..., Dict[str, EventSetNode]]:
g = _load_graph(path)
inputs = g.named_inputs
assert inputs is not None
input_names = list(inputs.keys())
@compile
def fn(*args: EventSetNode, **kwargs: EventSetNode) -> Dict[str, EventSetNode]:
kwargs = _kwargs_from_args_and_kwargs(input_names, args, kwargs)
return g.apply_on_inputs(named_inputs=kwargs)
fn.__signature__ = inspect.signature(fn).replace(parameters=[inspect.Parameter(name=k, annotation=EventSetNode, kind=inspect.Parameter.POSITIONAL_OR_KEYWORD) for k in inputs])
return fn
|
Loads a compiled Temporian function from a file.
The loaded function receives the same positional and keyword arguments and
applies the same operator graph to its inputs as when it was saved.
Args:
path: The path to load the function from.
Returns:
The loaded function.
|
github-repos
|
def encipher_shift(plaintext, plain_vocab, shift):
ciphertext = []
cipher = ShiftEncryptionLayer(plain_vocab, shift)
for _, sentence in enumerate(plaintext):
cipher_sentence = []
for _, character in enumerate(sentence):
encrypted_char = cipher.encrypt_character(character)
cipher_sentence.append(encrypted_char)
ciphertext.append(cipher_sentence)
return ciphertext
|
Encrypt plain text with a single shift layer.
Args:
plaintext (list of list of Strings): a list of plain text to encrypt.
plain_vocab (list of Integer): unique vocabularies being used.
shift (Integer): number of shift, shift to the right if shift is positive.
Returns:
ciphertext (list of Strings): encrypted plain text.
|
juraj-google-style
|
def clustering_factory(clf):
required_methods = ['fit', 'fit_predict']
for method in required_methods:
if not hasattr(clf, method):
raise TypeError('"{}" is not in clf. Did you '
'pass a clusterer instance?'.format(method))
additional_methods = {
'plot_silhouette': plot_silhouette,
'plot_elbow_curve': plot_elbow_curve
}
for key, fn in six.iteritems(additional_methods):
if hasattr(clf, key):
warnings.warn('"{}" method already in clf. '
'Overriding anyway. This may '
'result in unintended behavior.'.format(key))
setattr(clf, key, types.MethodType(fn, clf))
return clf
|
Embeds scikit-plot plotting methods in an sklearn clusterer instance.
Args:
clf: Scikit-learn clusterer instance
Returns:
The same scikit-learn clusterer instance passed in **clf** with
embedded scikit-plot instance methods.
Raises:
ValueError: If **clf** does not contain the instance methods necessary
for scikit-plot instance methods.
|
juraj-google-style
|
def http_download(url, target_path):
r = requests.get(url, stream=True)
with open(target_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
return target_path
|
Download file to local
Args:
- url(string): url request path
- target_path(string): download destination
|
juraj-google-style
|
def convert_sbml_model(model):
biomass_reactions = set()
for reaction in model.reactions:
if reaction.id not in model.limits:
lower, upper = parse_flux_bounds(reaction)
if lower is not None or upper is not None:
model.limits[reaction.id] = reaction.id, lower, upper
objective = parse_objective_coefficient(reaction)
if objective is not None and objective != 0:
biomass_reactions.add(reaction.id)
if len(biomass_reactions) == 1:
model.biomass_reaction = next(iter(biomass_reactions))
convert_model_entries(model)
if model.extracellular_compartment is None:
extracellular = detect_extracellular_compartment(model)
model.extracellular_compartment = extracellular
convert_exchange_to_compounds(model)
|
Convert raw SBML model to extended model.
Args:
model: :class:`NativeModel` obtained from :class:`SBMLReader`.
|
juraj-google-style
|
def _VerifyValues(self, pool_func, input_sizes, ksize, strides, padding, expected):
for data_format in GetTestConfigs():
self._VerifyOneTest(pool_func, input_sizes, ksize, strides, padding, data_format, expected)
|
Verifies the output values of the pooling function.
Args:
pool_func: Function to be called, co.MaxPool, co.AvgPool,
or the Lua version.
input_sizes: Input tensor dimensions.
ksize: The kernel size dimensions
strides: The stride dimensions
padding: Padding type.
expected: An array containing the expected operation outputs.
|
github-repos
|
def is_monotonic(neurite, tol):
for node in neurite.iter_sections():
sec = node.points
for point_id in range((len(sec) - 1)):
if (sec[(point_id + 1)][COLS.R] > (sec[point_id][COLS.R] + tol)):
return False
if ((node.parent is not None) and (sec[0][COLS.R] > (node.parent.points[(- 1)][COLS.R] + tol))):
return False
return True
|
Check if neurite tree is monotonic
If each child has smaller or equal diameters from its parent
Args:
neurite(Neurite): neurite to operate on
tol(float): tolerance
Returns:
True if neurite monotonic
|
codesearchnet
|
def ParseCall(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
guid = self._GetRowValue(query_hash, row, 'guid')
is_incoming = self._GetRowValue(query_hash, row, 'is_incoming')
videostatus = self._GetRowValue(query_hash, row, 'videostatus')
try:
aux = guid
if aux:
aux_list = aux.split('-')
src_aux = aux_list[0]
dst_aux = aux_list[1]
else:
src_aux = 'Unknown [no GUID]'
dst_aux = 'Unknown [no GUID]'
except IndexError:
src_aux = 'Unknown [{0:s}]'.format(guid)
dst_aux = 'Unknown [{0:s}]'.format(guid)
if (is_incoming == '0'):
user_start_call = True
source = src_aux
ip_address = self._GetRowValue(query_hash, row, 'ip_address')
if ip_address:
destination = '{0:s} <{1:s}>'.format(dst_aux, ip_address)
else:
destination = dst_aux
else:
user_start_call = False
source = src_aux
destination = dst_aux
call_identifier = self._GetRowValue(query_hash, row, 'id')
event_data = SkypeCallEventData()
event_data.dst_call = destination
event_data.offset = call_identifier
event_data.query = query
event_data.src_call = source
event_data.user_start_call = user_start_call
event_data.video_conference = (videostatus == '3')
timestamp = self._GetRowValue(query_hash, row, 'try_call')
event_data.call_type = 'WAITING'
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Call from Skype')
parser_mediator.ProduceEventWithEventData(event, event_data)
try:
timestamp = self._GetRowValue(query_hash, row, 'accept_call')
timestamp = int(timestamp)
except (ValueError, TypeError):
timestamp = None
if timestamp:
event_data.call_type = 'ACCEPTED'
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Call from Skype')
parser_mediator.ProduceEventWithEventData(event, event_data)
try:
call_duration = self._GetRowValue(query_hash, row, 'call_duration')
call_duration = int(call_duration)
except (ValueError, TypeError):
parser_mediator.ProduceExtractionWarning('unable to determine when call: {0:s} was finished.'.format(call_identifier))
call_duration = None
if call_duration:
timestamp += call_duration
event_data.call_type = 'FINISHED'
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, 'Call from Skype')
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Parses a call.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row resulting from query.
query (Optional[str]): query.
|
codesearchnet
|
def wait_for(
self, timeout=10000, interval=1000,
asserter=lambda x: x):
if not callable(asserter):
raise TypeError('Asserter must be callable.')
@retry(
retry_on_exception=lambda ex: isinstance(ex, WebDriverException),
stop_max_delay=timeout,
wait_fixed=interval
)
def _wait_for(driver):
asserter(driver)
return driver
return _wait_for(self)
|
Wait for driver till satisfy the given condition
Support:
Android iOS Web(WebView)
Args:
timeout(int): How long we should be retrying stuff.
interval(int): How long between retries.
asserter(callable): The asserter func to determine the result.
Returns:
Return the driver.
Raises:
WebDriverException.
|
juraj-google-style
|
def to(self, fmt=None, filename=None):
from pymatgen.io.xyz import XYZ
from pymatgen.io.gaussian import GaussianInput
from pymatgen.io.babel import BabelMolAdaptor
fmt = ('' if (fmt is None) else fmt.lower())
fname = os.path.basename((filename or ''))
if ((fmt == 'xyz') or fnmatch(fname.lower(), '*.xyz*')):
writer = XYZ(self)
elif any([((fmt == r) or fnmatch(fname.lower(), '*.{}*'.format(r))) for r in ['gjf', 'g03', 'g09', 'com', 'inp']]):
writer = GaussianInput(self)
elif ((fmt == 'json') or fnmatch(fname, '*.json*') or fnmatch(fname, '*.mson*')):
if filename:
with zopen(filename, 'wt', encoding='utf8') as f:
return json.dump(self.as_dict(), f)
else:
return json.dumps(self.as_dict())
elif ((fmt == 'yaml') or fnmatch(fname, '*.yaml*')):
import ruamel.yaml as yaml
if filename:
with zopen(fname, 'wt', encoding='utf8') as f:
return yaml.safe_dump(self.as_dict(), f)
else:
return yaml.safe_dump(self.as_dict())
else:
m = re.search('\\.(pdb|mol|mdl|sdf|sd|ml2|sy2|mol2|cml|mrv)', fname.lower())
if ((not fmt) and m):
fmt = m.group(1)
writer = BabelMolAdaptor(self)
return writer.write_file(filename, file_format=fmt)
if filename:
writer.write_file(filename)
else:
return str(writer)
|
Outputs the molecule to a file or string.
Args:
fmt (str): Format to output to. Defaults to JSON unless filename
is provided. If fmt is specifies, it overrides whatever the
filename is. Options include "xyz", "gjf", "g03", "json". If
you have OpenBabel installed, any of the formats supported by
OpenBabel. Non-case sensitive.
filename (str): If provided, output will be written to a file. If
fmt is not specified, the format is determined from the
filename. Defaults is None, i.e. string output.
Returns:
(str) if filename is None. None otherwise.
|
codesearchnet
|
def usufyToCsvExport(d, fPath):
from pyexcel_io import get_data
try:
oldData = {'OSRFramework': get_data(fPath)}
except:
oldData = {'OSRFramework': []}
tabularData = _generateTabularData(d, oldData)
from pyexcel_io import save_data
save_data(fPath, tabularData['OSRFramework'])
|
Workaround to export to a CSV file.
Args:
-----
d: Data to export.
fPath: File path for the output file.
|
codesearchnet
|
def GetParserAndPluginNames(cls, parser_filter_expression=None):
parser_and_plugin_names = []
for parser_name, parser_class in cls.GetParsers(
parser_filter_expression=parser_filter_expression):
parser_and_plugin_names.append(parser_name)
if parser_class.SupportsPlugins():
for plugin_name, _ in parser_class.GetPlugins():
parser_and_plugin_names.append(
'{0:s}/{1:s}'.format(parser_name, plugin_name))
return parser_and_plugin_names
|
Retrieves the parser and parser plugin names.
Args:
parser_filter_expression (Optional[str]): parser filter expression,
where None represents all parsers and plugins.
Returns:
list[str]: parser and parser plugin names.
|
juraj-google-style
|
def get(self, statediag, dfaaccepted):
newstatediag = {}
newstate = PDAState()
newstate.id = 'AI,I'
newstate.type = 1
newstate.sym = '@wrapping'
transitions = {}
transitions[(0, 0)] = [0]
newstate.trans = transitions
i = 0
newstatediag[i] = newstate
for stateid in statediag:
state = statediag[stateid]
if state.type == 2:
for state2id in dfaaccepted:
if state.id[1] == state2id:
state.trans['AI,I'] = ['@wrapping']
break
i = i + 1
newstatediag[i] = state
return newstatediag
|
# - Remove all the POP (type - 2) transitions to state 0,non DFA accepted
# for symbol @closing
# - Generate the accepted transitions
- Replace DFA accepted States with a push - pop symbol and two extra states
Args:
statediag (list): The states of the PDA
dfaaccepted (list):The list of DFA accepted states
Returns:
list: A cleaned, smaller list of DFA states
|
juraj-google-style
|
def _ParseInternetPasswordRecord(self, parser_mediator, record):
key = record.get('_key_', None)
if not key or not key.startswith(b'ssgp'):
raise errors.ParseError((
'Unsupported Internet password record key value does not start '
'with: "ssgp".'))
protocol_string = codecs.decode('{0:08x}'.format(record['ptcl']), 'hex')
protocol_string = codecs.decode(protocol_string, 'utf-8')
event_data = KeychainInternetRecordEventData()
event_data.account_name = self._ParseBinaryDataAsString(
parser_mediator, record['acct'])
event_data.comments = self._ParseBinaryDataAsString(
parser_mediator, record['crtr'])
event_data.entry_name = self._ParseBinaryDataAsString(
parser_mediator, record['PrintName'])
event_data.protocol = self._PROTOCOL_TRANSLATION_DICT.get(
protocol_string, protocol_string)
ssgp_hash = codecs.encode(key[4:], 'hex')
event_data.ssgp_hash = codecs.decode(ssgp_hash, 'utf-8')
event_data.text_description = self._ParseBinaryDataAsString(
parser_mediator, record['desc'])
event_data.type_protocol = self._ParseBinaryDataAsString(
parser_mediator, record['atyp'])
event_data.where = self._ParseBinaryDataAsString(
parser_mediator, record['srvr'])
date_time = self._ParseDateTimeValue(parser_mediator, record['cdat'])
if date_time:
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
date_time = self._ParseDateTimeValue(parser_mediator, record['mdat'])
if date_time:
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extracts the information from an Internet password record.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
record (dict[str, object]): database record.
Raises:
ParseError: if Internet password record cannot be parsed.
|
juraj-google-style
|
def custom_getter(self, activation_dtype=tf.bfloat16):
def getter_fn(getter, *args, **kwargs):
requested_dtype = kwargs["dtype"]
if requested_dtype in (tf.bfloat16, tf.float32):
kwargs["dtype"] = tf.bfloat16
kwargs["initializer"] = _EncodingInitializer(
kwargs["initializer"], self)
ret = self._decode_with_identity_gradient(getter(*args, **kwargs))
return tf.cast(ret, activation_dtype)
return getter(*args, **kwargs)
return getter_fn
|
A custom getter that uses the encoding for bfloat16 and float32 vars.
When a bfloat16 or float32 variable is requsted, an encoded float16
varaible is created, which is then decoded and cast to a bfloat16
activation.
Args:
activation_dtype: a dtype to which to convert the decoded value.
Returns:
a function.
|
juraj-google-style
|
def is_initialised( self ):
if not self.lattice:
raise AttributeError('Running a simulation needs the lattice to be initialised')
if not self.atoms:
raise AttributeError('Running a simulation needs the atoms to be initialised')
if not self.number_of_jumps and not self.for_time:
raise AttributeError('Running a simulation needs number_of_jumps or for_time to be set')
|
Check whether the simulation has been initialised.
Args:
None
Returns:
None
|
juraj-google-style
|
def _collect_unused(self, start: GridQubit, used: Set[GridQubit]) -> Set[GridQubit]:
def collect(n: GridQubit, visited: Set[GridQubit]):
visited.add(n)
for m in self._c_adj[n]:
if ((m not in used) and (m not in visited)):
collect(m, visited)
visited = set()
collect(start, visited)
return visited
|
Lists all the qubits that are reachable from given qubit.
Args:
start: The first qubit for which connectivity should be calculated.
Might be a member of used set.
used: Already used qubits, which cannot be used during the
collection.
Returns:
Set of qubits that are reachable from starting qubit without
traversing any of the used qubits.
|
codesearchnet
|
def _ReadPaddingDataTypeDefinition(self, definitions_registry, definition_values, definition_name, is_member=False):
if (not is_member):
error_message = 'data type only supported as member'
raise errors.DefinitionReaderError(definition_name, error_message)
definition_object = self._ReadDataTypeDefinition(definitions_registry, definition_values, data_types.PaddingDefinition, definition_name, self._SUPPORTED_DEFINITION_VALUES_PADDING)
alignment_size = definition_values.get('alignment_size', None)
if (not alignment_size):
error_message = 'missing alignment_size'
raise errors.DefinitionReaderError(definition_name, error_message)
try:
int(alignment_size)
except ValueError:
error_message = 'unuspported alignment size attribute: {0!s}'.format(alignment_size)
raise errors.DefinitionReaderError(definition_name, error_message)
if (alignment_size not in (2, 4, 8, 16)):
error_message = 'unuspported alignment size value: {0!s}'.format(alignment_size)
raise errors.DefinitionReaderError(definition_name, error_message)
definition_object.alignment_size = alignment_size
return definition_object
|
Reads a padding data type definition.
Args:
definitions_registry (DataTypeDefinitionsRegistry): data type definitions
registry.
definition_values (dict[str, object]): definition values.
definition_name (str): name of the definition.
is_member (Optional[bool]): True if the data type definition is a member
data type definition.
Returns:
PaddingtDefinition: padding definition.
Raises:
DefinitionReaderError: if the definitions values are missing or if
the format is incorrect.
|
codesearchnet
|
def _virtual_molecule(self, mol, ilabels, eq_atoms):
vmol = ob.OBMol()
non_unique_atoms = set([a for g in eq_atoms for a in g])
all_atoms = set(range(1, len(ilabels) + 1))
unique_atom_labels = sorted(all_atoms - non_unique_atoms)
for i in unique_atom_labels:
orig_idx = ilabels[i-1]
oa1 = mol.GetAtom(orig_idx)
a1 = vmol.NewAtom()
a1.SetAtomicNum(oa1.GetAtomicNum())
a1.SetVector(oa1.GetVector())
if vmol.NumAtoms() < 3:
for symm in eq_atoms:
c1x, c1y, c1z = self._group_centroid(mol, ilabels, symm)
min_distance = float("inf")
for i in range(1, vmol.NumAtoms()+1):
va = vmol.GetAtom(i)
distance = math.sqrt((c1x - va.x())**2 + (c1y - va.y())**2
+ (c1z - va.z())**2)
if distance < min_distance:
min_distance = distance
if min_distance > 0.2:
a1 = vmol.NewAtom()
a1.SetAtomicNum(9)
a1.SetVector(c1x, c1y, c1z)
return vmol
|
Create a virtual molecule by unique atoms, the centriods of the
equivalent atoms
Args:
mol: The molecule. OpenBabel OBMol object
ilables: inchi label map
eq_atoms: equivalent atom labels
farthest_group_idx: The equivalent atom group index in which
there is the farthest atom to the centroid
Return:
The virtual molecule
|
juraj-google-style
|
def expand(self, pcoll: beam.PCollection[Union[beam.Row, NamedTuple]]) -> beam.PCollection[common_types.InstanceDictType]:
return pcoll | beam.Map(lambda x: x._asdict())
|
Args:
pcoll: A PCollection of NamedTuples or Rows.
Returns:
A PCollection of dictionaries.
|
github-repos
|
def get_encoder_from_vocab(vocab_filepath):
if not tf.gfile.Exists(vocab_filepath):
raise ValueError("Vocab file does not exist: {}.".format(vocab_filepath))
tf.logging.info("Found vocab file: %s", vocab_filepath)
encoder = text_encoder.SubwordTextEncoder(vocab_filepath)
return encoder
|
Get encoder from vocab file.
If vocab is not found in output dir, it will be copied there by
copy_vocab_to_output_dir to clarify the vocab used to generate the data.
Args:
vocab_filepath: path to vocab, either local or cns
Returns:
A SubwordTextEncoder vocabulary object. None if the output_parallel_text
is set.
|
juraj-google-style
|
def sunset(self, date=None, zenith=None):
return (segment.sunset(date, zenith) for segment in self)
|
Calculate sunset times for locations.
Args:
date (datetime.date): Calculate rise or set for given date
zenith (str): Calculate sunset events, or start of twilight times
Returns:
list of list of datetime.datetime: The time for the sunset for each
point in each segment
|
codesearchnet
|
def directional_poisson_ratio(self, n, m, tol=1e-8):
n, m = get_uvec(n), get_uvec(m)
if not np.abs(np.dot(n, m)) < tol:
raise ValueError("n and m must be orthogonal")
v = self.compliance_tensor.einsum_sequence([n]*2 + [m]*2)
v *= -1 / self.compliance_tensor.einsum_sequence([n]*4)
return v
|
Calculates the poisson ratio for a specific direction
relative to a second, orthogonal direction
Args:
n (3-d vector): principal direction
m (3-d vector): secondary direction orthogonal to n
tol (float): tolerance for testing of orthogonality
|
juraj-google-style
|
def service_messages(self, short_name):
if (short_name not in self.services):
raise ArgumentError('Unknown service name', short_name=short_name)
return list(self.services[short_name]['state'].messages)
|
Get the messages stored for a service.
Args:
short_name (string): The short name of the service to get messages for
Returns:
list(ServiceMessage): A list of the ServiceMessages stored for this service
|
codesearchnet
|
def collapse_addresses(addresses):
i = 0
addrs = []
ips = []
nets = []
for ip in addresses:
if isinstance(ip, _BaseAddress):
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
ips.append(ip)
elif ip._prefixlen == ip._max_prefixlen:
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
try:
ips.append(ip.ip)
except AttributeError:
ips.append(ip.network_address)
else:
if nets and nets[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, nets[-1]))
nets.append(ip)
ips = sorted(set(ips))
nets = sorted(set(nets))
while i < len(ips):
(first, last) = _find_address_range(ips[i:])
i = ips.index(last) + 1
addrs.extend(summarize_address_range(first, last))
return iter(_collapse_addresses_recursive(sorted(
addrs + nets, key=_BaseNetwork._get_networks_key)))
|
Collapse a list of IP objects.
Example:
collapse_addresses([IPv4Network('192.0.2.0/25'),
IPv4Network('192.0.2.128/25')]) ->
[IPv4Network('192.0.2.0/24')]
Args:
addresses: An iterator of IPv4Network or IPv6Network objects.
Returns:
An iterator of the collapsed IPv(4|6)Network objects.
Raises:
TypeError: If passed a list of mixed version objects.
|
juraj-google-style
|
def is_flat(neurite, tol, method='tolerance'):
ext = principal_direction_extent(neurite.points[(:, COLS.XYZ)])
assert (method in ('tolerance', 'ratio')), "Method must be one of 'tolerance', 'ratio'"
if (method == 'ratio'):
sorted_ext = np.sort(ext)
return ((sorted_ext[0] / sorted_ext[1]) < float(tol))
return any((ext < float(tol)))
|
Check if neurite is flat using the given method
Args:
neurite(Neurite): neurite to operate on
tol(float): tolerance
method(string): the method of flatness estimation:
'tolerance' returns true if any extent of the tree is smaller
than the given tolerance
'ratio' returns true if the ratio of the smallest directions
is smaller than tol. e.g. [1,2,3] -> 1/2 < tol
Returns:
True if neurite is flat
|
codesearchnet
|
def save(self, filename):
with open(filename, 'w') as outfile:
json.dump(self.to_json(), outfile)
|
Writes the JSON representation of this graph to the provided
filename, such that the graph can be easily reconstructed using
Graph(spec=filename).
Args:
filename (str): Path at which to write out the json file.
|
juraj-google-style
|
def rename_libtensorflow(srcs_dir: str, version: str):
major_version = version.split('.')[0]
if is_macos():
shutil.move(os.path.join(srcs_dir, 'libtensorflow_cc.{}.dylib'.format(version)), os.path.join(srcs_dir, 'libtensorflow_cc.{}.dylib'.format(major_version)))
shutil.move(os.path.join(srcs_dir, 'libtensorflow_framework.{}.dylib'.format(version)), os.path.join(srcs_dir, 'libtensorflow_framework.{}.dylib'.format(major_version)))
else:
shutil.move(os.path.join(srcs_dir, 'libtensorflow_cc.so.{}'.format(version)), os.path.join(srcs_dir, 'libtensorflow_cc.so.{}'.format(major_version)))
shutil.move(os.path.join(srcs_dir, 'libtensorflow_framework.so.{}'.format(version)), os.path.join(srcs_dir, 'libtensorflow_framework.so.{}'.format(major_version)))
|
Update libtensorflow_cc file name.
Bazel sets full TF version in name but libtensorflow_cc must contain only
major. Update accordingly to the platform:
e.g. libtensorflow_cc.so.2.15.0 -> libtensorflow_cc.2
Args:
srcs_dir: target directory with files.
version: Major version to be set.
|
github-repos
|
def url(request, json_list, nested, url_name='show_{}', ignore_get=None):
if (not ignore_get):
ignore_get = []
if isinstance(url_name, str):
url_string = str(url_name)
url_name = (lambda x: url_string.format(x))
urls = cache.get('proso_urls')
if (urls is None):
urls = {}
else:
urls = json_lib.loads(urls)
cache_updated = False
pass_string = pass_get_parameters_string(request, ignore_get)
for json in json_list:
if (('object_type' not in json) or ('id' not in json)):
continue
key = ('show_%s_%s' % (json['object_type'], json['id']))
if (key in urls):
json['url'] = urls[key]
else:
cache_updated = True
json['url'] = reverse(url_name(json['object_type']), kwargs={'id': json['id']})
urls[key] = json['url']
json['url'] = append_get_parameters(json['url'], pass_string)
if cache_updated:
cache.set('proso_urls', json_lib.dumps(urls), CACHE_EXPIRATION)
|
Enrich the given list of objects, so they have URL.
Args:
request (django.http.request.HttpRequest): request which is currently processed
json_list (list): list of dicts (JSON objects to be enriched)
url_name (str|fun): pattern to create a url name taking object_type
ignore_get (list): list of GET parameters which are ignored when the URL is generated
Returns:
list: list of dicts (enriched JSON objects)
|
codesearchnet
|
def getKeywordsForText(self, retina_name, body, ):
resourcePath = '/text/keywords'
method = 'POST'
queryParams = {}
headerParams = {'Accept': 'Application/json', 'Content-Type': 'application/json'}
postData = None
queryParams['retina_name'] = retina_name
postData = body
response = self.apiClient._callAPI(resourcePath, method, queryParams, postData, headerParams)
return response.json()
|
Get a list of keywords from the text
Args:
retina_name, str: The retina name (required)
body, str: The text to be evaluated (required)
Returns: Array[str]
|
juraj-google-style
|
def _handle_uniqueness(self):
def _getattr(u):
try:
return self._field_values[u]
except KeyError:
return getattr(self, u)
if self._uniques:
for u in self._uniques:
val = _getattr(u)
changed_fields = self.changed_fields(from_db=True)
if (self.exist and (not ((u in changed_fields) if (not callable(val)) else ((str(u) + '_id') in changed_fields)))):
if (val and (self.objects.filter(**{u: val}).count() > 1)):
raise IntegrityError(('Unique mismatch: %s for %s already exists for value: %s' % (u, self.__class__.__name__, val)))
elif (val and self.objects.filter(**{u: val}).count()):
raise IntegrityError(('Unique mismatch: %s for %s already exists for value: %s' % (u, self.__class__.__name__, val)))
if self.Meta.unique_together:
changed_fields = self.changed_fields(from_db=True)
for uniques in self.Meta.unique_together:
vals = dict([(u, _getattr(u)) for u in uniques])
if self.exist:
query_is_changed = []
for uni in vals.keys():
if callable(vals[uni]):
is_changed = ((str(uni) + '_id') in changed_fields)
query_is_changed.append(is_changed)
else:
is_changed = (uni in changed_fields)
query_is_changed.append(is_changed)
is_unique_changed = any(query_is_changed)
if (not is_unique_changed):
if (self.objects.filter(**vals).count() > 1):
raise IntegrityError(('Unique together mismatch: %s combination already exists for %s' % (vals, self.__class__.__name__)))
elif self.objects.filter(**vals).count():
raise IntegrityError(('Unique together mismatch: %s combination already exists for %s' % (vals, self.__class__.__name__)))
elif self.objects.filter(**vals).count():
raise IntegrityError(('Unique together mismatch: %s combination already exists for %s' % (vals, self.__class__.__name__)))
|
Checks marked as unique and unique_together fields of the Model at each
creation and update, and if it violates the uniqueness raises IntegrityError.
First, looks at the fields which marked as "unique". If Model's unique fields
did not change, it means that there is still a record at db with same unique
field values. So, it must be checked that if more than one result violates the
uniqueness. If it is, raise an IntegrityError. Otherwise, when marked as unique
fields in the list of changed fields, it must be checked that if exists any
violation instead of more than one. And, if it is, again raise an IntegrityError.
Then, looks at the fields which marked as "unique_together" with the same logic.
Raises:
IntegrityError if unique and unique_together checks does not pass
|
codesearchnet
|
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> 'PretrainedConfig':
config_dict = cls._dict_from_json_file(json_file)
return cls(**config_dict)
|
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.
Args:
json_file (`str` or `os.PathLike`):
Path to the JSON file containing the parameters.
Returns:
[`PretrainedConfig`]: The configuration object instantiated from that JSON file.
|
github-repos
|
def __set_mutation_type(self, hgvs_string):
self.__set_lost_stop_status(hgvs_string)
self.__set_lost_start_status(hgvs_string)
self.__set_missense_status(hgvs_string)
self.__set_indel_status()
self.__set_frame_shift_status()
self.__set_premature_stop_codon_status(hgvs_string)
|
Interpret the mutation type (missense, etc.) and set appropriate flags.
Args:
hgvs_string (str): hgvs syntax with "p." removed
|
juraj-google-style
|
def _lob_end_handler_factory(ion_type, action, validate=(lambda c, ctx, action_res: None)):
assert ((ion_type is IonType.BLOB) or (ion_type is IonType.CLOB))
@coroutine
def lob_end_handler(c, ctx):
val = ctx.value
prev = c
action_res = None
if ((c != _CLOSE_BRACE) and (c not in _WHITESPACE)):
action_res = action(c, ctx, prev, action_res, True)
(c, self) = (yield)
trans = ctx.immediate_transition(self)
while True:
if (c in _WHITESPACE):
if (prev == _CLOSE_BRACE):
_illegal_character(c, ctx.set_ion_type(ion_type), 'Expected }.')
elif (c == _CLOSE_BRACE):
if (prev == _CLOSE_BRACE):
validate(c, ctx, action_res)
break
else:
action_res = action(c, ctx, prev, action_res, False)
prev = c
(c, _) = (yield trans)
ctx.set_self_delimiting(True)
(yield ctx.event_transition(IonThunkEvent, IonEventType.SCALAR, ion_type, _parse_lob(ion_type, val)))
return lob_end_handler
|
Generates handlers for the end of blob or clob values.
Args:
ion_type (IonType): The type of this lob (either blob or clob).
action (callable): Called for each non-whitespace, non-closing brace character encountered before the end of
the lob. Accepts the current character's ordinal, the current context, the previous character's ordinal,
the result of the previous call to ``action`` (if any), and True if this is the first call to ``action``.
Returns any state that will be needed by subsequent calls to ``action``. For blobs, this should validate
the character is valid base64; for clobs, this should ensure there are no illegal characters (e.g. comments)
between the end of the data and the end of the clob.
validate (Optional[callable]): Called once the second closing brace has been found. Accepts the current
character's ordinal, the current context, and the result of the last call to ``action``; raises an error
if this is not a valid lob value.
|
codesearchnet
|
def VerifyStructure(self, parser_mediator, line):
structure = self.LOG_LINE
try:
parsed_structure = structure.parseString(line)
except pyparsing.ParseException:
logger.debug('Not a XChat scrollback log file')
return False
try:
int(parsed_structure.timestamp, 10)
except ValueError:
logger.debug('Not a XChat scrollback log file, invalid timestamp string')
return False
return True
|
Verify that this file is a XChat scrollback log file.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
line (str): line from a text file.
Returns:
bool: True if the line was successfully parsed.
|
juraj-google-style
|
def _get_mpr_view(self, connection, table):
logger.debug(
'Looking for view of the table.\n table: {}'.format(table.vid))
view = self.get_view_name(table)
view_exists = self._relation_exists(connection, view)
if view_exists:
logger.debug(
'View of the table exists.\n table: {}, view: {}'
.format(table.vid, view))
return view
raise MissingViewError('sqlite database does not have view for {} table.'
.format(table.vid))
|
Finds and returns view name in the sqlite db represented by given connection.
Args:
connection: connection to sqlite db where to look for partition table.
table (orm.Table):
Raises:
MissingViewError: if database does not have partition table.
Returns:
str: database table storing partition data.
|
juraj-google-style
|
def __save__(script_name, benchbuild, experiment, projects):
from jinja2 import Environment, PackageLoader
logs_dir = os.path.dirname(CFG['slurm']['logs'].value)
node_command = str(benchbuild["-E", experiment.name, "$_project"])
env = Environment(
trim_blocks=True,
lstrip_blocks=True,
loader=PackageLoader('benchbuild', 'utils/templates'))
template = env.get_template('slurm.sh.inc')
with open(script_name, 'w') as slurm2:
slurm2.write(
template.render(
config=["export " + x for x in repr(CFG).split('\n')],
clean_lockdir=str(CFG["slurm"]["node_dir"]),
clean_lockfile=str(CFG["slurm"]["node_dir"]) + \
".clean-in-progress.lock",
cpus=int(CFG['slurm']['cpus_per_task']),
exclusive=bool(CFG['slurm']['exclusive']),
lockfile=str(CFG['slurm']["node_dir"]) + ".lock",
log=local.path(logs_dir) / str(experiment.id),
max_running=int(CFG['slurm']['max_running']),
name=experiment.name,
nice=int(CFG['slurm']['nice']),
nice_clean=int(CFG["slurm"]["nice_clean"]),
node_command=node_command,
no_multithreading=not CFG['slurm']['multithread'],
ntasks=1,
prefix=str(CFG["slurm"]["node_dir"]),
projects=projects,
slurm_account=str(CFG["slurm"]["account"]),
slurm_partition=str(CFG["slurm"]["partition"]),
timelimit=str(CFG['slurm']['timelimit']),
)
)
chmod("+x", script_name)
if not __verify__(script_name):
LOG.error("SLURM script failed verification.")
print("SLURM script written to {0}".format(script_name))
return script_name
|
Dump a bash script that can be given to SLURM.
Args:
script_name (str): name of the bash script.
commands (list(benchbuild.utils.cmd)):
List of plumbum commands to write to the bash script.
**kwargs: Dictionary with all environment variable bindings we should
map in the bash script.
|
juraj-google-style
|
def plot_histograms(self, freq=None, title=None,
figsize=(10, 10), **kwargs):
if title is None:
title = self._get_default_plot_title(
freq, 'Return Histogram Matrix')
plt.figure()
ser = self._get_series(freq).to_returns().dropna()
ser.hist(figsize=figsize, **kwargs)
return plt.suptitle(title)
|
Wrapper around pandas' hist.
Args:
* freq (str): Data frequency used for display purposes.
Refer to pandas docs for valid freq strings.
* figsize ((x,y)): figure size
* title (str): Title if default not appropriate
* kwargs: passed to pandas' hist method
|
juraj-google-style
|
def get_failed_enrollment_message(cls, users, enrolled_in):
failed_emails = [user.email for user in users]
return (
'error',
_(
'The following learners could not be enrolled in {enrolled_in}: {user_list}'
).format(
enrolled_in=enrolled_in,
user_list=', '.join(failed_emails),
)
)
|
Create message for the users who were not able to be enrolled in a course or program.
Args:
users: An iterable of users who were not successfully enrolled
enrolled_in (str): A string identifier for the course or program with which enrollment was attempted
Returns:
tuple: A 2-tuple containing a message type and message text
|
juraj-google-style
|
def stop(pid):
if psutil.pid_exists(pid):
try:
p = psutil.Process(pid)
p.kill()
except Exception:
pass
|
Shut down a specific process.
Args:
pid: the pid of the process to shutdown.
|
juraj-google-style
|
def __init__(self, selenium):
self.selenium = selenium
self.window_manager = WindowManager(selenium)
self.browser = self.window_manager.windows[0]
|
Create FoxPuppet object.
Args:
selenium:
(:py:class:`~selenium.webdriver.remote.webdriver.WebDriver`):
Firefox WebDriver object.
|
juraj-google-style
|
def OpenFileObject(cls, path_spec_object, resolver_context=None):
if (not isinstance(path_spec_object, path_spec.PathSpec)):
raise TypeError('Unsupported path specification type.')
if (resolver_context is None):
resolver_context = cls._resolver_context
if (path_spec_object.type_indicator == definitions.TYPE_INDICATOR_MOUNT):
if path_spec_object.HasParent():
raise errors.PathSpecError('Unsupported mount path specification with parent.')
mount_point = getattr(path_spec_object, 'identifier', None)
if (not mount_point):
raise errors.PathSpecError('Unsupported path specification without mount point identifier.')
path_spec_object = mount_manager.MountPointManager.GetMountPoint(mount_point)
if (not path_spec_object):
raise errors.MountPointError('No such mount point: {0:s}'.format(mount_point))
file_object = resolver_context.GetFileObject(path_spec_object)
if (not file_object):
resolver_helper = cls._GetResolverHelper(path_spec_object.type_indicator)
file_object = resolver_helper.NewFileObject(resolver_context)
file_object.open(path_spec=path_spec_object)
return file_object
|
Opens a file-like object defined by path specification.
Args:
path_spec_object (PathSpec): path specification.
resolver_context (Optional[Context]): resolver context, where None
represents the built in context which is not multi process safe.
Returns:
FileIO: file-like object or None if the path specification could not
be resolved.
Raises:
PathSpecError: if the path specification is incorrect.
TypeError: if the path specification type is unsupported.
|
codesearchnet
|
def sqrt(cls, x: 'TensorFluent') -> 'TensorFluent':
return cls._unary_op(x, tf.sqrt, tf.float32)
|
Returns a TensorFluent for the sqrt function.
Args:
x: The input fluent.
Returns:
A TensorFluent wrapping the sqrt function.
|
codesearchnet
|
def __init__(self, decode_module, encode_module, methodName='runTest'):
super(EncodeProtoOpTestBase, self).__init__(methodName)
self._decode_module = decode_module
self._encode_module = encode_module
|
EncodeProtoOpTestBase initializer.
Args:
decode_module: a module containing the `decode_proto_op` method
encode_module: a module containing the `encode_proto_op` method
methodName: the name of the test method (same as for test.TestCase)
|
github-repos
|
def sync_firmware(self):
serial_no = self.serial_number
if self.firmware_newer():
try:
self.invalidate_firmware()
self.update_firmware()
except errors.JLinkException as e:
pass
res = self.open(serial_no=serial_no)
if self.firmware_newer():
raise errors.JLinkException('Failed to sync firmware version.')
return res
elif self.firmware_outdated():
try:
self.update_firmware()
except errors.JLinkException as e:
pass
if self.firmware_outdated():
raise errors.JLinkException('Failed to sync firmware version.')
return self.open(serial_no=serial_no)
return None
|
Syncs the emulator's firmware version and the DLL's firmware.
This method is useful for ensuring that the firmware running on the
J-Link matches the firmware supported by the DLL.
Args:
self (JLink): the ``JLink`` instance
Returns:
``None``
|
juraj-google-style
|
def strace_clear_all(self):
data = 0
res = self._dll.JLINK_STRACE_Control(enums.JLinkStraceCommand.TRACE_EVENT_CLR_ALL, data)
if (res < 0):
raise errors.JLinkException('Failed to clear all STRACE events.')
return None
|
Clears all STRACE events.
Args:
self (JLink): the ``JLink`` instance.
Returns:
``None``
Raises:
JLinkException: on error.
|
codesearchnet
|
def parse_args(argv):
parser = make_parser()
args = parser.parse_args(argv)
t = args.tool_args
kythe_args = kythe.Args(corpus=t.kythe_corpus, root=t.kythe_root, path=t.kythe_path, skip_stdlib=t.skip_stdlib)
return (args.all_args, kythe_args, args.pytype_opts)
|
Parse command line args.
Arguments:
argv: Raw command line args, typically sys.argv[1:]
Returns:
A tuple of (
parsed_args: argparse.Namespace,
kythe_args: kythe.Args,
pytype_options: pytype.config.Options)
|
github-repos
|
def predict(self, x_test):
if self.model:
lengths = map(len, x_test)
x_test = self.p.transform(x_test)
y_pred = self.model.predict(x_test)
y_pred = self.p.inverse_transform(y_pred, lengths)
return y_pred
else:
raise OSError('Could not find a model. Call load(dir_path).')
|
Returns the prediction of the model on the given test data.
Args:
x_test : array-like, shape = (n_samples, sent_length)
Test samples.
Returns:
y_pred : array-like, shape = (n_smaples, sent_length)
Prediction labels for x.
|
juraj-google-style
|
def is_running(process):
if os.name == 'nt':
process_list = get_cmd_out(['tasklist', '/v'])
return process in process_list
else:
process_list = get_cmd_out('ps axw | awk \'{print $5}\'')
for i in process_list.split('\n'):
if not i == 'COMMAND' or i.startswith('['):
if i == process:
return True
elif os.path.basename(i) == process:
return True
return False
|
Check if process is running.
Check if the given process name is running or not.
Note:
On a Linux system, kernel threads (like ``kthreadd`` etc.)
are excluded.
Args:
process (str): The name of the process.
Returns:
bool: Is the process running?
|
juraj-google-style
|
def mark_all_as_done(self, **kwargs):
result = self.gitlab.http_post('/todos/mark_as_done', **kwargs)
try:
return int(result)
except ValueError:
return 0
|
Mark all the todos as done.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabTodoError: If the server failed to perform the request
Returns:
int: The number of todos maked done
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.