code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def from_db(cls, bigchain, tx_dict_list):
return_list = True
if isinstance(tx_dict_list, dict):
tx_dict_list = [tx_dict_list]
return_list = False
tx_map = {}
tx_ids = []
for tx in tx_dict_list:
tx.update({'metadata': None})
tx_map[tx['id']] = tx
tx_ids.append(tx['id'])
assets = list(bigchain.get_assets(tx_ids))
for asset in assets:
if (asset is not None):
tx = tx_map[asset['id']]
del asset['id']
tx['asset'] = asset
tx_ids = list(tx_map.keys())
metadata_list = list(bigchain.get_metadata(tx_ids))
for metadata in metadata_list:
tx = tx_map[metadata['id']]
tx.update({'metadata': metadata.get('metadata')})
if return_list:
tx_list = []
for (tx_id, tx) in tx_map.items():
tx_list.append(cls.from_dict(tx))
return tx_list
else:
tx = list(tx_map.values())[0]
return cls.from_dict(tx) | Helper method that reconstructs a transaction dict that was returned
from the database. It checks what asset_id to retrieve, retrieves the
asset from the asset table and reconstructs the transaction.
Args:
bigchain (:class:`~bigchaindb.tendermint.BigchainDB`): An instance
of BigchainDB used to perform database queries.
tx_dict_list (:list:`dict` or :obj:`dict`): The transaction dict or
list of transaction dict as returned from the database.
Returns:
:class:`~Transaction` | codesearchnet |
def normalize_date(tmy_date, year):
month = tmy_date.month
day = (tmy_date.day - 1)
hour = tmy_date.hour
if ((month is 1) and (day is 0) and (hour is 0)):
year = (year + 1)
return (datetime.datetime(year, month, 1) + datetime.timedelta(days=day, hours=hour, minutes=0)) | change TMY3 date to an arbitrary year.
Args:
tmy_date (datetime): date to mangle.
year (int): desired year.
Returns:
(None) | codesearchnet |
async def send_message(self, name, level, message):
if (name not in self.services):
raise ArgumentError('Unknown service name', short_name=name)
msg = self.services[name]['state'].post_message(level, message)
(await self._notify_update(name, 'new_message', msg.to_dict())) | Post a message for a service.
Args:
name (string): The short name of the service to query
level (int): The level of the message (info, warning, error)
message (string): The message contents | codesearchnet |
def collect_publications(self):
pubs = list(self.sub_publications)
for sub_tree in self.sub_trees:
pubs.extend(sub_tree.collect_publications())
return pubs | Recursively collect list of all publications referenced in this
tree and all sub-trees.
Returns:
list: List of UUID strings. | codesearchnet |
def __init__(self, dtype, shape, accumulator_ref):
self._dtype = dtype
if shape is not None:
self._shape = tensor_shape.TensorShape(shape)
else:
self._shape = tensor_shape.unknown_shape()
self._accumulator_ref = accumulator_ref
if context.executing_eagerly():
self._name = context.context().scope_name
else:
self._name = self._accumulator_ref.op.name.split('/')[-1] | Creates a new ConditionalAccumulator.
Args:
dtype: Datatype of the accumulated gradients.
shape: Shape of the accumulated gradients.
accumulator_ref: A handle to the conditional accumulator, created by sub-
classes | github-repos |
def DefaultParseValue(value):
try:
return _LiteralEval(value)
except (SyntaxError, ValueError):
return value | The default argument parsing function used by Fire CLIs.
If the value is made of only Python literals and containers, then the value
is parsed as it's Python value. Otherwise, provided the value contains no
quote, escape, or parenthetical characters, the value is treated as a string.
Args:
value: A string from the command line to be parsed for use in a Fire CLI.
Returns:
The parsed value, of the type determined most appropriate. | github-repos |
def get(self):
return self._master._get_helper(self._master._sorted_items, self._q) | Returns the calculated quantiles based on the master tracker's buffer.
Returns:
A list of calculated quantiles. | github-repos |
def easeInOutCirc(n):
_checkRange(n)
n = n * 2
if n < 1:
return -0.5 * (math.sqrt(1 - n**2) - 1)
else:
n = n - 2
return 0.5 * (math.sqrt(1 - n**2) + 1) | A circular tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | juraj-google-style |
def copy_to_file(self, name, fp_dest, callback=None):
assert compat.is_native(name)
def _write_to_file(data):
fp_dest.write(data)
if callback:
callback(data)
self.ftp.retrbinary(
"RETR {}".format(name), _write_to_file, FtpTarget.DEFAULT_BLOCKSIZE
) | Write cur_dir/name to file-like `fp_dest`.
Args:
name (str): file name, located in self.curdir
fp_dest (file-like): must support write() method
callback (function, optional):
Called like `func(buf)` for every written chunk | juraj-google-style |
def _tokens_to_subtoken(self, tokens):
ret = []
for token in tokens:
ret.extend(
self._escaped_token_to_subtoken_strings(_escape_token(token, self._alphabet)))
return ret | Converts a list of tokens to a list of subtoken.
Args:
tokens: a list of strings.
Returns:
a list of integers in the range [0, vocab_size) | juraj-google-style |
def select_by_value(self, value):
self._selected_key = None
self._selected_item = None
for k in self.children:
item = self.children[k]
if (item.get_text() == value):
item.attributes['selected'] = 'selected'
self._selected_key = k
self._selected_item = item
elif ('selected' in item.attributes):
del item.attributes['selected'] | Selects a DropDownItem by means of the contained text-
Args:
value (str): Textual content of the DropDownItem that have to be selected. | codesearchnet |
def _unwrap_el(self, value):
if isinstance(value, dict) and 'ELEMENT' in value:
element_id = value.get('ELEMENT')
return WebElement(element_id, self)
elif isinstance(value, list) and not isinstance(value, str):
return [self._unwrap_el(item) for item in value]
else:
return value | Convert {'Element': 1234} to WebElement Object
Args:
value(str|list|dict): The value field in the json response.
Returns:
The unwrapped value. | juraj-google-style |
def extend(*args):
if not args:
return {}
first = args[0]
rest = args[1:]
out = type(first)(first)
for each in rest:
out.update(each)
return out | shallow dictionary merge
Args:
a: dict to extend
b: dict to apply to a
Returns:
new instance of the same type as _a_, with _a_ and _b_ merged. | juraj-google-style |
def save_to_file(json_data, filename):
if filename[-5:] != '.json':
print('filename: %s' % filename)
filename += '.json'
with open(PATH_TO_DIR + '/' + filename, 'w') as f:
json.dump(json_data, f, sort_keys=True, indent=4)
print(' Successfully wrote configs to file `%s`.\n' % filename) | Saves all detected configuration(s) into a JSON file.
Args:
json_data: Dict of all configurations found.
filename: String that is the name of the output JSON file. | github-repos |
def weights_concatenated(labels):
eos_mask = tf.to_int32(tf.equal(labels, 1))
sentence_num = tf.cumsum(eos_mask, axis=1, exclusive=True)
in_target = tf.equal(tf.mod(sentence_num, 2), 1)
sentence_num_plus_one = (sentence_num + 1)
shifted = tf.pad(sentence_num_plus_one, [[0, 0], [2, 0], [0, 0], [0, 0]])[(:, :(- 2), :, :)]
nonboilerplate = tf.equal(sentence_num_plus_one, shifted)
ret = to_float(tf.logical_and(nonboilerplate, in_target))
return ret | Assign weight 1.0 to the "target" part of the concatenated labels.
The labels look like:
source English I love you . ID1 target French Je t'aime . ID1 source
English the cat ID1 target French le chat ID1 source English ...
We want to assign weight 1.0 to all words in the target text (including the
ID1 end symbol), but not to the source text or the boilerplate. In the
above example, the target words that get positive weight are:
Je t'aime . ID1 le chat ID1
Args:
labels: a Tensor
Returns:
a Tensor | codesearchnet |
def get_dict(self):
self.is_valid()
return self._get_dict() | Returns the internal-API dictionary representing the
:class:`DisplayDataItem`.
Returns:
Dict[str, Any]: A dictionary. The internal-API dictionary representing
the :class:`DisplayDataItem`.
Raises:
ValueError: if the item is not valid. | github-repos |
def insert_chain(cur, chain, encoded_data=None):
if (encoded_data is None):
encoded_data = {}
if ('nodes' not in encoded_data):
encoded_data['nodes'] = json.dumps(sorted(chain), separators=(',', ':'))
if ('chain_length' not in encoded_data):
encoded_data['chain_length'] = len(chain)
insert = 'INSERT OR IGNORE INTO chain(chain_length, nodes) VALUES (:chain_length, :nodes);'
cur.execute(insert, encoded_data) | Insert a chain into the cache.
Args:
cur (:class:`sqlite3.Cursor`):
An sqlite3 cursor. This function is meant to be run within a :obj:`with` statement.
chain (iterable):
A collection of nodes. Chains in embedding act as one node.
encoded_data (dict, optional):
If a dictionary is provided, it will be populated with the serialized data. This is
useful for preventing encoding the same information many times.
Notes:
This function assumes that the nodes in chain are index-labeled. | codesearchnet |
def CopyMicrosecondsToFractionOfSecond(cls, microseconds):
if microseconds < 0 or microseconds >= definitions.MICROSECONDS_PER_SECOND:
raise ValueError(
'Number of microseconds value: {0:d} out of bounds.'.format(
microseconds))
return decimal.Decimal(microseconds) / definitions.MICROSECONDS_PER_SECOND | Copies the number of microseconds to a fraction of second value.
Args:
microseconds (int): number of microseconds.
Returns:
decimal.Decimal: fraction of second, which must be a value between 0.0 and
1.0.
Raises:
ValueError: if the number of microseconds is out of bounds. | juraj-google-style |
def fit(self, X, y):
self._word_vocab.add_documents(X)
self._label_vocab.add_documents(y)
if self._use_char:
for doc in X:
self._char_vocab.add_documents(doc)
self._word_vocab.build()
self._char_vocab.build()
self._label_vocab.build()
return self | Learn vocabulary from training set.
Args:
X : iterable. An iterable which yields either str, unicode or file objects.
Returns:
self : IndexTransformer. | codesearchnet |
def setRelay(self, seconds, relay, status, password="00000000"):
result = False
self.setContext("setRelay")
try:
self.clearCmdMsg()
if len(password) != 8:
self.writeCmdMsg("Invalid password length.")
self.setContext("")
return result
if seconds < 0 or seconds > 9999:
self.writeCmdMsg("Relay duration must be between 0 and 9999.")
self.setContext("")
return result
if not self.requestA():
self.writeCmdMsg("Bad read CRC on setting")
else:
if not self.serialCmdPwdAuth(password):
self.writeCmdMsg("Password failure")
else:
req_str = ""
req_str = ("01573102303038" +
binascii.hexlify(str(relay)).zfill(2) +
"28" +
binascii.hexlify(str(status)).zfill(2) +
binascii.hexlify(str(seconds).zfill(4)) + "2903")
req_str += self.calc_crc16(req_str[2:].decode("hex"))
self.m_serial_port.write(req_str.decode("hex"))
if self.m_serial_port.getResponse(self.getContext()).encode("hex") == "06":
self.writeCmdMsg("Success: 06 returned.")
result = True
self.serialPostEnd()
except:
ekm_log(traceback.format_exc(sys.exc_info()))
self.setContext("")
return result | Serial call to set relay.
Args:
seconds (int): Seconds to hold, ero is hold forever. See :class:`~ekmmeters.RelayInterval`.
relay (int): Selected relay, see :class:`~ekmmeters.Relay`.
status (int): Status to set, see :class:`~ekmmeters.RelayState`
password (str): Optional password
Returns:
bool: True on completion and ACK. | juraj-google-style |
def typing(self, room: Room, timeout: int=5000):
path = f'/rooms/{quote(room.room_id)}/typing/{quote(self.user_id)}'
return self.api._send('PUT', path, {'typing': True, 'timeout': timeout}) | Send typing event directly to api
Args:
room: room to send typing event to
timeout: timeout for the event, in ms | codesearchnet |
def list_workers(config, *, filter_by_queues=None):
celery_app = create_app(config)
worker_stats = celery_app.control.inspect().stats()
queue_stats = celery_app.control.inspect().active_queues()
if worker_stats is None:
return []
workers = []
for name, w_stat in worker_stats.items():
queues = [QueueStats.from_celery(q_stat) for q_stat in queue_stats[name]]
add_worker = filter_by_queues is None
if not add_worker:
for queue in queues:
if queue.name in filter_by_queues:
add_worker = True
break
if add_worker:
workers.append(WorkerStats.from_celery(name, w_stat, queues))
return workers | Return a list of all available workers.
Args:
config (Config): Reference to the configuration object from which the
settings are retrieved.
filter_by_queues (list): Restrict the returned workers to workers that listen to
at least one of the queue names in this list.
Returns:
list: A list of WorkerStats objects. | juraj-google-style |
def _RemoveForwardedIps(self, forwarded_ips, interface):
for address in forwarded_ips:
self.ip_forwarding_utils.RemoveForwardedIp(address, interface) | Remove the forwarded IP addresses from the network interface.
Args:
forwarded_ips: list, the forwarded IP address strings to delete.
interface: string, the output device to use. | codesearchnet |
def add_to_screen(self, screen_width, screen):
for (lineno, fields) in enumerate(self.line_fields):
for (left, field) in self.compute_positions(screen_width, fields):
logger.debug('Adding field %s to screen %s at x=%d->%d, y=%d', field, screen.ref, left, ((left + field.width) - 1), (1 + lineno))
self.widgets[field] = field.add_to_screen(screen, left, (1 + lineno))
self.register_hooks(field) | Add the pattern to a screen.
Also fills self.widgets.
Args:
screen_width (int): the width of the screen
screen (lcdprod.Screen): the screen to fill. | codesearchnet |
def create(cls, **kwargs):
try:
return cls.add(cls.new(**kwargs))
except:
cls.session.rollback()
raise | Initializes a new instance, adds it to the db and commits
the transaction.
Args:
**kwargs: The keyword arguments for the init constructor.
Examples:
>>> user = User.create(name="Vicky", email="vicky@h.com")
>>> user.id
35 | codesearchnet |
def __add__(self, other):
assert isinstance(other, LocationDescriptor), "You can only add LocationDescriptor together."
assert self._separation_char == other._separation_char, \
"You can only add LocationDescriptor together if they share the same separator character."
new_location_string_list = self.get_locations_list() + other.get_locations_list()
return LocationDescriptor(new_location_string_list) | Create a **new** :class:`LocationDescriptor` object that is the sum of this one and another.
Args:
self: This :class:`LocationDescriptor` object.
other: Another :class:`LocationDescriptor` object.
Returns:
Sum of both :class:`LocationDescriptor` objects. | juraj-google-style |
def _GetFirefoxConfig(self, file_object, display_name):
to_read = min(file_object.get_size(), self._INITIAL_CACHE_FILE_SIZE)
while (file_object.get_offset() < to_read):
offset = file_object.get_offset()
try:
(cache_entry, _) = self._ReadCacheEntry(file_object, display_name, self._MINIMUM_BLOCK_SIZE)
record_size = ((self._CACHE_ENTRY_HEADER_SIZE + cache_entry.request_size) + cache_entry.information_size)
if (record_size >= 4096):
block_size = 4096
elif (record_size >= 1024):
block_size = 1024
else:
block_size = 256
return self.FIREFOX_CACHE_CONFIG(block_size, offset)
except IOError:
logger.debug('[{0:s}] {1:s}:{2:d}: Invalid record.'.format(self.NAME, display_name, offset))
raise errors.UnableToParseFile('Could not find a valid cache record. Not a Firefox cache file.') | Determine cache file block size.
Args:
file_object (dfvfs.FileIO): a file-like object.
display_name (str): display name.
Returns:
firefox_cache_config: namedtuple containing the block size and first
record offset.
Raises:
UnableToParseFile: if no valid cache record could be found. | codesearchnet |
def cooccurrences(self, domains):
api_name = 'opendns-cooccurrences'
fmt_url_path = u'recommendations/name/{0}.json'
return self._multi_get(api_name, fmt_url_path, domains) | Get the domains related to input domains.
Args:
domains: an enumerable of strings domain names
Returns:
An enumerable of string domain names | juraj-google-style |
def circuit_to_quirk_url(circuit: circuits.Circuit, prefer_unknown_gate_to_failure: bool=False, escape_url=True) -> str:
circuit = circuit.copy()
linearize_circuit_qubits(circuit)
cols = []
for moment in circuit:
can_merges = []
for op in moment.operations:
for (col, can_merge) in _to_quirk_cols(op, prefer_unknown_gate_to_failure):
if can_merge:
can_merges.append(col)
else:
cols.append(col)
if can_merges:
merged_col = ([1] * max((len(e) for e in can_merges)))
for col in can_merges:
for i in range(len(col)):
if (col[i] != 1):
merged_col[i] = col[i]
cols.append(merged_col)
circuit_json = json.JSONEncoder(ensure_ascii=False, separators=(',', ':'), sort_keys=True).encode({'cols': cols})
if escape_url:
suffix = urllib.parse.quote(circuit_json)
else:
suffix = circuit_json
return 'http: | Returns a Quirk URL for the given circuit.
Args:
circuit: The circuit to open in Quirk.
prefer_unknown_gate_to_failure: If not set, gates that fail to convert
will cause this function to raise an error. If set, a URL
containing bad gates will be generated. (Quirk will open the URL,
and replace the bad gates with parse errors, but still get the rest
of the circuit.)
escape_url: If set, the generated URL will have special characters such
as quotes escaped using %. This makes it possible to paste the URL
into forums and the command line and etc and have it properly
parse. If not set, the generated URL will be more compact and human
readable (and can still be pasted directly into a browser's address
bar).
Returns: | codesearchnet |
def _prepare_tables(self):
values = torch.tensor([[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]])
row_index = IndexMap(indices=torch.tensor([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 0, 0], [1, 1, 1], [2, 2, 2]]]), num_segments=3, batch_dims=1)
col_index = IndexMap(indices=torch.tensor([[[0, 0, 1], [0, 0, 1], [0, 0, 1]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]]), num_segments=3, batch_dims=1)
return (values, row_index, col_index) | Prepares two tables, both with three distinct rows.
The first table has two columns:
1.0, 2.0 | 3.0
2.0, 0.0 | 1.0
1.0, 3.0 | 4.0
The second table has three columns:
1.0 | 2.0 | 3.0
2.0 | 0.0 | 1.0
1.0 | 3.0 | 4.0
Returns:
SegmentedTensors with the tables. | github-repos |
def str(name, default=None, allow_none=False, fallback=None):
value = read(name, default, allow_none, fallback=fallback)
if ((value is None) and allow_none):
return None
else:
return builtins.str(value).strip() | Get a string based environment value or the default.
Args:
name: The environment variable name
default: The default value to use if no environment variable is found
allow_none: If the return value can be `None` (i.e. optional) | codesearchnet |
def is_deterministic(self):
return False | Whether this coder is guaranteed to encode values deterministically.
A deterministic coder is required for key coders in GroupByKey operations
to produce consistent results.
For example, note that the default coder, the PickleCoder, is not
deterministic: the ordering of picked entries in maps may vary across
executions since there is no defined order, and such a coder is not in
general suitable for usage as a key coder in GroupByKey operations, since
each instance of the same key may be encoded differently.
Returns:
Whether coder is deterministic. | github-repos |
def _cauchy_equation(wavelength, coefficients):
n = 0.0
for (i, c) in enumerate(coefficients):
exponent = (2 * i)
n += (c / (wavelength ** exponent))
return n | Helpful function to evaluate Cauchy equations.
Args:
wavelength (float, list, None): The wavelength(s) the
Cauchy equation will be evaluated at.
coefficients (list): A list of the coefficients of
the Cauchy equation.
Returns:
float, list: The refractive index at the target wavelength(s). | codesearchnet |
def _calculate_scores(self, query, key):
q_reshaped = array_ops.expand_dims(query, axis=-2)
k_reshaped = array_ops.expand_dims(key, axis=-3)
if self.use_scale:
scale = self.scale
else:
scale = 1.0
return math_ops.reduce_sum(scale * math_ops.tanh(q_reshaped + k_reshaped), axis=-1) | Calculates attention scores as a nonlinear sum of query and key.
Args:
query: Query tensor of shape `[batch_size, Tq, dim]`.
key: Key tensor of shape `[batch_size, Tv, dim]`.
Returns:
Tensor of shape `[batch_size, Tq, Tv]`. | github-repos |
def request_via_socket(sock, search_target):
msgparts = dict(HOST=MCAST_IP_PORT, MAN='"ssdp:discover"', MX='3', ST=search_target)
msg = encode_request('M-SEARCH * HTTP/1.1', **msgparts)
sock.sendto(msg, (MCAST_IP, MCAST_PORT)) | Send an SSDP search request via the provided socket.
Args:
sock: A socket suitable for use to send a broadcast message - preferably
one created by :py:func:`make_socket`.
search_target (string): A :term:`resource type` target to search for. | codesearchnet |
def add_gemini_query(self, name, query):
logger.info('Adding query {0} with text {1}'.format(name, query))
new_query = GeminiQuery(name=name, query=query)
self.session.add(new_query)
self.save()
return new_query | Add a user defined gemini query
Args:
name (str)
query (str) | codesearchnet |
def codeblocks(start=None, end=None, full=True):
if full:
for function in functions(start, end):
fc = FlowChart(f=function.func_t)
for block in fc:
(yield block)
else:
(start, end) = fix_addresses(start, end)
for code_block in FlowChart(bounds=(start, end)):
(yield code_block) | Get all `CodeBlock`s in a given range.
Args:
start - start address of the range. If `None` uses IDB start.
end - end address of the range. If `None` uses IDB end.
full - `True` is required to change node info (e.g. color). `False` causes faster iteration. | codesearchnet |
def load(self, key: str) -> _ModelLoadStats:
if key in self._tag_map:
self._tag_map.move_to_end(key)
return _ModelLoadStats(self._tag_map[key], None, None)
else:
self._tag_map[key] = uuid.uuid4().hex
tag = self._tag_map[key]
mh = self._mh_map[key]
if self._max_models is not None and self._max_models < len(self._tag_map):
tag_to_remove = self._tag_map.popitem(last=False)[1]
shared_handle, model_to_remove = self._proxy_map[tag_to_remove]
shared_handle.release(model_to_remove)
del self._proxy_map[tag_to_remove]
memory_before = _get_current_process_memory_in_bytes()
start_time = _to_milliseconds(time.time_ns())
shared_handle = multi_process_shared.MultiProcessShared(mh.load_model, tag=tag)
model_reference = shared_handle.acquire()
self._proxy_map[tag] = (shared_handle, model_reference)
memory_after = _get_current_process_memory_in_bytes()
end_time = _to_milliseconds(time.time_ns())
return _ModelLoadStats(tag, end_time - start_time, memory_after - memory_before) | Loads the appropriate model for the given key into memory.
Args:
key: the key associated with the model we'd like to load.
Returns:
_ModelLoadStats with tag, byte size, and latency to load the model. If
the model was already loaded, byte size/latency will be None. | github-repos |
def chain(processor_list: Sequence[Processor | PartProcessor]) -> Processor:
if not processor_list:
raise ValueError('processor_list is empty')
chain_processor = processor_list[0]
for p in processor_list[1:]:
chain_processor = chain_processor + p
if isinstance(chain_processor, PartProcessor):
chain_processor = chain_processor.to_processor()
return chain_processor | Chain a sequence of processors.
Args:
processor_list: list of part processors or generic processors.
Returns:
A processor consisting of the chain of all the processors in the list. The
execution is sequential from the first processor to the last but parts are
processed concurrently overall. | github-repos |
def _int_to_pos(self, flat_position):
return ((flat_position % self.env.action_space.screen_shape[0]), (flat_position % self.env.action_space.screen_shape[1])) | Returns x, y from flat_position integer.
Args:
flat_position: flattened position integer
Returns: x, y | codesearchnet |
def search_rule_by_id(self, ruleID) -> Rule:
for r in self.rules:
if r.id == ruleID:
return r
return None | searches a rule by given id
Args:
ruleID(str): the rule to search for
Returns
the rule object or None if it couldn't find a rule | juraj-google-style |
def __init__(self, text_encoder_config=None, data="clean100", **kwargs):
if data not in _DATA_OPTIONS:
raise ValueError("data must be one of %s" % _DATA_OPTIONS)
name = kwargs.get("name")
if name is None:
encoder_name = (
text_encoder_config.name if text_encoder_config else "plain_text")
data_name = data
name = "%s_%s" % (data_name, encoder_name)
kwargs["name"] = name
description = kwargs.get("description")
if description is None:
if text_encoder_config:
encoder_description = "Transcriptions use the %s" % (
text_encoder_config.encoder_cls.__name__)
else:
encoder_description = "Transcriptions are in plain text."
if data == "all":
data_description = "Uses all data."
else:
data_description = ("Uses only clean data,%s including train-clean-360."
% ("" if data == "clean360" else " not"))
description = "%s %s" % (data_description, encoder_description)
kwargs["description"] = description
super(LibrispeechConfig, self).__init__(**kwargs)
self.text_encoder_config = text_encoder_config
self.data = data | Constructs a LibrispeechConfig.
Args:
text_encoder_config: `tfds.features.text.TextEncoderConfig`, configuration
for the `tfds.features.text.TextEncoder` used for the text feature.
data: `str`, one of `(clean100, clean360, all)`. `clean100` uses only the
clean data without `train-clean-360`. `clean360` uses clean data with
`train-clean-360`. `all` uses all the data.
**kwargs: keyword arguments forwarded to super. | juraj-google-style |
def check_for_missing_options(config):
for (section_name, section) in config:
for (option_name, option) in section:
if (option.required and (option.value is None)):
raise exc.MissingRequiredOption('Option {0} in namespace {1} is required.'.format(option_name, section_name))
return config | Iter over a config and raise if a required option is still not set.
Args:
config (confpy.core.config.Configuration): The configuration object
to validate.
Raises:
MissingRequiredOption: If any required options are not set in the
configuration object.
Required options with default values are considered set and will not cause
this function to raise. | codesearchnet |
def _alephResultToDict(dom):
result = {}
for i in dom.childs:
if not i.isOpeningTag():
continue
keyword = i.getTagName().strip()
value = _tryConvertToInt(i.getContent().strip())
if keyword in result:
if isinstance(result[keyword], list):
result[keyword].append(value)
else:
result[keyword] = [result[keyword], value]
else:
result[keyword] = value
return result | Convert part of non-nested XML to :py:class:`dict`.
Args:
dom (HTMLElement tree): pre-parsed XML (see dhtmlparser).
Returns:
dict: with python data | juraj-google-style |
def lookup_instances(fragment, verbose=True, filter_by_key=True):
def vprint(*args):
if verbose:
print(*args)
region = get_region()
client = get_ec2_client()
ec2 = get_ec2_resource()
response = client.describe_instances()
assert is_good_response(response)
instance_list = []
for instance in ec2.instances.all():
if instance.state['Name'] != 'running':
continue
name = get_name(instance)
if (fragment in name or fragment in str(instance.public_ip_address) or
fragment in str(instance.id) or fragment in str(instance.private_ip_address)):
instance_list.append((util.toseconds(instance.launch_time), instance))
sorted_instance_list = reversed(sorted(instance_list, key=itemgetter(0)))
filtered_instance_list = []
vprint("Using region ", region)
for (ts, instance) in sorted_instance_list:
if filter_by_key and instance.key_name != get_keypair_name():
vprint(f"Got key {instance.key_name}, expected {get_keypair_name()}")
continue
filtered_instance_list.append(instance)
return filtered_instance_list | Returns ec2.Instance object whose name contains fragment, in reverse order of launching (ie,
most recent intance first). Optionally filters by key, only including instances launched with
key_name matching current username.
args:
verbose: print information about all matching instances found
filter_by_key if True, ignore instances that are not launched with current
user's default key | juraj-google-style |
def __setattr__(self, name, value):
if name in self.__by_name or name.startswith('_Message__'):
object.__setattr__(self, name, value)
else:
raise AttributeError("May not assign arbitrary value %s "
"to message %s" % (name, type(self).__name__)) | Change set behavior for messages.
Messages may only be assigned values that are fields.
Does not try to validate field when set.
Args:
name: Name of field to assign to.
value: Value to assign to field.
Raises:
AttributeError when trying to assign value that is not a field. | juraj-google-style |
def __init__(self, port=CONTROLLER_PORT, easgd_alpha=0.5,
start_halving_at=6, end_at=10, sync_freq=10, halving_freq=1,
valid_freq=1500, learning_rate=0.1, log_path=None):
Controller.__init__(self, port)
self.epoch_start_halving = start_halving_at
self.end_at = end_at
self.sync_freq = sync_freq
self.start_time = None
self.rand = np.random.RandomState(3)
self.epoch = 0
self._current_iter = 0
self._iters_from_last_valid = 0
self._evaluating = False
self._valid_freq = valid_freq
self._halving_freq = halving_freq
self._done = False
self._lr = learning_rate
self._easgd_alpha = easgd_alpha
self._training_names = []
self._evaluation_names = []
self._best_valid_cost = sys.float_info.max
self._lock = Lock()
self.num_train_batches = 0
self.batch_pool = []
self._train_costs = []
self._epoch_start_time = None
self.prepared_worker_pool = set()
self.log_file = open(log_path, "w") if log_path else None
if log_path:
logging.info("write logs into {}".format(log_path))
logging.info("multi-gpu server is listening port {}".format(port)) | Initialize the controller.
Args:
port (int): batches in one training step
easgd_alpha (float) | juraj-google-style |
def get_metadata(self, key: str, per_trial: bool=True) -> Optional[Any]: | Gets metadata for current trial or current sampling.
Args:
key: A string as key to metadata.
per_trial: If True, the key is retrieved per curent trial. Otherwise, it
is retrieved per current sampling.
Returns:
A value that can be deserialized by `pg.from_json_str`. | github-repos |
def _check_wiremap_validity(self, wire_map, keymap, valmap):
for k, v in wire_map.items():
kname = "%s[%d]" % (k[0].name, k[1])
vname = "%s[%d]" % (v[0].name, v[1])
if k not in keymap:
raise DAGCircuitError("invalid wire mapping key %s" % kname)
if v not in valmap:
raise DAGCircuitError("invalid wire mapping value %s" % vname)
if type(k) is not type(v):
raise DAGCircuitError("inconsistent wire_map at (%s,%s)" %
(kname, vname)) | Check that the wiremap is consistent.
Check that the wiremap refers to valid wires and that
those wires have consistent types.
Args:
wire_map (dict): map from (register,idx) in keymap to
(register,idx) in valmap
keymap (dict): a map whose keys are wire_map keys
valmap (dict): a map whose keys are wire_map values
Raises:
DAGCircuitError: if wire_map not valid | juraj-google-style |
def word_fts(self, word):
return list(map(self.fts, self.segs(word))) | Return featural analysis of `word`
Args:
word (unicode): one or more IPA segments
Returns:
list: list of lists (value, feature) tuples where each inner list
corresponds to a segment in `word` | codesearchnet |
def batch_shape_tensor(self, name='batch_shape_tensor'):
with self._name_scope(name):
return self._batch_shape_tensor() | Shape of batch dimensions of this operator, determined at runtime.
If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns a `Tensor` holding
`[B1,...,Bb]`.
Args:
name: A name for this `Op`.
Returns:
`int32` `Tensor` | github-repos |
def podcast_episodes(self, *, device_id=None):
if (device_id is None):
device_id = self.device_id
podcast_episode_list = []
for chunk in self.podcast_episodes_iter(device_id=device_id, page_size=49995):
podcast_episode_list.extend(chunk)
return podcast_episode_list | Get a listing of podcast episodes for all subscribed podcasts.
Paramaters:
device_id (str, Optional): A mobile device ID.
Default: Use ``device_id`` of the :class:`MobileClient` instance.
Returns:
list: Podcast episode dicts. | codesearchnet |
def __init__(self, query):
self._timeseries_list = list(query.iter(headers_only=True))
self._metric_type = query.metric_type | Initializes the QueryMetadata given the query object.
Args:
query: A Query object. | juraj-google-style |
class DbrxAttentionConfig(PretrainedConfig):
base_config_key = 'attn_config'
def __init__(self, attn_pdrop: float=0.0, clip_qkv: Optional[float]=None, kv_n_heads: int=1, rope_theta: float=10000.0, **kwargs: Any):
super().__init__(**kwargs)
self.attn_pdrop = attn_pdrop
self.clip_qkv = clip_qkv
self.kv_n_heads = kv_n_heads
self.rope_theta = rope_theta
for k in ['model_type', 'attn_implementation', 'transformers_version', '_commit_hash', 'torch_dtype']:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
raise ValueError(f'Found unknown kwargs={kwargs!r}') | Configuration class for Dbrx Attention.
[`DbrxAttention`] class. It is used to instantiate attention layers
according to the specified arguments, defining the layers architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
clip_qkv (`float`, *optional*):
If set, clip the queries, keys, and values in the attention layer to this value.
kv_n_heads (`int`, *optional*, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads.
rope_theta (`float`, *optional*, defaults to 10000.0): The base frequency for rope. | github-repos |
def uniform_row_length(self):
return self._uniform_row_length | Returns the length of each row in this partition, if rows are uniform.
If all rows in this `RowPartition` have the same length, then this returns
that length as a scalar integer `Tensor`. Otherwise, it returns `None`.
Returns:
scalar Tensor with `type=self.dtype`, or `None`. | github-repos |
def _test_dir(self, test_name):
test_dir = os.path.join(self.get_temp_dir(), test_name)
if os.path.isdir(test_dir):
for f in glob.glob('%s/*' % test_dir):
os.remove(f)
else:
os.makedirs(test_dir)
return test_dir | Create an empty dir to use for tests.
Args:
test_name: Name of the test.
Returns:
Absolute path to the test directory. | github-repos |
def try_claim(self, position):
raise NotImplementedError | Atomically determines if a record at a split point is within the range.
This method should be called **if and only if** the record is at a split
point. This method may modify the internal state of the ``RangeTracker`` by
updating the last-consumed position to ``position``.
** Thread safety **
Methods of the class ``RangeTracker`` including this method may get invoked
by different threads, hence must be made thread-safe, e.g. by using a single
lock object.
Args:
position: starting position of a record being read by a source.
Returns:
``True``, if the given position falls within the current range, returns
``False`` otherwise. | github-repos |
def up_to(self, term: str) -> str:
end = self.input.find(term, self.offset)
if (end < 0):
raise EndOfInput(self)
res = self.input[self.offset:end]
self.offset = (end + 1)
return res | Parse and return segment terminated by the first occurence of a string.
Args:
term: Terminating string.
Raises:
EndOfInput: If `term` does not occur in the rest of the input text. | codesearchnet |
def advance_for_next_slice(self, recovery_slice=False):
self.slice_start_time = None
self.slice_request_id = None
self.slice_retries = 0
self.acquired_once = False
if recovery_slice:
self.slice_id += 2
else:
self.slice_id += 1 | Advance self for next slice.
Args:
recovery_slice: True if this slice is running recovery logic.
See handlers.MapperWorkerCallbackHandler._attempt_slice_recovery
for more info. | codesearchnet |
def log_every_n(level, msg, n, *args):
count = _GetNextLogCountPerToken(_GetFileAndLine())
log_if(level, msg, not (count % n), *args) | Log 'msg % args' at level 'level' once per 'n' times.
Logs the 1st call, (N+1)st call, (2N+1)st call, etc.
Not threadsafe.
Args:
level: The level at which to log.
msg: The message to be logged.
n: The number of times this should be called before it is logged.
*args: The args to be substituted into the msg. | juraj-google-style |
def GetShadowMap(self, since=None):
return ShadowUpdateGetter(self.conf).GetUpdates(source=self, search_base=self.conf['base'], search_filter=self.conf['filter'], search_scope=self.conf['scope'], since=since) | Return the shadow map from this source.
Args:
since: Get data only changed since this timestamp (inclusive) or None
for all data.
Returns:
instance of ShadowMap | github-repos |
def save_component(self, component_name, save_path):
component = self.get_component(component_name=component_name)
self._validate_savable(component=component, component_name=component_name)
return component.save(sess=self.session, save_path=save_path) | Saves a component of this model to the designated location.
Args:
component_name: The component to save.
save_path: The location to save to.
Returns:
Checkpoint path where the component was saved. | codesearchnet |
def model(x):
hidden_act = dense_layer(hidden_weights, x)
logits_act = dense_layer(output_weights, hidden_act, tf.identity)
y = tf.nn.softmax(logits_act)
return y | Feed forward function of the model.
Args:
x: a (?, 28*28) tensor consisting of the feature inputs for a batch of
examples.
Returns:
A (?, 10) tensor containing the class scores for each example. | github-repos |
def swo_read(self, offset, num_bytes, remove=False):
buf_size = ctypes.c_uint32(num_bytes)
buf = (ctypes.c_uint8 * num_bytes)(0)
self._dll.JLINKARM_SWO_Read(buf, offset, ctypes.byref(buf_size))
buf_size = buf_size.value
if remove:
self.swo_flush(buf_size)
return list(buf)[:buf_size] | Reads data from the SWO buffer.
The data read is not automatically removed from the SWO buffer after
reading unless ``remove`` is ``True``. Otherwise the callee must
explicitly remove the data by calling ``.swo_flush()``.
Args:
self (JLink): the ``JLink`` instance
offset (int): offset of first byte to be retrieved
num_bytes (int): number of bytes to read
remove (bool): if data should be removed from buffer after read
Returns:
A list of bytes read from the SWO buffer. | codesearchnet |
def sholl_frequency(nrn, neurite_type=NeuriteType.all, step_size=10):
nrns = neuron_population(nrn)
neurite_filter = is_type(neurite_type)
min_soma_edge = float('Inf')
max_radii = 0
neurites_list = []
for neuron in nrns:
neurites_list.extend(((neurites, neuron.soma.center) for neurites in neuron.neurites if neurite_filter(neurites)))
min_soma_edge = min(min_soma_edge, neuron.soma.radius)
max_radii = max(max_radii, np.max(np.abs(bounding_box(neuron))))
radii = np.arange(min_soma_edge, (max_radii + step_size), step_size)
ret = np.zeros_like(radii)
for (neurites, center) in neurites_list:
ret += sholl_crossings(neurites, center, radii)
return ret | perform Sholl frequency calculations on a population of neurites
Args:
nrn(morph): nrn or population
neurite_type(NeuriteType): which neurites to operate on
step_size(float): step size between Sholl radii
Note:
Given a neuron, the soma center is used for the concentric circles,
which range from the soma radii, and the maximum radial distance
in steps of `step_size`. When a population is given, the concentric
circles range from the smallest soma radius to the largest radial neurite
distance. Finally, each segment of the neuron is tested, so a neurite that
bends back on itself, and crosses the same Sholl radius will get counted as
having crossed multiple times. | codesearchnet |
def center_crop(self, image: 'torch.Tensor', size: SizeDict, **kwargs) -> 'torch.Tensor':
if size.height is None or size.width is None:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
image_height, image_width = image.shape[-2:]
crop_height, crop_width = (size.height, size.width)
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [(crop_width - image_width)
image = F.pad(image, padding_ltrb, fill=0)
image_height, image_width = image.shape[-2:]
if crop_width == image_width and crop_height == image_height:
return image
crop_top = int((image_height - crop_height) / 2.0)
crop_left = int((image_width - crop_width) / 2.0)
return F.crop(image, crop_top, crop_left, crop_height, crop_width) | Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`"torch.Tensor"`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
Returns:
`torch.Tensor`: The center cropped image. | github-repos |
def forward(self, hidden_features):
hidden_features = hidden_features.transpose(-1, -2)
if self.head_aggregation == 'use_last':
hidden_features = hidden_features[..., -1]
elif self.head_aggregation == 'max_pool':
hidden_features = hidden_features.max(dim=-1).values
elif self.head_aggregation == 'avg_pool':
hidden_features = hidden_features.mean(dim=-1)
if self.flatten:
hidden_features = self.flatten(hidden_features)
hidden_features = self.dropout(hidden_features)
hidden_features = self.projection(hidden_features)
if self.distribution_output is None and self.output_range is not None:
hidden_features = torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0]
return hidden_features | Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x num_targets)`. | github-repos |
def process_rule(edges: Edges, ast: Function, rule: Mapping[(str, Any)], spec: BELSpec):
ast_type = ast.__class__.__name__
trigger_functions = rule.get('trigger_function', [])
trigger_types = rule.get('trigger_type', [])
rule_subject = rule.get('subject')
rule_relation = rule.get('relation')
rule_object = rule.get('object')
log.debug(f'Running {rule_relation} Type: {ast_type}')
if isinstance(ast, Function):
function_name = ast.name
args = ast.args
parent_function = ast.parent_function
if (function_name in trigger_functions):
if (rule_subject == 'trigger_value'):
subject = ast
if (rule_object == 'args'):
for arg in args:
log.debug(f'1: {subject} {arg}')
edge_ast = BELAst(subject, rule_relation, arg, spec)
edges.append(edge_ast)
elif ((rule_object == 'parent_function') and parent_function):
log.debug(f'2: {subject} {parent_function}')
edge_ast = BELAst(subject, rule_relation, parent_function, spec)
edges.append(edge_ast)
elif (ast_type in trigger_types):
if (rule_subject == 'trigger_value'):
subject = ast
if (rule_object == 'args'):
for arg in args:
log.debug(f'3: {subject} {arg}')
edge_ast = BELAst(subject, rule_relation, arg, spec)
edges.append(edge_ast)
elif ((rule_object == 'parent_function') and parent_function):
log.debug(f'4: {subject} {parent_function}')
edge_ast = BELAst(subject, rule_relation, parent_function, spec)
edges.append(edge_ast)
if isinstance(ast, NSArg):
term = '{}:{}'.format(ast.namespace, ast.value)
parent_function = ast.parent_function
if (ast_type in trigger_types):
if (rule_subject == 'trigger_value'):
subject = term
if (rule_object == 'args'):
for arg in args:
log.debug(f'5: {subject} {arg}')
edge_ast = BELAst(subject, rule_relation, arg, spec)
edges.append(edge_ast)
elif ((rule_object == 'parent_function') and parent_function):
log.debug(f'6: {subject} {parent_function}')
edge_ast = BELAst(subject, rule_relation, parent_function, spec)
edges.append(edge_ast)
if hasattr(ast, 'args'):
for arg in ast.args:
process_rule(edges, arg, rule, spec) | Process computed edge rule
Recursively processes BELAst versus a single computed edge rule
Args:
edges (List[Tuple[Union[Function, str], str, Function]]): BEL Edge ASTs
ast (Function): BEL Function AST
rule (Mapping[str, Any]: computed edge rule | codesearchnet |
def load_state(self, in_path):
with open(in_path, 'r') as infile:
state = json.load(infile)
self.restore_state(state) | Load the current state of this emulated object from a file.
The file should have been produced by a previous call to save_state.
Args:
in_path (str): The path to the saved state dump that you wish
to load. | codesearchnet |
def apply_op(input_layer, operation, *op_args, **op_kwargs):
return input_layer.with_tensor(
operation(input_layer.tensor, *op_args, **op_kwargs)) | Applies the given operation to this before without adding any summaries.
Args:
input_layer: The input layer for this op.
operation: An operation that takes a tensor and the supplied args.
*op_args: Extra arguments for operation.
**op_kwargs: Keyword arguments for the operation.
Returns:
A new layer with operation applied. | juraj-google-style |
def convert_to_rgb(image: ImageInput) -> ImageInput:
if not isinstance(image, PIL.Image.Image):
return image
if image.mode == 'RGB':
return image
image_rgba = image.convert('RGBA')
background = Image.new('RGBA', image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert('RGB')
return alpha_composite | Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
as is.
Args:
image (Image):
The image to convert. | github-repos |
def add(self, method_mask, path, func):
is_err = (len(signature(func).parameters) == 3)
is_subchain = isinstance(func, MiddlewareChain)
tup = MiddlewareNode(func=func, mask=method_mask, path=path, is_errorhandler=is_err, is_subchain=is_subchain)
self.mw_list.append(tup) | Add a function to the middleware chain.
This function is returned when iterating over the chain with matching method and path.
Args:
method_mask (growler.http.HTTPMethod): A bitwise mask intended to match specific
request methods.
path (str or regex): An object with which to compare request urls
func (callable): The function to be yieled from the generator upon a request
matching the method_mask and path | codesearchnet |
def get_float(self, min_float=_MIN_FLOAT, max_float=_MAX_FLOAT):
return self.fdp.ConsumeFloatInRange(min_float, max_float) | Consume a float with given constraints.
Args:
min_float: Minimum allowed float.
max_float: Maximum allowed float.
Returns:
Consumed float based on input bytes and constraints. | github-repos |
def _unary_op(cls,
x: 'TensorFluent',
op: Callable[[tf.Tensor], tf.Tensor],
dtype: tf.DType) -> 'TensorFluent':
x = x.cast(dtype)
t = op(x.tensor)
scope = x.scope.as_list()
batch = x.batch
return TensorFluent(t, scope, batch=batch) | Returns a TensorFluent for the unary `op` applied to fluent `x`.
Args:
x: The input fluent.
op: The unary operation.
dtype: The output's data type.
Returns:
A TensorFluent wrapping the unary operator's output. | juraj-google-style |
def bleu_score(predictions, labels, **unused_kwargs):
outputs = tf.to_int32(tf.argmax(predictions, axis=(- 1)))
outputs = tf.squeeze(outputs, axis=[(- 1), (- 2)])
labels = tf.squeeze(labels, axis=[(- 1), (- 2)])
bleu = tf.py_func(compute_bleu, (labels, outputs), tf.float32)
return (bleu, tf.constant(1.0)) | BLEU score computation between labels and predictions.
An approximate BLEU scoring method since we do not glue word pieces or
decode the ids and tokenize the output. By default, we use ngram order of 4
and use brevity penalty. Also, this does not have beam search.
Args:
predictions: tensor, model predictions
labels: tensor, gold output.
Returns:
bleu: int, approx bleu score | codesearchnet |
def _ParseFileData(self, knowledge_base, file_object):
text_file_object = dfvfs_text_file.TextFile(file_object, encoding='utf-8')
product_values = {}
for line in text_file_object.readlines():
line = line.strip()
if line.startswith('
continue
key, value = line.split('=')
key = key.strip().upper()
value = value.strip().strip('"')
product_values[key] = value
if not knowledge_base.GetValue('operating_system_product'):
system_product = product_values.get('DISTRIB_DESCRIPTION', None)
if system_product:
knowledge_base.SetValue('operating_system_product', system_product) | Parses file content (data) for system product preprocessing attribute.
Args:
knowledge_base (KnowledgeBase): to fill with preprocessing information.
file_object (dfvfs.FileIO): file-like object that contains the artifact
value data.
Raises:
errors.PreProcessFail: if the preprocessing fails. | juraj-google-style |
def end_at(self, document_fields):
return self._cursor_helper(document_fields, before=False, start=False) | End query results at a particular document value.
The result set will **include** the document specified by
``document_fields``.
If the current query already has specified an end cursor -- either
via this method or
:meth:`~.firestore_v1beta1.query.Query.end_before` -- this will
overwrite it.
When the query is sent to the server, the ``document_fields`` will
be used in the order given by fields set by
:meth:`~.firestore_v1beta1.query.Query.order_by`.
Args:
document_fields (Union[~.firestore_v1beta1.\
document.DocumentSnapshot, dict, list, tuple]): a document
snapshot or a dictionary/list/tuple of fields representing a
query results cursor. A cursor is a collection of values that
represent a position in a query result set.
Returns:
~.firestore_v1beta1.query.Query: A query with cursor. Acts as
a copy of the current query, modified with the newly added
"end at" cursor. | codesearchnet |
def has_option(self, section, option):
if section not in self.sections():
return False
else:
option = self.optionxform(option)
return option in self[section] | Checks for the existence of a given option in a given section.
Args:
section (str): name of section
option (str): name of option
Returns:
bool: whether the option exists in the given section | juraj-google-style |
def publish(cls, message, client_filter=None):
with cls._lock:
for client in cls.subscribers:
if (not client_filter) or client_filter(client):
client.send(message) | Publish messages to subscribers.
Args:
message: The message to publish.
client_filter: A filter function to call passing in each client. Only
clients for whom the function returns True will have the
message sent to them. | juraj-google-style |
def time_series(timefile, colnames):
if (not timefile.is_file()):
return None
data = pd.read_csv(timefile, delim_whitespace=True, dtype=str, header=None, skiprows=1, index_col=0, engine='c', memory_map=True, error_bad_lines=False, warn_bad_lines=False)
data = data.apply(pd.to_numeric, raw=True, errors='coerce')
rows_to_del = []
irow = (len(data) - 1)
while (irow > 0):
iprev = (irow - 1)
while ((iprev >= 0) and (data.index[irow] <= data.index[iprev])):
rows_to_del.append(iprev)
iprev -= 1
irow = iprev
if rows_to_del:
rows_to_keep = (set(range(len(data))) - set(rows_to_del))
data = data.take(list(rows_to_keep), convert=False)
ncols = data.shape[1]
_tidy_names(colnames, ncols)
data.columns = colnames
return data | Read temporal series text file.
If :data:`colnames` is too long, it will be truncated. If it is too short,
additional numeric column names from 0 to N-1 will be attributed to the N
extra columns present in :data:`timefile`.
Args:
timefile (:class:`pathlib.Path`): path of the time.dat file.
colnames (list of names): names of the variables expected in
:data:`timefile` (may be modified).
Returns:
:class:`pandas.DataFrame`:
Time series, with the variables in columns and the time steps in
rows. | codesearchnet |
async def verify_worker_impls(chain):
valid_worker_impls = get_valid_worker_impls()
for obj in chain.get_all_links_in_chain():
worker_impl = obj.worker_impl
log.info("Verifying {} {} as a {} task...".format(obj.name, obj.task_id, worker_impl))
await valid_worker_impls[worker_impl](chain, obj) | Verify the task type (e.g. decision, build) of each link in the chain.
Args:
chain (ChainOfTrust): the chain we're operating on
Raises:
CoTError: on failure | juraj-google-style |
def get_group_by_id(self, group_id: str) -> typing.Optional['Group']:
VALID_POSITIVE_INT.validate(group_id, 'get_group_by_id', exc=ValueError)
for group in self.groups:
if group.group_id == group_id:
return group
return None | Gets a group by id
Args:
group_id: group id
Returns: Group | juraj-google-style |
def reset(self, indices=None):
if indices is None:
indices = np.arange(len(self._envs))
if self._blocking:
observs = [self._envs[index].reset() for index in indices]
else:
observs = [self._envs[index].reset(blocking=False) for index in indices]
observs = [observ() for observ in observs]
observ = np.stack(observs)
return observ | Reset the environment and convert the resulting observation.
Args:
indices: The batch indices of environments to reset; defaults to all.
Returns:
Batch of observations. | juraj-google-style |
def _try_load_par_source(source_file_path):
prefix_path = source_file_path
while True:
prefix_path, basename = os.path.split(prefix_path)
if not basename:
break
suffix_path = os.path.normpath(os.path.relpath(source_file_path, start=prefix_path))
if prefix_path.endswith('.par') and os.path.isfile(prefix_path):
with zipfile.ZipFile(prefix_path) as z:
norm_names = [os.path.normpath(name) for name in z.namelist()]
if suffix_path in norm_names:
with z.open(z.namelist()[norm_names.index(suffix_path)]) as zf:
source_text = zf.read().decode('utf-8')
return source_text.split('\n') | Try loading the source code inside a .par file.
A .par file is a zip-compressed, self-contained Python executable.
It contains the content of individual Python source files that can
be read only through extracting from the zip file.
Args:
source_file_path: The full path to the file inside the .par file. This
path should include the path to the .par file itself, followed by the
intra-par path, e.g.,
"/tmp/my_executable.par/org-tensorflow/tensorflow/python/foo/bar.py".
Returns:
If successful, lines of the source file as a `list` of `str`s.
Else, `None`. | github-repos |
def sg_summary_activation(tensor, prefix=None, name=None):
r
prefix = '' if prefix is None else prefix + '/'
name = prefix + _pretty_name(tensor) if name is None else prefix + name
_scalar(name + '/ratio',
tf.reduce_mean(tf.cast(tf.greater(tensor, 0), tf.sg_floatx)))
_histogram(name + '/ratio-h', tensor) | r"""Register `tensor` to summary report as `activation`
Args:
tensor: A `Tensor` to log as activation
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None | juraj-google-style |
def query_foursquare(point, max_distance, client_id, client_secret):
if (not client_id):
return []
if (not client_secret):
return []
if from_cache(FS_CACHE, point, max_distance):
return from_cache(FS_CACHE, point, max_distance)
url = (FOURSQUARE_URL % (client_id, client_secret, point.lat, point.lon, max_distance))
req = requests.get(url)
if (req.status_code != 200):
return []
response = req.json()
result = []
venues = response['response']['venues']
for venue in venues:
name = venue['name']
distance = venue['location']['distance']
categories = [c['shortName'] for c in venue['categories']]
result.append({'label': name, 'distance': distance, 'types': categories, 'suggestion_type': 'FOURSQUARE'})
foursquare_insert_cache(point, result)
return result | Queries Squarespace API for a location
Args:
point (:obj:`Point`): Point location to query
max_distance (float): Search radius, in meters
client_id (str): Valid Foursquare client id
client_secret (str): Valid Foursquare client secret
Returns:
:obj:`list` of :obj:`dict`: List of locations with the following format:
{
'label': 'Coffee house',
'distance': 19,
'types': 'Commerce',
'suggestion_type': 'FOURSQUARE'
} | codesearchnet |
def _load_from_file(path):
config = []
try:
with open(path, 'r') as config_file:
config = yaml.load(config_file)['normalizations']
except EnvironmentError as e:
raise ConfigError('Problem while loading file: %s' %
e.args[1] if len(e.args) > 1 else e)
except (TypeError, KeyError) as e:
raise ConfigError('Config file has an unexpected structure: %s' % e)
except yaml.YAMLError:
raise ConfigError('Invalid YAML file syntax')
return config | Load a config file from the given path.
Load all normalizations from the config file received as
argument. It expects to find a YAML file with a list of
normalizations and arguments under the key 'normalizations'.
Args:
path: Path to YAML file. | juraj-google-style |
async def pipe_to_log(pipe, filehandles=(), level=logging.INFO):
while True:
line = await pipe.readline()
if line:
line = to_unicode(line)
log.log(level, line.rstrip())
for filehandle in filehandles:
print(line, file=filehandle, end="")
else:
break | Log from a subprocess PIPE.
Args:
pipe (filehandle): subprocess process STDOUT or STDERR
filehandles (list of filehandles, optional): the filehandle(s) to write
to. If empty, don't write to a separate file. Defaults to ().
level (int, optional): the level to log to. Defaults to ``logging.INFO``. | juraj-google-style |
def compute_number_edges(function):
n = 0
for node in function.nodes:
n += len(node.sons)
return n | Compute the number of edges of the CFG
Args:
function (core.declarations.function.Function)
Returns:
int | juraj-google-style |
def loads(s, model):
graphs = penman.loads(s, cls=XMRSCodec)
xs = [model.from_triples(g.triples()) for g in graphs]
return xs | Deserialize PENMAN graphs from a string
Args:
s (str): serialized PENMAN graphs
model: Xmrs subclass instantiated from decoded triples
Returns:
a list of objects (of class *model*) | juraj-google-style |
def _HandleMetadataUpdate(
self, metadata_key='', recursive=True, wait=True, timeout=None,
retry=True):
exception = None
while True:
try:
return self._GetMetadataUpdate(
metadata_key=metadata_key, recursive=recursive, wait=wait,
timeout=timeout)
except (httpclient.HTTPException, socket.error, urlerror.URLError) as e:
if not isinstance(e, type(exception)):
exception = e
self.logger.error('GET request error retrieving metadata. %s.', e)
if retry:
continue
else:
break | Wait for a successful metadata response.
Args:
metadata_key: string, the metadata key to watch for changes.
recursive: bool, True if we should recursively watch for metadata changes.
wait: bool, True if we should wait for a metadata change.
timeout: int, timeout in seconds for returning metadata output.
retry: bool, True if we should retry on failure.
Returns:
json, the deserialized contents of the metadata server. | juraj-google-style |
def pretty_print_config_to_json(self, configs):
descriptor = self.get_directory_list_doc(configs)
return json.dumps(descriptor, sort_keys=True, indent=2, separators=(',', ': ')) | JSON string description of a protorpc.remote.Service in a discovery doc.
Args:
configs: Either a single dict or a list of dicts containing the service
configurations to list.
Returns:
string, The directory list document as a JSON string. | codesearchnet |
def resource_path(relative_path=None, expect=None):
if (expect not in (None, 'file', 'folder')):
raise ArgumentError("Invalid expect parameter, must be None, 'file' or 'folder'", expect=expect)
this_dir = os.path.dirname(__file__)
_resource_path = os.path.join(this_dir, '..', 'config')
if (relative_path is not None):
path = os.path.normpath(relative_path)
_resource_path = os.path.join(_resource_path, path)
if ((expect == 'file') and (not os.path.isfile(_resource_path))):
raise DataError(("Expected resource %s to be a file and it wasn't" % _resource_path))
elif ((expect == 'folder') and (not os.path.isdir(_resource_path))):
raise DataError(("Expected resource %s to be a folder and it wasn't" % _resource_path))
return os.path.abspath(_resource_path) | Return the absolute path to a resource in iotile-build.
This method finds the path to the `config` folder inside
iotile-build, appends `relative_path` to it and then
checks to make sure the desired file or directory exists.
You can specify expect=(None, 'file', or 'folder') for
what you expect to find at the given path.
Args:
relative_path (str): The relative_path from the config
folder to the resource in question. This path can
be specified using / characters on all operating
systems since it will be normalized before usage.
If None is passed, the based config folder will
be returned.
expect (str): What the path should resolve to, which is
checked before returning, raising a DataError if
the check fails. You can pass None for no checking,
file for checking `os.path.isfile`, or folder for
checking `os.path.isdir`. Default: None
Returns:
str: The normalized absolute path to the resource. | codesearchnet |
def forceSetSlaac(self, slaacAddress):
print '%s call forceSetSlaac' % self.port
print slaacAddress
try:
cmd = 'ipaddr add %s' % str(slaacAddress)
print cmd
return self.__sendCommand(cmd)[0] == 'Done'
except Exception, e:
ModuleHelper.WriteIntoDebugLogger("forceSetSlaac() Error: " + str(e)) | force to set a slaac IPv6 address to Thread interface
Args:
slaacAddress: a slaac IPv6 address to be set
Returns:
True: successful to set slaac address to Thread interface
False: fail to set slaac address to Thread interface | juraj-google-style |
def _matrix_conv(self, m1, m2):
n = m1[0, 0].shape.as_list()[0]
if n != m2[0, 0].shape.as_list()[0]:
raise ValueError(f'The entries in matrices m1 and m2 must have the same dimensions. Received m1[0, 0].shape={m1[0, 0].shape} and m2[0, 0].shape={m2[0, 0].shape}.')
k = int(np.sqrt(len(m1)))
l = int(np.sqrt(len(m2)))
result = {}
size = k + l - 1
for i in range(size):
for j in range(size):
result[i, j] = array_ops.zeros([n, n], self.dtype)
for index1 in range(min(k, i + 1)):
for index2 in range(min(k, j + 1)):
if i - index1 < l and j - index2 < l:
result[i, j] += math_ops.matmul(m1[index1, index2], m2[i - index1, j - index2])
return result | Matrix convolution.
Args:
m1: A k x k dictionary, each element is a n x n matrix.
m2: A l x l dictionary, each element is a n x n matrix.
Returns:
(k + l - 1) * (k + l - 1) dictionary each element is a n x n matrix.
Raises:
ValueError: if the entries of m1 and m2 are of different dimensions. | github-repos |
def _EnforceShapeInvariant(merge_var, next_var):
if isinstance(merge_var, tensor_lib.Tensor):
m_shape = merge_var.get_shape()
n_shape = next_var.get_shape()
if not _ShapeLessThanOrEqual(n_shape, m_shape):
enter = merge_var.op.inputs[0].op
assert util.IsLoopEnter(enter)
input_t = enter.inputs[0]
raise ValueError("Input tensor '%s' enters the loop with shape %s, but has shape %s after one iteration. To allow the shape to vary across iterations, use the `shape_invariants` argument of tf.while_loop to specify a less-specific shape." % (input_t.name, input_t.shape, n_shape))
else:
raise TypeError(f"'merge_var' must be a Tensor. Received: {type(merge_var)}.") | Check if the shapes of the loops variables are invariants.
Args:
merge_var: The tensor representing the initial values of the loop
variables.
next_var: The tensor representing the values of the loop variables
after one loop iteration.
Raises:
ValueError: If any tensor in `merge_var` has a more specific shape than
its corresponding tensor in `next_var`. | github-repos |
def process(self, element):
input_ids = self._tokenizer(element, return_tensors='pt', padding='max_length', max_length=512).input_ids
return input_ids | Process the raw text input to a format suitable for
T5ForConditionalGeneration model inference
Args:
element: A string of text
Returns:
A tokenized example that can be read by the
T5ForConditionalGeneration | github-repos |
def __init__(self, token):
r
self.base_url = 'http:
self.token = token
self.geo_criteria = ['stid', 'state', 'country', 'county', 'radius', 'bbox', 'cwa', 'nwsfirezone', 'gacc',
'subgacc'] | r""" Instantiates an instance of MesoPy.
Arguments:
----------
token: string, mandatory
Your API token that authenticates you for requests against MesoWest.mes
Returns:
--------
None.
Raises:
-------
None. | juraj-google-style |
def all_logging_disabled(highest_level=logging.CRITICAL):
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
(yield)
finally:
logging.disable(previous_level) | Disable all logging temporarily.
A context manager that will prevent any logging messages triggered during the body from being processed.
Args:
highest_level: the maximum logging level that is being blocked | codesearchnet |
def __init__(self, tid=None, stdout=None, stderr=None):
self._tid = tid
super().__init__()
self.parent = None
self._update_lock = threading.Lock()
self._outputs = []
self._stdout = stdout
self._stderr = stderr | Initialize the AppFuture.
Args:
KWargs:
- tid (Int) : Task id should be any unique identifier. Now Int.
- stdout (str) : Stdout file of the app.
Default: None
- stderr (str) : Stderr file of the app.
Default: None | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.