code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def segment_text(text, seg_regex=SEG_REGEX):
for m in seg_regex.finditer(text):
(yield m.group(0))
|
Return an iterator of segments in the text.
Args:
text (unicode): string of IPA Unicode text
seg_regex (_regex.Pattern): compiled regex defining a segment (base +
modifiers)
Return:
generator: segments in the input text
|
codesearchnet
|
def send_peers(self, connection_id):
with self._lock:
peer_endpoints = list(self._peers.values())
if self._endpoint:
peer_endpoints.append(self._endpoint)
peers_response = GetPeersResponse(peer_endpoints=peer_endpoints)
try:
self._network.send(
validator_pb2.Message.GOSSIP_GET_PEERS_RESPONSE,
peers_response.SerializeToString(),
connection_id,
one_way=True)
except ValueError:
LOGGER.debug("Connection disconnected: %s", connection_id)
|
Sends a message containing our peers to the
connection identified by connection_id.
Args:
connection_id (str): A unique identifier which identifies an
connection on the network server socket.
|
juraj-google-style
|
def _find_reader_dataset(self, dataset_key, **dfilter):
too_many = False
for (reader_name, reader_instance) in self.readers.items():
try:
ds_id = reader_instance.get_dataset_key(dataset_key, **dfilter)
except TooManyResults:
LOG.trace('Too many datasets matching key {} in reader {}'.format(dataset_key, reader_name))
too_many = True
continue
except KeyError:
LOG.trace("Can't find dataset %s in reader %s", str(dataset_key), reader_name)
continue
LOG.trace('Found {} in reader {} when asking for {}'.format(str(ds_id), reader_name, repr(dataset_key)))
try:
return self.getitem(ds_id)
except KeyError:
return Node(ds_id, {'reader_name': reader_name})
if too_many:
raise TooManyResults('Too many keys matching: {}'.format(dataset_key))
|
Attempt to find a `DatasetID` in the available readers.
Args:
dataset_key (str, float, DatasetID):
Dataset name, wavelength, or a combination of `DatasetID`
parameters to use in searching for the dataset from the
available readers.
**dfilter (list or str): `DatasetID` parameters besides `name`
and `wavelength` to use to filter the
available datasets. Passed directly to
`get_dataset_key` of the readers, see
that method for more information.
|
codesearchnet
|
def NetshStaticIp(interface, ip=u'127.0.0.9', subnet=u'255.255.255.255', gw=u'127.0.0.1'):
args = ['/c', 'netsh', 'interface', 'ip', 'set', 'address', interface, 'static', ip, subnet, gw, '1']
res = client_utils_common.Execute('cmd', args, time_limit=(- 1), bypass_whitelist=True)
return res
|
Changes interface to a staticly set IP.
Sets IP configs to local if no paramaters passed.
Args:
interface: Name of the interface.
ip: IP address.
subnet: Subnet mask.
gw: IP address of the default gateway.
Returns:
A tuple of stdout, stderr, exit_status.
|
codesearchnet
|
def _CalculateYLines(self, dists):
tot_dist = sum(dists)
if tot_dist > 0:
pixel_dist = [float(d * (self._gheight-20))/tot_dist for d in dists]
pixel_grid = [0]+[int(pd + sum(pixel_dist[0:i])) for i,pd in
enumerate(pixel_dist)]
else:
pixel_grid = []
return pixel_grid
|
Builds a list with y-coordinates for the horizontal lines in the graph.
Args:
# One integer for each pair of stations
# indicating the approximate distance
dists: [0,33,140, ... ,X]
Returns:
# One integer y-coordinate for each station normalized between
# 0 and X, where X is the height of the graph in pixels
[0, 33, 140, ... , X]
|
juraj-google-style
|
def display_arr(screen, arr, video_size, transpose):
if transpose:
pyg_img = pygame.surfarray.make_surface(arr.swapaxes(0, 1))
else:
pyg_img = arr
pyg_img = pygame.transform.scale(pyg_img, video_size)
screen.blit(pyg_img, (0, 0))
|
Display an image to the pygame screen.
Args:
screen (pygame.Surface): the pygame surface to write frames to
arr (np.ndarray): numpy array representing a single frame of gameplay
video_size (tuple): the size to render the frame as
transpose (bool): whether to transpose the frame before displaying
Returns:
None
|
juraj-google-style
|
def _get_run_debug_urls(self):
return ['file:
|
Get the debug_urls value for the current run() call.
Returns:
debug_urls: (list of str) Debug URLs for the current run() call.
Currently, the list consists of only one URL that is a file:// URL.
|
github-repos
|
def _deduplicate_indexed_slices(values, indices):
unique_indices, new_index_positions = array_ops.unique(indices)
summed_values = math_ops.unsorted_segment_sum(values, new_index_positions, array_ops.shape(unique_indices)[0])
return (summed_values, unique_indices)
|
Sums `values` associated with any non-unique `indices`.
Args:
values: A `Tensor` with rank >= 1.
indices: A one-dimensional integer `Tensor`, indexing into the first
dimension of `values` (as in an IndexedSlices object).
Returns:
A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a
de-duplicated version of `indices` and `summed_values` contains the sum of
`values` slices associated with each unique index.
|
github-repos
|
def gmeta_pop(gmeta, info=False):
if (type(gmeta) is GlobusHTTPResponse):
gmeta = json.loads(gmeta.text)
elif (type(gmeta) is str):
gmeta = json.loads(gmeta)
elif (type(gmeta) is not dict):
raise TypeError('gmeta must be dict, GlobusHTTPResponse, or JSON string')
results = []
for res in gmeta['gmeta']:
for con in res['content']:
results.append(con)
if info:
fyi = {'total_query_matches': gmeta.get('total')}
return (results, fyi)
else:
return results
|
Remove GMeta wrapping from a Globus Search result.
This function can be called on the raw GlobusHTTPResponse that Search returns,
or a string or dictionary representation of it.
Arguments:
gmeta (dict, str, or GlobusHTTPResponse): The Globus Search result to unwrap.
info (bool): If ``False``, will return a list of the results
and discard the metadata. If ``True``, will return a tuple containing
the results list, and other information about the query.
**Default**: ``False``.
Returns:
list (if ``info=False``): The unwrapped results.
tuple (if ``info=True``): The unwrapped results, and a dictionary of query information.
|
codesearchnet
|
def has_chosen(state, correct, msgs):
if (not issubclass(type(correct), int)):
raise InstructorError('Inside `has_chosen()`, the argument `correct` should be an integer.')
student_process = state.student_process
if (not isDefinedInProcess(MC_VAR_NAME, student_process)):
raise InstructorError('Option not available in the student process')
else:
selected_option = getOptionFromProcess(student_process, MC_VAR_NAME)
if (not issubclass(type(selected_option), int)):
raise InstructorError('selected_option should be an integer')
if ((selected_option < 1) or (correct < 1)):
raise InstructorError('selected_option and correct should be greater than zero')
if ((selected_option > len(msgs)) or (correct > len(msgs))):
raise InstructorError('there are not enough feedback messages defined')
feedback_msg = msgs[(selected_option - 1)]
state.reporter.success_msg = msgs[(correct - 1)]
state.do_test(EqualTest(selected_option, correct, feedback_msg))
|
Test multiple choice exercise.
Test for a MultipleChoiceExercise. The correct answer (as an integer) and feedback messages
are passed to this function.
Args:
correct (int): the index of the correct answer (should be an instruction). Starts at 1.
msgs (list(str)): a list containing all feedback messages belonging to each choice of the
student. The list should have the same length as the number of options.
|
codesearchnet
|
def read_data_event(self, whence, complete=False, can_flush=False):
return Transition(None, _read_data_handler(whence, self, complete, can_flush))
|
Creates a transition to a co-routine for retrieving data as bytes.
Args:
whence (Coroutine): The co-routine to return to after the data is satisfied.
complete (Optional[bool]): True if STREAM_END should be emitted if no bytes are read or
available; False if INCOMPLETE should be emitted in that case.
can_flush (Optional[bool]): True if NEXT may be requested after INCOMPLETE is emitted as a result of this
data request.
|
codesearchnet
|
def plot_residuals(self, plot=None):
if plot is None:
import matplotlib.pyplot as plot
x = numpy.arange(1, len(self.residuals) + 1)
y = _gvar.mean(self.residuals)
yerr = _gvar.sdev(self.residuals)
plot.errorbar(x=x, y=y, yerr=yerr, fmt='o', color='b')
plot.ylabel('normalized residuals')
xr = [x[0], x[-1]]
plot.plot([x[0], x[-1]], [0, 0], 'r-')
plot.fill_between(
x=xr, y1=[-1,-1], y2=[1,1], color='r', alpha=0.075
)
return plot
|
Plot normalized fit residuals.
The sum of the squares of the residuals equals ``self.chi2``.
Individual residuals should be distributed about one, in
a Gaussian distribution.
Args:
plot: :mod:`matplotlib` plotter. If ``None``, uses
``matplotlib.pyplot`.
Returns:
Plotter ``plot``.
|
juraj-google-style
|
def _ParseApplicationPasswordRecord(self, parser_mediator, record):
key = record.get('_key_', None)
if ((not key) or (not key.startswith(b'ssgp'))):
raise errors.ParseError('Unsupported application password record key value does not start with: "ssgp".')
event_data = KeychainApplicationRecordEventData()
event_data.account_name = self._ParseBinaryDataAsString(parser_mediator, record['acct'])
event_data.comments = self._ParseBinaryDataAsString(parser_mediator, record['crtr'])
event_data.entry_name = self._ParseBinaryDataAsString(parser_mediator, record['PrintName'])
ssgp_hash = codecs.encode(key[4:], 'hex')
event_data.ssgp_hash = codecs.decode(ssgp_hash, 'utf-8')
event_data.text_description = self._ParseBinaryDataAsString(parser_mediator, record['desc'])
date_time = self._ParseDateTimeValue(parser_mediator, record['cdat'])
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
date_time = self._ParseDateTimeValue(parser_mediator, record['mdat'])
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_MODIFICATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extracts the information from an application password record.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
record (dict[str, object]): database record.
Raises:
ParseError: if Internet password record cannot be parsed.
|
codesearchnet
|
def add_physical_qubit(self, physical_qubit):
if (not isinstance(physical_qubit, int)):
raise CouplingError('Physical qubits should be integers.')
if (physical_qubit in self.physical_qubits):
raise CouplingError(('The physical qubit %s is already in the coupling graph' % physical_qubit))
self.graph.add_node(physical_qubit)
self._dist_matrix = None
self._qubit_list = None
|
Add a physical qubit to the coupling graph as a node.
physical_qubit (int): An integer representing a physical qubit.
Raises:
CouplingError: if trying to add duplicate qubit
|
codesearchnet
|
def get_last_next(self, date):
(past, future) = ((None, None), (None, None))
for (mjd, value) in reversed(self.data):
if (mjd <= date):
past = (mjd, value)
break
future = (mjd, value)
return (past, future)
|
Provide the last and next leap-second events relative to a date
Args:
date (float): Date in MJD
Return:
tuple:
|
codesearchnet
|
def get_csv(filename):
check_if_this_file_exist(filename)
filename = os.path.abspath(filename)
s = command_line(['exiftool', '-G', '-csv', '-sort', filename])
if s:
s = s.decode('utf-8')
return s
else:
return 0
|
Return a csv representation of the exif
get a filename and returns a unicode string with a CSV format
Arguments:
filename {string} -- your filename
Returns:
[unicode] -- unicode string
|
codesearchnet
|
def _read_template(template):
template = _read_content_or_path(template)
file_obj = StringIO.StringIO(template)
return ET.parse(file_obj)
|
Read XSLT template.
Args:
template (str): Filename or XML string. Don't use ``\\n`` in case of
filename.
Returns:
obj: Required XML parsed with ``lxml.etree``.
|
juraj-google-style
|
def _calibrate_ir(radiance, coefs):
logger.debug('Calibrating to brightness temperature')
n = coefs['n']
bteff = ((C2 * n) / xu.log((1 + ((C1 * (n ** 3)) / radiance.where((radiance > 0))))))
bt = xr.DataArray(((bteff * coefs['b']) + coefs['a']))
return bt.where(xu.logical_and((bt >= coefs['btmin']), (bt <= coefs['btmax'])))
|
Convert IR radiance to brightness temperature
Reference: [IR]
Args:
radiance: Radiance [mW m-2 cm-1 sr-1]
coefs: Dictionary of calibration coefficients. Keys:
n: The channel's central wavenumber [cm-1]
a: Offset [K]
b: Slope [1]
btmin: Minimum brightness temperature threshold [K]
btmax: Maximum brightness temperature threshold [K]
Returns:
Brightness temperature [K]
|
codesearchnet
|
def seed(self, seed):
if seed is None:
self.env.seed = round(time.time())
else:
self.env.seed = seed
return self.env.seed
|
Sets the random seed of the environment to the given value (current time, if seed=None).
Naturally deterministic Environments (e.g. ALE or some gym Envs) don't have to implement this method.
Args:
seed (int): The seed to use for initializing the pseudo-random number generator (default=epoch time in sec).
Returns: The actual seed (int) used OR None if Environment did not override this method (no seeding supported).
|
juraj-google-style
|
def tscore(sample1, sample2):
if len(sample1) != len(sample2):
raise ValueError("different number of values")
error = pooled_sample_variance(sample1, sample2) / len(sample1)
diff = statistics.mean(sample1) - statistics.mean(sample2)
return diff / math.sqrt(error * 2)
|
Calculate a t-test score for the difference between two samples.
Args:
sample1: one sample.
sample2: the other sample.
Returns:
The t-test score, as a float.
|
juraj-google-style
|
def unarchive_user(self, user_id):
url = self.record_url + "/unarchive"
res = requests.patch(url=url, json={"user_id": user_id}, headers=HEADERS, verify=False)
self.write_response_html_to_file(res,"bob.html")
res.raise_for_status()
|
Unarchives the user with the specified user ID.
Args:
user_id: `int`. The ID of the user to unarchive.
Returns:
`NoneType`: None.
|
juraj-google-style
|
def _preserve_bonds(self, sliced_cartesian, use_lookup=None):
if (use_lookup is None):
use_lookup = settings['defaults']['use_lookup']
included_atoms_set = set(sliced_cartesian.index)
assert included_atoms_set.issubset(set(self.index)), 'The sliced Cartesian has to be a subset of the bigger frame'
bond_dic = self.get_bonds(use_lookup=use_lookup)
new_atoms = set([])
for atom in included_atoms_set:
new_atoms = (new_atoms | bond_dic[atom])
new_atoms = (new_atoms - included_atoms_set)
while (not (new_atoms == set([]))):
index_of_interest = new_atoms.pop()
included_atoms_set = (included_atoms_set | self.get_coordination_sphere(index_of_interest, n_sphere=float('inf'), only_surface=False, exclude=included_atoms_set, give_only_index=True, use_lookup=use_lookup))
new_atoms = (new_atoms - included_atoms_set)
molecule = self.loc[(included_atoms_set, :)]
return molecule
|
Is called after cutting geometric shapes.
If you want to change the rules how bonds are preserved, when
applying e.g. :meth:`Cartesian.cut_sphere` this is the
function you have to modify.
It is recommended to inherit from the Cartesian class to
tailor it for your project, instead of modifying the
source code of ChemCoord.
Args:
sliced_frame (Cartesian):
use_lookup (bool): Use a lookup variable for
:meth:`~chemcoord.Cartesian.get_bonds`. The default is
specified in ``settings['defaults']['use_lookup']``
Returns:
Cartesian:
|
codesearchnet
|
def get_value(data, key):
ref = data
try:
for subkey in key.split('.'):
if isinstance(ref, dict):
ref = ref[subkey]
else:
print(('CRITICAL: Cannot use subkey %s on non-dictionary element' % subkey))
return None
return ref
except KeyError:
return None
|
Follow the dot notation to get the proper field, then perform the action
Args:
data: the data as a dictionary (required to be a dictionary)
key: the key (as dot notation) into the data that gives the field (IP.src)
Returns:
the value of the field(subfield) if it exist, otherwise None
|
codesearchnet
|
def add_moving_summary(*args, **kwargs):
decay = kwargs.pop('decay', 0.95)
coll = kwargs.pop('collection', MOVING_SUMMARY_OPS_KEY)
summ_coll = kwargs.pop('summary_collections', None)
assert (len(kwargs) == 0), ('Unknown arguments: ' + str(kwargs))
ctx = get_current_tower_context()
if ((ctx is not None) and (not ctx.is_main_training_tower)):
return []
graph = tf.get_default_graph()
try:
control_flow_ctx = graph._get_control_flow_context()
if ((control_flow_ctx is not None) and control_flow_ctx.IsXLAContext()):
return
except Exception:
pass
if (tf.get_variable_scope().reuse is True):
logger.warn('add_moving_summary() called under reuse=True scope, ignored.')
return []
for x in args:
assert isinstance(x, (tf.Tensor, tf.Variable)), x
assert (x.get_shape().ndims == 0), 'add_moving_summary() only accepts scalar tensor! Got one with {}'.format(x.get_shape())
ema_ops = []
for c in args:
name = re.sub('tower[0-9]+/', '', c.op.name)
with tf.name_scope(None):
if (not c.dtype.is_floating):
c = tf.cast(c, tf.float32)
with _enter_vs_reuse_ns('EMA') as vs:
ema_var = tf.get_variable(name, shape=c.shape, dtype=c.dtype, initializer=tf.constant_initializer(), trainable=False)
ns = vs.original_name_scope
with tf.name_scope(ns):
ema_op = moving_averages.assign_moving_average(ema_var, c, decay, zero_debias=True, name=(name + '_EMA_apply'))
ema_ops.append(ema_op)
with tf.name_scope(None):
tf.summary.scalar((name + '-summary'), ema_op, collections=summ_coll)
if (coll is not None):
for op in ema_ops:
tf.add_to_collection(coll, op)
return ema_ops
|
Summarize the moving average for scalar tensors.
This function is a no-op if not calling from main training tower.
Args:
args: scalar tensors to summarize
decay (float): the decay rate. Defaults to 0.95.
collection (str or None): the name of the collection to add EMA-maintaining ops.
The default will work together with the default
:class:`MovingAverageSummary` callback.
summary_collections ([str]): the names of collections to add the
summary op. Default is TF's default (`tf.GraphKeys.SUMMARIES`).
Returns:
[tf.Tensor]: list of tensors returned by assign_moving_average,
which can be used to maintain the EMA.
|
codesearchnet
|
async def export_image(self, name: str):
response = (await self.docker._query('images/{name}/get'.format(name=name), 'GET'))
return response.content
|
Get a tarball of an image by name or id.
Args:
name: name/id of the image to be exported
Returns:
Streamreader of tarball image
|
codesearchnet
|
def print_args(output=sys.stdout):
def decorator(func):
'The decorator function.\n '
@wraps(func)
def _(*args, **kwargs):
'The decorated function.\n '
output.write('Args: {0}, KwArgs: {1}\n'.format(str(args), str(kwargs)))
return func(*args, **kwargs)
return _
return decorator
|
Decorate a function so that print arguments before calling it.
Args:
output: writable to print args. (Default: sys.stdout)
|
codesearchnet
|
def _rmsprop(self, grads, cache=None, decay_rate=0.95):
if cache is None:
cache = np.zeros_like(grads)
cache = decay_rate * cache + (1 - decay_rate) * grads ** 2
step = -grads / np.sqrt(cache + K.epsilon())
return step, cache
|
Uses RMSProp to compute step from gradients.
Args:
grads: numpy array of gradients.
cache: numpy array of same shape as `grads` as RMSProp cache
decay_rate: How fast to decay cache
Returns:
A tuple of
step: numpy array of the same shape as `grads` giving the step.
Note that this does not yet take the learning rate into account.
cache: Updated RMSProp cache.
|
juraj-google-style
|
def open(self, host, port=23):
self._telnet_client.open(host, port)
config_str = self._telnet_client.cmd("MN?")
if config_str.startswith("MN="):
config_str = config_str[len("MN="):]
self.properties = dict(
zip(['model', 'max_freq', 'max_atten'], config_str.split("-", 2)))
self.max_atten = float(self.properties['max_atten'])
|
Opens a telnet connection to the desired AttenuatorDevice and
queries basic information.
Args:
host: A valid hostname (IP address or DNS-resolvable name) to an
MC-DAT attenuator instrument.
port: An optional port number (defaults to telnet default 23)
|
juraj-google-style
|
def jacobian_s(nodes, degree, dimension):
r
num_nodes = (degree * (degree + 1))
result = np.empty((dimension, num_nodes), order="F")
index = 0
i = 0
for num_vals in six.moves.xrange(degree, 0, -1):
for _ in six.moves.xrange(num_vals):
result[:, index] = nodes[:, i + 1] - nodes[:, i]
index += 1
i += 1
i += 1
return float(degree) * result
|
r"""Compute :math:`\frac{\partial B}{\partial s}`.
.. note::
This is a helper for :func:`_jacobian_both`, which has an
equivalent Fortran implementation.
Args:
nodes (numpy.ndarray): Array of nodes in a surface.
degree (int): The degree of the surface.
dimension (int): The dimension the surface lives in.
Returns:
numpy.ndarray: Nodes of the Jacobian surface in
B |eacute| zier form.
|
juraj-google-style
|
def set_label_list(self, label_lists):
if isinstance(label_lists, annotations.LabelList):
label_lists = [label_lists]
for label_list in label_lists:
if label_list.idx is None:
label_list.idx = 'default'
label_list.utterance = self
self.label_lists[label_list.idx] = label_list
|
Set the given label-list for this utterance.
If the label-list-idx is not set, ``default`` is used.
If there is already a label-list with the given idx,
it will be overriden.
Args:
label_list (LabelList, list): A single or multi. label-lists to add.
|
juraj-google-style
|
def needle_statistics(infile):
alignments = list(AlignIO.parse(infile, 'emboss'))
alignment_properties = defaultdict(dict)
with open(infile) as f:
line = f.readline()
for i in range(len(alignments)):
while (line.rstrip() != '
line = f.readline()
if (not line):
raise StopIteration
while (line[0] == '
parts = line[1:].split(':', 1)
key = parts[0].lower().strip()
if (key == '1'):
a_id = parts[1].strip()
if (key == '2'):
b_id = parts[1].strip()
if (key == 'identity'):
ident_parse = parts[1].strip().replace('(', '').replace(')', '').replace('%', '').split()
ident_num = int(ident_parse[0].split('/')[0])
ident_percent = float(ident_parse[1])
alignment_properties[((a_id + '_') + b_id)]['identity'] = ident_num
alignment_properties[((a_id + '_') + b_id)]['percent_identity'] = ident_percent
if (key == 'similarity'):
sim_parse = parts[1].strip().replace('(', '').replace(')', '').replace('%', '').split()
sim_num = int(sim_parse[0].split('/')[0])
sim_percent = float(sim_parse[1])
alignment_properties[((a_id + '_') + b_id)]['similarity'] = sim_num
alignment_properties[((a_id + '_') + b_id)]['percent_similarity'] = sim_percent
if (key == 'gaps'):
gap_parse = parts[1].strip().replace('(', '').replace(')', '').replace('%', '').split()
gap_num = int(gap_parse[0].split('/')[0])
gap_percent = float(gap_parse[1])
alignment_properties[((a_id + '_') + b_id)]['gaps'] = gap_num
alignment_properties[((a_id + '_') + b_id)]['percent_gaps'] = gap_percent
if (key == 'score'):
score = float(parts[1].strip())
alignment_properties[((a_id + '_') + b_id)]['score'] = score
line = f.readline()
return alignment_properties
|
Reads in a needle alignment file and spits out statistics of the alignment.
Args:
infile (str): Alignment file name
Returns:
dict: alignment_properties - a dictionary telling you the number of gaps, identity, etc.
|
codesearchnet
|
def __init__(self, outer_index, inner_index):
if outer_index.batch_dims != inner_index.batch_dims:
raise ValueError('outer_index.batch_dims and inner_index.batch_dims must be the same.')
super().__init__(indices=inner_index.indices + outer_index.indices * inner_index.num_segments, num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims)
self.outer_index = outer_index
self.inner_index = inner_index
|
Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the
intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows
and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation
combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to
*outer_index.num_segments* * *inner_index.num_segments*
Args:
outer_index (`IndexMap`):
IndexMap.
inner_index (`IndexMap`):
IndexMap, must have the same shape as *outer_index*.
|
github-repos
|
def seq_int_arr(seqs):
return np.array([[NT_TO_INT[c] for c in x.upper()] for x in seqs])
|
Convert list of ACGT strings to matix of 1-4 ints
Args:
seqs (list of str): nucleotide sequences with only 'ACGT' characters
Returns:
numpy.array of int: matrix of integers from 1 to 4 inclusive representing A, C, G, and T
str: nucleotide sequence string
|
codesearchnet
|
def _handle_is_dag_stopped(self, request):
return Response(success=True, uid=request.uid, payload={'is_stopped': (request.payload['dag_name'] in self._stop_dags)})
|
The handler for the dag_stopped request.
The dag_stopped request checks whether a dag is flagged to be terminated.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'dag_name': the name of the dag that should be checked
Returns:
Response: A response object containing the following fields:
- is_stopped: True if the dag is flagged to be stopped.
|
codesearchnet
|
def flags(cls):
assert cls.__bases__ == (object,)
d = dict(cls.__dict__)
new_type = type(cls.__name__, (int,), d)
new_type.__module__ = cls.__module__
map_ = {}
for key, value in iteritems(d):
if key.upper() == key and isinstance(value, integer_types):
value_instance = new_type(value)
setattr(new_type, key, value_instance)
map_[value] = key
def str_(self):
value = int(self)
matches = []
for k, v in map_.items():
if value & k:
matches.append("%s.%s" % (type(self).__name__, v))
value &= ~k
if value != 0 or not matches:
matches.append(text_type(value))
return " | ".join(matches)
def repr_(self):
return "<%s: %d>" % (str(self), int(self))
setattr(new_type, "__repr__", repr_)
setattr(new_type, "__str__", str_)
return new_type
|
A decorator for creating an int flags class.
Makes the values a subclass of the type and implements repr/str.
The new class will be a subclass of int.
Args:
cls (type): The class to convert to an flags
Returns:
type: A new class
::
@flags
class Foo(object):
FOO = 1
BAR = 2
|
juraj-google-style
|
def add_graph(
self,
y,
x_label=None,
y_label="",
title="",
x_run=None,
y_run=None,
svg_size_px=None,
key_position="bottom right",
):
if x_run is None:
x_run = self.default_x_run
if y_run is None:
y_run = self.default_y_run
if svg_size_px is None:
svg_size_px = self.default_svg_size_px
for panel in self.panels:
x_run = self._load_x_run(x_run)
y_run = self._load_y_run(y_run)
svg_size_px = self._load_svg_size_px(svg_size_px)
panel.add_graph(
y=y,
x_run=x_run,
y_run=y_run,
svg_size_px=svg_size_px,
y_label=y_label,
x_label=x_label if x_label is not None else self.default_x_label,
title=title,
key_position=key_position,
)
|
Add a new graph to the overlap report.
Args:
y (str): Value plotted on y-axis.
x_label (str): Label on x-axis.
y_label (str): Label on y-axis.
title (str): Title of the plot.
x_run ((float,float)): x-range.
y_run ((int,int)): y-rang.
svg_size_px ((int,int): Size of SVG image in pixels.
key_position (str): GnuPlot position of the legend.
|
juraj-google-style
|
def _maybe_partial_apply_variables(fn, args, kwargs):
def is_distributed_var(x):
flat = nest.flatten(x)
return flat and isinstance(flat[0], values.DistributedVariable)
var_kwargs = {}
nonvar_kwargs = {}
if kwargs:
var_kwargs = {k: v for k, v in kwargs.items() if is_distributed_var(v)}
if var_kwargs:
nonvar_kwargs = {k: v for k, v in kwargs.items() if not is_distributed_var(v)}
positional_args = []
index_of_star_args = None
for i, p in enumerate(tf_inspect.signature(fn).parameters.values()):
if i == 0 and p.name == 'self':
continue
if p.kind == tf_inspect.Parameter.POSITIONAL_OR_KEYWORD:
positional_args.append(p.name)
elif p.kind == tf_inspect.Parameter.VAR_POSITIONAL:
index_of_star_args = i
elif p.kind == tf_inspect.Parameter.POSITIONAL_ONLY:
if var_kwargs or any((is_distributed_var(a) for a in args)):
raise ValueError(f'Mixing Variables and positional-only parameters not supported by TPUStrategy. Received {len(var_kwargs)} DistributedVariables in **kwargs and {sum((is_distributed_var(a) for a in args))} in *args, expected zero for both.')
return (fn, args, kwargs)
star_args = []
have_seen_var_arg = False
for i, a in enumerate(args):
if is_distributed_var(a):
if index_of_star_args is not None and i >= index_of_star_args:
raise ValueError('TPUStrategy.run() cannot handle Variables passed to *args. Either name the function argument, or capture the Variable implicitly.')
if len(positional_args) <= i:
raise ValueError('Too many positional arguments passed to call to TPUStrategy.run().')
var_kwargs[positional_args[i]] = a
have_seen_var_arg = True
else:
if index_of_star_args is not None and i >= index_of_star_args:
if have_seen_var_arg:
raise ValueError('TPUStrategy.run() cannot handle both Variables and a mix of positional args and *args. Either remove the *args, or capture the Variable implicitly.')
else:
star_args.append(a)
continue
if len(positional_args) <= i:
raise ValueError('Too many positional arguments passed to call to TPUStrategy.run().')
nonvar_kwargs[positional_args[i]] = a
if var_kwargs:
return (functools.partial(fn, **var_kwargs), star_args, nonvar_kwargs)
return (fn, args, kwargs)
|
Inspects arguments to partially apply any DistributedVariable.
This avoids an automatic cast of the current variable value to tensor.
Note that a variable may be captured implicitly with Python scope instead of
passing it to run(), but supporting run() keeps behavior consistent
with MirroredStrategy.
Since positional arguments must be applied from left to right, this function
does some tricky function inspection to move variable positional arguments
into kwargs. As a result of this, we can't support passing Variables as *args,
nor as args to functions which combine both explicit positional arguments and
*args.
Args:
fn: The function to run, as passed to run().
args: Positional arguments to fn, as passed to run().
kwargs: Keyword arguments to fn, as passed to run().
Returns:
A tuple of the function (possibly wrapped), args, kwargs (both
possibly filtered, with members of args possibly moved to kwargs).
If no variables are found, this function is a noop.
Raises:
ValueError: If the function signature makes unsupported use of *args, or if
too many arguments are passed.
|
github-repos
|
def __init__(self, name, description=None):
super(ArtifactDefinition, self).__init__()
self.conditions = []
self.description = description
self.name = name
self.labels = []
self.provides = []
self.sources = []
self.supported_os = []
self.urls = []
|
Initializes an artifact definition.
Args:
name (str): name that uniquely identifiers the artifact definition.
description (Optional[str]): description of the artifact definition.
|
juraj-google-style
|
def intersect(self, other):
lowest_stop = min(self.stop_hz, other.stop_hz)
highest_start = max(self.start_hz, other.start_hz)
return FrequencyBand(highest_start, lowest_stop)
|
Return the intersection between this frequency band and another.
Args:
other (FrequencyBand): the instance to intersect with
Examples::
>>> import zounds
>>> b1 = zounds.FrequencyBand(500, 1000)
>>> b2 = zounds.FrequencyBand(900, 2000)
>>> intersection = b1.intersect(b2)
>>> intersection.start_hz, intersection.stop_hz
(900, 1000)
|
codesearchnet
|
def plot_weight_posteriors(names, qm_vals, qs_vals, fname):
fig = figure.Figure(figsize=(6, 3))
canvas = backend_agg.FigureCanvasAgg(fig)
ax = fig.add_subplot(1, 2, 1)
for (n, qm) in zip(names, qm_vals):
sns.distplot(qm.flatten(), ax=ax, label=n)
ax.set_title('weight means')
ax.set_xlim([(- 1.5), 1.5])
ax.legend()
ax = fig.add_subplot(1, 2, 2)
for (n, qs) in zip(names, qs_vals):
sns.distplot(qs.flatten(), ax=ax)
ax.set_title('weight stddevs')
ax.set_xlim([0, 1.0])
fig.tight_layout()
canvas.print_figure(fname, format='png')
print('saved {}'.format(fname))
|
Save a PNG plot with histograms of weight means and stddevs.
Args:
names: A Python `iterable` of `str` variable names.
qm_vals: A Python `iterable`, the same length as `names`,
whose elements are Numpy `array`s, of any shape, containing
posterior means of weight varibles.
qs_vals: A Python `iterable`, the same length as `names`,
whose elements are Numpy `array`s, of any shape, containing
posterior standard deviations of weight varibles.
fname: Python `str` filename to save the plot to.
|
codesearchnet
|
def call(self, input_ids: tf.Tensor | None=None, attention_mask: tf.Tensor | None=None, decoder_input_ids: tf.Tensor | None=None, decoder_attention_mask: tf.Tensor | None=None, decoder_position_ids: tf.Tensor | None=None, head_mask: tf.Tensor | None=None, decoder_head_mask: tf.Tensor | None=None, cross_attn_head_mask: tf.Tensor | None=None, encoder_outputs: TFBaseModelOutput | None=None, past_key_values: Tuple[Tuple[tf.Tensor]] | None=None, inputs_embeds: tf.Tensor | None=None, decoder_inputs_embeds: tf.Tensor | None=None, use_cache: bool | None=None, output_attentions: bool | None=None, output_hidden_states: bool | None=None, return_dict: bool | None=None, labels: tf.Tensor | None=None, training: bool=False) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput:
if labels is not None:
labels = tf.where(labels == self.config.pad_token_id, tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)), labels)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
outputs = self.model(input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return (masked_lm_loss,) + output if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions)
|
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
|
github-repos
|
def set_callback(self, property_name, callback):
if property_name not in self._config:
raise KeyError('%s is not a valid property name.' % property_name)
if not callable(callback):
raise TypeError('The callback object provided is not callable.')
self._set_callbacks[property_name] = callback
|
Set a set-callback for given property.
Args:
property_name: Name of the property.
callback: The callback as a `callable` of signature:
def cbk(config):
where config is the config after it is set to the new value.
The callback is invoked each time the set() method is called with the
matching property_name.
Raises:
KeyError: If property_name does not exist.
TypeError: If `callback` is not callable.
|
github-repos
|
def get_clinvar_id(self, submission_id):
submission_obj = self.clinvar_submission_collection.find_one({'_id': ObjectId(submission_id)})
clinvar_subm_id = submission_obj.get('clinvar_subm_id')
return clinvar_subm_id
|
Returns the official Clinvar submission ID for a submission object
Args:
submission_id(str): submission_id(str) : id of the submission
Returns:
clinvar_subm_id(str): a string with a format: SUB[0-9]. It is obtained from clinvar portal when starting a new submission
|
codesearchnet
|
def optimize(self, sess, batch_index):
feed_dict = {self._batch_index: batch_index, self._per_device_batch_size: self._loaded_per_device_batch_size, self._max_seq_len: self._loaded_max_seq_len}
for tower in self._towers:
feed_dict.update(tower.loss_graph.extra_compute_grad_feed_dict())
fetches = {'train': self._train_op}
for tower in self._towers:
fetches.update(tower.loss_graph.extra_compute_grad_fetches())
return sess.run(fetches, feed_dict=feed_dict)
|
Run a single step of SGD.
Runs a SGD step over a slice of the preloaded batch with size given by
self._loaded_per_device_batch_size and offset given by the batch_index
argument.
Updates shared model weights based on the averaged per-device
gradients.
Args:
sess: TensorFlow session.
batch_index: Offset into the preloaded data. This value must be
between `0` and `tuples_per_device`. The amount of data to
process is at most `max_per_device_batch_size`.
Returns:
The outputs of extra_ops evaluated over the batch.
|
codesearchnet
|
def preprocess_JPEG(self, image, **kwargs):
save_kwargs = {
'progressive': VERSATILEIMAGEFIELD_PROGRESSIVE_JPEG,
'quality': QUAL
}
if image.mode != 'RGB':
image = image.convert('RGB')
return (image, save_kwargs)
|
Receive a PIL Image instance of a JPEG and returns 2-tuple.
Args:
* [0]: Image instance, converted to RGB
* [1]: Dict with a quality key (mapped to the value of `QUAL` as
defined by the `VERSATILEIMAGEFIELD_JPEG_RESIZE_QUALITY`
setting)
|
juraj-google-style
|
def waitForEvent(self, event_name, predicate, timeout=DEFAULT_TIMEOUT):
deadline = (time.time() + timeout)
while (time.time() <= deadline):
rpc_timeout = (deadline - time.time())
if (rpc_timeout < 0):
break
rpc_timeout = min(rpc_timeout, MAX_TIMEOUT)
try:
event = self.waitAndGet(event_name, rpc_timeout)
except TimeoutError:
break
if predicate(event):
return event
raise TimeoutError(self._ad, ('Timed out after %ss waiting for an "%s" event that satisfies the predicate "%s".' % (timeout, event_name, predicate.__name__)))
|
Wait for an event of a specific name that satisfies the predicate.
This call will block until the expected event has been received or time
out.
The predicate function defines the condition the event is expected to
satisfy. It takes an event and returns True if the condition is
satisfied, False otherwise.
Note all events of the same name that are received but don't satisfy
the predicate will be discarded and not be available for further
consumption.
Args:
event_name: string, the name of the event to wait for.
predicate: function, a function that takes an event (dictionary) and
returns a bool.
timeout: float, default is 120s.
Returns:
dictionary, the event that satisfies the predicate if received.
Raises:
TimeoutError: raised if no event that satisfies the predicate is
received after timeout seconds.
|
codesearchnet
|
def total_stored(self, wanted, slots=None):
if slots is None:
slots = self.window.slots
wanted = make_slot_check(wanted)
return sum(slot.amount for slot in slots if wanted(slot))
|
Calculates the total number of items of that type
in the current window or given slot range.
Args:
wanted: function(Slot) or Slot or itemID or (itemID, metadata)
|
juraj-google-style
|
def convert(self, value):
if self._type is str:
return str(value)
elif self._type is int:
try:
return int(value)
except (UnicodeError, ValueError):
raise WorkflowArgumentError('Cannot convert {} to int'.format(value))
elif self._type is float:
try:
return float(value)
except (UnicodeError, ValueError):
raise WorkflowArgumentError('Cannot convert {} to float'.format(value))
elif self._type is bool:
if isinstance(value, bool):
return bool(value)
value = value.lower()
if value in ('true', '1', 'yes', 'y'):
return True
elif value in ('false', '0', 'no', 'n'):
return False
raise WorkflowArgumentError('Cannot convert {} to bool'.format(value))
else:
return value
|
Convert the specified value to the type of the option.
Args:
value: The value that should be converted.
Returns:
The value with the type given by the option.
|
juraj-google-style
|
def ReceiveMessages(self, client_id, messages):
if data_store.RelationalDBEnabled():
return self.ReceiveMessagesRelationalFlows(client_id, messages)
now = time.time()
with queue_manager.QueueManager(token=self.token) as manager:
for (session_id, msgs) in iteritems(collection.Group(messages, operator.attrgetter('session_id'))):
leftover_msgs = self.HandleWellKnownFlows(msgs)
unprocessed_msgs = []
for msg in leftover_msgs:
if ((msg.auth_state == msg.AuthorizationState.AUTHENTICATED) or (msg.session_id == self.unauth_allowed_session_id)):
unprocessed_msgs.append(msg)
if (len(unprocessed_msgs) < len(leftover_msgs)):
logging.info('Dropped %d unauthenticated messages for %s', (len(leftover_msgs) - len(unprocessed_msgs)), client_id)
if (not unprocessed_msgs):
continue
for msg in unprocessed_msgs:
manager.QueueResponse(msg)
for msg in unprocessed_msgs:
if (msg.request_id == 0):
manager.QueueNotification(session_id=msg.session_id)
break
elif (msg.type == rdf_flows.GrrMessage.Type.STATUS):
if msg.HasTaskID():
manager.DeQueueClientRequest(msg)
manager.QueueNotification(session_id=msg.session_id, last_status=msg.request_id)
stat = rdf_flows.GrrStatus(msg.payload)
if (stat.status == rdf_flows.GrrStatus.ReturnedStatus.CLIENT_KILLED):
crash_details = rdf_client.ClientCrash(client_id=client_id, session_id=session_id, backtrace=stat.backtrace, crash_message=stat.error_message, nanny_status=stat.nanny_status, timestamp=rdfvalue.RDFDatetime.Now())
events.Events.PublishEvent('ClientCrash', crash_details, token=self.token)
logging.debug('Received %s messages from %s in %s sec', len(messages), client_id, (time.time() - now))
|
Receives and processes the messages from the source.
For each message we update the request object, and place the
response in that request's queue. If the request is complete, we
send a message to the worker.
Args:
client_id: The client which sent the messages.
messages: A list of GrrMessage RDFValues.
|
codesearchnet
|
def generate_host_passthrough(self, vcpu_num):
cpu = ET.Element('cpu', mode='host-passthrough')
cpu.append(self.generate_topology(vcpu_num))
if vcpu_num > 1:
cpu.append(self.generate_numa(vcpu_num))
return cpu
|
Generate host-passthrough XML cpu node
Args:
vcpu_num(str): number of virtual CPUs
Returns:
lxml.etree.Element: CPU XML node
|
juraj-google-style
|
def _ReadParserPresetValues(self, preset_definition_values):
if not preset_definition_values:
raise errors.MalformedPresetError('Missing preset definition values.')
name = preset_definition_values.get('name', None)
if not name:
raise errors.MalformedPresetError(
'Invalid preset definition missing name.')
parsers = preset_definition_values.get('parsers', None)
if not parsers:
raise errors.MalformedPresetError(
'Invalid preset definition missing parsers.')
parser_preset = ParserPreset(name, parsers)
for operating_system_values in preset_definition_values.get(
'operating_systems', []):
operating_system = self._ReadOperatingSystemArtifactValues(
operating_system_values)
parser_preset.operating_systems.append(operating_system)
return parser_preset
|
Reads a parser preset from a dictionary.
Args:
preset_definition_values (dict[str, object]): preset definition values.
Returns:
ParserPreset: a parser preset.
Raises:
MalformedPresetError: if the format of the preset definition is not set
or incorrect, or the preset of a specific operating system has already
been set.
|
juraj-google-style
|
def __init__(self, sess):
_check_type(sess, (session.BaseSession, monitored_session.MonitoredSession))
self.session = sess
|
Constructor.
Args:
sess: A tensorflow Session object.
|
github-repos
|
def on_raw_update(
self=None,
group: int = 0
) -> callable:
def decorator(func: callable) -> Tuple[Handler, int]:
if isinstance(func, tuple):
func = func[0].callback
handler = pyrogram.RawUpdateHandler(func)
if isinstance(self, int):
return handler, group if self is None else group
if self is not None:
self.add_handler(handler, group)
return handler, group
return decorator
|
Use this decorator to automatically register a function for handling raw updates.
This does the same thing as :meth:`add_handler` using the :class:`RawUpdateHandler`.
Args:
group (``int``, *optional*):
The group identifier, defaults to 0.
|
juraj-google-style
|
def read_model(input_tflite_file):
if not gfile.Exists(input_tflite_file):
raise RuntimeError('Input file not found at %r\n' % input_tflite_file)
with gfile.GFile(input_tflite_file, 'rb') as input_file_handle:
model_bytearray = bytearray(input_file_handle.read())
return read_model_from_bytearray(model_bytearray)
|
Reads a tflite model as a python object.
Args:
input_tflite_file: Full path name to the input tflite file
Raises:
RuntimeError: If input_tflite_file path is invalid.
IOError: If input_tflite_file cannot be opened.
Returns:
A python object corresponding to the input tflite file.
|
github-repos
|
def _GetTypeIndicators(cls, signature_scanner, specification_store, remainder_list, path_spec, resolver_context=None):
type_indicator_list = []
file_object = resolver.Resolver.OpenFileObject(path_spec, resolver_context=resolver_context)
scan_state = pysigscan.scan_state()
try:
signature_scanner.scan_file_object(scan_state, file_object)
for scan_result in iter(scan_state.scan_results):
format_specification = specification_store.GetSpecificationBySignature(scan_result.identifier)
if (format_specification.identifier not in type_indicator_list):
type_indicator_list.append(format_specification.identifier)
for analyzer_helper in remainder_list:
result = analyzer_helper.AnalyzeFileObject(file_object)
if (result is not None):
type_indicator_list.append(result)
finally:
file_object.close()
return type_indicator_list
|
Determines if a file contains a supported format types.
Args:
signature_scanner (pysigscan.scanner): signature scanner.
specification_store (FormatSpecificationStore): specification store.
remainder_list (list[AnalyzerHelper]): remaining analyzer helpers that
do not have a format specification.
path_spec (PathSpec): path specification.
resolver_context (Optional[Context]): resolver context, where None
represents the built-in context which is not multi process safe.
Returns:
list[str]: supported format type indicators.
|
codesearchnet
|
def delete_resource_group(access_token, subscription_id, rgname):
endpoint = ''.join([get_rm_endpoint(),
'/subscriptions/', subscription_id,
'/resourcegroups/', rgname,
'?api-version=', RESOURCE_API])
return do_delete(endpoint, access_token)
|
Delete the named resource group.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
rgname (str): Azure resource group name.
Returns:
HTTP response.
|
juraj-google-style
|
def parse_pyc_string(data):
return pyc.loads(data)
|
Parse pyc data from a string.
Args:
data: pyc data
Returns:
An instance of pycnite.types.CodeTypeBase.
|
github-repos
|
def get_address_coords(self, address):
url = ('https:
r = requests.get(url)
r.raise_for_status()
results = r.json()['results']
lat = results[0]['geometry']['location']['lat']
lng = results[0]['geometry']['location']['lng']
return (lat, lng)
|
Use the google geocoder to get latitude and longitude for an address string
Args:
address: any address string
Returns:
A tuple of (lat,lng)
|
codesearchnet
|
def __init__(self, latent_size):
super(ProbabilisticGrammarVariational, self).__init__()
self.latent_size = latent_size
self.encoder_net = tf.keras.Sequential([
tf.keras.layers.Conv1D(64, 3, padding="SAME"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation(tf.nn.elu),
tf.keras.layers.Conv1D(128, 3, padding="SAME"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Activation(tf.nn.elu),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.GlobalAveragePooling1D(),
tf.keras.layers.Dense(latent_size * 2, activation=None),
])
|
Constructs a variational posterior for a probabilistic grammar.
Args:
latent_size: Number of dimensions in the latent code.
|
juraj-google-style
|
def resolve(node, source_info, graphs, resolver):
visitor = FunctionVisitor(source_info, graphs, resolver)
node = visitor.visit(node)
return node
|
Performs type inference.
Args:
node: ast.AST
source_info: transformer.SourceInfo
graphs: Dict[ast.FunctionDef, cfg.Graph]
resolver: Resolver
Returns:
ast.AST
|
github-repos
|
def complain(distribution_name):
try:
pkg_resources.get_distribution(distribution_name)
warnings.warn(
"The {pkg} distribution is now obsolete. "
"Please `pip uninstall {pkg}`. "
"In the future, this warning will become an ImportError.".format(
pkg=distribution_name
),
DeprecationWarning,
)
except pkg_resources.DistributionNotFound:
pass
|
Issue a warning if `distribution_name` is installed.
In a future release, this method will be updated to raise ImportError
rather than just send a warning.
Args:
distribution_name (str): The name of the obsolete distribution.
|
juraj-google-style
|
def create_migration_template(name):
assert name, 'Name of the migration can not be empty.'
from . import migrations
package = migrations
prefix = package.__name__ + '.'
all_versions = []
for importer, modname, ispkg in pkgutil.iter_modules(package.__path__, prefix):
version = int(modname.split('.')[-1].split('_')[0])
all_versions.append(version)
next_number = max(all_versions) + 1
next_migration_name = '{}_{}.py'.format(next_number, name)
migration_fullname = os.path.join(package.__path__[0], next_migration_name)
with open(migration_fullname, 'w') as f:
f.write(MIGRATION_TEMPLATE)
return migration_fullname
|
Creates migration file. Returns created file name.
Args:
name (str): name of the migration.
Returns:
str: name of the migration file.
|
juraj-google-style
|
def ipv4_lstrip_zeros(address):
obj = address.strip().split('.')
for x, y in enumerate(obj):
obj[x] = y.split('/')[0].lstrip('0')
if obj[x] in ['', None]:
obj[x] = '0'
return '.'.join(obj)
|
The function to strip leading zeros in each octet of an IPv4 address.
Args:
address (:obj:`str`): An IPv4 address.
Returns:
str: The modified IPv4 address.
|
juraj-google-style
|
def std(x, axis=None, keepdims=False):
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
return math_ops.reduce_std(x, axis=axis, keepdims=keepdims)
|
Standard deviation of a tensor, alongside the specified axis.
It is an alias to `tf.math.reduce_std`.
Args:
x: A tensor or variable. It should have numerical dtypes. Boolean type
inputs will be converted to float.
axis: An integer, the axis to compute the standard deviation. If `None`
(the default), reduces all dimensions. Must be in the range
`[-rank(x), rank(x))`.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`, the reduced dimension is retained with
length 1.
Returns:
A tensor with the standard deviation of elements of `x` with same dtype.
Boolean type input will be converted to float.
|
github-repos
|
def contains(self, time: datetime.datetime,
inclusive: bool = True) -> bool:
if inclusive:
return self.start <= time <= self.end
else:
return self.start < time < self.end
|
Does the interval contain a momentary time?
Args:
time: the ``datetime.datetime`` to check
inclusive: use inclusive rather than exclusive range checks?
|
juraj-google-style
|
def add(self, key, value):
if isinstance(value, list):
for val in value:
self._add_arg_python(key, val)
elif isinstance(value, dict):
err = 'Dictionary types are not currently supported for field.'
print('{}{}{}'.format(c.Style.BRIGHT, c.Fore.RED, err))
else:
mask = False
env_var = re.compile(r'^\$env\.(.*)$')
envs_var = re.compile(r'^\$envs\.(.*)$')
if env_var.match(str(value)):
env_key = env_var.match(str(value)).groups()[0]
value = os.environ.get(env_key, value)
elif envs_var.match(str(value)):
env_key = envs_var.match(str(value)).groups()[0]
value = os.environ.get(env_key, value)
mask = True
self._add_arg(key, value, mask)
|
Add CLI Arg to lists value.
Args:
key (string): The CLI Args key (e.g., --name).
value (string): The CLI Args value (e.g., bob).
|
juraj-google-style
|
def gen_sl_transform_matricies(area_multiple):
return [np.array(((i, j), (0, area_multiple / i)))
for i in get_factors(area_multiple)
for j in range(area_multiple
|
Generates the transformation matricies that convert a set of 2D
vectors into a super lattice of integer area multiple as proven
in Cassels:
Cassels, John William Scott. An introduction to the geometry of
numbers. Springer Science & Business Media, 2012.
Args:
area_multiple(int): integer multiple of unit cell area for super
lattice area
Returns:
matrix_list: transformation matricies to covert unit vectors to
super lattice vectors
|
juraj-google-style
|
def read(self, nodes=None, **kwargs):
if nodes is None:
required_nodes = self.wishlist - set(self.datasets.keys())
nodes = self.dep_tree.leaves(nodes=required_nodes)
return self._read_datasets(nodes, **kwargs)
|
Load datasets from the necessary reader.
Args:
nodes (iterable): DependencyTree Node objects
**kwargs: Keyword arguments to pass to the reader's `load` method.
Returns:
DatasetDict of loaded datasets
|
juraj-google-style
|
def cctop_submit(seq_str):
url = 'http:
r = requests.post(url)
jobid = r.text.split('ID: ')[1]
return jobid
|
Submit a protein sequence string to CCTOP and return the job ID.
Args:
seq_str (str): Protein sequence as a string
Returns:
dict: Job ID on the CCTOP server
|
codesearchnet
|
def KernelVersion():
rtl_osversioninfoexw = RtlOSVersionInfoExw()
try:
RtlGetVersion(rtl_osversioninfoexw)
except OSError:
return 'unknown'
return ('%d.%d.%d' % (rtl_osversioninfoexw.dwMajorVersion, rtl_osversioninfoexw.dwMinorVersion, rtl_osversioninfoexw.dwBuildNumber))
|
Gets the kernel version as string, eg. "5.1.2600".
Returns:
The kernel version, or "unknown" in the case of failure.
|
codesearchnet
|
def __init__(self, resolver_context, file_system, path_spec, is_root=False):
location = getattr(path_spec, 'location', None)
is_windows_device = False
if platform.system() == 'Windows' and location:
try:
is_windows_device = pysmdev.check_device(location)
except IOError:
pass
stat_info = None
if not is_windows_device and location:
try:
stat_info = os.lstat(location)
except OSError as exception:
raise errors.BackEndError(
'Unable to retrieve stat object with error: {0!s}'.format(
exception))
super(OSFileEntry, self).__init__(
resolver_context, file_system, path_spec, is_root=is_root,
is_virtual=False)
self._is_windows_device = is_windows_device
self._name = None
self._stat_info = stat_info
if is_windows_device:
self.entry_type = definitions.FILE_ENTRY_TYPE_DEVICE
elif stat_info:
is_link = os.path.islink(location)
if stat.S_ISLNK(stat_info.st_mode) or is_link:
self.entry_type = definitions.FILE_ENTRY_TYPE_LINK
elif stat.S_ISREG(stat_info.st_mode):
self.entry_type = definitions.FILE_ENTRY_TYPE_FILE
elif stat.S_ISDIR(stat_info.st_mode):
self.entry_type = definitions.FILE_ENTRY_TYPE_DIRECTORY
elif (stat.S_ISCHR(stat_info.st_mode) or
stat.S_ISBLK(stat_info.st_mode)):
self.entry_type = definitions.FILE_ENTRY_TYPE_DEVICE
elif stat.S_ISFIFO(stat_info.st_mode):
self.entry_type = definitions.FILE_ENTRY_TYPE_PIPE
elif stat.S_ISSOCK(stat_info.st_mode):
self.entry_type = definitions.FILE_ENTRY_TYPE_SOCKET
|
Initializes a file entry.
Args:
resolver_context (Context): resolver context.
file_system (FileSystem): file system.
path_spec (PathSpec): path specification.
is_root (Optional[bool]): True if the file entry is the root file entry
of the corresponding file system.
Raises:
BackEndError: If an OSError comes up it is caught and an
BackEndError error is raised instead.
|
juraj-google-style
|
def IsNTFS(self):
tsk_fs_type = self.GetFsType()
return (tsk_fs_type in [pytsk3.TSK_FS_TYPE_NTFS, pytsk3.TSK_FS_TYPE_NTFS_DETECT])
|
Determines if the file system is NTFS.
Returns:
bool: True if the file system is NTFS.
|
codesearchnet
|
def _package_path(package):
from os import path
confdir = config_dir()
return path.join(confdir, '{}.cfg'.format(package))
|
Returns the full path to the default package configuration file.
Args:
package (str): name of the python package to return a path for.
|
codesearchnet
|
def prepend_block(self, node, reverse=False):
if (not isinstance(node, grammar.STATEMENTS)):
raise ValueError
if reverse:
self.to_prepend_block[(- 1)].appendleft(node)
else:
self.to_prepend_block[(- 1)].append(node)
|
Prepend a statement to the current block.
Args:
node: The statement to prepend.
reverse: When called multiple times, this flag determines whether the
statement should be prepended or appended to the already inserted
statements.
Raises:
ValueError: If the given node is not a statement.
|
codesearchnet
|
def __init__(self, swap, expiry_date=None, dtype=None, name=None):
self._name = name or 'swaption'
with tf.name_scope(self._name):
self._dtype = dtype
self._expiry_date = dates.convert_to_date_tensor(expiry_date)
self._swap = swap
|
Initialize a batch of European swaptions.
Args:
swap: An instance of `InterestRateSwap` specifying the interest rate
swaps underlying the swaptions. The batch size of the swaptions being
created would be the same as the batch size of the `swap`.
expiry_date: An optional rank 1 `DateTensor` specifying the expiry dates
for each swaption. The shape of the input should be the same as the
batch size of the `swap` input.
Default value: None in which case the option expity date is the same as
the start date of each underlying swap.
dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
either supplied to the Swaption object or created by the Swaption
object.
Default value: None which maps to the default dtype inferred by
TensorFlow.
name: Python str. The name to give to the ops created by this class.
Default value: `None` which maps to 'swaption'.
|
github-repos
|
def _music_lib_search(self, search, start, max_items):
response = self.contentDirectory.Browse([('ObjectID', search), ('BrowseFlag', 'BrowseDirectChildren'), ('Filter', '*'), ('StartingIndex', start), ('RequestedCount', max_items), ('SortCriteria', '')])
metadata = {}
for tag in ['NumberReturned', 'TotalMatches', 'UpdateID']:
metadata[camel_to_underscore(tag)] = int(response[tag])
return (response, metadata)
|
Perform a music library search and extract search numbers.
You can get an overview of all the relevant search prefixes (like
'A:') and their meaning with the request:
.. code ::
response = device.contentDirectory.Browse([
('ObjectID', '0'),
('BrowseFlag', 'BrowseDirectChildren'),
('Filter', '*'),
('StartingIndex', 0),
('RequestedCount', 100),
('SortCriteria', '')
])
Args:
search (str): The ID to search.
start (int): The index of the forst item to return.
max_items (int): The maximum number of items to return.
Returns:
tuple: (response, metadata) where response is the returned metadata
and metadata is a dict with the 'number_returned',
'total_matches' and 'update_id' integers
|
codesearchnet
|
def get_metric_values(self):
group_names = self.properties.get('metric-groups', None)
if (not group_names):
group_names = self.manager.get_metric_values_group_names()
ret = []
for group_name in group_names:
try:
mo_val = self.manager.get_metric_values(group_name)
ret_item = (group_name, mo_val)
ret.append(ret_item)
except ValueError:
pass
return ret
|
Get the faked metrics, for all metric groups and all resources that
have been prepared on the manager object of this context object.
Returns:
iterable of tuple (group_name, iterable of values): The faked
metrics, in the order they had been added, where:
group_name (string): Metric group name.
values (:class:~zhmcclient.FakedMetricObjectValues`):
The metric values for one resource at one point in time.
|
codesearchnet
|
def emit_code_from_ir(sql_query_tree, compiler_metadata):
context = CompilationContext(
query_path_to_selectable=dict(),
query_path_to_location_info=sql_query_tree.query_path_to_location_info,
query_path_to_output_fields=sql_query_tree.query_path_to_output_fields,
query_path_to_filters=sql_query_tree.query_path_to_filters,
query_path_to_node=sql_query_tree.query_path_to_node,
compiler_metadata=compiler_metadata,
)
return _query_tree_to_query(sql_query_tree.root, context)
|
Return a SQLAlchemy Query from a passed SqlQueryTree.
Args:
sql_query_tree: SqlQueryTree, tree representation of the query to emit.
compiler_metadata: SqlMetadata, SQLAlchemy specific metadata.
Returns:
SQLAlchemy Query
|
juraj-google-style
|
def get_paginated_catalogs(self, querystring=None):
return self._load_data(self.CATALOGS_ENDPOINT, default=[], querystring=querystring, traverse_pagination=False, many=False)
|
Return a paginated list of course catalogs, including name and ID.
Returns:
dict: Paginated response containing catalogs available for the user.
|
codesearchnet
|
def _find_mapreduce_yaml(start, checked):
dir = start
while dir not in checked:
checked.add(dir)
for mr_yaml_name in MR_YAML_NAMES:
yaml_path = os.path.join(dir, mr_yaml_name)
if os.path.exists(yaml_path):
return yaml_path
dir = os.path.dirname(dir)
return None
|
Traverse the directory tree identified by start until a directory already
in checked is encountered or the path of mapreduce.yaml is found.
Checked is present both to make loop termination easy to reason about and so
that the same directories do not get rechecked.
Args:
start: the path to start in and work upward from
checked: the set of already examined directories
Returns:
the path of mapreduce.yaml file or None if not found.
|
juraj-google-style
|
def set_calibration(self, enabled, imus):
if (len(imus) == 0):
imus = list(range(MAX_IMUS))
for i in imus:
if ((i < 0) or (i >= MAX_IMUS)):
logger.warn('Invalid IMU index {} in set_calibration'.format(i))
continue
self.imus[i]._use_calibration = enabled
|
Set calibration state for attached IMUs.
Args:
enabled (bool): True to apply calibration to IMU data (if available).
False to output uncalibrated data.
imus (list): indicates which IMUs the calibration state should be set on.
Empty list or [0, 1, 2, 3, 4] will apply to all IMUs, [0, 1] only to
first 2 IMUs, etc.
|
codesearchnet
|
def write_byte(self, value):
if isinstance(value, bytes):
self.stream.write(value)
elif isinstance(value, str):
self.stream.write(value.encode('utf-8'))
elif isinstance(value, int):
self.stream.write(bytes([value]))
|
Write a single byte to the stream.
Args:
value (bytes, str or int): value to write to the stream.
|
codesearchnet
|
def SetPreferredLanguageIdentifier(self, language_identifier):
if not isinstance(language_identifier, py2to3.STRING_TYPES):
raise ValueError('Language identifier is not a string.')
values = language_ids.LANGUAGE_IDENTIFIERS.get(
language_identifier.lower(), None)
if not values:
raise KeyError('Language identifier: {0:s} is not defined.'.format(
language_identifier))
self._language_identifier = language_identifier
self._lcid = values[0]
|
Sets the preferred language identifier.
Args:
language_identifier (str): language identifier string such as "en-US"
for US English or "is-IS" for Icelandic.
Raises:
KeyError: if the language identifier is not defined.
ValueError: if the language identifier is not a string type.
|
juraj-google-style
|
def combine_with_wd_noise(f_n, amp_n, f_n_wd, amp_n_wd):
amp_n_wd_interp = interpolate.interp1d(f_n_wd, amp_n_wd, bounds_error=False, fill_value=1e-30)
amp_n_wd = amp_n_wd_interp(f_n)
amp_n = amp_n*(amp_n >= amp_n_wd) + amp_n_wd*(amp_n < amp_n_wd)
return f_n, amp_n
|
Combine noise with wd noise.
Combines noise and white dwarf background noise based on greater
amplitude value at each noise curve step.
Args:
f_n (float array): Frequencies of noise curve.
amp_n (float array): Amplitude values of noise curve.
f_n_wd (float array): Frequencies of wd noise.
amp_n_wd (float array): Amplitude values of wd noise.
Returns:
(tuple of float arrays): Amplitude values of combined noise curve.
|
juraj-google-style
|
def open(self, mode=None):
if mode is None:
mode = self.mode
elif mode not in ['r', 'w', 'a']:
raise ValueError('Invalid mode! Modes: [\'a\', \'r\', \'w\']')
if self._file is None:
self._file = h5py.File(self.path, mode=mode)
|
Open the container file.
Args:
mode (str): Either 'r' for read-only, 'w' for truncate and write or
'a' for append. (default: 'a').
If ``None``, uses ``self.mode``.
|
juraj-google-style
|
def write_gff_file(self, outfile, force_rerun=False):
if ssbio.utils.force_rerun(outfile=outfile, flag=force_rerun):
with open(outfile, "w") as out_handle:
GFF.write([self], out_handle)
self.feature_path = outfile
|
Write a GFF file for the protein features, ``features`` will now load directly from this file.
Args:
outfile (str): Path to new FASTA file to be written to
force_rerun (bool): If an existing file should be overwritten
|
juraj-google-style
|
def get_sari_score(source_ids, prediction_ids, list_of_targets, max_gram_size=4, beta_for_deletion=0):
addition_scores = []
keep_scores = []
deletion_scores = []
for n in range(1, (max_gram_size + 1)):
source_counts = _get_ngram_counter(source_ids, n)
prediction_counts = _get_ngram_counter(prediction_ids, n)
target_counts = collections.Counter()
weighted_target_counts = collections.Counter()
num_nonempty_targets = 0
for target_ids_i in list_of_targets:
target_counts_i = _get_ngram_counter(target_ids_i, n)
if target_counts_i:
weighted_target_counts += target_counts_i
num_nonempty_targets += 1
for gram in weighted_target_counts.keys():
weighted_target_counts[gram] /= num_nonempty_targets
target_counts[gram] = 1
keep_scores.append(get_keep_score(source_counts, prediction_counts, weighted_target_counts))
deletion_scores.append(get_deletion_score(source_counts, prediction_counts, weighted_target_counts, beta_for_deletion))
addition_scores.append(get_addition_score(source_counts, prediction_counts, target_counts))
avg_keep_score = (sum(keep_scores) / max_gram_size)
avg_addition_score = (sum(addition_scores) / max_gram_size)
avg_deletion_score = (sum(deletion_scores) / max_gram_size)
sari = (((avg_keep_score + avg_addition_score) + avg_deletion_score) / 3.0)
return (sari, avg_keep_score, avg_addition_score, avg_deletion_score)
|
Compute the SARI score for a single prediction and one or more targets.
Args:
source_ids: a list / np.array of SentencePiece IDs
prediction_ids: a list / np.array of SentencePiece IDs
list_of_targets: a list of target ID lists / np.arrays
max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams,
bigrams, and trigrams)
beta_for_deletion: beta for deletion F score.
Returns:
the SARI score and its three components: add, keep, and deletion scores
|
codesearchnet
|
def get_text_features(self, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> torch.FloatTensor:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = text_outputs[0][:, 0, :]
text_features = self.text_projection(pooled_output)
return text_features
|
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the final [CLS] hidden state of Text-Transformer.
Examples:
```python
>>> from transformers import AutoTokenizer, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
```
|
github-repos
|
def add_update_users(self, users, capacity=None):
if not isinstance(users, list):
raise HDXError('Users should be a list!')
for user in users:
self.add_update_user(user, capacity)
|
Add new or update existing users in organization with new metadata. Capacity eg. member, admin
must be supplied either within the User object or dictionary or using the capacity argument (which takes
precedence).
Args:
users (List[Union[User,Dict,str]]): A list of either user ids or users metadata from User objects or dictionaries
capacity (Optional[str]): Capacity of users eg. member, admin. Defaults to None.
Returns:
None
|
juraj-google-style
|
def replace_drive_enclosure(self, information):
uri = "{}/replaceDriveEnclosure".format(self.data["uri"])
result = self._helper.create(information, uri)
self.refresh()
return result
|
When a drive enclosure has been physically replaced, initiate the replacement operation that enables the
new drive enclosure to take over as a replacement for the prior drive enclosure. The request requires
specification of both the serial numbers of the original drive enclosure and its replacement to be provided.
Args:
information: Options to replace the drive enclosure.
Returns:
dict: SAS Logical Interconnect.
|
juraj-google-style
|
def load(nifti_filename):
nifti_filename = os.path.expanduser(nifti_filename)
try:
data = nib.load(nifti_filename)
img = data.get_data()
except Exception as e:
raise ValueError("Could not load file {0} for conversion."
.format(nifti_filename))
raise
return img
|
Import a nifti file into a numpy array. TODO: Currently only
transfers raw data for compatibility with annotation and ND formats
Arguments:
nifti_filename (str): A string filename of a nifti datafile
Returns:
A numpy array with data from the nifti file
|
juraj-google-style
|
def confirm(question):
if FORCE_YES:
return True
while True:
answer = input((question + ' <Yes|No>')).lower()
if ((answer == 'yes') or (answer == 'y')):
confirmed = True
break
if ((answer == 'no') or (answer == 'n')):
confirmed = False
break
return confirmed
|
Ask the user if he really want something to happen.
Args:
question(str): What can happen
Returns:
(boolean): Confirmed or not
|
codesearchnet
|
def set_size(self, height=220, width=350, height_threshold=120, width_threshold=160):
self.set_integer('height', height)
self.set_integer('width', width)
self.set_integer('small_height_threshold', height_threshold)
self.set_integer('small_width_threshold', width_threshold)
|
Set the size of the chart.
Args:
height (int): height in pixels.
width (int): width in pixels.
height_threshold (int): height threshold in pixels
width_threshold (int): width threshold in pixesls
|
codesearchnet
|
def _lookup_tensor_name(self, tensor):
return self._tensor_aliases.get(tensor.name, tensor.name)
|
Look up the name of a graph tensor.
This method maps the name of a debugger-generated Identity or
DebugIdentityV2 tensor to the name of the original instrumented tensor,
if `tensor` is such a debugger-created tensor.
Otherwise, it returns the name of `tensor` as is.
Args:
tensor: The graph tensor to look up the name for.
Returns:
Name of the original instrumented tensor as known to the debugger.
|
github-repos
|
def get_variantid(variant_obj, family_id):
new_id = parse_document_id(
chrom=variant_obj['chromosome'],
pos=str(variant_obj['position']),
ref=variant_obj['reference'],
alt=variant_obj['alternative'],
variant_type=variant_obj['variant_type'],
case_id=family_id,
)
return new_id
|
Create a new variant id.
Args:
variant_obj(dict)
family_id(str)
Returns:
new_id(str): The new variant id
|
juraj-google-style
|
def __is_json_error(self, status, headers):
content_header = headers.get('content-type', '')
(content_type, unused_params) = cgi.parse_header(content_header)
return (status.startswith('400') and (content_type.lower() in _ALL_JSON_CONTENT_TYPES))
|
Determine if response is an error.
Args:
status: HTTP status code.
headers: Dictionary of (lowercase) header name to value.
Returns:
True if the response was an error, else False.
|
codesearchnet
|
def get_size(self, value=None):
if value is None:
return sum(cls_val.get_size(obj_val) for obj_val, cls_val in
self._get_attributes())
elif isinstance(value, type(self)):
return value.get_size()
else:
msg = "{} is not an instance of {}".format(value,
type(self).__name__)
raise PackException(msg)
|
Calculate the total struct size in bytes.
For each struct attribute, sum the result of each one's ``get_size()``
method.
Args:
value: In structs, the user can assign other value instead of a
class' instance.
Returns:
int: Total number of bytes used by the struct.
Raises:
Exception: If the struct is not valid.
|
juraj-google-style
|
def _GetNetworkInfo(self, signatures_key):
network_info = {}
for category in signatures_key.GetSubkeys():
for signature in category.GetSubkeys():
profile_guid_value = signature.GetValueByName('ProfileGuid')
if profile_guid_value:
profile_guid = profile_guid_value.GetDataAsObject()
else:
continue
default_gateway_mac_value = signature.GetValueByName(
'DefaultGatewayMac')
if default_gateway_mac_value:
default_gateway_mac = ':'.join([
'{0:02x}'.format(octet)
for octet in bytearray(default_gateway_mac_value.data)])
else:
default_gateway_mac = None
dns_suffix_value = signature.GetValueByName('DnsSuffix')
if dns_suffix_value:
dns_suffix = dns_suffix_value.GetDataAsObject()
else:
dns_suffix = None
network_info[profile_guid] = (default_gateway_mac, dns_suffix)
return network_info
|
Retrieves the network info within the signatures subkey.
Args:
signatures_key (dfwinreg.WinRegistryKey): a Windows Registry key.
Returns:
dict[str, tuple]: a tuple of default_gateway_mac and dns_suffix per
profile identifier (GUID).
|
juraj-google-style
|
def setup(self, check_all=None, exclude_private=None,
exclude_uppercase=None, exclude_capitalized=None,
exclude_unsupported=None, excluded_names=None,
minmax=None, dataframe_format=None):
assert self.shellwidget is not None
self.check_all = check_all
self.exclude_private = exclude_private
self.exclude_uppercase = exclude_uppercase
self.exclude_capitalized = exclude_capitalized
self.exclude_unsupported = exclude_unsupported
self.excluded_names = excluded_names
self.minmax = minmax
self.dataframe_format = dataframe_format
if self.editor is not None:
self.editor.setup_menu(minmax)
self.editor.set_dataframe_format(dataframe_format)
self.exclude_private_action.setChecked(exclude_private)
self.exclude_uppercase_action.setChecked(exclude_uppercase)
self.exclude_capitalized_action.setChecked(exclude_capitalized)
self.exclude_unsupported_action.setChecked(exclude_unsupported)
self.refresh_table()
return
self.editor = RemoteCollectionsEditorTableView(
self,
data=None,
minmax=minmax,
shellwidget=self.shellwidget,
dataframe_format=dataframe_format)
self.editor.sig_option_changed.connect(self.sig_option_changed.emit)
self.editor.sig_files_dropped.connect(self.import_data)
self.editor.sig_free_memory.connect(self.sig_free_memory.emit)
self.setup_option_actions(exclude_private, exclude_uppercase,
exclude_capitalized, exclude_unsupported)
self.tools_layout = QHBoxLayout()
toolbar = self.setup_toolbar()
for widget in toolbar:
self.tools_layout.addWidget(widget)
self.tools_layout.addStretch()
self.setup_options_button()
layout = create_plugin_layout(self.tools_layout, self.editor)
self.setLayout(layout)
self.sig_option_changed.connect(self.option_changed)
|
Setup the namespace browser with provided settings.
Args:
dataframe_format (string): default floating-point format for
DataFrame editor
|
juraj-google-style
|
def _verify_static_batch_size_equality(tensors, columns):
expected_batch_size = None
for i in range(0, len(tensors)):
if tensors[i].shape.dims[0].value is not None:
if expected_batch_size is None:
bath_size_column_index = i
expected_batch_size = tensors[i].shape.dims[0]
elif not expected_batch_size.is_compatible_with(tensors[i].shape.dims[0]):
raise ValueError('Batch size (first dimension) of each feature must be same. Batch size of columns ({}, {}): ({}, {})'.format(columns[bath_size_column_index].name, columns[i].name, expected_batch_size, tensors[i].shape.dims[0]))
|
Validates that the first dim (batch size) of all tensors are equal or None.
Args:
tensors: list of tensors to check.
columns: list of feature columns matching tensors. Will be used for error
messaging.
Raises:
ValueError: if one of the tensors has a variant batch size
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.