code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def wait_for_prompt(self, timeout_s=None): with self._cond: if self._prompt: if timeout_s is None: self._cond.wait(3600 * 24 * 365) else: self._cond.wait(timeout_s) if self._response is None: raise PromptUnansweredError return self._response
Wait for the user to respond to the current prompt. Args: timeout_s: Seconds to wait before raising a PromptUnansweredError. Returns: A string response, or the empty string if text_input was False. Raises: PromptUnansweredError: Timed out waiting for the user to respond.
juraj-google-style
def _calc_rms(mol1, mol2, clabel1, clabel2): obmol1 = BabelMolAdaptor(mol1).openbabel_mol obmol2 = BabelMolAdaptor(mol2).openbabel_mol cmol1 = ob.OBMol() for i in clabel1: oa1 = obmol1.GetAtom(i) a1 = cmol1.NewAtom() a1.SetAtomicNum(oa1.GetAtomicNum()) a1.SetVector(oa1.GetVector()) cmol2 = ob.OBMol() for i in clabel2: oa2 = obmol2.GetAtom(i) a2 = cmol2.NewAtom() a2.SetAtomicNum(oa2.GetAtomicNum()) a2.SetVector(oa2.GetVector()) aligner = ob.OBAlign(True, False) aligner.SetRefMol(cmol1) aligner.SetTargetMol(cmol2) aligner.Align() return aligner.GetRMSD()
Calculate the RMSD. Args: mol1: The first molecule. OpenBabel OBMol or pymatgen Molecule object mol2: The second molecule. OpenBabel OBMol or pymatgen Molecule object clabel1: The atom indices that can reorder the first molecule to uniform atom order clabel1: The atom indices that can reorder the second molecule to uniform atom order Returns: The RMSD.
juraj-google-style
def to_json_file(self, json_file_path: Union[str, os.PathLike]): with open(json_file_path, 'w', encoding='utf-8') as writer: config_dict = self.to_dict() json_string = json.dumps(config_dict, indent=2, sort_keys=True) + '\n' writer.write(json_string)
Save this instance to a JSON file. Args: json_file_path (Union[str, os.PathLike]): Path to the JSON file in which this configuration instance's parameters will be saved.
github-repos
def quota(self): response = self._call(mm_calls.ClientState, self.uploader_id) client_state = response.body.clientstate_response return (client_state.total_track_count, client_state.locker_track_limit)
Get the uploaded track count and allowance. Returns: tuple: Number of uploaded tracks, number of tracks allowed.
codesearchnet
def Get(self, request, global_params=None): config = self.GetMethodConfig('Get') return self._RunMethod(config, request, global_params=global_params)
Gets information about a snapshot. Args: request: (DataflowProjectsSnapshotsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Snapshot) The response message.
github-repos
def make_message(self, data): data = self.codec.loads(data) msg = Message(data.get('data'), *data.get('args', []), **data.get('kwargs', {})) msg.meta.update(data.get('meta')) self.trigger('make_message', data, msg) return msg
Create a Message instance from data, data will be loaded via munge according to the codec specified in the transport_content_type attribute Returns: Message: message object
codesearchnet
def _replace_tensors_by_numpy_ndarrays(repr_ds_map: rd.RepresentativeDatasetMapping) -> None: with session.Session() as sess: for signature_def_key in repr_ds_map: ds = repr_ds_map[signature_def_key] repr_ds_map[signature_def_key] = rd.replace_tensors_by_numpy_ndarrays(ds, sess)
Replaces tf.Tensors by their evaluated numpy arrays. This assumes that tf.Tensors in representative samples are created in the default Graph. It will raise an error if tensors are created in a different graph. Args: repr_ds_map: SignatureDef key -> RepresentativeDataset mapping.
github-repos
def calc_crc16(buf): crc_table = [0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241, 0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440, 0xcc01, 0x0cc0, 0x0d80, 0xcd41, 0x0f00, 0xcfc1, 0xce81, 0x0e40, 0x0a00, 0xcac1, 0xcb81, 0x0b40, 0xc901, 0x09c0, 0x0880, 0xc841, 0xd801, 0x18c0, 0x1980, 0xd941, 0x1b00, 0xdbc1, 0xda81, 0x1a40, 0x1e00, 0xdec1, 0xdf81, 0x1f40, 0xdd01, 0x1dc0, 0x1c80, 0xdc41, 0x1400, 0xd4c1, 0xd581, 0x1540, 0xd701, 0x17c0, 0x1680, 0xd641, 0xd201, 0x12c0, 0x1380, 0xd341, 0x1100, 0xd1c1, 0xd081, 0x1040, 0xf001, 0x30c0, 0x3180, 0xf141, 0x3300, 0xf3c1, 0xf281, 0x3240, 0x3600, 0xf6c1, 0xf781, 0x3740, 0xf501, 0x35c0, 0x3480, 0xf441, 0x3c00, 0xfcc1, 0xfd81, 0x3d40, 0xff01, 0x3fc0, 0x3e80, 0xfe41, 0xfa01, 0x3ac0, 0x3b80, 0xfb41, 0x3900, 0xf9c1, 0xf881, 0x3840, 0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41, 0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40, 0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640, 0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041, 0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240, 0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441, 0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41, 0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840, 0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41, 0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40, 0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640, 0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041, 0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241, 0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440, 0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40, 0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841, 0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40, 0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41, 0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641, 0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040] crc = 0xffff for c in buf: index = (crc ^ ord(c)) & 0xff crct = crc_table[index] crc = (crc >> 8) ^ crct crc = (crc << 8) | (crc >> 8) crc &= 0x7F7F return "%04x" % crc
Drop in pure python replacement for ekmcrc.c extension. Args: buf (bytes): String or byte array (implicit Python 2.7 cast) Returns: str: 16 bit CRC per EKM Omnimeters formatted as hex string.
juraj-google-style
def _get_course_content(course_id, course_url, sailthru_client, site_code, config): cache_key = "{}:{}".format(site_code, course_url) response = cache.get(cache_key) if not response: try: sailthru_response = sailthru_client.api_get("content", {"id": course_url}) if not sailthru_response.is_ok(): response = {} else: response = sailthru_response.json cache.set(cache_key, response, config.get('SAILTHRU_CACHE_TTL_SECONDS')) except SailthruClientError: response = {} if not response: logger.error('Could not get course data from Sailthru on enroll/purchase event. ' 'Calling Ecommerce Course API to get course info for enrollment confirmation email') response = _get_course_content_from_ecommerce(course_id, site_code=site_code) if response: cache.set(cache_key, response, config.get('SAILTHRU_CACHE_TTL_SECONDS')) return response
Get course information using the Sailthru content api or from cache. If there is an error, just return with an empty response. Arguments: course_id (str): course key of the course course_url (str): LMS url for course info page. sailthru_client (object): SailthruClient site_code (str): site code config (dict): config options Returns: course information from Sailthru
juraj-google-style
def asdict_with_event(self): event = threading.Event() with self._lock: self._update_events.add(event) return (self._asdict(), event)
Get a dict representation of this object and an update event. Returns: state: Dict representation of this object. update_event: An event that is guaranteed to be set if an update has been triggered since the returned dict was generated.
codesearchnet
def make_pool3d_tests(pool_op): def f(options, expected_tf_failures=0): test_parameters = [{'ksize': [[1, 1, 1, 1, 1], [1, 2, 2, 2, 1], [1, 2, 3, 4, 1]], 'strides': [[1, 1, 1, 1, 1], [1, 2, 1, 2, 1], [1, 2, 2, 4, 1]], 'input_shape': [[1, 1, 1, 1, 1], [1, 16, 15, 14, 1], [3, 16, 15, 14, 3]], 'padding': ['SAME', 'VALID'], 'data_format': ['NDHWC']}] def build_graph(parameters): input_tensor = tf.compat.v1.placeholder(dtype=tf.float32, name='input', shape=parameters['input_shape']) out = pool_op(input_tensor, ksize=parameters['ksize'], strides=parameters['strides'], data_format=parameters['data_format'], padding=parameters['padding']) return ([input_tensor], [out]) def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data(tf.float32, parameters['input_shape']) return ([input_values], sess.run(outputs, feed_dict=dict(zip(inputs, [input_values])))) extra_convert_options = ExtraConvertOptions() extra_convert_options.allow_custom_ops = True make_zip_of_tests(options, test_parameters, build_graph, build_inputs, extra_convert_options, expected_tf_failures=expected_tf_failures) return f
Make a set of tests to do pooling. Args: pool_op: TensorFlow pooling operation to test i.e. `tf.nn.max_pool3d`. Returns: A function representing the true generator (after curried pool_op).
github-repos
def add_string_pairs_from_text_view_element(xib_file, results, text_view, special_ui_components_prefix): text_view_entry_comment = extract_element_internationalized_comment(text_view) if text_view_entry_comment is None: return if text_view.hasAttribute('usesAttributedText') and text_view.attributes['usesAttributedText'].value == 'YES': add_string_pairs_from_attributed_ui_element(results, text_view, text_view_entry_comment) else: try: text_view_entry_key = text_view.attributes['text'].value results.append((text_view_entry_key, text_view_entry_comment + ' default text value')) except KeyError: pass warn_if_element_not_of_class(text_view, 'TextView', special_ui_components_prefix)
Adds string pairs from a textview element. Args: xib_file (str): Path to the xib file. results (list): The list to add the results to. text_view(element): The textview element from the xib, to extract the string pairs from. special_ui_components_prefix(str): A custom prefix for internationalize component to allow (default is only JT)
juraj-google-style
def acquire(self, uuid_path, subnet=None): try: with self._create_lock(): if subnet: LOGGER.debug('Trying to acquire subnet {}'.format(subnet)) acquired_subnet = self._acquire_given_subnet(uuid_path, subnet) else: LOGGER.debug('Trying to acquire a free subnet') acquired_subnet = self._acquire(uuid_path) return acquired_subnet except (utils.TimerException, IOError): raise LagoSubnetLeaseLockException(self.path)
Lease a free subnet for the given uuid path. If subnet is given, try to lease that subnet, otherwise try to lease a free subnet. Args: uuid_path (str): Path to the uuid file of a :class:`lago.Prefix` subnet (str): A subnet to lease. Returns: netaddr.IPAddress: An object which represents the subnet. Raises: LagoSubnetLeaseException: 1. If this store is full 2. If the requested subnet is already taken. LagoSubnetLeaseLockException: If the lock to self.path can't be acquired.
codesearchnet
def interpolate(features, hparams, decode_hp): (inputs, targets) = (features['inputs'], features['targets']) inputs = tf.unstack(inputs, axis=1) targets = tf.unstack(targets, axis=1) coeffs = np.linspace(0.0, 1.0, decode_hp.num_interp) (first_frame, last_frame) = (inputs[0], targets[(- 1)]) (first_top_z, first_level_eps) = frame_to_latents(first_frame, hparams) (last_top_z, last_level_eps) = frame_to_latents(last_frame, hparams) first_lats = (first_level_eps + [first_top_z]) last_lats = (last_level_eps + [last_top_z]) interp_lats = [] lat_iterator = enumerate(zip(first_lats, last_lats)) for (level_ind, (first_lat, last_lat)) in lat_iterator: if (level_ind in decode_hp.level_interp): if (decode_hp.channel_interp == 'all'): interp_lat = glow_ops.linear_interpolate(first_lat, last_lat, coeffs) else: interp_lat = glow_ops.linear_interpolate_rank(first_lat, last_lat, coeffs, decode_hp.rank_interp) else: interp_lat = tf.tile(first_lat, [decode_hp.num_interp, 1, 1, 1]) interp_lats.append(interp_lat) level_eps_interp = interp_lats[:(hparams.n_levels - 1)] z_top_interp = interp_lats[(- 1)] images = latents_to_frames(z_top_interp, level_eps_interp, hparams) return (images, first_frame, last_frame)
Interpolate between the first input frame and last target frame. Args: features: dict of tensors hparams: HParams, training hparams. decode_hp: HParams, decode hparams. Returns: images: interpolated images, 4-D Tensor, shape=(num_interp, H, W, C) first_frame: image, 3-D Tensor, shape=(1, H, W, C) last_frame: image, 3-D Tensor, shape=(1, H, W, C)
codesearchnet
def write(self, obj: BioCDocument or BioCPassage or BioCSentence): if self.level == DOCUMENT and not isinstance(obj, BioCDocument): raise ValueError if self.level == PASSAGE and not isinstance(obj, BioCPassage): raise ValueError if self.level == SENTENCE and not isinstance(obj, BioCSentence): raise ValueError self.writer.write(BioCJSONEncoder().default(obj))
Encode and write a single object. Args: obj: an instance of BioCDocument, BioCPassage, or BioCSentence Returns:
juraj-google-style
def draw(vertexes, edges): Xs = [] Ys = [] sug = _build_sugiyama_layout(vertexes, edges) for vertex in sug.g.sV: Xs.append(vertex.view.xy[0] - vertex.view.w / 2.0) Xs.append(vertex.view.xy[0] + vertex.view.w / 2.0) Ys.append(vertex.view.xy[1]) Ys.append(vertex.view.xy[1] + vertex.view.h) for edge in sug.g.sE: for x, y in edge.view._pts: Xs.append(x) Ys.append(y) minx = min(Xs) miny = min(Ys) maxx = max(Xs) maxy = max(Ys) canvas_cols = int(math.ceil(math.ceil(maxx) - math.floor(minx))) + 1 canvas_lines = int(round(maxy - miny)) canvas = AsciiCanvas(canvas_cols, canvas_lines) for edge in sug.g.sE: assert len(edge.view._pts) > 1 for index in range(1, len(edge.view._pts)): start = edge.view._pts[index - 1] end = edge.view._pts[index] start_x = int(round(start[0] - minx)) start_y = int(round(start[1] - miny)) end_x = int(round(end[0] - minx)) end_y = int(round(end[1] - miny)) assert start_x >= 0 assert start_y >= 0 assert end_x >= 0 assert end_y >= 0 canvas.line(start_x, start_y, end_x, end_y, "*") for vertex in sug.g.sV: x = vertex.view.xy[0] - vertex.view.w / 2.0 y = vertex.view.xy[1] canvas.box( int(round(x - minx)), int(round(y - miny)), vertex.view.w, vertex.view.h, ) canvas.text( int(round(x - minx)) + 1, int(round(y - miny)) + 1, vertex.data ) canvas.draw()
Build a DAG and draw it in ASCII. Args: vertexes (list): list of graph vertexes. edges (list): list of graph edges.
juraj-google-style
def cardinal(self, to): return sum((m.cardinal(to) for m in self.submodules))
Return the number of dependencies of this package to the given node. Args: to (Package/Module): target node. Returns: int: number of dependencies.
codesearchnet
def _ReadCharacterDataTypeDefinition(self, definitions_registry, definition_values, definition_name, is_member=False): return self._ReadFixedSizeDataTypeDefinition(definitions_registry, definition_values, data_types.CharacterDefinition, definition_name, self._SUPPORTED_ATTRIBUTES_FIXED_SIZE_DATA_TYPE, is_member=is_member, supported_size_values=(1, 2, 4))
Reads a character data type definition. Args: definitions_registry (DataTypeDefinitionsRegistry): data type definitions registry. definition_values (dict[str, object]): definition values. definition_name (str): name of the definition. is_member (Optional[bool]): True if the data type definition is a member data type definition. Returns: CharacterDataTypeDefinition: character data type definition.
codesearchnet
def __init__(self, unique_identifier=None): super(ActivateRequestPayload, self).__init__( tag=enums.Tags.REQUEST_PAYLOAD) self.unique_identifier = unique_identifier self.validate()
Construct a ActivateRequestPayload object. Args: unique_identifier (UniqueIdentifier): The UUID of a managed cryptographic object.
juraj-google-style
def greater_equal(x, y): return math_ops.greater_equal(x, y)
Element-wise truth value of (x >= y). Args: x: Tensor or variable. y: Tensor or variable. Returns: A bool tensor.
github-repos
def save(obj, filename, protocol=4): with open(filename, 'wb') as f: pickle.dump(obj, f, protocol=protocol)
Serialize an object to disk using pickle protocol. Args: obj: The object to serialize. filename: Path to the output file. protocol: Version of the pickle protocol.
codesearchnet
def xresnet50_2(pretrained=False, **kwargs): model = XResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet50'])) return model
Constructs a XResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
juraj-google-style
def CheckHashes(hash_ids): return { k: bool(v) for k, v in data_store.REL_DB.ReadHashBlobReferences(hash_ids).items() }
Checks if files with given hashes are present in the file store. Args: hash_ids: A list of SHA256HashID objects. Returns: A dict where SHA256HashID objects are keys. Corresponding values may be False (if hash id is not present) or True if it is not present.
juraj-google-style
def is_expired(self): expiration_time = (self.created_at + datetime.timedelta(days=1)) return (timezone.now() > expiration_time)
Determine if the confirmation has expired. Returns: bool: ``True`` if the confirmation has expired and ``False`` otherwise.
codesearchnet
def revnet_step(name, x, hparams, reverse=True): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): if hparams.coupling == "additive": coupling_layer = functools.partial( additive_coupling, name="additive", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) else: coupling_layer = functools.partial( affine_coupling, name="affine", reverse=reverse, mid_channels=hparams.coupling_width, activation=hparams.activation, dropout=hparams.coupling_dropout) ops = [ functools.partial(actnorm, name="actnorm", reverse=reverse), functools.partial(invertible_1x1_conv, name="invertible", reverse=reverse), coupling_layer] if reverse: ops = ops[::-1] objective = 0.0 for op in ops: x, curr_obj = op(x=x) objective += curr_obj return x, objective
One step of glow generative flow. Actnorm + invertible 1X1 conv + affine_coupling. Args: name: used for variable scope. x: input hparams: coupling_width is the only hparam that is being used in this function. reverse: forward or reverse pass. Returns: z: Output of one step of reversible flow.
juraj-google-style
def from_json(cls, json): params = dict(((str(k), v) for (k, v) in json.iteritems() if (k in cls._PARAMS))) if (cls._OFFSET_PARAM in params): params[cls._OFFSET_PARAM] = base64.b64decode(params[cls._OFFSET_PARAM]) return cls(**params)
Creates an instance of the InputReader for the given input shard's state. Args: json: The InputReader state as a dict-like object. Returns: An instance of the InputReader configured using the given JSON parameters.
codesearchnet
def write_build_info(filename, key_value_list): build_info = {} if cuda_config: build_info.update(cuda_config.config) if tensorrt_config: build_info.update(tensorrt_config.config) for arg in key_value_list: key, value = arg.split('=') if value.lower() == 'true': build_info[key] = True elif value.lower() == 'false': build_info[key] = False else: build_info[key] = value.format(**build_info) sorted_build_info_pairs = sorted(build_info.items()) contents = '\n open(filename, 'w').write(contents)
Writes a Python that describes the build. Args: filename: filename to write to. key_value_list: A list of "key=value" strings that will be added to the module's "build_info" dictionary as additional entries.
github-repos
def _send_socket_request(self, xml_request): def to_variant(number): buff = [] while number: byte = number % 128 number = number if number > 0: byte |= 0x80 buff.append(chr(byte)) return ''.join(buff) def from_variant(stream): used = 0 number = 0 q = 1 while True: byte = ord(stream[used]) used += 1 number += q * (byte & 0x7F) q *= 128 if byte&0x80==0: break return (number, used) def encode_fields(fields): chunks = [] for field_id, message in fields.items(): chunks.append(to_variant((field_id << 3) | 2)) chunks.append(to_variant(len(message))) chunks.append(message) return ''.join(chunks) def decode_fields(stream): fields = {} offset = 0 stream_lenght = len(stream) while offset<stream_lenght: field_header, used = from_variant(stream[offset:]) offset += used wire_type = field_header & 0x07 field_id = field_header >> 3 if wire_type==2: message_lenght, used = from_variant(stream[offset:]) offset += used fields[field_id] = stream[offset:offset+message_lenght] offset += message_lenght elif wire_type==0: fields[field_id], used = from_variant(stream[offset:]) offset += used elif wire_type==1: fields[field_id] = stream[offset:offset+8] offset += 8 elif wire_type==3: raise ConnectionError() elif wire_type==4: raise ConnectionError() elif wire_type==5: fields[field_id] = stream[offse:offset+4] offset += 4 else: raise ConnectionError() return fields def make_header(lenght): result = [] result.append(chr((lenght & 0x000000FF))) result.append(chr((lenght & 0x0000FF00) >> 8)) result.append(chr((lenght & 0x00FF0000) >> 16)) result.append(chr((lenght & 0xFF000000) >> 24)) return '\t\t\x00\x00' + ''.join(result) def parse_header(header): if len(header) == 8 and header[0] == '\t' and header[1] == '\t' and\ header[2] == '\00' and header[3] == '\00': return ord(header[4]) | (ord(header[5]) << 8) |\ (ord(header[6]) << 16) | (ord(header[7]) << 24) else: raise ConnectionError() def socket_send(data): sent_bytes = 0 failures = 0 total_bytes = len(data) while sent_bytes < total_bytes: sent = self._connection.send(data[sent_bytes:]) if sent == 0: failures += 1 if failures > 5: raise ConnectionError() continue sent_bytes += sent def socket_recieve(lenght): total_recieved = 0 failures = 5 recieved_chunks = [] while total_recieved<lenght: chunk = self._connection.recv(lenght-total_recieved) if not chunk: failures += 1 if failures > 5: raise ConnectionError() continue recieved_chunks.append(chunk) total_recieved += len(chunk) return ''.join(recieved_chunks) encoded_message = encode_fields({1: xml_request, 2: self._storage if self._storage else "special:detect-storage"}) header = make_header(len(encoded_message)) try: socket_send(header+encoded_message) except (ConnectionError, socket.error): self._connection.close() self._open_connection() socket_send(header+encoded_message) header = socket_recieve(8) lenght = parse_header(header) encoded_response = socket_recieve(lenght) response = decode_fields(encoded_response) return response[1]
Send a request via protobuf. Args: xml_request -- A fully formed xml request string for the CPS. Returns: The raw xml response string.
juraj-google-style
def checkTUN(self): packet = self._TUN._tun.read(self._TUN._tun.mtu) return packet
Checks the TUN adapter for data and returns any that is found. Returns: packet: Data read from the TUN adapter
codesearchnet
def with_contextual_override(func: Callable[..., Any]) -> Callable[..., Any]: with contextual_override() as current_context: pass def _func(*args, **kwargs) -> Any: with contextual_override(**current_context): return func(*args, **kwargs) return _func
Wraps a user function with the access to the current contextual override. The wrapped function can be called from another thread. Args: func: The user function to be wrapped. Returns: A wrapper function that have the access to the current contextual override, which can be called from another thread.
github-repos
def __init__(self, auth, api='/logs/search', **kwargs): self.api = api self.log = auth.log try: self.url = '%s%s' % (auth.get_url(), self.api) except AttributeError: self.url = 'https: try: self.auth = auth.get_auth() except AttributeError: self.auth = auth
Search the logs. Args: auth (Client): Authentication object api (str): Api endpath
juraj-google-style
def read(cls, data): if isinstance(data, OrderedDict): return cls(data) elif isinstance(data, basestring)\ and data.startswith(("http: return cls(request(data)) elif isinstance(data, basestring): try: json_dict = json.loads(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise else: try: json_dict = json.load(data, object_pairs_hook=OrderedDict) return cls(json_dict) except ValueError: raise
Reads data from URL or OrderedDict. Args: data: can be a URL pointing to a JSONstat file, a JSON string or an OrderedDict. Returns: An object of class Collection populated with data.
juraj-google-style
def netmiko_send_config( task: Task, config_commands: Optional[List[str]] = None, config_file: Optional[str] = None, **kwargs: Any ) -> Result: net_connect = task.host.get_connection("netmiko", task.nornir.config) net_connect.enable() if config_commands: result = net_connect.send_config_set(config_commands=config_commands, **kwargs) elif config_file: result = net_connect.send_config_from_file(config_file=config_file, **kwargs) else: raise ValueError("Must specify either config_commands or config_file") return Result(host=task.host, result=result, changed=True)
Execute Netmiko send_config_set method (or send_config_from_file) Arguments: config_commands: Commands to configure on the remote network device. config_file: File to read configuration commands from. kwargs: Additional arguments to pass to method. Returns: Result object with the following attributes set: * result (``str``): string showing the CLI from the configuration changes.
juraj-google-style
def __type_to_tag(self, type_: Type) -> str: if type_ in scalar_type_to_tag: return scalar_type_to_tag[type_] if is_generic_list(type_): return 'tag:yaml.org,2002:seq' if is_generic_dict(type_): return 'tag:yaml.org,2002:map' if type_ in self._registered_classes.values(): return '!{}'.format(type_.__name__) raise RuntimeError(( 'Unknown type {} in type_to_tag,' ' please report a YAtiML bug.').format(type_))
Convert a type to the corresponding YAML tag. Args: type_: The type to convert Returns: A string containing the YAML tag.
juraj-google-style
def nhapDaiHan(self, cucSo, gioiTinh): for cung in self.thapNhiCung: khoangCach = khoangCachCung(cung.cungSo, self.cungMenh, gioiTinh) cung.daiHan((cucSo + (khoangCach * 10))) return self
Nhap dai han Args: cucSo (TYPE): Description gioiTinh (TYPE): Description Returns: TYPE: Description
codesearchnet
def setup(logdir='log'): logger = logging.getLogger() logger.setLevel(logging.DEBUG) logdir = os.path.normpath(logdir) if (not os.path.exists(logdir)): os.makedirs(logdir) t = datetime.datetime.now() logfile = '{year:04d}{mon:02d}{day:02d}-{hour:02d}{min:02d}{sec:02d}.log'.format(year=t.year, mon=t.month, day=t.day, hour=t.hour, min=t.minute, sec=t.second) logfile = os.path.join(logdir, logfile) filehandler = logging.handlers.RotatingFileHandler(filename=logfile, maxBytes=((10 * 1024) * 1024), backupCount=100) filehandler.setLevel(logging.DEBUG) fileformatter = logging.Formatter('%(asctime)s %(levelname)-8s: %(message)s') filehandler.setFormatter(fileformatter) logger.addHandler(filehandler) streamhandler = logging.StreamHandler() streamhandler.setLevel(logging.WARNING) streamformatter = logging.Formatter('%(levelname)s: %(message)s') streamhandler.setFormatter(streamformatter) logger.addHandler(streamhandler)
Set up dual logging to console and to logfile. When this function is called, it first creates the given directory. It then creates a logfile and passes all log messages to come to it. The logfile name encodes the date and time when it was created, for example "20181115-153559.txt". All messages with a log level of at least "WARNING" are also forwarded to the console. Args: logdir: path of the directory where to store the log files. Both a relative or an absolute path may be specified. If a relative path is specified, it is interpreted relative to the working directory. If no directory is given, the logs are written to a folder called "log" in the working directory.
codesearchnet
def remove_sonos_playlist(self, sonos_playlist): object_id = getattr(sonos_playlist, 'item_id', sonos_playlist) return self.contentDirectory.DestroyObject([('ObjectID', object_id)])
Remove a Sonos playlist. Args: sonos_playlist (DidlPlaylistContainer): Sonos playlist to remove or the item_id (str). Returns: bool: True if succesful, False otherwise Raises: SoCoUPnPException: If sonos_playlist does not point to a valid object.
juraj-google-style
def _ParseValueData(self, knowledge_base, value_data): if not isinstance(value_data, py2to3.UNICODE_TYPE): raise errors.PreProcessFail( 'Unsupported Windows Registry value type: {0:s} for ' 'artifact: {1:s}.'.format( type(value_data), self.ARTIFACT_DEFINITION_NAME)) if not knowledge_base.GetHostname(): hostname_artifact = artifacts.HostnameArtifact(name=value_data) knowledge_base.SetHostname(hostname_artifact)
Parses Windows Registry value data for a preprocessing attribute. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. value_data (object): Windows Registry value data. Raises: errors.PreProcessFail: if the preprocessing fails.
juraj-google-style
def add_backend_policy(self, json_data): env = boto3.session.Session(profile_name=self.env, region_name=self.region) elbclient = env.client('elb') for job in json.loads(json_data)['job']: for listener in job['listeners']: instance_port = listener['internalPort'] backend_policy_list = listener['backendPolicies'] if backend_policy_list: LOG.info('Adding backend server policies: %s', backend_policy_list) elbclient.set_load_balancer_policies_for_backend_server( LoadBalancerName=self.app, InstancePort=instance_port, PolicyNames=backend_policy_list)
Attaches backend server policies to an ELB Args: json_data (json): return data from ELB upsert
juraj-google-style
def click_exists(self, timeout=0): e = self.get(timeout=timeout, raise_error=False) if e is None: return False e.click() return True
Wait element and perform click Args: timeout (float): timeout for wait Returns: bool: if successfully clicked
juraj-google-style
def countriesdata(cls, use_live=True): if cls._countriesdata is None: countries = None if use_live: try: countries = hxl.data(cls._ochaurl) except IOError: logger.exception('Download from OCHA feed failed! Falling back to stored file.') if countries is None: countries = hxl.data( script_dir_plus_file('Countries & Territories Taxonomy MVP - C&T Taxonomy with HXL Tags.csv', Country), allow_local=True) cls.set_countriesdata(countries) return cls._countriesdata
Read countries data from OCHA countries feed (falling back to file) Args: use_live (bool): Try to get use latest data from web rather than file in package. Defaults to True. Returns: List[Dict[Dict]]: Countries dictionaries
juraj-google-style
def as_saver_def(self): return self.saver_def
Generates a `SaverDef` representation of this saver. Returns: A `SaverDef` proto.
github-repos
def is_mobile_number_portable_region(region_code): metadata = PhoneMetadata.metadata_for_region(region_code, None) if metadata is None: return False return metadata.mobile_number_portable_region
Returns true if the supplied region supports mobile number portability. Returns false for invalid, unknown or regions that don't support mobile number portability. Arguments: region_code -- the region for which we want to know whether it supports mobile number portability or not.
juraj-google-style
def update_with_zero_body(self, uri=None, timeout=-1, custom_headers=None): if not uri: uri = self.data['uri'] logger.debug('Update with zero length body (uri = %s)' % uri) resource_data = self._helper.do_put(uri, None, timeout, custom_headers) return resource_data
Makes a PUT request to update a resource when no request body is required. Args: uri: Allows to use a different URI other than resource URI timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. custom_headers: Allows to set custom HTTP headers. Returns: A dict with updated resource data.
juraj-google-style
def make_state_space_model(self, num_timesteps, param_vals=None, initial_state_prior=None, initial_step=0): return self._make_state_space_model(num_timesteps=num_timesteps, param_map=self._canonicalize_param_vals_as_map(param_vals), initial_state_prior=initial_state_prior, initial_step=initial_step)
Instantiate this model as a Distribution over specified `num_timesteps`. Args: num_timesteps: Python `int` number of timesteps to model. param_vals: a list of `Tensor` parameter values in order corresponding to `self.parameters`, or a dict mapping from parameter names to values. initial_state_prior: an optional `Distribution` instance overriding the default prior on the model's initial state. This is used in forecasting ("today's prior is yesterday's posterior"). initial_step: optional `int` specifying the initial timestep to model. This is relevant when the model contains time-varying components, e.g., holidays or seasonality. Returns: dist: a `LinearGaussianStateSpaceModel` Distribution object.
codesearchnet
class AlphaDropout(Layer): def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError(f'Invalid value received for argument `rate`. Expected a float value between 0 and 1. Received: rate={rate}') self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self._build_at_init() def call(self, inputs, training=False): if training and self.rate > 0: noise_shape = self._get_concrete_noise_shape(inputs, self.noise_shape) alpha = 1.6732632423543772 scale = 1.0507009873554805 alpha_p = -alpha * scale kept_idx = ops.greater_equal(ops.random.uniform(noise_shape, seed=self.seed_generator), self.rate) kept_idx = ops.cast(kept_idx, inputs.dtype) a = ((1 - self.rate) * (1 + self.rate * alpha_p ** 2)) ** (-0.5) b = -a * alpha_p * self.rate x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b return inputs def compute_output_shape(self, input_shape): return input_shape def _get_concrete_noise_shape(self, inputs, noise_shape): if noise_shape is None: return ops.shape(inputs) concrete_inputs_shape = ops.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append(concrete_inputs_shape[i] if value is None else value) return concrete_noise_shape def get_config(self): base_config = super().get_config() config = {'rate': self.rate, 'seed': self.seed, 'noise_shape': self.noise_shape} return {**base_config, **config}
Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units (SELU) by randomly setting activations to the negative saturation value. Args: rate: Float between 0 and 1. The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: 1D integer tensor representing the shape of the binary alpha dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the alpha dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding alpha dropout) or in inference mode (doing nothing).
github-repos
def __init__(self, default: typing.Optional[float]=MISSING_VALUE, min_value: typing.Optional[float]=None, max_value: typing.Optional[float]=None, is_noneable: bool=False, frozen: bool=False): super().__init__(float, default, min_value, max_value, is_noneable, frozen)
Constructor. Args: default: (Optional) default value for this spec. min_value: (Optional) minimum value of acceptable values. max_value: (Optional) maximum value of acceptable values. is_noneable: If True, None is acceptable. frozen: If True, values other than the default value is not accceptable.
github-repos
def _construct_forward_backward(self, num_doutputs): trainable_outputs = [output for output in self._func_graph.outputs[:num_doutputs] if backprop_util.IsTrainable(output)] signature = [] for t in trainable_outputs: signature.append(tensor_lib.TensorSpec(*default_gradient.shape_and_dtype(t))) def _backprop_function(*grad_ys): with ops.device(None): return gradients_util._GradientsHelper(trainable_outputs, self._func_graph.inputs, grad_ys=grad_ys, src_graph=self._func_graph) with self._func_graph.as_default(): backwards_graph = func_graph_module.FuncGraph(_backward_name(self._func_graph.name)) func_graph_module.func_graph_from_py_func(name=backwards_graph.name, python_func=_backprop_function, args=[], kwargs={}, signature=signature, func_graph=backwards_graph) backwards_graph_captures = backwards_graph.external_captures captures_from_forward = [c for c in backwards_graph_captures if not isinstance(c, ops.EagerTensor) and c.graph is self._func_graph] existing_outputs = object_identity.ObjectIdentitySet(self._func_graph.outputs) for capture in captures_from_forward: if capture not in existing_outputs: existing_outputs.add(capture) self._func_graph.outputs.append(capture) forward_function, backward_function = _create_forward_backward_with_graph(self._attrs, self._func_graph, backwards_graph) return (forward_function, backward_function)
Constructs a pair of forward and backward functions. Args: num_doutputs: The constructed backprop function will take output gradients for the first `num_doutputs` outputs of the forward function. Defaults to the number of outputs for the inference function, but when higher-order gradients are computed this will increase to include side outputs. Returns: A pair of (forward_function, backward_function): forward_function: A re-generated inference function (an AtomicFunction) to account for new side outputs, if any extra were required when building the backward pass. backward_function: A ConcreteFunction that Takes `num_doutputs` arguments and returns gradients with respect to inputs of the forward function.
github-repos
def _FormatValue(self, value, level=0): def FormatDictItem(key_value): 'Formats single dictionary item.' (key, value) = key_value return ((self._FormatValue(key, (level + 1)) + ': ') + self._FormatValue(value, (level + 1))) def LimitedEnumerate(items, formatter, level=0): 'Returns items in the specified enumerable enforcing threshold.' count = 0 limit = (self.max_sublist_items if (level > 0) else self.max_list_items) for item in items: if (count == limit): (yield '...') break (yield formatter(item)) count += 1 def FormatList(items, formatter, level=0): 'Formats a list using a custom item formatter enforcing threshold.' return ', '.join(LimitedEnumerate(items, formatter, level=level)) if isinstance(value, _PRIMITIVE_TYPES): return _TrimString(repr(value), self.max_value_len) if isinstance(value, _DATE_TYPES): return str(value) if (level > self.max_depth): return str(type(value)) if isinstance(value, dict): return (('{' + FormatList(six.iteritems(value), FormatDictItem)) + '}') if isinstance(value, _VECTOR_TYPES): return _ListTypeFormatString(value).format(FormatList(value, (lambda item: self._FormatValue(item, (level + 1))), level=level)) if isinstance(value, types.FunctionType): return ('function ' + value.__name__) if (hasattr(value, '__dict__') and value.__dict__): return self._FormatValue(value.__dict__, level) return str(type(value))
Pretty-prints an object for a logger. This function is very similar to the standard pprint. The main difference is that it enforces limits to make sure we never produce an extremely long string or take too much time. Args: value: Python object to print. level: current recursion level. Returns: Formatted string.
codesearchnet
def catch(func, *args, **kwargs): try: func(*args, **kwargs) except Exception as e: return e
Call the supplied function with the supplied arguments, catching and returning any exception that it throws. Arguments: func: the function to run. *args: positional arguments to pass into the function. **kwargs: keyword arguments to pass into the function. Returns: If the function throws an exception, return the exception. If the function does not throw an exception, return None.
codesearchnet
def cancel(self, invoice_id, **kwargs): url = "{}/{}/cancel".format(self.base_url, invoice_id) return self.post_url(url, {}, **kwargs)
Cancel an unpaid Invoice with given ID via API It can only be called on an invoice that is not in the paid state. Args: invoice_id : Id for cancel the invoice Returns: The response for the API will be the invoice entity, similar to create/update API response, with status attribute's value as cancelled
juraj-google-style
def _get_example(filepath: str, filename: str, tag: Tag, sdk: int) -> Example: context_line = tag.context_line if tag.context_line <= tag.line_start else tag.context_line - (tag.line_finish - tag.line_start) return Example(sdk=SdkEnum(sdk), tag=tag, filepath=filepath, status=STATUS_UNSPECIFIED, type=_get_object_type(filename, filepath), code=_get_content(filepath, tag.line_start, tag.line_finish), url_vcs=_get_url_vcs(filepath), context_line=context_line)
Return an Example by filepath and filename. Args: filepath: path of the example's file. filename: name of the example's file. tag: tag of the example. Returns: Parsed Example object.
github-repos
def read(self, domain, type_name, search_command, body=None): return self._request(domain, type_name, search_command, 'GET', body)
Read entry in ThreatConnect Data Store Args: domain (string): One of 'local', 'organization', or 'system'. type_name (string): This is a free form index type name. The ThreatConnect API will use this resource verbatim. search_command (string): Search command to pass to ES. body (str): JSON body
juraj-google-style
def _build(self, inputs, prev_state): input_size = inputs.get_shape()[1] weight_shape = (input_size, self._hidden_size) u_shape = (self._hidden_size, self._hidden_size) bias_shape = (self._hidden_size,) def _get_variable(name, shape): return tf.get_variable(name, shape, dtype=inputs.dtype, initializer=self._initializers.get(name), partitioner=self._partitioners.get(name), regularizer=self._regularizers.get(name)) pre_highway_wt = _get_variable(self.WT, weight_shape) pre_highway_wh = _get_variable(self.WH, weight_shape) state = prev_state for layer_index in xrange(self._num_layers): layer_str = str(layer_index) layer_wt = _get_variable((self.WT + layer_str), u_shape) layer_bt = _get_variable((self.BT + layer_str), bias_shape) layer_wh = _get_variable((self.WH + layer_str), u_shape) layer_bh = _get_variable((self.BH + layer_str), bias_shape) linear_t = (tf.matmul(state, layer_wt) + layer_bt) linear_h = (tf.matmul(state, layer_wh) + layer_bh) if (layer_index == 0): linear_t += tf.matmul(inputs, pre_highway_wt) linear_h += tf.matmul(inputs, pre_highway_wh) output_t = tf.sigmoid(linear_t) output_h = tf.tanh(linear_h) state = ((state * (1 - output_t)) + (output_h * output_t)) return (state, state)
Connects the highway core module into the graph. Args: inputs: Tensor of size `[batch_size, input_size]`. prev_state: Tensor of size `[batch_size, hidden_size]`. Returns: A tuple (output, next_state) where `output` is a Tensor of size `[batch_size, hidden_size]` and `next_state` is a Tensor of size `[batch_size, hidden_size]`. Raises: ValueError: If connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations.
codesearchnet
def get_block_details(self, block_ids): if (not hasattr(block_ids, '__iter__')): block_ids = [block_ids] for _id in block_ids: block_key = self._db.get_block(_id)[0] block_data = self._db.get_all_field_value(block_key) for key in block_data: for char in ['[', '{']: if (char in block_data[key]): block_data[key] = ast.literal_eval(str(block_data[key])) (yield block_data)
Get details of scheduling or processing block Args: block_ids (list): List of block IDs
codesearchnet
def weak_scaling(timing_stats, scaling_var, data_points): timing_data = dict() proc_counts = [] bench_means = [] bench_mins = [] bench_maxs = [] model_means = [] model_mins = [] model_maxs = [] for point in data_points: size = point[0] proc = point[1] try: model_data = timing_stats[size][proc]['model'][scaling_var] bench_data = timing_stats[size][proc]['bench'][scaling_var] except KeyError: continue proc_counts.append(proc) model_means.append(model_data['mean']) model_mins.append(model_data['min']) model_maxs.append(model_data['max']) bench_means.append(bench_data['mean']) bench_mins.append(bench_data['min']) bench_maxs.append(bench_data['max']) timing_data['bench'] = dict(mins=bench_mins, means=bench_means, maxs=bench_maxs) timing_data['model'] = dict(mins=model_mins, means=model_means, maxs=model_maxs) timing_data['proc_counts'] = [int(pc[1:]) for pc in proc_counts] return timing_data
Generate data for plotting weak scaling. The data points keep a constant amount of work per processor for each data point. Args: timing_stats: the result of the generate_timing_stats function scaling_var: the variable to select from the timing_stats dictionary (can be provided in configurations via the 'scaling_var' key) data_points: the list of size and processor counts to use as data (can be provided in configurations via the 'weak_scaling_points' key) Returns: A dict of the form: {'bench' : {'mins' : [], 'means' : [], 'maxs' : []}, 'model' : {'mins' : [], 'means' : [], 'maxs' : []}, 'proc_counts' : []}
codesearchnet
def set_lock_config(self, device_label, volume=None, voice_level=None, auto_lock_enabled=None): response = None data = {} if volume: data['volume'] = volume if voice_level: data['voiceLevel'] = voice_level if auto_lock_enabled is not None: data['autoLockEnabled'] = auto_lock_enabled try: response = requests.put( urls.lockconfig(self._giid, device_label), headers={ 'Content-Type': 'application/json', 'Cookie': 'vid={}'.format(self._vid)}, data=json.dumps(data)) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response)
Set lock configuration Args: device_label (str): device label of lock volume (str): 'SILENCE', 'LOW' or 'HIGH' voice_level (str): 'ESSENTIAL' or 'NORMAL' auto_lock_enabled (boolean): auto lock enabled
juraj-google-style
def download_image(self, device_label, image_id, file_name): response = None try: response = requests.get( urls.download_image(self._giid, device_label, image_id), headers={ 'Cookie': 'vid={}'.format(self._vid)}, stream=True) except requests.exceptions.RequestException as ex: raise RequestError(ex) _validate_response(response) with open(file_name, 'wb') as image_file: for chunk in response.iter_content(chunk_size=1024): if chunk: image_file.write(chunk)
Download image taken by a smartcam Args: device_label (str): device label of camera image_id (str): image id from image series file_name (str): path to file
juraj-google-style
def get_eligible_features(examples, num_mutants): features_dict = ( get_numeric_features_to_observed_range( examples)) features_dict.update( get_categorical_features_to_sampling( examples, num_mutants)) features_list = [] for k, v in sorted(features_dict.items()): v['name'] = k features_list.append(v) return features_list
Returns a list of JSON objects for each feature in the examples. This list is used to drive partial dependence plots in the plugin. Args: examples: Examples to examine to determine the eligible features. num_mutants: The number of mutations to make over each feature. Returns: A list with a JSON object for each feature. Numeric features are represented as {name: observedMin: observedMax:}. Categorical features are repesented as {name: samples:[]}.
juraj-google-style
def _parse_compound_info(self, line): for (k, regexes) in six.iteritems(self.compound_regex): for reg in regexes: if self.compound_info[k]: continue m = re.search(reg, line, re.IGNORECASE) if m: self.compound_info[k] = m.group(1).strip() self._get_other_names(line)
Parse and extract all compound data by looping through the dictionary of compound_info regexs updates self.compound_info Args: line (str): line of the msp file
codesearchnet
def _make_intermediates_match(branch_graphs, branch_optionals): new_branch_optionals = [] intermediates_size = max((len(o) for o in branch_optionals)) for i, branch_graph in enumerate(branch_graphs): other_optionals = _create_none_optionals(branch_graph, intermediates_size - len(branch_optionals[i])) new_branch_optionals.append(branch_optionals[i] + other_optionals) return new_branch_optionals
Returns new optionals lists that have matching signatures. This is done by mirroring each list in the other using none optionals. There is no merging of like optionals. Args: branch_graphs: `list` of `FuncGraph`. branch_optionals: `list` of `list`s of optional `Tensor`s from other branch_graphs Returns: A `list` of `list`s of `Tensor`s for each branch_graph. Each list has the same number of `Tensor`s, all of which will be optionals of the same shape/type.
github-repos
def _check_for_definition(iface, cls, tag, defines): attributes = (attr for attr in iface.__abstractmethods__ if hasattr(getattr(iface, attr), tag)) for attribute in attributes: for node in cls.__mro__: if (hasattr(node, attribute) and defines(getattr(node, attribute))): return True try: attribute return False except NameError: return True
Check for a valid definition of a value. Args: iface (Iface): An Iface specification. cls (type): Some type to check for a definition. tag (str): The name of the tag attribute used to mark the abstract methods. defines (callable): A callable that accepts an attribute and returns True if the attribute is a valid definition. Returns: bool: Whether or not the definition is found.
codesearchnet
def inject_argument_info_in_traceback(fn, object_name=None): if backend.backend() == 'tensorflow': from tensorflow import errors as tf_errors else: tf_errors = None @wraps(fn) def error_handler(*args, **kwargs): if not is_traceback_filtering_enabled(): return fn(*args, **kwargs) signature = None bound_signature = None try: return fn(*args, **kwargs) except Exception as e: if hasattr(e, '_keras_call_info_injected'): raise e signature = inspect.signature(fn) try: bound_signature = signature.bind(*args, **kwargs) except TypeError: raise e arguments_context = [] for arg in list(signature.parameters.values()): if arg.name in bound_signature.arguments: value = tree.map_structure(format_argument_value, bound_signature.arguments[arg.name]) else: value = arg.default arguments_context.append(f' • {arg.name}={value}') if arguments_context: arguments_context = '\n'.join(arguments_context) if tf_errors is not None and isinstance(e, tf_errors.OpError): message = e.message elif e.args: message = e.args[0] else: message = '' display_name = f'{(object_name if object_name else fn.__name__)}' message = f'Exception encountered when calling {display_name}.\n\n\x1b[1m{message}\x1b[0m\n\nArguments received by {display_name}:\n{arguments_context}' if tf_errors is not None and isinstance(e, tf_errors.OpError): new_e = e.__class__(e.node_def, e.op, message, e.error_code) else: try: new_e = e.__class__(message) except TypeError: new_e = RuntimeError(message) new_e._keras_call_info_injected = True else: new_e = e raise new_e.with_traceback(e.__traceback__) from None finally: del signature del bound_signature return error_handler
Add information about call argument values to an error message. Arguments: fn: Function to wrap. Exceptions raised by the this function will be re-raised with additional information added to the error message, displaying the values of the different arguments that the function was called with. object_name: String, display name of the class/function being called, e.g. `'layer "layer_name" (LayerClass)'`. Returns: A wrapped version of `fn`.
github-repos
def forward(self, hidden_states: torch.Tensor, position_embeddings: Optional[torch.Tensor]=None, reference_points=None, spatial_shapes=None, spatial_shapes_list=None, encoder_hidden_states: Optional[torch.Tensor]=None, encoder_attention_mask: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False) -> tuple[torch.Tensor, Any, Any]: hidden_states_2, self_attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=encoder_attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions) hidden_states_2 = nn.functional.dropout(hidden_states_2, p=self.dropout, training=self.training) hidden_states = hidden_states + hidden_states_2 hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states cross_attn_weights = None hidden_states = hidden_states if position_embeddings is None else hidden_states + position_embeddings hidden_states_2, cross_attn_weights = self.encoder_attn(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, reference_points=reference_points, spatial_shapes=spatial_shapes, spatial_shapes_list=spatial_shapes_list) hidden_states_2 = nn.functional.dropout(hidden_states_2, p=self.dropout, training=self.training) hidden_states = self.gateway(residual, hidden_states_2) hidden_states_2 = self.activation_fn(self.fc1(hidden_states)) hidden_states_2 = nn.functional.dropout(hidden_states_2, p=self.activation_dropout, training=self.training) hidden_states_2 = self.fc2(hidden_states_2) hidden_states_2 = nn.functional.dropout(hidden_states_2, p=self.dropout, training=self.training) hidden_states = hidden_states + hidden_states_2 hidden_states = self.final_layer_norm(hidden_states.clamp(min=-65504, max=65504)) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs
Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(seq_len, batch, embed_dim)`. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings that are added to the queries and keys in the self-attention layer. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes. level_start_index (`torch.LongTensor`, *optional*): Level start index. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail.
github-repos
def pseudo_with_symbol(self, symbol, allow_multi=False): pseudos = self.select_symbols(symbol, ret_list=True) if ((not pseudos) or ((len(pseudos) > 1) and (not allow_multi))): raise ValueError(('Found %d occurrences of symbol %s' % (len(pseudos), symbol))) if (not allow_multi): return pseudos[0] else: return pseudos
Return the pseudo with the given chemical symbol. Args: symbols: String with the chemical symbol of the element allow_multi: By default, the method raises ValueError if multiple occurrences are found. Use allow_multi to prevent this. Raises: ValueError if symbol is not found or multiple occurences are present and not allow_multi
codesearchnet
def __init__(self, formatter, object_representer): super().__init__(formatter) self.object_representer = object_representer logger.debug('obj loader set')
Initialize formatter and object representer. Args: formatter: Callable object/function that will format object loaded from in file. Formatter signature: iterable = formatter(iterable) object_representer: An ObjectRepresenter instance.
juraj-google-style
def stop_server(self, grace=1.0): self._server_lock.acquire() try: if not self._server_started: raise ValueError('Server has not started running') if self._stop_requested: raise ValueError('Server has already stopped') self._stop_requested = True return self.server.stop(grace=grace) finally: self._server_lock.release()
Request server stopping. Once stopped, server cannot be stopped or started again. This method is non-blocking. Call `wait()` on the returned event to block until the server has completely stopped. Args: grace: Grace period in seconds to be used when calling `server.stop()`. Raises: ValueError: If server stop has already been requested, or if the server has not started running yet. Returns: A threading.Event that will be set when the server has completely stopped.
github-repos
def _AddEdge(self, start_node, end_node): self.graph[start_node].outgoing.append(end_node) if (end_node in self.graph): self.graph[end_node].incoming.append(start_node)
Add a directed edge to the graph. Add the end to the list of outgoing nodes of the start and the start to the list of incoming nodes of the end node. Args: start_node: name of the start node end_node: name of the end node
codesearchnet
def put(self, key, value): if value is None: self.delete(key) else: self._collection(key)[key] = value
Stores the object `value` named by `key`. Stores the object in the collection corresponding to ``key.path``. Args: key: Key naming `value` value: the object to store.
juraj-google-style
def aggregate(self): (_, indices, inverse) = np.unique(self.record.sample, axis=0, return_index=True, return_inverse=True) order = np.argsort(indices) indices = indices[order] record = self.record[indices] record.num_occurrences = 0 for (old_idx, new_idx) in enumerate(inverse): new_idx = order[new_idx] record[new_idx].num_occurrences += self.record[old_idx].num_occurrences return type(self)(record, self.variables, copy.deepcopy(self.info), self.vartype)
Create a new SampleSet with repeated samples aggregated. Returns: :obj:`.SampleSet` Note: :attr:`.SampleSet.record.num_occurrences` are accumulated but no other fields are.
codesearchnet
def get_task_scfcycles(self, nids=None, wslice=None, task_class=None, exclude_ok_tasks=False): select_status = [self.S_RUN] if exclude_ok_tasks else [self.S_RUN, self.S_OK] tasks_cycles = [] for task in self.select_tasks(nids=nids, wslice=wslice): if task.status not in select_status or task.cycle_class is None: continue if task_class is not None and not task.isinstance(task_class): continue try: cycle = task.cycle_class.from_file(task.output_file.path) if cycle is not None: tasks_cycles.append((task, cycle)) except Exception: pass return tasks_cycles
Return list of (taks, scfcycle) tuples for all the tasks in the flow with a SCF algorithm e.g. electronic GS-SCF iteration, DFPT-SCF iterations etc. Args: nids: List of node identifiers. wslice: Slice object used to select works. task_class: String or class used to select tasks. Ignored if None. exclude_ok_tasks: True if only running tasks should be considered. Returns: List of `ScfCycle` subclass instances.
juraj-google-style
def get_country_by_name(self, country_name: str) -> typing.Optional['Country']: VALID_STR.validate(country_name, 'get_country_by_name', exc=ValueError) if country_name not in self._countries_by_name.keys(): for country in self.countries: if country.country_name == country_name: self._countries_by_name[country_name] = country return country raise ValueError(country_name) else: return self._countries_by_name[country_name]
Gets a country from its name Args: country_name: country name Returns: Country
juraj-google-style
def sampling_query(sql, fields=None, count=5, sampling=None): if (sampling is None): sampling = Sampling.default(count=count, fields=fields) return sampling(sql)
Returns a sampling query for the SQL object. Args: sql: the SQL object to sample fields: an optional list of field names to retrieve. count: an optional count of rows to retrieve which is used if a specific sampling is not specified. sampling: an optional sampling strategy to apply to the table. Returns: A SQL query string for sampling the input sql.
codesearchnet
async def update( self, service_id: str, version: str, *, image: str = None, rollback: bool = False ) -> bool: if image is None and rollback is False: raise ValueError("You need to specify an image.") inspect_service = await self.inspect(service_id) spec = inspect_service["Spec"] if image is not None: spec["TaskTemplate"]["ContainerSpec"]["Image"] = image params = {"version": version} if rollback is True: params["rollback"] = "previous" data = json.dumps(clean_map(spec)) await self.docker._query_json( "services/{service_id}/update".format(service_id=service_id), method="POST", data=data, params=params, ) return True
Update a service. If rollback is True image will be ignored. Args: service_id: ID or name of the service. version: Version of the service that you want to update. rollback: Rollback the service to the previous service spec. Returns: True if successful.
juraj-google-style
def issue_closed(issue_key, server=None, username=None, password=None): if (not issue_key): return None jira_ = _get_jira(server=server, username=username, password=password) try: ticket = jira_.issue(issue_key) except jira.exceptions.JIRAError: return None return (ticket.fields().status.name == 'Closed')
Check if the issue is closed. issue_key The JIRA iD of the ticket to close. Returns: - ``True``: the ticket exists and it is closed. - ``False``: the ticket exists and it has not been closed. - ``None``: the ticket does not exist. CLI Example: .. code-block:: bash salt '*' jira.issue_closed NE-123
codesearchnet
def fn_with_code_in_docstring(): return True
This has code in the docstring. Example: x = fn_with_code_in_docstring() indentation_matters = True Returns: True.
github-repos
def update_scores(self, scores: torch.FloatTensor, g_values: torch.FloatTensor) -> torch.FloatTensor: _, _, depth = g_values.shape probs = torch.softmax(scores, dim=1) for i in range(depth): g_values_at_depth = g_values[:, :, i] g_mass_at_depth = (g_values_at_depth * probs).sum(axis=1, keepdims=True) probs = probs * (1 + g_values_at_depth - g_mass_at_depth) log_probs = torch.log(probs) log_probs = torch.where(torch.isfinite(log_probs), log_probs, torch.finfo(log_probs.dtype).min) return log_probs
Updates scores using the g values. We assume that the scores are in the log space. Args: scores (`torch.FloatTensor`): Scores (batch_size, vocab_size). g_values (`torch.FloatTensor`): G values (batch_size, vocab_size, depth). Returns: Updated scores (batch_size, vocab_size).
github-repos
def num_samples(self, dataset_split): return {problem.DatasetSplit.TRAIN: 1000000, problem.DatasetSplit.EVAL: 10000, problem.DatasetSplit.TEST: 10000}[dataset_split]
Determine the dataset sized given a dataset_split. Args: dataset_split: A problem.DatasetSplit. Returns: The desired number of samples for this dataset_split.
codesearchnet
def delete(self, interface, vrid): vrrp_str = ('no vrrp %d' % vrid) return self.configure_interface(interface, vrrp_str)
Deletes a vrrp instance from an interface Note: This method will attempt to delete the vrrp from the node's operational config. If the vrrp does not exist on the interface then this method will not perform any changes but still return True Args: interface (string): The interface to configure. vrid (integer): The vrid number for the vrrp to be deleted. Returns: True if the vrrp could be deleted otherwise False (see Node)
codesearchnet
def assert_rank_in(x, ranks, data=None, summarize=None, message=None, name=None): with ops.name_scope(name, 'assert_rank_in', (x,) + tuple(ranks) + tuple(data or [])): if not isinstance(x, sparse_tensor.SparseTensor): x = ops.convert_to_tensor(x, name='x') ranks = tuple([ops.convert_to_tensor(rank, name='rank') for rank in ranks]) message = _message_prefix(message) if context.executing_eagerly() or isinstance(x, sparse_tensor.SparseTensor): name = '' else: name = x.name if data is None: data = [message, 'Tensor %s must have rank in' % name] + list(ranks) + ['Received shape: ', array_ops.shape(x)] try: assert_op = _assert_ranks_condition(x, ranks, _static_rank_in, _dynamic_rank_in, data, summarize) except ValueError as e: if e.args[0] == 'Static rank condition failed': raise ValueError('%sTensor %s must have rank in %s. Received rank %d, shape %s' % (message, name, tuple((r.item() for r in e.args[2])), e.args[1], x.get_shape())) else: raise return assert_op
Assert `x` has rank in `ranks`. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.compat.v1.assert_rank_in(x, (2, 4))]): output = tf.reduce_sum(x) ``` Args: x: Numeric `Tensor`. ranks: Iterable of scalar `Tensor` objects. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_rank_in". Returns: Op raising `InvalidArgumentError` unless rank of `x` is in `ranks`. If static checks determine `x` has matching rank, a `no_op` is returned. Raises: ValueError: If static checks determine `x` has mismatched rank.
github-repos
def select_serial_number_row(self, serial_number): sheet = self.table col = self.db_sheet_cols.id rows = (sheet.loc[(:, col)] == serial_number) return sheet.loc[(rows, :)]
Select row for identification number serial_number Args: serial_number: serial number Returns: pandas.DataFrame
codesearchnet
def add(self, arg, options=None): fut = tasklets.Future(('%s.add(%s, %s)' % (self, arg, options))) todo = self._queues.get(options) if (todo is None): utils.logging_debug('AutoBatcher(%s): creating new queue for %r', self._todo_tasklet.__name__, options) if (not self._queues): eventloop.add_idle(self._on_idle) todo = self._queues[options] = [] todo.append((fut, arg)) if (len(todo) >= self._limit): del self._queues[options] self.run_queue(options, todo) return fut
Adds an arg and gets back a future. Args: arg: one argument for _todo_tasklet. options: rpc options. Return: An instance of future, representing the result of running _todo_tasklet without batching.
codesearchnet
def check_config_attributes_being_used(config_class): signature = dict(inspect.signature(config_class.__init__).parameters) parameter_names = [x for x in list(signature.keys()) if x not in ['self', 'kwargs']] parameter_defaults = [signature[param].default for param in parameter_names] reversed_attribute_map = {} if len(config_class.attribute_map) > 0: reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()} config_source_file = inspect.getsourcefile(config_class) model_dir = os.path.dirname(config_source_file) modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith('modeling_')] modeling_sources = [] for path in modeling_paths: if os.path.isfile(path): with open(path, encoding='utf8') as fp: modeling_sources.append(fp.read()) unused_attributes = [] for config_param, default_value in zip(parameter_names, parameter_defaults): attributes = [config_param] if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param]) if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources): unused_attributes.append(attributes[0]) return sorted(unused_attributes)
Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory Args: config_class (`type`): The configuration class for which the arguments in its `__init__` will be checked.
github-repos
def create(cls, session, attributes=None, relationships=None): resource_type = cls._resource_type() resource_path = cls._resource_path() url = session._build_url(resource_path) json = build_request_body(resource_type, None, attributes=attributes, relationships=relationships) process = cls._mk_one(session) return session.post(url, CB.json(201, process), json=json)
Create a resource of the resource. This should only be called from sub-classes Args: session(Session): The session to create the resource in. attributes(dict): Any attributes that are valid for the given resource type. relationships(dict): Any relationships that are valid for the given resource type. Returns: Resource: An instance of a resource.
codesearchnet
def start(self, name: str, increment_count: bool = True) -> None: if not self._timing: return now = get_now_utc_pendulum() if self._stack: last = self._stack[-1] self._totaldurations[last] += now - self._starttimes[last] if name not in self._starttimes: self._totaldurations[name] = datetime.timedelta() self._count[name] = 0 self._starttimes[name] = now if increment_count: self._count[name] += 1 self._stack.append(name)
Start a named timer. Args: name: name of the timer increment_count: increment the start count for this timer
juraj-google-style
def get(cls, keyval, key='id', user_id=None): if (keyval is None): return None if ((key in cls.__table__.columns) and cls.__table__.columns[key].primary_key): return cls.query.get(keyval) else: result = cls.query.filter((getattr(cls, key) == keyval)) return result.first()
Fetches a single instance which has value `keyval` for the attribute `key`. Args: keyval: The value of the attribute. key (str, optional): The attribute to search by. By default, it is 'id'. Returns: A model instance if found. Else None. Examples: >>> User.get(35) user35@i.com >>> User.get('user35@i.com', key='email') user35@i.com
codesearchnet
def safe_rt(resource_type, lower=False): if (resource_type is not None): resource_type = resource_type.replace(' ', '_') if lower: resource_type = resource_type.lower() return resource_type
Format the Resource Type. Takes Custom Indicator types with a space character and return a *safe* string. (e.g. *User Agent* is converted to User_Agent or user_agent.) Args: resource_type (string): The resource type to format. lower (boolean): Return type in all lower case Returns: (string): The formatted resource type.
codesearchnet
def start(self, hostname=None, port=None, templates_path=None): self.hostname = (hostname if hostname else 'localhost') if port: self.port = port elif (not self.port): self.port = unused_port(self.hostname) if templates_path: self.loaders.insert(0, jinja2.FileSystemLoader(templates_path)) self._set_loaders() self.setup_routes() self.runner = aioweb.AppRunner(self.app) return self.agent.submit(start_server_in_loop(self.runner, self.hostname, self.port, self.agent))
Starts the web interface. Args: hostname (str, optional): host name to listen from. (Default value = None) port (int, optional): port to listen from. (Default value = None) templates_path (str, optional): path to look for templates. (Default value = None)
codesearchnet
def makefile(self): return self.env.get_template('Makefile.j2').render(metadata=self.metadata, package=self.package)
Generate the documentation Makefile. Returns: (str): the contents of the `Makefile`.
codesearchnet
def get_what_follows_raw(s: str, prefix: str, onlyatstart: bool=True, stripwhitespace: bool=True) -> Tuple[(bool, str)]: prefixstart = s.find(prefix) if (((prefixstart == 0) and onlyatstart) or ((prefixstart != (- 1)) and (not onlyatstart))): resultstart = (prefixstart + len(prefix)) result = s[resultstart:] if stripwhitespace: result = result.strip() return (True, result) return (False, '')
Find the part of ``s`` that is after ``prefix``. Args: s: string to analyse prefix: prefix to find onlyatstart: only accept the prefix if it is right at the start of ``s`` stripwhitespace: remove whitespace from the result Returns: tuple: ``(found, result)``
codesearchnet
def prepend(self, key, value, expire=0, noreply=None): if noreply is None: noreply = self.default_noreply return self._store_cmd(b'prepend', {key: value}, expire, noreply)[key]
The memcached "prepend" command. Args: key: str, see class docs for details. value: str, see class docs for details. expire: optional int, number of seconds until the item is expired from the cache, or zero for no expiry (the default). noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: True.
juraj-google-style
def tanh(x): return ops.tanh(x)
Hyperbolic tangent activation function. It is defined as: `tanh(x) = sinh(x) / cosh(x)`, i.e. `tanh(x) = ((exp(x) - exp(-x)) / (exp(x) + exp(-x)))`. Args: x: Input tensor.
github-repos
def disconnect_sync(self, connection_handle): self.bable.disconnect(connection_handle=connection_handle, sync=True)
Synchronously disconnect from whoever has connected to us Args: connection_handle (int): The handle of the connection we wish to disconnect.
juraj-google-style
def predict_on_batch(self, x): self._check_call_args('predict_on_batch') if self._distribution_strategy and distribute_lib.in_cross_replica_context(): raise NotImplementedError('`predict_on_batch` is not supported for models distributed with tf.distribute.Strategy.') inputs, _, _ = self._standardize_user_data(x, extract_tensors_from_dataset=True) if self.run_eagerly or self._distribution_strategy: inputs = training_utils_v1.cast_if_floating_dtype(inputs) if isinstance(inputs, collections.abc.Sequence): if len(inputs) == 1: inputs = inputs[0] return self(inputs) self._make_predict_function() outputs = self.predict_function(inputs) if len(outputs) == 1: return outputs[0] return outputs
Returns predictions for a single batch of samples. Args: x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs). - A `tf.data` dataset. Returns: Numpy array(s) of predictions. Raises: ValueError: In case of mismatch between given number of inputs and expectations of the model.
github-repos
def replace(self, pattern, replacement): for (i, line) in enumerate(self): if (pattern in line): self[i] = line.replace(pattern, replacement)
Replace all instances of a pattern with a replacement. Args: pattern (str): Pattern to replace replacement (str): Text to insert
codesearchnet
def _insert_layers(self, layers, relevant_nodes=None): layers = nest.flatten(layers) tf_utils.assert_no_legacy_layers(layers) node_to_depth = {} for depth, nodes in self._nodes_by_depth.items(): node_to_depth.update({node: depth for node in nodes}) if not relevant_nodes: relevant_nodes = nest.flatten([layer._inbound_nodes for layer in layers]) network_nodes = set(relevant_nodes + list(node_to_depth.keys())) def _get_min_depth(node): min_depth = 0 for layer, node_id, _, _ in node.iterate_inbound(): inbound_node = layer._inbound_nodes[node_id] if inbound_node in node_to_depth: min_depth = min(min_depth, node_to_depth[inbound_node]) elif inbound_node not in network_nodes: continue else: return None return min_depth - 1 unprocessed_nodes = copy.copy(relevant_nodes) i = 0 while unprocessed_nodes: i += 1 if i > 10000: raise ValueError('Layers could not be added due to missing dependencies.') node = unprocessed_nodes.pop(0) depth = _get_min_depth(node) if depth is None: unprocessed_nodes.append(node) continue node_key = _make_node_key(node.layer.name, node.layer._inbound_nodes.index(node)) if node_key not in self._network_nodes: node_to_depth[node] = depth self._network_nodes.add(node_key) self._nodes_by_depth[depth].append(node) layer_set = set(self._self_tracked_trackables) deferred_layers = [] for layer in layers: if layer not in layer_set: self._self_tracked_trackables.append(layer) deferred_layers.append(layer) self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call) layer_set.add(layer) self._handle_deferred_layer_dependencies(deferred_layers) self._compute_tensor_usage_count()
Inserts Layers into the Network after Network creation. This is only valid for Keras Graph Networks. Layers added via this function will be included in the `call` computation and `get_config` of this Network. They will not be added to the Network's outputs. Args: layers: Arbitrary nested structure of Layers. Layers must be reachable from one or more of the `keras.Input` Tensors that correspond to this Network's inputs. relevant_nodes: Nodes from the Layers that should be considered part of this Network. If `None`, all Nodes will be considered part of this Network. Raises: ValueError: If the layers depend on `Input`s not found in this Model.
github-repos
def CheckAltTokens(filename, clean_lines, linenum, error): line = clean_lines.elided[linenum] if Match(r'^\s* return if line.find('') >= 0: return for match in _ALT_TOKEN_REPLACEMENT_PATTERN.finditer(line): error(filename, linenum, 'readability/alt_tokens', 2, 'Use operator %s instead of %s' % ( _ALT_TOKEN_REPLACEMENT[match.group(1)], match.group(1)))
Check alternative keywords being used in boolean expressions. Args: filename: The name of the current file. clean_lines: A CleansedLines instance containing the file. linenum: The number of the line to check. error: The function to call with any errors found.
juraj-google-style
def parse_args(self, arglist=None): args = self._parser.parse_args(args=arglist) sub_cmd = args.loam_sub_name if (sub_cmd is None): for (opt, sct) in self._opt_bare.items(): self._conf[sct][opt] = getattr(args, opt, None) else: for (opt, sct) in self._opt_cmds[sub_cmd].items(): self._conf[sct][opt] = getattr(args, opt, None) return args
Parse arguments and update options accordingly. Args: arglist (list of str): list of arguments to parse. If set to None, ``sys.argv[1:]`` is used. Returns: :class:`Namespace`: the argument namespace returned by the :class:`argparse.ArgumentParser`.
codesearchnet
def convert_to_rgb(video: np.array, data_format: Optional[ChannelDimension]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None) -> np.array: if not isinstance(video, np.ndarray): raise ValueError(f'Video has to be a numpy array to convert to RGB format, but found {type(video)}') if input_data_format is None: input_data_format = infer_channel_dimension_format(video) video = to_channel_dimension_format(video, ChannelDimension.FIRST, input_channel_dim=input_data_format) if video.shape[-3] == 3: return video if video.shape[-3] == 1: return video.repeat(3, -3) if not (video[..., 3, :, :] < 255).any(): return video alpha = video[..., 3, :, :] / 255.0 video = (1 - alpha[..., None, :, :]) * 255 + alpha[..., None, :, :] * video[..., 3, :, :] return video
Convert video to RGB by blending the transparency layer if it's in RGBA format, otherwise simply returns it. Args: video (`np.array`): The video to convert. data_format (`ChannelDimension`, *optional*): The channel dimension format of the output video. If unset, will use the inferred format from the input. input_data_format (`ChannelDimension`, *optional*): The channel dimension format of the input video. If unset, will use the inferred format from the input.
github-repos
def compose(*coros): coros = list(coros) @asyncio.coroutine def reducer(acc, coro): return (yield from coro(acc)) @asyncio.coroutine def wrapper(acc): return (yield from reduce(reducer, coros, initializer=acc, right=True)) return wrapper
Creates a coroutine function based on the composition of the passed coroutine functions. Each function consumes the yielded result of the coroutine that follows. Composing coroutine functions f(), g(), and h() would produce the result of f(g(h())). Arguments: *coros (coroutinefunction): variadic coroutine functions to compose. Raises: RuntimeError: if cannot execute a coroutine function. Returns: coroutinefunction Usage:: async def sum_1(num): return num + 1 async def mul_2(num): return num * 2 coro = paco.compose(sum_1, mul_2, sum_1) await coro(2) # => 7
codesearchnet