code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def minimum(self, vars_list: List[str]) -> 'TensorFluent':
return self._aggregation_op(tf.reduce_min, self, vars_list) | Returns the TensorFluent for the minimum aggregation function.
Args:
vars_list: The list of variables to be aggregated over.
Returns:
A TensorFluent wrapping the minimum aggregation function. | juraj-google-style |
def recover_session(self, master: str, saver: saver_lib.Saver=None, checkpoint_dir: str=None, checkpoint_filename_with_path: str=None, wait_for_checkpoint=False, max_wait_secs=7200, config=None) -> Tuple[session.Session, bool]:
sess, is_loaded_from_checkpoint = self._restore_checkpoint(master, saver, checkpoint_dir=checkpoint_dir, checkpoint_filename_with_path=checkpoint_filename_with_path, wait_for_checkpoint=wait_for_checkpoint, max_wait_secs=max_wait_secs, config=config)
local_init_success, msg = self._try_run_local_init_op(sess)
if not is_loaded_from_checkpoint:
return (sess, False)
restoring_file = checkpoint_dir or checkpoint_filename_with_path
if not local_init_success:
logging.info('Restoring model from %s did not make model ready for local init: %s', restoring_file, msg)
return (sess, False)
is_ready, msg = self._model_ready(sess)
if not is_ready:
logging.info('Restoring model from %s did not make model ready: %s', restoring_file, msg)
return (sess, False)
logging.info('Restored model from %s', restoring_file)
return (sess, is_loaded_from_checkpoint) | Creates a `Session`, recovering if possible.
Creates a new session on 'master'. If the session is not initialized
and can be recovered from a checkpoint, recover it.
Args:
master: `String` representation of the TensorFlow master to use.
saver: A `Saver` object used to restore a model.
checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the
dir will be used to restore.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
wait_for_checkpoint: Whether to wait for checkpoint to become available.
max_wait_secs: Maximum time to wait for checkpoints to become available.
config: Optional `ConfigProto` proto used to configure the session.
Returns:
A pair (sess, initialized) where 'initialized' is `True` if
the session could be recovered and initialized, `False` otherwise.
Raises:
ValueError: If both checkpoint_dir and checkpoint_filename_with_path are
set. | github-repos |
def GetCustomerIDs(client):
managed_customer_service = client.GetService('ManagedCustomerService',
version='v201809')
offset = 0
selector = {
'fields': ['CustomerId'],
'predicates': [{
'field': 'CanManageClients',
'operator': 'EQUALS',
'values': [False]
}],
'paging': {
'startIndex': str(offset),
'numberResults': str(PAGE_SIZE)
}
}
queue = multiprocessing.Queue()
more_pages = True
while more_pages:
page = managed_customer_service.get(selector)
if page and 'entries' in page and page['entries']:
for entry in page['entries']:
queue.put(entry['customerId'])
else:
raise Exception('Can\'t retrieve any customer ID.')
offset += PAGE_SIZE
selector['paging']['startIndex'] = str(offset)
more_pages = offset < int(page['totalNumEntries'])
return queue | Retrieves all CustomerIds in the account hierarchy.
Note that your configuration file must specify a client_customer_id belonging
to an AdWords manager account.
Args:
client: an AdWordsClient instance.
Raises:
Exception: if no CustomerIds could be found.
Returns:
A Queue instance containing all CustomerIds in the account hierarchy. | juraj-google-style |
def l1_normalize(x, dim, epsilon=1e-12, name=None):
with tf.name_scope(name, 'l1_normalize', [x]) as scope:
x = tf.convert_to_tensor(x, name='x')
x = tf.verify_tensor_all_finite(x, 'Error at input %s' % scope)
x_norm = tf.maximum(tf.reduce_sum(tf.abs(x), [dim], keep_dims=True),
epsilon)
return tf.div(x, x_norm, name=scope) | l1 normalizes x.
Args:
x: The tensor to normalize.
dim: The dimension to normalize along.
epsilon: Lower bound on the norm, used to avoid exploding gradients as the
norm approaches 0.
name: Optional name for this op.
Returns:
x normalized along dim. | juraj-google-style |
def timestamp(stamp, tolerance=150):
try:
tolerance = datetime.timedelta(0, tolerance)
timestamp_low = dateutil.parser.parse(stamp)
timestamp_high = (timestamp_low + tolerance)
now = datetime.datetime.now(timestamp_low.tzinfo)
except ValueError:
return False
return ((now >= timestamp_low) and (now <= timestamp_high)) | Validate timestamp specified by request.
See `validate.request` for additional info.
Args:
stamp: str. Time request was made as ISO 8601 timestamp.
tolerance: int. Number of seconds request remains valid from timestamp.
Returns
bool: True if valid, False otherwise. | codesearchnet |
def datetime_from_isoformat(value: str):
if (sys.version_info >= (3, 7)):
return datetime.fromisoformat(value)
return datetime.strptime(value, '%Y-%m-%dT%H:%M:%S.%f') | Return a datetime object from an isoformat string.
Args:
value (str): Datetime string in isoformat. | codesearchnet |
def get_lang_tags(index_page):
dom = dhtmlparser.parseString(index_page)
lang_tags = [
get_html_lang_tags(dom),
get_dc_lang_tags(dom),
[detect_language(dom)],
get_html_tag_lang_params(dom),
]
return list(sorted(set(
SourceString(normalize(lang), source=lang.source)
for lang in sum(lang_tags, [])
))) | Collect informations about language of the page from HTML and Dublin core
tags and langdetect guesses.
Args:
index_page (str): HTML content of the page you wish to analyze.
Returns:
list: List of :class:`.SourceString` objects. | juraj-google-style |
def _ragged_tensor_binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0, axis=-1):
fn = functools.partial(binary_crossentropy, from_logits=from_logits, label_smoothing=label_smoothing, axis=axis)
return _ragged_tensor_apply_loss(fn, y_true, y_pred) | Implements support for handling RaggedTensors.
Args:
y_true: Tensor of one-hot true targets.
y_pred: Tensor of predicted targets.
from_logits: Whether `y_pred` is expected to be a logits tensor. By default,
we assume that `y_pred` encodes a probability distribution.
label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For
example, if `0.1`, use `0.1 / num_classes` for non-target labels
and `0.9 + 0.1 / num_classes` for target labels.
axis: Axis along which to compute crossentropy.
Returns:
Binary crossentropy loss value.
Expected shape: (batch, sequence_len) with sequence_len being variable
per batch.
Return shape: (batch,); returns the per batch mean of the loss values.
When used by BinaryCrossentropy() with the default reduction
(SUM_OVER_BATCH_SIZE), the reduction averages the per batch losses over
the number of batches. | github-repos |
def _loop_exits_early(loop):
loop_nodes = (astroid.For, astroid.While)
definition_nodes = (astroid.FunctionDef, astroid.ClassDef)
inner_loop_nodes = [_node for _node in loop.nodes_of_class(loop_nodes, skip_klass=definition_nodes) if (_node != loop)]
return any((_node for _node in loop.nodes_of_class(astroid.Break, skip_klass=definition_nodes) if (_get_break_loop_node(_node) not in inner_loop_nodes))) | Returns true if a loop may ends up in a break statement.
Args:
loop (astroid.For, astroid.While): the loop node inspected.
Returns:
bool: True if the loop may ends up in a break statement, False otherwise. | codesearchnet |
def _run_dnb_normalization(self, dnb_data, sza_data):
dnb_data = xr.DataArray(dnb_data, dims=('y', 'x'))
sza_data = xr.DataArray(sza_data, dims=('y', 'x'))
good_mask = (~ (dnb_data.isnull() | sza_data.isnull()))
output_dataset = dnb_data.where(good_mask)
output_dataset = output_dataset.values.copy()
dnb_data = dnb_data.values
sza_data = sza_data.values
(day_mask, mixed_mask, night_mask) = make_day_night_masks(sza_data, good_mask.values, self.high_angle_cutoff, self.low_angle_cutoff, stepsDegrees=self.mixed_degree_step)
did_equalize = False
has_multi_times = (len(mixed_mask) > 0)
if day_mask.any():
did_equalize = True
if ((self.adaptive_day == 'always') or (has_multi_times and (self.adaptive_day == 'multiple'))):
LOG.debug('Adaptive histogram equalizing DNB day data...')
local_histogram_equalization(dnb_data, day_mask, valid_data_mask=good_mask.values, local_radius_px=self.day_radius_pixels, out=output_dataset)
else:
LOG.debug('Histogram equalizing DNB day data...')
histogram_equalization(dnb_data, day_mask, out=output_dataset)
if mixed_mask:
for mask in mixed_mask:
if mask.any():
did_equalize = True
if ((self.adaptive_mixed == 'always') or (has_multi_times and (self.adaptive_mixed == 'multiple'))):
LOG.debug('Adaptive histogram equalizing DNB mixed data...')
local_histogram_equalization(dnb_data, mask, valid_data_mask=good_mask.values, local_radius_px=self.mixed_radius_pixels, out=output_dataset)
else:
LOG.debug('Histogram equalizing DNB mixed data...')
histogram_equalization(dnb_data, day_mask, out=output_dataset)
if night_mask.any():
did_equalize = True
if ((self.adaptive_night == 'always') or (has_multi_times and (self.adaptive_night == 'multiple'))):
LOG.debug('Adaptive histogram equalizing DNB night data...')
local_histogram_equalization(dnb_data, night_mask, valid_data_mask=good_mask.values, local_radius_px=self.night_radius_pixels, out=output_dataset)
else:
LOG.debug('Histogram equalizing DNB night data...')
histogram_equalization(dnb_data, night_mask, out=output_dataset)
if (not did_equalize):
raise RuntimeError('No valid data found to histogram equalize')
return output_dataset | Scale the DNB data using a adaptive histogram equalization method.
Args:
dnb_data (ndarray): Day/Night Band data array
sza_data (ndarray): Solar Zenith Angle data array | codesearchnet |
def clarke_thermalcond(self, structure):
nsites = structure.num_sites
volume = structure.volume
tot_mass = sum([e.atomic_mass for e in structure.species])
natoms = structure.composition.num_atoms
weight = float(structure.composition.weight)
avg_mass = 1.6605e-27 * tot_mass / natoms
mass_density = 1.6605e3 * nsites * weight / (natoms * volume)
return 0.87 * 1.3806e-23 * avg_mass**(-2./3.) \
* mass_density**(1./6.) * self.y_mod**0.5 | Calculates Clarke's thermal conductivity (in SI units)
Args:
structure: pymatgen structure object
Returns: Clarke's thermal conductivity (in SI units) | juraj-google-style |
def valid_paths(self, *args):
for i, path in enumerate(args, start=0):
cp = list(args)
current = cp.pop(i)
if current in cp:
raise SettingsInvalidError("Multiple occurences finded for "
"path: {}".format(current))
return True | Validate that given paths are not the same.
Args:
(string): Path to validate.
Raises:
boussole.exceptions.SettingsInvalidError: If there is more than one
occurence of the same path.
Returns:
bool: ``True`` if paths are validated. | juraj-google-style |
def table_exists(client, table_reference):
from google.cloud.exceptions import NotFound
try:
client.get_table(table_reference)
return True
except NotFound:
return False | Return if a table exists.
Args:
client (google.cloud.bigquery.client.Client):
A client to connect to the BigQuery API.
table_reference (google.cloud.bigquery.table.TableReference):
A reference to the table to look for.
Returns:
bool: ``True`` if the table exists, ``False`` otherwise. | juraj-google-style |
def average_over_unit_sphere(self, quad=None):
quad = (quad or DEFAULT_QUAD)
(weights, points) = (quad['weights'], quad['points'])
return sum([(w * self.project(n)) for (w, n) in zip(weights, points)]) | Method for averaging the tensor projection over the unit
with option for custom quadrature.
Args:
quad (dict): quadrature for integration, should be
dictionary with "points" and "weights" keys defaults
to quadpy.sphere.Lebedev(19) as read from file
Returns:
Average of tensor projected into vectors on the unit sphere | codesearchnet |
def etm_register_write(self, register_index, value, delay=False):
self._dll.JLINKARM_ETM_WriteReg(int(register_index), int(value), int(delay))
return None | Writes a value to an ETM register.
Args:
self (JLink): the ``JLink`` instance.
register_index (int): the register to write to.
value (int): the value to write to the register.
delay (bool): boolean specifying if the write should be buffered.
Returns:
``None`` | juraj-google-style |
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]:
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | Create a mask from the two sequences passed to be used in a sequence-pair classification task. CamemBERT, like
RoBERTa, does not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros. | github-repos |
def hset(self, key, value):
return self.r.hset(self.hash, key, value) | Create key/value pair in Redis.
Args:
key (string): The key to create in Redis.
value (any): The value to store in Redis.
Returns:
(string): The response from Redis. | juraj-google-style |
def composite_tensor_to_variants(value, type_spec=None, name=None):
if not isinstance(value, composite_tensor.CompositeTensor):
raise TypeError(f'Expected `value` to be a CompositeTensor. Received {type(value)}.')
if type_spec is None:
type_spec = value._type_spec
if not type_spec.is_compatible_with(value):
raise ValueError(f'`type_spec` {type_spec} is not compatible with `value` {value!r}.')
metadata = composite_tensor_variant_pb2.CompositeTensorVariantMetadata()
metadata.type_spec_proto.CopyFrom(nested_structure_coder.encode_structure(type_spec).type_spec_value)
return gen_composite_tensor_ops.CompositeTensorVariantFromComponents(components=nest.flatten(value, expand_composites=True), metadata=metadata.SerializeToString(), name=name) | Encodes `value` as a scalar variant tensor.
Args:
value: The `ExtensionType` value to encode.
type_spec: Information about the value's type that should be included in the
encoding.
name: Optional name for the operation.
Returns:
A Tensor with shape=`()` and dtype=`tf.variant`.
Raises:
ValueError: If `type_spec` is not compatible with `value`. | github-repos |
def permute(self, ordering: np.ndarray, axis: int) -> None:
if self._file.__contains__('tiles'):
del self._file['tiles']
ordering = list(np.array(ordering).flatten())
self.layers._permute(ordering, axis=axis)
if (axis == 0):
self.row_attrs._permute(ordering)
self.row_graphs._permute(ordering)
if (axis == 1):
self.col_attrs._permute(ordering)
self.col_graphs._permute(ordering) | Permute the dataset along the indicated axis.
Args:
ordering (list of int): The desired order along the axis
axis (int): The axis along which to permute
Returns:
Nothing. | codesearchnet |
def generate_poisson_lineage(n_states, n_cells_per_cluster, n_genes, means=300):
M = (np.random.random((n_genes, n_states)) * means)
center = M.mean(1)
W = np.zeros((n_states, (n_cells_per_cluster * n_states)))
index = 0
means = np.array(([(1.0 / n_states)] * n_states))
for c in range(n_states):
for i in range(n_cells_per_cluster):
w = np.copy(means)
new_value = (w[c] + ((i * (1.0 - (1.0 / n_states))) / n_cells_per_cluster))
w[:] = ((1.0 - new_value) / (n_states - 1.0))
w[c] = new_value
W[(:, index)] = w
index += 1
return (M, W) | Generates a lineage for each state- assumes that each state has a common
ancestor.
Returns:
M - genes x clusters
W - clusters x cells | codesearchnet |
def import_image_from_image(self, image, repository=None, tag=None,
changes=None):
return self.import_image(
image=image, repository=repository, tag=tag, changes=changes
) | Like :py:meth:`~docker.api.image.ImageApiMixin.import_image`, but only
supports importing from another image, like the ``FROM`` Dockerfile
parameter.
Args:
image (str): Image name to import from
repository (str): The repository to create
tag (str): The tag to apply | juraj-google-style |
def HasWarnings(self):
has_errors = self._HasAttributeContainers(self._CONTAINER_TYPE_EXTRACTION_ERROR)
if has_errors:
return True
return self._HasAttributeContainers(self._CONTAINER_TYPE_EXTRACTION_WARNING) | Determines if a store contains extraction warnings.
Returns:
bool: True if the store contains extraction warnings. | codesearchnet |
def util_pattern_space(time_series, lag, dim):
n = len(time_series)
if lag * dim > n:
raise Exception('Result matrix exceeded size limit, try to change lag or dim.')
elif lag < 1:
raise Exception('Lag should be greater or equal to 1.')
pattern_space = np.empty((n - lag * (dim - 1), dim))
for i in range(n - lag * (dim - 1)):
for j in range(dim):
pattern_space[i][j] = time_series[i + j * lag]
return pattern_space | Create a set of sequences with given lag and dimension
Args:
time_series: Vector or string of the sample data
lag: Lag between beginning of sequences
dim: Dimension (number of patterns)
Returns:
2D array of vectors | juraj-google-style |
def get(self, type: Type[T], query: Mapping[str, Any]) -> T:
LOGGER.info("Getting SourceHandlers for \"{type}\"".format(type=type.__name__))
try:
handlers = self._get_types[type]
except KeyError:
try:
LOGGER.info("Building new SourceHandlers for \"{type}\"".format(type=type.__name__))
handlers = self._get_handlers(type)
except NoConversionError:
handlers = None
self._get_types[type] = handlers
if handlers is None:
raise NoConversionError("No source can provide \"{type}\"".format(type=type.__name__))
LOGGER.info("Creating new PipelineContext")
context = self._new_context()
LOGGER.info("Querying SourceHandlers for \"{type}\"".format(type=type.__name__))
for handler in handlers:
try:
return handler.get(query, context)
except NotFoundError:
pass
raise NotFoundError("No source returned a query result!") | Gets a query from the data pipeline.
1) Extracts the query the sequence of data sources.
2) Inserts the result into the data sinks (if appropriate).
3) Transforms the result into the requested type if it wasn't already.
4) Inserts the transformed result into any data sinks.
Args:
query: The query being requested.
context: The context for the extraction (mutable).
Returns:
The requested object. | juraj-google-style |
def write_dirpath(dirpath, strategy):
if strategy is None:
strategy = distribute_lib.get_strategy()
if strategy is None:
return dirpath
if not strategy.extended._in_multi_worker_mode():
return dirpath
if strategy.extended.should_checkpoint:
return dirpath
return _get_temp_dir(dirpath, strategy) | Returns the writing dir that should be used to save file distributedly.
`dirpath` would be created if it doesn't exist.
Args:
dirpath: Original dirpath that would be used without distribution.
strategy: The tf.distribute strategy object currently used.
Returns:
The writing dir path that should be used to save with distribution. | github-repos |
def determine_final_config(config_module):
config = Config(
DEFAULT_LIBRARY_RC_ADDITIONS, DEFAULT_LIBRARY_RC_REPLACEMENTS,
DEFAULT_TEST_RC_ADDITIONS, DEFAULT_TEST_RC_REPLACEMENTS)
for field in config._fields:
if hasattr(config_module, field):
config = config._replace(**{field: getattr(config_module, field)})
return config | Determines the final additions and replacements.
Combines the config module with the defaults.
Args:
config_module: The loaded local configuration module.
Returns:
Config: the final configuration. | juraj-google-style |
def count_weights(scope=None, exclude=None, graph=None):
if scope:
scope = scope if scope.endswith('/') else scope + '/'
graph = graph or tf.get_default_graph()
vars_ = graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if scope:
vars_ = [var for var in vars_ if var.name.startswith(scope)]
if exclude:
exclude = re.compile(exclude)
vars_ = [var for var in vars_ if not exclude.match(var.name)]
shapes = [var.get_shape().as_list() for var in vars_]
return int(sum(np.prod(shape) for shape in shapes)) | Count learnable parameters.
Args:
scope: Restrict the count to a variable scope.
exclude: Regex to match variable names to exclude.
graph: Operate on a graph other than the current default graph.
Returns:
Number of learnable parameters as integer. | juraj-google-style |
def _format_collection_name(self):
base_uri = self._format_resource_name()
if (base_uri[(- 2):] == '_s'):
endind = 2
else:
endind = 1
return base_uri[:(- endind)] | Formats a name from Collection format
Collections are of two name formats based on their actual URI
representation in the REST service.
1. For cases where the actual URI of a collection is singular, for
example,
/mgmt/tm/ltm/node
The name of the collection, as exposed to the user, will be made
plural. For example,
mgmt.tm.ltm.nodes
2. For cases where the actual URI of a collection is plural, for
example,
/mgmt/cm/shared/licensing/pools/
The name of the collection, as exposed to the user, will remain
plural, but will have an `_s` appended to it. For example,
mgmt.cm.shared.licensing.pools_s
This method is responsible for undoing the user provided plurality.
It ensures that the URI that is being sent to the REST service is
correctly plural, or plural plus.
Returns:
A string representation of the user formatted Collection with its
plurality identifier removed appropriately. | codesearchnet |
def _ParseToken(self, file_object, file_offset):
token_type = self._ParseTokenType(file_object, file_offset)
token_data = None
token_data_map_name = self._DATA_TYPE_MAP_PER_TOKEN_TYPE.get(
token_type, None)
if token_data_map_name:
token_data_map = self._GetDataTypeMap(token_data_map_name)
token_data, _ = self._ReadStructureFromFileObject(
file_object, file_offset + 1, token_data_map)
return token_type, token_data | Parses a token.
Args:
file_object (dfvfs.FileIO): file-like object.
file_offset (int): offset of the token relative to the start of
the file-like object.
Returns:
tuple: containing:
int: token type
object: token data or None if the token type is not supported. | juraj-google-style |
def register_flag_by_module_id(self, module_id, flag):
flags_by_module_id = self.flags_by_module_id_dict()
flags_by_module_id.setdefault(module_id, []).append(flag) | Records the module that defines a specific flag.
Args:
module_id: int, the ID of the Python module.
flag: Flag, the Flag instance that is key to the module. | juraj-google-style |
def __init__(self, nmr_items, ctype):
self._ctype = ctype
self._mot_float_dtype = None
self._nmr_items = nmr_items | Adds a private memory array of the indicated size to the kernel data elements.
This is useful if you want to have private memory arrays in kernel data structs.
Args:
nmr_items (int): the size of the private memory array
ctype (str): the desired c-type for this local memory object, like ``int``, ``float`` or ``mot_float_type``. | juraj-google-style |
def handle_intermediate_response(self, item_session: ItemSession) -> Actions:
self._waiter.reset()
action = self.handle_response(item_session)
return action | Callback for successful intermediate responses.
Returns:
A value from :class:`.hook.Actions`. | codesearchnet |
def filter_pyfqn(cls, value, relative_to=0):
def collect_packages(element, packages):
parent = element.eContainer()
if parent:
collect_packages(parent, packages)
packages.append(element.name)
packages = []
collect_packages(value, packages)
if ((relative_to < 0) or (relative_to > len(packages))):
raise ValueError('relative_to not in range of number of packages')
fqn = '.'.join(packages[relative_to:])
if relative_to:
fqn = ('.' + fqn)
return cls.module_path_map.get(fqn, fqn) | Returns Python form of fully qualified name.
Args:
relative_to: If greater 0, the returned path is relative to the first n directories. | codesearchnet |
async def get_run_error(self, pipeline_uuid: str) -> str:
self._verify_pipeline_uuid(pipeline_uuid)
request = api_pb2.GetRunErrorRequest(pipeline_uuid=pipeline_uuid)
response = await self._stub.GetRunError(request, **self._kwargs)
return response.output | Get the error of pipeline execution.
Args:
pipeline_uuid: uuid of the pipeline
Returns:
output: contain an error of pipeline execution | github-repos |
def __init__(self, rdfclass=None, **kwargs):
super(RDFValueType, self).__init__(**kwargs)
self._type = self.rdfclass = rdfclass | An arg which must be an RDFValue.
Args:
rdfclass: The RDFValue class that this arg must be.
**kwargs: Passthrough to base class. | juraj-google-style |
def update(self, data, timeout=-1, force=False):
uri = self.data["uri"]
self.data = self._helper.update(data, uri=uri, timeout=timeout, force=force)
return self | Updates one or more attributes for a server hardware type resource.
Args:
data (dict): Object to update.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
force: Flag to force the operation.
Returns:
dict: Updated server hardware type. | juraj-google-style |
def repr_assist(obj, remap=None):
if not remap:
remap = {}
data = []
for arg in inspect.getargspec(getattr(obj.__class__, '__init__'))[0]:
if arg == 'self':
continue
elif arg in remap:
value = remap[arg]
else:
try:
value = getattr(obj, arg)
except AttributeError:
value = getattr(obj, '_%s' % arg)
if isinstance(value, (type(None), list, basestring, datetime.date,
datetime.time)):
data.append(repr(value))
else:
data.append(str(value))
return "%s(%s)" % (obj.__class__.__name__, ', '.join(data)) | Helper function to simplify ``__repr__`` methods.
Args:
obj: Object to pull argument values for
remap (dict): Argument pairs to remap before output
Returns:
str: Self-documenting representation of ``value`` | juraj-google-style |
def ask_stories(self, raw=False, limit=None):
ask_stories = self._get_stories('askstories', limit)
if raw:
ask_stories = [story.raw for story in ask_stories]
return ask_stories | Returns list of item ids of latest Ask HN stories
Args:
limit (int): specifies the number of stories to be returned.
raw (bool): Flag to indicate whether to transform all
objects into raw json.
Returns:
`list` object containing ids of Ask HN stories. | juraj-google-style |
def set(self, namespace, key, value, description=None):
if isinstance(value, DBCChoice):
vtype = 'choice'
elif isinstance(value, DBCString):
vtype = 'string'
elif isinstance(value, DBCFloat):
vtype = 'float'
elif isinstance(value, DBCInt):
vtype = 'int'
elif isinstance(value, DBCArray):
vtype = 'array'
elif isinstance(value, DBCJSON):
vtype = 'json'
elif isinstance(value, bool):
vtype = 'bool'
else:
raise ValueError('Invalid config item type: {}'.format(type(value)))
if namespace in self.__data and key in self.__data[namespace]:
itm = db.ConfigItem.find_one(
ConfigItem.namespace_prefix == namespace,
ConfigItem.key == key
)
if not itm:
raise KeyError(key)
itm.value = value
itm.type = vtype
if description:
itm.description = description
else:
itm = ConfigItem()
itm.key = key
itm.value = value
itm.type = vtype
itm.description = description
itm.namespace_prefix = namespace
db.session.add(itm)
db.session.commit()
if namespace in self.__data:
self.__data[namespace][key] = value
else:
self.__data[namespace] = {key: value} | Set (create/update) a configuration item
Args:
namespace (`str`): Namespace for the item
key (`str`): Key of the item
value (`Any`): Value of the type, must by one of `DBCString`, `DBCFloat`, `DBCInt`, `DBCArray`, `DBCJSON` or
`bool`
description (`str`): Description of the configuration item
Returns:
`None` | juraj-google-style |
def CopyFromStringTuple(self, time_elements_tuple):
if len(time_elements_tuple) < 7:
raise ValueError((
'Invalid time elements tuple at least 7 elements required,'
'got: {0:d}').format(len(time_elements_tuple)))
year, month, day_of_month, hours, minutes, seconds, milliseconds = (
time_elements_tuple)
try:
milliseconds = int(milliseconds, 10)
except (TypeError, ValueError):
raise ValueError('Invalid millisecond value: {0!s}'.format(milliseconds))
if milliseconds < 0 or milliseconds >= definitions.MILLISECONDS_PER_SECOND:
raise ValueError('Invalid number of milliseconds.')
fraction_of_second = (
decimal.Decimal(milliseconds) / definitions.MILLISECONDS_PER_SECOND)
time_elements_tuple = (
year, month, day_of_month, hours, minutes, seconds,
str(fraction_of_second))
super(TimeElementsInMilliseconds, self).CopyFromStringTuple(
time_elements_tuple) | Copies time elements from string-based time elements tuple.
Args:
time_elements_tuple (Optional[tuple[str, str, str, str, str, str, str]]):
time elements, contains year, month, day of month, hours, minutes,
seconds and milliseconds.
Raises:
ValueError: if the time elements tuple is invalid. | juraj-google-style |
def __init__(self, parameter, value, valid_values=None):
msg = 'Invalid value "{value}" supplied to {parameter}.'.format(
parameter=parameter, value=value)
if valid_values:
msg += ' Valid options are: {}'.format(', '.join(valid_values))
super(InvalidCliValueError, self).__init__(msg) | Instantiate the exception with a descriptive message.
Args:
parameter: The CLI parameter with the invalid value.
value: The invalid value passed to the CLI parameter.
valid_values: The values that would have been accepted by the
parameter. | juraj-google-style |
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
vision_data = {}
if image_sizes is not None:
num_image_tokens = [self.image_seq_length + 2] * len(image_sizes)
num_image_patches = [1] * len(image_sizes)
vision_data.update({'num_image_tokens': num_image_tokens, 'num_image_patches': num_image_patches})
return MultiModalData(**vision_data) | Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`List[List[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data. | github-repos |
def as_signature_def(self, receiver_tensors):
pass | Generate a SignatureDef proto for inclusion in a MetaGraphDef.
The SignatureDef will specify outputs as described in this ExportOutput,
and will use the provided receiver_tensors as inputs.
Args:
receiver_tensors: a `Tensor`, or a dict of string to `Tensor`, specifying
input nodes that will be fed. | github-repos |
def get_product_version(path: typing.Union[str, Path]) -> VersionInfo:
path = Path(path).absolute()
pe_info = pefile.PE(str(path))
try:
for file_info in pe_info.FileInfo:
if isinstance(file_info, list):
result = _parse_file_info(file_info)
if result:
return result
else:
result = _parse_file_info(pe_info.FileInfo)
if result:
return result
raise RuntimeError(f'unable to obtain version from {path}')
except (KeyError, AttributeError) as exc:
traceback.print_exc()
raise RuntimeError(f'unable to obtain version from {path}') from exc | Get version info from executable
Args:
path: path to the executable
Returns: VersionInfo | juraj-google-style |
def binary_guesser(handle, num_bytes=512):
text_chars = (''.join(map(chr, range(32, 127))) + '\n\r\t\x08')
byte_chars = text_chars.encode()
handle_location = handle.tell()
first_block = handle.read(num_bytes)
if (type(first_block) is str):
first_block = first_block.encode()
filtered_block = first_block.translate(None, delete=byte_chars)
handle.seek(handle_location)
if ((float(len(filtered_block)) / float(len(first_block))) > 0.3):
pass
else:
msg = '{0} is probably not a binary file'.format(handle.name)
raise FormatError(message=msg) | Raise error if file not likely binary
Guesses if a file is binary, raises error if file is not likely binary,
then returns to location in file when handle passed to binary_guesser.
Args:
handle (file): File handle of file thought to be binary
num_bytes (int): Bytes of file to read to guess binary, more bytes
is often better but takes longer
Raises:
FormatError: Error raised if file is not likely binary
Example:
The following example demonstrate how to use binary_guesser.
Note: These doctests will not pass, examples are only in doctest
format as per convention. bio_utils uses pytests for testing.
>>> binary_guesser(open('test.binary')) | codesearchnet |
def range(self, start_row=0, max_rows=None):
fetcher = self._get_row_fetcher(start_row=start_row, max_rows=max_rows)
return iter(datalab.utils.Iterator(fetcher)) | Get an iterator to iterate through a set of table rows.
Args:
start_row: the row of the table at which to start the iteration (default 0)
max_rows: an upper limit on the number of rows to iterate through (default None)
Returns:
A row iterator. | codesearchnet |
def fib(n):
assert n > 0
a, b = 1, 1
for i in range(n - 1):
a, b = b, a + b
return a | Fibonacci example function
Args:
n (int): integer
Returns:
int: n-th Fibonacci number | juraj-google-style |
def __init__(self, channel):
self.Range = channel.unary_unary(
'/etcdserverpb.KV/Range',
request_serializer=rpc__pb2.RangeRequest.SerializeToString,
response_deserializer=rpc__pb2.RangeResponse.FromString,
)
self.Put = channel.unary_unary(
'/etcdserverpb.KV/Put',
request_serializer=rpc__pb2.PutRequest.SerializeToString,
response_deserializer=rpc__pb2.PutResponse.FromString,
)
self.DeleteRange = channel.unary_unary(
'/etcdserverpb.KV/DeleteRange',
request_serializer=rpc__pb2.DeleteRangeRequest.SerializeToString,
response_deserializer=rpc__pb2.DeleteRangeResponse.FromString,
)
self.Txn = channel.unary_unary(
'/etcdserverpb.KV/Txn',
request_serializer=rpc__pb2.TxnRequest.SerializeToString,
response_deserializer=rpc__pb2.TxnResponse.FromString,
)
self.Compact = channel.unary_unary(
'/etcdserverpb.KV/Compact',
request_serializer=rpc__pb2.CompactionRequest.SerializeToString,
response_deserializer=rpc__pb2.CompactionResponse.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def set_status(self, status):
text = ""
colour = "
if status == 0:
text = "OFFLINE"
colour = "
elif status == 1:
text = "STARTING"
colour = "
elif status == 2:
text = "ONLINE"
colour = "
self.status.set(text)
self.statusbar.config(background=colour) | Updates the status text
Args:
status (int): The offline/starting/online status of Modis
0: offline, 1: starting, 2: online | juraj-google-style |
def get_registered_name(obj):
if obj in _GLOBAL_CUSTOM_NAMES:
return _GLOBAL_CUSTOM_NAMES[obj]
else:
return obj.__name__ | Returns the name registered to an object within the Keras framework.
This function is part of the Keras serialization and deserialization
framework. It maps objects to the string names associated with those objects
for serialization/deserialization.
Args:
obj: The object to look up.
Returns:
The name associated with the object, or the default Python name if the
object is not registered. | github-repos |
def _check_model_use_buffer_offset(model_object):
if not model_object.metadata:
return False
for meta in model_object.metadata:
if meta.name.decode('utf-8') == 'buffer_location':
return True
return False | Checks if a model object uses buffer offsets to store constant buffers.
Args:
model_object: tflite model, a python object
Returns:
True of the model_object has the metadata entry "buffer_location"
False otherwise | github-repos |
def from_parquet(path: str, timestamps: str='timestamp', indexes: Optional[List[str]]=None, **kwargs) -> EventSet:
import pandas as pd
if indexes is None:
indexes = []
df = pd.read_parquet(path, **kwargs)
return from_pandas(df, indexes=indexes, timestamps=timestamps) | Reads an [`EventSet`][temporian.EventSet] from a parquet file.
Example:
```python
>>> temp_file = str(tmp_dir / "temporal_data.parquet")
>>> og_eventset = tp.event_set(timestamps=[1,], features={"f1": [0.1]})
>>> tp.to_parquet(og_eventset, temp_file)
>>> evset = tp.from_parquet(temp_file)
>>> evset
indexes: []
features: [('f1', float64)]
events:
(1 events):
timestamps: [1.]
'f1': [0.1]
...
```
Args:
path: Path to the file.
timestamps: Name of the column to be used as timestamps for the
EventSet.
indexes: Names of the columns to be used as indexes for the EventSet.
If None, a flat EventSet will be created.
Returns:
EventSet read from file. | github-repos |
def load_json(filename, **kwargs):
with open(filename, 'r', encoding='utf-8') as f:
return json.load(f, **kwargs) | Load a JSON object from the specified file.
Args:
filename: Path to the input JSON file.
**kwargs: Additional arguments to `json.load`.
Returns:
The object deserialized from JSON. | codesearchnet |
def parse_url(cls, string):
match = cls.URL_RE.match(string)
if (not match):
raise InvalidKeyError(cls, string)
return match.groupdict() | If it can be parsed as a version_guid with no preceding org + offering, returns a dict
with key 'version_guid' and the value,
If it can be parsed as a org + offering, returns a dict
with key 'id' and optional keys 'branch' and 'version_guid'.
Raises:
InvalidKeyError: if string cannot be parsed -or- string ends with a newline. | codesearchnet |
def _randomize_speed(base_speed: int, sigma: int=None) -> int:
if (sigma is None):
int_sigma = int((base_speed / 4))
else:
int_sigma = sigma
val = MissionWeather._gauss(base_speed, int_sigma)
if (val < 0):
return 0
return min(val, 50) | Creates a variation in wind speed
Args:
base_speed: base wind speed
sigma: sigma value for gaussian variation
Returns: random wind speed | codesearchnet |
def run_inference(self, batch: Sequence[Union[tf.Tensor, torch.Tensor]], model: Union[AutoModel, TFAutoModel], inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]:
inference_args = {} if not inference_args else inference_args
if not self._framework:
if isinstance(batch[0], tf.Tensor):
self._framework = 'tf'
else:
self._framework = 'pt'
if self._framework == 'pt' and self._device == 'GPU' and is_gpu_available_torch():
model.to(torch.device('cuda'))
if self._inference_fn:
return self._inference_fn(batch, model, inference_args, inference_args, self._model_uri)
if self._framework == 'tf':
return _default_inference_fn_tensorflow(batch, model, self._device, inference_args, self._model_uri)
else:
return _default_inference_fn_torch(batch, model, self._device, inference_args, self._model_uri) | Runs inferences on a batch of Tensors and returns an Iterable of
Tensors Predictions.
This method stacks the list of Tensors in a vectorized format to optimize
the inference call.
Args:
batch: A sequence of Tensors. These Tensors should be batchable, as
this method will call `tf.stack()`/`torch.stack()` and pass in
batched Tensors with dimensions (batch_size, n_features, etc.)
into the model's predict() function.
model: A Tensorflow/PyTorch model.
inference_args (dict[str, Any]): Non-batchable arguments required as
inputs to the model's inference function. Unlike Tensors in `batch`,
these parameters will not be dynamically batched.
Returns:
An Iterable of type PredictionResult. | github-repos |
def best_training_job(self):
self._ensure_last_tuning_job()
tuning_job_describe_result = self.estimator.sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job(HyperParameterTuningJobName=self.latest_tuning_job.name)
try:
return tuning_job_describe_result['BestTrainingJob']['TrainingJobName']
except KeyError:
raise Exception('Best training job not available for tuning job: {}'.format(self.latest_tuning_job.name)) | Return name of the best training job for the latest hyperparameter tuning job.
Raises:
Exception: If there is no best training job available for the hyperparameter tuning job. | codesearchnet |
def _ffn_layer_multi_inputs(inputs_list, hparams, ffn_layer_type='dense', name='ffn', kernel_initializer=None, bias_initializer=None, activation=None, pad_remover=None, preprocess=False, postprocess=False):
num_inputs = len(inputs_list)
assert (num_inputs > 0)
if (preprocess and (num_inputs == 1)):
inputs_list[0] = common_layers.layer_preprocess(inputs_list[0], hparams)
if postprocess:
original_inputs = inputs_list[0]
main_input = inputs_list[0]
original_shape = common_layers.shape_list(main_input)
assert (hparams.hidden_size == common_layers.shape_list(main_input)[(- 1)])
for inputs in inputs_list:
main_input.get_shape().assert_is_compatible_with(inputs.get_shape())
def remove_pads(x):
original_shape = common_layers.shape_list(x)
x = tf.reshape(x, tf.concat([[(- 1)], original_shape[2:]], axis=0))
x = tf.expand_dims(pad_remover.remove(x), axis=0)
return x
if pad_remover:
for (i, inputs) in enumerate(inputs_list):
inputs_list[i] = remove_pads(inputs)
ffn_inputs = inputs_list[0]
if (len(inputs_list) != 1):
ffn_inputs = tf.concat(inputs_list, axis=(- 1))
if (ffn_layer_type == 'dense'):
output = common_layers.dense(ffn_inputs, hparams.hidden_size, name=name, activation=activation, use_bias=True, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)
elif (ffn_layer_type == 'dense_dropconnect'):
output = common_layers.dense_dropconnect(ffn_inputs, hparams.hidden_size, name=name, dropconnect_dropout=hparams.dropconnect_dropout, output_activation=activation)
postprocess = False
elif (ffn_layer_type == 'dense_relu_dense'):
output = common_layers.dense_relu_dense(ffn_inputs, hparams.filter_size, hparams.hidden_size, name=name, dropout=hparams.relu_dropout, output_activation=activation)
else:
raise ValueError(('Unknown ffn_layer type: %s' % ffn_layer_type))
if pad_remover:
output = tf.reshape(pad_remover.restore(tf.squeeze(output, axis=0)), original_shape)
if postprocess:
if (num_inputs == 1):
output = common_layers.layer_postprocess(original_inputs, output, hparams)
else:
hp = copy.copy(hparams)
hp.layer_postprocess_sequence = hp.layer_postprocess_sequence.replace('a', '')
output = common_layers.layer_postprocess(original_inputs, output, hp)
return output | Implements a Feed-forward layer with multiple inputs, pad-removing, etc.
Args:
inputs_list: list of input tensors
hparams: hyper-parameters
ffn_layer_type: dense / dense_dropconnect/ dense_relu_dense
name: name
kernel_initializer: kernel initializer
bias_initializer: bias initializer
activation: activation function
pad_remover: pad remover
preprocess: if preprocess the input
postprocess: if postprocess the output
Returns:
a tensor
Raises:
ValueError: Unknown ffn_layer type. | codesearchnet |
def from_json(json):
return Point(lat=json['lat'], lon=json['lon'], time=isostr_to_datetime(json['time'])) | Creates Point instance from JSON representation
Args:
json (:obj:`dict`): Must have at least the following keys: lat (float), lon (float),
time (string in iso format). Example,
{
"lat": 9.3470298,
"lon": 3.79274,
"time": "2016-07-15T15:27:53.574110"
}
json: map representation of Point instance
Returns:
:obj:`Point` | codesearchnet |
def has_current_path(self, path, **kwargs):
try:
return self.assert_current_path(path, **kwargs)
except ExpectationNotMet:
return False | Checks if the page has the given path.
Args:
path (str | RegexObject): The string or regex that the current "path" should match.
**kwargs: Arbitrary keyword arguments for :class:`CurrentPathQuery`.
Returns:
bool: Whether it matches. | codesearchnet |
def make_parts_for(self, field_name, field_data):
typ = field_data.field_type
subtyp = field_data.field_subtype
if typ in ("read", "xadc"):
writeable = False
else:
writeable = True
if typ == "time" or typ in ("param", "read") and subtyp == "time":
self._make_time_parts(field_name, field_data, writeable)
elif typ == "write" and subtyp == "action":
self._make_action_part(field_name, field_data)
elif typ in ("param", "read", "write", "xadc"):
self._make_param_part(field_name, field_data, writeable)
elif typ == "bit_out":
self._make_out(field_name, field_data, "bit")
elif typ == "pos_out":
self._make_out(field_name, field_data, "pos")
self._make_scale_offset(field_name)
self._make_out_capture(field_name, field_data)
elif typ == "ext_out":
self._make_out_capture(field_name, field_data)
elif typ == "bit_mux":
self._make_mux(field_name, field_data, "bit")
self._make_mux_delay(field_name)
elif typ == "pos_mux":
self._make_mux(field_name, field_data, "pos")
elif typ == "table":
self._make_table(field_name, field_data)
else:
raise ValueError("Unknown type %r subtype %r" % (typ, subtyp)) | Create the relevant parts for this field
Args:
field_name (str): Short field name, e.g. VAL
field_data (FieldData): Field data object | juraj-google-style |
def create_remoteckan(cls, site_url, user_agent=None, user_agent_config_yaml=None, user_agent_lookup=None, session=None, **kwargs):
if (not session):
session = get_session(user_agent, user_agent_config_yaml, user_agent_lookup, prefix=Configuration.prefix, method_whitelist=frozenset(['HEAD', 'TRACE', 'GET', 'POST', 'PUT', 'OPTIONS', 'DELETE']), **kwargs)
ua = session.headers['User-Agent']
else:
ua = kwargs.get('full_agent')
if (not ua):
ua = UserAgent.get(user_agent, user_agent_config_yaml, user_agent_lookup, prefix=Configuration.prefix, **kwargs)
return ckanapi.RemoteCKAN(site_url, user_agent=ua, session=session) | Create remote CKAN instance from configuration
Args:
site_url (str): Site url.
user_agent (Optional[str]): User agent string. HDXPythonLibrary/X.X.X- is prefixed.
user_agent_config_yaml (Optional[str]): Path to YAML user agent configuration. Ignored if user_agent supplied. Defaults to ~/.useragent.yml.
user_agent_lookup (Optional[str]): Lookup key for YAML. Ignored if user_agent supplied.
session (requests.Session): requests Session object to use. Defaults to calling hdx.utilities.session.get_session()
Returns:
ckanapi.RemoteCKAN: Remote CKAN instance | codesearchnet |
def set_attribute(self, attribute: str, value: Union[(ScalarType, yaml.Node)]) -> None:
start_mark = StreamMark('generated node', 0, 0, 0)
end_mark = StreamMark('generated node', 0, 0, 0)
if isinstance(value, str):
value_node = yaml.ScalarNode('tag:yaml.org,2002:str', value, start_mark, end_mark)
elif isinstance(value, bool):
value_str = ('true' if value else 'false')
value_node = yaml.ScalarNode('tag:yaml.org,2002:bool', value_str, start_mark, end_mark)
elif isinstance(value, int):
value_node = yaml.ScalarNode('tag:yaml.org,2002:int', str(value), start_mark, end_mark)
elif isinstance(value, float):
value_node = yaml.ScalarNode('tag:yaml.org,2002:float', str(value), start_mark, end_mark)
elif (value is None):
value_node = yaml.ScalarNode('tag:yaml.org,2002:null', '', start_mark, end_mark)
elif isinstance(value, yaml.Node):
value_node = value
else:
raise TypeError('Invalid kind of value passed to set_attribute()')
attr_index = self.__attr_index(attribute)
if (attr_index is not None):
key_node = self.yaml_node.value[attr_index][0]
self.yaml_node.value[attr_index] = (key_node, value_node)
else:
key_node = yaml.ScalarNode('tag:yaml.org,2002:str', attribute, start_mark, end_mark)
self.yaml_node.value.append((key_node, value_node)) | Sets the attribute to the given value.
Use only if is_mapping() returns True.
If the attribute does not exist, this adds a new attribute, \
if it does, it will be overwritten.
If value is a str, int, float, bool or None, the attribute will \
be set to this value. If you want to set the value to a list or \
dict containing other values, build a yaml.Node and pass it here.
Args:
attribute: Name of the attribute whose value to change.
value: The value to set. | codesearchnet |
async def set_start_date(self, date: str, time: str, check_in_duration: int = None):
date_time = datetime.strptime(date + ' ' + time, '%Y/%m/%d %H:%M')
res = await self.connection('PUT',
'tournaments/{}'.format(self._id),
'tournament',
start_at=date_time,
check_in_duration=check_in_duration or 0)
self._refresh_from_json(res) | set the tournament start date (and check in duration)
|methcoro|
Args:
date: fomatted date as YYYY/MM/DD (2017/02/14)
time: fromatted time as HH:MM (20:15)
check_in_duration (optional): duration in minutes
Raises:
APIException | juraj-google-style |
def get_densities(self, spin=None):
if self.densities is None:
result = None
elif spin is None:
if Spin.down in self.densities:
result = self.densities[Spin.up] + self.densities[Spin.down]
else:
result = self.densities[Spin.up]
else:
result = self.densities[spin]
return result | Returns the density of states for a particular spin.
Args:
spin: Spin
Returns:
Returns the density of states for a particular spin. If Spin is
None, the sum of all spins is returned. | juraj-google-style |
def clear_values(self, red=0.0, green=0.0, blue=0.0, alpha=0.0, depth=1.0):
self.clear_color = (red, green, blue, alpha)
self.clear_depth = depth | Sets the clear values for the window buffer.
Args:
red (float): red compoent
green (float): green compoent
blue (float): blue compoent
alpha (float): alpha compoent
depth (float): depth value | juraj-google-style |
def ParseLines(self, input_lines):
current_macro = None
for line in input_lines:
if line.startswith('PDDM-'):
directive = line.split(' ', 1)[0]
if (directive == 'PDDM-DEFINE'):
(name, args) = self._ParseDefineLine(line)
if self._macros.get(name):
raise PDDMError(('Attempt to redefine macro: "%s"' % line))
current_macro = self.MacroDefinition(name, args)
self._macros[name] = current_macro
continue
if (directive == 'PDDM-DEFINE-END'):
if (not current_macro):
raise PDDMError(('Got DEFINE-END directive without an active macro: "%s"' % line))
current_macro = None
continue
raise PDDMError(('Hit a line with an unknown directive: "%s"' % line))
if current_macro:
current_macro.AppendLine(line)
continue
if (line.strip() == ''):
continue
raise PDDMError(('Hit a line that wasn\'t a directive and no open macro definition: "%s"' % line)) | Parses list of lines.
Args:
input_lines: A list of strings of input to parse (no newlines on the
strings).
Raises:
PDDMError if there are any issues. | codesearchnet |
def _ParseLogonApplications(self, parser_mediator, registry_key):
for application in self._LOGON_APPLICATIONS:
command_value = registry_key.GetValueByName(application)
if not command_value:
continue
values_dict = {
'Application': application,
'Command': command_value.GetDataAsObject(),
'Trigger': 'Logon'}
event_data = windows_events.WindowsRegistryEventData()
event_data.key_path = registry_key.path
event_data.offset = registry_key.offset
event_data.regvalue = values_dict
event_data.source_append = ': Winlogon'
event = time_events.DateTimeValuesEvent(
registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses the registered logon applications.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
registry_key (dfwinreg.WinRegistryKey): Windows Registry key. | juraj-google-style |
def regression_errors(y, y_hat, smoothing_window=0.01, smooth=True):
errors = np.abs(y - y_hat)[:, 0]
if not smooth:
return errors
smoothing_window = int(smoothing_window * len(y))
return pd.Series(errors).ewm(span=smoothing_window).mean().values | Compute an array of absolute errors comparing predictions and expected output.
If smooth is True, apply EWMA to the resulting array of errors.
Args:
y (array): Ground truth.
y_hat (array): Predictions array.
smoothing_window (float): Size of the smoothing window, expressed as a proportion
of the total length of y.
smooth (bool): whether the returned errors should be smoothed with EWMA.
Returns:
(array): errors | juraj-google-style |
def do_ams_delete(endpoint, path, access_token):
headers = {"DataServiceVersion": dsversion_min,
"MaxDataServiceVersion": dsversion_max,
"Accept": json_acceptformat,
"Accept-Charset" : charset,
"Authorization": 'Bearer ' + access_token,
"x-ms-version" : xmsversion}
response = requests.delete(endpoint, headers=headers, allow_redirects=False)
if response.status_code == 301:
redirected_url = ''.join([response.headers['location'], path])
response = requests.delete(redirected_url, headers=headers)
return response | Do a AMS DELETE request and return JSON.
Args:
endpoint (str): Azure Media Services Initial Endpoint.
path (str): Azure Media Services Endpoint Path.
access_token (str): A valid Azure authentication token.
Returns:
HTTP response. JSON body. | juraj-google-style |
def _validate_path(path):
if (not path):
raise ValueError('Path is empty')
if (not isinstance(path, basestring)):
raise TypeError(('Path should be a string but is %s (%s).' % (path.__class__, path))) | Basic validation of Google Storage paths.
Args:
path: a Google Storage path. It should have form '/bucket/filename'
or '/bucket'.
Raises:
ValueError: if path is invalid.
TypeError: if path is not of type basestring. | codesearchnet |
def create(self, **kwargs):
resource = self.resource.create(kwargs)
if ('admin_token' in kwargs):
resource.context.authorize('Gem-Application', api_token=resource.api_token, admin_token=kwargs['admin_token'])
app = self.wrap(resource)
return self.add(app) | Create a new Application.
Args:
**kwargs: Arbitrary keyword arguments, including:
name (str): A name for the new Application.
Returns:
A round.Application object if successful. | codesearchnet |
def signature(array):
length = len(array)
index = (_NUM_SIGNATURE_BYTES if (length > _NUM_SIGNATURE_BYTES) else length)
return array[:index] | Returns the first 262 bytes of the given bytearray
as part of the file header signature.
Args:
array: bytearray to extract the header signature.
Returns:
First 262 bytes of the file content as bytearray type. | codesearchnet |
def scoped_state(self, name_context: Union[str, 'common.NameContext'], state_name: str, io_target=None, metrics_container: Optional['MetricsContainer']=None) -> statesampler_impl.ScopedState:
if not isinstance(name_context, common.NameContext):
name_context = common.NameContext(name_context)
counter_name = CounterName(state_name + '-msecs', stage_name=self._prefix, step_name=name_context.metrics_name(), io_target=io_target)
if counter_name in self._states_by_name:
return self._states_by_name[counter_name]
else:
output_counter = self._counter_factory.get_counter(counter_name, Counter.SUM)
self._states_by_name[counter_name] = super()._scoped_state(counter_name, name_context, output_counter, metrics_container)
return self._states_by_name[counter_name] | Returns a ScopedState object associated to a Step and a State.
Args:
name_context: common.NameContext. It is the step name information.
state_name: str. It is the state name (e.g. process / start / finish).
io_target:
metrics_container: MetricsContainer. The step's metrics container.
Returns:
A ScopedState that keeps the execution context and is able to switch it
for the execution thread. | github-repos |
def _run_graph(self, device, dtype, data_format, input_shape, filter_shape, strides, padding, num_iters, warmup_iters):
graph = ops.Graph()
with graph.as_default():
warmup_outputs, outputs = build_graph(device, dtype, data_format, input_shape, filter_shape, strides, padding, num_iters, warmup_iters)
config = config_pb2.ConfigProto()
config.graph_options.optimizer_options.opt_level = -1
rewrite_options = config.graph_options.rewrite_options
rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON if FLAGS.enable_layout_optimizer else rewriter_config_pb2.RewriterConfig.OFF
rewrite_options.dependency_optimization = rewriter_config_pb2.RewriterConfig.OFF
with session_lib.Session(graph=graph, config=config) as session:
variables.global_variables_initializer().run()
session.run(warmup_outputs)
start_time = time.time()
session.run(outputs)
duration = (time.time() - start_time) / num_iters
print('%s %s %s inputshape:%s filtershape:%s strides:%s padding:%s %d iters: %.8f sec' % (device, str(dtype), data_format, str(input_shape).replace(' ', ''), str(filter_shape).replace(' ', ''), str(strides).replace(' ', ''), padding, num_iters, duration))
name_template = 'conv2d_{device}_{datatype}_{data_format}_input_shape_{inputshape}_filter_shape_{filtershape}_strides_{strides}_padding_{padding}'
self.report_benchmark(name=name_template.format(device=device, datatype=str(dtype), data_format=str(data_format), inputshape=str(input_shape).replace(' ', ''), filtershape=str(filter_shape).replace(' ', ''), strides=str(strides).replace(' ', ''), padding=padding).replace(' ', ''), iters=num_iters, wall_time=duration)
return duration | runs the graph and print its execution time.
Args:
device: String, the device to run on.
dtype: Data type for the convolution.
data_format: A string from: "NHWC" or "NCHW". Data format for input and
output data.
input_shape: Shape of the input tensor.
filter_shape: Shape of the filter tensor.
strides: A list of ints. 1-D of length 4. The stride of sliding
window for each dimension of input.
padding: A string from: "SAME", "VALID". The type of padding
algorithm to use. num_iters: Number of iterations to run the
benchmark.
num_iters: number of iterations to run conv2d.
warmup_iters: number of iterations for warmup runs.
Returns:
The duration of the run in seconds. | github-repos |
def get_release_data(self):
previous_package = self.get_previous_release()
if previous_package:
previous_version = previous_package.version
previous_revision = previous_package.revision
else:
previous_version = None
previous_revision = None
if (self.vcs is None):
return dict(vcs='None', previous_version=previous_version)
revision = None
with self.repo_operation():
revision = self.vcs.get_current_revision()
changelog = self.get_changelog()
maxlen = config.max_package_changelog_chars
if (maxlen and changelog and (len(changelog) > (maxlen + 3))):
changelog = (changelog[:maxlen] + '...')
return dict(vcs=self.vcs.name(), revision=revision, changelog=changelog, previous_version=previous_version, previous_revision=previous_revision) | Get release data for this release.
Returns:
dict. | codesearchnet |
def unwrap_arguments(xml_response):
xml_response = xml_response.encode('utf-8')
try:
tree = XML.fromstring(xml_response)
except XML.ParseError:
filtered = illegal_xml_re.sub('', xml_response.decode('utf-8'))\
.encode('utf-8')
tree = XML.fromstring(filtered)
action_response = tree.find(
"{http:
return dict((i.tag, i.text or "") for i in action_response) | Extract arguments and their values from a SOAP response.
Args:
xml_response (str): SOAP/xml response text (unicode,
not utf-8).
Returns:
dict: a dict of ``{argument_name: value}`` items. | juraj-google-style |
def main(argv=None):
if (argv is None):
argv = sys.argv[1:]
try:
executor = None
parser = build_args()
args = parser.parse_args(args=argv)
model = DeviceModel()
parser = SensorGraphFileParser()
parser.parse_file(args.sensor_graph)
parser.compile(model)
if (not args.disable_optimizer):
opt = SensorGraphOptimizer()
opt.optimize(parser.sensor_graph, model=model)
graph = parser.sensor_graph
sim = SensorGraphSimulator(graph)
for stop in args.stop:
sim.stop_condition(stop)
for watch in args.watch:
watch_sel = DataStreamSelector.FromString(watch)
graph.sensor_log.watch(watch_sel, watch_printer)
if (args.semihost_device is not None):
executor = SemihostedRPCExecutor(args.port, args.semihost_device)
sim.rpc_executor = executor
for mock in args.mock_rpc:
(slot, rpc_id, value) = process_mock_rpc(mock)
sim.rpc_executor.mock(slot, rpc_id, value)
for stim in args.stimulus:
sim.stimulus(stim)
graph.load_constants()
if (args.trace is not None):
sim.record_trace()
try:
if args.connected:
sim.step(user_connected, 8)
sim.run(accelerated=(not args.realtime))
except KeyboardInterrupt:
pass
if (args.trace is not None):
sim.trace.save(args.trace)
finally:
if (executor is not None):
executor.hw.close()
return 0 | Main entry point for iotile sensorgraph simulator.
This is the iotile-sgrun command line program. It takes
an optional set of command line parameters to allow for
testing.
Args:
argv (list of str): An optional set of command line
parameters. If not passed, these are taken from
sys.argv. | codesearchnet |
def DocumentVersionsRow(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
version_path = self._GetRowValue(query_hash, row, 'version_path')
path = self._GetRowValue(query_hash, row, 'path')
paths = version_path.split('/')
if ((len(paths) < 2) or (not paths[1].isdigit())):
user_sid = ''
else:
user_sid = paths[1]
version_path = (self.ROOT_VERSION_PATH + version_path)
(path, _, _) = path.rpartition('/')
event_data = MacDocumentVersionsEventData()
event_data.last_time = self._GetRowValue(query_hash, row, 'last_time')
event_data.name = self._GetRowValue(query_hash, row, 'name')
event_data.path = path
event_data.query = query
event_data.user_sid = '{0!s}'.format(user_sid)
event_data.version_path = version_path
timestamp = self._GetRowValue(query_hash, row, 'version_time')
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a document versions row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row. | codesearchnet |
def docx_text_from_xml(xml: str, config: TextProcessingConfig) -> str:
root = ElementTree.fromstring(xml)
return docx_text_from_xml_node(root, 0, config) | Converts an XML tree of a DOCX file to string contents.
Args:
xml: raw XML text
config: :class:`TextProcessingConfig` control object
Returns:
contents as a string | juraj-google-style |
def get_topics_strings(topics_words, alpha, vocabulary,
topics_to_print=10, words_per_topic=10):
alpha = np.squeeze(alpha, axis=0)
highest_weight_topics = np.argsort(-alpha, kind="mergesort")
top_words = np.argsort(-topics_words, axis=1)
res = []
for topic_idx in highest_weight_topics[:topics_to_print]:
l = ["index={} alpha={:.2f}".format(topic_idx, alpha[topic_idx])]
l += [vocabulary[word] for word in top_words[topic_idx, :words_per_topic]]
res.append(" ".join(l))
return np.array(res) | Returns the summary of the learned topics.
Arguments:
topics_words: KxV tensor with topics as rows and words as columns.
alpha: 1xK tensor of prior Dirichlet concentrations for the
topics.
vocabulary: A mapping of word's integer index to the corresponding string.
topics_to_print: The number of topics with highest prior weight to
summarize.
words_per_topic: Number of wodrs per topic to return.
Returns:
summary: A np.array with strings. | juraj-google-style |
def set_parameter_vector(self, vector, include_frozen=False):
v = self.parameter_vector
if include_frozen:
v[:] = vector
else:
v[self.unfrozen_mask] = vector
self.parameter_vector = v
self.dirty = True | Set the parameter values to the given vector
Args:
vector (array[vector_size] or array[full_size]): The target
parameter vector. This must be in the same order as
``parameter_names`` and it should only include frozen
parameters if ``include_frozen`` is ``True``.
include_frozen (Optional[bool]): Should the frozen parameters be
included in the returned value? (default: ``False``) | codesearchnet |
class HerbertTokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = HerbertTokenizer
def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', sep_token='</s>', **kwargs):
super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, sep_token=sep_token, **kwargs)
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]:
cls = [self.cls_token_id]
sep = [self.sep_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: bool=False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
if token_ids_1 is None:
return [1] + [0] * len(token_ids_0) + [1]
return [1] + [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1) + [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files) | Construct a "Fast" BPE tokenizer for HerBERT (backed by HuggingFace's *tokenizers* library).
Peculiarities:
- uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
a punctuation character will be treated separately.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
superclass for more information regarding methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file. | github-repos |
def __init__(self, context):
self._logdir = context.logdir
self._multiplexer = context.multiplexer
self._plugin_name_to_instance = context.plugin_name_to_instance | Instantiates ScalarsPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance. | juraj-google-style |
def allocate(self, workdir=None, use_smartio=False):
if workdir is not None:
self.set_workdir(workdir)
for i, work in enumerate(self):
work.set_workdir(os.path.join(self.workdir, "w" + str(i)))
if not hasattr(self, "workdir"):
raise RuntimeError("You must call flow.allocate(workdir) if the workdir is not passed to __init__")
for work in self:
work.allocate(manager=self.manager)
work.set_flow(self)
for task in work:
task.set_work(work)
self.check_dependencies()
if not hasattr(self, "_allocated"): self._allocated = 0
self._allocated += 1
if use_smartio:
self.use_smartio()
return self | Allocate the `Flow` i.e. assign the `workdir` and (optionally)
the :class:`TaskManager` to the different tasks in the Flow.
Args:
workdir: Working directory of the flow. Must be specified here
if we haven't initialized the workdir in the __init__.
Return:
self | juraj-google-style |
def hardware_version(self):
version = self._dll.JLINKARM_GetHardwareVersion()
major = ((version / 10000) % 100)
minor = ((version / 100) % 100)
return ('%d.%02d' % (major, minor)) | Returns the hardware version of the connected J-Link as a
major.minor string.
Args:
self (JLink): the ``JLink`` instance
Returns:
Hardware version string. | codesearchnet |
def convert(in_file, out_file, in_fmt='', out_fmt=''):
in_file = os.path.expanduser(in_file)
out_file = os.path.expanduser(out_file)
if (not os.path.exists(in_file)):
raise IOError('Input file {0} does not exist, stopping...'.format(in_file))
in_fmt = (in_fmt.lower() or _guess_format_from_extension(in_file.split('.')[(- 1)].lower()))
out_fmt = (out_fmt.lower() or _guess_format_from_extension(out_file.split('.')[(- 1)].lower()))
if ((not in_fmt) or (not out_fmt)):
raise ValueError('Cannot determine conversion formats.')
return False
if (in_fmt is out_fmt):
shutil.copyfileobj(in_file, out_file)
return out_file
if (in_fmt == 'hdf5'):
from . import hdf5
data = hdf5.load(in_file)
elif (in_fmt == 'tiff'):
from . import tiff
data = tiff.load(in_file)
elif (in_fmt == 'png'):
from . import png
data = png.load(in_file)
else:
return _fail_pair_conversion(in_fmt, out_fmt)
if (out_fmt == 'hdf5'):
from . import hdf5
return hdf5.save(out_file, data)
elif (out_fmt == 'tiff'):
from . import tiff
return tiff.save(out_file, data)
elif (out_fmt == 'png'):
from . import png
return png.export_png(out_file, data)
else:
return _fail_pair_conversion(in_fmt, out_fmt)
return _fail_pair_conversion(in_fmt, out_fmt) | Converts in_file to out_file, guessing datatype in the absence of
in_fmt and out_fmt.
Arguments:
in_file: The name of the (existing) datafile to read
out_file: The name of the file to create with converted data
in_fmt: Optional. The format of incoming data, if not guessable
out_fmt: Optional. The format of outgoing data, if not guessable
Returns:
String. Output filename | codesearchnet |
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None):
with tf.variable_scope("sigmoid_accuracy_one_hot", values=[logits, labels]):
del weights_fn
predictions = tf.nn.sigmoid(logits)
labels = tf.argmax(labels, -1)
predictions = tf.argmax(predictions, -1)
_, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
return accuracy, tf.constant(1.0) | Calculate accuracy for a set, given one-hot labels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
accuracy (scalar), weights | juraj-google-style |
def text(self) -> str:
if not mime_types.is_text(self.mimetype) and (not mime_types.is_json(self.mimetype)):
raise ValueError('Part is not text.')
return self.part.text or '' | Returns part text as string.
Returns:
The text of the part.
Raises:
ValueError if part has no text. | github-repos |
def signmessage(self, address, message):
signature = self.rpc.call("signmessage", address, message)
self.logger.debug("Signature: %s" % signature)
return signature | Sign a message with the private key of an address.
Cryptographically signs a message using ECDSA. Since this requires
an address's private key, the wallet must be unlocked first.
Args:
address (str): address used to sign the message
message (str): plaintext message to which apply the signature
Returns:
str: ECDSA signature over the message | juraj-google-style |
def remove(self, source: Source) -> None:
self.unload(source)
if isinstance(source, RemoteSource):
shutil.rmtree(source.location, ignore_errors=True)
self.save() | Unregisters a given source with this server. If the given source is a
remote source, then its local copy will be removed from disk.
Raises:
KeyError: if the given source is not registered with this server. | codesearchnet |
def RetryUpload(self, job, job_id, error):
if self.IsErrorRetryable(error):
retry_count = 0
sleep_interval = config.CONFIG["BigQuery.retry_interval"]
while retry_count < config.CONFIG["BigQuery.retry_max_attempts"]:
time.sleep(sleep_interval.seconds)
logging.info("Retrying job_id: %s", job_id)
retry_count += 1
try:
response = job.execute()
return response
except errors.HttpError as e:
if self.IsErrorRetryable(e):
sleep_interval *= config.CONFIG["BigQuery.retry_multiplier"]
logging.exception("Error with job: %s, will retry in %s", job_id,
sleep_interval)
else:
raise BigQueryJobUploadError(
"Can't retry error code %s. Giving up"
" on job: %s." % (e.resp.status, job_id))
else:
raise BigQueryJobUploadError("Can't retry error code %s. Giving up on "
"job: %s." % (error.resp.status, job_id))
raise BigQueryJobUploadError(
"Giving up on job:%s after %s retries." % (job_id, retry_count)) | Retry the BigQuery upload job.
Using the same job id protects us from duplicating data on the server. If we
fail all of our retries we raise.
Args:
job: BigQuery job object
job_id: ID string for this upload job
error: errors.HttpError object from the first error
Returns:
API response object on success, None on failure
Raises:
BigQueryJobUploadError: if we can't get the bigquery job started after
retry_max_attempts | juraj-google-style |
def _get_ngrams(n, text):
ngram_set = set()
text_length = len(text)
max_index_ngram_start = (text_length - n)
for i in range((max_index_ngram_start + 1)):
ngram_set.add(tuple(text[i:(i + n)]))
return ngram_set | Calculates n-grams.
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams | codesearchnet |
def correction(self, word):
return max(self.candidates(word), key=self.word_probability) | The most probable correct spelling for the word
Args:
word (str): The word to correct
Returns:
str: The most likely candidate | juraj-google-style |
def _is_named_tuple(instance):
if not isinstance(instance, tuple):
return False
return hasattr(instance, '_fields') and isinstance(instance._fields, collections_abc.Sequence) and all((isinstance(f, str) for f in instance._fields)) | Returns True iff `instance` is a `namedtuple`.
Args:
instance: An instance of a Python object.
Returns:
True if `instance` is a `namedtuple`. | github-repos |
def unwrap_or(self, default: U) -> Union[(T, U)]:
return self.unwrap_or_else((lambda : default)) | Returns the contained value or ``default``.
Args:
default: The default value.
Returns:
The contained value if the :py:class:`Option` is ``Some``,
otherwise ``default``.
Notes:
If you wish to use a result of a function call as the default,
it is recommnded to use :py:meth:`unwrap_or_else` instead.
Examples:
>>> Some(0).unwrap_or(3)
0
>>> NONE.unwrap_or(0)
0 | codesearchnet |
def write_file(self, path, contents):
path = self._get_dist_path(path)
if (not os.path.isdir(os.path.dirname(path))):
os.makedirs(os.path.dirname(path))
if isinstance(contents, bytes):
mode = 'wb+'
else:
mode = 'w'
with open(path, mode) as file:
file.write(contents) | Write a file of any type to the destination path. Useful for files like
robots.txt, manifest.json, and so on.
Args:
path (str): The name of the file to write to.
contents (str or bytes): The contents to write. | codesearchnet |
def ack(self, items):
for item in items:
time_to_ack = item.time_to_ack
if time_to_ack is not None:
self._manager.ack_histogram.add(time_to_ack)
ack_ids = [item.ack_id for item in items]
request = types.StreamingPullRequest(ack_ids=ack_ids)
self._manager.send(request)
self.drop(items) | Acknowledge the given messages.
Args:
items(Sequence[AckRequest]): The items to acknowledge. | juraj-google-style |
def run(self, dag):
coupling_map = self._coupling_map
ordered_virtual_gates = list(dag.serial_layers())
if (self.initial_layout is None):
if self.property_set['layout']:
self.initial_layout = self.property_set['layout']
else:
self.initial_layout = Layout.generate_trivial_layout(*dag.qregs.values())
if (len(dag.qubits()) != len(self.initial_layout)):
raise TranspilerError('The layout does not match the amount of qubits in the DAG')
if (len(self._coupling_map.physical_qubits) != len(self.initial_layout)):
raise TranspilerError('Mappers require to have the layout to be the same size as the coupling map')
mapped_gates = []
layout = self.initial_layout.copy()
gates_remaining = ordered_virtual_gates.copy()
while gates_remaining:
best_step = _search_forward_n_swaps(layout, gates_remaining, coupling_map)
layout = best_step['layout']
gates_mapped = best_step['gates_mapped']
gates_remaining = best_step['gates_remaining']
mapped_gates.extend(gates_mapped)
mapped_dag = _copy_circuit_metadata(dag, coupling_map)
for node in mapped_gates:
mapped_dag.apply_operation_back(op=node.op, qargs=node.qargs, cargs=node.cargs)
return mapped_dag | Run one pass of the lookahead mapper on the provided DAG.
Args:
dag (DAGCircuit): the directed acyclic graph to be mapped
Returns:
DAGCircuit: A dag mapped to be compatible with the coupling_map in
the property_set.
Raises:
TranspilerError: if the coupling map or the layout are not
compatible with the DAG | codesearchnet |
def forward(self, inputs, expert_size):
input_list = inputs.split(expert_size, dim=0)
output_list = []
for i in range(self.num_experts):
output_list.append(F.linear(input_list[i], self.weight[i]))
results = torch.cat(output_list, dim=0)
return results | Forward pass of the GraniteMoeHybridParallelExperts module.
Args:
inputs (Tensor):
Input tensor.
expert_size:
Expert size information.
Returns:
Tensor: Output tensor. | github-repos |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.