code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def watch_key(self): return _get_tensor_watch_key(self.node_name, self.output_slot, self.debug_op)
Watch key identities a debug watch on a tensor. Returns: (`str`) A watch key, in the form of `tensor_name`:`debug_op`.
github-repos
def set_speech_text(self, text): self.response.outputSpeech.type = 'PlainText' self.response.outputSpeech.text = text
Set response output speech as plain text type. Args: text: str. Response speech used when type is 'PlainText'. Cannot exceed 8,000 characters.
juraj-google-style
def get_all(self, key=None): key = self.definition.main_key if key is None else key key = self.definition.key_synonyms.get(key, key) entries = self._get_all(key) if key in self.definition.scalar_nonunique_keys: return set(entries) return entries
Returns all data entries for a particular key. Default is the main key. Args: key (str): key whose values to return (default: main key) Returns: List of all data entries for the key
juraj-google-style
def encode_dataset(dataset, vocabulary): def encode(features): return {k: vocabulary.encode_tf(v) for (k, v) in features.items()} return dataset.map(encode, num_parallel_calls=tf.data.experimental.AUTOTUNE)
Encode from strings to token ids. Args: dataset: a tf.data.Dataset with string values. vocabulary: a mesh_tensorflow.transformer.Vocabulary Returns: a tf.data.Dataset with integer-vector values ending in EOS=1
codesearchnet
def _spin_product(variables): multiplier, multiplicand, product, aux = variables return BinaryQuadraticModel({multiplier: -.5, multiplicand: -.5, product: -.5, aux: -1.}, {(multiplier, multiplicand): .5, (multiplier, product): .5, (multiplier, aux): 1., (multiplicand, product): .5, (multiplicand, aux): 1., (product, aux): 1.}, 2., Vartype.SPIN)
Create a bqm with a gap of 2 that represents the product of two variables. Note that spin-product requires an auxiliary variable. Args: variables (list): multiplier, multiplicand, product, aux Returns: :obj:`.BinaryQuadraticModel`
juraj-google-style
def _extract_variable_parts(variable_key, variable): (name, offset, partitioned) = (None, None, False) if variable._save_slice_info: name = variable_key[:variable_key.rfind('/')] if (not variable._save_slice_info.full_name.endswith(name)): raise RuntimeError('Unexpected handling of partitioned variable.') offset = variable._save_slice_info.var_offset[0] partitioned = True return (partitioned, name, offset)
Matches a variable to individual parts. Args: variable_key: String identifier of the variable in the module scope. variable: Variable tensor. Returns: partitioned: Whether the variable is partitioned. name: Name of the variable up to the partitioning. offset: Offset of the variable into the full variable. Raises: RuntimeError: In case of unexpected variable format.
codesearchnet
def _on_response_message(self, sequence, topic, message): try: conn_key = self._find_connection(topic) context = self.conns.get_context(conn_key) except ArgumentError: self._logger.warn("Dropping message that does not correspond with a known connection, message=%s", message) return if 'client' in message and message['client'] != self.name: self._logger.debug("Dropping message that is for another client %s, we are %s", message['client'], self.name) if messages.DisconnectionResponse.matches(message): self.conns.finish_disconnection(conn_key, message['success'], message.get('failure_reason', None)) elif messages.OpenInterfaceResponse.matches(message): self.conns.finish_operation(conn_key, message['success'], message.get('failure_reason', None)) elif messages.RPCResponse.matches(message): rpc_message = messages.RPCResponse.verify(message) self.conns.finish_operation(conn_key, rpc_message['success'], rpc_message.get('failure_reason', None), rpc_message.get('status', None), rpc_message.get('payload', None)) elif messages.ProgressNotification.matches(message): progress_callback = context.get('progress_callback', None) if progress_callback is not None: progress_callback(message['done_count'], message['total_count']) elif messages.ScriptResponse.matches(message): if 'progress_callback' in context: del context['progress_callback'] self.conns.finish_operation(conn_key, message['success'], message.get('failure_reason', None)) elif messages.DisconnectionNotification.matches(message): try: conn_key = self._find_connection(topic) conn_id = self.conns.get_connection_id(conn_key) except ArgumentError: self._logger.warn("Dropping disconnect notification that does not correspond with a known connection, topic=%s", topic) return self.conns.unexpected_disconnect(conn_key) self._trigger_callback('on_disconnect', self.id, conn_id) else: self._logger.warn("Invalid response message received, message=%s", message)
Process a response message received Args: sequence (int): The sequence number of the packet received topic (string): The topic this message was received on message (dict): The message itself
juraj-google-style
def load_feature_lists(self, feature_lists): column_names = [] feature_ranges = [] running_feature_count = 0 for list_id in feature_lists: feature_list_names = load_lines((self.features_dir + 'X_train_{}.names'.format(list_id))) column_names.extend(feature_list_names) start_index = running_feature_count end_index = ((running_feature_count + len(feature_list_names)) - 1) running_feature_count += len(feature_list_names) feature_ranges.append([list_id, start_index, end_index]) X_train = np.hstack([load((self.features_dir + 'X_train_{}.pickle'.format(list_id))) for list_id in feature_lists]) X_test = np.hstack([load((self.features_dir + 'X_test_{}.pickle'.format(list_id))) for list_id in feature_lists]) df_train = pd.DataFrame(X_train, columns=column_names) df_test = pd.DataFrame(X_test, columns=column_names) return (df_train, df_test, feature_ranges)
Load pickled features for train and test sets, assuming they are saved in the `features` folder along with their column names. Args: feature_lists: A list containing the names of the feature lists to load. Returns: A tuple containing 3 items: train dataframe, test dataframe, and a list describing the index ranges for the feature lists.
codesearchnet
def from_dict(self, graph_dict): self.reset_graph() for new_node in graph_dict: self.add_node(new_node) for ind_node, dep_nodes in graph_dict.items(): if not isinstance(dep_nodes, collections.Iterable): raise TypeError('%s: dict values must be lists' % ind_node) for dep_node in dep_nodes: self.add_edge(ind_node, dep_node)
Reset the graph and build it from the passed dictionary. The dictionary takes the form of {node_name: [directed edges]} Args: graph_dict (dict): The dictionary used to create the graph. Raises: TypeError: Raised if the value of items in the dict are not lists.
juraj-google-style
def _set_input_tensors(self, interpreter: _interpreter.Interpreter, tensor_data: Sequence[np.ndarray], initialize: bool) -> None: input_details = interpreter.get_input_details() if len(input_details) != len(tensor_data): raise ValueError('Number of inputs provided ({}) does not match number of inputs to the model ({})'.format(len(tensor_data), len(input_details))) if initialize: for input_detail, tensor in zip(input_details, tensor_data): interpreter.resize_tensor_input(input_detail['index'], tensor.shape) interpreter.allocate_tensors() for input_detail, tensor in zip(input_details, tensor_data): if tensor.dtype == np.float32 and input_detail['dtype'] == np.int8: quant_params = _get_quant_params(input_detail) if quant_params: scale, zero_point = quant_params tensor = np.round(tensor / scale + zero_point).astype(np.int8) interpreter.set_tensor(input_detail['index'], tensor)
Sets input tensors into TFLite model Interpreter. Args: interpreter: a tf.lite.Interpreter object with allocated tensors. tensor_data: a list of Numpy array data. initialize: set to true when input is first set for the interpreter, to set input shapes and allocate tensors. Raises: ValueError: when inputs can't be set, or size of provided inputs does not match size of model inputs.
github-repos
def export(self, top=True): out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.typical_or_extreme_period_name)) out.append(self._to_str(self.typical_or_extreme_period_type)) out.append(self._to_str(self.period_start_day)) out.append(self._to_str(self.period_end_day)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
juraj-google-style
async def find_deleted(self, seq_set: SequenceSet, selected: SelectedMailbox) -> Sequence[int]: session_flags = selected.session_flags return [msg.uid async for (_, msg) in self.find(seq_set, selected) if (Deleted in msg.get_flags(session_flags))]
Return all the active message UIDs that have the ``\\Deleted`` flag. Args: seq_set: The sequence set of the possible messages. selected: The selected mailbox session.
codesearchnet
def take_screenshot(self, destination, prefix='screenshot', all_displays=False): filename = self.generate_filename(prefix, extension_name='png') filename_no_extension, _ = os.path.splitext(filename) device_path = os.path.join('/storage/emulated/0/', filename) self.adb.shell(['screencap', '-p', '-a' if all_displays else '', device_path], timeout=TAKE_SCREENSHOT_TIMEOUT_SECOND) utils.create_dir(destination) if all_displays: pic_paths = [] png_files = [device_path] png_files = self.adb.shell('ls /storage/emulated/0/*.png').decode('utf-8').split('\n') for device_path in png_files: if device_path.find(filename_no_extension) < 0: continue self.adb.pull([device_path, destination]) pic_paths.append(os.path.join(destination, os.path.basename(device_path))) self.log.debug('Screenshot taken, saved on the host: %s', pic_paths[-1]) self.adb.shell(['rm', device_path]) return pic_paths self.adb.pull([device_path, destination]) pic_path = os.path.join(destination, filename) self.log.debug('Screenshot taken, saved on the host: %s', pic_path) self.adb.shell(['rm', device_path]) return pic_path
Takes a screenshot of the device. Args: destination: string, full path to the directory to save in. prefix: string, prefix file name of the screenshot. all_displays: bool, if true will take a screenshot on all connnected displays, if false will take a screenshot on the default display. Returns: string, full path to the screenshot file on the host, or list[str], when all_displays is True, the full paths to the screenshot files on the host.
github-repos
def extend(self, *bindings): self._bindings.extend(self._preprocess(bindings)) return self
Append the given bindings to this keymap. Arguments: *bindings (Binding): Bindings to be added. Returns: Keymap: self
codesearchnet
def init_test_examples_dependencies() -> Tuple[Dict[str, List[str]], List[str]]: test_example_deps = {} all_examples = [] for framework in ['flax', 'pytorch', 'tensorflow']: test_files = list((PATH_TO_EXAMPLES / framework).glob('test_*.py')) all_examples.extend(test_files) examples = [f for f in (PATH_TO_EXAMPLES / framework).glob('**/*.py') if f.parent != PATH_TO_EXAMPLES / framework] all_examples.extend(examples) for test_file in test_files: with open(test_file, 'r', encoding='utf-8') as f: content = f.read() test_example_deps[str(test_file.relative_to(PATH_TO_REPO))] = [str(e.relative_to(PATH_TO_REPO)) for e in examples if e.name in content] test_example_deps[str(test_file.relative_to(PATH_TO_REPO))].append(str(test_file.relative_to(PATH_TO_REPO))) return (test_example_deps, all_examples)
The test examples do not import from the examples (which are just scripts, not modules) so we need some extra care initializing the dependency map, which is the goal of this function. It initializes the dependency map for example files by linking each example to the example test file for the example framework. Returns: `Tuple[Dict[str, List[str]], List[str]]`: A tuple with two elements: the initialized dependency map which is a dict test example file to list of example files potentially tested by that test file, and the list of all example files (to avoid recomputing it later).
github-repos
def IsErrorSuppressedByNolint(category, linenum): return (_global_error_suppressions.get(category, False) or linenum in _error_suppressions.get(category, set()) or linenum in _error_suppressions.get(None, set()))
Returns true if the specified error category is suppressed on this line. Consults the global error_suppressions map populated by ParseNolintSuppressions/ProcessGlobalSuppresions/ResetNolintSuppressions. Args: category: str, the category of the error. linenum: int, the current line number. Returns: bool, True iff the error should be suppressed due to a NOLINT comment or global suppression.
juraj-google-style
def get_response(response: Dict[(str, Any)]) -> JSONRPCResponse: if ('error' in response): return ErrorResponse(**response) return SuccessResponse(**response)
Converts a deserialized response into a JSONRPCResponse object. The dictionary be either an error or success response, never a notification. Args: response: Deserialized response dictionary. We can assume the response is valid JSON-RPC here, since it passed the jsonschema validation.
codesearchnet
def read(self, size=None): if not self._is_open: raise IOError('Not opened.') if self._current_offset < 0: raise IOError( 'Invalid current offset: {0:d} value less than zero.'.format( self._current_offset)) if self._decoded_stream_size is None: self._decoded_stream_size = self._GetDecodedStreamSize() if self._decoded_stream_size < 0: raise IOError('Invalid decoded stream size.') if self._current_offset >= self._decoded_stream_size: return b'' if self._realign_offset: self._AlignDecodedDataOffset(self._current_offset) self._realign_offset = False if size is None: size = self._decoded_stream_size if self._current_offset + size > self._decoded_stream_size: size = self._decoded_stream_size - self._current_offset decoded_data = b'' if size == 0: return decoded_data while size > self._decoded_data_size: decoded_data = b''.join([ decoded_data, self._decoded_data[self._decoded_data_offset:]]) remaining_decoded_data_size = ( self._decoded_data_size - self._decoded_data_offset) self._current_offset += remaining_decoded_data_size size -= remaining_decoded_data_size if self._current_offset >= self._decoded_stream_size: break read_count = self._ReadEncodedData(self._ENCODED_DATA_BUFFER_SIZE) self._decoded_data_offset = 0 if read_count == 0: break if size > 0: slice_start_offset = self._decoded_data_offset slice_end_offset = slice_start_offset + size decoded_data = b''.join([ decoded_data, self._decoded_data[slice_start_offset:slice_end_offset]]) self._decoded_data_offset += size self._current_offset += size return decoded_data
Reads a byte string from the file-like object at the current offset. The function will read a byte string of the specified size or all of the remaining data if no size was specified. Args: size (Optional[int]): number of bytes to read, where None is all remaining data. Returns: bytes: data read. Raises: IOError: if the read failed. OSError: if the read failed.
juraj-google-style
def modified_files(root, tracked_only=False, commit=None): assert os.path.isabs(root), "Root has to be absolute, got: %s" % root command = ['hg', 'status'] if commit: command.append('--change=%s' % commit) status_lines = subprocess.check_output(command).decode('utf-8').split( os.linesep) modes = ['M', 'A'] if not tracked_only: modes.append(r'\?') modes_str = '|'.join(modes) modified_file_status = utils.filter_lines( status_lines, r'(?P<mode>%s) (?P<filename>.+)' % modes_str, groups=('filename', 'mode')) return dict((os.path.join(root, filename), mode) for filename, mode in modified_file_status)
Returns a list of files that has been modified since the last commit. Args: root: the root of the repository, it has to be an absolute path. tracked_only: exclude untracked files when True. commit: SHA1 of the commit. If None, it will get the modified files in the working copy. Returns: a dictionary with the modified files as keys, and additional information as value. In this case it adds the status returned by hg status.
juraj-google-style
def set_exception(self, exception): if self.done(): raise RuntimeError('set_exception can only be called once.') self._exception = exception self._trigger()
Set the result of the future to the given exception. Args: exception (:exc:`Exception`): The exception raised.
codesearchnet
def process_update(x): if callable(x): update = lambda: process_update(x()) return update() elif isinstance(x, ops.Operation): update = x elif hasattr(x, 'op'): update = x.op else: update = tensor_conversion.convert_to_tensor_v2_with_dispatch(x) reachable = tf_utils.get_reachable_from_inputs(relevant_inputs, [update]) update._unconditional_update = update not in reachable return update
Standardize update ops. Args: x: Tensor, op, or callable. Returns: An update op.
github-repos
def get_application_configurations(self, name=None): if hasattr(self, 'applicationConfigurations'): return self._get_elements(self.applicationConfigurations, 'applicationConfigurations', ApplicationConfiguration, None, name)
Retrieves application configurations for this instance. Args: name (str, optional): Only return application configurations containing property **name** that matches `name`. `name` can be a regular expression. If `name` is not supplied, then all application configurations are returned. Returns: list(ApplicationConfiguration): A list of application configurations matching the given `name`. .. versionadded 1.12
codesearchnet
def add_user(self, user_obj): LOG.info('Adding user %s to the database', user_obj['email']) if (not ('_id' in user_obj)): user_obj['_id'] = user_obj['email'] try: self.user_collection.insert_one(user_obj) LOG.debug('User inserted') except DuplicateKeyError as err: raise IntegrityError('User {} already exists in database'.format(user_obj['email'])) return user_obj
Add a user object to the database Args: user_obj(scout.models.User): A dictionary with user information Returns: user_info(dict): a copy of what was inserted
codesearchnet
def wait_for_fresh_games(self, poll_interval=15.0): wait_until_game = self.read_wait_cell() if not wait_until_game: return latest_game = self.latest_game_number last_latest = latest_game while latest_game < wait_until_game: utils.dbg('Latest game {} not yet at required game {} ' '(+{}, {:0.3f} games/sec)'.format( latest_game, wait_until_game, latest_game - last_latest, (latest_game - last_latest) / poll_interval )) time.sleep(poll_interval) last_latest = latest_game latest_game = self.latest_game_number
Block caller until required new games have been played. Args: poll_interval: number of seconds to wait between checks If the cell `table_state=metadata:wait_for_game_number` exists, then block the caller, checking every `poll_interval` seconds, until `table_state=metadata:game_counter is at least the value in that cell.
juraj-google-style
def remove_role(self, databaseName, roleName, collectionName=None): role = {"databaseName" : databaseName, "roleName" : roleName} if collectionName: role["collectionName"] = collectionName if role in self.roles: self.roles.remove(role)
Remove one role Args: databaseName (str): Database Name roleName (RoleSpecs): role Keyword Args: collectionName (str): Collection
juraj-google-style
def _process_update(self, item, feed_item): item['name'] = feed_item.get(FieldMap.CREATIVE_NAME, None) self._associate_third_party_urls(feed_item, item) self._associate_click_tags(feed_item, item)
Updates a creative based on the values from the feed. Args: item: Object representing the creative to be updated, this object is updated directly. feed_item: Feed item representing creative values from the Bulkdozer feed.
github-repos
def pixelate(x, severity=1): c = [0.6, 0.5, 0.4, 0.3, 0.25][(severity - 1)] shape = x.shape x = tfds.core.lazy_imports.PIL_Image.fromarray(x.astype(np.uint8)) x = x.resize((int((shape[1] * c)), int((shape[0] * c)))) x = x.resize((shape[1], shape[0])) return np.asarray(x)
Pixelate images. Conduct pixelating corruptions to images by first shrinking the images and then resizing to original size. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Applied pixelating corruption.
codesearchnet
def generate_proxy_api_files(output_files: list[str], proxy_module_root: str, output_dir: str): for file in output_files: file_dir = os.path.dirname(file) if not os.path.isdir(file_dir): os.makedirs(file_dir) module = get_module(file_dir, output_dir) content = f'from {proxy_module_root}.{module} import *' with open(file, 'w') as f: f.write(content)
Creates __init__.py files in proxy format for the Python API. Args: output_files: List of __init__.py file paths to create. proxy_module_root: Module root for proxy-import format. If specified, proxy files with content like `from proxy_module_root.proxy_module import *` will be created to enable import resolution under TensorFlow. output_dir: output API root directory.
github-repos
def _prefix(self): return self._checkpoint_prefix
A common prefix for all checkpoints saved with this manager. For example, if `directory` (a constructor argument) were `"/tmp/tf-model"`, `prefix` would be `"/tmp/tf-model/ckpt"` and checkpoints would generally be numbered `"/tmp/tf-model/ckpt-1"`, `"/tmp/tf-model/ckpt-2"`, and so on. Each checkpoint has several associated files (e.g. `"/tmp/tf-model/ckpt-2.index"`). Returns: A string prefix.
github-repos
def finish_operation(self, conn_or_internal_id, success, *args): data = {'id': conn_or_internal_id, 'success': success, 'callback_args': args} action = ConnectionAction('finish_operation', data, sync=False) self._actions.put(action)
Finish an operation on a connection. Args: conn_or_internal_id (string, int): Either an integer connection id or a string internal_id success (bool): Whether the operation was successful failure_reason (string): Optional reason why the operation failed result (dict): Optional dictionary containing the results of the operation
codesearchnet
def attach_bytes(key, the_bytes): tf_v1.add_to_collection(_ATTACHMENT_COLLECTION_INTERNAL, module_attachment_pb2.ModuleAttachment(key=key, value=the_bytes))
Adds a ModuleAttachment to the current graph. Args: key: A string with the unique key of the attachment. the_bytes: A bytes object with the serialized attachment.
codesearchnet
def flat_transforms_to_matrices(transforms): with ops.name_scope('flat_transforms_to_matrices'): transforms = ops.convert_to_tensor(transforms, name='transforms') if transforms.shape.ndims not in (1, 2): raise ValueError('Transforms should be 1D or 2D, got: %s' % transforms) transforms = array_ops.reshape(transforms, constant_op.constant([-1, 8])) num_transforms = array_ops.shape(transforms)[0] return array_ops.reshape(array_ops.concat([transforms, array_ops.ones([num_transforms, 1])], axis=1), constant_op.constant([-1, 3, 3]))
Converts `tf.contrib.image` projective transforms to affine matrices. Note that the output matrices map output coordinates to input coordinates. For the forward transformation matrix, call `tf.linalg.inv` on the result. Args: transforms: Vector of length 8, or batches of transforms with shape `(N, 8)`. Returns: 3D tensor of matrices with shape `(N, 3, 3)`. The output matrices map the *output coordinates* (in homogeneous coordinates) of each transform to the corresponding *input coordinates*. Raises: ValueError: If `transforms` have an invalid shape.
github-repos
def classify_format(f): (l0, l1) = _get_two_lines(f) if loader.glove.check_valid(l0, l1): return _glove elif loader.word2vec_text.check_valid(l0, l1): return _word2vec_text elif loader.word2vec_bin.check_valid(l0, l1): return _word2vec_bin else: raise OSError(b'Invalid format')
Determine the format of word embedding file by their content. This operation only looks at the first two lines and does not check the sanity of input file. Args: f (Filelike): Returns: class
codesearchnet
def get_pose_error(target_pose, current_pose): error = np.zeros(6) target_pos = target_pose[:3, 3] current_pos = current_pose[:3, 3] pos_err = target_pos - current_pos r1 = current_pose[:3, 0] r2 = current_pose[:3, 1] r3 = current_pose[:3, 2] r1d = target_pose[:3, 0] r2d = target_pose[:3, 1] r3d = target_pose[:3, 2] rot_err = 0.5 * (np.cross(r1, r1d) + np.cross(r2, r2d) + np.cross(r3, r3d)) error[:3] = pos_err error[3:] = rot_err return error
Computes the error corresponding to target pose - current pose as a 6-dim vector. The first 3 components correspond to translational error while the last 3 components correspond to the rotational error. Args: target_pose: a 4x4 homogenous matrix for the target pose current_pose: a 4x4 homogenous matrix for the current pose Returns: A 6-dim numpy array for the pose error.
juraj-google-style
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]: raise NotImplementedError
Returns a list of dictionaries, containing titles and text of the retrieved documents. Args: doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`): A tensor of document indices.
github-repos
def _flatten_resource(self, resource: message.Message, select_expr: Mapping[str, python_compiled_expressions.PythonCompiledExpression]) -> Dict[str, Any]: flat_resource = {} for col_name, expr in select_expr.items(): messages = expr.evaluate(resource).messages if len(messages) > 1: flat_resource[col_name] = [] for msg in messages: flat_resource[col_name].append(proto_utils.get_value_at_field(msg, 'value')) elif len(messages) == 1: flat_resource[col_name] = proto_utils.get_value_at_field(messages[0], 'value') else: flat_resource[col_name] = None return flat_resource
Returns a dictionary representing a resource. Each key matches a column name from the view config select provided by the user. The corresponding value is the value found in the resource or a list of matching values in the resource. Args: resource: a singular resource from the bundle returned from the FHIR server. select_expr: a dictionary representing the column name and compiled fhir path for each select expression.
github-repos
def ParseCallsRow(self, parser_mediator, query, row, **unused_kwargs): query_hash = hash(query) call_type = self._GetRowValue(query_hash, row, 'type') call_type = self.CALL_TYPE.get(call_type, 'UNKNOWN') duration = self._GetRowValue(query_hash, row, 'duration') timestamp = self._GetRowValue(query_hash, row, 'date') event_data = AndroidCallEventData() event_data.call_type = call_type event_data.duration = self._GetRowValue(query_hash, row, 'duration') event_data.name = self._GetRowValue(query_hash, row, 'name') event_data.number = self._GetRowValue(query_hash, row, 'number') event_data.offset = self._GetRowValue(query_hash, row, 'id') event_data.query = query date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, 'Call Started') parser_mediator.ProduceEventWithEventData(event, event_data) if duration: if isinstance(duration, py2to3.STRING_TYPES): try: duration = int(duration, 10) except ValueError: duration = 0 timestamp += duration * 1000 date_time = dfdatetime_java_time.JavaTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, 'Call Ended') parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a Call record row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row.
juraj-google-style
def resize(img, size, interpolation=Image.BILINEAR): if (not _is_pil_image(img)): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if (not (isinstance(size, int) or (isinstance(size, Iterable) and (len(size) == 2)))): raise TypeError('Got inappropriate size arg: {}'.format(size)) if isinstance(size, int): (w, h) = img.size if (((w <= h) and (w == size)) or ((h <= w) and (h == size))): return img if (w < h): ow = size oh = int(((size * h) / w)) return img.resize((ow, oh), interpolation) else: oh = size ow = int(((size * w) / h)) return img.resize((ow, oh), interpolation) else: return img.resize(size[::(- 1)], interpolation)
r"""Resize the input PIL Image to the given size. Args: img (PIL Image): Image to be resized. size (sequence or int): Desired output size. If size is a sequence like (h, w), the output size will be matched to this. If size is an int, the smaller edge of the image will be matched to this number maintaing the aspect ratio. i.e, if height > width, then image will be rescaled to :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)` interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` Returns: PIL Image: Resized image.
codesearchnet
def config(self, configlet=None, plane='sdr', **attributes): begin = time.time() label = self._chain.target_device.config(configlet, plane, **attributes) elapsed = time.time() - begin if label: self.emit_message("Configuration change last {:.0f}s. Label: {}".format(elapsed, label), log_level=logging.INFO) else: self.emit_message("Configuration failed.", log_level=logging.WARNING) return label
Configure the device. This method applies configuration to the device. Args: configlet (text): The configuration template. plane (text): sdr or admin attributes (dict): The dictionary of attributes used in template. Returns: A string with commit label or None
juraj-google-style
def pad(self, file, size=6): for element in self.splitter.split(file): if _validate_payload_size(element, size): yield element
Group together as many records as possible to fit in the specified size This SingleRecordStrategy will not group any record and will return them one by one as long as they are within the maximum size. Args: file (str): file path to read the records from. size (int): maximum size in MB that each group of records will be fitted to. passing 0 means unlimited size. Returns: generator of records
juraj-google-style
def restore_or_initialize(self): if self._latest_checkpoint is not None: self._checkpoint.restore(self._latest_checkpoint) if self._checkpoint_interval is not None: self._last_checkpoint_step = _evaluate(self._step_counter) return self._latest_checkpoint if self._init_fn is not None: self._init_fn() logging.info('Customized initialization is done through the passed `init_fn`.') return None
Restore items in `checkpoint` from the latest checkpoint file. This method will first try to restore from the most recent checkpoint in `directory`. If no checkpoints exist in `directory`, and `init_fn` is specified, this method will call `init_fn` to do customized initialization. This can be used to support initialization from pretrained models. Note that unlike `tf.train.Checkpoint.restore()`, this method doesn't return a load status object that users can run assertions on (e.g. assert_consumed()). Thus to run assertions, users should directly use `tf.train.Checkpoint.restore()` method. Returns: The restored checkpoint path if the latest checkpoint is found and restored. Otherwise None.
github-repos
def call(poly, args): args = list(args) if (len(args) < poly.dim): args = (args + ([np.nan] * (poly.dim - len(args)))) elif (len(args) > poly.dim): raise ValueError('too many arguments') (x0, x1) = ([], []) for (idx, arg) in enumerate(args): if isinstance(arg, Poly): poly_ = Poly({tuple(np.eye(poly.dim)[idx]): np.array(1)}) x0.append(poly_) x1.append(arg) args[idx] = np.nan if x0: poly = call(poly, args) return substitute(poly, x0, x1) masks = np.zeros(len(args), dtype=bool) for (idx, arg) in enumerate(args): if (np.ma.is_masked(arg) or np.any(np.isnan(arg))): masks[idx] = True args[idx] = 0 shape = np.array(args[np.argmax([np.prod(np.array(arg).shape) for arg in args])]).shape args = np.array([(np.ones(shape, dtype=int) * arg) for arg in args]) A = {} for key in poly.keys: key_ = (np.array(key) * (1 - masks)) val = np.outer(poly.A[key], np.prod((args.T ** key_).T, axis=0)) val = np.reshape(val, (poly.shape + tuple(shape))) val = np.where((val != val), 0, val) mkey = tuple((np.array(key) * masks)) if (not (mkey in A)): A[mkey] = val else: A[mkey] = (A[mkey] + val) out = Poly(A, poly.dim, None, None) if (out.keys and (not np.sum(out.keys))): out = out.A[out.keys[0]] elif (not out.keys): out = np.zeros(out.shape, dtype=out.dtype) return out
Evaluate a polynomial along specified axes. Args: poly (Poly): Input polynomial. args (numpy.ndarray): Argument to be evaluated. Masked values keeps the variable intact. Returns: (Poly, numpy.ndarray): If masked values are used the Poly is returned. Else an numpy array matching the polynomial's shape is returned.
codesearchnet
def add_reciprocal_link(self, target, weight): if (not isinstance(target, list)): target_list = [target] else: target_list = target for t in target_list: self.add_link(t, weight) t.add_link(self, weight)
Add links pointing in either direction between ``self`` and ``target``. This creates a ``Link`` from ``self`` to ``target`` and a ``Link`` from ``target`` to ``self`` of equal weight. If ``target`` is a list of ``Node`` 's, repeat this for each one. Args: target (Node or list[Node]): weight (int or float): Returns: None Example: >>> node_1 = Node('One') >>> node_2 = Node('Two') >>> node_1.add_reciprocal_link(node_2, 5) >>> new_link_1 = node_1.link_list[0] >>> new_link_2 = node_2.link_list[0] >>> print(new_link_1) node.Link instance pointing to node with value "Two" with weight 5 >>> print(new_link_2) node.Link instance pointing to node with value "One" with weight 5
codesearchnet
def resolve_theme(self, name): if (name not in settings.CODEMIRROR_THEMES): msg = "Given theme name '{}' does not exists in 'settings.CODEMIRROR_THEMES'." raise UnknowThemeError(msg.format(name)) return settings.CODEMIRROR_THEMES.get(name)
From given theme name, return theme file path from ``settings.CODEMIRROR_THEMES`` map. Arguments: name (string): Theme name. Raises: KeyError: When given name does not exist in ``settings.CODEMIRROR_THEMES``. Returns: string: Theme file path.
codesearchnet
def random_transform(self, x, seed=None): params = self.get_random_transform(x.shape, seed) return self.apply_transform(x, params)
Applies a random transformation to an image. Args: x: 3D tensor, single image. seed: Random seed. Returns: A randomly transformed version of the input (same shape).
github-repos
def _parse_email(self, val): ret = {'type': None, 'value': None} try: ret['type'] = val[1]['type'] except (KeyError, ValueError, TypeError): pass ret['value'] = val[3].strip() try: self.vars['email'].append(ret) except AttributeError: self.vars['email'] = [] self.vars['email'].append(ret)
The function for parsing the vcard email addresses. Args: val (:obj:`list`): The value to parse.
codesearchnet
def prepare_config(config: Optional[config_pb2.ConfigProto]) -> config_pb2.ConfigProto: allow_soft_placement = not force_gpu if config is None: config = context.context().config config.allow_soft_placement = allow_soft_placement elif not allow_soft_placement and config.allow_soft_placement: config_copy = context.context().config config = config_copy config.allow_soft_placement = False config.graph_options.optimizer_options.opt_level = -1 config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF config.graph_options.rewrite_options.pin_to_host_optimization = rewriter_config_pb2.RewriterConfig.OFF return config
Returns a config for sessions. Args: config: An optional config_pb2.ConfigProto to use to configure the session. Returns: A config_pb2.ConfigProto object.
github-repos
def gibbs_binding_energy(self, eads=False): n = self.get_unit_primitive_area Nads = self.Nads_in_slab BE = (self.energy - n * self.clean_entry.energy) / Nads - \ sum([ads.energy_per_atom for ads in self.adsorbates]) return BE * Nads if eads else BE
Returns the adsorption energy or Gibb's binding energy of an adsorbate on a surface Args: eads (bool): Whether to calculate the adsorption energy (True) or the binding energy (False) which is just adsorption energy normalized by number of adsorbates.
juraj-google-style
def predict_classes(self, x, batch_size=32, verbose=0): warnings.warn('`model.predict_classes()` is deprecated and will be removed after 2021-01-01. Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classification (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).') proba = self.predict(x, batch_size=batch_size, verbose=verbose) if proba.shape[-1] > 1: return proba.argmax(axis=-1) else: return (proba > 0.5).astype('int32')
Generate class predictions for the input samples. The input samples are processed batch by batch. Args: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A numpy array of class predictions.
github-repos
def output(self, _filename): for c in self.contracts: (name, inheritance, var, func_summaries, modif_summaries) = c.get_summary() txt = "\nContract %s"%name txt += '\nContract vars: '+str(var) txt += '\nInheritance:: '+str(inheritance) table = PrettyTable(["Function", "Visibility", "Modifiers", "Read", "Write", "Internal Calls", "External Calls"]) for (_c_name, f_name, visi, modifiers, read, write, internal_calls, external_calls) in func_summaries: read = self._convert(read) write = self._convert(write) internal_calls = self._convert(internal_calls) external_calls = self._convert(external_calls) table.add_row([f_name, visi, modifiers, read, write, internal_calls, external_calls]) txt += "\n \n"+str(table) table = PrettyTable(["Modifiers", "Visibility", "Read", "Write", "Internal Calls", "External Calls"]) for (_c_name, f_name, visi, _, read, write, internal_calls, external_calls) in modif_summaries: read = self._convert(read) write = self._convert(write) internal_calls = self._convert(internal_calls) external_calls = self._convert(external_calls) table.add_row([f_name, visi, read, write, internal_calls, external_calls]) txt += "\n\n"+str(table) txt += "\n" self.info(txt)
_filename is not used Args: _filename(string)
juraj-google-style
def check_password_hash(password, password_hash, salt, N=1 << 14, r=8, p=1, buflen=64): candidate_hash = generate_password_hash(password, salt, N, r, p, buflen) return safe_str_cmp(password_hash, candidate_hash)
Given a password, hash, salt this function verifies the password is equal to hash/salt. Args: - ``password``: The password to perform check on. Returns: - ``bool``
juraj-google-style
def get_metrics_namespace(self) -> str: return 'BeamML_HuggingFaceModelHandler_Tensor'
Returns: A namespace for metrics collected by the RunInference transform.
github-repos
def _checkInt(inputvalue, minvalue=None, maxvalue=None, description='inputvalue'): if not isinstance(description, str): raise TypeError('The description should be a string. Given: {0!r}'.format(description)) if not isinstance(inputvalue, (int, long)): raise TypeError('The {0} must be an integer. Given: {1!r}'.format(description, inputvalue)) if not isinstance(minvalue, (int, long, type(None))): raise TypeError('The minvalue must be an integer or None. Given: {0!r}'.format(minvalue)) if not isinstance(maxvalue, (int, long, type(None))): raise TypeError('The maxvalue must be an integer or None. Given: {0!r}'.format(maxvalue)) _checkNumerical(inputvalue, minvalue, maxvalue, description)
Check that the given integer is valid. Args: * inputvalue (int or long): The integer to be checked * minvalue (int or long, or None): Minimum value of the integer * maxvalue (int or long, or None): Maximum value of the integer * description (string): Used in error messages for the checked inputvalue Raises: TypeError, ValueError Note: Can not use the function :func:`_checkString`, as that function uses this function internally.
juraj-google-style
def int_shape(x): try: shape = x.shape if not isinstance(shape, tuple): shape = tuple(shape.as_list()) return shape except ValueError: return None
Returns the shape of tensor or variable as a tuple of int or None entries. Args: x: Tensor or variable. Returns: A tuple of integers (or None entries). Examples: >>> input = tf.keras.backend.placeholder(shape=(2, 4, 5)) >>> tf.keras.backend.int_shape(input) (2, 4, 5) >>> val = np.array([[1, 2], [3, 4]]) >>> kvar = tf.keras.backend.variable(value=val) >>> tf.keras.backend.int_shape(kvar) (2, 2)
github-repos
def parse_page(raw_page): ret = {"title": get_title(raw_page), "id": get_id(raw_page)} if ":" in ret["title"]: return None ret["revisions"] = get_revisions(raw_page) return ret
Create a dictionary with title, id, and list of revisions. The dictionary contains: "title": a string "id": an integer "revisions": a list of strings Args: raw_page: a string Returns: a dictionary, or None in the case of an error.
juraj-google-style
def ToParameter(item: StackItem): if isinstance(item, Array) or isinstance(item, Struct): items = item.GetArray() output = [ContractParameter.ToParameter(subitem) for subitem in items] return ContractParameter(type=ContractParameterType.Array, value=output) elif isinstance(item, Boolean): return ContractParameter(type=ContractParameterType.Boolean, value=item.GetBoolean()) elif isinstance(item, ByteArray): return ContractParameter(type=ContractParameterType.ByteArray, value=item.GetByteArray()) elif isinstance(item, Integer): return ContractParameter(type=ContractParameterType.Integer, value=str(item.GetBigInteger())) elif isinstance(item, InteropInterface): return ContractParameter(type=ContractParameterType.InteropInterface, value=item.GetInterface())
Convert a StackItem to a ContractParameter object Args: item (neo.VM.InteropService.StackItem) The item to convert to a ContractParameter object Returns: ContractParameter
juraj-google-style
def GetSitelinksFromFeed(client, feed): feed_mappings = GetFeedMapping(client, feed, PLACEHOLDER_TYPE_SITELINKS) feed_items = {} for feed_item in GetFeedItems(client, feed): site_link_from_feed = {} for attribute_value in feed_item['attributeValues']: if attribute_value['feedAttributeId'] in feed_mappings: for field_id in feed_mappings[attribute_value['feedAttributeId']]: if field_id == SITE_LINK_FIELDS['TEXT']: site_link_from_feed['text'] = attribute_value['stringValue'] elif field_id == SITE_LINK_FIELDS['URL']: site_link_from_feed['url'] = attribute_value['stringValue'] elif field_id == SITE_LINK_FIELDS['FINAL_URLS']: site_link_from_feed['finalUrls'] = attribute_value['stringValues'] elif field_id == SITE_LINK_FIELDS['FINAL_MOBILE_URLS']: site_link_from_feed['finalMobileUrls'] = attribute_value[ 'stringValues'] elif field_id == SITE_LINK_FIELDS['TRACKING_URL_TEMPLATE']: site_link_from_feed['trackingUrlTemplate'] = attribute_value[ 'stringValue'] elif field_id == SITE_LINK_FIELDS['LINE2']: site_link_from_feed['line2'] = attribute_value['stringValue'] elif field_id == SITE_LINK_FIELDS['LINE3']: site_link_from_feed['line3'] = attribute_value['stringValue'] else: print 'No applicable Site Link Field found for Id: %s' % field_id feed_items[feed_item['feedItemId']] = site_link_from_feed return feed_items
Gets the sitelinks from a feed. Args: client: an AdWordsClient instance. feed: the feed used to retrieve sitelinks. Returns: A dictionary mapping the feed item ID to SiteLinkFromFeed.
juraj-google-style
def runTemplate(id, data={}): conn = Qubole.agent() path = (str(id) + '/run') res = conn.post(Template.element_path(path), data) cmdType = res['command_type'] cmdId = res['id'] cmdClass = eval(cmdType) cmd = cmdClass.find(cmdId) while (not Command.is_done(cmd.status)): time.sleep(Qubole.poll_interval) cmd = cmdClass.find(cmd.id) return Template.getResult(cmdClass, cmd)
Run an existing Template and waits for the Result. Prints result to stdout. Args: `id`: ID of the template to run `data`: json data containing the input_vars Returns: An integer as status (0: success, 1: failure)
codesearchnet
def to_service(self, service, version): service_url = self._service_locator.get_service_url(service, version) return self.__copy_and_set('service_url', self.__strip_trailing_slashes(service_url))
Sets the service name and version the request should target Args: service (str): The name of the service as displayed in the services.json file version (str): The version of the service as displayed in the services.json file Returns: The request builder instance in order to chain calls
codesearchnet
def _variable_on_cpu(name, shape, initializer): with tf.device('/cpu:0'): dtype = (tf.float16 if FLAGS.use_fp16 else tf.float32) var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) return var
Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor
codesearchnet
def create_domain(provider, context, **kwargs): session = get_session(provider.region) client = session.client("route53") domain = kwargs.get("domain") if not domain: logger.error("domain argument or BaseDomain variable not provided.") return False zone_id = create_route53_zone(client, domain) return {"domain": domain, "zone_id": zone_id}
Create a domain within route53. Args: provider (:class:`stacker.providers.base.BaseProvider`): provider instance context (:class:`stacker.context.Context`): context instance Returns: boolean for whether or not the hook succeeded.
juraj-google-style
def combine_last_two_dimensions(x): x_shape = common_layers.shape_list(x) (a, b) = x_shape[(- 2):] return tf.reshape(x, (x_shape[:(- 2)] + [(a * b)]))
Reshape x so that the last two dimension become one. Args: x: a Tensor with shape [..., a, b] Returns: a Tensor with shape [..., ab]
codesearchnet
def sinh(x): if any_symbolic_tensors((x,)): return Sinh().symbolic_call(x) return backend.numpy.sinh(x)
Hyperbolic sine, element-wise. Arguments: x: Input tensor. Returns: Output tensor of same shape as `x`.
github-repos
def is_disconnected(self, node_id): conn = self._conns.get(node_id) if conn is None: return False return conn.disconnected()
Check whether the node connection has been disconnected or failed. A disconnected node has either been closed or has failed. Connection failures are usually transient and can be resumed in the next ready() call, but there are cases where transient failures need to be caught and re-acted upon. Arguments: node_id (int): the id of the node to check Returns: bool: True iff the node exists and is disconnected
juraj-google-style
def get_favorite_radio_shows(self, start=0, max_items=100): message = 'The output type of this method will probably change in the future to use SoCo data structures' warnings.warn(message, stacklevel=2) return self.__get_favorites(RADIO_SHOWS, start, max_items)
Get favorite radio shows from Sonos' Radio app. Returns: dict: A dictionary containing the total number of favorites, the number of favorites returned, and the actual list of favorite radio shows, represented as a dictionary with `title` and `uri` keys. Depending on what you're building, you'll want to check to see if the total number of favorites is greater than the amount you requested (`max_items`), if it is, use `start` to page through and get the entire list of favorites.
codesearchnet
def fts_match_all(self, fts, inv): return all([self.fts_match(fts, s) for s in inv])
Return `True` if all segments in `inv` matches the features in fts Args: fts (list): a collection of (value, feature) tuples inv (list): a collection of IPA segments represented as Unicode strings Returns: bool: `True` if all segments in `inv` matches the features in `fts`
codesearchnet
def error(message): fail = '\x1b[91m' end = '\x1b[0m' sys.exit(((fail + 'Error: {}'.format(message)) + end))
Throw an error with the given message and immediately quit. Args: message(str): The message to display.
codesearchnet
def __init__(self, axis=None): super().__init__() if axis is None: axis = [] self._axis = axis
Initializes a Squeeze layer. Args: axis: An optional list of ints. Defaults to []. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. Must be in the range [-rank(input), rank(input)). Must be specified if input is a RaggedTensor.
github-repos
def dispatch(self, msg): logger.debug(f'Got message: {msg}') futures = [] matched = False for behaviour in (x for x in self.behaviours if x.match(msg)): futures.append(self.submit(behaviour.enqueue(msg))) logger.debug(f'Message enqueued to behaviour: {behaviour}') self.traces.append(msg, category=str(behaviour)) matched = True if (not matched): logger.warning(f'No behaviour matched for message: {msg}') self.traces.append(msg) return futures
Dispatch the message to every behaviour that is waiting for it using their templates match. Args: msg (spade.message.Messagge): the message to dispatch. Returns: list(asyncio.Future): a list of futures of the append of the message at each matched behaviour.
codesearchnet
def _create_environment(config, outdir): if isinstance(config.env, str): env = gym.make(config.env) else: env = config.env() if not hasattr(env, 'spec'): setattr(env, 'spec', getattr(env, 'spec', None)) if config.max_length: env = tools.wrappers.LimitDuration(env, config.max_length) env = gym.wrappers.Monitor( env, outdir, lambda unused_episode_number: True) if isinstance(env.action_space, gym.spaces.Box): env = tools.wrappers.RangeNormalize(env) env = tools.wrappers.ClipAction(env) elif isinstance(env.action_space, gym.spaces.Discrete): env = tools.wrappers.RangeNormalize(env, action=False) else: message = "Unsupported action space '{}'".format(type(env.action_space)) raise NotImplementedError(message) env = tools.wrappers.ConvertTo32Bit(env) env = tools.wrappers.CacheSpaces(env) return env
Constructor for an instance of the environment. Args: config: Object providing configurations via attributes. outdir: Directory to store videos in. Raises: NotImplementedError: For action spaces other than Box and Discrete. Returns: Wrapped OpenAI Gym environment.
juraj-google-style
def get_relevant_paths_and_versions(self, config: 'XLAConfigOptions'): if self.ld_library_path is None: self.ld_library_path = os.environ.get('LD_LIBRARY_PATH', None) if config.host_compiler == HostCompiler.CLANG: self.clang_path = _find_executable_or_die('clang', self.clang_path) self.clang_major_version = self.clang_major_version or _get_clang_major_version(self.clang_path) self.lld_path = self.lld_path or shutil.which('ld.lld') elif config.host_compiler == HostCompiler.GCC: self.gcc_path = _find_executable_or_die('gcc', self.gcc_path) self.gcc_major_version = self.gcc_major_version or _get_gcc_major_version(self.gcc_path) if config.backend == Backend.CUDA: if config.cuda_compiler == CudaCompiler.CLANG: self.clang_path = _find_executable_or_die('clang', self.clang_path) if not self.cuda_compute_capabilities: self.cuda_compute_capabilities = _get_cuda_compute_capabilities_or_die()
Gets paths and versions as needed by the config. Args: config: XLAConfigOptions instance that determines what paths and versions to try to autoconfigure.
github-repos
def run(self, resources): hwman = resources['connection'] con = hwman.hwman.controller() test_interface = con.test_interface() try: test_interface.synchronize_clock() print(('Time currently set at %s' % test_interface.current_time_str())) except: raise ArgumentError('Error setting RTC time, check if controller actually has RTC or if iotile-support-lib-controller-3 is updated')
Sets the RTC timestamp to UTC. Args: resources (dict): A dictionary containing the required resources that we needed access to in order to perform this step.
codesearchnet
def prefer_type(self, prefer, over): self._write_lock.acquire() try: if self._preferred(preferred=over, over=prefer): raise ValueError(('Type %r is already preferred over %r.' % (over, prefer))) prefs = self._prefer_table.setdefault(prefer, set()) prefs.add(over) finally: self._write_lock.release()
Prefer one type over another type, all else being equivalent. With abstract base classes (Python's abc module) it is possible for a type to appear to be a subclass of another type without the supertype appearing in the subtype's MRO. As such, the supertype has no order with respect to other supertypes, and this may lead to amguity if two implementations are provided for unrelated abstract types. In such cases, it is possible to disambiguate by explictly telling the function to prefer one type over the other. Arguments: prefer: Preferred type (class). over: The type we don't like (class). Raises: ValueError: In case of logical conflicts.
codesearchnet
def from_stream(cls, stream): fields = _magic_parser(stream, magic=cls.MAGIC) if fields: fields.pop('iter') return cls(fields) else: return None
Read the first occurrence of ScfCycle from stream. Returns: None if no `ScfCycle` entry is found.
codesearchnet
def register(config_class, video_processor_class, exist_ok=False): VIDEO_PROCESSOR_MAPPING.register(config_class, video_processor_class, exist_ok=exist_ok)
Register a new video processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. video_processor_class ([`BaseVideoProcessor`]): The video processor to register.
github-repos
def step(self, action): self._agent.act(action) self._handle_command_buffer() self._client.release() self._client.acquire() return self._get_single_state()
Supplies an action to the main agent and tells the environment to tick once. Primary mode of interaction for single agent environments. Args: action (np.ndarray): An action for the main agent to carry out on the next tick. Returns: tuple: The (state, reward, terminal, info) tuple for the agent. State is a dictionary from sensor enum (see :obj:`holodeck.sensors.Sensors`) to np.ndarray. Reward is the float reward returned by the environment. Terminal is the bool terminal signal returned by the environment. Info is any additional info, depending on the world. Defaults to None.
codesearchnet
def _Inject(self, position, call): self.EnsureGdbPosition(position[0], position[1], None) self.ClearBreakpoints() self._AddThreadSpecificBreakpoint(position) gdb.parse_and_eval(('%s = 1' % GdbCache.PENDINGCALLS_TO_DO)) gdb.parse_and_eval(('%s = 1' % GdbCache.PENDINGBUSY)) try: self.Continue(position) if (not gdb.selected_thread().is_stopped()): raise RuntimeError('Gdb is not acting as expected, is it being run in async mode?') finally: gdb.parse_and_eval(('%s = 0' % GdbCache.PENDINGBUSY)) self.Call(position, call)
Injects evaluation of 'call' in a safe location in the inferior. Due to the way these injected function calls work, gdb must not be killed until the call has returned. If that happens, the inferior will be sent SIGTRAP upon attempting to return from the dummy frame gdb constructs for us, and will most probably crash. Args: position: array of pid, tid, framedepth specifying the requested position. call: Any expression gdb can evaluate. Usually a function call. Raises: RuntimeError: if gdb is not being run in synchronous exec mode.
codesearchnet
def _construct_field_operator_expression_dict(expression_list): between_operators = (u'<=', u'>=') inverse_operator = {u'>=': u'<=', u'<=': u'>='} local_field_to_expressions = {} remaining_expression_list = deque([]) for expression in expression_list: if all((isinstance(expression, BinaryComposition), (expression.operator in between_operators), (isinstance(expression.left, LocalField) or isinstance(expression.right, LocalField)))): if isinstance(expression.right, LocalField): new_operator = inverse_operator[expression.operator] new_expression = BinaryComposition(new_operator, expression.right, expression.left) else: new_expression = expression field_name = new_expression.left.field_name expressions_dict = local_field_to_expressions.setdefault(field_name, {}) expressions_dict.setdefault(new_expression.operator, []).append(new_expression) else: remaining_expression_list.append(expression) return (local_field_to_expressions, remaining_expression_list)
Construct a mapping from local fields to specified operators, and corresponding expressions. Args: expression_list: list of expressions to analyze Returns: local_field_to_expressions: dict mapping local field names to "operator -> list of BinaryComposition" dictionaries, for each BinaryComposition operator involving the LocalField remaining_expression_list: list of remaining expressions that were *not* BinaryCompositions on a LocalField using any of the between operators
codesearchnet
def declaration_path(decl): if (not decl): return [] if (not decl.cache.declaration_path): result = [decl.name] parent = decl.parent while parent: if parent.cache.declaration_path: result.reverse() decl.cache.declaration_path = (parent.cache.declaration_path + result) return decl.cache.declaration_path else: result.append(parent.name) parent = parent.parent result.reverse() decl.cache.declaration_path = result return result return decl.cache.declaration_path
Returns a list of parent declarations names. Args: decl (declaration_t): declaration for which declaration path should be calculated. Returns: list[(str | basestring)]: list of names, where first item is the top parent name and last item the inputted declaration name.
codesearchnet
def get_wells(self, uwis=None): if uwis is None: return Project(self.__list) return Project([w for w in self if w.uwi in uwis])
Returns a new Project with only the wells named by UWI. Args: uwis (list): list or tuple of UWI strings. Returns: project.
juraj-google-style
def _CopyFromDateTimeValues(self, date_time_values): year = date_time_values.get('year', 0) month = date_time_values.get('month', 0) day_of_month = date_time_values.get('day_of_month', 0) hours = date_time_values.get('hours', 0) minutes = date_time_values.get('minutes', 0) seconds = date_time_values.get('seconds', 0) microseconds = date_time_values.get('microseconds', 0) precision_helper = precisions.PrecisionHelperFactory.CreatePrecisionHelper( self._precision) fraction_of_second = precision_helper.CopyMicrosecondsToFractionOfSecond( microseconds) self._normalized_timestamp = None self._number_of_seconds = self._GetNumberOfSecondsFromElements( year, month, day_of_month, hours, minutes, seconds) self._time_elements_tuple = ( year, month, day_of_month, hours, minutes, seconds) self.fraction_of_second = fraction_of_second self.is_local_time = False
Copies time elements from date and time values. Args: date_time_values (dict[str, int]): date and time values, such as year, month, day of month, hours, minutes, seconds, microseconds. Raises: ValueError: if no helper can be created for the current precision.
juraj-google-style
def _CheckByteStreamSize(self, byte_stream, byte_offset, data_type_size): try: byte_stream_size = len(byte_stream) except Exception as exception: raise errors.MappingError(exception) if ((byte_stream_size - byte_offset) < data_type_size): raise errors.ByteStreamTooSmallError('Byte stream too small requested: {0:d} available: {1:d}'.format(data_type_size, byte_stream_size))
Checks if the byte stream is large enough for the data type. Args: byte_stream (bytes): byte stream. byte_offset (int): offset into the byte stream where to start. data_type_size (int): data type size. Raises: ByteStreamTooSmallError: if the byte stream is too small. MappingError: if the size of the byte stream cannot be determined.
codesearchnet
def splitEkmDate(dateint): date_str = str(dateint) dt = namedtuple('EkmDate', ['yy', 'mm', 'dd', 'weekday', 'hh', 'minutes', 'ss']) if (len(date_str) != 14): dt.yy = dt.mm = dt.dd = dt.weekday = dt.hh = dt.minutes = dt.ss = 0 return dt dt.yy = int(date_str[0:2]) dt.mm = int(date_str[2:4]) dt.dd = int(date_str[4:6]) dt.weekday = int(date_str[6:8]) dt.hh = int(date_str[8:10]) dt.minutes = int(date_str[10:12]) dt.ss = int(date_str[12:14]) return dt
Break out a date from Omnimeter read. Note a corrupt date will raise an exception when you convert it to int to hand to this method. Args: dateint (int): Omnimeter datetime as int. Returns: tuple: Named tuple which breaks out as followws: ========== ===================== yy Last 2 digits of year mm Month 1-12 dd Day 1-31 weekday Zero based weekday hh Hour 0-23 minutes Minutes 0-59 ss Seconds 0-59 ========== =====================
codesearchnet
def render(self, data): renderers = { "text/csv": self._render_as_csv, "text/html": self._render_as_html, None: self._render_as_html, } render = renderers[data.content_type] return render(data)
Renders the reports based on data.content_type's value. Arguments: data (ReportViewRequestData): The report data. data.content_type is used to determine how the reports are rendered. Returns: HTTPResponse: The rendered version of the report.
juraj-google-style
def get_hook(hook_name): if not pkg_resources.resource_exists(__name__, hook_name): raise HookNotFoundError return pkg_resources.resource_string(__name__, hook_name)
Returns the specified hook. Args: hook_name (str) Returns: str - (the content of) the hook Raises: HookNotFoundError
juraj-google-style
def sheetNames(book=None): if book: if not book.lower() in [x.lower() for x in bookNames()]: return False else: book=activeBook() if not book: return False poBook=PyOrigin.WorksheetPages(book) if not len(poBook): return None return [x.GetName() for x in poBook.Layers()]
return sheet names of a book. Args: book (str, optional): If a book is given, pull names from that book. Otherwise, try the active one Returns: list of sheet names (typical case). None if book has no sheets. False if book doesn't exlist.
juraj-google-style
def snow_depth(self, value=999.0): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `snow_depth`'.format(value)) self._snow_depth = value
Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def write(self, data): block_remaining = (_BLOCK_SIZE - (self.__position % _BLOCK_SIZE)) if (block_remaining < _HEADER_LENGTH): self.__writer.write(('\x00' * block_remaining)) self.__position += block_remaining block_remaining = _BLOCK_SIZE if (block_remaining < (len(data) + _HEADER_LENGTH)): first_chunk = data[:(block_remaining - _HEADER_LENGTH)] self.__write_record(_RECORD_TYPE_FIRST, first_chunk) data = data[len(first_chunk):] while True: block_remaining = (_BLOCK_SIZE - (self.__position % _BLOCK_SIZE)) if (block_remaining >= (len(data) + _HEADER_LENGTH)): self.__write_record(_RECORD_TYPE_LAST, data) break else: chunk = data[:(block_remaining - _HEADER_LENGTH)] self.__write_record(_RECORD_TYPE_MIDDLE, chunk) data = data[len(chunk):] else: self.__write_record(_RECORD_TYPE_FULL, data)
Write single record. Args: data: record data to write as string, byte array or byte sequence.
codesearchnet
def license(): from os.path import join with open(join(__path__[0], 'LICENSE.txt')) as lic: print(lic.read())
Print the Bokeh license to the console. Returns: None
codesearchnet
def create_view(operations, operation): operations.execute("CREATE VIEW %s AS %s" % ( operation.target.name, operation.target.sqltext ))
Implements ``CREATE VIEW``. Args: operations: instance of ``alembic.operations.base.Operations`` operation: instance of :class:`.ReversibleOp` Returns: ``None``
juraj-google-style
def has_apical_dendrite(neuron, min_number=1, treefun=_read_neurite_type): types = [treefun(n) for n in neuron.neurites] return CheckResult((types.count(NeuriteType.apical_dendrite) >= min_number))
Check if a neuron has apical dendrites Arguments: neuron(Neuron): The neuron object to test min_number: minimum number of apical dendrites required treefun: Optional function to calculate the tree type of neuron's neurites Returns: CheckResult with result
codesearchnet
def transcripts(self, build='37', hgnc_id=None): query = {'build': build} if hgnc_id: query['hgnc_id'] = hgnc_id return self.transcript_collection.find(query)
Return all transcripts. If a gene is specified return all transcripts for the gene Args: build(str) hgnc_id(int) Returns: iterable(transcript)
juraj-google-style
def _bfd_multiplier(self, **kwargs): method_name = 'rbridge_id_router_router_bgp_router_bgp_attributes_' \ 'bfd_interval_multiplier' bfd_multiplier = getattr(self._rbridge, method_name) config = bfd_multiplier(**kwargs) if kwargs['delete']: tag = 'multiplier' config.find('. return config
Return the BFD multiplier XML. You should not use this method. You probably want `BGP.bfd`. Args: min_tx (str): BFD transmit interval in milliseconds (300, 500, etc) delete (bool): Remove the configuration if ``True``. Returns: XML to be passed to the switch. Raises: None
juraj-google-style
def content(self): as_text = (self.content_type in _content_types.UTF8_TYPES) return self.get_data(as_text=as_text)
The request incoming data. It automatic decodes from utf-8 Returns: (obj): incoming data
codesearchnet
def product_name(self): buf = (ctypes.c_char * self.MAX_BUF_SIZE)() self._dll.JLINKARM_EMU_GetProductName(buf, self.MAX_BUF_SIZE) return ctypes.string_at(buf).decode()
Returns the product name of the connected J-Link. Args: self (JLink): the ``JLink`` instance Returns: Product name.
codesearchnet
def chain_part_functions(fns: Sequence[PartFn], match_fns: Sequence[MatchFn] | None=None) -> PartFn: return functools.partial(_chain_part_functions, _to_tuple_fns(fns, match_fns))
Chain the `fns` and execute them concurrently. See file comment. Args: fns: sequence of part functions to chain. match_fns: sequence of functions that return True if the part should be processed by the part function. When the part should not be processed, the part function will not be called and the part will be passed as is. When match_fns is not provided, all parts are processed by default. Returns: Part function that is a chain of the provided Sequence of functions. Raises: ValueError: if the length of fns and match_fns is not the same (when match_fns is provided).
github-repos
def get_structure_by_formula(self, formula, **kwargs): structures = [] sql = ('select file, sg from data where formula="- %s -"' % Composition(formula).hill_formula) text = self.query(sql).split('\n') text.pop(0) for l in text: if l.strip(): (cod_id, sg) = l.split('\t') r = requests.get(('http: try: s = Structure.from_str(r.text, fmt='cif', **kwargs) structures.append({'structure': s, 'cod_id': int(cod_id), 'sg': sg}) except Exception: import warnings warnings.warn(('\nStructure.from_str failed while parsing CIF file:\n%s' % r.text)) raise return structures
Queries the COD for structures by formula. Requires mysql executable to be in the path. Args: cod_id (int): COD id. kwargs: All kwargs supported by :func:`pymatgen.core.structure.Structure.from_str`. Returns: A list of dict of the format [{"structure": Structure, "cod_id": cod_id, "sg": "P n m a"}]
codesearchnet
def add_maps(self, parent, root_path=''): for mapsource in self.map_folders[root_path]['maps']: parent.append(self.get_network_link(mapsource)) for folder in self.map_folders[root_path]['folders']: kml_folder_obj = kml_folder(folder) parent.append(kml_folder_obj) self.add_maps(parent=kml_folder_obj, root_path=F_SEP.join((root_path, folder)))
Recursively add maps in a folder hierarchy. Args: parent (KMLElement): KMLElement to which we want to append child folders or maps respectively root_path (str): path of 'parent'
codesearchnet
def __init__(self, backend_wsgi_app, config_manager=None): if config_manager is None: config_manager = api_config_manager.ApiConfigManager() self.config_manager = config_manager self._backend = backend_wsgi_app self._dispatchers = [] for base_path in self._backend.base_paths: self._add_dispatcher('%sexplorer/?$' % base_path, self.handle_api_explorer_request) self._add_dispatcher('%sstatic/.*$' % base_path, self.handle_api_static_request) api_config_response = self.get_api_configs() if api_config_response: self.config_manager.process_api_config_response(api_config_response) else: raise api_exceptions.ApiConfigurationError('get_api_configs() returned no configs')
Constructor for EndpointsDispatcherMiddleware. Args: backend_wsgi_app: A WSGI server that serves the app's endpoints. config_manager: An ApiConfigManager instance that allows a caller to set up an existing configuration for testing.
juraj-google-style
def es_get_class_defs(cls_def, cls_name): rtn_dict = {key: value for (key, value) in cls_def.items() if key.startswith('kds_es')} for key in rtn_dict: del cls_def[key] return rtn_dict
Reads through the class defs and gets the related es class defintions Args: ----- class_defs: RdfDataset of class definitions
codesearchnet