code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def convert_pil_frames_to_video(videos: List[VideoInput]) -> List[Union['np.ndarray', 'torch.Tensor']]:
if not isinstance(videos[0], (list, tuple)):
return videos
video_converted = []
for video in videos:
video = [np.array(frame) for frame in video]
video = np.stack(video)
video_converted.append(video)
return video_converted
|
Given a batch of videos, converts each video to a 4D array. If video is already in array type,
it is simply returned. We assume that all inputs in the list are in the same format, based on the type of the first element.
Args:
videos (`VideoInput`):
Video inputs to turn into a list of videos.
|
github-repos
|
def get_string(self, byte_count=_MAX_INT):
return self.fdp.ConsumeString(byte_count)
|
Consume a string with given constraints based on a consumed bool.
Args:
byte_count: Byte count that defaults to _MAX_INT.
Returns:
Consumed string based on input bytes and constraints.
|
github-repos
|
def resolve(self, reference_path_or_paths: Optional[Union[str, List[str]]]=None) -> Union[Tuple[symbolic.Symbolic, utils.KeyPath], List[Tuple[symbolic.Symbolic, utils.KeyPath]]]:
single_input = False
if reference_path_or_paths is None:
reference_paths = self.reference_paths
elif isinstance(reference_path_or_paths, str):
reference_paths = [utils.KeyPath.parse(reference_path_or_paths)]
single_input = True
elif isinstance(reference_path_or_paths, utils.KeyPath):
reference_paths = [reference_path_or_paths]
single_input = True
elif isinstance(reference_path_or_paths, list):
paths = []
for path in reference_path_or_paths:
if isinstance(path, str):
path = utils.KeyPath.parse(path)
elif not isinstance(path, utils.KeyPath):
raise ValueError("Argument 'reference_path_or_paths' must be None, a string, KeyPath object, a list of strings, or a list of KeyPath objects.")
paths.append(path)
reference_paths = paths
else:
raise ValueError("Argument 'reference_path_or_paths' must be None, a string, KeyPath object, a list of strings, or a list of KeyPath objects.")
resolved_paths = []
for reference_path in reference_paths:
parent = self.sym_parent
while parent is not None and (not reference_path.exists(parent)):
parent = getattr(parent, 'sym_parent', None)
if parent is None:
raise ValueError(f"Cannot resolve '{reference_path}': parent not found.")
resolved_paths.append((parent, parent.sym_path + reference_path))
return resolved_paths if not single_input else resolved_paths[0]
|
Resolve reference paths based on the location of this node.
Args:
reference_path_or_paths: (Optional) a string or KeyPath as a reference
path or a list of strings or KeyPath objects as a list of
reference paths.
If this argument is not provided, prebound reference paths of this
object will be used.
Returns:
A tuple (or list of tuple) of (resolved parent, resolved full path)
|
github-repos
|
def _populate_quantization_component_spec(quant_method: _QuantizationMethod) -> None:
updated_component_spec = dict()
if quant_method.preset_method == _PresetMethod.METHOD_STATIC_RANGE_INT8 or quant_method.preset_method == _PresetMethod.METHOD_DYNAMIC_RANGE_INT8:
updated_component_spec[_QuantizationComponent.COMPONENT_ACTIVATION] = _QuantizationComponentSpec(quantization_component=_QuantizationComponent.COMPONENT_ACTIVATION, tensor_type=_TensorType.TENSORTYPE_INT_8)
updated_component_spec[_QuantizationComponent.COMPONENT_WEIGHT] = _QuantizationComponentSpec(quantization_component=_QuantizationComponent.COMPONENT_WEIGHT, tensor_type=_TensorType.TENSORTYPE_INT_8)
updated_component_spec[_QuantizationComponent.COMPONENT_BIAS] = _QuantizationComponentSpec(quantization_component=_QuantizationComponent.COMPONENT_BIAS, tensor_type=_TensorType.TENSORTYPE_INT_32)
elif quant_method.preset_method == _PresetMethod.METHOD_STATIC_RANGE_WEIGHT_ONLY_INT8:
updated_component_spec[_QuantizationComponent.COMPONENT_WEIGHT] = _QuantizationComponentSpec(quantization_component=_QuantizationComponent.COMPONENT_WEIGHT, tensor_type=_TensorType.TENSORTYPE_INT_8)
if quant_method.quantization_component_specs:
for component_spec in quant_method.quantization_component_specs:
if component_spec.quantization_component in [_QuantizationComponent.COMPONENT_WEIGHT, _QuantizationComponent.COMPONENT_ACTIVATION]:
if component_spec.tensor_type != _TensorType.TENSORTYPE_INT_8:
raise ValueError('Only int8 precision is supported for input operands.')
elif component_spec.tensor_type != _TensorType.TENSORTYPE_INT_32:
raise ValueError('Only int32 precision is supported for bias.')
updated_component_spec[component_spec.quantization_component] = component_spec
del quant_method.quantization_component_specs[:]
quant_method.quantization_component_specs.extend(updated_component_spec.values())
if (quant_method.preset_method == _PresetMethod.METHOD_STATIC_RANGE_INT8 or quant_method.preset_method == _PresetMethod.METHOD_DYNAMIC_RANGE_INT8) and len(quant_method.quantization_component_specs) != 3:
raise ValueError('Only 3 components are needed for', quant_method)
elif quant_method.preset_method == _PresetMethod.METHOD_STATIC_RANGE_WEIGHT_ONLY_INT8 and len(quant_method.quantization_component_specs) != 1:
raise ValueError('At least one component spec needs to be specified.')
|
Populates default values for QuantizationComponentSpec.
Args:
quant_method: The quantization method to be updated.
|
github-repos
|
def render_template(template_name, info, out_path=None):
env = Environment(loader=PackageLoader('iotile.build', 'config/templates'), trim_blocks=True, lstrip_blocks=True)
template = env.get_template(template_name)
result = template.render(info)
if (out_path is not None):
with open(out_path, 'wb') as outfile:
outfile.write(result.encode('utf-8'))
return result
|
Render a template using the variables in info.
You can optionally render to a file by passing out_path.
Args:
template_name (str): The name of the template to load. This must
be a file in config/templates inside this package
out_path (str): An optional path of where to save the output
file, otherwise it is just returned as a string.
info (dict): A dictionary of variables passed into the template to
perform substitutions.
Returns:
string: The rendered template data.
|
codesearchnet
|
def parse_device_list(device_list_str, key):
clean_lines = new_str(device_list_str, 'utf-8').strip().split('\n')
results = []
for line in clean_lines:
tokens = line.strip().split('\t')
if len(tokens) == 2 and tokens[1] == key:
results.append(tokens[0])
return results
|
Parses a byte string representing a list of devices.
The string is generated by calling either adb or fastboot. The tokens in
each string is tab-separated.
Args:
device_list_str: Output of adb or fastboot.
key: The token that signifies a device in device_list_str.
Returns:
A list of android device serial numbers.
|
juraj-google-style
|
def __init__(self, uploader, mode='wb'):
self._uploader = uploader
self.mode = mode
self._position = 0
|
Initializes the stream.
Args:
uploader: (Uploader) Filesystem dependent implementation.
mode: (string) Python mode attribute for this stream.
|
github-repos
|
class SampleTSPredictionOutput(ModelOutput):
sequences: Optional[torch.FloatTensor] = None
|
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length)` or `(batch_size, num_samples, prediction_length, input_size)`):
Sampled values from the chosen distribution.
|
github-repos
|
def fts_match_all(self, fts, inv):
return all([self.fts_match(fts, s) for s in inv])
|
Return `True` if all segments in `inv` matches the features in fts
Args:
fts (list): a collection of (value, feature) tuples
inv (list): a collection of IPA segments represented as Unicode
strings
Returns:
bool: `True` if all segments in `inv` matches the features in `fts`
|
juraj-google-style
|
def clean_for_storage(self, data):
data = self.data_to_unicode(data)
if isinstance(data, dict):
for k in dict(data).keys():
if (k == '_id'):
del data[k]
continue
if ('.' in k):
new_k = k.replace('.', '_')
data[new_k] = data[k]
del data[k]
k = new_k
if isinstance(data[k], dict):
data[k] = self.clean_for_storage(data[k])
elif isinstance(data[k], list):
data[k] = [self.clean_for_storage(item) for item in data[k]]
return data
|
Clean data in preparation for storage.
Deletes items with key having a '.' or is '_id'. Also deletes those items
whose value is a dictionary or a list.
Args:
data: Sample data dictionary to be cleaned.
Returns:
Cleaned data dictionary.
|
codesearchnet
|
def resume(self, email, master_token, state=None, sync=True):
auth = APIAuth(self.OAUTH_SCOPES)
ret = auth.load(email, master_token, android_id=get_mac())
if ret:
self.load(auth, state, sync)
return ret
|
Authenticate to Google with the provided master token & sync.
Args:
email (str): The account to use.
master_token (str): The master token.
state (dict): Serialized state to load.
Raises:
LoginException: If there was a problem logging in.
|
codesearchnet
|
def merge(tup):
if not all(tuple(ts.shape[1:] == tup[0].shape[1:] for ts in tup[1:])):
raise ValueError('Timeseries to merge must have compatible shapes')
indices = np.vstack(tuple(ts.tspan for ts in tup)).argsort()
return np.vstack((tup))[indices]
|
Merge several timeseries
Arguments:
tup: sequence of Timeseries, with the same shape except for axis 0
Returns:
Resulting merged timeseries which can have duplicate time points.
|
juraj-google-style
|
def softsign(x):
return ops.softsign(x)
|
Softsign activation function.
Softsign is defined as: `softsign(x) = x / (abs(x) + 1)`.
Args:
x: Input tensor.
|
github-repos
|
def token_request(self, authorization_code):
if (not self._client.token_endpoint):
return None
request = {'grant_type': 'authorization_code', 'code': authorization_code, 'redirect_uri': self._redirect_uri}
logger.debug('making token request: %s', request)
client_auth_method = self._client.registration_response.get('token_endpoint_auth_method', 'client_secret_basic')
auth_header = _ClientAuthentication(self._client.client_id, self._client.client_secret)(client_auth_method, request)
resp = self._provider_configuration.requests_session.post(self._client.token_endpoint, data=request, headers=auth_header).json()
logger.debug('received token response: %s', json.dumps(resp))
if ('error' in resp):
token_resp = TokenErrorResponse(**resp)
else:
token_resp = AccessTokenResponse(**resp)
token_resp.verify(keyjar=self._client.keyjar)
if ('id_token' in resp):
token_resp['id_token_jwt'] = resp['id_token']
return token_resp
|
Makes a token request. If the 'token_endpoint' is not configured in the provider metadata, no request will
be made.
Args:
authorization_code (str): authorization code issued to client after user authorization
Returns:
Union[AccessTokenResponse, TokenErrorResponse, None]: The parsed token response, or None if no token
request was performed.
|
codesearchnet
|
def instantiate(config):
for handle, cfg in list(config["apps"].items()):
if not cfg.get("enabled", True):
continue
app = get_application(handle)
instances[app.handle] = app(cfg)
|
instantiate all registered vodka applications
Args:
config (dict or MungeConfig): configuration object
|
juraj-google-style
|
class MeanSquaredLogarithmicError(MeanMetricWrapper):
def __init__(self, name='mean_squared_logarithmic_error', dtype=None):
super(MeanSquaredLogarithmicError, self).__init__(mean_squared_logarithmic_error, name, dtype=dtype)
|
Computes the mean squared logarithmic error between `y_true` and `y_pred`.
Args:
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.MeanSquaredLogarithmicError()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]])
>>> m.result().numpy()
0.12011322
>>> m.reset_state()
>>> m.update_state([[0, 1], [0, 0]], [[1, 1], [0, 0]],
... sample_weight=[1, 0])
>>> m.result().numpy()
0.24022643
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredLogarithmicError()])
```
|
github-repos
|
def extract_lookups(value):
lookups = set()
if isinstance(value, basestring):
lookups = lookups.union(extract_lookups_from_string(value))
elif isinstance(value, list):
for v in value:
lookups = lookups.union(extract_lookups(v))
elif isinstance(value, dict):
for v in value.values():
lookups = lookups.union(extract_lookups(v))
return lookups
|
Recursively extracts any stack lookups within the data structure.
Args:
value (one of str, list, dict): a structure that contains lookups to
output values
Returns:
list: list of lookups if any
|
codesearchnet
|
def get_identifier(identifier, module_globals, module_name):
if isinstance(identifier, six.string_types):
fn = module_globals.get(identifier)
if fn is None:
raise ValueError('Unknown {}: {}'.format(module_name, identifier))
return fn
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret identifier')
|
Helper utility to retrieve the callable function associated with a string identifier.
Args:
identifier: The identifier. Could be a string or function.
module_globals: The global objects of the module.
module_name: The module name
Returns:
The callable associated with the identifier.
|
juraj-google-style
|
def value_matrix(self):
if self.__value_matrix:
return self.__value_matrix
self.__value_matrix = [[value_dp.data for value_dp in value_dp_list] for value_dp_list in self.value_dp_matrix]
return self.__value_matrix
|
Converted rows of tabular data.
Returns:
|list| or |tuple|: Table rows.
|
codesearchnet
|
def _is_test_class(obj):
return tf_inspect.isclass(obj) and 'TestCase' in (p.__name__ for p in tf_inspect.getmro(obj))
|
Check if arbitrary object is a test class (not a test object!).
Args:
obj: An arbitrary object from within a module.
Returns:
True iff obj is a test class inheriting at some point from a module
named "TestCase". This is because we write tests using different underlying
test libraries.
|
github-repos
|
def setup_and_load_epoch(hparams, data_dir, which_epoch_data=None):
t2t_env = rl_utils.setup_env(hparams, batch_size=hparams.real_batch_size, max_num_noops=hparams.max_num_noops)
if (which_epoch_data is not None):
if (which_epoch_data == 'last'):
which_epoch_data = infer_last_epoch_num(data_dir)
assert isinstance(which_epoch_data, int), '{}'.format(type(which_epoch_data))
t2t_env.start_new_epoch(which_epoch_data, data_dir)
else:
t2t_env.start_new_epoch((- 999))
return t2t_env
|
Load T2TGymEnv with data from one epoch.
Args:
hparams: hparams.
data_dir: data directory.
which_epoch_data: data from which epoch to load.
Returns:
env.
|
codesearchnet
|
def _parse(json_str: str, primitive_cls: Type[Date], *, default_timezone: str) -> Date:
try:
dt = datetime.datetime.strptime(json_str, '%Y')
return _primitive_time_utils.build_date_like(dt, default_timezone, _primitive_time_utils.DateTimePrecision.YEAR, primitive_cls)
except ValueError:
pass
try:
dt = datetime.datetime.strptime(json_str, '%Y-%m')
return _primitive_time_utils.build_date_like(dt, default_timezone, _primitive_time_utils.DateTimePrecision.MONTH, primitive_cls)
except ValueError:
pass
try:
dt = datetime.datetime.strptime(json_str, '%Y-%m-%d')
return _primitive_time_utils.build_date_like(dt, default_timezone, _primitive_time_utils.DateTimePrecision.DAY, primitive_cls)
except ValueError:
pass
raise fhir_errors.InvalidFhirError('Invalid Date.')
|
Parses the json_str into a Date FHIR primitive.
Args:
json_str: The raw JSON string to parse.
primitive_cls: The FHIR primitive to parse into.
default_timezone: The default timezone to use when parsing in the event that
no timezone information is present.
Returns:
A FHIR primitive Date.
Raises:
fhir_errors.InvalidFhirError: In the event that no datetime format was
able to properly parse the json_str.
|
github-repos
|
def get_flux_biases_from_cache(cur, chains, system_name, chain_strength, max_age=3600):
select = '\n SELECT\n flux_bias\n FROM flux_bias_view WHERE\n chain_length = :chain_length AND\n nodes = :nodes AND\n chain_strength = :chain_strength AND\n system_name = :system_name AND\n insert_time >= :time_limit;\n '
encoded_data = {'chain_strength': _encode_real(chain_strength), 'system_name': system_name, 'time_limit': (datetime.datetime.now() + datetime.timedelta(seconds=(- max_age)))}
flux_biases = {}
for chain in chains:
encoded_data['chain_length'] = len(chain)
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
row = cur.execute(select, encoded_data).fetchone()
if (row is None):
raise MissingFluxBias
flux_bias = _decode_real(*row)
if (flux_bias == 0):
continue
flux_biases.update({v: flux_bias for v in chain})
return flux_biases
|
Determine the flux biases for all of the the given chains, system and chain strength.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chains (iterable):
An iterable of chains. Each chain is a collection of nodes. Chains in embedding act as
one node.
system_name (str):
The unique name of a system.
chain_strength (float):
The magnitude of the negative quadratic bias that induces the given chain in an Ising
problem.
max_age (int, optional, default=3600):
The maximum age (in seconds) for the flux_bias offsets.
Returns:
dict: A dict where the keys are the nodes in the chains and the values are the flux biases.
|
codesearchnet
|
def _with_tensor_ranks_only(self) -> 'TypeSpec':
def relax(value):
if isinstance(value, TypeSpec):
return value._with_tensor_ranks_only()
elif isinstance(value, tensor_shape.TensorShape) and value.rank is not None:
return tensor_shape.TensorShape([None] * value.rank)
else:
return value
return self._deserialize(nest.map_structure(relax, self._serialize()))
|
Returns a TypeSpec compatible with `self`, with tensor shapes relaxed.
Returns:
A `TypeSpec` that is compatible with `self`, where any `TensorShape`
information has been relaxed to include only tensor rank (and not
the dimension sizes for individual axes).
|
github-repos
|
def delete_pipeline(self, pipeline_key):
if pipeline_key:
uri = '/'.join([
self.api_uri,
self.pipelines_suffix,
pipeline_key
])
return self._req('delete', uri)
else:
return requests.codes.bad_request, None
|
Deletes the pipeline specified by the key
Args:
returns (status code for the DELETE request, success message dict)
expect (200 , {'success': 'true'}) for successful execution}
|
juraj-google-style
|
def read(self, size=None):
if not self._is_open:
raise IOError('Not opened.')
if self._current_offset < 0:
raise IOError(
'Invalid current offset: {0:d} value less than zero.'.format(
self._current_offset))
if self._file_data is None or self._current_offset >= self._size:
return b''
if size is None:
size = self._size
if self._current_offset + size > self._size:
size = self._size - self._current_offset
start_offset = self._current_offset
self._current_offset += size
return self._file_data[start_offset:self._current_offset]
|
Reads a byte string from the file-like object at the current offset.
The function will read a byte string of the specified size or
all of the remaining data if no size was specified.
Args:
size (Optional[int]): number of bytes to read, where None is all
remaining data.
Returns:
bytes: data read.
Raises:
IOError: if the read failed.
OSError: if the read failed.
|
juraj-google-style
|
def operate(self, point):
affine_point = np.array([point[0], point[1], point[2], 1])
return np.dot(self.affine_matrix, affine_point)[0:3]
|
Apply the operation on a point.
Args:
point: Cartesian coordinate.
Returns:
Coordinates of point after operation.
|
codesearchnet
|
def read_string(self, key, embedded=True):
data = None
if (key is not None):
key_type = self.variable_type(key)
data = self.db.read(key.strip())
if (data is not None):
try:
data = json.loads(data)
if embedded:
data = self.read_embedded(data, key_type)
if (data is not None):
data = u'{}'.format(data)
except ValueError as e:
err = u'Failed loading JSON data ({}). Error: ({})'.format(data, e)
self.tcex.log.error(err)
else:
self.tcex.log.warning(u'The key field was None.')
return data
|
Read method of CRUD operation for string data.
Args:
key (string): The variable to read from the DB.
embedded (boolean): Resolve embedded variables.
Returns:
(string): Results retrieved from DB.
|
codesearchnet
|
def unicode_convert(obj):
try:
if isinstance(obj, dict):
return {unicode_convert(key): unicode_convert(value) for key, value in obj.items()}
elif isinstance(obj, list):
return [unicode_convert(element) for element in obj]
elif isinstance(obj, str):
return obj
elif isinstance(obj, six.text_type):
return obj.encode('utf-8')
elif isinstance(obj, six.integer_types):
return obj
else:
return obj
except:
return obj
|
Converts unicode objects to anscii.
Args:
obj (object): The object to convert.
Returns:
The object converted to anscii, if possible. For ``dict`` and ``list``, the object type is maintained.
|
juraj-google-style
|
def extend(self, other):
orig_num_lines = self.num_lines()
self._lines.extend(other.lines)
for line_index in other.font_attr_segs:
self._font_attr_segs[orig_num_lines + line_index] = other.font_attr_segs[line_index]
for key in other.annotations:
if isinstance(key, int):
self._annotations[orig_num_lines + key] = other.annotations[key]
else:
self._annotations[key] = other.annotations[key]
|
Extend this instance of RichTextLines with another instance.
The extension takes effect on the text lines, the font attribute segments,
as well as the annotations. The line indices in the font attribute
segments and the annotations are adjusted to account for the existing
lines. If there are duplicate, non-line-index fields in the annotations,
the value from the input argument "other" will override that in this
instance.
Args:
other: (RichTextLines) The other RichTextLines instance to be appended at
the end of this instance.
|
github-repos
|
def inverse(self):
inverse_circ = self.copy(name=(self.name + '_dg'))
inverse_circ.data = []
for (inst, qargs, cargs) in reversed(self.data):
inverse_circ.data.append((inst.inverse(), qargs, cargs))
return inverse_circ
|
Invert this circuit.
This is done by recursively inverting all gates.
Returns:
QuantumCircuit: the inverted circuit
Raises:
QiskitError: if the circuit cannot be inverted.
|
codesearchnet
|
def run_schedule(inputs: Dict[EventSetNode, EventSet], schedule: Schedule, verbose: int, check_execution: bool, force_garbage_collector_interval: Optional[float]=10) -> Dict[EventSetNode, EventSet]:
data = {**inputs}
gc_begin_time = time.time()
num_steps = len(schedule.steps)
for step_idx, step in enumerate(schedule.steps):
operator_def = step.op.definition
implementation_cls = implementation_lib.get_implementation_class(operator_def.key)
implementation = implementation_cls(step.op)
if verbose == 1:
print(f' {step_idx + 1} / {num_steps}: {step.op.operator_key()}', file=sys.stderr, end='', flush=True)
elif verbose >= 2:
print('=============================', file=sys.stderr)
print(f'{step_idx + 1} / {num_steps}: Run {step.op}', file=sys.stderr, flush=True)
operator_inputs = {input_key: data[input_node] for input_key, input_node in step.op.inputs.items()}
if verbose >= 2:
print(f'Inputs:\n{operator_inputs}\n', file=sys.stderr, flush=True)
begin_time = time.perf_counter()
if check_execution:
operator_outputs = implementation.call(**operator_inputs)
else:
operator_outputs = implementation(**operator_inputs)
end_time = time.perf_counter()
if verbose == 1:
print(f' [{end_time - begin_time:.5f} s]', file=sys.stderr, flush=True)
elif verbose >= 2:
print(f'Outputs:\n{operator_outputs}\n', file=sys.stderr)
print(f'Duration: {end_time - begin_time} s', file=sys.stderr, flush=True)
for output_key, output_node in step.op.outputs.items():
output_evset = operator_outputs[output_key]
output_evset._internal_node = output_node
data[output_node] = output_evset
for node in step.released_nodes:
assert node in data
del data[node]
if force_garbage_collector_interval is not None and time.time() - gc_begin_time >= force_garbage_collector_interval:
begin_gc = time.time()
if verbose >= 2:
print('Garbage collection', file=sys.stderr, flush=True, end='')
gc.collect()
gc_begin_time = time.time()
if verbose >= 2:
print(f' [{gc_begin_time - begin_gc:.5f} s]', file=sys.stderr, flush=True)
return data
|
Evaluates a schedule on a dictionary of input
[`EventSets`][temporian.EventSet].
Args:
inputs: Mapping of EventSetNodes to materialized EventSets.
schedule: Sequence of operators to apply on the data.
verbose: If >0, prints details about the execution on the standard error
output. The larger the number, the more information is displayed.
check_execution: If `True`, data of the intermediate results of the
operators is checked against its expected structure and raises if
it differs.
force_garbage_collector_interval: If set, triggers the garbage
collection every "force_garbage_collector_interval" seconds.
|
github-repos
|
def add_outputs(self, *args, **kwargs):
if 'names' in kwargs:
return [self._outputs.add(arg, name=name) for arg, name in zip(args, kwargs['names'])]
else:
return [self._outputs.add(arg) for arg in args]
|
Add a sequence of outputs to the function invocation.
Args:
*args: List of outputs to be converted (should be tf.Tensor).
**kwargs: See
Returns:
Wrapped outputs (identity standins that have additional metadata). These
are also tf.Tensor's.
|
github-repos
|
def add_ephemeral_listener(self, callback, event_type=None):
listener_id = uuid4()
self.ephemeral_listeners.append(
{
'uid': listener_id,
'callback': callback,
'event_type': event_type
}
)
return listener_id
|
Add a callback handler for ephemeral events going to this room.
Args:
callback (func(room, event)): Callback called when an ephemeral event arrives.
event_type (str): The event_type to filter for.
Returns:
uuid.UUID: Unique id of the listener, can be used to identify the listener.
|
juraj-google-style
|
def find_element_by_class(self, class_, update=False) -> Elements:
return self.find_element(by=By.CLASS, value=class_, update=update)
|
Finds an element by class.
Args:
class_: The class of the element to be found.
update: If the interface has changed, this option should be True.
Returns:
The element if it was found.
Raises:
NoSuchElementException - If the element wasn't found.
Usage:
element = driver.find_element_by_class('foo')
|
codesearchnet
|
def _remove_files(files):
logger.debug('Request for file removal (_remove_files()).')
for fn in files:
if os.path.exists(fn):
logger.debug(("Removing '%s'." % fn))
os.remove(fn)
|
Remove all given files.
Args:
files (list): List of filenames, which will be removed.
|
codesearchnet
|
def outer_horizontal_border_top(self):
return u'{lm}{lv}{hz}{rv}'.format(lm=(' ' * self.margins.left), lv=self.border_style.top_left_corner, rv=self.border_style.top_right_corner, hz=self.outer_horizontals())
|
The complete outer top horizontal border section, including left and right margins.
Returns:
str: The top menu border.
|
codesearchnet
|
def _inchi_labels(mol):
obconv = ob.OBConversion()
obconv.SetOutFormat(str('inchi'))
obconv.AddOption(str('a'), ob.OBConversion.OUTOPTIONS)
obconv.AddOption(str('X'), ob.OBConversion.OUTOPTIONS, str('DoNotAddH'))
inchi_text = obconv.WriteString(mol)
match = re.search('InChI=(?P<inchi>.+)\\nAuxInfo=.+/N:(?P<labels>[0-9,;]+)/(E:(?P<eq_atoms>[0-9,;\\(\\)]*)/)?', inchi_text)
inchi = match.group('inchi')
label_text = match.group('labels')
eq_atom_text = match.group('eq_atoms')
heavy_atom_labels = tuple([int(i) for i in label_text.replace(';', ',').split(',')])
eq_atoms = []
if (eq_atom_text is not None):
eq_tokens = re.findall('\\(((?:[0-9]+,)+[0-9]+)\\)', eq_atom_text.replace(';', ','))
eq_atoms = tuple([tuple([int(i) for i in t.split(',')]) for t in eq_tokens])
return (heavy_atom_labels, eq_atoms, inchi)
|
Get the inchi canonical labels of the heavy atoms in the molecule
Args:
mol: The molecule. OpenBabel OBMol object
Returns:
The label mappings. List of tuple of canonical label,
original label
List of equivalent atoms.
|
codesearchnet
|
def __init__(self, rfc2579_date_time_tuple=None):
super(RFC2579DateTime, self).__init__()
self._number_of_seconds = None
self._precision = definitions.PRECISION_100_MILLISECONDS
self.day_of_month = None
self.hours = None
self.deciseconds = None
self.minutes = None
self.month = None
self.seconds = None
self.year = None
if rfc2579_date_time_tuple:
if len(rfc2579_date_time_tuple) < 10:
raise ValueError(
'Invalid RFC2579 date-time tuple 10 elements required.')
if rfc2579_date_time_tuple[0] < 0 or rfc2579_date_time_tuple[0] > 65536:
raise ValueError('Year value out of bounds.')
if rfc2579_date_time_tuple[1] not in range(1, 13):
raise ValueError('Month value out of bounds.')
days_per_month = self._GetDaysPerMonth(
rfc2579_date_time_tuple[0], rfc2579_date_time_tuple[1])
if (rfc2579_date_time_tuple[2] < 1 or
rfc2579_date_time_tuple[2] > days_per_month):
raise ValueError('Day of month value out of bounds.')
if rfc2579_date_time_tuple[3] not in range(0, 24):
raise ValueError('Hours value out of bounds.')
if rfc2579_date_time_tuple[4] not in range(0, 60):
raise ValueError('Minutes value out of bounds.')
if rfc2579_date_time_tuple[5] not in range(0, 60):
raise ValueError('Seconds value out of bounds.')
if rfc2579_date_time_tuple[6] < 0 or rfc2579_date_time_tuple[6] > 9:
raise ValueError('Deciseconds value out of bounds.')
if rfc2579_date_time_tuple[7] not in ('+', '-'):
raise ValueError('Direction from UTC value out of bounds.')
if rfc2579_date_time_tuple[8] not in range(0, 14):
raise ValueError('Hours from UTC value out of bounds.')
if rfc2579_date_time_tuple[9] not in range(0, 60):
raise ValueError('Minutes from UTC value out of bounds.')
time_zone_offset = (
(rfc2579_date_time_tuple[8] * 60) + rfc2579_date_time_tuple[9])
if rfc2579_date_time_tuple[7] != '-':
time_zone_offset = -time_zone_offset
self.year, self.month, self.day_of_month, self.hours, self.minutes = (
self._AdjustForTimeZoneOffset(
rfc2579_date_time_tuple[0], rfc2579_date_time_tuple[1],
rfc2579_date_time_tuple[2], rfc2579_date_time_tuple[3],
rfc2579_date_time_tuple[4], time_zone_offset))
self.deciseconds = rfc2579_date_time_tuple[6]
self.seconds = rfc2579_date_time_tuple[5]
self._number_of_seconds = self._GetNumberOfSecondsFromElements(
self.year, self.month, self.day_of_month, self.hours, self.minutes,
self.seconds)
|
Initializes a RFC2579 date-time.
Args:
rfc2579_date_time_tuple:
(Optional[tuple[int, int, int, int, int, int, int]]):
RFC2579 date-time time, contains year, month, day of month, hours,
minutes, seconds and deciseconds.
Raises:
ValueError: if the system time is invalid.
|
juraj-google-style
|
def convert_fields(fields, field_values):
_convert_fields(fields, field_values, context=_ConversionContext.VALUE)
|
Type-checks and converts each field in `field_values` (in place).
Args:
fields: A list of `ExtensionTypeField` objects.
field_values: A `dict` mapping field names to values. Must contain an entry
for each field. I.e., `set(field_values.keys())` must be equal to
`set([f.name for f in fields])`.
Raises:
ValueError: If the keys of `field_values` do not match the names of
the fields in `fields`.
TypeError: If any value in `field_values` does not have the type indicated
by the corresponding `ExtensionTypeField` object.
|
github-repos
|
def _get_credentials(vcap_services, service_name=None):
service_name = (service_name or os.environ.get('STREAMING_ANALYTICS_SERVICE_NAME', None))
services = vcap_services['streaming-analytics']
creds = None
for service in services:
if (service['name'] == service_name):
creds = service['credentials']
break
if (creds is None):
raise ValueError((('Streaming Analytics service ' + str(service_name)) + ' was not found in VCAP_SERVICES'))
return creds
|
Retrieves the credentials of the VCAP Service of the specified `service_name`. If
`service_name` is not specified, it takes the information from STREAMING_ANALYTICS_SERVICE_NAME environment
variable.
Args:
vcap_services (dict): A dict representation of the VCAP Services information.
service_name (str): One of the service name stored in `vcap_services`
Returns:
dict: A dict representation of the credentials.
Raises:
ValueError: Cannot find `service_name` in `vcap_services`
|
codesearchnet
|
def build_list(self, title=None, items=None):
list_card = _ListSelector(self._speech, display_text=self._display_text, title=title, items=items)
return list_card
|
Presents the user with a vertical list of multiple items.
Allows the user to select a single item.
Selection generates a user query containing the title of the list item
*Note* Returns a completely new object,
and does not modify the existing response object
Therefore, to add items, must be assigned to new variable
or call the method directly after initializing list
example usage:
simple = ask('I speak this text')
mylist = simple.build_list('List Title')
mylist.add_item('Item1', 'key1')
mylist.add_item('Item2', 'key2')
return mylist
Arguments:
title {str} -- Title displayed at top of list card
Returns:
_ListSelector -- [_Response object exposing the add_item method]
|
codesearchnet
|
def edit_distance_1(self, word):
word = word.lower()
if self._check_if_should_check(word) is False:
return {word}
letters = self._word_frequency.letters
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
|
Compute all strings that are one edit away from `word` using only
the letters in the corpus
Args:
word (str): The word for which to calculate the edit distance
Returns:
set: The set of strings that are edit distance one from the \
provided word
|
juraj-google-style
|
def DEFINE_alias(name, original_name, flag_values=FLAGS, module_name=None):
if (original_name not in flag_values):
raise UnrecognizedFlagError(original_name)
flag = flag_values[original_name]
class _Parser(ArgumentParser):
'The parser for the alias flag calls the original flag parser.'
def parse(self, argument):
flag.parse(argument)
return flag.value
class _FlagAlias(Flag):
'Overrides Flag class so alias value is copy of original flag value.'
@property
def value(self):
return flag.value
@value.setter
def value(self, value):
flag.value = value
help_msg = ('Alias for --%s.' % flag.name)
DEFINE_flag(_FlagAlias(_Parser(), flag.serializer, name, flag.default, help_msg, boolean=flag.boolean), flag_values, module_name)
|
Defines an alias flag for an existing one.
Args:
name: A string, name of the alias flag.
original_name: A string, name of the original flag.
flag_values: FlagValues object with which the flag will be registered.
module_name: A string, the name of the module that defines this flag.
Raises:
gflags.FlagError:
UnrecognizedFlagError: if the referenced flag doesn't exist.
DuplicateFlagError: if the alias name has been used by some existing flag.
|
codesearchnet
|
def __densify_border(self):
if isinstance(self._input_geom, MultiPolygon):
polygons = [polygon for polygon in self._input_geom]
else:
polygons = [self._input_geom]
points = []
for polygon in polygons:
if (len(polygon.interiors) == 0):
exterior = LineString(polygon.exterior)
points += self.__fixed_interpolation(exterior)
else:
exterior = LineString(polygon.exterior)
points += self.__fixed_interpolation(exterior)
for j in range(len(polygon.interiors)):
interior = LineString(polygon.interiors[j])
points += self.__fixed_interpolation(interior)
return points
|
Densify the border of a polygon.
The border is densified by a given factor (by default: 0.5).
The complexity of the polygon's geometry is evaluated in order
to densify the borders of its interior rings as well.
Returns:
list: a list of points where each point is represented by
a list of its reduced coordinates
Example:
[[X1, Y1], [X2, Y2], ..., [Xn, Yn]
|
codesearchnet
|
def _FormatOtherFileToken(self, token_data):
timestamp = token_data.microseconds + (
token_data.timestamp * definitions.MICROSECONDS_PER_SECOND)
date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(
timestamp=timestamp)
date_time_string = date_time.CopyToDateTimeString()
return {
'string': token_data.name.rstrip('\x00'),
'timestamp': date_time_string}
|
Formats an other file token as a dictionary of values.
Args:
token_data (bsm_token_data_other_file32): AUT_OTHER_FILE32 token data.
Returns:
dict[str, str]: token values.
|
juraj-google-style
|
def get_examples(self, compact=False):
examples = copy.deepcopy(self._examples)
if not compact:
return examples
def make_compact(d):
if not isinstance(d, dict):
return
for key in d:
if isinstance(d[key], dict):
inner_d = d[key]
if len(inner_d) == 1 and '.tag' in inner_d:
d[key] = inner_d['.tag']
else:
make_compact(inner_d)
if isinstance(d[key], list):
for item in d[key]:
make_compact(item)
for example in examples.values():
if (isinstance(example.value, dict) and
len(example.value) == 1 and '.tag' in example.value):
example.value = example.value['.tag']
else:
make_compact(example.value)
return examples
|
Returns an OrderedDict mapping labels to Example objects.
Args:
compact (bool): If True, union members of void type are converted
to their compact representation: no ".tag" key or containing
dict, just the tag as a string.
|
juraj-google-style
|
def wait_all(jobs, timeout=None):
return Job._wait(jobs, timeout, concurrent.futures.ALL_COMPLETED)
|
Return when at all of the specified jobs have completed or timeout expires.
Args:
jobs: a Job or list of Jobs to wait on.
timeout: a timeout in seconds to wait for. None (the default) means no timeout.
Returns:
A list of the jobs that have now completed or None if there were no jobs.
|
codesearchnet
|
def create(self):
input_params = {'type': self.type, 'data': self.data, 'name': self.name, 'priority': self.priority, 'port': self.port, 'ttl': self.ttl, 'weight': self.weight, 'flags': self.flags, 'tags': self.tags}
data = self.get_data(('domains/%s/records' % self.domain), type=POST, params=input_params)
if data:
self.id = data['domain_record']['id']
|
Creates a new record for a domain.
Args:
type (str): The type of the DNS record (e.g. A, CNAME, TXT).
name (str): The host name, alias, or service being defined by the
record.
data (int): Variable data depending on record type.
priority (int): The priority for SRV and MX records.
port (int): The port for SRV records.
ttl (int): The time to live for the record, in seconds.
weight (int): The weight for SRV records.
flags (int): An unsigned integer between 0-255 used for CAA records.
tags (string): The parameter tag for CAA records. Valid values are
"issue", "wildissue", or "iodef"
|
codesearchnet
|
def mark_all_as_done(self, **kwargs):
result = self.gitlab.http_post('/todos/mark_as_done', **kwargs)
try:
return int(result)
except ValueError:
return 0
|
Mark all the todos as done.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabTodoError: If the server failed to perform the request
Returns:
int: The number of todos maked done
|
juraj-google-style
|
def get_group_key(self, devices):
with self._lock:
devices_key = ','.join(devices)
if devices_key not in self._known_groups:
self._known_groups[devices_key] = self._get_new_group_key(devices)
return self._known_groups[devices_key]
|
Returns a group key for the list of local devices.
The same group key is returned if the list of local devices is the same.
Args:
devices: a list of local canonical device strings in a collective group.
Returns:
a group key.
|
github-repos
|
def array_to_base64_png(array):
array = np.array(array, dtype=np.float32)
if len(array.shape) != 2:
raise ValueError(
"Expected rank-2 array; received rank-%d array." % len(array.shape))
if not np.size(array):
raise ValueError(
"Cannot encode an empty array (size: %s) as image." % (array.shape,))
is_infinity = np.isinf(array)
is_positive = array > 0.0
is_positive_infinity = np.logical_and(is_infinity, is_positive)
is_negative_infinity = np.logical_and(is_infinity,
np.logical_not(is_positive))
is_nan = np.isnan(array)
finite_indices = np.where(np.logical_and(np.logical_not(is_infinity),
np.logical_not(is_nan)))
if np.size(finite_indices):
minval = np.min(array[finite_indices])
maxval = np.max(array[finite_indices])
scaled = np.array((array - minval) / (maxval - minval) * 255,
dtype=np.uint8)
rgb = np.repeat(np.expand_dims(scaled, -1), IMAGE_COLOR_CHANNELS, axis=-1)
else:
rgb = np.zeros(array.shape + (IMAGE_COLOR_CHANNELS,), dtype=np.uint8)
rgb[is_positive_infinity] = POSITIVE_INFINITY_RGB
rgb[is_negative_infinity] = NEGATIVE_INFINITY_RGB
rgb[is_nan] = NAN_RGB
image_encoded = base64.b64encode(encoder.encode_png(rgb))
return image_encoded
|
Convert an array into base64-enoded PNG image.
Args:
array: A 2D np.ndarray or nested list of items.
Returns:
A base64-encoded string the image. The image is grayscale if the array is
2D. The image is RGB color if the image is 3D with lsat dimension equal to
3.
Raises:
ValueError: If the input `array` is not rank-2, or if the rank-2 `array` is
empty.
|
juraj-google-style
|
def act_on_cloned_repo(self, path: Union[str, pathlib.Path],
api) -> Optional[HookResult]:
|
Do something with a cloned repo.
Args:
path: Path to the repo.
api: An instance of :py:class:`repobee.github_api.GitHubAPI`.
Returns:
optionally returns a HookResult namedtuple for reporting the
outcome of the hook. May also return None, in which case no
reporting will be performed for the hook.
|
juraj-google-style
|
def plot_efficiency(self, key='wall_time', what='good+bad', nmax=5, ax=None, **kwargs):
(ax, fig, plt) = get_ax_fig_plt(ax=ax)
lw = kwargs.pop('linewidth', 2.0)
msize = kwargs.pop('markersize', 10)
what = what.split('+')
timers = self.timers()
peff = self.pefficiency()
n = len(timers)
xx = np.arange(n)
ax.set_prop_cycle(color=['g', 'b', 'c', 'm', 'y', 'k'])
(lines, legend_entries) = ([], [])
if ('good' in what):
good = peff.good_sections(key=key, nmax=nmax)
for g in good:
yy = peff[g][key]
(line,) = ax.plot(xx, yy, '-->', linewidth=lw, markersize=msize)
lines.append(line)
legend_entries.append(g)
if ('bad' in what):
bad = peff.bad_sections(key=key, nmax=nmax)
for b in bad:
yy = peff[b][key]
(line,) = ax.plot(xx, yy, '-.<', linewidth=lw, markersize=msize)
lines.append(line)
legend_entries.append(b)
if ('total' not in legend_entries):
yy = peff['total'][key]
(total_line,) = ax.plot(xx, yy, 'r', linewidth=lw, markersize=msize)
lines.append(total_line)
legend_entries.append('total')
ax.legend(lines, legend_entries, loc='best', shadow=True)
ax.set_xlabel('Total_NCPUs')
ax.set_ylabel('Efficiency')
ax.grid(True)
labels = [('MPI=%d, OMP=%d' % (t.mpi_nprocs, t.omp_nthreads)) for t in timers]
ax.set_xticks(xx)
ax.set_xticklabels(labels, fontdict=None, minor=False, rotation=15)
return fig
|
Plot the parallel efficiency
Args:
key: Parallel efficiency is computed using the wall_time.
what: Specifies what to plot: `good` for sections with good parallel efficiency.
`bad` for sections with bad efficiency. Options can be concatenated with `+`.
nmax: Maximum number of entries in plot
ax: matplotlib :class:`Axes` or None if a new figure should be created.
================ ====================================================
kwargs Meaning
================ ====================================================
linewidth matplotlib linewidth. Default: 2.0
markersize matplotlib markersize. Default: 10
================ ====================================================
Returns:
`matplotlib` figure
|
codesearchnet
|
def disable_plugin(self, name):
url = self._url('/plugins/{0}/disable', name)
res = self._post(url)
self._raise_for_status(res)
return True
|
Disable an installed plugin.
Args:
name (string): The name of the plugin. The ``:latest`` tag is
optional, and is the default if omitted.
Returns:
``True`` if successful
|
codesearchnet
|
def add_vcenter(self, **kwargs):
config = ET.Element('config')
vcenter = ET.SubElement(config, 'vcenter', xmlns='urn:brocade.com:mgmt:brocade-vswitch')
id = ET.SubElement(vcenter, 'id')
id.text = kwargs.pop('id')
credentials = ET.SubElement(vcenter, 'credentials')
url = ET.SubElement(credentials, 'url')
url.text = kwargs.pop('url')
username = ET.SubElement(credentials, 'username')
username.text = kwargs.pop('username')
password = ET.SubElement(credentials, 'password')
password.text = kwargs.pop('password')
try:
self._callback(config)
return True
except Exception as error:
logging.error(error)
return False
|
Add vCenter on the switch
Args:
id(str) : Name of an established vCenter
url (bool) : vCenter URL
username (str): Username of the vCenter
password (str): Password of the vCenter
callback (function): A function executed upon completion of the
method.
Returns:
Return value of `callback`.
Raises:
None
|
codesearchnet
|
def _to_tensor(self, array, min_dim, return_tensors):
if return_tensors == 'pt':
array = torch.from_numpy(array)
return array.unsqueeze(1) if array.ndim < min_dim else array
return array
|
Convert numpy array to tensor and ensure proper dimensionality.
Args:
array: The numpy array to convert
min_dim: The minimum number of dimensions the result should have
return_tensors: The type of tensors to return (e.g., "pt" for PyTorch tensors)
Returns:
The converted array or tensor with proper dimensions
|
github-repos
|
def modify_model_backprop(model, backprop_modifier):
modified_model = _MODIFIED_MODEL_CACHE.get((model, backprop_modifier))
if (modified_model is not None):
return modified_model
model_path = os.path.join(tempfile.gettempdir(), (next(tempfile._get_candidate_names()) + '.h5'))
try:
model.save(model_path)
modifier_fn = _BACKPROP_MODIFIERS.get(backprop_modifier)
if (modifier_fn is None):
raise ValueError("'{}' modifier is not supported".format(backprop_modifier))
modifier_fn(backprop_modifier)
with tf.get_default_graph().gradient_override_map({'Relu': backprop_modifier}):
modified_model = load_model(model_path)
_MODIFIED_MODEL_CACHE[(model, backprop_modifier)] = modified_model
return modified_model
finally:
os.remove(model_path)
|
Creates a copy of model by modifying all activations to use a custom op to modify the backprop behavior.
Args:
model: The `keras.models.Model` instance.
backprop_modifier: One of `{'guided', 'rectified'}`
Returns:
A copy of model with modified activations for backwards pass.
|
codesearchnet
|
def remove(path):
if os.path.isdir(path):
return __rmtree(path)
else:
return __rmfile(path)
|
Delete a file or directory.
Args:
path (str): Path to the file or directory that needs to be deleted.
Returns:
bool: True if the operation is successful, False otherwise.
|
codesearchnet
|
def _create_stage_submission_env_dependencies(temp_dir):
try:
local_dependency_file_path = os.path.join(temp_dir, SUBMISSION_ENV_DEPENDENCIES_FILE)
dependencies = subprocess.check_output([sys.executable, '-m', 'pip', 'freeze'])
local_python_path = f'Python Path: {sys.executable}\n'
with open(local_dependency_file_path, 'w') as f:
f.write(local_python_path + str(dependencies))
return [Stager._create_file_stage_to_artifact(local_dependency_file_path, SUBMISSION_ENV_DEPENDENCIES_FILE)]
except Exception as e:
_LOGGER.warning("Couldn't stage a list of installed dependencies in submission environment. Got exception: %s", e)
return []
|
Create and stage a file with list of dependencies installed in the
submission environment.
This list can be used at runtime to compare against the dependencies in the
runtime environment. This allows runners to warn users about any potential
dependency mismatches and help debug issues related to
environment mismatches.
Args:
temp_dir: path to temporary location where the file should be
downloaded.
Returns:
A list of ArtifactInformation of local file path that will be staged to
the staging location.
|
github-repos
|
def __init__(self, channel):
self.ReportErrorEvent = channel.unary_unary(
"/google.devtools.clouderrorreporting.v1beta1.ReportErrorsService/ReportErrorEvent",
request_serializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_report__errors__service__pb2.ReportErrorEventRequest.SerializeToString,
response_deserializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_report__errors__service__pb2.ReportErrorEventResponse.FromString,
)
|
Constructor.
Args:
channel: A grpc.Channel.
|
juraj-google-style
|
def get_sleep_timer(self):
resp = self.avTransport.GetRemainingSleepTimerDuration([('InstanceID', 0)])
if resp['RemainingSleepTimerDuration']:
times = resp['RemainingSleepTimerDuration'].split(':')
return (((int(times[0]) * 3600) + (int(times[1]) * 60)) + int(times[2]))
else:
return None
|
Retrieves remaining sleep time, if any
Returns:
int or NoneType: Number of seconds left in timer. If there is no
sleep timer currently set it will return None.
|
codesearchnet
|
def heightmap_has_land_on_border(hm: np.ndarray, waterlevel: float) -> bool:
return bool(
lib.TCOD_heightmap_has_land_on_border(_heightmap_cdata(hm), waterlevel)
)
|
Returns True if the map edges are below ``waterlevel``, otherwise False.
Args:
hm (numpy.ndarray): A numpy.ndarray formatted for heightmap functions.
waterLevel (float): The water level to use.
Returns:
bool: True if the map edges are below ``waterlevel``, otherwise False.
|
juraj-google-style
|
def add_dr( self, dr ):
this_bin = int( dr / self.dr )
if this_bin > self.number_of_bins:
raise IndexError( 'dr is larger than rdf max_r' )
self.data[ this_bin ] += 1
|
Add an observed interatomic distance to the g(r) data at dr.
Args:
dr (Float): the interatomic distance, dr.
Returns:
None
|
juraj-google-style
|
def assert_child_key_has_value(self, parent, child, caller):
assert parent, ("parent parameter must be specified.")
assert child, ("child parameter must be specified.")
self.assert_key_has_value(parent, caller)
try:
child_exists = child in self[parent]
except TypeError as err:
raise ContextError(
f"context['{parent}'] must be iterable and contain '{child}' "
f"for {caller}. {err}") from err
if child_exists:
if self[parent][child] is None:
raise KeyInContextHasNoValueError(
f"context['{parent}']['{child}'] must have a value for "
f"{caller}.")
else:
raise KeyNotInContextError(
f"context['{parent}']['{child}'] doesn't "
f"exist. It must exist for {caller}.")
|
Assert that context contains key that has child which has a value.
Args:
parent: parent key
child: validate this sub-key of parent exists AND isn't None.
caller: string. calling function name - this used to construct
error messages
Raises:
KeyNotInContextError: Key doesn't exist
KeyInContextHasNoValueError: context[key] is None
AssertionError: if key is None
|
juraj-google-style
|
def list_media_services(access_token, subscription_id):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/providers/microsoft.media/mediaservices?api-version=', MEDIA_API])
return do_get(endpoint, access_token)
|
List the media services in a subscription.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
Returns:
HTTP response. JSON body.
|
codesearchnet
|
def get_all_subclasses(asts):
hierarchy = {}
for ast in asts:
hierarchy.update(ast.Visit(visitors.ExtractSuperClasses()))
def filter_superclasses(superclasses):
return [superclass for superclass in superclasses if is_complete(superclass)]
hierarchy = {cls: filter_superclasses(superclasses) for cls, superclasses in hierarchy.items() if is_complete(cls)}
return utils.invert_dict(hierarchy)
|
Compute a class->subclasses mapping.
Args:
asts: A list of ASTs.
Returns:
A dictionary, mapping instances of pytd.Type (types) to lists of
pytd.Class (the derived classes).
|
github-repos
|
def format_tasks(tasks):
return [('%d : %s (%s)' % (task.key.id(), task.description, ('done' if task.done else ('created %s' % task.created)))) for task in tasks]
|
Converts a list of tasks to a list of string representations.
Args:
tasks: A list of the tasks to convert.
Returns:
A list of string formatted tasks.
|
codesearchnet
|
def double_width(k, v, p):
if isinstance(p, Conv2D) and k.key == 'filters':
return 2 * v
return v
|
A rebind rule for doubling the filters for Conv2D layers.
Args:
k: A `pg.KeyPath` object representing the location of current node.
v: The value of current node.
p: The parent of current node.
Returns:
The output value for current node.
|
github-repos
|
def __init__(self, site=None):
super(FileFormatError, self).__init__()
self.site = site
|
Initialise a new ``FileFormatError`` object.
Args:
site (str): Remote site name to display in error message
|
juraj-google-style
|
def call_for_each_replica(strategy, fn, args=None, kwargs=None):
if args is None:
args = ()
if kwargs is None:
kwargs = {}
if isinstance(fn, def_function.Function):
if fn._jit_compile and all([_is_gpu_device(d) for d in strategy.extended.worker_devices]):
return _call_for_each_replica(strategy, fn, args, kwargs)
if strategy not in _cfer_fn_cache:
_cfer_fn_cache[strategy] = weakref.WeakKeyDictionary()
wrapped = _cfer_fn_cache[strategy].get(fn)
if wrapped is None:
def wrapped_fn(*args, **kwargs):
return call_for_each_replica(strategy, fn.python_function, args, kwargs)
wrapped = fn._clone(python_function=wrapped_fn)
_cfer_fn_cache[strategy][fn] = wrapped
return wrapped(*args, **kwargs)
if context.executing_eagerly():
logging.log_first_n(logging.WARN, 'Using %s eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.' % strategy.__class__.__name__, 5)
else:
fn = autograph.tf_convert(fn, autograph_ctx.control_status_ctx())
return _call_for_each_replica(strategy, fn, args, kwargs)
|
Call `fn` on each worker devices(replica).
It's highly recommended to wrap the call to this function inside a
`tf.function`, otherwise the performance is poor.
Args:
strategy: `tf.distribute.Strategy`.
fn: function to call on each worker devices.
args: positional arguments to `fn`.
kwargs: keyword arguments to `fn`.
Returns:
Wrapped returned value of `fn` from all replicas.
|
github-repos
|
def smash(self):
self._initialize_smash()
try:
stack_name = self._config.get('environment', {}).get('stack_name', None)
response = self._cloudFormation.describe_stacks(StackName=stack_name)
logging.debug('smash pre-flight returned: {}'.format(json.dumps(response, indent=4, default=json_util.default)))
except ClientError as wtf:
logging.warning('your stack is in another castle [0].')
return False
except Exception as wtf:
logging.error('failed to find intial status of smash candidate: {}'.format(wtf))
return False
response = self._cloudFormation.delete_stack(StackName=stack_name)
logging.info('delete started for stack: {}'.format(stack_name))
logging.debug('delete_stack returned: {}'.format(json.dumps(response, indent=4)))
return self.poll_stack()
|
Smash the given stack
Args:
None
Returns:
True if True
Todo:
Figure out what could go wrong and take steps
to hanlde problems.
|
codesearchnet
|
def select_charset(self, charset):
charsets = {'USA':0,
'France':1,
'Germany':2,
'UK':3,
'Denmark':4,
'Sweden':5,
'Italy':6,
'Spain':7,
'Japan':8,
'Norway':9,
'Denmark II':10,
'Spain II':11,
'Latin America':12,
'South Korea':13,
'Legal':64,
}
if charset in charsets:
self.send(chr(27)+'R'+chr(charsets[charset]))
else:
raise RuntimeError('Invalid charset.')
|
Select international character set and changes codes in code table accordingly
Args:
charset: String. The character set we want.
Returns:
None
Raises:
RuntimeError: Invalid charset.
|
juraj-google-style
|
def load_examples(tmp_dir, prop_train=0.09, prop_val=0.01):
infile = generator_utils.maybe_download(tmp_dir, _TAR, _URL)
tf.logging.info('Loading examples')
all_examples = []
for i, d in enumerate(csv.DictReader(gzip.open(infile), delimiter='\t')):
if i % 100000 == 0:
tf.logging.info('%d examples have been loaded....' % i)
ex = {x: int(y) if y.isdigit() else y for x, y in d.items()}
all_examples.append(ex)
random.seed(1)
random.shuffle(all_examples)
n_train = int(len(all_examples) * prop_train)
n_val = n_train + int(len(all_examples) * prop_val)
train = all_examples[:n_train]
val = all_examples[n_train:n_val]
test = []
for e in all_examples[n_val:]:
if e['n_intervening'] == e['n_diff_intervening']:
test.append(e)
return all_examples, train, val, test
|
Loads exampls from the tsv file.
Args:
tmp_dir: temp directory.
prop_train: proportion of the train data
prop_val: proportion of the validation data
Returns:
All examples in the dataset pluse train, test, and development splits.
|
juraj-google-style
|
def on_train_batch_begin(self, batch, logs=None):
self.on_batch_begin(batch, logs=logs)
|
Called at the beginning of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Note that if the `steps_per_execution` argument to `compile` in
`tf.keras.Model` is set to `N`, this method will only be called every `N`
batches.
Args:
batch: Integer, index of batch within the current epoch.
logs: Dict, contains the return value of `model.train_step`. Typically,
the values of the `Model`'s metrics are returned. Example:
`{'loss': 0.2, 'accuracy': 0.7}`.
|
github-repos
|
def _sd_of_runs(stats, mean, key='runs'):
num_runs = len(stats[key])
first = stats[key][0]
standard_deviation = {}
for stat_key in first:
if isinstance(first[stat_key], numbers.Number):
standard_deviation[stat_key] = math.sqrt((sum((((run[stat_key] - mean[stat_key]) ** 2) for run in stats[key])) / float(num_runs)))
return standard_deviation
|
Obtain the standard deviation of stats.
Args:
stats: dict; A set of stats, structured as above.
mean: dict; Mean for each key in stats.
key: str; Optional key to determine where list of runs is found in stats
|
codesearchnet
|
def add(self, rid, data, raise_on_error=True):
cache_data = {'cache-date': self._dt_to_epoch(datetime.now()), 'cache-data': data}
return self.ds.post(rid, cache_data, raise_on_error)
|
Write cache data to the data store.
Args:
rid (str): The record identifier.
data (dict): The record data.
raise_on_error (bool): If True and not r.ok this method will raise a RunTimeError.
Returns:
object : Python request response.
|
juraj-google-style
|
def sparse_categorical_accuracy(y_true, y_pred):
y_pred = tensor_conversion.convert_to_tensor_v2_with_dispatch(y_pred)
y_true = tensor_conversion.convert_to_tensor_v2_with_dispatch(y_true)
y_pred_rank = y_pred.shape.ndims
y_true_rank = y_true.shape.ndims
if y_true_rank is not None and y_pred_rank is not None and (len(backend.int_shape(y_true)) == len(backend.int_shape(y_pred))):
y_true = array_ops.squeeze(y_true, [-1])
y_pred = math_ops.argmax(y_pred, axis=-1)
if backend.dtype(y_pred) != backend.dtype(y_true):
y_pred = math_ops.cast(y_pred, backend.dtype(y_true))
return math_ops.cast(math_ops.equal(y_true, y_pred), backend.floatx())
|
Calculates how often predictions match integer labels.
Standalone usage:
>>> y_true = [2, 1]
>>> y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
>>> m = tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
>>> assert m.shape == (2,)
>>> m.numpy()
array([0., 1.], dtype=float32)
You can provide logits of classes as `y_pred`, since argmax of
logits and probabilities are same.
Args:
y_true: Integer ground truth values.
y_pred: The prediction values.
Returns:
Sparse categorical accuracy values.
|
github-repos
|
def shutdown(cluster_info, queues=['input']):
def _shutdown(iter):
host = util.get_ip_address()
executor_id = util.read_executor_id()
mgr = _get_manager(cluster_info, host, executor_id)
for node in cluster_info:
if ((node['host'] == host) and (node['executor_id'] == executor_id)):
tb_pid = node['tb_pid']
if (tb_pid != 0):
logging.info('Stopping tensorboard (pid={0})'.format(tb_pid))
subprocess.Popen(['kill', str(tb_pid)])
logging.info('Stopping all queues')
for q in queues:
try:
queue = mgr.get_queue(q)
logging.info('Feeding None into {0} queue'.format(q))
queue.put(None, block=True)
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(q)
raise Exception(msg)
logging.info("Setting mgr.state to 'stopped'")
mgr.set('state', 'stopped')
return [True]
return _shutdown
|
Stops all TensorFlow nodes by feeding ``None`` into the multiprocessing.Queues.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc).
:queues: *INTERNAL_USE*
Returns:
A nodeRDD.mapPartitions() function
|
codesearchnet
|
def get_unique_directives(ast):
if (not ast.directives):
return dict()
result = dict()
for directive_obj in ast.directives:
directive_name = directive_obj.name.value
if (directive_name in ALLOWED_DUPLICATED_DIRECTIVES):
pass
elif (directive_name in result):
raise GraphQLCompilationError(u'Directive was unexpectedly applied twice in the same location: {} {}'.format(directive_name, ast.directives))
else:
result[directive_name] = directive_obj
return result
|
Return a dict of directive name to directive object for the given AST node.
Any directives that are allowed to exist more than once on any AST node are ignored.
For any directives that can only exist up to once, we verify that they are not duplicated
raising GraphQLCompilationError in case we find them more than once on the AST node.
Args:
ast: GraphQL AST node, obtained from the graphql library
Returns:
dict of string to directive object
|
codesearchnet
|
def get_local_current_sample(ip):
valid_ip_pat = re.compile(
"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$"
)
if not valid_ip_pat.match(ip):
raise ValueError("ip address invalid")
url = "http:
headers = { "Content-Type": "application/json" }
r = requests.get(url, headers=headers)
return r.json()
|
Gets current sample from *local* Neurio device IP address.
This is a static method. It doesn't require a token to authenticate.
Note, call get_user_information to determine local Neurio IP addresses.
Args:
ip (string): address of local Neurio device
Returns:
dictionary object containing current sample information
|
juraj-google-style
|
def _PrintTSKPartitionIdentifiersOverview(self, volume_system, volume_identifiers):
header = 'The following partitions were found:\n'
self._output_writer.Write(header)
column_names = ['Identifier', 'Offset (in bytes)', 'Size (in bytes)']
table_view = views.CLITabularTableView(column_names=column_names)
for volume_identifier in sorted(volume_identifiers):
volume = volume_system.GetVolumeByIdentifier(volume_identifier)
if (not volume):
raise errors.SourceScannerError('Partition missing for identifier: {0:s}.'.format(volume_identifier))
volume_extent = volume.extents[0]
volume_offset = '{0:d} (0x{0:08x})'.format(volume_extent.offset)
volume_size = self._FormatHumanReadableSize(volume_extent.size)
table_view.AddRow([volume.identifier, volume_offset, volume_size])
self._output_writer.Write('\n')
table_view.Write(self._output_writer)
self._output_writer.Write('\n')
|
Prints an overview of TSK partition identifiers.
Args:
volume_system (dfvfs.TSKVolumeSystem): volume system.
volume_identifiers (list[str]): allowed volume identifiers.
Raises:
SourceScannerError: if a volume cannot be resolved from the volume
identifier.
|
codesearchnet
|
def model_variables(scope=None):
return ops.get_collection(ops.GraphKeys.MODEL_VARIABLES, scope)
|
Returns all variables in the MODEL_VARIABLES collection.
Args:
scope: (Optional.) A string. If supplied, the resulting list is filtered to
include only items whose `name` attribute matches `scope` using
`re.match`. Items without a `name` attribute are never returned if a scope
is supplied. The choice of `re.match` means that a `scope` without special
tokens filters by prefix.
Returns:
A list of local Variable objects.
|
github-repos
|
def add_stickiness(self):
stickiness_dict = {}
env = boto3.session.Session(profile_name=self.env, region_name=self.region)
elbclient = env.client('elb')
elb_settings = self.properties['elb']
for listener in elb_settings.get('ports'):
if listener.get('stickiness'):
sticky_type = listener['stickiness']['type'].lower()
externalport = int(listener['loadbalancer'].split(':')[(- 1)])
policyname_tmp = '{0}-{1}-{2}-{3}'
if (sticky_type == 'app'):
cookiename = listener['stickiness']['cookie_name']
policy_key = cookiename.replace('.', '')
policyname = policyname_tmp.format(self.app, sticky_type, externalport, policy_key)
elbclient.create_app_cookie_stickiness_policy(LoadBalancerName=self.app, PolicyName=policyname, CookieName=cookiename)
stickiness_dict[externalport] = policyname
elif (sticky_type == 'elb'):
cookie_ttl = listener['stickiness'].get('cookie_ttl', None)
policyname = policyname_tmp.format(self.app, sticky_type, externalport, cookie_ttl)
if cookie_ttl:
elbclient.create_lb_cookie_stickiness_policy(LoadBalancerName=self.app, PolicyName=policyname, CookieExpirationPeriod=cookie_ttl)
else:
elbclient.create_lb_cookie_stickiness_policy(LoadBalancerName=self.app, PolicyName=policyname)
stickiness_dict[externalport] = policyname
return stickiness_dict
|
Adds stickiness policy to created ELB
Returns:
dict: A dict of stickiness policies and ports::
example:
{
80: "$policy_name"
}
|
codesearchnet
|
def check_and_update_resources(num_cpus, num_gpus, resources):
if (resources is None):
resources = {}
resources = resources.copy()
assert ('CPU' not in resources)
assert ('GPU' not in resources)
if (num_cpus is not None):
resources['CPU'] = num_cpus
if (num_gpus is not None):
resources['GPU'] = num_gpus
if ('CPU' not in resources):
resources['CPU'] = multiprocessing.cpu_count()
gpu_ids = ray.utils.get_cuda_visible_devices()
if (('GPU' in resources) and (gpu_ids is not None) and (resources['GPU'] > len(gpu_ids))):
raise Exception('Attempting to start raylet with {} GPUs, but CUDA_VISIBLE_DEVICES contains {}.'.format(resources['GPU'], gpu_ids))
if ('GPU' not in resources):
resources['GPU'] = _autodetect_num_gpus()
if (gpu_ids is not None):
resources['GPU'] = min(resources['GPU'], len(gpu_ids))
resources = {resource_label: resource_quantity for (resource_label, resource_quantity) in resources.items() if (resource_quantity != 0)}
for (_, resource_quantity) in resources.items():
assert (isinstance(resource_quantity, int) or isinstance(resource_quantity, float))
if (isinstance(resource_quantity, float) and (not resource_quantity.is_integer())):
raise ValueError('Resource quantities must all be whole numbers. Received {}.'.format(resources))
if (resource_quantity < 0):
raise ValueError('Resource quantities must be nonnegative. Received {}.'.format(resources))
if (resource_quantity > ray_constants.MAX_RESOURCE_QUANTITY):
raise ValueError('Resource quantities must be at most {}.'.format(ray_constants.MAX_RESOURCE_QUANTITY))
return resources
|
Sanity check a resource dictionary and add sensible defaults.
Args:
num_cpus: The number of CPUs.
num_gpus: The number of GPUs.
resources: A dictionary mapping resource names to resource quantities.
Returns:
A new resource dictionary.
|
codesearchnet
|
def _GetSignatureMatchParserNames(self, file_object):
parser_names = []
scan_state = pysigscan.scan_state()
self._file_scanner.scan_file_object(scan_state, file_object)
for scan_result in iter(scan_state.scan_results):
format_specification = self._formats_with_signatures.GetSpecificationBySignature(scan_result.identifier)
if (format_specification.identifier not in parser_names):
parser_names.append(format_specification.identifier)
return parser_names
|
Determines if a file-like object matches one of the known signatures.
Args:
file_object (file): file-like object whose contents will be checked
for known signatures.
Returns:
list[str]: parser names for which the contents of the file-like object
matches their known signatures.
|
codesearchnet
|
def _GetSignatureScanner(cls, specification_store):
signature_scanner = pysigscan.scanner()
signature_scanner.set_scan_buffer_size(cls._SCAN_BUFFER_SIZE)
for format_specification in specification_store.specifications:
for signature in format_specification.signatures:
pattern_offset = signature.offset
if pattern_offset is None:
signature_flags = pysigscan.signature_flags.NO_OFFSET
elif pattern_offset < 0:
pattern_offset *= -1
signature_flags = pysigscan.signature_flags.RELATIVE_FROM_END
else:
signature_flags = pysigscan.signature_flags.RELATIVE_FROM_START
signature_scanner.add_signature(
signature.identifier, pattern_offset, signature.pattern,
signature_flags)
return signature_scanner
|
Initializes a signature scanner based on a specification store.
Args:
specification_store (FormatSpecificationStore): specification store.
Returns:
pysigscan.scanner: signature scanner.
|
juraj-google-style
|
def Verify(self, written_keys):
self.log.debug('verification starting on %r', self.temp_cache_filename)
cache_data = self.GetMap(self.temp_cache_filename)
map_entry_count = len(cache_data)
self.log.debug('entry count: %d', map_entry_count)
if map_entry_count <= 0:
self.log.error('The files cache being verified "%r" is empty.', self.temp_cache_filename)
raise error.EmptyMap(self.temp_cache_filename + ' is empty')
cache_keys = set()
try:
while 1:
entry = cache_data.PopItem()
cache_keys.update(self._ExpectedKeysForEntry(entry))
except KeyError:
pass
missing_from_cache = written_keys - cache_keys
if missing_from_cache:
self.log.warning('verify failed: %d missing from the on-disk cache', len(missing_from_cache))
if len(missing_from_cache) < 1000:
self.log.debug('keys missing from the on-disk cache: %r', missing_from_cache)
else:
self.log.debug('More than 1000 keys missing from cache. Not printing.')
self._Rollback()
return False
missing_from_map = cache_keys - written_keys
if missing_from_map:
self.log.warning('verify failed: %d keys found, unexpected in the on-disk cache', len(missing_from_map))
if len(missing_from_map) < 1000:
self.log.debug('keys missing from map: %r', missing_from_map)
else:
self.log.debug('More than 1000 keys missing from map. Not printing.')
self._Rollback()
return False
return True
|
Verify that the cache is correct.
Perform some unit tests on the written data, such as reading it
back and verifying that it parses and has the entries we expect.
Args:
written_keys: a set of keys that should have been written to disk.
Returns:
a boolean indicating success.
Raises:
EmptyMap: The cache being verified is empty.
|
github-repos
|
def mementoweb_api_tags(url):
memento_url = "http:
r = requests.get(memento_url + url)
if r.status_code != 200:
return []
data = r.json().get("mementos", {}).get("list", [])
if not data:
return []
resources = (
TimeResource(
url=item.get("uri", ""),
date=item.get("datetime", ""),
val=item.get("datetime", "").split("-")[0],
source="MementoWeb.org",
)
for item in data
)
resource_dict = {
res.val: res
for res in resources
}
return sorted(resource_dict.values(), key=lambda x: x.val)
|
Parse list of :class:`TimeResource` objects based on the mementoweb.org.
Args:
url (str): Any url.
Returns:
list: :class:`TimeResource` objects.
|
juraj-google-style
|
def create_project(self, resource):
self.project_service.set_auth(self._token_project)
return self.project_service.create(resource)
|
Create the entity described by the given resource.
Args:
resource (intern.resource.boss.BossResource)
Returns:
(intern.resource.boss.BossResource): Returns resource of type
requested on success.
Raises:
requests.HTTPError on failure.
|
codesearchnet
|
def add_node(self, node_name):
graph = self.graph
if (node_name in graph):
raise KeyError(('node %s already exists' % node_name))
graph[node_name] = set()
|
Add a node if it does not exist yet, or error out.
Args:
node_name (str): The unique name of the node to add.
Raises:
KeyError: Raised if a node with the same name already exist in the
graph
|
codesearchnet
|
def handle(self, message):
opcode = message['op']
if (opcode == 10):
self.on_hello(message)
elif (opcode == 11):
self.on_heartbeat(message)
elif (opcode == 0):
self.on_message(message)
else:
logger.debug('Not a message we handle: OPCODE {}'.format(opcode))
return
|
Dispatches messages to appropriate handler based on opcode
Args:
message (dict): Full message from Discord websocket connection
|
codesearchnet
|
def _ParseAnalysisPluginOptions(self, options):
analysis_plugin_info = self._analysis_manager.GetAllPluginInformation()
analysis_plugin_names = {
name.lower() for name, _, _ in analysis_plugin_info}
analysis_plugins = self.ParseStringOption(options, 'analysis_plugins')
if not analysis_plugins:
return
requested_plugin_names = {
name.strip().lower() for name in analysis_plugins.split(',')}
difference = requested_plugin_names.difference(analysis_plugin_names)
if difference:
raise errors.BadConfigOption(
'Non-existent analysis plugins specified: {0:s}'.format(
' '.join(difference)))
self._analysis_plugins = self._GetAnalysisPlugins(analysis_plugins)
for analysis_plugin in self._analysis_plugins:
helpers_manager.ArgumentHelperManager.ParseOptions(
options, analysis_plugin)
|
Parses the analysis plugin options.
Args:
options (argparse.Namespace): command line arguments.
|
juraj-google-style
|
def lookup(self, obj):
return self._registered_map[self.get_registered_name(obj)]
|
Looks up the registered object using the predicate.
Args:
obj: Object to pass to each of the registered predicates to look up the
registered object.
Returns:
The object registered with the first passing predicate.
Raises:
LookupError if the object does not match any of the predicate functions.
|
github-repos
|
def rgstr_stamps_root(rgstr_stamps):
rgstr_stamps = sanitize_rgstr_stamps(rgstr_stamps)
f.root.rgstr_stamps = rgstr_stamps
return rgstr_stamps
|
Register stamps with the root timer (see subdivision()).
Args:
rgstr_stamps (list, tuple): Collection of identifiers, passed through
set(), then each is passed through str().
Returns:
list: Implemented registered stamp collection.
|
juraj-google-style
|
def _mean_of_runs(stats, key='runs'):
num_runs = len(stats[key])
first = stats[key][0]
mean = {}
for stat_key in first:
if isinstance(first[stat_key], numbers.Number):
mean[stat_key] = sum(run[stat_key]
for run in stats[key]) / float(num_runs)
return mean
|
Obtain the mean of stats.
Args:
stats: dict; A set of stats, structured as above.
key: str; Optional key to determine where list of runs is found in stats
|
juraj-google-style
|
def decode_field(self, field, value):
for decoder in _GetFieldCodecs(field, 'decoder'):
result = decoder(field, value)
value = result.value
if result.complete:
return value
if isinstance(field, messages.MessageField):
field_value = self.decode_message(
field.message_type, json.dumps(value))
elif isinstance(field, messages.EnumField):
value = GetCustomJsonEnumMapping(
field.type, json_name=value) or value
try:
field_value = super(
_ProtoJsonApiTools, self).decode_field(field, value)
except messages.DecodeError:
if not isinstance(value, six.string_types):
raise
field_value = None
else:
field_value = super(
_ProtoJsonApiTools, self).decode_field(field, value)
return field_value
|
Decode the given JSON value.
Args:
field: a messages.Field for the field we're decoding.
value: a python value we'd like to decode.
Returns:
A value suitable for assignment to field.
|
juraj-google-style
|
class MimiEncoderOutput(ModelOutput):
audio_codes: Optional[torch.LongTensor] = None
encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None
|
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
encoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
|
github-repos
|
def GetSubFileEntryByName(self, name, case_sensitive=True):
name_lower = name.lower()
matching_sub_file_entry = None
for sub_file_entry in self.sub_file_entries:
if (sub_file_entry.name == name):
return sub_file_entry
if ((not case_sensitive) and (sub_file_entry.name.lower() == name_lower)):
if (not matching_sub_file_entry):
matching_sub_file_entry = sub_file_entry
return matching_sub_file_entry
|
Retrieves a sub file entry by name.
Args:
name (str): name of the file entry.
case_sensitive (Optional[bool]): True if the name is case sensitive.
Returns:
FileEntry: a file entry or None if not available.
|
codesearchnet
|
def get_capture_handler_config_by_name(self, name):
handler_confs = []
for address, stream_capturer in self._stream_capturers.iteritems():
handler_data = stream_capturer[0].dump_handler_config_data()
for h in handler_data:
if h['handler']['name'] == name:
handler_confs.append(h)
return handler_confs
|
Return data for handlers of a given name.
Args:
name:
Name of the capture handler(s) to return config data for.
Returns:
Dictionary dump from the named capture handler as given by
the :func:`SocketStreamCapturer.dump_handler_config_data` method.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.