code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def whois_emails(self, emails): api_name = 'opendns-whois-emails' fmt_url_path = u'whois/emails/{0}' return self._multi_get(api_name, fmt_url_path, emails)
Calls WHOIS Email end point Args: emails: An enumerable of string Emails Returns: A dict of {email: domain_result}
juraj-google-style
def __init__(self, grammar, latent_size, num_units): super(ProbabilisticGrammar, self).__init__() self.grammar = grammar self.latent_size = latent_size self.lstm = tf.compat.v1.nn.rnn_cell.LSTMCell(num_units) self.output_layer = tf.keras.layers.Dense(len(grammar.production_rules))
Constructs a probabilistic grammar. Args: grammar: An object representing a grammar. It has members `nonterminal_symbols`, `alphabet`, `production_rules`, and `start_symbol`, and a method `mask` determining (in)valid production rules given a symbol. latent_size: Number of dimensions in the latent code. num_units: Number of units in the LSTM cell.
juraj-google-style
async def enqueue(self, query, queue_index=None, stop_current=False, shuffle=False): if query is None or query == "": return self.statuslog.info("Parsing {}".format(query)) self.logger.debug("Enqueueing from query") indexnum = None if queue_index is not None: try: indexnum = int(queue_index) - 1 except TypeError: self.statuslog.error("Play index argument must be a number") return except ValueError: self.statuslog.error("Play index argument must be a number") return if not self.vready: self.parse_query(query, indexnum, stop_current, shuffle) else: parse_thread = threading.Thread( target=self.parse_query, args=[query, indexnum, stop_current, shuffle]) parse_thread.start()
Queues songs based on either a YouTube search or a link Args: query (str): Either a search term or a link queue_index (str): The queue index to enqueue at (None for end) stop_current (bool): Whether to stop the current song after the songs are queued shuffle (bool): Whether to shuffle the added songs
juraj-google-style
def get_associated_profiles(self): uri = "{}/associatedProfiles".format(self.data['uri']) return self._helper.do_get(uri)
Gets the URIs of profiles which are using an Ethernet network. Args: id_or_uri: Can be either the logical interconnect group id or the logical interconnect group uri Returns: list: URIs of the associated profiles.
juraj-google-style
def gbest_idx(swarm): best = 0 cmp = comparator(swarm[best].best_fitness) for (idx, particle) in enumerate(swarm): if cmp(particle.best_fitness, swarm[best].best_fitness): best = idx return best
gbest Neighbourhood topology function. Args: swarm: list: The list of particles. Returns: int: The index of the gbest particle.
juraj-google-style
def _parse_query_key(self, key, val, is_escaped): if key.endswith('__contains'): key = key[:-10] val = self._parse_query_modifier('contains', val, is_escaped) elif key.endswith('__range'): key = key[:-7] val = self._parse_query_modifier('range', val, is_escaped) elif key.endswith('__startswith'): key = key[:-12] val = self._parse_query_modifier('startswith', val, is_escaped) elif key.endswith('__endswith'): key = key[:-10] val = self._parse_query_modifier('endswith', val, is_escaped) elif key.endswith('__lt'): key = key[:-4] val = self._parse_query_modifier('lt', val, is_escaped) elif key.endswith('__gt'): key = key[:-4] val = self._parse_query_modifier('gt', val, is_escaped) elif key.endswith('__lte'): key = key[:-5] val = self._parse_query_modifier('lte', val, is_escaped) elif key.endswith('__gte'): key = key[:-5] val = self._parse_query_modifier('gte', val, is_escaped) elif key != 'NOKEY' and not is_escaped: val = self._escape_query(val) return key, val
Strips query modifier from key and call's the appropriate value modifier. Args: key (str): Query key val: Query value Returns: Parsed query key and value.
juraj-google-style
def set_device_policy(device_policy): if device_policy == 'silent': context.context().device_policy = context.DEVICE_PLACEMENT_SILENT elif device_policy == 'silent_for_int32': context.context().device_policy = context.DEVICE_PLACEMENT_SILENT_FOR_INT32 elif device_policy == 'warn': context.context().device_policy = context.DEVICE_PLACEMENT_WARN elif device_policy == 'explicit': context.context().device_policy = context.DEVICE_PLACEMENT_EXPLICIT elif device_policy is None: context.context().device_policy = None else: raise ValueError(f'Invalid argument `device_policy`: {device_policy!r}. Please refer to https:
Sets the current thread device policy. The device policy controls how operations requiring inputs on a specific device (e.g., on GPU:0) handle inputs on a different device (e.g. GPU:1). When using the default, an appropriate policy will be picked automatically. The default policy may change over time. This function only sets the device policy for the current thread. Any subsequently started thread will again use the default policy. Args: device_policy: A device policy. Valid values: - None: Switch to a system default. - 'warn': Copies the tensors which are not on the right device and logs a warning. - 'explicit': Raises an error if the placement is not as required. - 'silent': Silently copies the tensors. Note that this may hide performance problems as there is no notification provided when operations are blocked on the tensor being copied between devices. - 'silent_for_int32': silently copies `int32` tensors, raising errors on the other ones. Raises: ValueError: If an invalid `device_policy` is passed.
github-repos
def WriteUInt160(self, value): if (type(value) is UInt160): value.Serialize(self) else: raise Exception('value must be UInt160 instance ')
Write a UInt160 type to the stream. Args: value (UInt160): Raises: Exception: when `value` is not of neocore.UInt160 type.
codesearchnet
def CopyFrom(self, other_msg): if self is other_msg: return self.Clear() self.MergeFrom(other_msg)
Copies the content of the specified message into the current message. The method clears the current message and then merges the specified message using MergeFrom. Args: other_msg: Message to copy into the current one.
juraj-google-style
def _update_section_state(line_info, state): section_updated = False google_section_permitted = _google_section_permitted(line_info, state) google_section = google_section_permitted and _google_section(line_info) if google_section: state.section.format = Formats.GOOGLE state.section.title = google_section line_info.remaining = _get_after_google_header(line_info) line_info.remaining_raw = line_info.remaining section_updated = True rst_section = _rst_section(line_info) if rst_section: state.section.format = Formats.RST state.section.title = rst_section line_info.remaining = _get_after_directive(line_info) line_info.remaining_raw = line_info.remaining section_updated = True numpy_section = _numpy_section(line_info) if numpy_section: state.section.format = Formats.NUMPY state.section.title = numpy_section line_info.remaining = '' line_info.remaining_raw = line_info.remaining section_updated = True if section_updated: state.section.new = True state.section.indentation = line_info.indentation state.section.line1_indentation = line_info.next.indentation else: state.section.new = False
Uses line_info to determine the current section of the docstring. Updates state and line_info.remaining. Args: line_info: Information about the current line. state: The state of the parser.
github-repos
def load_qrandom(): fname = 'datasets/qrandom.npy' with pkg_resources.resource_stream(__name__, fname) as f: return np.load(f)
Loads a set of 10000 random numbers generated by qrandom. This dataset can be used when you want to do some limited tests with "true" random data without an internet connection. Returns: int array the dataset
codesearchnet
def output_reference(self, name): if (name not in self.output_names): raise ValueError('Invalid output "{}"'.format(name)) return Reference(step_name=self.name_in_workflow, output_name=name)
Return a reference to the given output for use in an input of a next Step. For a Step named `echo` that has an output called `echoed`, the reference `echo/echoed` is returned. Args: name (str): the name of the Step output Raises: ValueError: The name provided is not a valid output name for this Step.
codesearchnet
def __init__(self, graph_def, input_tensors, output_tensors, input_arrays_with_shape=None, output_arrays=None, experimental_debug_info_func=None): super(TFLiteConverter, self).__init__(graph_def, input_tensors, output_tensors, input_arrays_with_shape, output_arrays, experimental_debug_info_func)
Constructor for TFLiteConverter. Args: graph_def: Frozen TensorFlow GraphDef. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). input_arrays_with_shape: Tuple of strings representing input tensor names and list of integers representing input shapes (e.g., [("foo" : [1, 16, 16, 3])]). Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) output_arrays: List of output tensors to freeze graph with. Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) experimental_debug_info_func: An experimental function to retrieve the graph debug info for a set of nodes from the `graph_def`. Raises: ValueError: Invalid arguments.
github-repos
def coder_benchmark_factory(coder, generate_fn): class CoderBenchmark(object): def __init__(self, num_elements_per_benchmark): self._coder = coders.IterableCoder(coder) self._list = [generate_fn() for _ in range(num_elements_per_benchmark)] def __call__(self): _ = self._coder.decode(self._coder.encode(self._list)) CoderBenchmark.__name__ = '%s, %s' % (generate_fn.__name__, str(coder)) return CoderBenchmark
Creates a benchmark that encodes and decodes a list of elements. Args: coder: coder to use to encode an element. generate_fn: a callable that generates an element.
github-repos
def _pack(formatstring, value): _checkString(formatstring, description='formatstring', minlength=1) try: result = struct.pack(formatstring, value) except: errortext = 'The value to send is probably out of range, as the num-to-bytestring conversion failed.' errortext += ' Value: {0!r} Struct format code is: {1}' raise ValueError(errortext.format(value, formatstring)) if sys.version_info[0] > 2: return str(result, encoding='latin1') return result
Pack a value into a bytestring. Uses the built-in :mod:`struct` Python module. Args: * formatstring (str): String for the packing. See the :mod:`struct` module for details. * value (depends on formatstring): The value to be packed Returns: A bytestring (str). Raises: ValueError Note that the :mod:`struct` module produces byte buffers for Python3, but bytestrings for Python2. This is compensated for automatically.
juraj-google-style
def __init__(self, xid=None, command=None, flags=None, meter_id=None, bands=None): super().__init__(xid) self.command = command self.flags = flags self.meter_id = meter_id self.bands = bands
Create a MeterMod with the optional parameters below. Args: xid (int): Headers transaction id. Defaults to random. command (MeterModCommand): One of OFPMC_*. flags (MeterFlags): One of OFPMF_*. meter_id (int): Meter instance. bands (MeterBandHeader): The bands length is inferred from the length field in the header.
juraj-google-style
def _einsum_v1_parse_and_resolve_equation(equation, input_shapes): equation = equation.replace(' ', '') match = re.match('^([a-zA-Z,.]+)(->[a-zA-Z.]*)?$', equation) if not match: raise ValueError(f'Indices have incorrect format. Received: {equation}.') input_axis_labels = match.group(1).split(',') output_axis_labels = match.group(2)[2:] if match.group(2) else None if len(input_shapes) != len(input_axis_labels): raise ValueError(f'Got {len(input_shapes)} arguments for equation "{equation}", expecting {len(input_axis_labels)}.') ellipsis_axes = '' if '...' in equation: unused = ''.join((c for c in string.ascii_letters if c not in ''.join(input_axis_labels))) for i, ax in enumerate(input_axis_labels): if '...' in ax: parts = ax.split('...') if len(parts) != 2: raise ValueError(f'Unable to resolve ellipsis. Excess number found: {len(parts) - 1} vs 1.') if input_shapes[i].ndims is None: raise ValueError('Unable to statically infer ellipsis axes. The input shapes has a dynamic dimensionality.') n = input_shapes[i].ndims - len(''.join(parts)) if n < 0: raise ValueError('Ellipses lengths do not match.') if len(unused) < n: raise ValueError('Unable to resolve ellipsis, too many distinct labels.') replace_axes = unused[-n:] if n > 0 else '' input_axis_labels[i] = input_axis_labels[i].replace('...', replace_axes) if len(replace_axes) > len(ellipsis_axes): ellipsis_axes = replace_axes if any(('.' in ax for ax in input_axis_labels)): raise ValueError(f'Period "." found outside of ellipsis in input {input_axis_labels}.') if output_axis_labels is not None: output_axis_labels = output_axis_labels.replace('...', ellipsis_axes) if '.' in output_axis_labels: raise ValueError(f'Period "." found outside of ellipsis in output {output_axis_labels}.') if output_axis_labels is None: axis_labels = set(''.join(input_axis_labels)) - set(ellipsis_axes) indices = ''.join(sorted(axis_labels)) counts = {ax: 0 for ax in indices} for axes_ in input_axis_labels: for ax in axes_: if ax not in ellipsis_axes: counts[ax] += 1 output_axis_labels = ellipsis_axes + ''.join(sorted((ax for ax in axis_labels if counts[ax] == 1))) return (input_axis_labels, output_axis_labels)
Helper for einsum() that splits/resolves inputs & outputs. Args: equation: Equation string given as argument to einsum(). input_shapes: List of the shapes of all inputs given to einsum() Returns: input_axis_labels, output_axis_labels where: input_axis_labels: List of length len(input_shapes) of strings representing the character label for each dimension of each given input, resolving any broadcast (...) axes, output_axis_labels: A string of character labels for each axes of output tensor, filling in missing output subscripts and broadcast axes. Raises: ValueError: If equation is in the uncorrect format, incorrect number of inputs given or broadcast axes "..." or output axes could not be resolved.
github-repos
def update(self, rid, data, raise_on_error=True): cache_data = {'cache-date': self._dt_to_epoch(datetime.now()), 'cache-data': data} return self.ds.put(rid, cache_data, raise_on_error)
Write updated cache data to the DataStore. Args: rid (str): The record identifier. data (dict): The record data. raise_on_error (bool): If True and not r.ok this method will raise a RunTimeError. Returns: object : Python request response.
juraj-google-style
def ExtractEvents( self, parser_mediator, registry_key, codepage='cp1252', **kwargs): self._ParseMRUListKey(parser_mediator, registry_key, codepage=codepage)
Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key. codepage (Optional[str]): extended ASCII string codepage.
juraj-google-style
def expected_h(nvals, fit="RANSAC"): rsvals = [expected_rs(n) for n in nvals] poly = poly_fit(np.log(nvals), np.log(rsvals), 1, fit=fit) return poly[0]
Uses expected_rs to calculate the expected value for the Hurst exponent h based on the values of n used for the calculation. Args: nvals (iterable of int): the values of n used to calculate the individual (R/S)_n KWargs: fit (str): the fitting method to use for the line fit, either 'poly' for normal least squares polynomial fitting or 'RANSAC' for RANSAC-fitting which is more robust to outliers Returns: float: expected h for white noise
juraj-google-style
def _ParsePlistKeyValue(self, knowledge_base, name, value): if not knowledge_base.GetValue('keyboard_layout'): if name in self._PLIST_KEYS: if isinstance(value, (list, tuple)): value = value[0] _, _, keyboard_layout = value.rpartition('.') knowledge_base.SetValue('keyboard_layout', keyboard_layout)
Parses a plist key value. Args: knowledge_base (KnowledgeBase): to fill with preprocessing information. name (str): name of the plist key. value (str): value of the plist key.
juraj-google-style
def _log_device_compatibility_check(policy_name, gpu_details_list): if policy_name != 'mixed_float16': return supported_device_strs = [] unsupported_device_strs = [] for details in gpu_details_list: name = details.get('device_name', 'Unknown GPU') cc = details.get('compute_capability') if cc: device_str = '%s, compute capability %s.%s' % (name, cc[0], cc[1]) if cc >= (7, 0): supported_device_strs.append(device_str) else: unsupported_device_strs.append(device_str) else: unsupported_device_strs.append(name + ', no compute capability (probably not an Nvidia GPU)') if unsupported_device_strs: warning_str = _COMPAT_CHECK_WARNING_PREFIX + '\n' if supported_device_strs: warning_str += 'Some of your GPUs may run slowly with dtype policy mixed_float16 because they do not all have compute capability of at least 7.0. Your GPUs:\n' elif len(unsupported_device_strs) == 1: warning_str += 'Your GPU may run slowly with dtype policy mixed_float16 because it does not have compute capability of at least 7.0. Your GPU:\n' else: warning_str += 'Your GPUs may run slowly with dtype policy mixed_float16 because they do not have compute capability of at least 7.0. Your GPUs:\n' for device_str in _dedup_strings(supported_device_strs + unsupported_device_strs): warning_str += ' ' + device_str + '\n' warning_str += 'See https: warning_str += _COMPAT_CHECK_WARNING_SUFFIX tf_logging.warning(warning_str) elif not supported_device_strs: tf_logging.warning('%s\nThe dtype policy mixed_float16 may run slowly because this machine does not have a GPU. Only Nvidia GPUs with compute capability of at least 7.0 run quickly with mixed_float16.\n%s' % (_COMPAT_CHECK_WARNING_PREFIX, _COMPAT_CHECK_WARNING_SUFFIX)) elif len(supported_device_strs) == 1: tf_logging.info('%s\nYour GPU will likely run quickly with dtype policy mixed_float16 as it has compute capability of at least 7.0. Your GPU: %s' % (_COMPAT_CHECK_OK_PREFIX, supported_device_strs[0])) else: tf_logging.info('%s\nYour GPUs will likely run quickly with dtype policy mixed_float16 as they all have compute capability of at least 7.0' % _COMPAT_CHECK_OK_PREFIX)
Logs a compatibility check if the devices support the policy. Currently only logs for the policy mixed_float16. Args: policy_name: The name of the dtype policy. gpu_details_list: A list of dicts, one dict per GPU. Each dict is the device details for a GPU, as returned by `tf.config.experimental.get_device_details()`.
github-repos
def load(self, validate=True): self._load() try: self.config = self._load_config(self.system_config_file) user = self._load_config(self.global_config_file) config = self._load_config(self.config_file) local = self._load_config(self.config_local_file) for conf in [user, config, local]: self.config = self._merge(self.config, conf) if validate: self.config = Schema(self.SCHEMA).validate(self.config) self.config = configobj.ConfigObj(self.config, write_empty_values=True) self.config.filename = self.config_file self._resolve_paths(self.config, self.config_file) except Exception as ex: raise ConfigError(ex)
Loads config from all the config files. Args: validate (bool): optional flag to tell dvc if it should validate the config or just load it as is. 'True' by default. Raises: dvc.config.ConfigError: thrown if config has invalid format.
codesearchnet
def __init__(self, url, access_token, index, source="parsedmarc", verify=True, timeout=60): url = urlparse(url) self.url = "{0}: url.netloc) self.access_token = access_token.lstrip("Splunk ") self.index = index self.host = socket.getfqdn() self.source = source self.session = requests.Session() self.timeout = timeout self.session.verify = verify self._common_data = dict(host=self.host, source=self.source, index=self.index) self.session.headers = { "User-Agent": "parsedmarc/{0}".format(__version__), "Authorization": "Splunk {0}".format(self.access_token) }
Initializes the HECClient Args: url (str): The URL of the HEC access_token (str): The HEC access token index (str): The name of the index source (str): The source name verify (bool): Verify SSL certificates timeout (float): Number of seconds to wait for the server to send data before giving up
juraj-google-style
def comment(data, what): data = data.splitlines() data = map((lambda x: ((' return '\n'.join(data)
Comments line containing `what` in string `data`. Args: data (str): Configuration file in string. what (str): Line which will be commented out. Returns: str: Configuration file with commented `what`.
codesearchnet
def expect_false(condition, msg, extras=None): try: asserts.assert_false(condition, msg, extras) except signals.TestSignal as e: logging.exception('Expected a `False` value, got `True`.') recorder.add_error(e)
Expects an expression evaluates to False. If the expectation is not met, the test is marked as fail after its execution finishes. Args: expr: The expression that is evaluated. msg: A string explaining the details in case of failure. extras: An optional field for extra information to be included in test result.
github-repos
def markdown_to_text(body): md = markdown.markdown(body, extensions=[ 'markdown.extensions.extra' ]) soup = BeautifulSoup(md, 'html.parser') return soup.get_text()
Converts markdown to text. Args: body: markdown (or plaintext, or maybe HTML) input Returns: Plaintext with all tags and frills removed
juraj-google-style
def __init__(self, event_timestamp, duration=5): super(TimeSlice, self).__init__() self.duration = duration self.event_timestamp = event_timestamp
Initializes the time slice. Args: event_timestamp (int): event timestamp of the time slice or None. duration (Optional[int]): duration of the time slice in minutes. The default is 5, which represent 2.5 minutes before and 2.5 minutes after the event timestamp.
juraj-google-style
def attention_mask_ignore_padding(inputs, dtype=tf.float32): inputs = rename_length_to_memory_length(inputs) return (mtf.cast(mtf.equal(inputs, 0), dtype) * (- 1000000000.0))
Bias for encoder-decoder attention. Args: inputs: a mtf.Tensor with shape [..., length_dim] dtype: a tf.dtype Returns: a mtf.Tensor with shape [..., memory_length_dim]
codesearchnet
def clean(self, force: bool=False): with (yield from self._lock): for connection in tuple(self.ready): if (force or connection.closed()): connection.close() self.ready.remove(connection)
Clean closed connections. Args: force: Clean connected and idle connections too. Coroutine.
codesearchnet
def protocol_version_to_kmip_version(value): if not isinstance(value, ProtocolVersion): return None if value.major == 1: if value.minor == 0: return enums.KMIPVersion.KMIP_1_0 elif value.minor == 1: return enums.KMIPVersion.KMIP_1_1 elif value.minor == 2: return enums.KMIPVersion.KMIP_1_2 elif value.minor == 3: return enums.KMIPVersion.KMIP_1_3 elif value.minor == 4: return enums.KMIPVersion.KMIP_1_4 else: return None else: return None
Convert a ProtocolVersion struct to its KMIPVersion enumeration equivalent. Args: value (ProtocolVersion): A ProtocolVersion struct to be converted into a KMIPVersion enumeration. Returns: KMIPVersion: The enumeration equivalent of the struct. If the struct cannot be converted to a valid enumeration, None is returned.
juraj-google-style
def get(name): for matcher in matchers: if ((matcher.__name__ == name) or (getattr(matcher, 'name', None) == name)): return matcher
Returns a matcher instance by class or alias name. Arguments: name (str): matcher class name or alias. Returns: matcher: found matcher instance, otherwise ``None``.
codesearchnet
def key_prefix(self) -> str: return self.__class__.__qualname__
Prefix for key to avoid collisions from different Processors. Defaults to classname. Processor() should override this if, for example, it accepts arguments that change output of __call__. Returns: Prefix that will be added to key.
github-repos
def NewFromJSON(data): if data.get('shakes', None): shakes = [Shake.NewFromJSON(shk) for shk in data.get('shakes')] else: shakes = None return User(id=data.get('id', None), name=data.get('name', None), profile_image_url=data.get('profile_image_url', None), about=data.get('about', None), website=data.get('website', None), shakes=shakes)
Create a new User instance from a JSON dict. Args: data (dict): JSON dictionary representing a user. Returns: A User instance.
codesearchnet
def apply(self, func, **kwargs): oid = self.oid self.call_queue.append((func, kwargs)) def call_queue_closure(oid_obj, call_queues): for func, kwargs in call_queues: if isinstance(func, ray.ObjectID): func = ray.get(func) if isinstance(kwargs, ray.ObjectID): kwargs = ray.get(kwargs) oid_obj = func(oid_obj, **kwargs) return oid_obj oid = deploy_ray_func.remote( call_queue_closure, oid, kwargs={"call_queues": self.call_queue} ) self.call_queue = [] return PyarrowOnRayFramePartition(oid)
Apply a function to the object stored in this partition. Note: It does not matter if func is callable or an ObjectID. Ray will handle it correctly either way. The keyword arguments are sent as a dictionary. Args: func: The function to apply. Returns: A RayRemotePartition object.
juraj-google-style
def _GetStatus(self, two_factor=False): params = ['status'] if two_factor: params += ['--twofactor'] retcode = self._RunOsLoginControl(params) if retcode is None: if self.oslogin_installed: self.logger.warning('OS Login not installed.') self.oslogin_installed = False return None self.oslogin_installed = True if not os.path.exists(constants.OSLOGIN_NSS_CACHE): return False return not retcode
Check whether OS Login is installed. Args: two_factor: bool, True if two factor should be enabled. Returns: bool, True if OS Login is installed.
juraj-google-style
def from_representation(self, representation): object_dict = {} failed = {} for (name, field) in self.fields.items(): if (name not in representation): continue try: if ((not isinstance(representation[name], (list, tuple))) and field.many): raise ValueError('field should be sequence') source = _source(name, field) value = representation[name] if field.many: if (not field.allow_null): object_dict[source] = [field.from_representation(single_value) for single_value in value] else: object_dict[source] = [(field.from_representation(single_value) if (single_value is not None) else None) for single_value in value] elif (not field.allow_null): object_dict[source] = field.from_representation(value) else: object_dict[source] = (field.from_representation(value) if value else None) except ValueError as err: failed[name] = str(err) if failed: try: self.validate(object_dict) raise DeserializationError() except DeserializationError as err: err.failed = failed raise return object_dict
Convert given representation dict into internal object. Internal object is simply a dictionary of values with respect to field sources. This does not check if all required fields exist or values are valid in terms of value validation (see: :meth:`BaseField.validate()`) but still requires all of passed representation values to be well formed representation (success call to ``field.from_representation``). In case of malformed representation it will run additional validation only to provide a full detailed exception about all that might be wrong with provided representation. Args: representation (dict): dictionary with field representation values Raises: DeserializationError: when at least one representation field is not formed as expected by field object. Information about additional forbidden/missing/invalid fields is provided as well.
codesearchnet
def _average_precision(self, rec, prec): mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) i = np.where(mrec[1:] != mrec[:-1])[0] ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap
calculate average precision Params: ---------- rec : numpy.array cumulated recall prec : numpy.array cumulated precision Returns: ---------- ap as float
juraj-google-style
def old_tracer_correlation( self ): if self.has_run: return self.atoms.sum_dr_squared() / float( self.number_of_jumps ) else: return None
Deprecated tracer correlation factor for this simulation. Args: None Returns: (Float): The tracer correlation factor, f. Notes: This function assumes that the jump distance between sites has been normalised to a=1. If the jump distance is not equal to 1 then the value returned by this function should be divided by a^2. Even better, use `self.tracer_correlation`.
juraj-google-style
def listen_now_items(self): response = self._call(mc_calls.ListenNowGetListenNowItems) listen_now_item_list = response.body.get('listennow_items', []) listen_now_items = defaultdict(list) for item in listen_now_item_list: type_ = f"{ListenNowItemType(item['type']).name}s" listen_now_items[type_].append(item) return dict(listen_now_items)
Get a listing of Listen Now items. Note: This does not include situations; use the :meth:`situations` method instead. Returns: dict: With ``albums`` and ``stations`` keys of listen now items.
codesearchnet
def get_instance_type_parameter(self, name: str, node: 'cfg.CFGNode | None'=None): del name if node is None: node = self.ctx.root_node return self.ctx.new_unsolvable(node)
Get a cfg.Variable of the instance's values for the type parameter. Treating self as an abstract.Instance, gets the variable of its values for the given type parameter. For the real implementation, see SimpleValue.get_instance_type_parameter. Args: name: The name of the type parameter. node: Optionally, the current CFG node. Returns: A Variable which may be empty.
github-repos
def concept(self, mechanism, purviews=False, cause_purviews=False, effect_purviews=False): log.debug('Computing concept %s...', mechanism) if (not mechanism): log.debug('Empty concept; returning null concept') return self.null_concept cause = self.mic(mechanism, purviews=(cause_purviews or purviews)) effect = self.mie(mechanism, purviews=(effect_purviews or purviews)) log.debug('Found concept %s', mechanism) return Concept(mechanism=mechanism, cause=cause, effect=effect, subsystem=self)
Return the concept specified by a mechanism within this subsytem. Args: mechanism (tuple[int]): The candidate set of nodes. Keyword Args: purviews (tuple[tuple[int]]): Restrict the possible purviews to those in this list. cause_purviews (tuple[tuple[int]]): Restrict the possible cause purviews to those in this list. Takes precedence over ``purviews``. effect_purviews (tuple[tuple[int]]): Restrict the possible effect purviews to those in this list. Takes precedence over ``purviews``. Returns: Concept: The pair of maximally irreducible cause/effect repertoires that constitute the concept specified by the given mechanism.
codesearchnet
def longest_one_seg_prefix(self, word): match = self.seg_regex.match(word) if match: return match.group(0) else: return ''
Return longest IPA Unicode prefix of `word` Args: word (unicode): word as IPA string Returns: unicode: longest single-segment prefix of `word`
codesearchnet
def initialize_from_assignments(assignments, k, max_assign_weight=0.75): cells = len(assignments) init_W = np.zeros((k, cells)) for i, a in enumerate(assignments): init_W[a, i] = max_assign_weight for a2 in range(k): if a2!=a: init_W[a2, i] = (1-max_assign_weight)/(k-1) return init_W/init_W.sum(0)
Creates a weight initialization matrix from Poisson clustering assignments. Args: assignments (array): 1D array of integers, of length cells k (int): number of states/clusters max_assign_weight (float, optional): between 0 and 1 - how much weight to assign to the highest cluster. Default: 0.75 Returns: init_W (array): k x cells
juraj-google-style
def cmd2(command, shell=False, detatch=False, verbose=False, verbout=None): import shlex if isinstance(command, (list, tuple)): raise ValueError('command tuple not supported yet') args = shlex.split(command, posix=not WIN32) if verbose is True: verbose = 2 if verbout is None: verbout = verbose >= 1 if verbose >= 2: print('+=== START CMD2 ===') print('Command:') print(command) if verbout: print('----') print('Stdout:') proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=shell, universal_newlines=True) if detatch: info = {'proc': proc} else: write_fn = sys.stdout.write flush_fn = sys.stdout.flush logged_out = [] for line in _run_process(proc): line_ = line if six.PY2 else line if len(line_) > 0: if verbout: write_fn(line_) flush_fn() logged_out.append(line) try: from utool import util_str out = ''.join(logged_out) except UnicodeDecodeError: from utool import util_str logged_out = util_str.ensure_unicode_strlist(logged_out) out = ''.join(logged_out) (out_, err) = proc.communicate() ret = proc.wait() info = { 'out': out, 'err': err, 'ret': ret, } if verbose >= 2: print('L___ END CMD2 ___') return info
Trying to clean up cmd Args: command (str): string command shell (bool): if True, process is run in shell detatch (bool): if True, process is run in background verbose (int): verbosity mode verbout (bool): if True, `command` writes to stdout in realtime. defaults to True iff verbose > 0 Returns: dict: info - information about command status
juraj-google-style
def expand_value_set_definition(self, value_set: value_set_pb2.ValueSet) -> value_set_pb2.ValueSet: base_url, request_url = _expansion_request_url_for_value_set_url(value_set.url.value) request_json = json_format.print_fhir_to_json_string(value_set).encode('utf-8') session_ = self.create_session() session_.headers.update({'Accept': 'application/json', 'Content-Type': 'application/json'}) auth = self.auth_per_terminology_server.get(base_url) if auth is not None: if isinstance(auth, tuple) and len(auth) == 2: logging.debug('Using Basic auth for auth') session_.auth = auth else: logging.debug('Using Bearer token for auth') session_.headers['Authorization'] = auth logging.info('Expanding value set url: %s version: %s using terminology service: %s', value_set.url.value, value_set.version.value, base_url) with session_ as session: def request_func(offset: int) -> requests.Response: return session.post(request_url, data=request_json, params={'offset': offset}) expanded_value_set = _paginate_expand_value_set_request(request_func, value_set.url.value, value_set.version.value) logging.info('Retrieved %d codes for value set url: %s version: %s using terminology service: %s', len(expanded_value_set.expansion.contains), value_set.url.value, value_set.version.value, base_url) return expanded_value_set
Expands the value set definition using a terminology server. Requests an expansion of the given value set from the appropriate terminology server. Attempts to expand arbitrary value sets by passing their entire definition to the terminology service for expansion. If possible, requests expansion from the domain associated with the value set's URL. If the value set URL is not associated with a known terminology service, uses the tx.fhir.org service as it is able to expand value sets defined outside its own specifications. Retrieves the current definition of the value set from the terminology service as well as its expansion. Args: value_set: The value set to expand. Returns: The current definition of the value set from the server with its expanded codes present.
github-repos
def get(cls, resource_id): res = Resource.get(resource_id) return cls(res) if res else None
Returns the class object identified by `resource_id` Args: resource_id (str): Unique EC2 Instance ID to load from database Returns: EC2 Instance object if found, else None
juraj-google-style
def plot_heatmap(data, title='Heatmap', show_legend=True, show_labels=True, label_fmt='.2f', vmin=None, vmax=None, figsize=None, label_color='w', cmap='RdBu', **kwargs): (fig, ax) = plt.subplots(figsize=figsize) heatmap = ax.pcolor(data, vmin=vmin, vmax=vmax, cmap=cmap) ax.invert_yaxis() if (title is not None): plt.title(title) if show_legend: fig.colorbar(heatmap) if show_labels: vals = data.values for x in range(data.shape[0]): for y in range(data.shape[1]): plt.text((x + 0.5), (y + 0.5), format(vals[(y, x)], label_fmt), horizontalalignment='center', verticalalignment='center', color=label_color) plt.yticks(np.arange(0.5, len(data.index), 1), data.index) plt.xticks(np.arange(0.5, len(data.columns), 1), data.columns) return plt
Plot a heatmap using matplotlib's pcolor. Args: * data (DataFrame): DataFrame to plot. Usually small matrix (ex. correlation matrix). * title (string): Plot title * show_legend (bool): Show color legend * show_labels (bool): Show value labels * label_fmt (str): Label format string * vmin (float): Min value for scale * vmax (float): Max value for scale * cmap (string): Color map * kwargs: Passed to matplotlib's pcolor
codesearchnet
def render_policy_template(account_number='', app='coreforrest', env='dev', group='forrest', items=None, pipeline_settings=None, region='us-east-1', service=''): statements = [] rendered_service_policy = get_template('infrastructure/iam/{0}.json.j2'.format(service), account_number=account_number, app=app, env=env, group=group, region=region, items=items, settings=pipeline_settings) try: statement_block = json.loads(rendered_service_policy) statements.append(statement_block) except ValueError: LOG.debug('Need to make %s template into list.', service) statements = json.loads('[{0}]'.format(rendered_service_policy)) LOG.debug('Rendered IAM Policy statements: %s', statements) return statements
Render IAM Policy template. To support multiple statement blocks, JSON objects can be separated by a comma. This function attempts to turn any invalid JSON into a valid list based on this comma separated assumption. Args: account_number (str): AWS Account number. app (str): Name of Spinnaker Application. env (str): Environment/Account in AWS group (str):A Application group/namespace items (list): Resource names used to create a Policy per Resource. region (str): AWS region. pipeline_settings (dict): Settings from *pipeline.json*. service (str): Name of cloud service to find matching IAM Policy template. Returns: list: IAM Policy :obj:`dict` statements for the given service.
codesearchnet
def parse(self, argument): if isinstance(argument, list): return argument elif (not argument): return [] else: if self._comma_compat: argument = argument.replace(',', ' ') return argument.split()
Parses argument as whitespace-separated list of strings. It also parses argument as comma-separated list of strings if requested. Args: argument: string argument passed in the commandline. Returns: [str], the parsed flag value.
codesearchnet
def must_run_on_cpu(node, pin_variables_on_cpu=False): if isinstance(node, ops.Operation): node_def = node.node_def else: assert isinstance(node, node_def_pb2.NodeDef) node_def = node if pin_variables_on_cpu and _is_variable_op(node_def.op): return True if node_def.op == 'Const': dtype = node_def.attr['dtype'].type if dtype == dtypes.string or dtype == dtypes.int32: return True if node_def.op in ['DynamicStitch', 'ParallelDynamicStitch']: dtype = node_def.attr['T'].type if dtype == dtypes.int32: return True if node_def.op in ['Cast']: dtype = node_def.attr['SrcT'].type if dtype == dtypes.int32: return True return False
Returns True if the given node_def must run on CPU, otherwise False. Args: node: The node to be assigned to a device. Could be either an ops.Operation or NodeDef. pin_variables_on_cpu: If True, this function will return False if node_def represents a variable-related op. Returns: True if the given node must run on CPU, otherwise False.
github-repos
def master(self, task_type=None, task_id=None, rpc_layer=None): if task_type is not None and task_id is not None: master = self.cluster_spec().task_address(task_type, task_id) return format_master_url(master, rpc_layer or self._rpc_layer) return self._cluster_resolvers[0].master(rpc_layer=rpc_layer)
Returns the master address to use when creating a session. This usually returns the master from the first ClusterResolver passed in, but you can override this by specifying the task_type and task_id. Note: this is only useful for TensorFlow 1.x. Args: task_type: (Optional) The type of the TensorFlow task of the master. task_id: (Optional) The index of the TensorFlow task of the master. rpc_layer: (Optional) The RPC protocol for the given cluster. Returns: The name or URL of the session master.
github-repos
def clean_all(G, settings): quiet = settings['quiet'] recon = settings['recon'] sprint = settings['sprint'] error = settings['error'] all_outputs = [] for node in G.nodes(data=True): if ('output' in node[1]): for item in get_all_outputs(node[1]): all_outputs.append(item) all_outputs.append('.shastore') retcode = 0 for item in sorted(all_outputs): if os.path.isfile(item): if recon: sprint('Would remove file: {}'.format(item)) continue sprint("Attempting to remove file '{}'", level='verbose') try: os.remove(item) sprint('Removed file', level='verbose') except: errmes = "Error: file '{}' failed to be removed" error(errmes.format(item)) retcode = 1 if ((not retcode) and (not recon)): sprint('All clean', color=True) return retcode
Removes all the output files from all targets. Takes the graph as the only argument Args: The networkx graph object The settings dictionary Returns: 0 if successful 1 if removing even one file failed
codesearchnet
def language_from_str(language_def, metamodel): if type(language_def) is not text: raise TextXError("textX accepts only unicode strings.") if metamodel.debug: metamodel.dprint("*** PARSING LANGUAGE DEFINITION ***") if metamodel.debug in textX_parsers: parser = textX_parsers[metamodel.debug] else: parser = ParserPython(textx_model, comment_def=comment, ignore_case=False, reduce_tree=False, memoization=metamodel.memoization, debug=metamodel.debug, file=metamodel.file) textX_parsers[metamodel.debug] = parser try: parse_tree = parser.parse(language_def) except NoMatch as e: line, col = parser.pos_to_linecol(e.position) raise TextXSyntaxError(text(e), line, col) lang_parser = visit_parse_tree(parse_tree, TextXVisitor(parser, metamodel)) metamodel.validate() lang_parser.metamodel = metamodel metamodel._parser_blueprint = lang_parser if metamodel.debug: PMDOTExporter().exportFile( lang_parser.parser_model, "{}_parser_model.dot".format(metamodel.rootcls.__name__)) return lang_parser
Constructs parser and initializes metamodel from language description given in textX language. Args: language_def (str): A language description in textX. metamodel (TextXMetaModel): A metamodel to initialize. Returns: Parser for the new language.
juraj-google-style
def __add__(self, r): if not isinstance(r, TestResult): raise TypeError('Operand %s of type %s is not a TestResult.' % (r, type(r))) sum_result = TestResult() for name in sum_result.__dict__: r_value = getattr(r, name) l_value = getattr(self, name) if isinstance(r_value, list): setattr(sum_result, name, l_value + r_value) return sum_result
Overrides '+' operator for TestResult class. The add operator merges two TestResult objects by concatenating all of their lists together. Args: r: another instance of TestResult to be added Returns: A TestResult instance that's the sum of two TestResult instances.
github-repos
def panel(self, panel_id): if not isinstance(panel_id, ObjectId): panel_id = ObjectId(panel_id) panel_obj = self.panel_collection.find_one({'_id': panel_id}) return panel_obj
Fetch a gene panel by '_id'. Args: panel_id (str, ObjectId): str or ObjectId of document ObjectId Returns: dict: panel object or `None` if panel not found
juraj-google-style
def get_labels(self, **query_params): labels = self.get_labels_json(self.base_uri, query_params=query_params) labels_list = [] for label_json in labels: labels_list.append(self.create_label(label_json)) return labels_list
Get the labels attached to this board. Returns a label of Label objects. Returns: list(Label): The labels attached to this board
codesearchnet
def CreateExtensionSetting(client, feed_items, campaign_feed, feed_item_ids, platform_restrictions=None): campaign_extension_setting_service = client.GetService( 'CampaignExtensionSettingService', 'v201809') extension_feed_items = [{ CreateSitelinkFeedItem(feed_items, feed_item_id) } for feed_item_id in feed_item_ids] extension_setting = { 'extensions': extension_feed_items } if platform_restrictions: extension_setting['platformRestrictions'] = platform_restrictions campaign_extension_setting = { 'campaignId': campaign_feed['campaignId'], 'extensionType': 'SITELINK', 'extensionSetting': extension_setting } operation = { 'operand': campaign_extension_setting, 'operator': 'ADD' } campaign_extension_setting_service.mutate([operation])
Creates the extension setting for a list of Feed Items. Args: client: an AdWordsClient instance. feed_items: the list of all Feed Items. campaign_feed: the original Campaign Feed. feed_item_ids: the Ids of the feed items for which extension settings should be created. platform_restrictions: an optional Platform Restriction for the Feed items.
juraj-google-style
def get(self, center, target, date): if ((center.index, target.index) in self.segments): (pos, vel) = self.segments[(center.index, target.index)].compute_and_differentiate(date.jd) sign = 1 else: (pos, vel) = self.segments[(target.index, center.index)].compute_and_differentiate(date.jd) sign = (- 1) if (len(pos) == 3): pv = np.concatenate((pos, (vel / S_PER_DAY))) elif (len(pos) == 6): pv = np.array(pos) else: raise JplError('Unknown state vector format') return ((sign * pv) * 1000)
Retrieve the position and velocity of a target with respect to a center Args: center (Target): target (Target): date (Date): Return: numpy.array: length-6 array position and velocity (in m and m/s) of the target, with respect to the center
codesearchnet
def variable_summaries(vars_, groups=None, scope='weights'): groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for var in vars_: for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(var) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] for name, vars_ in grouped.items(): vars_ = [tf.reshape(var, [-1]) for var in vars_] vars_ = tf.concat(vars_, 0) summaries.append(tf.summary.histogram(scope + '/' + name, vars_)) return tf.summary.merge(summaries)
Create histogram summaries for the provided variables. Summaries can be grouped via regexes matching variables names. Args: vars_: List of variables to summarize. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor.
juraj-google-style
def _gen(self, optimized, splitstring): self.resolved = {} for nt in self.grammar.grammar_nonterminals_map: for i in self.grammar.grammar_nonterminals_map[nt]: if self.grammar.grammar_rules[i][0] not in self.resolved\ and not isinstance(self.grammar.grammar_rules[i][1], (set, tuple)): if self.grammar.grammar_rules[i][1] != '@empty_set' \ and self.grammar.grammar_rules[i][1] in self.grammar.grammar_terminals: if splitstring: self.resolved[ self.grammar.grammar_rules[i][0]] = self.grammar.grammar_rules[i][1] else: if self.grammar.grammar_rules[i][1] == '&': self.resolved[self.grammar.grammar_rules[i][0]] = ' ' else: self.resolved[ self.grammar.grammar_rules[i][0]] = self.grammar.grammar_rules[i][1] if self._checkfinal(self.grammar.grammar_rules[i][0]): return self.resolved[self.grammar.grammar_rules[i][0]] if self.grammar.grammar_rules[i][0] not in self.bfs_queue: self.bfs_queue.append(self.grammar.grammar_rules[i][0]) if self.grammar.grammar_rules[i][1] == '@empty_set': self.resolved[self.grammar.grammar_rules[i][0]] = '' self.bfs_queue.append(self.grammar.grammar_rules[i][0]) if optimized and self._check_self_to_empty( self.grammar.grammar_rules[i][1]): self.resolved[self.grammar.grammar_rules[i][0]] = '' if self.grammar.grammar_rules[i][0] not in self.bfs_queue: self.bfs_queue.append(self.grammar.grammar_rules[i][0]) change = 1 while change: change = 0 if not change: ret = self._check_self_nonterminals(optimized) if ret == 1: change = 1 elif ret != 0: return ret if not change: while not change and len(self.bfs_queue) > 0: myntr = self.bfs_queue.pop() ret = self._check_self_replicate(myntr) if ret == 1: change = 1 elif ret != 0: return ret if optimized and self._check_intemediate( myntr, self.maxstate): change = 1 break
Generates a new random object generated from the nonterminal Args: optimized (bool): mode of operation - if enabled not all CNF rules are included (mitigate O(n^3)) splitstring (bool): A boolean for enabling or disabling Returns: str: The generated string
juraj-google-style
def _case_helper(cond_fn, pred_fn_pairs, default, exclusive, name, allow_python_preds=False, **cond_kwargs): predicates, actions = _case_verify_and_canonicalize_args(pred_fn_pairs, exclusive, name, allow_python_preds) with ops.name_scope(name, 'case', [predicates]): if default is None: default, predicates, actions = _case_create_default_action(predicates, actions) fn = default for predicate, action in reversed(list(zip(predicates, actions))): fn = functools.partial(cond_fn, predicate, true_fn=action, false_fn=fn, **cond_kwargs) if exclusive: with ops.control_dependencies([_assert_at_most_n_true(predicates, n=1, msg='Input error: exclusive=True')]): return fn() else: return fn()
Implementation of case that allows for different cond functions. Args: cond_fn: method that has signature and semantics of `cond` above. pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor, and a callable which returns a list of tensors. default: Optional callable that returns a list of tensors. exclusive: True iff at most one predicate is allowed to evaluate to `True`. name: A name for this operation (optional). allow_python_preds: if true, pred_fn_pairs may contain Python bools in addition to boolean Tensors **cond_kwargs: keyword arguments that will be passed to `cond_fn`. Returns: The tensors returned by the first pair whose predicate evaluated to True, or those returned by `default` if none does. Raises: TypeError: If `pred_fn_pairs` is not a list/dictionary. TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples. TypeError: If `fns[i]` is not callable for any i, or `default` is not callable.
github-repos
def __init__(self, package, ad): super(SnippetClient, self).__init__(app_name=package, ad=ad) self.package = package self._ad = ad self._adb = ad.adb self._proc = None
Initializes a SnippetClient. Args: package: (str) The package name of the apk where the snippets are defined. ad: (AndroidDevice) the device object associated with this client.
juraj-google-style
def BreachDepressions(dem, in_place=False, topology='D8'): if (type(dem) is not rdarray): raise Exception('A richdem.rdarray or numpy.ndarray is required!') if (topology not in ['D8', 'D4']): raise Exception('Unknown topology!') if (not in_place): dem = dem.copy() _AddAnalysis(dem, 'BreachDepressions(dem)') demw = dem.wrap() if (topology == 'D8'): _richdem.rdBreachDepressionsD8(demw) elif (topology == 'D4'): _richdem.rdBreachDepressionsD4(demw) dem.copyFromWrapped(demw) if (not in_place): return dem
Breaches all depressions in a DEM. Args: dem (rdarray): An elevation model in_place (bool): If True, the DEM is modified in place and there is no return; otherwise, a new, altered DEM is returned. topology (string): A topology indicator Returns: DEM without depressions.
codesearchnet
def Parse(self, value): value_line = value.split(' ') if len(value_line) < 3: raise TextFSMTemplateError('Expect at least 3 tokens on line.') if not value_line[2].startswith('('): options = value_line[1] for option in options.split(','): self._AddOption(option) [option.OnCreateOptions() for option in self.options] self.name = value_line[2] self.regex = ' '.join(value_line[3:]) else: self.name = value_line[1] self.regex = ' '.join(value_line[2:]) if len(self.name) > self.max_name_len: raise TextFSMTemplateError( "Invalid Value name '%s' or name too long." % self.name) if (not re.match(r'^\(.*\)$', self.regex) or self.regex.count('(') != self.regex.count(')')): raise TextFSMTemplateError( "Value '%s' must be contained within a '()' pair." % self.regex) self.template = re.sub(r'^\(', '(?P<%s>' % self.name, self.regex)
Parse a 'Value' declaration. Args: value: String line from a template file, must begin with 'Value '. Raises: TextFSMTemplateError: Value declaration contains an error.
juraj-google-style
def allreduce(self, x, mesh_axes, reduction_fn_string): if not mesh_axes: return x x = x.to_laid_out_tensor() if reduction_fn_string == "SUM": group_assignment = self._create_group_assignment(mesh_axes) group_size = len(group_assignment[0]) tf_in = x.one_slice dtype = tf_in.dtype if dtype == tf.float32: cast_to_float32 = False elif dtype == tf.bfloat16: cast_to_float32 = ( group_size > self._allreduce_in_bfloat16_max_group_size) else: tf.logging.info("Casting %s to float32 for allreduce" % tf_in.dtype) cast_to_float32 = True if cast_to_float32: tf_in = tf.cast(tf_in, tf.float32) tf_out = tpu_ops.cross_replica_sum(tf_in, group_assignment) if cast_to_float32: tf_out = tf.cast(tf_out, dtype) return self.LaidOutTensor([tf_out]) else: for axis in mesh_axes: x = self.allconcat(x, axis, 0, stack=True) x = self.LaidOutTensor( [mtf.reduction_fn(reduction_fn_string)(x.one_slice, 0)]) return x
Grouped allreduce, (summed across the given dimensions). Args: x: a LaidOutTensor mesh_axes: a list of integers reduction_fn_string: "SUM" Returns: a LaidOutTensor Raises: ValueError: if the reduction is not yet implemented.
juraj-google-style
def do_ams_patch(endpoint, path, body, access_token): headers = {"Content-Type": json_acceptformat, "DataServiceVersion": dsversion_min, "MaxDataServiceVersion": dsversion_max, "Accept": json_acceptformat, "Accept-Charset" : charset, "Authorization": "Bearer " + access_token, "x-ms-version" : xmsversion} response = requests.patch(endpoint, data=body, headers=headers, allow_redirects=False) if response.status_code == 301: redirected_url = ''.join([response.headers['location'], path]) response = requests.patch(redirected_url, data=body, headers=headers) return response
Do a AMS PATCH request and return JSON. Args: endpoint (str): Azure Media Services Initial Endpoint. path (str): Azure Media Services Endpoint Path. body (str): Azure Media Services Content Body. access_token (str): A valid Azure authentication token. Returns: HTTP response. JSON body.
juraj-google-style
def list_sku_versions(access_token, subscription_id, location, publisher, offer, sku): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/providers/Microsoft.Compute/', 'locations/', location, '/publishers/', publisher, '/artifacttypes/vmimage/offers/', offer, '/skus/', sku, '/versions?api-version=', COMP_API]) return do_get(endpoint, access_token)
List available versions for a given publisher's sku. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. location (str): Azure data center location. E.g. westus. publisher (str): VM image publisher. E.g. MicrosoftWindowsServer. offer (str): VM image offer. E.g. WindowsServer. sku (str): VM image sku. E.g. 2016-Datacenter. Returns: HTTP response with JSON list of versions.
juraj-google-style
def get_forced_variation(self, experiment_key, user_id): if (not self.is_valid): self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_forced_variation')) return None if (not validator.is_non_empty_string(experiment_key)): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('experiment_key')) return None if (not isinstance(user_id, string_types)): self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id')) return None forced_variation = self.config.get_forced_variation(experiment_key, user_id) return (forced_variation.key if forced_variation else None)
Gets the forced variation for a given user and experiment. Args: experiment_key: A string key identifying the experiment. user_id: The user ID. Returns: The forced variation key. None if no forced variation key.
codesearchnet
def insert_before(self, value: Union[RawValue, Value], raw: bool = False) -> "ArrayEntry": return ArrayEntry(self.index, self.before, self.after.cons(self.value), self._cook_value(value, raw), self.parinst, self.schema_node, datetime.now())
Insert a new entry before the receiver. Args: value: The value of the new entry. raw: Flag to be set if `value` is raw. Returns: An instance node of the new inserted entry.
juraj-google-style
def Artifacts(self, os_name=None, cpe=None, label=None): hit = (lambda x: ((x[0] == x[1]) or (not x[0]))) seq = [(self.os_name, os_name), (self.cpe, cpe), (self.label, label)] return all(map(hit, seq))
Whether the conditions applies, modulo host data. Args: os_name: An OS string. cpe: A CPE string. label: A label string. Returns: True if os_name, cpe or labels match. Empty values are ignored.
codesearchnet
async def game( self, short_name, *, id=None, text=None, parse_mode=(), link_preview=True, geo=None, period=60, contact=None, game=False, buttons=None ): result = types.InputBotInlineResultGame( id=id or '', short_name=short_name, send_message=await self._message( text=text, parse_mode=parse_mode, link_preview=link_preview, geo=geo, period=period, contact=contact, game=game, buttons=buttons ) ) if id is None: result.id = hashlib.sha256(bytes(result)).hexdigest() return result
Creates a new inline result of game type. Args: short_name (`str`): The short name of the game to use.
juraj-google-style
def Analyze(self, source_path, output_writer): if (not os.path.exists(source_path)): raise RuntimeError('No such source: {0:s}.'.format(source_path)) scan_context = source_scanner.SourceScannerContext() scan_path_spec = None scan_step = 0 scan_context.OpenSourcePath(source_path) while True: self._source_scanner.Scan(scan_context, auto_recurse=self._auto_recurse, scan_path_spec=scan_path_spec) if (not scan_context.updated): break if (not self._auto_recurse): output_writer.WriteScanContext(scan_context, scan_step=scan_step) scan_step += 1 if (scan_context.source_type in [definitions.SOURCE_TYPE_DIRECTORY, definitions.SOURCE_TYPE_FILE]): break for locked_scan_node in scan_context.locked_scan_nodes: self._PromptUserForEncryptedVolumeCredential(scan_context, locked_scan_node, output_writer) if (not self._auto_recurse): scan_node = scan_context.GetUnscannedScanNode() if (not scan_node): return scan_path_spec = scan_node.path_spec if self._auto_recurse: output_writer.WriteScanContext(scan_context)
Analyzes the source. Args: source_path (str): the source path. output_writer (StdoutWriter): the output writer. Raises: RuntimeError: if the source path does not exists, or if the source path is not a file or directory, or if the format of or within the source file is not supported.
codesearchnet
def get_site_spd_dos(self, site): spd_dos = dict() for orb, pdos in self.pdos[site].items(): orbital_type = _get_orb_type(orb) if orbital_type in spd_dos: spd_dos[orbital_type] = add_densities(spd_dos[orbital_type], pdos) else: spd_dos[orbital_type] = pdos return {orb: Dos(self.efermi, self.energies, densities) for orb, densities in spd_dos.items()}
Get orbital projected Dos of a particular site Args: site: Site in Structure associated with CompleteDos. Returns: dict of {orbital: Dos}, e.g. {"s": Dos object, ...}
juraj-google-style
def rot90(array, k=1, axes=(0, 1)): array = convert_to_tensor(array) if array.shape.rank < 2: raise ValueError(f'Input array must have at least 2 dimensions. Received: array.ndim={array.shape.rank}') if len(axes) != 2 or axes[0] == axes[1]: raise ValueError(f'Invalid axes: {axes}. Axes must be a tuple of two different dimensions.') k = k % 4 if k == 0: return array axes = tuple((axis if axis >= 0 else array.shape.rank + axis for axis in axes)) perm = [i for i in range(array.shape.rank) if i not in axes] perm.extend(axes) array = tf.transpose(array, perm) shape = tf.shape(array) non_rot_shape = shape[:-2] h, w = (shape[-2], shape[-1]) array = tf.reshape(array, tf.concat([[-1], [h, w]], axis=0)) array = tf.reverse(array, axis=[2]) array = tf.transpose(array, [0, 2, 1]) if k % 2 == 1: final_h, final_w = (w, h) else: final_h, final_w = (h, w) if k > 1: array = tf.reshape(array, tf.concat([[-1], [final_h, final_w]], axis=0)) for _ in range(k - 1): array = tf.reverse(array, axis=[2]) array = tf.transpose(array, [0, 2, 1]) final_shape = tf.concat([non_rot_shape, [final_h, final_w]], axis=0) array = tf.reshape(array, final_shape) inv_perm = [0] * len(perm) for i, p in enumerate(perm): inv_perm[p] = i array = tf.transpose(array, inv_perm) return array
Rotate an array by 90 degrees in the specified plane. Args: array: Input tensor k: Number of 90-degree rotations (default=1) axes: Tuple of two axes that define the plane of rotation. Defaults to (0, 1). Returns: Rotated tensor with correct shape transformation
github-repos
def update(self, id, newObj): newObj = self.validation(newObj) for obj in self.model.db: if obj["id"] != id: continue newObj.pop("id", None) obj.update(newObj) obj = self._cast_model(obj) if not self._batch.enable.is_set(): self.model.save_db() return obj return None
Update a object Args: id (int): Target Object ID newObj (object): New object will be merged into original object Returns: Object: Updated object None: If specified object id is not found MultipleInvalid: If input object is invaild
juraj-google-style
def grappler_optimize(graph, fetches=None, config_proto=None): if config_proto is None: config_proto = config_pb2.ConfigProto() config_proto.graph_options.rewrite_options.min_graph_nodes = -1 if fetches is not None: for fetch in fetches: graph.add_to_collection('train_op', fetch) metagraph = saver.export_meta_graph(graph_def=graph.as_graph_def()) return tf_optimizer.OptimizeGraph(config_proto, metagraph)
Tries to optimize the provided graph using grappler. Args: graph: A `tf.Graph` instance containing the graph to optimize. fetches: An optional list of `Tensor`s to fetch (i.e. not optimize away). Grappler uses the 'train_op' collection to look for fetches, so if not provided this collection should be non-empty. config_proto: An optional `tf.compat.v1.ConfigProto` to use when rewriting the graph. Returns: A `tf.compat.v1.GraphDef` containing the rewritten graph.
github-repos
def apply_inverse(self, y, in_place=False): r return cho_solve(self._factor, y, overwrite_b=in_place)
r""" Apply the inverse of the covariance matrix to the input by solving .. math:: K\,x = y Args: y (ndarray[nsamples] or ndadrray[nsamples, nrhs]): The vector or matrix :math:`y`. in_place (Optional[bool]): Should the data in ``y`` be overwritten with the result :math:`x`? (default: ``False``)
juraj-google-style
def to_csv(self, filename: str, latexify_names: bool=False): elements = set() for entry in self.entries: elements.update(entry.composition.elements) elements = sorted(list(elements), key=(lambda a: a.X)) writer = csv.writer(open(filename, 'w'), delimiter=unicode2str(','), quotechar=unicode2str('"'), quoting=csv.QUOTE_MINIMAL) writer.writerow(((['Name'] + elements) + ['Energy'])) for entry in self.entries: row = [(entry.name if (not latexify_names) else re.sub('([0-9]+)', '_{\\1}', entry.name))] row.extend([entry.composition[el] for el in elements]) row.append(entry.energy) writer.writerow(row)
Exports PDEntries to a csv Args: filename: Filename to write to. entries: PDEntries to export. latexify_names: Format entry names to be LaTex compatible, e.g., Li_{2}O
codesearchnet
def default(self, obj): if isinstance(obj, decimal.Decimal): obj = format(obj, 'f') str_digit = text_type(obj) return (str_digit.rstrip('0').rstrip('.') if ('.' in str_digit) else str_digit) elif isinstance(obj, phonenumbers.PhoneNumber): return phonenumbers.format_number(obj, phonenumbers.PhoneNumberFormat.E164) elif isinstance(obj, pendulum.Pendulum): return text_type(obj) elif isinstance(obj, arrow.Arrow): return text_type(obj) elif isinstance(obj, (datetime.datetime, datetime.date)): return obj.isoformat() try: return list(iter(obj)) except TypeError: pass return super(FleakerJSONEncoder, self).default(obj)
Encode individual objects into their JSON representation. This method is used by :class:`flask.json.JSONEncoder` to encode individual items in the JSON object. Args: obj (object): Any Python object we wish to convert to JSON. Returns: str: The stringified, valid JSON representation of our provided object.
codesearchnet
def index(self, entries): if (not self.is_empty()): raise ValueError('Cannot call index again on a non-empty index') if (not isinstance(entries, list)): queue = deque([]) for (key, minhash, size) in entries: if (size <= 0): raise ValueError('Set size must be positive') queue.append((key, minhash, size)) entries = list(queue) if (len(entries) == 0): raise ValueError('entries is empty') (sizes, counts) = np.array(sorted(Counter((e[2] for e in entries)).most_common())).T partitions = optimal_partitions(sizes, counts, len(self.indexes)) for (i, (lower, upper)) in enumerate(partitions): (self.lowers[i], self.uppers[i]) = (lower, upper) entries.sort(key=(lambda e: e[2])) curr_part = 0 for (key, minhash, size) in entries: if (size > self.uppers[curr_part]): curr_part += 1 for r in self.indexes[curr_part]: self.indexes[curr_part][r].insert(key, minhash)
Index all sets given their keys, MinHashes, and sizes. It can be called only once after the index is created. Args: entries (`iterable` of `tuple`): An iterable of tuples, each must be in the form of `(key, minhash, size)`, where `key` is the unique identifier of a set, `minhash` is the MinHash of the set, and `size` is the size or number of unique items in the set. Note: `size` must be positive.
codesearchnet
def _parse_block_ref(cls, block_ref, deprecated=False): if (deprecated and (block_ref is None)): return None if isinstance(block_ref, LocalId): return block_ref is_valid_deprecated = (deprecated and cls.DEPRECATED_ALLOWED_ID_RE.match(block_ref)) is_valid = cls.ALLOWED_ID_RE.match(block_ref) if (is_valid or is_valid_deprecated): return block_ref else: raise InvalidKeyError(cls, block_ref)
Given `block_ref`, tries to parse it into a valid block reference. Returns `block_ref` if it is valid. Raises: InvalidKeyError: if `block_ref` is invalid.
codesearchnet
def set_card_simple(self, title, content): self.response.card.type = 'Simple' self.response.card.title = title self.response.card.content = content
Set response card as simple type. title and content cannot exceed 8,000 characters. Args: title: str. Title of Simple or Standard type card. content: str. Content of Simple type card.
juraj-google-style
def control(controllee: Union[('cirq.Gate', op_tree.OP_TREE)], control_qubits: Sequence['cirq.Qid']=None, default: Any=RaiseTypeErrorIfNotProvided) -> Any: if (control_qubits is None): control_qubits = [] controller = getattr(controllee, 'controlled_by', None) result = (NotImplemented if (controller is None) else controller(*control_qubits)) if (result is not NotImplemented): return result if isinstance(controllee, collections.Iterable): return op_tree.transform_op_tree(controllee, op_transformation=(lambda op: control(op, control_qubits))) if (default is not RaiseTypeErrorIfNotProvided): return default if (controller is None): raise TypeError("object of type '{}' has no controlled_by method.".format(type(controllee))) raise TypeError("object of type '{}' does have a controlled_by method, but it returned NotImplemented.".format(type(controllee)))
Returns a Controlled version of the given value, if defined. Controllees define how to be controlled by defining a method controlled_by(self, control_qubits). Note that the method may return NotImplemented to indicate a particular controlling can't be done. Args: controllee: The gate, operation or iterable of operations to control. control_qubits: A list of Qids that would control this controllee. default: Determines the fallback behavior when `controllee` doesn't have a controlling defined. If `default` is not set and the fallback occurs, a TypeError is raised instead. Returns: If `controllee` has a controlled_by method that returns something besides NotImplemented, that result is returned. For an OP_TREE, transformation is applied at the leaf. Otherwise, if a default value was specified, the default value is returned. Raises: TypeError: `controllee` doesn't have a controlled_by method (or that method returned NotImplemented) and no `default` was specified.
codesearchnet
def validate_composite_type_param(type_param, error_msg_prefix): possible_classes = [type, TypeConstraint] is_not_type_constraint = not is_typing_generic(type_param) and (not isinstance(type_param, tuple(possible_classes))) and (type_param is not None) and (getattr(type_param, '__module__', None) != 'typing') if sys.version_info.major == 3 and sys.version_info.minor >= 10: if isinstance(type_param, types.UnionType): is_not_type_constraint = False if is_not_type_constraint: raise TypeError('%s must be a non-sequence, a type, or a TypeConstraint. %s is an instance of %s.' % (error_msg_prefix, type_param, type_param.__class__.__name__))
Determines if an object is a valid type parameter to a :class:`CompositeTypeHint`. Implements sanity checking to disallow things like:: List[1, 2, 3] or Dict[5]. Args: type_param: An object instance. error_msg_prefix (:class:`str`): A string prefix used to format an error message in the case of an exception. Raises: TypeError: If the passed **type_param** is not a valid type parameter for a :class:`CompositeTypeHint`.
github-repos
def Get(self, name, default=utils.NotAValue, context=None): if (not self.initialized): if (name not in self.constants): raise RuntimeError(("Error while retrieving %s: Configuration hasn't been initialized yet." % name)) if context: if (isinstance(context, string_types) or (not isinstance(context, collections.Iterable))): raise ValueError(('context should be a list, got %r' % context)) calc_context = context cache_key = (name, tuple((context or ()))) if ((default is utils.NotAValue) and (cache_key in self.cache)): return self.cache[cache_key] if (context is None): calc_context = self.context type_info_obj = self.FindTypeInfo(name) (_, return_value) = self._GetValue(name, context=calc_context, default=default) if (return_value is default): return default try: return_value = self.InterpolateValue(return_value, default_section=name.split('.')[0], type_info_obj=type_info_obj, context=calc_context) except (lexer.ParseError, ValueError) as e: if (default is not utils.NotAValue): return default raise ConfigFormatError(('While parsing %s: %s' % (name, e))) try: new_value = type_info_obj.Validate(return_value) if (new_value is not None): return_value = new_value except ValueError: if (default is not utils.NotAValue): return default raise if (default is utils.NotAValue): self.cache[cache_key] = return_value return return_value
Get the value contained by the named parameter. This method applies interpolation/escaping of the named parameter and retrieves the interpolated value. Args: name: The name of the parameter to retrieve. This should be in the format of "Section.name" default: If retrieving the value results in an error, return this default. context: A list of context strings to resolve the configuration. This is a set of roles the caller is current executing with. For example (client, windows). If not specified we take the context from the current thread's TLS stack. Returns: The value of the parameter. Raises: ConfigFormatError: if verify=True and the config doesn't validate. RuntimeError: if a value is retrieved before the config is initialized. ValueError: if a bad context is passed.
codesearchnet
def utterances_from_dir(eaf_dir: Path, tier_prefixes: Tuple[(str, ...)]) -> List[Utterance]: logger.info('EAF from directory: {}, searching with tier_prefixes {}'.format(eaf_dir, tier_prefixes)) utterances = [] for eaf_path in eaf_dir.glob('**/*.eaf'): eaf_utterances = utterances_from_eaf(eaf_path, tier_prefixes) utterances.extend(eaf_utterances) return utterances
Returns the utterances found in ELAN files in a directory. Recursively explores the directory, gathering ELAN files and extracting utterances from them for tiers that start with the specified prefixes. Args: eaf_dir: A path to the directory to be searched tier_prefixes: Stings matching the start of ELAN tier names that are to be extracted. For example, if you want to extract from tiers "xv-Jane" and "xv-Mark", then tier_prefixes = ["xv"] would do the job. Returns: A list of Utterance objects.
codesearchnet
def loads(s, single=False, version=_default_version, strict=False, errors='warn'): ms = deserialize(s, version=version, strict=strict, errors=errors) if single: return next(ms) else: return ms
Deserialize SimpleMRS string representations Args: s (str): a SimpleMRS string single (bool): if `True`, only return the first Xmrs object Returns: a generator of Xmrs objects (unless *single* is `True`)
juraj-google-style
def select_with_index(self, selector=IndexedElement, transform=identity): if self.closed(): raise ValueError('Attempt to call select_with_index() on a closed Queryable.') if (not is_callable(selector)): raise TypeError('select_with_index() parameter selector={0} is not callable'.format(repr(selector))) if (not is_callable(transform)): raise TypeError('select_with_index() parameter item_selector={0} is not callable'.format(repr(selector))) return self._create(itertools.starmap(selector, enumerate(imap(transform, iter(self)))))
Transforms each element of a sequence into a new form, incorporating the index of the element. Each element is transformed through a selector function which accepts the element value and its zero-based index in the source sequence. The generated sequence is lazily evaluated. Note: This method uses deferred execution. Args: selector: A binary function mapping the index of a value in the source sequence and the element value itself to the corresponding value in the generated sequence. The two positional arguments of the selector function are the zero- based index of the current element and the value of the current element. The return value should be the corresponding value in the result sequence. The default selector produces an IndexedElement containing the index and the element giving this function similar behaviour to the built-in enumerate(). Returns: A Queryable whose elements are the result of invoking the selector function on each element of the source sequence Raises: ValueError: If this Queryable has been closed. TypeError: If selector is not callable.
codesearchnet
def _ParseMFTAttribute(self, parser_mediator, mft_entry, mft_attribute): if mft_entry.is_empty() or mft_entry.base_record_file_reference != 0: return if mft_attribute.attribute_type in [ self._MFT_ATTRIBUTE_STANDARD_INFORMATION, self._MFT_ATTRIBUTE_FILE_NAME]: file_attribute_flags = getattr( mft_attribute, 'file_attribute_flags', None) name = getattr(mft_attribute, 'name', None) parent_file_reference = getattr( mft_attribute, 'parent_file_reference', None) event_data = NTFSFileStatEventData() event_data.attribute_type = mft_attribute.attribute_type event_data.file_attribute_flags = file_attribute_flags event_data.file_reference = mft_entry.file_reference event_data.is_allocated = mft_entry.is_allocated() event_data.name = name event_data.parent_file_reference = parent_file_reference try: creation_time = mft_attribute.get_creation_time_as_integer() except OverflowError as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read the creation timestamp from MFT attribute: ' '0x{0:08x} with error: {1!s}').format( mft_attribute.attribute_type, exception)) creation_time = None if creation_time is not None: date_time = self._GetDateTime(creation_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_CREATION) parser_mediator.ProduceEventWithEventData(event, event_data) try: modification_time = mft_attribute.get_modification_time_as_integer() except OverflowError as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read the modification timestamp from MFT attribute: ' '0x{0:08x} with error: {1!s}').format( mft_attribute.attribute_type, exception)) modification_time = None if modification_time is not None: date_time = self._GetDateTime(modification_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_MODIFICATION) parser_mediator.ProduceEventWithEventData(event, event_data) try: access_time = mft_attribute.get_access_time_as_integer() except OverflowError as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read the access timestamp from MFT attribute: ' '0x{0:08x} with error: {1!s}').format( exception, mft_attribute.attribute_type)) access_time = None if access_time is not None: date_time = self._GetDateTime(access_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_ACCESS) parser_mediator.ProduceEventWithEventData(event, event_data) try: entry_modification_time = ( mft_attribute.get_entry_modification_time_as_integer()) except OverflowError as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read the entry modification timestamp from MFT ' 'attribute: 0x{0:08x} with error: {1!s}').format( mft_attribute.attribute_type, exception)) entry_modification_time = None if entry_modification_time is not None: date_time = self._GetDateTime(entry_modification_time) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_ENTRY_MODIFICATION) parser_mediator.ProduceEventWithEventData(event, event_data) elif mft_attribute.attribute_type == self._MFT_ATTRIBUTE_OBJECT_ID: display_name = '$MFT: {0:d}-{1:d}'.format( mft_entry.file_reference & 0xffffffffffff, mft_entry.file_reference >> 48) if mft_attribute.droid_file_identifier: try: self._ParseDistributedTrackingIdentifier( parser_mediator, mft_attribute.droid_file_identifier, display_name) except (TypeError, ValueError) as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read droid file identifier from attribute: 0x{0:08x} ' 'with error: {1!s}').format( mft_attribute.attribute_type, exception)) if mft_attribute.birth_droid_file_identifier: try: self._ParseDistributedTrackingIdentifier( parser_mediator, mft_attribute.droid_file_identifier, display_name) except (TypeError, ValueError) as exception: parser_mediator.ProduceExtractionWarning(( 'unable to read birth droid file identifier from attribute: ' '0x{0:08x} with error: {1!s}').format( mft_attribute.attribute_type, exception))
Extract data from a NFTS $MFT attribute. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. mft_entry (pyfsntfs.file_entry): MFT entry. mft_attribute (pyfsntfs.attribute): MFT attribute.
juraj-google-style
def _ParseSourcePathOption(self, options): self._source_path = self.ParseStringOption(options, self._SOURCE_OPTION) if not self._source_path: raise errors.BadConfigOption('Missing source path.') self._source_path = os.path.abspath(self._source_path)
Parses the source path option. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid.
juraj-google-style
def add_outbound_connection(self, uri): LOGGER.debug("Adding connection to %s", uri) conn = OutboundConnection( connections=self._connections, endpoint=uri, dispatcher=self._dispatcher, zmq_identity=self._zmq_identity, secured=self._secured, server_public_key=self._server_public_key, server_private_key=self._server_private_key, future_callback_threadpool=self._future_callback_threadpool, heartbeat=True, connection_timeout=self._connection_timeout) self.outbound_connections[uri] = conn conn.start() self._add_connection(conn, uri) connect_message = ConnectionRequest(endpoint=self._public_endpoint) conn.send( validator_pb2.Message.NETWORK_CONNECT, connect_message.SerializeToString(), callback=partial( self._connect_callback, connection=conn, )) return conn
Adds an outbound connection to the network. Args: uri (str): The zmq-style (e.g. tcp://hostname:port) uri to attempt to connect to.
juraj-google-style
def __eq__(self, other): res = False if len(self) == len(other): if np.all(self._z == other.z) and np.all(self._x == other.x): res = True return res
Return True if all Pauli terms are equal. Args: other (Pauli): other pauli Returns: bool: are self and other equal.
juraj-google-style
def imresize(img, size, return_scale=False, interpolation='bilinear'): (h, w) = img.shape[:2] resized_img = cv2.resize(img, size, interpolation=interp_codes[interpolation]) if (not return_scale): return resized_img else: w_scale = (size[0] / w) h_scale = (size[1] / h) return (resized_img, w_scale, h_scale)
Resize image to a given size. Args: img (ndarray): The input image. size (tuple): Target (w, h). return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Interpolation method, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos". Returns: tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`.
codesearchnet
def scan_meta_graph_def(meta_graph_def, op_denylist): ops_in_metagraph = set(meta_graph_lib.ops_used_by_graph_def(meta_graph_def.graph_def)) denylisted_ops = op_denylist & ops_in_metagraph if denylisted_ops: print('MetaGraph with tag set %s contains the following denylisted ops:' % meta_graph_def.meta_info_def.tags, denylisted_ops) else: print('MetaGraph with tag set %s does not contain the default denylisted ops:' % meta_graph_def.meta_info_def.tags, op_denylist)
Scans meta_graph_def and reports if there are ops on denylist. Print ops if they are on denylist, or print success if no denylisted ops found. Args: meta_graph_def: MetaGraphDef protocol buffer. op_denylist: set of ops to scan for.
github-repos
def report_error(self, read_tuple_name, error_name, wrong='', message='', warning=False): if ((not self.report_only_first) or (error_name not in self.reported_errors)): print('\t'.join([('error' if (warning == False) else 'warning'), read_tuple_name, error_name, wrong, message])) self.reported_errors.add(error_name) if warning: self.warning_has_been_reported = True else: self.error_has_been_reported = True
Report an error. Args: read_tuple_name (): Name of the read tuple. error_name (): Name of the error. wrong (str): What is wrong. message (str): Additional msessage to be printed. warning (bool): Warning (not an error).
codesearchnet
def assign_device(cls, core): return Sharding(proto=xla_data_pb2.OpSharding(type=xla_data_pb2.OpSharding.MAXIMAL, tile_assignment_dimensions=[1], tile_assignment_devices=[core]))
Returns an AssignDevice sharding attribute. This causes an op to be computed in its entirety only on one core in the XLA device. Args: core: The core to assign this Op to.
github-repos
def get_url_distribution(self, params=None): params = params or {} all_responses = {} api_name = 'virustotal-url-distribution' response_chunks = self._request_reports(list(params.keys()), list(params.values()), 'url/distribution') self._extract_response_chunks(all_responses, response_chunks, api_name) return all_responses
Retrieves a live feed with the latest URLs submitted to VT. Args: resources: a dictionary with name and value for optional arguments Returns: A dict with the VT report.
juraj-google-style
def func_load(code, defaults=None, closure=None, globs=None): if isinstance(code, (tuple, list)): code, defaults, closure = code if isinstance(defaults, list): defaults = tuple(defaults) def ensure_value_to_cell(value): def dummy_fn(): value cell_value = dummy_fn.__closure__[0] if not isinstance(value, type(cell_value)): return cell_value return value if closure is not None: closure = tuple((ensure_value_to_cell(_) for _ in closure)) try: raw_code = codecs.decode(code.encode('ascii'), 'base64') except (UnicodeEncodeError, binascii.Error): raw_code = code.encode('raw_unicode_escape') code = marshal.loads(raw_code) if globs is None: globs = globals() return python_types.FunctionType(code, globs, name=code.co_name, argdefs=defaults, closure=closure)
Deserializes a user defined function. Args: code: bytecode of the function. defaults: defaults of the function. closure: closure of the function. globs: dictionary of global objects. Returns: A function object.
github-repos
def restore(self, state): self._clear() self._parseUserInfo({'labels': state['labels']}) self._parseNodes(state['nodes']) self._keep_version = state['keep_version']
Unserialize saved note data. Args: state (dict): Serialized state to load.
juraj-google-style