code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _ParseShVariables(self, lines): paths = {} for line in lines: for entry in line: if ('=' in entry): (target, vals) = (entry.split('=', 1) + [''])[:2] if vals: path_vals = vals.split(':') else: path_vals = [] self._ExpandPath(target, path_vals, paths) elif (entry not in self._SH_CONTINUATION): break return paths
Extract env_var and path values from sh derivative shells. Iterates over each line, word by word searching for statements that set the path. These are either variables, or conditions that would allow a variable to be set later in the line (e.g. export). Args: lines: A list of lines, each of which is a list of space separated words. Returns: a dictionary of path names and values.
codesearchnet
def _contains_nd(nodes, point): r min_vals = np.min(nodes, axis=1) if not np.all(min_vals <= point): return False max_vals = np.max(nodes, axis=1) if not np.all(point <= max_vals): return False return True
r"""Predicate indicating if a point is within a bounding box. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: nodes (numpy.ndarray): A set of points. point (numpy.ndarray): A 1D NumPy array representing a point in the same dimension as ``nodes``. Returns: bool: Indicating containment.
juraj-google-style
def _apply_sparse_duplicate_indices(self, grad, var): summed_values, unique_indices = _deduplicate_indexed_slices(values=grad.values, indices=grad.indices) gradient_no_duplicate_indices = indexed_slices.IndexedSlices(indices=unique_indices, values=summed_values, dense_shape=grad.dense_shape) return self._apply_sparse(gradient_no_duplicate_indices, var)
Add ops to apply sparse gradients to `var`, with repeated sparse indices. Optimizers which override this method must deal with IndexedSlices objects such as the following: IndexedSlicesValue(values=[1, 1], indices=[0, 0], dense_shape=[1]) The correct interpretation is: IndexedSlicesValue(values=[2], indices=[0], dense_shape=[1]) Many optimizers deal incorrectly with repeated indices when updating based on sparse gradients (e.g. summing squares rather than squaring the sum, or applying momentum terms multiple times). Adding first is always the correct behavior, so this is enforced here by reconstructing the IndexedSlices to have only unique indices, then calling _apply_sparse. Optimizers which deal correctly with repeated indices may instead override this method to avoid the overhead of summing indices. Args: grad: `IndexedSlices`. var: A `Variable` object. Returns: An `Operation`.
github-repos
def VerifyStructure(self, parser_mediator, line): try: structure = self._DPKG_LOG_LINE.parseString(line) except pyparsing.ParseException as exception: logger.debug('Unable to parse Debian dpkg.log file with error: {0!s}'.format(exception)) return False return (('date_time' in structure) and ('body' in structure))
Verifies if a line from a text file is in the expected format. Args: parser_mediator (ParserMediator): parser mediator. line (str): line from a text file. Returns: bool: True if the line is in the expected format, False if not.
codesearchnet
def get_temp_dir(self) -> str: if not self._tempdir: self._tempdir = tempfile.mkdtemp(dir=googletest.GetTempDir()) return self._tempdir
Returns a unique temporary directory for the test to use. If you call this method multiple times during in a test, it will return the same folder. However, across different runs the directories will be different. This will ensure that across different runs tests will not be able to pollute each others environment. If you need multiple unique directories within a single test, you should use tempfile.mkdtemp as follows: tempfile.mkdtemp(dir=self.get_temp_dir()): Returns: string, the path to the unique temporary directory created for this test.
github-repos
def traverse_levelorder(self, leaves=True, internal=True): q = deque() q.append(self) while (len(q) != 0): n = q.popleft() if ((leaves and n.is_leaf()) or (internal and (not n.is_leaf()))): (yield n) q.extend(n.children)
Perform a levelorder traversal starting at this ``Node`` object Args: ``leaves`` (``bool``): ``True`` to include leaves, otherwise ``False`` ``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
codesearchnet
def search(self, terms): messages = self._connection.get(('search/%s' % urllib.quote_plus(terms)), key='messages') if messages: messages = [Message(self, message) for message in messages] return messages
Search transcripts. Args: terms (str): Terms for search Returns: array. Messages
codesearchnet
def get_type(self, index): if index < 0 or index >= len(self._types): raise ValueError("Index for getting order parameter type" " out-of-bounds!") return self._types[index]
Return type of order parameter at the index provided and represented by a short string. Args: index (int): index of order parameter for which type is to be returned. Returns: str: OP type.
juraj-google-style
def copy_default_config_to_user_directory(basename, clobber=False, dst_dir='~/.config/scriptabit'): dst_dir = os.path.expanduser(dst_dir) dst = os.path.join(dst_dir, basename) src = resource_filename(Requirement.parse('scriptabit'), os.path.join('scriptabit', basename)) if (not os.path.exists(dst_dir)): os.makedirs(dst_dir) if (clobber or (not os.path.isfile(dst))): shutil.copy(src, dst)
Copies the default configuration file into the user config directory. Args: basename (str): The base filename. clobber (bool): If True, the default will be written even if a user config already exists. dst_dir (str): The destination directory.
codesearchnet
def turtle_to_texture(turtle_program, turn_amount=DEFAULT_TURN, initial_angle=DEFAULT_INITIAL_ANGLE, resolution=1): generator = branching_turtle_generator( turtle_program, turn_amount, initial_angle, resolution) return texture_from_generator(generator)
Makes a texture from a turtle program. Args: turtle_program (str): a string representing the turtle program; see the docstring of `branching_turtle_generator` for more details turn_amount (float): amount to turn in degrees initial_angle (float): initial orientation of the turtle resolution (int): if provided, interpolation amount for visible lines Returns: texture: A texture.
juraj-google-style
def run_step(self, representer): assert representer, 'ObjectRepresenter instance required to run ObjectRewriterStep.' rewriter = ObjectRewriter(self.context.get_formatted_iterable, representer) super().run_step(rewriter)
Do the object in-out rewrite. Args: representer: A pypyr.filesystem.ObjectRepresenter instance.
codesearchnet
def p44(msg): d = hex2bin(data(msg)) if (d[34] == '0'): return None p = bin2int(d[35:46]) return p
Static pressure. Args: msg (String): 28 bytes hexadecimal message string Returns: int: static pressure in hPa
codesearchnet
def generate_timing_stats(file_list, var_list): timing_result = dict() timing_summary = dict() for file in file_list: timing_result[file] = functions.parse_gptl(file, var_list) for var in var_list: var_time = [] for f, data in timing_result.items(): try: var_time.append(data[var]) except: continue if len(var_time): timing_summary[var] = {'mean': np.mean(var_time), 'max': np.max(var_time), 'min': np.min(var_time), 'std': np.std(var_time)} return timing_summary
Parse all of the timing files, and generate some statistics about the run. Args: file_list: A list of timing files to parse var_list: A list of variables to look for in the timing file Returns: A dict containing values that have the form: [mean, min, max, mean, standard deviation]
juraj-google-style
def dt_dt(sdat, tstart=None, tend=None): tseries = sdat.tseries_between(tstart, tend) time = tseries['t'].values temp = tseries['Tmean'].values dtdt = ((temp[1:] - temp[:(- 1)]) / (time[1:] - time[:(- 1)])) return (dtdt, time[:(- 1)])
Derivative of temperature. Compute dT/dt as a function of time using an explicit Euler scheme. Args: sdat (:class:`~stagpy.stagyydata.StagyyData`): a StagyyData instance. tstart (float): time at which the computation should start. Use the beginning of the time series data if set to None. tend (float): time at which the computation should end. Use the end of the time series data if set to None. Returns: tuple of :class:`numpy.array`: derivative of temperature and time arrays.
codesearchnet
def GetUsedMemory(self): try: memory_info = self._process.memory_info() except psutil.NoSuchProcess: return None memory_data = getattr(memory_info, 'data', 0) memory_shared = getattr(memory_info, 'shared', 0) return (memory_data + memory_shared)
Retrieves the amount of memory used by the process. Returns: int: amount of memory in bytes used by the process or None if not available.
codesearchnet
def normal(key, shape, dtype=dtypes.float32): key = tf_np.asarray(key, dtype=_RNG_KEY_DTYPE) return tf_np.asarray(stateless_random_ops.stateless_random_normal(shape, seed=_key2seed(key), dtype=dtype))
Sample standard-normal random values. Args: key: the RNG key. shape: the shape of the result. dtype: the dtype of the result. Returns: Random values in standard-normal distribution.
github-repos
def plot_feature_correlation_heatmap(df, features, font_size=9, figsize=(15, 15), save_filename=None): features = features[:] features += ['target'] mcorr = df[features].corr() mask = np.zeros_like(mcorr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True cmap = sns.diverging_palette(220, 10, as_cmap=True) fig = plt.figure(figsize=figsize) heatmap = sns.heatmap( mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f', annot_kws={'size': font_size}, ) heatmap.tick_params(axis='both', which='major', labelsize=font_size) heatmap.tick_params(axis='both', which='minor', labelsize=font_size) heatmap.set_xticklabels(features, rotation=90) heatmap.set_yticklabels(reversed(features)) plt.show() if save_filename is not None: fig.savefig(save_filename, dpi=300)
Plot a correlation heatmap between every feature pair. Args: df: Pandas dataframe containing the target column (named 'target'). features: The list of features to include in the correlation plot. font_size: Font size for heatmap cells and axis labels. figsize: The size of the plot. save_filename: (Optional) The path of the file to save a high-res version of the plot to.
juraj-google-style
def verify_docker_image_sha(chain, link): cot = link.cot task = link.task errors = [] if isinstance(task['payload'].get('image'), dict): docker_image_task_id = task['extra']['chainOfTrust']['inputs']['docker-image'] log.debug('Verifying {} {} against docker-image {}'.format(link.name, link.task_id, docker_image_task_id)) if (docker_image_task_id != task['payload']['image']['taskId']): errors.append("{} {} docker-image taskId isn't consistent!: {} vs {}".format(link.name, link.task_id, docker_image_task_id, task['payload']['image']['taskId'])) else: path = task['payload']['image']['path'] image_hash = cot['environment']['imageArtifactHash'] (alg, sha) = image_hash.split(':') docker_image_link = chain.get_link(docker_image_task_id) upstream_sha = docker_image_link.cot['artifacts'].get(path, {}).get(alg) if (upstream_sha is None): errors.append('{} {} docker-image docker sha {} is missing! {}'.format(link.name, link.task_id, alg, docker_image_link.cot['artifacts'][path])) elif (upstream_sha != sha): errors.append("{} {} docker-image docker sha doesn't match! {} {} vs {}".format(link.name, link.task_id, alg, sha, upstream_sha)) else: log.debug('Found matching docker-image sha {}'.format(upstream_sha)) else: prebuilt_task_types = chain.context.config['prebuilt_docker_image_task_types'] if ((prebuilt_task_types != 'any') and (link.task_type not in prebuilt_task_types)): errors.append('Task type {} not allowed to use a prebuilt docker image!'.format(link.task_type)) raise_on_errors(errors)
Verify that built docker shas match the artifact. Args: chain (ChainOfTrust): the chain we're operating on. link (LinkOfTrust): the task link we're checking. Raises: CoTError: on failure.
codesearchnet
def _BuildFindSpecsFromGroupName(self, group_name, environment_variables): definition = self._artifacts_registry.GetDefinitionByName(group_name) if (not definition): return None return self._BuildFindSpecsFromArtifact(definition, environment_variables)
Builds find specifications from a artifact group name. Args: group_name (str): artifact group name. environment_variables (list[str]): environment variable attributes used to dynamically populate environment variables in file and registry artifacts. Returns: list[dfwinreg.FindSpec|dfvfs.FindSpec]: find specifications or None if no artifact with the given name can be retrieved.
codesearchnet
def _Open(self, path_spec, mode='rb'): if not path_spec.HasParent(): raise errors.PathSpecError( 'Unsupported path specification without parent.') file_object = resolver.Resolver.OpenFileObject( path_spec.parent, resolver_context=self._resolver_context) try: file_object.seek(0, os.SEEK_SET) tar_file = tarfile.open(mode='r:', fileobj=file_object) except: file_object.close() raise self._file_object = file_object self._tar_file = tar_file
Opens the file system defined by path specification. Args: path_spec (PathSpec): path specification. mode (Optional[str]): file access mode. The default is 'rb' which represents read-only binary. Raises: AccessError: if the access to open the file was denied. IOError: if the file system could not be opened. PathSpecError: if the path specification is incorrect. ValueError: if the path specification is invalid.
juraj-google-style
def from_json(cls, json_value: Any, *, value_spec: Optional[pg_typing.Dict]=None, allow_partial: bool=False, root_path: Optional[utils.KeyPath]=None, **kwargs) -> 'Dict': return cls({k: base.from_json(v, root_path=utils.KeyPath(k, root_path), allow_partial=allow_partial, **kwargs) for k, v in json_value.items()}, value_spec=value_spec, root_path=root_path, allow_partial=allow_partial)
Class method that load an symbolic Dict from a JSON value. Args: json_value: Input JSON value, only JSON dict is acceptable. value_spec: An optional value spec to apply. allow_partial: Whether to allow members of the dict to be partial. root_path: KeyPath of loaded object in its object tree. **kwargs: Allow passing through keyword arguments that are not applicable. Returns: A schemaless symbolic dict. For example:: d = Dict.from_json({ 'a': { '_type': '__main__.Foo', 'f1': 1, 'f2': { 'f21': True } } }) assert d.value_spec is None # Okay: d.b = 1 # a.f2 is bound by class Foo's field 'f2' definition (assume it defines # a schema for the Dict field). assert d.a.f2.value_spec is not None # Not okay: d.a.f2.abc = 1
github-repos
def get_account_name(config, auth, account): account_id, advertiser_ids = parse_account(config, auth, account) is_superuser, profile_id = get_profile_for_api(config, auth, account_id) response = API_DCM(config, auth, internal=is_superuser).accounts().get(id=account_id, profileId=profile_id).execute() return response['name']
Return the name of a DCM account given the account ID. Args: * auth: (string) Either user or service. * account: (string) [account:advertiser@profile] token. Returns: * Profile ID. Raises: * If current credentials do not have a profile for this account.
github-repos
def build_srpm(specfile, save_dir): logger.info('Starting rpmbuild to build: {0} SRPM.'.format(specfile)) if save_dir != get_default_save_path(): try: msg = subprocess.Popen( ['rpmbuild', '--define', '_sourcedir {0}'.format(save_dir), '--define', '_builddir {0}'.format(save_dir), '--define', '_srcrpmdir {0}'.format(save_dir), '--define', '_rpmdir {0}'.format(save_dir), '-bs', specfile], stdout=subprocess.PIPE).communicate( )[0].strip() except OSError: logger.error( "Rpmbuild failed for specfile: {0} and save_dir: {1}".format( specfile, save_dir), exc_info=True) msg = 'Rpmbuild failed. See log for more info.' return msg else: if not os.path.exists(save_dir): raise IOError("Specify folder to store a file (SAVE_DIR) " "or install rpmdevtools.") try: msg = subprocess.Popen( ['rpmbuild', '--define', '_sourcedir {0}'.format(save_dir + '/SOURCES'), '--define', '_builddir {0}'.format(save_dir + '/BUILD'), '--define', '_srcrpmdir {0}'.format(save_dir + '/SRPMS'), '--define', '_rpmdir {0}'.format(save_dir + '/RPMS'), '-bs', specfile], stdout=subprocess.PIPE).communicate( )[0].strip() except OSError: logger.error("Rpmbuild failed for specfile: {0} and save_dir: " "{1}".format(specfile, save_dir), exc_info=True) msg = 'Rpmbuild failed. See log for more info.' return msg
Builds a srpm from given specfile using rpmbuild. Generated srpm is stored in directory specified by save_dir. Args: specfile: path to a specfile save_dir: path to source and build tree
juraj-google-style
def pop_parameter(key): names = key.split('/') if len(names) > 1: with parameter_scope(names[0]): return pop_parameter('/'.join(names[1:])) global current_scope param = current_scope.get(key, None) if param is not None: del current_scope[key] return param
Remove and get parameter by key. Args: key(str): Key of parameter. Returns: ~nnabla.Variable Parameter if key found, otherwise None.
juraj-google-style
def _collect_paths(element): output = [] path = vectors.el_to_path_vector(element) root = path[0] params = element.params if element.params else None match = root.find(element.getTagName(), params) if len(match) == 1: output.append( PathCall("find", 0, [element.getTagName(), params]) ) output.extend(path_patterns.neighbours_pattern(element)) output.extend(path_patterns.predecesors_pattern(element, root)) index_backtrack = [] last_index_backtrack = [] params_backtrack = [] last_params_backtrack = [] for el in reversed(path): if not el.parent: continue tag_name = el.getTagName() match = el.parent.wfind(tag_name).childs index = match.index(el) index_backtrack.append( PathCall("wfind", index, [tag_name]) ) last_index_backtrack.append( PathCall("wfind", index - len(match), [tag_name]) ) if el.params: match = el.parent.wfind(tag_name, el.params).childs index = match.index(el) params_backtrack.append( PathCall("wfind", index, [tag_name, el.params]) ) last_params_backtrack.append( PathCall("wfind", index - len(match), [tag_name, el.params]) ) else: params_backtrack.append( PathCall("wfind", index, [tag_name]) ) last_params_backtrack.append( PathCall("wfind", index - len(match), [tag_name]) ) output.extend([ Chained(reversed(params_backtrack)), Chained(reversed(last_params_backtrack)), Chained(reversed(index_backtrack)), Chained(reversed(last_index_backtrack)), ]) return output
Collect all possible path which leads to `element`. Function returns standard path from root element to this, reverse path, which uses negative indexes for path, also some pattern matches, like "this is element, which has neighbour with id 7" and so on. Args: element (obj): HTMLElement instance. Returns: list: List of :class:`.PathCall` and :class:`.Chained` objects.
juraj-google-style
def _GetDelayImportTimestamps(self, pefile_object): delay_import_timestamps = [] if (not hasattr(pefile_object, 'DIRECTORY_ENTRY_DELAY_IMPORT')): return delay_import_timestamps for importdata in pefile_object.DIRECTORY_ENTRY_DELAY_IMPORT: dll_name = importdata.dll try: dll_name = dll_name.decode('ascii') except UnicodeDecodeError: dll_name = dll_name.decode('ascii', errors='replace') timestamp = getattr(importdata.struct, 'dwTimeStamp', 0) delay_import_timestamps.append([dll_name, timestamp]) return delay_import_timestamps
Retrieves timestamps from delay import entries, if available. Args: pefile_object (pefile.PE): pefile object. Returns: tuple[str, int]: name of the DLL being imported and the second is the timestamp of the entry.
codesearchnet
def get_discount_curve(discount_curve_types: List[Union[curve_types_lib.RiskFreeCurve, curve_types_lib.RateIndexCurve]], market: pmd.ProcessedMarketData, mask: List[int]) -> rate_curve.RateCurve: discount_curves = [market.yield_curve(curve_type) for curve_type in discount_curve_types] discounts = [] dates = [] interpolation_method = None interpolate_rates = None for curve in discount_curves: discount, date = curve.discount_factors_and_dates() discounts.append(discount) dates.append(date) interpolation_method = curve.interpolation_method interpolate_rates = curve.interpolate_rates all_discounts = tf.stack(pad.pad_tensors(discounts), axis=0) all_dates = pad.pad_date_tensors(dates) all_dates = dateslib.DateTensor.stack(dates, axis=0) prepare_discounts = tf.gather(all_discounts, mask) prepare_dates = dateslib.dates_from_ordinals(tf.gather(all_dates.ordinal(), mask)) discount_curve = rate_curve.RateCurve(prepare_dates, prepare_discounts, market.date, interpolator=interpolation_method, interpolate_rates=interpolate_rates) return discount_curve
Builds a batched discount curve. Given a list of discount curve an integer mask, creates a discount curve object to compute discount factors against the list of discount curves. #### Example ```none curve_types = [RiskFreeCurve("USD"), RiskFreeCurve("AUD")] # A mask to price a batch of 7 instruments with the corresponding discount # curves ["USD", "AUD", "AUD", "AUD" "USD", "USD", "AUD"]. mask = [0, 1, 1, 1, 0, 0, 1] market = MarketDataDict(...) get_discount_curve(curve_types, market, mask) # Returns a RateCurve object that can compute a discount factors for a # batch of 7 dates. ``` Args: discount_curve_types: A list of curve types. market: an instance of the processed market data. mask: An integer mask. Returns: An instance of `RateCurve`.
github-repos
def get(self): with warnings.catch_warnings(record=False): warnings.simplefilter('ignore') return np.nanquantile(self._queue, self._q)
Calculates and returns the specified quantile of the current sliding window. Returns: float: The specified quantile of the values in the current sliding window. Returns NaN if the window is empty.
github-repos
def get_position_encoding(length, hidden_size, min_timescale=1.0, max_timescale=10000.0): position = tf.to_float(tf.range(length)) num_timescales = (hidden_size log_timescale_increment = (math.log((float(max_timescale) / float(min_timescale))) / (tf.to_float(num_timescales) - 1)) inv_timescales = (min_timescale * tf.exp((tf.to_float(tf.range(num_timescales)) * (- log_timescale_increment)))) scaled_time = (tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) return signal
Return positional encoding. Calculates the position encoding as a mix of sine and cosine functions with geometrically increasing wavelengths. Defined and formulized in Attention is All You Need, section 3.5. Args: length: Sequence length. hidden_size: Size of the min_timescale: Minimum scale that will be applied at each position max_timescale: Maximum scale that will be applied at each position Returns: Tensor with shape [length, hidden_size]
codesearchnet
def install_hook(self, hook_name, hook_content): hook_path = os.path.join(self.path, '.git/hooks', hook_name) with open(hook_path, 'w') as f: f.write(hook_content) os.chmod(hook_path, ((stat.S_IEXEC | stat.S_IREAD) | stat.S_IWRITE))
Install the repository hook for this repo. Args: hook_name (str) hook_content (str)
codesearchnet
def get_variable_name_from_bird(bird_conf): bird_variable_pattern = re.compile( r, re.VERBOSE ) with open(bird_conf, 'r') as content: for line in content.readlines(): variable_match = bird_variable_pattern.search(line) if variable_match: return variable_match.group('name') return None
Return the variable name set in Bird configuration. The variable name in Bird configuration is set with the keyword 'define', here is an example: define ACAST_PS_ADVERTISE = and we exract the string between the word 'define' and the equals sign. Arguments: bird_conf (str): The absolute file name path of Bird configuration. Returns: The variable name as a string or None if it isn't found.
juraj-google-style
def add_forwarding_rules(self, forwarding_rules): rules_dict = [rule.__dict__ for rule in forwarding_rules] return self.get_data(('load_balancers/%s/forwarding_rules/' % self.id), type=POST, params={'forwarding_rules': rules_dict})
Adds new forwarding rules to a LoadBalancer. Args: forwarding_rules (obj:`list`): A list of `ForwrdingRules` objects
codesearchnet
class XLMPoolerAnswerClass(nn.Module): def __init__(self, config: XLMConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward(self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor]=None, start_positions: Optional[torch.LongTensor]=None, cls_index: Optional[torch.LongTensor]=None) -> torch.FloatTensor: hsz = hidden_states.shape[-1] assert start_states is not None or start_positions is not None, 'One of start_states, start_positions should be not None' if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) else: cls_token_state = hidden_states[:, -1, :] x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x
Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config ([`XLMConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model.
github-repos
def _inplace_helper(x, i, v, op): x = ops.convert_to_tensor(x) v = ops.convert_to_tensor(v, x.dtype) if i is None: return array_ops.reshape(op(array_ops.reshape(x, [1, -1]), [0], array_ops.reshape(v, [1, -1])), array_ops.shape(x)) i = math_ops.cast(i, dtypes.int32) if i.get_shape().ndims == 0: return op(x, array_ops.reshape(i, [1]), array_ops.expand_dims(v, 0)) return op(x, i, v)
Applies an inplace op on (x, i, v). op is one of gen_array_ops.alias_inplace_update, gen_array_ops.alias_inplace_add, or gen_array_ops.alias_inplace_sub. If i is None, x and v must be the same shape. Computes x op v; If i is a scalar, x has a rank 1 higher than v's. Computes x[i, :] op v; Otherwise, x and v must have the same rank. Computes x[i, :] op v; Args: x: A Tensor. i: None, a scalar or a vector. v: A Tensor. op: alias_inplace_update, alias_inplace_add, or alias_inplace_sub. Returns: Returns x.
github-repos
def signUserCsr(self, xcsr, signas, outp=None): pkey = xcsr.get_pubkey() name = xcsr.get_subject().CN return self.genUserCert(name, csr=pkey, signas=signas, outp=outp)
Signs a user CSR with a CA keypair. Args: cert (OpenSSL.crypto.X509Req): The certificate signing request. signas (str): The CA keypair name to sign the CSR with. outp (synapse.lib.output.Output): The output buffer. Examples: cdir.signUserCsr(mycsr, 'myca') Returns: ((OpenSSL.crypto.PKey, OpenSSL.crypto.X509)): Tuple containing the public key and certificate objects.
codesearchnet
def attach(self, engine, log_handler, event_name): if event_name not in State.event_to_attr: raise RuntimeError("Unknown event name '{}'".format(event_name)) engine.add_event_handler(event_name, log_handler, self, event_name)
Attach the logger to the engine and execute `log_handler` function at `event_name` events. Args: engine (Engine): engine object. log_handler (callable): a logging handler to execute event_name: event to attach the logging handler to. Valid events are from :class:`~ignite.engine.Events` or any `event_name` added by :meth:`~ignite.engine.Engine.register_events`.
juraj-google-style
def save_screenshot(self, filename, quietly=False): imgData = self.take_screenshot() try: with open(filename, 'wb') as f: f.write(b64decode(imgData.encode('ascii'))) except IOError as err: if (not quietly): raise err
Save the screenshot to local. Support: Android iOS Web(WebView) Args: filename(str): The path to save the image. quietly(bool): If True, omit the IOError when failed to save the image. Returns: WebElement Object. Raises: WebDriverException. IOError.
codesearchnet
def _ParsePerformanceOptions(self, options): self._buffer_size = getattr(options, 'buffer_size', 0) if self._buffer_size: try: if (self._buffer_size[(- 1)].lower() == 'm'): self._buffer_size = int(self._buffer_size[:(- 1)], 10) self._buffer_size *= self._BYTES_IN_A_MIB else: self._buffer_size = int(self._buffer_size, 10) except ValueError: raise errors.BadConfigOption('Invalid buffer size: {0!s}.'.format(self._buffer_size)) self._queue_size = self.ParseNumericOption(options, 'queue_size')
Parses the performance options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid.
codesearchnet
def _ConsumeInteger(tokenizer, is_signed=False, is_long=False): try: result = ParseInteger(tokenizer.token, is_signed=is_signed, is_long=is_long) except ValueError as e: raise tokenizer.ParseError(str(e)) tokenizer.NextToken() return result
Consumes an integer number from tokenizer. Args: tokenizer: A tokenizer used to parse the number. is_signed: True if a signed integer must be parsed. is_long: True if a long integer must be parsed. Returns: The integer parsed. Raises: ParseError: If an integer with given characteristics couldn't be consumed.
juraj-google-style
def get_sample_dataset(dataset_properties): kwargs = dataset_properties.copy() data_type = kwargs.pop('type') if data_type == 'multiclass': try: X, y = datasets.make_classification(random_state=8, **kwargs) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) except Exception as e: raise exceptions.UserError(repr(e)) elif data_type == 'iris': X, y = datasets.load_iris(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'mnist': X, y = datasets.load_digits(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'breast_cancer': X, y = datasets.load_breast_cancer(return_X_y=True) splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y) elif data_type == 'boston': X, y = datasets.load_boston(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) elif data_type == 'diabetes': X, y = datasets.load_diabetes(return_X_y=True) splits = model_selection.KFold(n_splits=2, random_state=8).split(X) else: raise exceptions.UserError('Unknown dataset type {}'.format(dataset_properties['type'])) return X, y, splits
Returns sample dataset Args: dataset_properties (dict): Dictionary corresponding to the properties of the dataset used to verify the estimator and metric generators. Returns: X (array-like): Features array y (array-like): Labels array splits (iterator): This is an iterator that returns train test splits for cross-validation purposes on ``X`` and ``y``.
juraj-google-style
def getEntity(self, name): return lock_and_call( lambda: Entity(self._impl.getEntity(name)), self._lock )
Get entity corresponding to the specified name (looks for it in all types of entities). Args: name: Name of the entity. Raises: TypeError: if the specified entity does not exist. Returns: The AMPL entity with the specified name.
juraj-google-style
def user_picklist(i_info, command): valid_entry = False awsc.get_all_aminames(i_info) list_instances(i_info, "", True) msg_txt = ("Enter {0} " [{2}0 aborts{1}]: ".format(C_WARN, C_NORM, C_TI, command, len(i_info))) while not valid_entry: entry_raw = obtain_input(msg_txt) try: entry_int = int(entry_raw) except ValueError: entry_int = 999 (tar_idx, valid_entry) = user_entry(entry_int, len(i_info), command) return tar_idx
Display list of instances matching args and ask user to select target. Instance list displayed and user asked to enter the number corresponding to the desired target instance, or '0' to abort. Args: i_info (dict): information on instances and details. command (str): command specified on the command line. Returns: tar_idx (int): the dictionary index number of the targeted instance.
juraj-google-style
def convert_phase(component, subcomponent=SubComponent.UNSPECIFIED): if component not in Component: raise ValueError('Given component name not found') if subcomponent not in SubComponent: raise ValueError('Given subcomponent name not found') if subcomponent != SubComponent.UNSPECIFIED and subcomponent.component != component: raise ValueError("component and subcomponent name don't match") def report_error(error_data: converter_error_data_pb2.ConverterErrorData): error_data.component = component.value if not error_data.subcomponent: error_data.subcomponent = subcomponent.name tflite_metrics = metrics.TFLiteConverterMetrics() tflite_metrics.set_converter_error(error_data) def report_error_message(error_message: Text): error_data = converter_error_data_pb2.ConverterErrorData() error_data.error_message = error_message report_error(error_data) def actual_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except ConverterError as converter_error: if converter_error.errors: for error_data in converter_error.errors: report_error(error_data) else: report_error_message(str(converter_error)) raise converter_error from None except Exception as error: report_error_message(str(error)) raise error from None return wrapper return actual_decorator
The decorator to identify converter component and subcomponent. Args: component: Converter component name. subcomponent: Converter subcomponent name. Returns: Forward the result from the wrapped function. Raises: ValueError: if component and subcomponent name is not valid.
github-repos
def dropout_no_scaling(x, keep_prob): if (keep_prob == 1.0): return x mask = tf.less(tf.random_uniform(tf.shape(x)), keep_prob) return (x * cast_like(mask, x))
Like tf.nn.dropout, but does not scale up. Works on integers also. Args: x: a Tensor keep_prob: a floating point number Returns: Tensor of the same shape as x.
codesearchnet
def stopService(self): self._service.factory.stopTrying() (yield self._service.factory.stopFactory()) (yield service.MultiService.stopService(self))
Gracefully stop the service. Returns: defer.Deferred: a Deferred which is triggered when the service has finished shutting down.
codesearchnet
def patch_traces(self, project_id, traces): traces_pb = _traces_mapping_to_pb(traces) self._gapic_api.patch_traces(project_id, traces_pb)
Sends new traces to Stackdriver Trace or updates existing traces. Args: project_id (Optional[str]): ID of the Cloud project where the trace data is stored. traces (dict): Required. The traces to be patched in the API call.
juraj-google-style
def dependency_to_rpm(dep, runtime): logger.debug('Dependencies provided: {0} runtime: {1}.'.format( dep, runtime)) converted = [] if not len(dep.specs): converted.append(['Requires', dep.project_name]) else: for ver_spec in dep.specs: if ver_spec[0] == '!=': converted.append( ['Conflicts', dep.project_name, '=', ver_spec[1]]) elif ver_spec[0] == '==': converted.append( ['Requires', dep.project_name, '=', ver_spec[1]]) else: converted.append( ['Requires', dep.project_name, ver_spec[0], ver_spec[1]]) if not runtime: for conv in converted: conv[0] = "Build" + conv[0] logger.debug('Converted dependencies: {0}.'.format(converted)) return converted
Converts a dependency got by pkg_resources.Requirement.parse() to RPM format. Args: dep - a dependency retrieved by pkg_resources.Requirement.parse() runtime - whether the returned dependency should be runtime (True) or build time (False) Returns: List of semi-SPECFILE dependencies (package names are not properly converted yet). For example: [['Requires', 'jinja2'], ['Conflicts', 'jinja2', '=', '2.0.1']]
juraj-google-style
def get_arg_value(node, arg_name, arg_pos=None): if arg_name is not None: for kw in node.keywords: if kw.arg == arg_name: return (True, kw.value) if arg_pos is not None: idx = 0 for arg in node.args: if sys.version_info[:2] >= (3, 5) and isinstance(arg, ast.Starred): continue if idx == arg_pos: return (True, arg) idx += 1 return (False, None)
Get the value of an argument from a ast.Call node. This function goes through the positional and keyword arguments to check whether a given argument was used, and if so, returns its value (the node representing its value). This cannot introspect *args or **args, but it safely handles *args in Python3.5+. Args: node: The ast.Call node to extract arg values from. arg_name: The name of the argument to extract. arg_pos: The position of the argument (in case it's passed as a positional argument). Returns: A tuple (arg_present, arg_value) containing a boolean indicating whether the argument is present, and its value in case it is.
github-repos
def speed_difference(points): data = [0] for before, after in pairwise(points): data.append(before.vel - after.vel) return data
Computes the speed difference between each adjacent point Args: points (:obj:`Point`) Returns: :obj:`list` of int: Indexes of changepoints
juraj-google-style
def get_meas_los(self, user_lo_config): try: _m_los = self.default_meas_los.copy() except KeyError: raise PulseError('Default measurement frequencies not exist.') for channel, lo_freq in user_lo_config.meas_lo_dict().items(): _m_los[channel.index] = lo_freq if _m_los == self.default_meas_los: return None return _m_los
Embed default meas LO frequencies from backend and format them to list object. If configured lo frequency is the same as default, this method returns `None`. Args: user_lo_config (LoConfig): A dictionary of LOs to format. Returns: list: A list of meas LOs. Raises: PulseError: when LO frequencies are missing.
juraj-google-style
def _make_3d(field, twod): shp = list(field.shape) if twod and 'X' in twod: shp.insert(1, 1) elif twod: shp.insert(0, 1) return field.reshape(shp)
Add a dimension to field if necessary. Args: field (numpy.array): the field that need to be 3d. twod (str): 'XZ', 'YZ' or None depending on what is relevant. Returns: numpy.array: reshaped field.
juraj-google-style
def generate_reciprocal_vectors_squared(a1, a2, a3, encut): for vec in genrecip(a1, a2, a3, encut): yield np.dot(vec, vec)
Generate reciprocal vector magnitudes within the cutoff along the specied lattice vectors. Args: a1: Lattice vector a (in Bohrs) a2: Lattice vector b (in Bohrs) a3: Lattice vector c (in Bohrs) encut: Reciprocal vector energy cutoff Returns: [[g1^2], [g2^2], ...] Square of reciprocal vectors (1/Bohr)^2 determined by a1, a2, a3 and whose magntidue is less than gcut^2.
juraj-google-style
def load_from_files(files, globs: Optional[Dict[str, Any]]=None, set_up: Optional[Callable[[Any], None]]=None, tear_down: Optional[Callable[[Any], None]]=None) -> doctest.DocFileSuite: if globs is None: globs = {} files = [os.fspath(f) for f in files] globs['_print_if_not_none'] = _print_if_not_none return doctest.DocFileSuite(*files, module_relative=False, parser=FencedCellParser(fence_label='python'), globs=globs, setUp=set_up, tearDown=tear_down, checker=FencedCellOutputChecker(), optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL | doctest.DONT_ACCEPT_BLANKLINE)
Creates a doctest suite from the files list. Args: files: A list of file paths to test. globs: The global namespace the tests are run in. set_up: Run before each test, receives the test as argument. tear_down: Run after each test, receives the test as argument. Returns: A DocFileSuite containing the tests.
github-repos
def load_feather(protein_feather, length_filter_pid=None, copynum_scale=False, copynum_df=None): protein_df = pd.read_feather(protein_feather).set_index('index') from ssbio.protein.sequence.properties.residues import _aa_property_dict_one, EXTENDED_AA_PROPERTY_DICT_ONE aggregators = {'aa_count_bulk': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Bulky'], 'subseqs': ['metal_2_5D', 'metal_3D']}, 'aa_count_carb': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Carbonylation susceptible'], 'subseqs': ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_chrg': {'residues': _aa_property_dict_one['Charged'], 'subseqs': ['metal_2_5D', 'metal_3D', 'csa_2_5D', 'sites_2_5D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_poschrg': {'residues': _aa_property_dict_one['Basic'], 'subseqs': ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_negchrg': {'residues': _aa_property_dict_one['Acidic'], 'subseqs': ['metal_2_5D', 'metal_3D', 'acc_2D', 'acc_3D', 'surface_3D']}, 'aa_count_tmstab': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['TM stabilizing'], 'subseqs': ['tm_2D', 'tm_3D']}, 'aa_count_tmunstab': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['TM to Thr stabilizing'], 'subseqs': ['tm_2D', 'tm_3D']}, 'aa_count_dis': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Disorder promoting'], 'subseqs': ['disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'dna_2_5D']}, 'aa_count_ord': {'residues': EXTENDED_AA_PROPERTY_DICT_ONE['Order promoting'], 'subseqs': ['disorder_2D', 'ss_disorder_2D', 'disorder_3D', 'ss_disorder_3D', 'dna_2_5D']}} for (suffix, info) in aggregators.items(): agg_residues = info['residues'] for prefix in info['subseqs']: to_add_idxes = [] for agg_res in agg_residues: to_add_idx = ((prefix + '_aa_count_') + agg_res) if (to_add_idx in protein_df.index): to_add_idxes.append(to_add_idx) subseq_agged_col = protein_df.loc[(to_add_idxes, :)].sum() protein_df.loc[((prefix + '_') + suffix)] = subseq_agged_col if length_filter_pid: keep_cols = protein_df.loc['aa_count_total'][(protein_df.loc['aa_count_total'] > (protein_df.at[('aa_count_total', 'K12')] * length_filter_pid))].index protein_df = protein_df[keep_cols] if copynum_scale: if (not isinstance(copynum_df, pd.DataFrame)): raise ValueError('Please supply copy numbers') protein_id = op.basename(protein_feather).split('_protein')[0] if (protein_id in copynum_df.index): copynum = copynum_df.at[(protein_id, 'copynum')] if (copynum > 0): protein_df = (protein_df * copynum) return protein_df
Load a feather of amino acid counts for a protein. Args: protein_feather (str): path to feather file copynum_scale (bool): if counts should be multiplied by protein copy number copynum_df (DataFrame): DataFrame of copy numbers Returns: DataFrame: of counts with some aggregated together
codesearchnet
def getText(page, output = "text"): CheckParent(page) dl = page.getDisplayList() formats = ("text", "html", "json", "xml", "xhtml", "dict", "rawdict") images = (0, 1, 1, 0, 1, 1, 1) try: f = formats.index(output.lower()) except: f = 0 flags = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE if images[f] : flags |= TEXT_PRESERVE_IMAGES tp = dl.getTextPage(flags) t = tp._extractText(f) del dl del tp return t
Extract a document page's text. Args: output: (str) text, html, dict, json, rawdict, xhtml or xml. Returns: the output of TextPage methods extractText, extractHTML, extractDICT, extractJSON, extractRAWDICT, extractXHTML or etractXML respectively. Default and misspelling choice is "text".
juraj-google-style
def getattr(self, c, attr, default=None, match_only=None): matching_decor = self.get_decor(c, match_only=match_only) try: return getattr(matching_decor, attr) except AttributeError: return default
Get the attribute of a component. Args: c (component): The component to look up. attr (str): The attribute to get. default (str): What to return in the event of no match. match_only (list of str): The component attributes to include in the comparison. Default: All of them. Returns: obj. The specified attribute of the matching Decor in the Legend.
codesearchnet
def FromString(val): if isinstance(val, bytes): val = val.decode('utf-8') try: return ContractParameterType[val] except Exception as e: pass try: if isinstance(val, (bytearray, bytes)): int_val = int.from_bytes(val, 'little') else: int_val = int.from_bytes(binascii.unhexlify(val), 'little') except (binascii.Error, TypeError) as e: int_val = int(val) return ContractParameterType(int_val)
Create a ContractParameterType object from a str Args: val (str): the value to be converted to a ContractParameterType. val can be hex encoded (b'07'), int (7), string int ("7"), or string literal ("String") Returns: ContractParameterType
juraj-google-style
def DeregisterHelper(cls, helper_class): helper_name = helper_class.NAME.lower() if (helper_name not in cls._helper_classes): raise KeyError('Helper class not set for name: {0:s}.'.format(helper_class.NAME)) del cls._helper_classes[helper_name]
Deregisters a helper class. The helper classes are identified based on their lower case name. Args: helper_class (type): class object of the argument helper. Raises: KeyError: if helper class is not set for the corresponding name.
codesearchnet
def destroy_unit(self, unit): if isinstance(unit, Unit): unit = unit.name else: unit = str(unit) self._single_request('Units.Delete', unitName=unit) return True
Delete a unit from the cluster Args: unit (str, Unit): The Unit, or name of the unit to delete Returns: True: The unit was deleted Raises: fleet.v1.errors.APIError: Fleet returned a response code >= 400
codesearchnet
def scatter(self, indices, value, name=None): return self._implementation.scatter(indices, value, name=name)
Scatter the values of a `Tensor` in specific indices of a `TensorArray`. Args: indices: A `1-D` `Tensor` taking values in `[0, max_value)`. If the `TensorArray` is not dynamic, `max_value=size()`. value: (N+1)-D. Tensor of type `dtype`. The Tensor to unpack. name: A name for the operation (optional). Returns: A new TensorArray object with flow that ensures the scatter occurs. Use this object for all subsequent operations. Raises: ValueError: if the shape inference fails.
github-repos
def circuit_to_dag(circuit): dagcircuit = DAGCircuit() dagcircuit.name = circuit.name for register in circuit.qregs: dagcircuit.add_qreg(register) for register in circuit.cregs: dagcircuit.add_creg(register) for (instruction, qargs, cargs) in circuit.data: if (instruction.control is None): control = None else: control = (instruction.control[0], instruction.control[1]) dagcircuit.apply_operation_back(instruction.copy(), qargs, cargs, control) return dagcircuit
Build a ``DAGCircuit`` object from a ``QuantumCircuit``. Args: circuit (QuantumCircuit): the input circuit. Return: DAGCircuit: the DAG representing the input circuit.
codesearchnet
def to_dict(self): return {'node': [v.to_dict() for v in self.vertices], 'edge': [e.to_dict() for e in self.edges]}
Returns a simplified dictionary representing the Graph. Returns: A dictionary that can easily be serialized to JSON.
codesearchnet
def _prepare_4d_attention_mask(attention_mask: Optional[torch.Tensor], sequence_length: int, dtype: torch.dtype, device: torch.device, is_causal: bool=True) -> Optional[torch.Tensor]: min_value = torch.finfo(dtype).min if dtype.is_floating_point else torch.iinfo(dtype).min if attention_mask is not None: attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1) attention_mask = attention_mask * min_value if is_causal: causal_mask = torch.triu(torch.ones((sequence_length, sequence_length), dtype=dtype, device=device) * min_value, diagonal=1) causal_mask = causal_mask.view(1, 1, sequence_length, sequence_length) if attention_mask is not None: attention_mask = torch.minimum(attention_mask, causal_mask) else: attention_mask = causal_mask return attention_mask
Creates 4D attention mask and combines causal and padding masks if needed. Args: attention_mask: Optional tensor of shape (batch_size, seq_length) containing padding mask sequence_length: Length of the sequence dtype: Data type of the mask device: Device of the mask is_causal: Whether to apply causal masking Returns: 4D attention mask of shape (batch_size, 1, seq_length, seq_length)
github-repos
def set_weights(distribution_strategy, dist_model, weights): assign_ops = [] for layer in dist_model.layers: num_param = len(layer.weights) layer_weights = weights[:num_param] for sw, w in zip(layer.weights, layer_weights): if ops.executing_eagerly_outside_functions(): sw.assign(w) else: assign_ops.append(distribution_strategy.unwrap(sw.assign(w))) weights = weights[num_param:] if not ops.executing_eagerly_outside_functions(): backend.get_session(assign_ops).run(assign_ops)
Sets the weights of the replicated models. The weights of the replicated models are set to the weights of the original model. The weights of the replicated model are Mirrored variables and hence we need to use the `update` call within a DistributionStrategy scope. Args: distribution_strategy: DistributionStrategy used to distribute training and validation. dist_model: The replicated models on the different devices. weights: The weights of the original model.
github-repos
def _upload_artifacts_to_path(self, mirror=False): if not os.listdir(self.artifact_path) or not self.artifact_path: raise S3ArtifactNotFound uploaded = False if self.s3props.get("content_metadata"): LOG.info("Uploading in multiple parts to set metadata") uploaded = self.content_metadata_uploads(mirror=mirror) if not uploaded: cmd = self._get_upload_cmd(mirror=mirror) result = subprocess.run(cmd, check=True, shell=True, stdout=subprocess.PIPE) LOG.debug("Upload Command Ouput: %s", result.stdout) LOG.info("Uploaded artifacts to %s bucket", self.bucket)
Recursively upload directory contents to S3. Args: mirror (bool): If true, uses a flat directory structure instead of nesting under a version.
juraj-google-style
def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, past_key_values_length=0, training=False): assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids, past_key_values_length=past_key_values_length) else: position_ids = tf.expand_dims(tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor.
github-repos
def _count_condition(values, weights=None, metrics_collections=None, updates_collections=None): check_ops.assert_type(values, dtypes.bool) count = metric_variable([], dtypes.float32, name='count') values = math_ops.cast(values, dtypes.float32) if weights is not None: with ops.control_dependencies((check_ops.assert_rank_in(weights, (0, array_ops.rank(values))),)): weights = math_ops.cast(weights, dtypes.float32) values = math_ops.multiply(values, weights) value_tensor = _aggregate_variable(count, metrics_collections) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if updates_collections: ops.add_to_collections(updates_collections, update_op) return (value_tensor, update_op)
Sums the weights of cases where the given values are True. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `bool` `Tensor` of arbitrary size. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple.
github-repos
def add_byte_counter(self, reader): def update_bytes_read(record_size, is_record_size=False, **kwargs): if is_record_size: self.read_counter.add_bytes_read(record_size) if isinstance(reader, observable.ObservableMixin): reader.register_observer(update_bytes_read)
Adds byte counter observer to a side input reader. Args: reader: A reader that should inherit from ObservableMixin to have bytes tracked.
github-repos
def read(self, size=None): if not self._is_open: raise IOError('Not opened.') if self._current_offset < 0: raise IOError( 'Invalid current offset: {0:d} value less than zero.'.format( self._current_offset)) if self._uncompressed_stream_size is None: self._uncompressed_stream_size = self._GetUncompressedStreamSize() if self._uncompressed_stream_size < 0: raise IOError('Invalid uncompressed stream size.') if self._current_offset >= self._uncompressed_stream_size: return b'' if self._realign_offset: self._AlignUncompressedDataOffset(self._current_offset) self._realign_offset = False if size is None: size = self._uncompressed_stream_size if self._current_offset + size > self._uncompressed_stream_size: size = self._uncompressed_stream_size - self._current_offset uncompressed_data = b'' if size == 0: return uncompressed_data while size > self._uncompressed_data_size: uncompressed_data = b''.join([ uncompressed_data, self._uncompressed_data[self._uncompressed_data_offset:]]) remaining_uncompressed_data_size = ( self._uncompressed_data_size - self._uncompressed_data_offset) self._current_offset += remaining_uncompressed_data_size size -= remaining_uncompressed_data_size if self._current_offset >= self._uncompressed_stream_size: break read_count = self._ReadCompressedData(self._COMPRESSED_DATA_BUFFER_SIZE) self._uncompressed_data_offset = 0 if read_count == 0: break if size > 0: slice_start_offset = self._uncompressed_data_offset slice_end_offset = slice_start_offset + size uncompressed_data = b''.join([ uncompressed_data, self._uncompressed_data[slice_start_offset:slice_end_offset]]) self._uncompressed_data_offset += size self._current_offset += size return uncompressed_data
Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed.
juraj-google-style
def apply_to_structure(self, structure): def_struct = structure.copy() old_latt = def_struct.lattice.matrix new_latt = np.transpose(np.dot(self, np.transpose(old_latt))) def_struct.lattice = Lattice(new_latt) return def_struct
Apply the deformation gradient to a structure. Args: structure (Structure object): the structure object to be modified by the deformation
juraj-google-style
def _call_api(self, verb, url, **request_kwargs): api = 'https: auth_headers = {'Authorization': 'token {}'.format(self.api_token)} headers = {**auth_headers, **request_kwargs.pop('headers', {})} return getattr(requests, verb)(api, headers=headers, **request_kwargs)
Perform a github API call Args: verb (str): Can be "post", "put", or "get" url (str): The base URL with a leading slash for Github API (v3) auth (str or HTTPBasicAuth): A Github API token or a HTTPBasicAuth object
codesearchnet
def prepare_question_encoder(inputs, hparams): encoder_input = inputs encoder_padding = common_attention.embedding_to_padding(encoder_input) ignore_padding = common_attention.attention_bias_ignore_padding( encoder_padding) encoder_self_attention_bias = ignore_padding if hparams.pos == "timing": encoder_input = common_attention.add_timing_signal_1d(encoder_input) elif hparams.pos == "emb": encoder_input = common_attention.add_positional_embedding( encoder_input, hparams.max_length, "inputs_positional_embedding", None) return (encoder_input, encoder_self_attention_bias)
Prepare question encoder. Args: inputs: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a bias tensor for use in encoder self-attention
juraj-google-style
def ExtractEvents( self, parser_mediator, registry_key, codepage='cp1252', **kwargs): self._ParseMRUListExKey(parser_mediator, registry_key, codepage=codepage) if registry_key.name == 'RecentDocs': for subkey in registry_key.GetSubkeys(): self._ParseMRUListExKey(parser_mediator, subkey, codepage=codepage)
Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. codepage (Optional[str]): extended ASCII string codepage.
juraj-google-style
def easeOutBounce(n): _checkRange(n) if (n < (1 / 2.75)): return ((7.5625 * n) * n) elif (n < (2 / 2.75)): n -= (1.5 / 2.75) return (((7.5625 * n) * n) + 0.75) elif (n < (2.5 / 2.75)): n -= (2.25 / 2.75) return (((7.5625 * n) * n) + 0.9375) else: n -= (2.65 / 2.75) return (((7.5625 * n) * n) + 0.984375)
A bouncing tween function that hits the destination and then bounces to rest. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
codesearchnet
def _load_certificate(location): if location.startswith('https: _log.info('Downloading x509 certificate from %s', location) with requests.Session() as session: session.mount('https: response = session.get(location, timeout=30) response.raise_for_status() return response.text else: _log.info('Loading local x509 certificate from %s', location) with open(location, 'rb') as fd: return fd.read().decode('ascii')
Load a certificate from the given location. Args: location (str): The location to load. This can either be an HTTPS URL or an absolute file path. This is intended to be used with PEM-encoded certificates and therefore assumes ASCII encoding. Returns: str: The PEM-encoded certificate as a unicode string. Raises: requests.exception.RequestException: Any exception requests could raise. IOError: If the location provided could not be opened and read.
codesearchnet
def _schedule_shards(cls, spec, readers, queue_name, base_path, mr_state): shard_states = [] for (shard_number, input_reader) in enumerate(readers): shard_state = model.ShardState.create_new(spec.mapreduce_id, shard_number) shard_state.shard_description = str(input_reader) shard_states.append(shard_state) existing_shard_states = db.get((shard.key() for shard in shard_states)) existing_shard_keys = set((shard.key() for shard in existing_shard_states if (shard is not None))) db.put((shard for shard in shard_states if (shard.key() not in existing_shard_keys)), config=util.create_datastore_write_config(spec)) writer_class = spec.mapper.output_writer_class() writers = ([None] * len(readers)) if writer_class: for (shard_number, shard_state) in enumerate(shard_states): writers[shard_number] = writer_class.create(mr_state.mapreduce_spec, shard_state.shard_number, (shard_state.retries + 1), mr_state.writer_state) for (shard_number, (input_reader, output_writer)) in enumerate(zip(readers, writers)): shard_id = model.ShardState.shard_id_from_number(spec.mapreduce_id, shard_number) task = MapperWorkerCallbackHandler._state_to_task(model.TransientShardState(base_path, spec, shard_id, 0, input_reader, input_reader, output_writer=output_writer, handler=spec.mapper.handler), shard_states[shard_number]) MapperWorkerCallbackHandler._add_task(task, spec, queue_name)
Prepares shard states and schedules their execution. Even though this method does not schedule shard task and save shard state transactionally, it's safe for taskqueue to retry this logic because the initial shard_state for each shard is the same from any retry. This is an important yet reasonable assumption on model.ShardState. Args: spec: mapreduce specification as MapreduceSpec. readers: list of InputReaders describing shard splits. queue_name: The queue to run this job on. base_path: The base url path of mapreduce callbacks. mr_state: The MapReduceState of current job.
codesearchnet
def compare_jsone_task_definition(parent_link, rebuilt_definitions): diffs = [] for compare_definition in rebuilt_definitions['tasks']: if ('taskId' in compare_definition): del compare_definition['taskId'] compare_definition = remove_empty_keys(compare_definition) runtime_definition = remove_empty_keys(parent_link.task) diff = list(dictdiffer.diff(compare_definition, runtime_definition)) if diff: diffs.append(pprint.pformat(diff)) continue log.info('{}: Good.'.format(parent_link.name)) break else: error_msg = "{} {}: the runtime task doesn't match any rebuilt definition!\n{}".format(parent_link.name, parent_link.task_id, pprint.pformat(diffs)) log.critical(error_msg) raise CoTError(error_msg)
Compare the json-e rebuilt task definition vs the runtime definition. Args: parent_link (LinkOfTrust): the parent link to test. rebuilt_definitions (dict): the rebuilt task definitions. Raises: CoTError: on failure.
codesearchnet
def multisorted(items, *keys): if len(keys) == 0: keys = [asc()] for key in reversed(keys): items = sorted(items, key=key.func, reverse=key.reverse) return items
Sort by multiple attributes. Args: items: An iterable series to be sorted. *keys: Key objects which extract key values from the items. The first key will be the most significant, and the last key the least significant. If no key functions are provided, the items will be sorted in ascending natural order. Returns: A list of items sorted according to keys.
juraj-google-style
def process(self, elem: t.Any): pass
Process is the operation that will be rate limited. Results will be yielded each time time the process method is called. Args: elem: The individual element to process. Returns: Output can be anything, output will be the output of the RateLimit PTransform.
github-repos
def convert_videos_to_summaries(input_videos, output_videos, target_videos, tag, decode_hparams, display_ground_truth=False): fps = decode_hparams.frames_per_second border_percent = decode_hparams.border_percent max_outputs = decode_hparams.max_display_outputs target_steps = target_videos.shape[1] all_summaries = [] input_videos = create_border(input_videos, color='blue', border_percent=border_percent) target_videos = create_border(target_videos, color='red', border_percent=border_percent) output_videos = create_border(output_videos, color='red', border_percent=border_percent) all_input = np.concatenate((input_videos, target_videos), axis=1) all_output = np.concatenate((input_videos, output_videos), axis=1) (output_summ_vals, _) = common_video.py_gif_summary(('%s/output' % tag), all_output, max_outputs=max_outputs, fps=fps, return_summary_value=True) all_summaries.extend(output_summ_vals) if display_ground_truth: (input_summ_vals, _) = common_video.py_gif_summary(('%s/input' % tag), all_input, max_outputs=max_outputs, fps=fps, return_summary_value=True) all_summaries.extend(input_summ_vals) iterable = zip(output_videos[(:max_outputs, :target_steps)], target_videos[:max_outputs]) for (ind, (input_video, output_video)) in enumerate(iterable): (t, h, w, c) = input_video.shape input_frames = np.reshape(input_video, ((t * h), w, c)) output_frames = np.reshape(output_video, ((t * h), w, c)) all_frames = np.concatenate((input_frames, output_frames), axis=1) tag = ('input/output/%s_sample_%d' % (tag, ind)) frame_by_frame_summ = image_utils.image_to_tf_summary_value(all_frames, tag=tag) all_summaries.append(frame_by_frame_summ) return all_summaries
Converts input, output and target videos into video summaries. Args: input_videos: 5-D NumPy array, (NTHWC) conditioning frames. output_videos: 5-D NumPy array, (NTHWC) model predictions. target_videos: 5-D NumPy array, (NTHWC) target frames. tag: tf summary tag. decode_hparams: HParams. display_ground_truth: Whether or not to display ground truth videos. Returns: summaries: a list of tf frame-by-frame and video summaries.
codesearchnet
def find(self, username): filter = ['(uid={})'.format(username)] results = self.client.search(filter) if (len(results) < 1): raise ldap_tools.exceptions.NoUserFound('User ({}) not found'.format(username)) return elif (len(results) > 1): raise ldap_tools.exceptions.TooManyResults('Multiple users found. Please narrow your search.') return else: return results
Find user with given username. Args: username Username of the user to search for Raises: ldap_tools.exceptions.NoUserFound: No users returned by LDAP ldap_tools.exceptions.TooManyResults: Multiple users returned by LDAP
codesearchnet
def _prepare_summary_table(rows): if (not rows): return [] key_field = 'job-name' if (key_field not in rows[0]): key_field = 'job-id' grouped = collections.defaultdict((lambda : collections.defaultdict((lambda : [])))) for row in rows: grouped[row.get(key_field, '')][row.get('status', '')] += [row] new_rows = [] for job_key in sorted(grouped.keys()): group = grouped.get(job_key, None) canonical_status = ['RUNNING', 'SUCCESS', 'FAILURE', 'CANCEL'] for status in (canonical_status + sorted(group.keys())): if (status not in group): continue task_count = len(group[status]) del group[status] if task_count: summary_row = collections.OrderedDict() summary_row[key_field] = job_key summary_row['status'] = status summary_row['task-count'] = task_count new_rows.append(summary_row) return new_rows
Create a new table that is a summary of the input rows. All with the same (job-name or job-id, status) go together. Args: rows: the input rows, a list of dictionaries. Returns: A new row set of summary information.
codesearchnet
def on_test_begin(self, logs=None): logs = self._process_logs(logs) for callback in self.callbacks: callback.on_test_begin(logs)
Calls the `on_test_begin` methods of its callbacks. Args: logs: Dict. Currently no data is passed to this argument for this method but that may change in the future.
github-repos
class BaseModelOutputWithCLSToken(ModelOutput): last_hidden_state: Optional[torch.FloatTensor] = None cls_token_value: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`): Classification token at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs.
github-repos
def __init__(self, session_root, watch_fn=None, thread_name_filter=None): self._session_root = session_root self._watch_fn = watch_fn self._thread_name_filter = thread_name_filter self._session_wrapper = None
Create a local debugger command-line interface (CLI) hook. Args: session_root: See doc of `dumping_wrapper.DumpingDebugWrapperSession.__init__`. watch_fn: See doc of `dumping_wrapper.DumpingDebugWrapperSession.__init__`. thread_name_filter: Regular-expression white list for threads on which the wrapper session will be active. See doc of `BaseDebugWrapperSession` for more details.
github-repos
def rename(self, name): return self.client.api.rename(self.id, name)
Rename this container. Similar to the ``docker rename`` command. Args: name (str): New name for the container Raises: :py:class:`docker.errors.APIError` If the server returns an error.
juraj-google-style
async def _get_person_json(self, id_, url_params=None): url = self.url_builder( 'person/{person_id}', dict(person_id=id_), url_params=url_params or OrderedDict(), ) data = await self.get_data(url) return data
Retrieve raw person JSON by ID. Arguments: id_ (:py:class:`int`): The person's TMDb ID. url_params (:py:class:`dict`): Any additional URL parameters. Returns: :py:class:`dict`: The JSON data.
juraj-google-style
def get_evaluation_parameter(self, parameter_name, default_value=None): if (('evaluation_parameters' in self._expectations_config) and (parameter_name in self._expectations_config['evaluation_parameters'])): return self._expectations_config['evaluation_parameters'][parameter_name] else: return default_value
Get an evaluation parameter value that has been stored in meta. Args: parameter_name (string): The name of the parameter to store. default_value (any): The default value to be returned if the parameter is not found. Returns: The current value of the evaluation parameter.
codesearchnet
def _send_data(self, data, start_offset, file_len): headers = {} end_offset = ((start_offset + len(data)) - 1) if data: headers['content-range'] = ('bytes %d-%d/%s' % (start_offset, end_offset, file_len)) else: headers['content-range'] = ('bytes */%s' % file_len) (status, response_headers, content) = self._api.put_object(self._path_with_token, payload=data, headers=headers) if (file_len == '*'): expected = 308 else: expected = 200 errors.check_status(status, [expected], self._path, headers, response_headers, content, {'upload_path': self._path_with_token})
Send the block to the storage service. This is a utility method that does not modify self. Args: data: data to send in str. start_offset: start offset of the data in relation to the file. file_len: an int if this is the last data to append to the file. Otherwise '*'.
codesearchnet
def all_v2_summary_ops(): if context.executing_eagerly(): return None return ops.get_collection(ops.GraphKeys._SUMMARY_COLLECTION)
Returns all V2-style summary ops defined in the current default graph. This includes ops from TF 2.0 tf.summary and TF 1.x tf.contrib.summary (except for `tf.contrib.summary.graph` and `tf.contrib.summary.import_event`), but does *not* include TF 1.x tf.summary ops. Returns: List of summary ops, or None if called under eager execution.
github-repos
def build_inception_graph(self): image_str_tensor = tf.placeholder(tf.string, shape=[None]) image = tf.map_fn(_util.decode_and_resize, image_str_tensor, back_prop=False, dtype=tf.uint8) image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) with slim.arg_scope(_inceptionlib.inception_v3_arg_scope()): (_, end_points) = _inceptionlib.inception_v3(image, is_training=False) inception_embeddings = end_points['PreLogits'] inception_embeddings = tf.squeeze(inception_embeddings, [1, 2], name='SpatialSqueeze') return (image_str_tensor, inception_embeddings)
Builds an inception graph and add the necessary input & output tensors. To use other Inception models modify this file. Also preprocessing must be modified accordingly. See tensorflow/contrib/slim/python/slim/nets/inception_v3.py for details about InceptionV3. Returns: input_jpeg: A placeholder for jpeg string batch that allows feeding the Inception layer with image bytes for prediction. inception_embeddings: The embeddings tensor.
codesearchnet
def set_dataset_date(self, dataset_date, dataset_end_date=None, date_format=None): parsed_date = self._parse_date(dataset_date, date_format) if dataset_end_date is None: self.set_dataset_date_from_datetime(parsed_date) else: parsed_end_date = self._parse_date(dataset_end_date, date_format) self.set_dataset_date_from_datetime(parsed_date, parsed_end_date)
Set dataset date from string using specified format. If no format is supplied, the function will guess. For unambiguous formats, this should be fine. Args: dataset_date (str): Dataset date string dataset_end_date (Optional[str]): Dataset end date string date_format (Optional[str]): Date format. If None is given, will attempt to guess. Defaults to None. Returns: None
juraj-google-style
def add(self, payload=None): try: db = self._client[self.database] col = db[WORKFLOW_DATA_COLLECTION_NAME] return str(col.insert_one({ DataStoreDocumentSection.Meta: payload if isinstance(payload, dict) else {}, DataStoreDocumentSection.Data: {} }).inserted_id) except ConnectionFailure: raise DataStoreNotConnected()
Adds a new document to the data store and returns its id. Args: payload (dict): Dictionary of initial data that should be stored in the new document in the meta section. Raises: DataStoreNotConnected: If the data store is not connected to the server. Returns: str: The id of the newly created document.
juraj-google-style
def _countIdentities(self, nodes): return len([x for x in nodes if x.op == 'Identity'])
Count the number of "Identity" op types in the list of proto nodes. Args: nodes: NodeDefs of the graph. Returns: The number of nodes with op type "Identity" found.
github-repos
def add_comment(self, app_id, record_id, field_id, message): self._swimlane.request('post', 'app/{0}/record/{1}/{2}/comment'.format(app_id, record_id, field_id), json={'message': message, 'createdDate': pendulum.now().to_rfc3339_string()})
Directly add a comment to a record without retrieving the app or record first Warnings: Does not perform any app, record, or field ID validation Args: app_id (str): Full App ID string record_id (str): Full parent Record ID string field_id (str): Full field ID to target reference field on parent Record string message (str): New comment message body
codesearchnet
def load_user_config(vcs): config_path = os.path.join(vcs.path, 'eci.yaml') if (not os.path.exists(config_path)): raise ConfigNotFoundError with open(config_path, 'r') as f: try: config = yaml.safe_load(f) except yaml.YAMLError: raise ConfigFormatError if (not isinstance(config, dict)): raise ConfigFormatError for (k, v) in _default_config.iteritems(): config.setdefault(k, v) for (k, v) in _config_types.iteritems(): if (not isinstance(config[k], v)): raise ConfigFormatError return config
Load the user config Args: vcs (easyci.vcs.base.Vcs) - the vcs object for the current project Returns: dict - the config Raises: ConfigFormatError ConfigNotFoundError
codesearchnet
def should_collapse(self, value: Any, name: Optional[str], root_path: KeyPath, parent: Any, collapse_level: Optional[int]=1, uncollapse: Union[KeyPathSet, base.NodeFilter]=None) -> bool: if collapse_level is None or collapse_level > 0: return False if callable(uncollapse): return not uncollapse(root_path, value, parent) if root_path in uncollapse: return False if name is not None and isinstance(value, (bool, int, float, str, type(None))): return False return True
Returns True if the object should be collapsed. Args: value: The value to render. name: The referred field name of the value. root_path: The root path of the value. parent: The parent of the value. collapse_level: The level of collapsing. If 0, the object will be collapsed (without showing its sub-nodes). If 1, the immediate sub-nodes will be shown in collapsed form. If None, all sub-tree will be shown. uncollapse: Indivdual nodes to uncollapse. It can be a KeyPathSet or a function that takes (root_path, value, parent) and returns a KeyPathSet. Returns: True if the object should be collapsed.
github-repos
def _peer_get_bfd(self, tx, rx, multiplier): tx = self._callback(tx, handler='get_config') rx = self._callback(rx, handler='get_config') multiplier = self._callback(multiplier, handler='get_config') tx = pynos.utilities.return_xml(str(tx)) rx = pynos.utilities.return_xml(str(rx)) multiplier = pynos.utilities.return_xml(str(multiplier)) config = pynos.utilities.merge_xml(tx, rx) return pynos.utilities.merge_xml(config, multiplier)
Get and merge the `bfd` config from global BGP. You should not use this method. You probably want `BGP.bfd`. Args: tx: XML document with the XML to get the transmit interval. rx: XML document with the XML to get the receive interval. multiplier: XML document with the XML to get the interval multiplier. Returns: Merged XML document. Raises: None
codesearchnet
def adjoint(self, name: str='adjoint') -> 'LinearOperator': if self.is_self_adjoint is True: return self with self._name_scope(name): return self._linop_adjoint()
Returns the adjoint of the current `LinearOperator`. Given `A` representing this `LinearOperator`, return `A*`. Note that calling `self.adjoint()` and `self.H` are equivalent. Args: name: A name for this `Op`. Returns: `LinearOperator` which represents the adjoint of this `LinearOperator`.
github-repos
def slice_inputs(indices_dataset, inputs): inputs = array_slicing.convert_to_sliceable(self._inputs, target_backend='tensorflow') inputs = tree.lists_to_tuples(inputs) dataset = tf.data.Dataset.zip((indices_dataset, tf.data.Dataset.from_tensors(inputs).repeat())) def grab_batch(i, data): def grab_one(x): if isinstance(x, array_slicing.TensorflowSparseWrapper): return array_slicing.slice_tensorflow_sparse_wrapper(x, i) if isinstance(x, (list, tuple, dict)): return None if tf.is_tensor(x): return tf.gather(x, i, axis=0) return x return tree.traverse(grab_one, data) dataset = dataset.map(grab_batch, num_parallel_calls=tf.data.AUTOTUNE) options = tf.data.Options() options.experimental_optimization.apply_default_optimizations = False if self._shuffle: options.experimental_external_state_policy = tf.data.experimental.ExternalStatePolicy.IGNORE dataset = dataset.with_options(options) return dataset
Slice inputs into a Dataset of batches. Given a Dataset of batch indices and the unsliced inputs, this step slices the inputs in a parallelized fashion and produces a dataset of input batches. Args: indices_dataset: A Dataset of batched indices. inputs: A python data structure that contains the inputs, targets, and possibly sample weights. Returns: A Dataset of input batches matching the batch indices.
github-repos