code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def __get_distribution_tags(self, client, arn):
return {t['Key']: t['Value'] for t in client.list_tags_for_resource(Resource=arn)['Tags']['Items']} | Returns a dict containing the tags for a CloudFront distribution
Args:
client (botocore.client.CloudFront): Boto3 CloudFront client object
arn (str): ARN of the distribution to get tags for
Returns:
`dict` | codesearchnet |
def to_channel_dimension_format(image: np.ndarray, channel_dim: Union[ChannelDimension, str], input_channel_dim: Optional[Union[ChannelDimension, str]]=None) -> np.ndarray:
if not isinstance(image, np.ndarray):
raise TypeError(f'Input image must be of type np.ndarray, got {type(image)}')
if input_channel_dim is None:
input_channel_dim = infer_channel_dimension_format(image)
target_channel_dim = ChannelDimension(channel_dim)
if input_channel_dim == target_channel_dim:
return image
if target_channel_dim == ChannelDimension.FIRST:
axes = list(range(image.ndim - 3)) + [image.ndim - 1, image.ndim - 3, image.ndim - 2]
image = image.transpose(axes)
elif target_channel_dim == ChannelDimension.LAST:
axes = list(range(image.ndim - 3)) + [image.ndim - 2, image.ndim - 1, image.ndim - 3]
image = image.transpose(axes)
else:
raise ValueError(f'Unsupported channel dimension format: {channel_dim}')
return image | Converts `image` to the channel dimension format specified by `channel_dim`. The input
can have arbitrary number of leading dimensions. Only last three dimension will be permuted
to format the `image`.
Args:
image (`numpy.ndarray`):
The image to have its channel dimension set.
channel_dim (`ChannelDimension`):
The channel dimension format to use.
input_channel_dim (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
Returns:
`np.ndarray`: The image with the channel dimension set to `channel_dim`. | github-repos |
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name):
how_many_bottlenecks = 0
ensure_dir_exists(bottleneck_dir)
for (label_name, label_lists) in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for (index, unused_base_name) in enumerate(category_list):
get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, decoded_image_tensor, resized_input_tensor, bottleneck_tensor, module_name)
how_many_bottlenecks += 1
if ((how_many_bottlenecks % 100) == 0):
tf.logging.info((str(how_many_bottlenecks) + ' bottleneck files created.')) | Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no
distortions applied during training) it can speed things up a lot if we
calculate the bottleneck layer values once for each image during
preprocessing, and then just read those cached values repeatedly during
training. Here we go through all the images we've found, calculate those
values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: OrderedDict of training images for each label.
image_dir: Root folder string of the subfolders containing the training
images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
decoded_image_tensor: The output of decoding and resizing the image.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The penultimate output layer of the graph.
module_name: The name of the image module being used.
Returns:
Nothing. | codesearchnet |
def _new_named_tuple(self, class_name: str, fields: list[tuple[str, Any]]) -> pytd.Class:
class_base = pytd.NamedType('typing.NamedTuple')
class_constants = tuple((pytd.Constant(n, t) for n, t in fields))
return pytd.Class(name=class_name, keywords=(), bases=(class_base,), methods=(), constants=class_constants, decorators=(), classes=(), slots=None, template=()) | Generates a pytd class for a named tuple.
Args:
class_name: The name of the generated class
fields: A list of (name, type) tuples.
Returns:
A generated class that describes the named tuple. | github-repos |
def restore_app_connection(self, port=None):
self.host_port = (port or utils.get_available_host_port())
self._retry_connect()
self.ed = self._start_event_client() | Restores the sl4a after device got disconnected.
Instead of creating new instance of the client:
- Uses the given port (or find a new available host_port if none is
given).
- Tries to connect to remote server with selected port.
Args:
port: If given, this is the host port from which to connect to remote
device port. If not provided, find a new available port as host
port.
Raises:
AppRestoreConnectionError: When the app was not able to be started. | codesearchnet |
def decode_list(cls, obj, element_type):
if (not isinstance(obj, list)):
raise Exception('expected a python list')
return list(map((lambda x: cls.do_decode(x, element_type)), obj)) | Decodes json into a list, handling conversion of the elements.
Args:
obj: the json object to decode
element_type: a class object which is the conjure type of
the elements in this list.
Returns:
A python list where the elements are instances of type
element_type. | codesearchnet |
def mean(self):
chunk_iter = chunks(self.times, self.bestof)
times = list(map(min, chunk_iter))
mean = (sum(times) / len(times))
return mean | The mean of the best results of each trial.
Returns:
float: mean of measured seconds
Note:
This is typically less informative than simply looking at the min.
It is recommended to use min as the expectation value rather than
mean in most cases.
Example:
>>> import math
>>> self = Timerit(num=10, verbose=0)
>>> self.call(math.factorial, 50)
>>> assert self.mean() > 0 | codesearchnet |
def __init__(self, src_file, sync_dst_file, *async_dst_files):
self._origin_stack = '\n'.join(traceback.format_stack())
self.tee_file = None
self._src_file = src_file
self._sync_dst_file = sync_dst_file
self._async_dst_files = list(async_dst_files)
self._write_queues = []
self._write_threads = []
for f in async_dst_files:
q = queue.Queue()
t = spawn_reader_writer(q.get, functools.partial(self._write, f))
self._write_queues.append(q)
self._write_threads.append(t)
src_fd = self._src_file.fileno()
def read():
try:
return os.read(src_fd, 1024)
except OSError:
return six.b('')
self._read_thread = spawn_reader_writer(read, self._write_to_all) | Constructor.
Args:
src_file: file to read from.
sync_dst_file: file to write to synchronously when `self.write()` is
called.
async_dst_files: files to write to asynchronously | juraj-google-style |
def __x_google_quota_definitions_descriptor(self, limit_definitions):
if not limit_definitions:
return None
definitions_list = [{
'name': ld.metric_name,
'metric': ld.metric_name,
'unit': '1/min/{project}',
'values': {'STANDARD': ld.default_limit},
'displayName': ld.display_name,
} for ld in limit_definitions]
metrics = [{
'name': ld.metric_name,
'valueType': 'INT64',
'metricKind': 'GAUGE',
} for ld in limit_definitions]
return {
'quota': {'limits': definitions_list},
'metrics': metrics,
} | Describes the quota limit definitions for an API.
Args:
limit_definitions: List of endpoints.LimitDefinition tuples
Returns:
A dict descriptor of the API's quota limit definitions. | juraj-google-style |
def _reshape(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
query_layer = fused_qkv[..., 0, :].transpose(1, 2)
key_layer = fused_qkv[..., 1, :].transpose(1, 2)
value_layer = fused_qkv[..., 2, :].transpose(1, 2)
return (query_layer, key_layer, value_layer) | Split the last dimension into (num_heads, head_dim) and reshapes to (bs, heads, len, dim) shape
without making any copies, results share same memory storage as `fused_qkv`
Args:
fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim]
Returns:
query: [batch_size, num_heads, seq_length, head_dim]
key: [batch_size, num_heads, seq_length, head_dim]
value: [batch_size, num_heads, seq_length, head_dim] | github-repos |
def generate_code(meta, prefix=None, node=False, min=False):
if isinstance(meta, dict):
(url_prefix, auth_header, resources) = parse_meta(meta)
else:
(url_prefix, auth_header, resources) = meta
if (prefix is not None):
url_prefix = prefix
core = render_core(url_prefix, auth_header, resources)
if min:
filename = 'res.web.min.js'
else:
filename = 'res.web.js'
if node:
filename = 'res.node.js'
base = read_file(filename)
return base.replace('" | Generate res.js
Args:
meta: tuple(url_prefix, auth_header, resources) or metadata of API
Returns:
res.js source code | codesearchnet |
def draw_ID(ID, idx_array, drawID_raster):
for i in range(idx_array.shape[0]):
x = idx_array[i, 0]
y = idx_array[i, 1]
drawID_raster[x, y] = ID
return drawID_raster | Draw every pixel's ID
After computing all given value's pixels connectivity, every pixel will
have an ID. Then we need to draw these pixels' ID on the undrawed
rasterfile.
Args:
ID: given ID value
idx_array: pixels position set which have the given ID value
drawID_raster: undrawed rasterfile
Return:
drawID_raster: rasterfile after drawing ID | juraj-google-style |
def output_compressed_dinf(dinfflowang, compdinffile, weightfile):
dinf_r = RasterUtilClass.read_raster(dinfflowang)
data = dinf_r.data
xsize = dinf_r.nCols
ysize = dinf_r.nRows
nodata_value = dinf_r.noDataValue
cal_dir_code = frompyfunc(DinfUtil.compress_dinf, 2, 3)
updated_angle, dir_code, weight = cal_dir_code(data, nodata_value)
RasterUtilClass.write_gtiff_file(dinfflowang, ysize, xsize, updated_angle,
dinf_r.geotrans, dinf_r.srs, DEFAULT_NODATA, GDT_Float32)
RasterUtilClass.write_gtiff_file(compdinffile, ysize, xsize, dir_code,
dinf_r.geotrans, dinf_r.srs, DEFAULT_NODATA, GDT_Int16)
RasterUtilClass.write_gtiff_file(weightfile, ysize, xsize, weight,
dinf_r.geotrans, dinf_r.srs, DEFAULT_NODATA, GDT_Float32) | Output compressed Dinf flow direction and weight to raster file
Args:
dinfflowang: Dinf flow direction raster file
compdinffile: Compressed D8 flow code
weightfile: The correspond weight | juraj-google-style |
def __init__(self, channel):
self.CreateJob = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/CreateJob",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.CreateJobRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__pb2.Job.FromString,
)
self.GetJob = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/GetJob",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.GetJobRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__pb2.Job.FromString,
)
self.UpdateJob = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/UpdateJob",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.UpdateJobRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__pb2.Job.FromString,
)
self.DeleteJob = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/DeleteJob",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.DeleteJobRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.ListJobs = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/ListJobs",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.ListJobsRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.ListJobsResponse.FromString,
)
self.BatchDeleteJobs = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/BatchDeleteJobs",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.BatchDeleteJobsRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.SearchJobs = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/SearchJobs",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.SearchJobsRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.SearchJobsResponse.FromString,
)
self.SearchJobsForAlert = channel.unary_unary(
"/google.cloud.talent.v4beta1.JobService/SearchJobsForAlert",
request_serializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.SearchJobsRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_talent__v4beta1_dot_proto_dot_job__service__pb2.SearchJobsResponse.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def load_identity_signer(key_dir, key_name):
key_path = os.path.join(key_dir, '{}.priv'.format(key_name))
if (not os.path.exists(key_path)):
raise LocalConfigurationError('No such signing key file: {}'.format(key_path))
if (not os.access(key_path, os.R_OK)):
raise LocalConfigurationError('Key file is not readable: {}'.format(key_path))
LOGGER.info('Loading signing key: %s', key_path)
try:
with open(key_path, 'r') as key_file:
private_key_str = key_file.read().strip()
except IOError as e:
raise LocalConfigurationError('Could not load key file: {}'.format(str(e)))
try:
private_key = Secp256k1PrivateKey.from_hex(private_key_str)
except signing.ParseError as e:
raise LocalConfigurationError('Invalid key in file {}: {}'.format(key_path, str(e)))
context = signing.create_context('secp256k1')
crypto_factory = CryptoFactory(context)
return crypto_factory.new_signer(private_key) | Loads a private key from the key directory, based on a validator's
identity.
Args:
key_dir (str): The path to the key directory.
key_name (str): The name of the key to load.
Returns:
Signer: the cryptographic signer for the key | codesearchnet |
def linear(x):
return x | Linear activation function (pass-through).
A "linear" activation is an identity function:
it returns the input, unmodified.
Args:
x: Input tensor. | github-repos |
def register_model(cls, model):
rest_name = model.rest_name
resource_name = model.resource_name
if (rest_name not in cls._model_rest_name_registry):
cls._model_rest_name_registry[rest_name] = [model]
cls._model_resource_name_registry[resource_name] = [model]
elif (model not in cls._model_rest_name_registry[rest_name]):
cls._model_rest_name_registry[rest_name].append(model)
cls._model_resource_name_registry[resource_name].append(model) | Register a model class according to its remote name
Args:
model: the model to register | codesearchnet |
def assert_text(self, *args, **kwargs):
query = TextQuery(*args, **kwargs)
@self.synchronize(wait=query.wait)
def assert_text():
count = query.resolve_for(self)
if (not (matches_count(count, query.options) and ((count > 0) or expects_none(query.options)))):
raise ExpectationNotMet(query.failure_message)
return True
return assert_text() | Asserts that the page or current node has the given text content, ignoring any HTML tags.
Args:
*args: Variable length argument list for :class:`TextQuery`.
**kwargs: Arbitrary keyword arguments for :class:`TextQuery`.
Returns:
True
Raises:
ExpectationNotMet: If the assertion hasn't succeeded during the wait time. | codesearchnet |
def _ragged_stack_concat_axis_0(rt_inputs, stack_values):
flat_values = [rt.flat_values for rt in rt_inputs]
concatenated_flat_values = array_ops.concat(flat_values, axis=0)
nested_splits = [rt.nested_row_splits for rt in rt_inputs]
ragged_rank = rt_inputs[0].ragged_rank
concatenated_nested_splits = [_concat_ragged_splits([ns[dim] for ns in nested_splits]) for dim in range(ragged_rank)]
if stack_values:
stack_lengths = array_ops_stack.stack([rt.nrows() for rt in rt_inputs])
stack_splits = ragged_util.lengths_to_splits(stack_lengths)
concatenated_nested_splits.insert(0, stack_splits)
return ragged_tensor.RaggedTensor.from_nested_row_splits(concatenated_flat_values, concatenated_nested_splits, validate=False) | Helper function to concatenate or stack ragged tensors along axis 0.
Args:
rt_inputs: A list of RaggedTensors, all with the same rank and ragged_rank.
stack_values: Boolean. If true, then stack values; otherwise, concatenate
them.
Returns:
A RaggedTensor. | github-repos |
def add_argument(self, parser, bootstrap=False):
if self.cli_expose:
args = self._get_argparse_names(parser.prefix_chars)
kwargs = self._get_argparse_kwargs(bootstrap)
parser.add_argument(*args, **kwargs) | Add this item as an argument to the given parser.
Args:
parser (argparse.ArgumentParser): The parser to add this item to.
bootstrap: Flag to indicate whether you only want to mark this
item as required or not | codesearchnet |
def setup(self, hosts, artifacts, extra_artifacts, use_tsk, reason, grr_server_url, grr_username, grr_password, approvers=None, verify=True):
super(GRRArtifactCollector, self).setup(reason, grr_server_url, grr_username, grr_password, approvers=approvers, verify=verify)
if (artifacts is not None):
self.artifacts = [item.strip() for item in artifacts.strip().split(',')]
if (extra_artifacts is not None):
self.extra_artifacts = [item.strip() for item in extra_artifacts.strip().split(',')]
self.hostnames = [item.strip() for item in hosts.strip().split(',')]
self.use_tsk = use_tsk | Initializes a GRR artifact collector.
Args:
hosts: Comma-separated list of hostnames to launch the flow on.
artifacts: list of GRR-defined artifacts.
extra_artifacts: list of GRR-defined artifacts to append.
use_tsk: toggle for use_tsk flag on GRR flow.
reason: justification for GRR access.
grr_server_url: GRR server URL.
grr_username: GRR username.
grr_password: GRR password.
approvers: list of GRR approval recipients.
verify: boolean, whether to verify the GRR server's x509 certificate. | codesearchnet |
def fasta_format_check(fasta_path, logger):
header_count = 0
line_count = 1
nt_count = 0
with open(fasta_path) as f:
for l in f:
l = l.strip()
if (l == ''):
continue
if (l[0] == '>'):
header_count += 1
continue
if ((header_count == 0) and (l[0] != '>')):
error_msg = 'First non-blank line (L:{line_count}) does not contain FASTA header. Line beginning with ">" expected.'.format(line_count=line_count)
logger.error(error_msg)
raise Exception(error_msg)
non_nucleotide_chars_in_line = (set(l) - VALID_NUCLEOTIDES)
if (len(non_nucleotide_chars_in_line) > 0):
error_msg = 'Line {line} contains the following non-nucleotide characters: {non_nt_chars}'.format(line=line_count, non_nt_chars=', '.join([x for x in non_nucleotide_chars_in_line]))
logger.error(error_msg)
raise Exception(error_msg)
nt_count += len(l)
line_count += 1
if (nt_count == 0):
error_msg = 'File "{}" does not contain any nucleotide sequence.'.format(fasta_path)
logger.error(error_msg)
raise Exception(error_msg)
logger.info('Valid FASTA format "{}" ({} bp)'.format(fasta_path, nt_count)) | Check that a file is valid FASTA format.
- First non-blank line needs to begin with a '>' header character.
- Sequence can only contain valid IUPAC nucleotide characters
Args:
fasta_str (str): FASTA file contents string
Raises:
Exception: If invalid FASTA format | codesearchnet |
def install_app(app, target='/Applications/'):
if (target[(- 4):] != '.app'):
if (app[(- 1):] == '/'):
base_app = os.path.basename(app[:(- 1)])
else:
base_app = os.path.basename(app)
target = os.path.join(target, base_app)
if (not (app[(- 1)] == '/')):
app += '/'
cmd = 'rsync -a --delete "{0}" "{1}"'.format(app, target)
return __salt__['cmd.run'](cmd) | Install an app file by moving it into the specified Applications directory
Args:
app (str): The location of the .app file
target (str): The target in which to install the package to
Default is ''/Applications/''
Returns:
str: The results of the rsync command
CLI Example:
.. code-block:: bash
salt '*' macpackage.install_app /tmp/tmp.app /Applications/ | codesearchnet |
def Push(self, source_file, device_filename, mtime='0', timeout_ms=None, progress_callback=None, st_mode=None):
if isinstance(source_file, str):
if os.path.isdir(source_file):
self.Shell(('mkdir ' + device_filename))
for f in os.listdir(source_file):
self.Push(os.path.join(source_file, f), ((device_filename + '/') + f), progress_callback=progress_callback)
return
source_file = open(source_file, 'rb')
with source_file:
connection = self.protocol_handler.Open(self._handle, destination=b'sync:', timeout_ms=timeout_ms)
kwargs = {}
if (st_mode is not None):
kwargs['st_mode'] = st_mode
self.filesync_handler.Push(connection, source_file, device_filename, mtime=int(mtime), progress_callback=progress_callback, **kwargs)
connection.Close() | Push a file or directory to the device.
Args:
source_file: Either a filename, a directory or file-like object to push to
the device.
device_filename: Destination on the device to write to.
mtime: Optional, modification time to set on the file.
timeout_ms: Expected timeout for any part of the push.
st_mode: stat mode for filename
progress_callback: callback method that accepts filename, bytes_written and total_bytes,
total_bytes will be -1 for file-like objects | codesearchnet |
async def snap(self, user=None, view=None):
if view is None:
view = self.view
if user is None:
user = self.auth.getUserByName('root')
snap = await view.snap(user)
return snap | Return a transaction object for the default view.
Args:
write (bool): Set to True for a write transaction.
Returns:
(synapse.lib.snap.Snap)
NOTE: This must be used in a with block. | juraj-google-style |
async def evaluate_trained_model(state):
return (await evaluate_model(state.train_model_path, state.best_model_path, os.path.join(fsdb.eval_dir(), state.train_model_name), state.seed)) | Evaluate the most recently trained model against the current best model.
Args:
state: the RL loop State instance. | codesearchnet |
def DocumentVersionsRow(
self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
version_path = self._GetRowValue(query_hash, row, 'version_path')
path = self._GetRowValue(query_hash, row, 'path')
paths = version_path.split('/')
if len(paths) < 2 or not paths[1].isdigit():
user_sid = ''
else:
user_sid = paths[1]
version_path = self.ROOT_VERSION_PATH + version_path
path, _, _ = path.rpartition('/')
event_data = MacDocumentVersionsEventData()
event_data.last_time = self._GetRowValue(query_hash, row, 'last_time')
event_data.name = self._GetRowValue(query_hash, row, 'name')
event_data.path = path
event_data.query = query
event_data.user_sid = '{0!s}'.format(user_sid)
event_data.version_path = version_path
timestamp = self._GetRowValue(query_hash, row, 'version_time')
date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a document versions row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row. | juraj-google-style |
def get_dimension(self, dimension, default=None, strict=False):
if ((dimension is not None) and (not isinstance(dimension, (int, basestring, Dimension)))):
raise TypeError(('Dimension lookup supports int, string, and Dimension instances, cannot lookup Dimensions using %s type.' % type(dimension).__name__))
all_dims = self.dimensions()
if isinstance(dimension, int):
if (0 <= dimension < len(all_dims)):
return all_dims[dimension]
elif strict:
raise KeyError(('Dimension %r not found' % dimension))
else:
return default
dimension = dimension_name(dimension)
name_map = {dim.name: dim for dim in all_dims}
name_map.update({dim.label: dim for dim in all_dims})
name_map.update({util.dimension_sanitizer(dim.name): dim for dim in all_dims})
if (strict and (dimension not in name_map)):
raise KeyError(('Dimension %r not found.' % dimension))
else:
return name_map.get(dimension, default) | Get a Dimension object by name or index.
Args:
dimension: Dimension to look up by name or integer index
default (optional): Value returned if Dimension not found
strict (bool, optional): Raise a KeyError if not found
Returns:
Dimension object for the requested dimension or default | codesearchnet |
def add_redistribution(self, protocol, route_map_name=None):
protocols = ['bgp', 'rip', 'static', 'connected']
if (protocol not in protocols):
raise ValueError('redistributed protocol must bebgp, connected, rip or static')
if (route_map_name is None):
cmd = 'redistribute {}'.format(protocol)
else:
cmd = 'redistribute {} route-map {}'.format(protocol, route_map_name)
return self.configure_ospf(cmd) | Adds a protocol redistribution to OSPF
Args:
protocol (str): protocol to redistribute
route_map_name (str): route-map to be used to
filter the protocols
Returns:
bool: True if the command completes successfully
Exception:
ValueError: This will be raised if the protocol pass is not one
of the following: [rip, bgp, static, connected] | codesearchnet |
def send(self, content_type='HTML'):
payload = self.api_representation(content_type)
endpoint = 'https:
self._make_api_call('post', endpoint=endpoint, data=json.dumps(payload)) | Takes the recipients, body, and attachments of the Message and sends.
Args:
content_type: Can either be 'HTML' or 'Text', defaults to HTML. | juraj-google-style |
def linear_interpolate_rank(tensor1, tensor2, coeffs, rank=1):
(_, _, _, num_channels) = common_layers.shape_list(tensor1)
diff_sq_sum = tf.reduce_sum(((tensor1 - tensor2) ** 2), axis=(0, 1, 2))
(_, feature_ranks) = tf.math.top_k(diff_sq_sum, k=rank)
feature_rank = feature_ranks[(- 1)]
channel_inds = tf.range(num_channels, dtype=tf.int32)
channel_mask = tf.equal(channel_inds, feature_rank)
ones_t = tf.ones(num_channels, dtype=tf.float32)
zeros_t = tf.zeros(num_channels, dtype=tf.float32)
interp_tensors = []
for coeff in coeffs:
curr_coeff = tf.where(channel_mask, (coeff * ones_t), zeros_t)
interp_tensor = (tensor1 + (curr_coeff * (tensor2 - tensor1)))
interp_tensors.append(interp_tensor)
return tf.concat(interp_tensors, axis=0) | Linearly interpolate channel at "rank" between two tensors.
The channels are ranked according to their L2 norm between tensor1[channel]
and tensor2[channel].
Args:
tensor1: 4-D Tensor, NHWC
tensor2: 4-D Tensor, NHWC
coeffs: list of floats.
rank: integer.
Returns:
interp_latents: list of interpolated 4-D Tensors, shape=(NHWC) | codesearchnet |
def get_roles(client):
done = False
marker = None
roles = []
while not done:
if marker:
response = client.list_roles(Marker=marker)
else:
response = client.list_roles()
roles += response['Roles']
if response['IsTruncated']:
marker = response['Marker']
else:
done = True
return roles | Returns a list of all the roles for an account. Returns a list containing all the roles for the account.
Args:
client (:obj:`boto3.session.Session`): A boto3 Session object
Returns:
:obj:`list` of `dict` | juraj-google-style |
def tag_versions(repo_path):
repo = dulwich.repo.Repo(repo_path)
tags = get_tags(repo)
maj_version = 0
feat_version = 0
fix_version = 0
last_maj_version = 0
last_feat_version = 0
result = []
for commit_sha, children in reversed(
get_children_per_first_parent(repo_path).items()
):
commit = get_repo_object(repo, commit_sha)
maj_version, feat_version, fix_version = get_version(
commit=commit,
tags=tags,
maj_version=maj_version,
feat_version=feat_version,
fix_version=fix_version,
children=children,
)
if (
last_maj_version != maj_version or
last_feat_version != feat_version
):
last_maj_version = maj_version
last_feat_version = feat_version
tag_name = 'refs/tags/v%d.%d' % (maj_version, feat_version)
if ON_PYTHON3:
repo[str.encode(tag_name)] = commit
else:
repo[tag_name] = commit
result.append(
'v%d.%d -> %s' % (maj_version, feat_version, commit_sha)
)
return '\n'.join(result) | Given a repo will add a tag for each major version.
Args:
repo_path(str): path to the git repository to tag. | juraj-google-style |
def sholl_crossings(neurites, center, radii):
def _count_crossings(neurite, radius):
'count_crossings of segments in neurite with radius'
r2 = (radius ** 2)
count = 0
for (start, end) in iter_segments(neurite):
(start_dist2, end_dist2) = (morphmath.point_dist2(center, start), morphmath.point_dist2(center, end))
count += int(((start_dist2 <= r2 <= end_dist2) or (end_dist2 <= r2 <= start_dist2)))
return count
return np.array([sum((_count_crossings(neurite, r) for neurite in iter_neurites(neurites))) for r in radii]) | calculate crossings of neurites
Args:
nrn(morph): morphology on which to perform Sholl analysis
radii(iterable of floats): radii for which crossings will be counted
Returns:
Array of same length as radii, with a count of the number of crossings
for the respective radius | codesearchnet |
def get_sparse_tensors(self, transformation_cache, state_manager):
sparse_tensors = self.categorical_column.get_sparse_tensors(transformation_cache, state_manager)
return self._get_sparse_tensors_helper(sparse_tensors) | Returns an IdWeightPair.
`IdWeightPair` is a pair of `SparseTensor`s which represents ids and
weights.
`IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets`
`SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a
`SparseTensor` of `float` or `None` to indicate all weights should be
taken to be 1. If specified, `weight_tensor` must have exactly the same
shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing
output of a `VarLenFeature` which is a ragged matrix.
Args:
transformation_cache: A `FeatureTransformationCache` object to access
features.
state_manager: A `StateManager` to create / access resources such as
lookup tables. | github-repos |
def _is_valid_netmask(self, netmask):
mask = netmask.split('.')
if (len(mask) == 4):
try:
for x in mask:
if (int(x) not in self._valid_mask_octets):
return False
except ValueError:
return False
for (idx, y) in enumerate(mask):
if ((idx > 0) and (y > mask[(idx - 1)])):
return False
return True
try:
netmask = int(netmask)
except ValueError:
return False
return (0 <= netmask <= self._max_prefixlen) | Verify that the netmask is valid.
Args:
netmask: A string, either a prefix or dotted decimal
netmask.
Returns:
A boolean, True if the prefix represents a valid IPv4
netmask. | codesearchnet |
def normalize_url(base_url, rel_url):
if (not rel_url):
return None
if (not is_absolute_url(rel_url)):
rel_url = rel_url.replace('../', '/')
if ((not base_url.endswith('/')) and (not rel_url.startswith('/'))):
return ((base_url + '/') + rel_url.replace('../', '/'))
return (base_url + rel_url.replace('../', '/'))
return rel_url | Normalize the `url` - from relative, create absolute URL.
Args:
base_url (str): Domain with ``protocol://`` string
rel_url (str): Relative or absolute url.
Returns:
str/None: Normalized URL or None if `url` is blank. | codesearchnet |
def assign_add(self, delta, use_locking=False, name=None, read_value=True):
assign = state_ops.assign_add(self._variable, delta, use_locking=use_locking, name=name)
if read_value:
return assign
return assign.op | Adds a value to this variable.
This is essentially a shortcut for `assign_add(self, delta)`.
Args:
delta: A `Tensor`. The value to add to this variable.
use_locking: If `True`, use locking during the operation.
name: The name of the operation to be created
read_value: if True, will return something which evaluates to the new
value of the variable; if False will return the assign op.
Returns:
A `Tensor` that will hold the new value of this variable after
the addition has completed. | github-repos |
def create_config(sections, section_contents):
sections_length, section_contents_length = len(sections), len(section_contents)
if sections_length != section_contents_length:
raise ValueError("Mismatch between argument lengths.\n"
"len(sections) = {}\n"
"len(section_contents) = {}"
.format(sections_length, section_contents_length))
config = configparser.ConfigParser()
for section, section_content in zip(sections, section_contents):
config[section] = section_content
return config | Create a config file from the provided sections and key value pairs.
Args:
sections (List[str]): A list of section keys.
key_value_pairs (Dict[str, str]): A list of of dictionaries. Must be as long as
the list of sections. That is to say, if there are two sections, there should be two
dicts.
Returns:
configparser.ConfigParser: A ConfigParser.
Raises:
ValueError | juraj-google-style |
def connect_to(name):
kwargs = config_for(name)
if (not kwargs):
raise AttributeError('connection profile not found in config')
node = connect(return_node=True, **kwargs)
return node | Creates a node instance based on an entry from the config
This function will retrieve the settings for the specified connection
from the config and return a Node instance. The configuration must
be loaded prior to calling this function.
Args:
name (str): The name of the connection to load from the config. The
name argument should be the connection name (everything right of
the colon from the INI file)
Returns:
This function will return an instance of Node with the settings
from the config instance.
Raises:
AttributeError: raised if the specified configuration name is not
found in the loaded configuration | codesearchnet |
def fileToMD5(filename, block_size=256*128, binary=False):
md5 = hashlib.md5()
with open(filename,'rb') as f:
for chunk in iter(lambda: f.read(block_size), b''):
md5.update(chunk)
if not binary:
return md5.hexdigest()
return md5.digest() | A function that calculates the MD5 hash of a file.
Args:
-----
filename: Path to the file.
block_size: Chunks of suitable size. Block size directly depends on
the block size of your filesystem to avoid performances issues.
Blocks of 4096 octets (Default NTFS).
binary: A boolean representing whether the returned info is in binary
format or not.
Returns:
--------
string: The MD5 hash of the file. | juraj-google-style |
def _sort_records_map(records):
ctx = context.get()
l = len(records)
key_records = [None] * l
logging.debug("Parsing")
for i in range(l):
proto = kv_pb.KeyValue()
proto.ParseFromString(records[i])
key_records[i] = (proto.key(), records[i])
logging.debug("Sorting")
key_records.sort(cmp=_compare_keys)
logging.debug("Writing")
mapper_spec = ctx.mapreduce_spec.mapper
params = input_readers._get_params(mapper_spec)
bucket_name = params.get("bucket_name")
filename = (ctx.mapreduce_spec.name + "/" + ctx.mapreduce_id + "/output-" +
ctx.shard_id + "-" + str(int(time.time())))
full_filename = "/%s/%s" % (bucket_name, filename)
filehandle = cloudstorage.open(full_filename, mode="w")
with output_writers.GCSRecordsPool(filehandle, ctx=ctx) as pool:
for key_record in key_records:
pool.append(key_record[1])
logging.debug("Finalizing")
filehandle.close()
entity = _OutputFile(key_name=full_filename,
parent=_OutputFile.get_root_key(ctx.mapreduce_id))
entity.put() | Map function sorting records.
Converts records to KeyValue protos, sorts them by key and writes them
into new GCS file. Creates _OutputFile entity to record resulting
file name.
Args:
records: list of records which are serialized KeyValue protos. | juraj-google-style |
def DEFINE_boolean(name, default, help, flag_values=_flagvalues.FLAGS, module_name=None, **args):
DEFINE_flag(_flag.BooleanFlag(name, default, help, **args), flag_values, module_name) | Registers a boolean flag.
Such a boolean flag does not take an argument. If a user wants to
specify a false value explicitly, the long option beginning with 'no'
must be used: i.e. --noflag
This flag will have a value of None, True or False. None is possible
if default=None and the user does not specify the flag on the command
line.
Args:
name: str, the flag name.
default: bool|str|None, the default value of the flag.
help: str, the help message.
flag_values: FlagValues, the FlagValues instance with which the flag will
be registered. This should almost never need to be overridden.
module_name: str, the name of the Python module declaring this flag.
If not provided, it will be computed using the stack trace of this call.
**args: dict, the extra keyword args that are passed to Flag __init__. | codesearchnet |
def case(pred_fn_pairs, default=None, exclusive=False, name='smart_case'):
return control_flow_ops._case_helper(cond, pred_fn_pairs, default, exclusive, name, allow_python_preds=True) | Like tf.case, except attempts to statically evaluate predicates.
If any predicate in `pred_fn_pairs` is a bool or has a constant value, the
associated callable will be called or omitted depending on its value.
Otherwise this functions like tf.case.
Args:
pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a
callable which returns a list of tensors.
default: Optional callable that returns a list of tensors.
exclusive: True iff at most one predicate is allowed to evaluate to `True`.
name: A name for this operation (optional).
Returns:
The tensors returned by the first pair whose predicate evaluated to True, or
those returned by `default` if none does.
Raises:
TypeError: If `pred_fn_pairs` is not a list/dictionary.
TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples.
TypeError: If `fns[i]` is not callable for any i, or `default` is not
callable. | codesearchnet |
def mesh_axis_to_tensor_axis(self, mesh_ndims):
ta2ma = self._tensor_axis_to_mesh_axis
return tuple(
[ta2ma.index(mesh_axis) if mesh_axis in ta2ma else None
for mesh_axis in xrange(mesh_ndims)]) | For each mesh axis, which Tensor axis maps to it.
Args:
mesh_ndims: int.
Returns:
Tuple of optional integers, with length mesh_ndims. | juraj-google-style |
def FromString(cls, range_string):
disjuncts = None
range_string = range_string.strip()
if (len(range_string) == 0):
raise ArgumentError('You must pass a finite string to SemanticVersionRange.FromString', range_string=range_string)
if ((len(range_string) == 1) and (range_string[0] == '*')):
conj = (None, None, True, True)
disjuncts = [[conj]]
elif (range_string[0] == '^'):
ver = range_string[1:]
try:
ver = SemanticVersion.FromString(ver)
except DataError as err:
raise ArgumentError('Could not parse ^X.Y.Z version', parse_error=str(err), range_string=range_string)
lower = ver
upper = ver.inc_first_nonzero()
conj = (lower, upper, True, False)
disjuncts = [[conj]]
elif (range_string[0] == '='):
ver = range_string[1:]
try:
ver = SemanticVersion.FromString(ver)
except DataError as err:
raise ArgumentError('Could not parse =X.Y.Z version', parse_error=str(err), range_string=range_string)
conj = (ver, ver, True, True)
disjuncts = [[conj]]
if (disjuncts is None):
raise ArgumentError('Invalid range specification that could not be parsed', range_string=range_string)
return SemanticVersionRange(disjuncts) | Parse a version range string into a SemanticVersionRange
Currently, the only possible range strings are:
^X.Y.Z - matches all versions with the same leading nonzero digit
greater than or equal the given range.
* - matches everything
=X.Y.Z - matches only the exact version given
Args:
range_string (string): A string specifying the version range
Returns:
SemanticVersionRange: The resulting version range object
Raises:
ArgumentError: if the range string does not define a valid range. | codesearchnet |
def ValidateFeedStartAndExpirationDates(self, problems, first_date, last_date,
first_date_origin, last_date_origin,
today):
warning_cutoff = today + datetime.timedelta(days=60)
if last_date < warning_cutoff:
problems.ExpirationDate(time.mktime(last_date.timetuple()),
last_date_origin)
if first_date > today:
problems.FutureService(time.mktime(first_date.timetuple()),
first_date_origin) | Validate the start and expiration dates of the feed.
Issue a warning if it only starts in the future, or if
it expires within 60 days.
Args:
problems: The problem reporter object
first_date: A date object representing the first day the feed is active
last_date: A date object representing the last day the feed is active
today: A date object representing the date the validation is being run on
Returns:
None | juraj-google-style |
def update_variant(self, variant_obj):
LOG.debug('Updating variant %s', variant_obj.get('simple_id'))
new_variant = self.variant_collection.find_one_and_replace(
{'_id': variant_obj['_id']},
variant_obj,
return_document=pymongo.ReturnDocument.AFTER
)
return new_variant | Update one variant document in the database.
This means that the variant in the database will be replaced by variant_obj.
Args:
variant_obj(dict)
Returns:
new_variant(dict) | juraj-google-style |
def available_credit(context):
notes = commerce.CreditNote.unclaimed().filter(invoice__user=user_for_context(context))
ret = (notes.values('amount').aggregate(Sum('amount'))['amount__sum'] or 0)
return (0 - ret) | Calculates the sum of unclaimed credit from this user's credit notes.
Returns:
Decimal: the sum of the values of unclaimed credit notes for the
current user. | codesearchnet |
def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
tp_state_dicts = []
for i in range(tp_size):
sub_dir_name = f'mp_rank_{i:02d}' if pp_size == 1 else f'mp_rank_{i:02d}_{pp_rank:03d}'
for checkpoint_name in ['model_optim_rng.pt', 'model_rng.pt']:
checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name)
if os.path.isfile(checkpoint_path):
break
check_torch_load_is_safe()
state_dict = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
tp_state_dicts.append(state_dict)
return tp_state_dicts | Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
parallel size and pipeline parallel rank.
Args:
args (argparse.Namespace): the arguments to the script
tp_size (int): the tensor parallel size
pp_size (int): the pipeline parallel size
pp_rank (int): the pipeline parallel rank | github-repos |
def __getattr__(self, name):
return lambda *args, **kwargs: self._Execute(name, *args, **kwargs) | Handles transparent proxying to gdb subprocess.
This returns a lambda which, when called, sends an RPC request to gdb
Args:
name: The method to call within GdbService
Returns:
The result of the RPC. | juraj-google-style |
def get_object(tree):
if isinstance(tree, Tree):
if tree.label() == 'DT' or tree.label() == 'POS':
return ''
words = []
for child in tree:
words.append(get_object(child))
return ' '.join([_f for _f in words if _f])
else:
return tree | Get the object in the tree object.
Method should remove unnecessary letters and words::
the
a/an
's
Args:
tree (Tree): Parsed tree structure
Returns:
Resulting string of tree ``(Ex: "red car")`` | juraj-google-style |
def _object_url(self, objtype, objid):
return "{base_url}/api/{api_version}/{controller}/{obj_id}".format(
base_url=self._base_url(),
api_version=self.api_version,
controller=self._controller_name(objtype),
obj_id=objid
) | Generate the URL for the specified object
Args:
objtype (str): The object's type
objid (int): The objects ID
Returns:
A string containing the URL of the object | juraj-google-style |
def htmlcolor_to_rgb(str_color):
if (not (str_color.startswith('
raise ValueError("Bad html color format. Expected: '
result = [((1.0 * int(n, 16)) / 255) for n in (str_color[1:3], str_color[3:5], str_color[5:])]
return result | function to convert HTML-styly color string to RGB values
Args:
s: Color in HTML format
Returns:
list of three RGB color components | codesearchnet |
def evaluate_hourly_forecasts(self):
score_columns = ['Run_Date', 'Forecast_Hour', 'Ensemble Name', 'Model_Name', 'Forecast_Variable', 'Neighbor_Radius', 'Smoothing_Radius', 'Size_Threshold', 'ROC', 'Reliability']
all_scores = pd.DataFrame(columns=score_columns)
for (h, hour) in enumerate(range(self.start_hour, (self.end_hour + 1))):
for neighbor_radius in self.neighbor_radii:
n_filter = disk(neighbor_radius)
for (s, size_threshold) in enumerate(self.size_thresholds):
print('Eval hourly forecast {0:02d} {1} {2} {3} {4:d} {5:d}'.format(hour, self.model_name, self.forecast_variable, self.run_date, neighbor_radius, size_threshold))
hour_obs = fftconvolve((self.raw_obs[self.mrms_variable][h] >= self.obs_thresholds[s]), n_filter, mode='same')
hour_obs[(hour_obs > 1)] = 1
hour_obs[(hour_obs < 1)] = 0
if self.obs_mask:
hour_obs = hour_obs[(self.raw_obs[self.mask_variable][h] > 0)]
for smoothing_radius in self.smoothing_radii:
hour_var = 'neighbor_prob_r_{0:d}_s_{1:d}_{2}_{3:0.2f}'.format(neighbor_radius, smoothing_radius, self.forecast_variable, size_threshold)
if self.obs_mask:
hour_forecast = self.hourly_forecasts[hour_var][h][(self.raw_obs[self.mask_variable][h] > 0)]
else:
hour_forecast = self.hourly_forecasts[hour_var][h]
roc = DistributedROC(thresholds=self.probability_levels, obs_threshold=0.5)
roc.update(hour_forecast, hour_obs)
rel = DistributedReliability(thresholds=self.probability_levels, obs_threshold=0.5)
rel.update(hour_forecast, hour_obs)
row = [self.run_date, hour, self.ensemble_name, self.model_name, self.forecast_variable, neighbor_radius, smoothing_radius, size_threshold, roc, rel]
all_scores.loc[(hour_var + '_{0:d}'.format(hour))] = row
return all_scores | Calculates ROC curves and Reliability scores for each forecast hour.
Returns:
A pandas DataFrame containing forecast metadata as well as DistributedROC and Reliability objects. | codesearchnet |
def refresh_state(self, id_or_uri, configuration, timeout=-1):
uri = self._client.build_uri(id_or_uri) + self.REFRESH_STATE_PATH
return self._client.update(resource=configuration, uri=uri, timeout=timeout) | Refreshes a drive enclosure.
Args:
id_or_uri: Can be either the resource ID or the resource URI.
configuration: Configuration
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
dict: Drive Enclosure | juraj-google-style |
def has_implicit_access_to_enrollment_api(user, obj):
request = get_request_or_stub()
decoded_jwt = get_decoded_jwt_from_request(request)
return request_user_has_implicit_access_via_jwt(decoded_jwt, ENTERPRISE_ENROLLMENT_API_ADMIN_ROLE, obj) | Check that if request user has implicit access to `ENTERPRISE_ENROLLMENT_API_ADMIN_ROLE` feature role.
Returns:
boolean: whether the request user has access or not | codesearchnet |
def __eq__(self, other):
if super().__eq__(other) and \
(self._samples == other._samples).all():
return True
return False | Two SamplePulses are the same if they are of the same type
and have the same name and samples.
Args:
other (SamplePulse): other SamplePulse
Returns:
bool: are self and other equal. | juraj-google-style |
def ListAssets(logdir, plugin_name):
plugin_dir = PluginDirectory(logdir, plugin_name)
try:
return [x.rstrip('/') for x in tf.io.gfile.listdir(plugin_dir)]
except tf.errors.NotFoundError:
return [] | List all the assets that are available for given plugin in a logdir.
Args:
logdir: A directory that was created by a TensorFlow summary.FileWriter.
plugin_name: A string name of a plugin to list assets for.
Returns:
A string list of available plugin assets. If the plugin subdirectory does
not exist (either because the logdir doesn't exist, or because the plugin
didn't register) an empty list is returned. | codesearchnet |
def parse(file_contents, file_name):
try:
yaml.load(file_contents)
except Exception:
_, exc_value, _ = sys.exc_info()
return("Cannot Parse: {file_name}: \n {exc_value}"
.format(file_name=file_name, exc_value=exc_value)) | This takes a list of filenames and their paths of expected yaml files and
tried to parse them, erroring if there are any parsing issues.
Args:
file_contents (str): Contents of a yml file
Raises:
yaml.parser.ParserError: Raises an error if the file contents cannot be
parsed and interpreted as yaml | juraj-google-style |
def trace_flush(self):
cmd = enums.JLinkTraceCommand.FLUSH
res = self._dll.JLINKARM_TRACE_Control(cmd, 0)
if (res == 1):
raise errors.JLinkException('Failed to flush the trace buffer.')
return None | Flushes the trace buffer.
After this method is called, the trace buffer is empty. This method is
best called when the device is reset.
Args:
self (JLink): the ``JLink`` instance.
Returns:
``None`` | juraj-google-style |
def validate_file(fn, options=None):
file_results = FileValidationResults(filepath=fn)
output.info(('Performing JSON schema validation on %s' % fn))
if (not options):
options = ValidationOptions(files=fn)
try:
with open(fn) as instance_file:
file_results.object_results = validate(instance_file, options)
except Exception as ex:
if ('Expecting value' in str(ex)):
line_no = str(ex).split()[3]
file_results.fatal = ValidationErrorResults(('Invalid JSON input on line %s' % line_no))
else:
file_results.fatal = ValidationErrorResults(ex)
msg = "Unexpected error occurred with file '{fn}'. No further validation will be performed: {error}"
output.info(msg.format(fn=fn, error=str(ex)))
file_results.is_valid = (all((object_result.is_valid for object_result in file_results.object_results)) and (not file_results.fatal))
return file_results | Validate the input document `fn` according to the options passed in.
If any exceptions are raised during validation, no further validation
will take place.
Args:
fn: The filename of the JSON file to be validated.
options: An instance of ``ValidationOptions``.
Returns:
An instance of FileValidationResults. | codesearchnet |
def get_all_apps():
LOG.info('Retreiving list of all Spinnaker applications')
url = '{}/applications'.format(API_URL)
response = requests.get(url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT)
assert response.ok, 'Could not retrieve application list'
pipelines = response.json()
LOG.debug('All Applications:\n%s', pipelines)
return pipelines | Get a list of all applications in Spinnaker.
Returns:
requests.models.Response: Response from Gate containing list of all apps. | codesearchnet |
def parse(cls, args):
try:
(options, args) = cls.optparser.parse_args(args)
if options.mode not in ["1", "2"]:
raise ParseError("mode must be either '1' or '2'",
cls.optparser.format_help())
if (options.dbtap_id is None) or (options.db_table is None):
raise ParseError("dbtap_id and db_table are required",
cls.optparser.format_help())
if options.mode is "1":
if options.hive_table is None:
raise ParseError("hive_table is required for mode 1",
cls.optparser.format_help())
elif options.export_dir is None:
raise ParseError("export_dir is required for mode 2",
cls.optparser.format_help())
if options.db_update_mode is not None:
if options.db_update_mode not in ["allowinsert", "updateonly"]:
raise ParseError("db_update_mode should either be left blank for append "
"mode or be 'updateonly' or 'allowinsert'",
cls.optparser.format_help())
if options.db_update_mode is "updateonly":
if options.db_update_keys is None:
raise ParseError("db_update_keys is required when db_update_mode "
"is 'updateonly'",
cls.optparser.format_help())
elif options.db_update_keys is not None:
raise ParseError("db_update_keys is used only when db_update_mode "
"is 'updateonly'",
cls.optparser.format_help())
except OptionParsingError as e:
raise ParseError(e.msg, cls.optparser.format_help())
except OptionParsingExit as e:
return None
v = vars(options)
v["command_type"] = "DbExportCommand"
return v | Parse command line arguments to construct a dictionary of command
parameters that can be used to create a command
Args:
`args`: sequence of arguments
Returns:
Dictionary that can be used in create method
Raises:
ParseError: when the arguments are not correct | juraj-google-style |
async def await_rpc(self, address, rpc_id, *args, **kwargs):
self.verify_calling_thread(True, 'await_rpc must be called from **inside** the event loop')
if isinstance(rpc_id, RPCDeclaration):
arg_format = rpc_id.arg_format
resp_format = rpc_id.resp_format
rpc_id = rpc_id.rpc_id
else:
arg_format = kwargs.get('arg_format', None)
resp_format = kwargs.get('resp_format', None)
arg_payload = b''
if (arg_format is not None):
arg_payload = pack_rpc_payload(arg_format, args)
self._logger.debug('Sending rpc to %d:%04X, payload=%s', address, rpc_id, args)
response = AwaitableResponse()
self._rpc_queue.put_rpc(address, rpc_id, arg_payload, response)
try:
resp_payload = (await response.wait(1.0))
except RPCRuntimeError as err:
resp_payload = err.binary_error
if (resp_format is None):
return []
resp = unpack_rpc_payload(resp_format, resp_payload)
return resp | Send an RPC from inside the EmulationLoop.
This is the primary method by which tasks running inside the
EmulationLoop dispatch RPCs. The RPC is added to the queue of waiting
RPCs to be drained by the RPC dispatch task and this coroutine will
block until it finishes.
**This method must only be called from inside the EmulationLoop**
Args:
address (int): The address of the tile that has the RPC.
rpc_id (int): The 16-bit id of the rpc we want to call
*args: Any required arguments for the RPC as python objects.
**kwargs: Only two keyword arguments are supported:
- arg_format: A format specifier for the argument list
- result_format: A format specifier for the result
Returns:
list: A list of the decoded response members from the RPC. | codesearchnet |
def __init__(self, *args, pubdate=None, excerpt=None, tags=None, allow_comments=True, **kwargs):
super().__init__(*args, **kwargs)
self.excerpt = excerpt or _get_excerpt(self.body)
self.pubdate = pubdate
self.tags = tags or []
self.allow_comments = allow_comments | Constructor. Also see Entry.__init__.
Args:
pubdate (datetime): When the post was published.
excerpt (str): An excerpt of the post body.
tags (list): A list of Tag objects associated with the post.
allow_comments (bool): Whether to allow comments. Default False. | juraj-google-style |
def get_file(self, filename, scope='all'):
filename = os.path.abspath(os.path.join(self.root, filename))
layouts = self._get_layouts_in_scope(scope)
for ly in layouts:
if (filename in ly.files):
return ly.files[filename]
return None | Returns the BIDSFile object with the specified path.
Args:
filename (str): The path of the file to retrieve. Must be either
an absolute path, or relative to the root of this BIDSLayout.
scope (str, list): Scope of the search space. If passed, only
BIDSLayouts that match the specified scope will be
searched. See BIDSLayout docstring for valid values.
Returns: A BIDSFile, or None if no match was found. | codesearchnet |
def uncheck(self, locator=None, allow_label_click=None, **kwargs):
self._check_with_label(
"checkbox", False, locator=locator, allow_label_click=allow_label_click, **kwargs) | Find a check box and uncheck it. The check box can be found via name, id, or label text. ::
page.uncheck("German")
Args:
locator (str, optional): Which check box to uncheck.
allow_label_click (bool, optional): Attempt to click the label to toggle state if
element is non-visible. Defaults to :data:`capybara.automatic_label_click`.
**kwargs: Arbitrary keyword arguments for :class:`SelectorQuery`. | juraj-google-style |
def has_request(self, request):
queue_item = QueueItem(request, Response(request.url))
key = queue_item.get_hash()
for status in QueueItem.STATUSES:
if key in self.__get_var("items_" + status).keys():
return True
return False | Check if the given request already exists in the queue.
Args:
request (:class:`nyawc.http.Request`): The request to check.
Returns:
bool: True if already exists, False otherwise. | juraj-google-style |
def find_module_defining_flag(self, flagname, default=None):
registered_flag = self._flags().get(flagname)
if registered_flag is None:
return default
for module, flags in six.iteritems(self.flags_by_module_dict()):
for flag in flags:
if (flag.name == registered_flag.name and
flag.short_name == registered_flag.short_name):
return module
return default | Return the name of the module defining this flag, or default.
Args:
flagname: str, name of the flag to lookup.
default: Value to return if flagname is not defined. Defaults
to None.
Returns:
The name of the module which registered the flag with this name.
If no such module exists (i.e. no flag with this name exists),
we return default. | juraj-google-style |
def delete(self, reference, option=None):
write_pb = _helpers.pb_for_delete(reference._document_path, option)
self._add_write_pbs([write_pb]) | Add a "change" to delete a document.
See
:meth:`~.firestore_v1beta1.document.DocumentReference.delete` for
more information on how ``option`` determines how the change is
applied.
Args:
reference (~.firestore_v1beta1.document.DocumentReference): A
document reference that will be deleted in this batch.
option (Optional[~.firestore_v1beta1.client.WriteOption]): A
write option to make assertions / preconditions on the server
state of the document before applying changes. | codesearchnet |
def get_output_info_dict(self, signature=None):
return self._spec.get_output_info_dict(signature=signature, tags=self._tags) | Describes the outputs provided by a signature.
Args:
signature: A string with the signature to get ouputs information for.
If None, the default signature is used if defined.
Returns:
The result of ModuleSpec.get_output_info_dict() for the given signature,
and the graph variant selected by `tags` when this Module was initialized.
Raises:
KeyError: if there is no such signature. | juraj-google-style |
def _update_state_from_shard_states(self, state, shard_states, control):
(state.active_shards, state.aborted_shards, state.failed_shards) = (0, 0, 0)
total_shards = 0
processed_counts = []
processed_status = []
state.counters_map.clear()
for s in shard_states:
total_shards += 1
status = 'unknown'
if s.active:
state.active_shards += 1
status = 'running'
if (s.result_status == model.ShardState.RESULT_SUCCESS):
status = 'success'
elif (s.result_status == model.ShardState.RESULT_ABORTED):
state.aborted_shards += 1
status = 'aborted'
elif (s.result_status == model.ShardState.RESULT_FAILED):
state.failed_shards += 1
status = 'failed'
state.counters_map.add_map(s.counters_map)
processed_counts.append(s.counters_map.get(context.COUNTER_MAPPER_CALLS))
processed_status.append(status)
state.set_processed_counts(processed_counts, processed_status)
state.last_poll_time = datetime.datetime.utcfromtimestamp(self._time())
spec = state.mapreduce_spec
if (total_shards != spec.mapper.shard_count):
logging.error("Found %d shard states. Expect %d. Issuing abort command to job '%s'", total_shards, spec.mapper.shard_count, spec.mapreduce_id)
model.MapreduceControl.abort(spec.mapreduce_id)
state.active = bool(state.active_shards)
if ((not control) and (state.failed_shards or state.aborted_shards)):
model.MapreduceControl.abort(spec.mapreduce_id)
if (not state.active):
if (state.failed_shards or (not total_shards)):
state.result_status = model.MapreduceState.RESULT_FAILED
elif state.aborted_shards:
state.result_status = model.MapreduceState.RESULT_ABORTED
else:
state.result_status = model.MapreduceState.RESULT_SUCCESS
self._finalize_outputs(spec, state)
self._finalize_job(spec, state)
else:
@db.transactional(retries=5)
def _put_state():
'The helper for storing the state.'
fresh_state = model.MapreduceState.get_by_job_id(spec.mapreduce_id)
if (not fresh_state.active):
logging.warning('Job %s is not active. Looks like spurious task execution. Dropping controller task.', spec.mapreduce_id)
return
config = util.create_datastore_write_config(spec)
state.put(config=config)
_put_state() | Update mr state by examing shard states.
Args:
state: current mapreduce state as MapreduceState.
shard_states: an iterator over shard states.
control: model.MapreduceControl entity. | codesearchnet |
def update(self, media_blob: genai_types.Blob):
if self.generation_start_sec is not None and self.ttft_sec is None:
self.time_audio_start = time.perf_counter()
self.ttft_sec = self.time_audio_start - self.generation_start_sec
self.audio_duration += audio_duration_sec(media_blob.data, RECEIVE_SAMPLE_RATE) | Updates the generation request with the new media data.
Args:
media_blob: The new media data. | github-repos |
def _group(self, group_data):
if isinstance(group_data, dict):
xid = group_data.get('xid')
else:
xid = group_data.xid
if (self.groups.get(xid) is not None):
group_data = self.groups.get(xid)
elif (self.groups_shelf.get(xid) is not None):
group_data = self.groups_shelf.get(xid)
else:
self.groups[xid] = group_data
return group_data | Return previously stored group or new group.
Args:
group_data (dict|obj): An Group dict or instance of Group object.
Returns:
dict|obj: The new Group dict/object or the previously stored dict/object. | codesearchnet |
def remove_line(self, section, line):
try:
s = self._get_section(section, create=False)
except KeyError:
return 0
return s.remove(line) | Remove all instances of a line.
Returns:
int: the number of lines removed | codesearchnet |
def list_key_values(input: t.Dict[str, str]) -> None:
for cmd, desc in input.items():
print(f'{cmd} => {desc}') | Display key-value pairs from a dictionary.
Args:
input (Dict[str, str]): The dictionary containing key-value pairs. | github-repos |
def peek_step(self, val: ArrayValue, sn: 'DataNode') -> Tuple[(ObjectValue, 'DataNode')]:
keys = self.parse_keys(sn)
for en in val:
flag = True
try:
for k in keys:
if (en[k] != keys[k]):
flag = False
break
except KeyError:
continue
if flag:
return (en, sn)
return (None, sn) | Return the entry addressed by the receiver + its schema node.
Args:
val: Current value (array).
sn: Current schema node. | codesearchnet |
def _initialize_pvariables(self, pvariables: Dict[(str, PVariable)], ordering: List[str], initializer: Optional[InitializerList]=None) -> List[Tuple[(str, TensorFluent)]]:
if (initializer is not None):
init = dict()
for ((name, args), value) in initializer:
arity = (len(args) if (args is not None) else 0)
name = '{}/{}'.format(name, arity)
init[name] = init.get(name, [])
init[name].append((args, value))
fluents = []
for name in ordering:
pvar = pvariables[name]
shape = self.rddl._param_types_to_shape(pvar.param_types)
dtype = utils.range_type_to_dtype(pvar.range)
fluent = np.full(shape, pvar.default)
if (initializer is not None):
for (args, val) in init.get(name, []):
if (args is not None):
idx = []
for (ptype, arg) in zip(pvar.param_types, args):
idx.append(self.rddl.object_table[ptype]['idx'][arg])
idx = tuple(idx)
fluent[idx] = val
else:
fluent = val
with self.graph.as_default():
t = tf.constant(fluent, dtype=dtype, name=utils.identifier(name))
scope = ([None] * len(t.shape))
fluent = TensorFluent(t, scope, batch=False)
fluent_pair = (name, fluent)
fluents.append(fluent_pair)
return fluents | Instantiates `pvariables` given an initialization list and
returns a list of TensorFluents in the given `ordering`.
Returns:
List[Tuple[str, TensorFluent]]: A list of pairs of fluent name and fluent tensor. | codesearchnet |
def parse(self, body):
if isinstance(body, six.string_types):
body = json.loads(body)
version = body['version']
self.version = version
session = body['session']
self.session.new = session['new']
self.session.session_id = session['sessionId']
application_id = session['application']['applicationId']
self.session.application.application_id = application_id
if 'attributes' in session and session['attributes']:
self.session.attributes = session.get('attributes', {})
else:
self.session.attributes = {}
self.session.user.user_id = session['user']['userId']
self.session.user.access_token = session['user'].get('accessToken', 0)
request = body['request']
if request['type'] == 'LaunchRequest':
self.request = LaunchRequest()
elif request['type'] == 'IntentRequest':
self.request = IntentRequest()
self.request.intent = Intent()
intent = request['intent']
self.request.intent.name = intent['name']
if 'slots' in intent and intent['slots']:
for name, slot in six.iteritems(intent['slots']):
self.request.intent.slots[name] = Slot()
self.request.intent.slots[name].name = slot['name']
self.request.intent.slots[name].value = slot.get('value')
elif request['type'] == 'SessionEndedRequest':
self.request = SessionEndedRequest()
self.request.reason = request['reason']
self.request.type = request['type']
self.request.request_id = request['requestId']
self.request.timestamp = request['timestamp']
return self | Parse JSON request, storing content in object attributes.
Args:
body: str. HTTP request body.
Returns:
self | juraj-google-style |
def exists(self, pattern, **match_kwargs):
ret = self.match(pattern, **match_kwargs)
if (ret is None):
return None
if (not ret.matched):
return None
return ret | Check if image exists in screen
Returns:
If exists, return FindPoint, or
return None if result.confidence < self.image_match_threshold | codesearchnet |
def register(name):
if not isinstance(name, str):
raise TypeError('Expected `name` to be a string; got %r' % (name,))
if not _REGISTERED_NAME_RE.match(name):
raise ValueError("Registered name must have the form '{project_name}.{type_name}' (e.g. 'my_project.MyTypeSpec'); got %r." % name)
def decorator_fn(cls):
if not (isinstance(cls, type) and issubclass(cls, internal.TypeSpec)):
raise TypeError('Expected `cls` to be a TypeSpec; got %r' % (cls,))
if cls in _TYPE_SPEC_TO_NAME:
raise ValueError('Class %s.%s has already been registered with name %s.' % (cls.__module__, cls.__name__, _TYPE_SPEC_TO_NAME[cls]))
if name in _NAME_TO_TYPE_SPEC:
raise ValueError('Name %s has already been registered for class %s.%s.' % (name, _NAME_TO_TYPE_SPEC[name].__module__, _NAME_TO_TYPE_SPEC[name].__name__))
_TYPE_SPEC_TO_NAME[cls] = name
_NAME_TO_TYPE_SPEC[name] = cls
return cls
return decorator_fn | Decorator used to register a globally unique name for a TypeSpec subclass.
Args:
name: The name of the type spec. Must be globally unique. Must have the
form `"{project_name}.{type_name}"`. E.g. `"my_project.MyTypeSpec"`.
Returns:
A class decorator that registers the decorated class with the given name. | github-repos |
def reload_config(self, dockercfg_path=None):
self._auth_configs = auth.load_config(
dockercfg_path, credstore_env=self.credstore_env
) | Force a reload of the auth configuration
Args:
dockercfg_path (str): Use a custom path for the Docker config file
(default ``$HOME/.docker/config.json`` if present,
otherwise``$HOME/.dockercfg``)
Returns:
None | juraj-google-style |
def load_ner_model(lang='en', version='2'):
src_dir = 'ner{}'.format(version)
p = locate_resource(src_dir, lang)
fh = _open(p)
try:
return pickle.load(fh)
except UnicodeDecodeError:
fh.seek(0)
return pickle.load(fh, encoding='latin1') | Return a named entity extractor parameters for `lang` and of version `version`
Args:
lang (string): language code.
version (string): version of the parameters to be used. | codesearchnet |
def group_modes(modes):
if len(modes) > 0:
previous = modes[0]
grouped = []
for changep in modes[1:]:
if changep['label'] != previous['label']:
previous['to'] = changep['from']
grouped.append(previous)
previous = changep
previous['to'] = modes[-1]['to']
grouped.append(previous)
return grouped
else:
return modes | Groups consecutive transportation modes with same label, into one
Args:
modes (:obj:`list` of :obj:`dict`)
Returns:
:obj:`list` of :obj:`dict` | juraj-google-style |
def _astimezone_ts(self, timezone):
if (self.created.tzinfo is timezone):
return self
else:
nw_obj = Timestamps(((None,) * 4))
nw_obj.created = self.created.astimezone(timezone)
nw_obj.changed = self.changed.astimezone(timezone)
nw_obj.mft_changed = self.mft_changed.astimezone(timezone)
nw_obj.accessed = self.accessed.astimezone(timezone)
return nw_obj | Changes the time zones of all timestamps.
Receives a new timezone and applies to all timestamps, if necessary.
Args:
timezone (:obj:`tzinfo`): Time zone to be applied
Returns:
A new ``Timestamps`` object if the time zone changes, otherwise returns ``self``. | codesearchnet |
def last_updated(self, path):
raise NotImplementedError | Get UNIX Epoch time in seconds on the FileSystem.
Args:
path: string path of file.
Returns: float UNIX Epoch time
Raises:
``BeamIOError``: if path doesn't exist. | github-repos |
def get_metadata(self, handle):
response = self.open_url(url=handle, suffix='.metadata')
try:
return json.load(response)
finally:
response.close() | Returns the associated metadata info for the given handle, the metadata
file must exist (``handle + '.metadata'``). If the given handle has an
``.xz`` extension, it will get removed when calculating the handle
metadata path
Args:
handle (str): Path to the template to get the metadata from
Returns:
dict: Metadata for the given handle | juraj-google-style |
def merge_dictionaries(dicts, merge_lists=False):
dict1 = dicts[0]
for other_dict in dicts[1:]:
merge_two_dictionaries(dict1, other_dict, merge_lists=merge_lists)
return dict1 | Merges all dictionaries in dicts into a single dictionary and returns result
Args:
dicts (List[DictUpperBound]): Dictionaries to merge into the first one in the list
merge_lists (bool): Whether to merge lists (True) or replace lists (False). Default is False.
Returns:
DictUpperBound: Merged dictionary | juraj-google-style |
def appendDirectory(self, directory, projectFilePath):
lines = []
with open(projectFilePath, 'r') as original:
for l in original:
lines.append(l)
with open(projectFilePath, 'w') as new:
for line in lines:
card = {}
try:
card = self._extractCard(line)
except:
card = self._extractDirectoryCard(line)
numSpaces = max(2, (25 - len(card['name'])))
if (card['value'] is None):
rewriteLine = ('%s\n' % card['name'])
elif (card['name'] == 'WMS'):
rewriteLine = ('%s %s\n' % (card['name'], card['value']))
elif (card['name'] == 'PROJECT_PATH'):
filePath = ('"%s"' % os.path.normpath(directory))
rewriteLine = ('%s%s%s\n' % (card['name'], (' ' * numSpaces), filePath))
elif ('"' in card['value']):
filename = card['value'].strip('"')
filePath = ('"%s"' % os.path.join(directory, filename))
rewriteLine = ('%s%s%s\n' % (card['name'], (' ' * numSpaces), filePath))
else:
rewriteLine = ('%s%s%s\n' % (card['name'], (' ' * numSpaces), card['value']))
new.write(rewriteLine) | Append directory to relative paths in project file. By default, the project file paths are read and written as
relative paths. Use this method to prepend a directory to all the paths in the project file.
Args:
directory (str): Directory path to prepend to file paths in project file.
projectFilePath (str): Path to project file that will be modified. | codesearchnet |
def _process_kwargs_parameters(sig, func, parent_class, model_name_lowercase, documented_kwargs, indent_level, undocumented_parameters):
docstring = ''
source_args_dict = source_args_doc(ImageProcessorArgs)
unroll_kwargs = func.__name__ in UNROLL_KWARGS_METHODS
if not unroll_kwargs and parent_class is not None:
unroll_kwargs = any((unroll_kwargs_class in parent_class.__name__ for unroll_kwargs_class in UNROLL_KWARGS_CLASSES))
if unroll_kwargs:
kwargs_parameters = [kwargs_param for _, kwargs_param in sig.parameters.items() if kwargs_param.kind == inspect.Parameter.VAR_KEYWORD]
for kwarg_param in kwargs_parameters:
if kwarg_param.annotation == inspect.Parameter.empty:
continue
kwargs_documentation = kwarg_param.annotation.__args__[0].__doc__
if kwargs_documentation is not None:
documented_kwargs, _ = parse_docstring(kwargs_documentation)
if model_name_lowercase is not None:
documented_kwargs = format_args_docstring(documented_kwargs, model_name_lowercase)
for param_name, param_type_annotation in kwarg_param.annotation.__args__[0].__annotations__.items():
param_type = str(param_type_annotation)
optional = False
if 'typing' in param_type:
param_type = ''.join(param_type.split('typing.')).replace('transformers.', '~')
else:
param_type = f'{param_type.replace('transformers.', '~').replace('builtins', '')}.{param_name}'
if 'ForwardRef' in param_type:
param_type = re.sub("ForwardRef\\('([\\w.]+)'\\)", '\\1', param_type)
if 'Optional' in param_type:
param_type = re.sub('Optional\\[(.*?)\\]', '\\1', param_type)
optional = True
param_default = ''
if parent_class is not None:
param_default = str(getattr(parent_class, param_name, ''))
param_default = f', defaults to `{param_default}`' if param_default != '' else ''
param_type, optional_string, shape_string, additional_info, description, is_documented = _get_parameter_info(param_name, documented_kwargs, source_args_dict, param_type, optional)
if is_documented:
if param_type == '':
print(f'🚨 {param_name} for {kwarg_param.annotation.__args__[0].__qualname__} in file {func.__code__.co_filename} has no type')
param_type = param_type if '`' in param_type else f'`{param_type}`'
if additional_info:
docstring += set_min_indent(f'{param_name} ({param_type}{additional_info}):{description}', indent_level + 8)
else:
docstring += set_min_indent(f'{param_name} ({param_type}{shape_string}{optional_string}{param_default}):{description}', indent_level + 8)
else:
undocumented_parameters.append(f'🚨 `{param_name}` is part of {kwarg_param.annotation.__args__[0].__qualname__}, but not documented. Make sure to add it to the docstring of the function in {func.__code__.co_filename}.')
return docstring | Process **kwargs parameters if needed.
Args:
sig (`inspect.Signature`): Function signature
func (`function`): Function the parameters belong to
parent_class (`class`): Parent class of the function
model_name_lowercase (`str`): Lowercase model name
documented_kwargs (`dict`): Dictionary of kwargs that are already documented
indent_level (`int`): Indentation level
undocumented_parameters (`list`): List to append undocumented parameters to | github-repos |
def perform_extract_job(self, destination, job_id, table_reference, destination_format, project=None, include_header=True, compression=ExportCompression.NONE, use_avro_logical_types=False, job_labels=None):
job_project = project or table_reference.projectId
job_reference = bigquery.JobReference(jobId=job_id, projectId=job_project)
request = bigquery.BigqueryJobsInsertRequest(projectId=job_project, job=bigquery.Job(configuration=bigquery.JobConfiguration(extract=bigquery.JobConfigurationExtract(destinationUris=destination, sourceTable=table_reference, printHeader=include_header, destinationFormat=destination_format, compression=compression, useAvroLogicalTypes=use_avro_logical_types), labels=_build_job_labels(job_labels)), jobReference=job_reference))
return self._start_job(request).jobReference | Starts a job to export data from BigQuery.
Returns:
bigquery.JobReference with the information about the job that was started. | github-repos |
def decode(self, codes):
assert codes.ndim == 2
N, M = codes.shape
assert M == self.M
assert codes.dtype == self.code_dtype
vecs = np.empty((N, self.Ds * self.M), dtype=np.float32)
for m in range(self.M):
vecs[:, m * self.Ds : (m+1) * self.Ds] = self.codewords[m][codes[:, m], :]
return vecs | Given PQ-codes, reconstruct original D-dimensional vectors
approximately by fetching the codewords.
Args:
codes (np.ndarray): PQ-cdoes with shape=(N, M) and dtype=self.code_dtype.
Each row is a PQ-code
Returns:
np.ndarray: Reconstructed vectors with shape=(N, D) and dtype=np.float32 | juraj-google-style |
def set_size(self, height=220, width=350,
height_threshold=120,
width_threshold=160):
self.set_integer("height", height)
self.set_integer("width", width)
self.set_integer("small_height_threshold", height_threshold)
self.set_integer("small_width_threshold", width_threshold) | Set the size of the chart.
Args:
height (int): height in pixels.
width (int): width in pixels.
height_threshold (int): height threshold in pixels
width_threshold (int): width threshold in pixesls | juraj-google-style |
def window_design(self, window_length, beta):
self.window = np.kaiser(window_length, beta)
return self.window | Kaiser window design
Args:
window_length: Length of the window in number of samples
beta: Beta value for Kaiser window design
Returns:
window: Window designed using the beta and length provided as inputs | juraj-google-style |
def __init__(self, model_data, image, env=None):
self.model_data = model_data
self.image = image
self.env = env | Create a definition of a model which can be part of an Inference Pipeline
Args:
model_data (str): The S3 location of a SageMaker model data ``.tar.gz`` file.
image (str): A Docker image URI.
env (dict[str, str]): Environment variables to run with ``image`` when hosted in SageMaker (default: None). | juraj-google-style |
def load_hdf5(path):
with h5py.File(path, 'r') as f:
is_sparse = f['issparse'][...]
if is_sparse:
shape = tuple(f['shape'][...])
data = f['data'][...]
indices = f['indices'][...]
indptr = f['indptr'][...]
X = sparse.csr_matrix((data, indices, indptr), shape=shape)
else:
X = f['data'][...]
y = f['target'][...]
return X, y | Load data from a HDF5 file.
Args:
path (str): A path to the HDF5 format file containing data.
dense (boolean): An optional variable indicating if the return matrix
should be dense. By default, it is false.
Returns:
Data matrix X and target vector y | juraj-google-style |
def get_version(self, id=None, endpoint=None):
return self._call_endpoint(GET_VERSION, id=id, endpoint=endpoint) | Get the current version of the endpoint.
Note: Not all endpoints currently implement this method
Args:
id: (int, optional) id to use for response tracking
endpoint: (RPCEndpoint, optional) endpoint to specify to use
Returns:
json object of the result or the error encountered in the RPC call | juraj-google-style |
def get_dimension(self, key, value, **kwargs):
return self._get_object_by_name(self._DIMENSION_ENDPOINT_SUFFIX, '{0}/{1}'.format(key, value), **kwargs) | get a dimension by key and value
Args:
key (string): key of the dimension
value (string): value of the dimension
Returns:
dictionary of response | codesearchnet |
def set_checkbox_value(w, value):
save = w.blockSignals(True)
try:
w.setChecked(bool(value))
finally:
w.blockSignals(save) | Sets a checkbox's "checked" property + signal blocking + value tolerance
Args:
w: QCheckBox instance
value: something that can be converted to a bool | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.