code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _check_rules(browser, rules_js, config):
if (config.rules_to_run is None):
msg = 'No accessibility rules were specified to check.'
log.warning(msg)
return None
rules = config.rules_to_run
if rules:
rules_config = u'auditConfig.auditRulesToRun = {rules};'.format(rules=rules)
else:
rules_config = ''
ignored_rules = config.rules_to_ignore
if ignored_rules:
rules_config += u'\nauditConfig.auditRulesToIgnore = {rules};'.format(rules=ignored_rules)
script = dedent(u'\n {rules_js}\n var auditConfig = new axs.AuditConfiguration();\n {rules_config}\n auditConfig.scope = {scope};\n var run_results = axs.Audit.run(auditConfig);\n var audit_results = axs.Audit.auditResults(run_results)\n return audit_results;\n '.format(rules_js=rules_js, rules_config=rules_config, scope=config.scope))
result = browser.execute_script(script)
audit_results = AuditResults(errors=result.get('errors_'), warnings=result.get('warnings_'))
return audit_results | Check the page for violations of the configured rules. By default,
all rules in the ruleset will be checked.
Args:
browser: a browser instance.
rules_js: the ruleset JavaScript as a string.
config: an AxsAuditConfig instance.
Returns:
A namedtuple with 'errors' and 'warnings' fields whose values are
the errors and warnings returned from the audit.
None if config has rules_to_run set to None.
__Caution__: You probably don't really want to call this method
directly! It will be used by `A11yAudit.do_audit` if using this ruleset. | codesearchnet |
def name_changed(self, changed_item):
name = str(changed_item.text())
if name != '':
if name != self.selected_element_name:
self.elements_from_file[name] = self.elements_from_file[self.selected_element_name]
del self.elements_from_file[self.selected_element_name]
self.selected_element_name = name | checks if name has been changed and ignores the name change if the changed_item is an existing script
Args:
changed_item: | juraj-google-style |
def discrete_bottleneck(self, x):
x_reshaped = self.slice_hidden(x)
x_means_hot = []
x_means = 0
loss = 0
x_means_hot, x_means, q_loss, e_loss = self.embedding_lookup(
x_reshaped, self.means)
if self.hparams.ema:
tf.logging.info("Using EMA with beta = {}".format(self.hparams.beta))
updated_ema_count = \
moving_averages.assign_moving_average(
self.ema_count,
tf.reduce_sum(
tf.reshape(
x_means_hot,
shape=[-1, self.hparams.num_blocks,
self.hparams.block_v_size]),
axis=0),
self.hparams.decay,
zero_debias=False)
dw = tf.matmul(
tf.transpose(x_means_hot, perm=[1, 2, 0]),
tf.transpose(x_reshaped, perm=[1, 0, 2]))
updated_ema_means = \
moving_averages.assign_moving_average(
self.ema_means, dw, self.hparams.decay,
zero_debias=False)
n = tf.reduce_sum(updated_ema_count, axis=-1, keep_dims=True)
updated_ema_count = ((updated_ema_count + self.hparams.epsilon) / (
n + 2**self.hparams.z_size * self.hparams.epsilon) * n)
updated_ema_means = updated_ema_means / tf.expand_dims(
updated_ema_count, axis=-1)
with tf.control_dependencies([e_loss]):
update_means = tf.assign(self.means, updated_ema_means)
with tf.control_dependencies([update_means]):
loss += self.hparams.beta * e_loss
else:
loss += q_loss + self.hparams.beta * e_loss
x_means_idx = tf.argmax(x_means_hot, axis=-1)
num_bits = int(self.hparams.z_size
x_means_bits = self.int_to_bit(x_means_idx, num_bits=num_bits, base=2)
x_discrete = self.bit_to_int(
tf.to_int32(x_means_bits), num_bits=self.hparams.z_size, base=2)
shape_x = common_layers.shape_list(x)
shape_discrete = shape_x[:-1]
x_discrete = tf.reshape(x_discrete, shape_discrete)
x_means = tf.reshape(x_means, shape=shape_x)
h1 = x + tf.stop_gradient(x_means - x)
h2 = tf.layers.dense(tf.nn.relu(h1), self.hparams.filter_size, name="vch2")
res = tf.layers.dense(
tf.nn.relu(h2), self.hparams.hidden_size, name="vcfin")
embed_fn = partial(self.embed)
return {
"dense": res,
"discrete": x_discrete,
"loss": loss,
"embed": embed_fn
} | Discretization bottleneck for latent variables.
Args:
x: Input to the discretization bottleneck.
Returns:
Embedding to pass to the decoder, discrete latent, loss, and the
embedding
function.
Raises:
ValueError: If projection_tensors is None for reshape_method
project, or
ema_count or ema_means is None if we are using ema, or unknown
args. | juraj-google-style |
def on_run_end(self, request):
self._is_run_start = False
if request.performed_action == framework.OnRunStartAction.DEBUG_RUN:
partition_graphs = None
if request.run_metadata and request.run_metadata.partition_graphs:
partition_graphs = request.run_metadata.partition_graphs
elif request.client_graph_def:
partition_graphs = [request.client_graph_def]
if request.tf_error and (not os.path.isdir(self._dump_root)):
raise request.tf_error
debug_dump = debug_data.DebugDumpDir(self._dump_root, partition_graphs=partition_graphs)
debug_dump.set_python_graph(self._sess.graph)
passed_filter = None
passed_filter_exclude_node_names = None
if self._active_tensor_filter:
if not debug_dump.find(self._tensor_filters[self._active_tensor_filter], first_n=1, exclude_node_names=self._active_filter_exclude_node_names):
self._remove_dump_root()
return framework.OnRunEndResponse()
else:
passed_filter = self._active_tensor_filter
passed_filter_exclude_node_names = self._active_filter_exclude_node_names
self._active_tensor_filter = None
self._active_filter_exclude_node_names = None
self._prep_debug_cli_for_run_end(debug_dump, request.tf_error, passed_filter, passed_filter_exclude_node_names)
self._run_start_response = self._launch_cli()
self._remove_dump_root()
elif request.performed_action == framework.OnRunStartAction.PROFILE_RUN:
self._prep_profile_cli_for_run_end(self._sess.graph, request.run_metadata)
self._run_start_response = self._launch_cli()
else:
self._run_start_response = None
return framework.OnRunEndResponse() | Overrides on-run-end callback.
Actions taken:
1) Load the debug dump.
2) Bring up the Analyzer CLI.
Args:
request: An instance of OnSessionInitRequest.
Returns:
An instance of OnSessionInitResponse. | github-repos |
def extractDates(self, inp):
def merge(param):
(day, time) = param
if (not (day or time)):
return None
if (not day):
return time
if (not time):
return day
return datetime.datetime(day.year, day.month, day.day, time.hour, time.minute)
days = self.extractDays(inp)
times = self.extractTimes(inp)
return map(merge, zip_longest(days, times, fillvalue=None)) | Extract semantic date information from an input string.
In effect, runs both parseDay and parseTime on the input
string and merges the results to produce a comprehensive
datetime object.
Args:
inp (str): Input string to be parsed.
Returns:
A list of datetime objects containing the extracted dates from the
input snippet, or an empty list if not found. | codesearchnet |
def wp_decode(self, sequences):
decode_strs = [seq.replace(' ', '') for seq in self.wp_tokenizer.batch_decode(sequences)]
return decode_strs | Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of wp decoded sentences. | github-repos |
def _get_function(self, name):
return self._functions.get(compat.as_str(name), None) | Returns the function definition for 'name'.
Args:
name: string function name.
Returns:
The function def proto. | github-repos |
def playback_trajectory(env, ep_dir):
xml_path = os.path.join(ep_dir, 'model.xml')
with open(xml_path, 'r') as f:
env.reset_from_xml_string(f.read())
state_paths = os.path.join(ep_dir, 'state_*.npz')
t = 0
for state_file in sorted(glob(state_paths)):
print(state_file)
dic = np.load(state_file)
states = dic['states']
for state in states:
env.sim.set_state_from_flattened(state)
env.sim.forward()
env.render()
t += 1
if ((t % 100) == 0):
print(t) | Playback data from an episode.
Args:
ep_dir: The path to the directory containing data for an episode. | codesearchnet |
def update_tag(self, tag_name, description=None,
custom_properties=None, **kwargs):
data = {'description': description or '',
'customProperties': custom_properties or {}}
resp = self._put(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name),
data=data, **kwargs)
resp.raise_for_status()
return resp.json() | update a tag by name
Args:
tag_name (string): name of tag to update
description (optional[string]): a description
custom_properties (optional[dict]): dictionary of custom properties | juraj-google-style |
def _convert_id_to_token(self, artists_index, genres_index, lyric_index):
artist = self.artists_decoder.get(artists_index)
genres = [self.genres_decoder.get(genre) for genre in genres_index]
lyrics = [self.lyrics_decoder.get(character) for character in lyric_index]
return (artist, genres, lyrics) | Converts an index (integer) in a token (str) using the vocab.
Args:
artists_index (`int`):
Index of the artist in its corresponding dictionary.
genres_index (`Union[List[int], int]`):
Index of the genre in its corresponding dictionary.
lyric_index (`List[int]`):
List of character indices, which each correspond to a character. | github-repos |
def get_special_tokens_mask(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None, already_has_special_tokens: bool=False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
if token_ids_1 is not None:
return [1] + [0] * len(token_ids_0) + [1] + [0] * len(token_ids_1) + [1]
return [1] + [0] * len(token_ids_0) + [1] | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | github-repos |
def is_link(path):
if (sys.getwindowsversion().major < 6):
raise SaltInvocationError('Symlinks are only supported on Windows Vista or later.')
try:
return salt.utils.path.islink(path)
except Exception as exc:
raise CommandExecutionError(exc) | Check if the path is a symlink
This is only supported on Windows Vista or later.
Inline with Unix behavior, this function will raise an error if the path
is not a symlink, however, the error raised will be a SaltInvocationError,
not an OSError.
Args:
path (str): The path to a file or directory
Returns:
bool: True if path is a symlink, otherwise False
CLI Example:
.. code-block:: bash
salt '*' file.is_link /path/to/link | codesearchnet |
def to_dict(self, fields=None):
data = {}
def _add(field):
return (fields is None or field in fields)
if _add("resolved_packages"):
resolved_packages = []
for pkg in (self._resolved_packages or []):
resolved_packages.append(pkg.handle.to_dict())
data["resolved_packages"] = resolved_packages
if _add("serialize_version"):
data["serialize_version"] = \
'.'.join(map(str, ResolvedContext.serialize_version))
if _add("patch_locks"):
data["patch_locks"] = dict((k, v.name) for k, v in self.patch_locks)
if _add("package_orderers"):
package_orderers = [package_order.to_pod(x)
for x in (self.package_orderers or [])]
data["package_orderers"] = package_orderers or None
if _add("package_filter"):
data["package_filter"] = self.package_filter.to_pod()
if _add("graph"):
if self.graph_string and self.graph_string.startswith('{'):
graph_str = self.graph_string
else:
g = self.graph()
graph_str = write_compacted(g)
data["graph"] = graph_str
data.update(dict(
timestamp=self.timestamp,
requested_timestamp=self.requested_timestamp,
building=self.building,
caching=self.caching,
implicit_packages=map(str, self.implicit_packages),
package_requests=map(str, self._package_requests),
package_paths=self.package_paths,
default_patch_lock=self.default_patch_lock.name,
rez_version=self.rez_version,
rez_path=self.rez_path,
user=self.user,
host=self.host,
platform=self.platform,
arch=self.arch,
os=self.os,
created=self.created,
parent_suite_path=self.parent_suite_path,
suite_context_name=self.suite_context_name,
status=self.status_.name,
failure_description=self.failure_description,
from_cache=self.from_cache,
solve_time=self.solve_time,
load_time=self.load_time,
num_loaded_packages=self.num_loaded_packages
))
if fields:
data = dict((k, v) for k, v in data.iteritems() if k in fields)
return data | Convert context to dict containing only builtin types.
Args:
fields (list of str): If present, only write these fields into the
dict. This can be used to avoid constructing expensive fields
(such as 'graph') for some cases.
Returns:
dict: Dictified context. | juraj-google-style |
def labels(self, main_type, sub_type, unique_id, owner=None, filters=None, params=None):
params = params or {}
if owner:
params['owner'] = owner
if filters and filters.filters:
params['filters'] = filters.filters_string
if not sub_type:
url = '/v2/{}/{}/securityLabels'.format(main_type, unique_id)
else:
url = '/v2/{}/{}/{}/securityLabels'.format(main_type, sub_type, unique_id)
for l in self._iterate(url, params, 'securityLabel'):
yield l | Args:
main_type:
sub_type:
unique_id:
owner:
filters:
params:
Return: | juraj-google-style |
def graph_def(self):
return self._graph.as_graph_def(add_shapes=self._add_shapes) | A serializable version of the underlying TensorFlow graph.
Returns:
A graph_pb2.GraphDef proto containing nodes for all of the Operations in
the underlying TensorFlow graph. | github-repos |
def transformer_prepare_encoder(inputs, target_space, hparams, features=None):
ishape_static = inputs.shape.as_list()
encoder_input = inputs
if features and "inputs_segmentation" in features:
inputs_segmentation = features["inputs_segmentation"]
inputs_position = features["inputs_position"]
targets_segmentation = features["targets_segmentation"]
if (hasattr(hparams, "unidirectional_encoder") and
hparams.unidirectional_encoder):
tf.logging.info("Using unidirectional encoder")
encoder_self_attention_bias = (
common_attention.attention_bias_lower_triangle(
common_layers.shape_list(inputs)[1]))
else:
encoder_self_attention_bias = (
common_attention.attention_bias_same_segment(
inputs_segmentation, inputs_segmentation))
encoder_decoder_attention_bias = (
common_attention.attention_bias_same_segment(targets_segmentation,
inputs_segmentation))
else:
encoder_padding = common_attention.embedding_to_padding(encoder_input)
ignore_padding = common_attention.attention_bias_ignore_padding(
encoder_padding)
if (hasattr(hparams, "unidirectional_encoder") and
hparams.unidirectional_encoder):
tf.logging.info("Using unidirectional encoder")
encoder_self_attention_bias = (
common_attention.attention_bias_lower_triangle(
common_layers.shape_list(inputs)[1]))
else:
encoder_self_attention_bias = ignore_padding
encoder_decoder_attention_bias = ignore_padding
inputs_position = None
if hparams.proximity_bias:
encoder_self_attention_bias += common_attention.attention_bias_proximal(
common_layers.shape_list(inputs)[1])
if target_space is not None and hparams.get("use_target_space_embedding",
True):
emb_target_space = common_layers.embedding(
target_space,
32,
ishape_static[-1],
name="target_space_embedding",
dtype=hparams.get("activation_dtype", "float32"))
emb_target_space = tf.reshape(emb_target_space, [1, 1, -1])
encoder_input += emb_target_space
if hparams.pos == "timing":
if inputs_position is not None:
encoder_input = common_attention.add_timing_signal_1d_given_position(
encoder_input, inputs_position)
else:
encoder_input = common_attention.add_timing_signal_1d(encoder_input)
elif hparams.pos == "emb":
encoder_input = common_attention.add_positional_embedding(
encoder_input, hparams.max_length, "inputs_positional_embedding",
inputs_position)
encoder_self_attention_bias = common_layers.cast_like(
encoder_self_attention_bias, encoder_input)
encoder_decoder_attention_bias = common_layers.cast_like(
encoder_decoder_attention_bias, encoder_input)
return (encoder_input, encoder_self_attention_bias,
encoder_decoder_attention_bias) | Prepare one shard of the model for the encoder.
Args:
inputs: a Tensor.
target_space: a Tensor.
hparams: run hyperparameters
features: optionally pass the entire features dictionary as well.
This is needed now for "packed" datasets.
Returns:
encoder_input: a Tensor, bottom of encoder stack
encoder_self_attention_bias: a bias tensor for use in encoder self-attention
encoder_decoder_attention_bias: a bias tensor for use in encoder-decoder
attention | juraj-google-style |
def _get_index_points(self, index_points=None):
if self._index_points is None and index_points is None:
raise ValueError(
'This GaussianProcess instance was not instantiated with a value for '
'index_points. One must therefore be provided when calling sample, '
'log_prob, and other such methods. In particular, one can\'t compute '
'KL divergences to/from an instance of `GaussianProccess` with '
'unspecified `index_points` directly. Instead, use the '
'`get_marginal_distribution` function, which takes `index_points` as '
'an argument and returns a `Normal` or '
'`MultivariateNormalLinearOperator` instance, whose KL can be '
'computed.')
return index_points if index_points is not None else self._index_points | Return `index_points` if not None, else `self._index_points`.
Args:
index_points: if given, this is what is returned; else,
`self._index_points`
Returns:
index_points: the given arg, if not None, else the class member
`self._index_points`.
Rases:
ValueError: if `index_points` and `self._index_points` are both `None`. | juraj-google-style |
def transformer_encoder_ffn_unit(x, hparams, nonpadding_mask=None, pad_remover=None):
with tf.variable_scope('ffn'):
if (hparams.transformer_ffn_type == 'fc'):
y = transformer.transformer_ffn_layer(common_layers.layer_preprocess(x, hparams), hparams, pad_remover, conv_padding='SAME', nonpadding_mask=nonpadding_mask)
if (hparams.transformer_ffn_type == 'sepconv'):
assert (nonpadding_mask is not None), 'The nonpadding_mask should be provided, otherwise the model uses the leaked padding information to estimate the length!'
y = common_layers.sepconv_relu_sepconv(common_layers.layer_preprocess(x, hparams), filter_size=hparams.filter_size, output_size=hparams.hidden_size, first_kernel_size=(3, 1), second_kernel_size=(5, 1), padding='SAME', nonpadding_mask=nonpadding_mask, dropout=hparams.relu_dropout)
x = common_layers.layer_postprocess(x, y, hparams)
return x | Applies a feed-forward function which is parametrised for encoding.
Args:
x: input
hparams: model hyper-parameters
nonpadding_mask: optional Tensor with shape [batch_size, encoder_length]
indicating what positions are not padding. This is used
to mask out padding in convoltutional layers. We generally only
need this mask for "packed" datasets, because for ordinary datasets,
no padding is ever followed by nonpadding.
pad_remover: to mask out padding in convolutional layers (efficiency).
Returns:
the output tensor | codesearchnet |
def _parse_price(html_chunk):
price = get_first_content(html_chunk.find('div', {'class': 'prices'}))
if (not price):
return None
price = dhtmlparser.removeTags(price)
price = price.split('\n')[(- 1)]
return price | Parse price of the book.
Args:
html_chunk (obj): HTMLElement containing slice of the page with details.
Returns:
str/None: Price as string with currency or None if not found. | codesearchnet |
def __init__(self, config, auth: str) -> None:
self.config = config
self.auth = auth
self.columns = SA_FIELDS
self.reportId = None | Construct a report factory, providing project and authentication data.
This class will track the reportID internally if the request call is used.
Args:
config, required - see: starthinker/util/configuration.py
auth, required - either "user" or "service" used to create and/or read the report.
Returns: None | github-repos |
def from_config(cls, config, custom_objects=None, columns_by_name=None):
return cls._from_config(config, custom_objects, columns_by_name) | Creates a FeatureColumn from its config.
This method should be the reverse of `get_config`, capable of instantiating
the same FeatureColumn from the config dictionary. See `get_config` for an
example of common (de)serialization practices followed in this file.
TODO(b/118939620): This is a private method until consensus is reached on
supporting object deserialization deduping within Keras.
Args:
config: A Dict config acquired with `get_config`.
custom_objects: Optional dictionary mapping names (strings) to custom
classes or functions to be considered during deserialization.
columns_by_name: A Dict[String, FeatureColumn] of existing columns in
order to avoid duplication. Should be passed to any calls to
deserialize_feature_column().
Returns:
A FeatureColumn for the input config. | github-repos |
def sample_uniform(domain, rng):
if isinstance(domain, hp.IntInterval):
return rng.randint(domain.min_value, domain.max_value)
elif isinstance(domain, hp.RealInterval):
return rng.uniform(domain.min_value, domain.max_value)
elif isinstance(domain, hp.Discrete):
return rng.choice(domain.values)
else:
raise TypeError(('unknown domain type: %r' % (domain,))) | Sample a value uniformly from a domain.
Args:
domain: An `IntInterval`, `RealInterval`, or `Discrete` domain.
rng: A `random.Random` object; defaults to the `random` module.
Raises:
TypeError: If `domain` is not a known kind of domain.
IndexError: If the domain is empty. | codesearchnet |
def post_process_object_detection(self, outputs, threshold: float=0.5, target_sizes: Union[TensorType, List[Tuple]]=None, top_k: int=100):
out_logits, out_bbox = (outputs.logits, outputs.pred_boxes)
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError('Make sure that you pass in as many target sizes as the batch dimension of the logits')
prob = out_logits.sigmoid()
prob = prob.view(out_logits.shape[0], -1)
k_value = min(top_k, prob.size(1))
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode='floor')
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({'scores': score, 'labels': label, 'boxes': box})
return results | Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model. | github-repos |
def notify_progress(self, conn_string, operation, finished, total, wait=True):
if (operation not in self.PROGRESS_OPERATIONS):
raise ArgumentError('Invalid operation for progress event: {}'.format(operation))
event = dict(operation=operation, finished=finished, total=total)
if wait:
return self.notify_event(conn_string, 'progress', event)
self.notify_event_nowait(conn_string, 'progress', event)
return None | Send a progress event.
Progress events can be sent for ``debug`` and ``script`` operations and
notify the caller about the progress of these potentially long-running
operations. They have two integer properties that specify what fraction
of the operation has been completed.
Args:
conn_string (str): The device that is sending the event.
operations (str): The operation that is in progress: debug or script
finished (int): The number of "steps" that have finished.
total (int): The total number of steps to perform.
wait (bool): Whether to return an awaitable that we can use to
block until the notification has made it to all callbacks.
Returns:
awaitable or None: An awaitable if wait=True.
If wait is False, the notification is run in the background with
no way to check its progress and None is returned. | codesearchnet |
def condition_indices(df):
eigvals = eigenvalues(df)
cond_idx = np.sqrt(eigvals.max() / eigvals)
return pd.Series(cond_idx, df.columns, name='Condition index') | Returns a pandas Series with condition indices of the df columns.
Args:
df: pandas DataFrame with columns to run diagnostics on | juraj-google-style |
def get_user(self, user_id=None, user_name=None):
if user_id:
endpoint = '/api/user_id/{0}'.format(user_id)
elif user_name:
endpoint = '/api/user_name/{0}'.format(user_name)
else:
endpoint = '/api/user'
data = self._make_request(verb='GET', endpoint=endpoint)
try:
return User.NewFromJSON(data)
except:
return data | Get a user object from the API. If no ``user_id`` or ``user_name``
is specified, it will return the User object for the currently
authenticated user.
Args:
user_id (int): User ID of the user for whom you want to get
information. [Optional]
user_name(str): Username for the user for whom you want to get
information. [Optional]
Returns:
A User object. | codesearchnet |
def to_json(self, variables=None):
variables_to_resolve = []
if variables:
for key, value in variables.items():
variables_to_resolve.append(Variable(key, value))
for k in self.get_parameter_definitions():
if not variables or k not in variables:
variables_to_resolve.append(Variable(k, 'unused_value'))
self.resolve_variables(variables_to_resolve)
return self.render_template()[1] | Render the blueprint and return the template in json form.
Args:
variables (dict):
Optional dictionary providing/overriding variable values.
Returns:
str: the rendered CFN JSON template | juraj-google-style |
def post_process_image_text_to_text(self, generated_outputs, skip_special_tokens=True, **kwargs):
beginning_of_answer = self.tokenizer.convert_tokens_to_ids(BEGINNING_OF_ANSWER_STRING)
unpadded_output_sequences = [seq[(seq == beginning_of_answer).nonzero(as_tuple=True)[0] + 1:] for seq in generated_outputs]
max_len = max((len(seq) for seq in unpadded_output_sequences))
padded_output_sequences = torch.full((len(unpadded_output_sequences), max_len), self.pad_token_id)
for i, seq in enumerate(unpadded_output_sequences):
padded_output_sequences[i, :len(seq)] = torch.tensor(seq)
return self.batch_decode(padded_output_sequences, skip_special_tokens=skip_special_tokens, **kwargs) | Post-processes the output of `FuyuForConditionalGeneration` to only return the text output.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
containing the token ids of the generated sequences.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`List[str]`: The decoded text output. | github-repos |
def strip_number(self):
if (self.type != EventType.TABLET_PAD_STRIP):
raise AttributeError(_wrong_prop.format(self.type))
return self._libinput.libinput_event_tablet_pad_get_strip_number(self._handle) | The number of the strip that has changed state,
with 0 being the first strip.
On tablets with only one strip, this method always returns 0.
For events not of type
:attr:`~libinput.constant.EventType.TABLET_PAD_STRIP`, this property
raises :exc:`AttributeError`.
Returns:
int: The index of the strip that changed state.
Raises:
AttributeError | codesearchnet |
def get_dict(self, only_attributes=None, exclude_attributes=None, df_format=False):
to_exclude = ['coach_bsites', 'coach_ec', 'coach_go_mf', 'coach_go_bp', 'coach_go_cc']
if (not exclude_attributes):
excluder = to_exclude
else:
excluder = ssbio.utils.force_list(exclude_attributes)
excluder.extend(to_exclude)
summary_dict = StructProp.get_dict(self, only_attributes=only_attributes, exclude_attributes=excluder, df_format=df_format)
if self.coach_bsites:
tmp = {('top_bsite_' + k): v for (k, v) in self.coach_bsites[0].items()}
summary_dict.update(tmp)
if self.coach_ec:
tmp = {('top_ec_' + k): v for (k, v) in self.coach_ec[0].items()}
summary_dict.update(tmp)
if self.coach_go_mf:
tmp = {('top_go_mf_' + k): v for (k, v) in self.coach_go_mf[0].items()}
summary_dict.update(tmp)
if self.coach_go_bp:
tmp = {('top_go_bp_' + k): v for (k, v) in self.coach_go_bp[0].items()}
summary_dict.update(tmp)
if self.coach_go_cc:
tmp = {('top_go_cc_' + k): v for (k, v) in self.coach_go_cc[0].items()}
summary_dict.update(tmp)
return summary_dict | Summarize the I-TASSER run in a dictionary containing modeling results and top predictions from COACH
Args:
only_attributes (str, list): Attributes that should be returned. If not provided, all are returned.
exclude_attributes (str, list): Attributes that should be excluded.
df_format (bool): If dictionary values should be formatted for a dataframe
(everything possible is transformed into strings, int, or float -
if something can't be transformed it is excluded)
Returns:
dict: Dictionary of attributes | codesearchnet |
def on_test_end(self, logs=None): | Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Args:
logs: Dict. Currently the output of the last call to
`on_test_batch_end()` is passed to this argument for this method
but that may change in the future. | github-repos |
def _matmul_3d_with_map_fn(a, b, **kwargs):
if isinstance(b, ragged_tensor.RaggedTensor) and (b.ragged_rank == 2 or kwargs.get('transpose_b') or kwargs.get('adjoint_b')):
output_ragged_rank = 2
else:
output_ragged_rank = 1
def single_batch_matmul(x):
out = _matmul_2d(x[0], x[1], **kwargs)
if output_ragged_rank == 2:
out = ragged_tensor.RaggedTensor.from_tensor(out)
return out
fn_out_shape = None
row_splits_dtype = a.row_splits.dtype if isinstance(a, ragged_tensor.RaggedTensor) else b.row_splits.dtype
output_type = kwargs['output_type']
if output_type is None:
output_type = a.dtype
spec = ragged_tensor.RaggedTensorSpec(shape=fn_out_shape, dtype=output_type, ragged_rank=output_ragged_rank - 1, row_splits_dtype=row_splits_dtype)
result = map_fn.map_fn(single_batch_matmul, elems=(a, b), fn_output_signature=spec)
if kwargs.get('transpose_a') or kwargs.get('adjoint_a'):
result._set_shape(a.shape[:-2] + a.shape[-1:] + [None])
else:
result._set_shape(a.shape[:-2] + a.shape[-2:-1] + [None])
if kwargs.get('transpose_b') or kwargs.get('adjoint_b'):
result._set_shape(b.shape[:-2] + [None] + b.shape[-2:-1])
else:
result._set_shape(b.shape[:-2] + [None] + b.shape[-1:])
return result | Multiplies batches of 2D matrices using map_fn.
`output[n, i, k]` = sum_j (a[n, i, j] * b[n, j, k])` (for all `n`, `i`, `k`).
Requires that `a[n, i].nrows()` == `b[n].nrows()` (for all `n` and `i`).
Args:
a: A 3D Tensor or RaggedTensor with `shape=[B, I, J]`, where dimensions `I`
and `J` may be ragged.
b: A 3D Tensor or RaggedTensor with `shape=[B, J, K]`, where dimensions `J`
and `K` may be ragged.
**kwargs: Additional arguments for `tf.matmul` (e.g. transpose_a).
Returns:
A 3D RaggedTensor with `shape=[B, (I), (K)]`. | github-repos |
def _sim_timestamps(self, max_rate, bg_rate, emission, i_start, rs, ip_start=0, scale=10, sort=True):
counts_chunk = sim_timetrace_bg(emission, max_rate, bg_rate, self.t_step, rs=rs)
nrows = emission.shape[0]
if (bg_rate is not None):
nrows += 1
assert (counts_chunk.shape == (nrows, emission.shape[1]))
max_counts = counts_chunk.max()
if (max_counts == 0):
return (np.array([], dtype=np.int64), np.array([], dtype=np.int64))
time_start = (i_start * scale)
time_stop = (time_start + (counts_chunk.shape[1] * scale))
ts_range = np.arange(time_start, time_stop, scale, dtype='int64')
times_chunk_p = []
par_index_chunk_p = []
for (ip, counts_chunk_ip) in enumerate(counts_chunk):
times_c_ip = []
for v in range(1, (max_counts + 1)):
times_c_ip.append(ts_range[(counts_chunk_ip >= v)])
t = np.hstack(times_c_ip)
times_chunk_p.append(t)
par_index_chunk_p.append(np.full(t.size, (ip + ip_start), dtype='u1'))
times_chunk = np.hstack(times_chunk_p)
par_index_chunk = np.hstack(par_index_chunk_p)
if sort:
index_sort = times_chunk.argsort(kind='mergesort')
times_chunk = times_chunk[index_sort]
par_index_chunk = par_index_chunk[index_sort]
return (times_chunk, par_index_chunk) | Simulate timestamps from emission trajectories.
Uses attributes: `.t_step`.
Returns:
A tuple of two arrays: timestamps and particles. | codesearchnet |
async def get_person(self, id_):
data = await self._get_person_json(
id_,
OrderedDict(append_to_response='movie_credits')
)
return Person.from_json(data, self.config['data'].get('images')) | Retrieve person data by ID.
Arguments:
id_ (:py:class:`int`): The person's TMDb ID.
Returns:
:py:class:`~.Person`: The requested person. | juraj-google-style |
def _add_deprecation_notice_to_docstring(docstring, message):
if docstring:
return f'{docstring}\n\n.. deprecated:: {message}'
else:
return f'.. deprecated:: {message}' | Adds a deprecation notice to a docstring.
Args:
docstring: The original docstring (can be None or empty).
message: The deprecation message to add.
Returns:
The modified docstring. | github-repos |
def convert_code(in_file, out_file, in_alg='taudem', out_alg='arcgis', datatype=None):
FileClass.check_file_exists(in_file)
in_alg = in_alg.lower()
out_alg = out_alg.lower()
if in_alg not in FlowModelConst.d8_dirs or out_alg not in FlowModelConst.d8_dirs:
raise RuntimeError('The input algorithm name should one of %s' %
', '.join(list(FlowModelConst.d8_dirs.keys())))
convert_dict = dict()
in_code = FlowModelConst.d8_dirs.get(in_alg)
out_code = FlowModelConst.d8_dirs.get(out_alg)
assert len(in_code) == len(out_code)
for i, tmp_in_code in enumerate(in_code):
convert_dict[tmp_in_code] = out_code[i]
if datatype is not None and datatype in GDALDataType:
RasterUtilClass.raster_reclassify(in_file, convert_dict, out_file, datatype)
else:
RasterUtilClass.raster_reclassify(in_file, convert_dict, out_file) | convert D8 flow direction code from one algorithm to another.
Args:
in_file: input raster file path
out_file: output raster file path
in_alg: available algorithms are in FlowModelConst.d8_dirs. "taudem" is the default
out_alg: same as in_alg. "arcgis" is the default
datatype: default is None and use the datatype of the in_file | juraj-google-style |
def parameterized_send(self, request, parameter_list):
response_queues = OrderedDict()
for parameter in parameter_list:
response_queues[parameter] = self.send((request % parameter))
return response_queues | Send batched requests for a list of parameters
Args:
request (str): Request to send, like "%s.*?\n"
parameter_list (list): parameters to format with, like
["TTLIN", "TTLOUT"]
Returns:
dict: {parameter: response_queue} | codesearchnet |
def ParseFromHumanReadable(self, string):
if (not string):
return None
match = self.REGEX.match(string.strip().lower())
if (not match):
raise DecodeError(('Unknown specification for ByteSize %s' % string))
multiplier = self.DIVIDERS.get(match.group(2))
if (not multiplier):
raise DecodeError(('Invalid multiplier %s' % match.group(2)))
value = match.group(1)
if ('.' in value):
value = float(value)
else:
value = int(value)
self._value = int((value * multiplier)) | Parse a human readable string of a byte string.
Args:
string: The string to parse.
Raises:
DecodeError: If the string can not be parsed. | codesearchnet |
def load_from_file(self, yamlfile, _override=True, _allow_undeclared=False):
self._logger.info('Loading configuration from file: %s', yamlfile)
try:
parsed_yaml = self._modules['yaml'].safe_load(yamlfile.read())
except self._modules['yaml'].YAMLError:
self._logger.exception('Problem parsing YAML')
raise self.ConfigurationInvalidError(
'Failed to load from %s as YAML' % yamlfile)
if not isinstance(parsed_yaml, dict):
raise self.ConfigurationInvalidError(
'YAML parsed, but wrong type, should be dict', parsed_yaml)
self._logger.debug('Configuration loaded from file: %s', parsed_yaml)
self.load_from_dict(
parsed_yaml, _override=_override, _allow_undeclared=_allow_undeclared) | Loads the configuration from a file.
Parsed contents must be a single dict mapping config key to value.
Args:
yamlfile: The opened file object to load configuration from.
See load_from_dict() for other args' descriptions.
Raises:
ConfigurationInvalidError: If configuration file can't be read, or can't
be parsed as either YAML (or JSON, which is a subset of YAML). | juraj-google-style |
def merge_translations(localization_bundle_path):
logging.info('Merging translations')
for lang_dir in os.listdir(localization_bundle_path):
if (lang_dir == DEFAULT_LANGUAGE_DIRECTORY_NAME):
continue
for translated_path in glob.glob(os.path.join(localization_bundle_path, lang_dir, ('*' + TRANSLATED_SUFFIX))):
strings_path = translated_path[:((- 1) * len(TRANSLATED_SUFFIX))]
localizable_path = os.path.join(localization_bundle_path, DEFAULT_LANGUAGE_DIRECTORY_NAME, os.path.basename(strings_path))
localization_merge_back(localizable_path, strings_path, translated_path, strings_path) | Merges the new translation with the old one.
The translated files are saved as '.translated' file, and are merged with old translated file.
Args:
localization_bundle_path (str): The path to the localization bundle. | codesearchnet |
def get_build_tool_version(self):
with open(('%s/%s/build.gradle' % (self.path, self.src_folder))) as f:
for line in f.readlines():
if ('buildToolsVersion' in line):
matches = re.findall('buildToolsVersion \\"(.+?)\\"', line)
if (len(matches) == 1):
return matches[0]
return config.build_tool_version | Gets the build tool version to be used by zipalign from build.gradle file.
Returns:
A string containing the build tool version, default is 23.0.2. | codesearchnet |
def oem(self):
buf = (ctypes.c_char * self.MAX_BUF_SIZE)()
res = self._dll.JLINKARM_GetOEMString(ctypes.byref(buf))
if res != 0:
raise errors.JLinkException('Failed to grab OEM string.')
oem = ctypes.string_at(buf).decode()
if len(oem) == 0:
return None
return oem | Retrieves and returns the OEM string of the connected J-Link.
Args:
self (JLink): the ``JLink`` instance
Returns:
The string of the OEM. If this is an original SEGGER product, then
``None`` is returned instead.
Raises:
JLinkException: on hardware error. | juraj-google-style |
def grid_destroy_from_name(job_name):
jobs = grid_reload_from_name(job_name)
for job in jobs:
job.delete()
logger.info("Killing the job (%s, %s)" % (job.site, job.uid)) | Destroy all the jobs with a given name.
Args:
job_name (str): the job name | juraj-google-style |
def _get_endpoint(self, sub_domain):
storage_parameters = self._storage_parameters or dict()
account_name = storage_parameters.get('account_name')
if not account_name:
raise ValueError('"account_name" is required for Azure storage')
suffix = storage_parameters.get(
'endpoint_suffix', 'core.windows.net')
self._endpoint = 'http%s:
'' if self._unsecure else 's', account_name, sub_domain, suffix)
return account_name, suffix.replace('.', r'\.') | Get endpoint information from storage parameters.
Update system with endpoint information and return information required
to define roots.
Args:
self (pycosio._core.io_system.SystemBase subclass): System.
sub_domain (str): Azure storage sub-domain.
Returns:
tuple of str: account_name, endpoint_suffix | juraj-google-style |
def query_api_version(self):
version_resp = self._session.get('/api/version', logon_required=False)
self._api_version = version_resp
return self._api_version | The Query API Version operation returns information about
the level of Web Services API supported by the HMC.
This operation does not require authentication.
Returns:
:term:`json object`:
A JSON object with members ``api-major-version``,
``api-minor-version``, ``hmc-version`` and ``hmc-name``.
For details about these properties, see section
'Response body contents' in section 'Query API Version' in the
:term:`HMC API` book.
Raises:
:exc:`~zhmcclient.HTTPError`
:exc:`~zhmcclient.ParseError`
:exc:`~zhmcclient.ConnectionError` | codesearchnet |
def GetFileSystemTypeIndicators(cls, path_spec, resolver_context=None):
if ((cls._file_system_remainder_list is None) or (cls._file_system_store is None)):
(specification_store, remainder_list) = cls._GetSpecificationStore(definitions.FORMAT_CATEGORY_FILE_SYSTEM)
cls._file_system_remainder_list = remainder_list
cls._file_system_store = specification_store
if (cls._file_system_scanner is None):
cls._file_system_scanner = cls._GetSignatureScanner(cls._file_system_store)
return cls._GetTypeIndicators(cls._file_system_scanner, cls._file_system_store, cls._file_system_remainder_list, path_spec, resolver_context=resolver_context) | Determines if a file contains a supported file system types.
Args:
path_spec (PathSpec): path specification.
resolver_context (Optional[Context]): resolver context, where None
represents the built-in context which is not multi process safe.
Returns:
list[str]: supported format type indicators. | codesearchnet |
def Dump(obj,
sort_keys = False,
encoder = None):
text = json.dumps(
obj,
indent=2,
sort_keys=sort_keys,
ensure_ascii=False,
cls=encoder,
separators=_SEPARATORS)
if compatibility.PY2 and isinstance(text, bytes):
text = text.decode("utf-8")
return text | Stringifies a Python object into its JSON representation.
Args:
obj: A Python object to convert to JSON.
sort_keys: If True, output dictionaries keys in sorted (ascending) order.
encoder: An (optional) encoder class to use.
Returns:
A JSON representation of the given object. | juraj-google-style |
def _segment_reduce(values, index, segment_reduce_fn, name):
flat_index = flatten(index)
vector_shape = values.size()[len(index.indices.size()):]
flattened_shape = torch.cat([torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0)
flat_values = values.reshape(flattened_shape.tolist())
out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device)
segment_means = out.scatter_reduce(dim=0, index=flat_index.indices.long(), src=flat_values.float(), reduce=segment_reduce_fn, include_self=False)
device = index.num_segments.device
new_shape = torch.cat([torch.as_tensor(index.batch_shape(), dtype=torch.long, device=device), torch.as_tensor([index.num_segments], dtype=torch.long, device=device), torch.as_tensor(vector_shape, dtype=torch.long, device=device)], dim=0)
output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype)
output_index = range_index_map(index.batch_shape(), index.num_segments)
return (output_values, output_index) | Applies a segment reduction segment-wise.
Args:
values (`torch.Tensor`):
Tensor with segment values.
index (`IndexMap`):
IndexMap.
segment_reduce_fn (`str`):
Name for the reduce operation. One of "sum", "mean", "max" or "min".
name (`str`):
Name for the operation. Currently not used
Returns:
(`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). | github-repos |
def __init__(self, index, port = 8081):
self.index = index
self.server = None
self.port = port if port else find_free_port()
self.settings = index.columns
self.docs = index.docs
self._create_settings()
self.html_path = get_cur_path()+'/data/table/'
self.cleanup_flag = False | Table Constructor
todo::make sure this is memory efficient
Args:
Index (Index): An Index object with a valid .query method
and a .columns attribute.
Returns:
A table object
Usage example
>>> Table(ind) | juraj-google-style |
def get_by_provider_display_name(self, provider_display_name):
san_managers = self._client.get_all()
result = [x for x in san_managers if x['providerDisplayName'] == provider_display_name]
return result[0] if result else None | Gets a SAN Manager by provider display name.
Args:
provider_display_name: Name of the Provider Display Name
Returns:
dict: SAN Manager. | juraj-google-style |
def __init__(self, config: JetMoeConfig, layer_idx: Optional[int]=None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.is_causal = True
if layer_idx is None:
logger.warning_once(f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` when creating this class.')
self.top_k = config.num_experts_per_tok
self.attention_dropout = config.attention_dropout
self.kv_projection_size = config.kv_channels * config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_heads = config.num_attention_heads
self.head_dim = config.kv_channels
self.experts = JetMoeMoA(config)
self.kv_proj = torch.nn.Linear(config.hidden_size, self.kv_projection_size * 2, bias=False)
self.rotary_emb = JetMoeRotaryEmbedding(config) | Initialize the JetMoeAttention module.
Args:
config:
Configuration object with model hyperparameters.
layer_idx:
Index of the layer in the model. | github-repos |
def scale_geom_opt_threshold(self, gradient=0.1, displacement=0.1, energy=0.1):
if ((gradient < (1.0 / (300 - 1))) or (displacement < (1.0 / (1200 - 1))) or (energy < (1.0 / (100 - 1)))):
raise ValueError('The geometry optimization convergence criteria is too tight')
self.params['rem']['geom_opt_tol_gradient'] = int((gradient * 300))
self.params['rem']['geom_opt_tol_displacement'] = int((displacement * 1200))
self.params['rem']['geom_opt_tol_energy'] = int((energy * 100)) | Adjust the convergence criteria of geometry optimization.
Args:
gradient: the scale factor for gradient criteria. If less than
1.0, you are tightening the threshold. The base value is
300 × 10E−6
displacement: the scale factor for atomic displacement. If less
then 1.0, you are tightening the threshold. The base value is
1200 × 10E−6
energy: the scale factor for energy change between successive
iterations. If less than 1.0, you are tightening the
threshold. The base value is 100 × 10E−8. | codesearchnet |
def _verify_time_range(payload_dict):
now = int(time.time())
issued_at = payload_dict.get('iat')
if (issued_at is None):
raise AppIdentityError('No iat field in token: {0}'.format(payload_dict))
expiration = payload_dict.get('exp')
if (expiration is None):
raise AppIdentityError('No exp field in token: {0}'.format(payload_dict))
if (expiration >= (now + MAX_TOKEN_LIFETIME_SECS)):
raise AppIdentityError('exp field too far in future: {0}'.format(payload_dict))
earliest = (issued_at - CLOCK_SKEW_SECS)
if (now < earliest):
raise AppIdentityError('Token used too early, {0} < {1}: {2}'.format(now, earliest, payload_dict))
latest = (expiration + CLOCK_SKEW_SECS)
if (now > latest):
raise AppIdentityError('Token used too late, {0} > {1}: {2}'.format(now, latest, payload_dict)) | Verifies the issued at and expiration from a JWT payload.
Makes sure the current time (in UTC) falls between the issued at and
expiration for the JWT (with some skew allowed for via
``CLOCK_SKEW_SECS``).
Args:
payload_dict: dict, A dictionary containing a JWT payload.
Raises:
AppIdentityError: If there is no ``'iat'`` field in the payload
dictionary.
AppIdentityError: If there is no ``'exp'`` field in the payload
dictionary.
AppIdentityError: If the JWT expiration is too far in the future (i.e.
if the expiration would imply a token lifetime
longer than what is allowed.)
AppIdentityError: If the token appears to have been issued in the
future (up to clock skew).
AppIdentityError: If the token appears to have expired in the past
(up to clock skew). | codesearchnet |
def _AddFileDescriptor(self, file_desc):
if not isinstance(file_desc, descriptor.FileDescriptor):
raise TypeError('Expected instance of descriptor.FileDescriptor.')
self._file_descriptors[file_desc.name] = file_desc | Adds a FileDescriptor to the pool, non-recursively.
If the FileDescriptor contains messages or enums, the caller must explicitly
register them.
Args:
file_desc: A FileDescriptor. | juraj-google-style |
def display(port=None, height=None):
_display(port=port, height=height, print_message=True, display_handle=None) | Display a TensorBoard instance already running on this machine.
Args:
port: The port on which the TensorBoard server is listening, as an
`int`, or `None` to automatically select the most recently
launched TensorBoard.
height: The height of the frame into which to render the TensorBoard
UI, as an `int` number of pixels, or `None` to use a default value
(currently 800). | codesearchnet |
def get_vulnerability_chains(current_node, sink, def_use, chain=[]):
for use in def_use[current_node]:
if (use == sink):
(yield chain)
else:
vuln_chain = list(chain)
vuln_chain.append(use)
(yield from get_vulnerability_chains(use, sink, def_use, vuln_chain)) | Traverses the def-use graph to find all paths from source to sink that cause a vulnerability.
Args:
current_node()
sink()
def_use(dict):
chain(list(Node)): A path of nodes between source and sink. | codesearchnet |
def ParseRecord(self, parser_mediator, key, structure):
if key not in ('header', 'header_signature', 'logline'):
raise errors.ParseError(
'Unable to parse record, unknown structure: {0:s}'.format(key))
if key == 'logline':
self._ParseLogLine(parser_mediator, structure)
elif key == 'header':
self._ParseHeader(parser_mediator, structure)
elif key == 'header_signature':
logger.warning('Unknown locale header.')
self._xchat_year = 0 | Parses a log record structure and produces events.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
key (str): identifier of the structure of tokens.
structure (pyparsing.ParseResults): structure of tokens derived from
a line of a text file.
Raises:
ParseError: when the structure type is unknown. | juraj-google-style |
def resize_bytes(fobj, old_size, new_size, offset):
if new_size < old_size:
delete_size = old_size - new_size
delete_at = offset + new_size
delete_bytes(fobj, delete_size, delete_at)
elif new_size > old_size:
insert_size = new_size - old_size
insert_at = offset + old_size
insert_bytes(fobj, insert_size, insert_at) | Resize an area in a file adding and deleting at the end of it.
Does nothing if no resizing is needed.
Args:
fobj (fileobj)
old_size (int): The area starting at offset
new_size (int): The new size of the area
offset (int): The start of the area
Raises:
IOError | juraj-google-style |
def derive_value(self, value):
return IonEvent(
self.event_type,
self.ion_type,
value,
self.field_name,
self.annotations,
self.depth
) | Derives a new event from this one setting the ``value`` attribute.
Args:
value: (any):
The value associated with the derived event.
Returns:
IonEvent: The newly generated non-thunk event. | juraj-google-style |
def for_default_graph(*args, **kwargs):
graph = tf.get_default_graph()
collection = graph.get_collection(_BOOKKEEPER)
if collection:
if (args or kwargs):
raise ValueError(('Requesting construction of a BookKeeper that already exists: %s %s' % (args, kwargs)))
return collection[0]
else:
books = BOOKKEEPER_FACTORY(*args, g=graph, **kwargs)
graph.add_to_collection(_BOOKKEEPER, books)
return books | Creates a bookkeeper for the default graph.
Args:
*args: Arguments to pass into Bookkeeper's constructor.
**kwargs: Arguments to pass into Bookkeeper's constructor.
Returns:
A new Bookkeeper.
Raises:
ValueError: If args or kwargs are provided and the Bookkeeper already
exists. | codesearchnet |
def restart(self, container, timeout=10):
params = {'t': timeout}
url = self._url("/containers/{0}/restart", container)
conn_timeout = self.timeout
if conn_timeout is not None:
conn_timeout += timeout
res = self._post(url, params=params, timeout=conn_timeout)
self._raise_for_status(res) | Restart a container. Similar to the ``docker restart`` command.
Args:
container (str or dict): The container to restart. If a dict, the
``Id`` key is used.
timeout (int): Number of seconds to try to stop for before killing
the container. Once killed it will then be restarted. Default
is 10 seconds.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. | juraj-google-style |
def get_enabled_features(self, user_id, attributes=None):
enabled_features = []
if not self.is_valid:
self.logger.error(enums.Errors.INVALID_DATAFILE.format('get_enabled_features'))
return enabled_features
if not isinstance(user_id, string_types):
self.logger.error(enums.Errors.INVALID_INPUT_ERROR.format('user_id'))
return enabled_features
if not self._validate_user_inputs(attributes):
return enabled_features
for feature in self.config.feature_key_map.values():
if self.is_feature_enabled(feature.key, user_id, attributes):
enabled_features.append(feature.key)
return enabled_features | Returns the list of features that are enabled for the user.
Args:
user_id: ID for user.
attributes: Dict representing user attributes.
Returns:
A list of the keys of the features that are enabled for the user. | juraj-google-style |
def nack(self, items):
self.modify_ack_deadline([requests.ModAckRequest(ack_id=item.ack_id, seconds=0) for item in items])
self.drop([requests.DropRequest(*item) for item in items]) | Explicitly deny receipt of messages.
Args:
items(Sequence[NackRequest]): The items to deny. | codesearchnet |
def _validate_observation_data(kernel, observation_index_points, observations):
ndims = kernel.feature_ndims
if (tensorshape_util.is_fully_defined(observation_index_points.shape[:(- ndims)]) and tensorshape_util.is_fully_defined(observations.shape)):
index_point_count = observation_index_points.shape[:(- ndims)]
observation_count = observations.shape
try:
tf.broadcast_static_shape(index_point_count, observation_count)
except ValueError:
raise ValueError('Observation index point and observation counts are not broadcastable: {} and {}, respectively.'.format(index_point_count, observation_count)) | Ensure that observation data and locations have consistent shapes.
This basically means that the batch shapes are broadcastable. We can only
ensure this when those shapes are fully statically defined.
Args:
kernel: The GP kernel.
observation_index_points: the observation data locations in the index set.
observations: the observation data.
Raises:
ValueError: if the observations' batch shapes are not broadcastable. | codesearchnet |
def _ParseCommentRecord(self, structure):
comment = structure[1]
if comment.startswith('Version'):
_, _, self._version = comment.partition(':')
elif comment.startswith('Software'):
_, _, self._software = comment.partition(':')
elif comment.startswith('Time'):
_, _, time_format = comment.partition(':')
if 'local' in time_format.lower():
self._use_local_timezone = True | Parse a comment and store appropriate attributes.
Args:
structure (pyparsing.ParseResults): parsed log line. | juraj-google-style |
def pre_release_work(patch: bool=False):
default_version = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!")
if default_version.is_devrelease:
default_version = default_version.base_version
elif patch:
default_version = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
default_version = f'{default_version.major}.{default_version.minor + 1}.0'
version = input(f'Which version are you releasing? [{default_version}]')
if len(version) == 0:
version = default_version
print(f'Updating version to {version}.')
global_version_update(version, patch=patch)
print('Deleting conversion scripts.')
remove_conversion_scripts() | Do all the necessary pre-release steps:
- figure out the next minor release version and ask confirmation
- update the version everywhere
- clean-up the model list in the main README
Args:
patch (`bool`, *optional*, defaults to `False`): Whether or not this is a patch release. | github-repos |
def _process_new(self, feed_item):
return {'assetIdentifier': {'name': feed_item.get(FieldMap.CREATIVE_ASSET_FILE_NAME, None), 'type': feed_item.get(FieldMap.CREATIVE_TYPE, None)}} | Creates a new creative asset DCM object from a feed item representing a creative asset from the Bulkdozer feed.
This function simply creates the object to be inserted later by the BaseDAO
object.
Args:
feed_item: Feed item representing the creative asset from the Bulkdozer
feed.
Returns:
A creative asset object ready to be inserted in DCM through the API. | github-repos |
def matvec(self, x, adjoint=False, name='matvec'):
with self._name_scope(name):
block_dimensions = self._block_range_dimensions() if adjoint else self._block_domain_dimensions()
if linear_operator_util.arg_is_blockwise(block_dimensions, x, -1):
for i, block in enumerate(x):
if not isinstance(block, linear_operator.LinearOperator):
block = tensor_conversion.convert_to_tensor_v2_with_dispatch(block)
self._check_input_dtype(block)
block_dimensions[i].assert_is_compatible_with(block.shape[-1])
x[i] = block
x_mat = [block[..., array_ops.newaxis] for block in x]
y_mat = self.matmul(x_mat, adjoint=adjoint)
return [array_ops.squeeze(y, axis=-1) for y in y_mat]
x = tensor_conversion.convert_to_tensor_v2_with_dispatch(x, name='x')
self._check_input_dtype(x)
op_dimension = self.range_dimension if adjoint else self.domain_dimension
op_dimension.assert_is_compatible_with(x.shape[-1])
x_mat = x[..., array_ops.newaxis]
y_mat = self.matmul(x_mat, adjoint=adjoint)
return array_ops.squeeze(y_mat, axis=-1) | Transform [batch] vector `x` with left multiplication: `x --> Ax`.
```python
# Make an operator acting like batch matrix A. Assume A.shape = [..., M, N]
operator = LinearOperator(...)
X = ... # shape [..., N], batch vector
Y = operator.matvec(X)
Y.shape
==> [..., M]
Y[..., :] = sum_j A[..., :, j] X[..., j]
```
Args:
x: `Tensor` with compatible shape and same `dtype` as `self`, or an
iterable of `Tensor`s. `Tensor`s are treated a [batch] vectors, meaning
for every set of leading dimensions, the last dimension defines a
vector.
See class docstring for definition of compatibility.
adjoint: Python `bool`. If `True`, left multiply by the adjoint: `A^H x`.
name: A name for this `Op`.
Returns:
A `Tensor` with shape `[..., M]` and same `dtype` as `self`. | github-repos |
def inference(self, observed_arr):
self.__pred_arr = self.__lstm_model.inference(observed_arr)
return self.__pred_arr | Draws samples from the `true` distribution.
Args:
observed_arr: `np.ndarray` of observed data points.
Returns:
`np.ndarray` of inferenced. | juraj-google-style |
def sort_ordered_objects(items, getter=(lambda x: x)):
return sorted(items, key=(lambda x: getattr(getter(x), OrderedBase.CREATION_COUNTER_FIELD, (- 1)))) | Sort an iterable of OrderedBase instances.
Args:
items (iterable): the objects to sort
getter (callable or None): a function to extract the OrderedBase instance from an object.
Examples:
>>> sort_ordered_objects([x, y, z])
>>> sort_ordered_objects(v.items(), getter=lambda e: e[1]) | codesearchnet |
def get_min_max_value(statistics: calib_stats_pb2.CalibrationStatistics, calib_opts: stablehlo_quant_config_pb2.CalibrationOptions) -> tuple[float, float]:
calib_method = calib_opts.calibration_method
if calib_method not in _REGISTRY:
raise ValueError(f'Unsupported calibration method: {calib_method}')
calibration_algorithm = _REGISTRY[calib_method](statistics, calib_opts)
return calibration_algorithm.get_min_max_value() | Calculates min and max from statistics using calibration options.
Args:
statistics: Collected calibration statistics.
calib_opts: Calibration options used for calculating min and max.
Returns:
(min_value, max_value): Min and max calculated using calib_opts.
Raises:
ValueError: Unsupported calibration method is given. | github-repos |
def get_service_state_object_id(subsystem: str, name: str,
version: str) -> str:
return '{}:{}:{}'.format(subsystem, name, version) | Return service state data object key.
Args:
subsystem (str): Subsystem the service belongs to
name (str): Name of the Service
version (str): Version of the Service
Returns:
str, Key used to store the service state data object | juraj-google-style |
def _batch_accumulator(cls, primals, tangents):
acc = super(ForwardAccumulator, cls).__new__(cls, primals, tangents)
acc._recording = False
acc._accumulator = pywrap_tfe.TFE_Py_ForwardAccumulatorNew(True)
primal_ids = set()
for primal, tangent in zip(nest.flatten(primals), nest.flatten(tangents)):
tangent.shape.assert_is_compatible_with(tensor_shape.TensorShape([None]) + primal.shape)
if id(primal) in primal_ids:
raise ValueError('Tensor {} was specified as a primal multiple times. This may indicate an error. If it was intended, please sum the corresponding tangents.')
primal_ids.add(id(primal))
acc._watch(primals, tangents)
return acc | Factory constructor to test accumulator on batches of tangents.
Args:
primals: A tensor or nested structure of tensors to watch.
tangents: A tensor or nested structure of tensors, with the same nesting
structure as `primals`, with each element being a vector with compatible
shape `[None] + primal.shape` of the corresponding primal element.
Returns:
A batch accumulator object. | github-repos |
def get_configuration_file(configuration_files: list[str]) -> str:
configuration_files_map = {}
for file_name in configuration_files:
if file_name.startswith('config.') and file_name.endswith('.json') and (file_name != 'config.json'):
v = file_name.removeprefix('config.').removesuffix('.json')
configuration_files_map[v] = file_name
available_versions = sorted(configuration_files_map.keys())
configuration_file = CONFIG_NAME
transformers_version = version.parse(__version__)
for v in available_versions:
if version.parse(v) <= transformers_version:
configuration_file = configuration_files_map[v]
else:
break
return configuration_file | Get the configuration file to use for this version of transformers.
Args:
configuration_files (`List[str]`): The list of available configuration files.
Returns:
`str`: The configuration file to use. | github-repos |
class ZoeDepthReassembleStage(nn.Module):
def __init__(self, config):
super().__init__()
self.readout_type = config.readout_type
self.layers = nn.ModuleList()
for neck_hidden_size, factor in zip(config.neck_hidden_sizes, config.reassemble_factors):
self.layers.append(ZoeDepthReassembleLayer(config, channels=neck_hidden_size, factor=factor))
if config.readout_type == 'project':
self.readout_projects = nn.ModuleList()
hidden_size = config.backbone_hidden_size
for _ in config.neck_hidden_sizes:
self.readout_projects.append(nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]))
def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> List[torch.Tensor]:
batch_size = hidden_states[0].shape[0]
hidden_states = torch.cat(hidden_states, dim=0)
cls_token, hidden_states = (hidden_states[:, 0], hidden_states[:, 1:])
total_batch_size, sequence_length, num_channels = hidden_states.shape
hidden_states = hidden_states.reshape(total_batch_size, patch_height, patch_width, num_channels)
hidden_states = hidden_states.permute(0, 3, 1, 2).contiguous()
if self.readout_type == 'project':
hidden_states = hidden_states.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(dim=1).expand_as(hidden_states)
hidden_states = torch.cat((hidden_states, readout), -1)
elif self.readout_type == 'add':
hidden_states = hidden_states + cls_token.unsqueeze(-1)
out = []
for stage_idx, hidden_state in enumerate(hidden_states.split(batch_size, dim=0)):
if self.readout_type == 'project':
hidden_state = self.readout_projects[stage_idx](hidden_state)
hidden_state = hidden_state.permute(0, 2, 1).reshape(batch_size, -1, patch_height, patch_width)
hidden_state = self.layers[stage_idx](hidden_state)
out.append(hidden_state)
return out | This class reassembles the hidden states of the backbone into image-like feature representations at various
resolutions.
This happens in 3 stages:
1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to
`config.readout_type`.
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
3. Resizing the spatial dimensions (height, width).
Args:
config (`[ZoeDepthConfig]`):
Model configuration class defining the model architecture. | github-repos |
def get(self, uid: int) -> Optional[CachedMessage]:
return self._cache.get(uid) | Return the given cached message.
Args:
uid: The message UID. | codesearchnet |
def GetCampaignFeeds(client, feed, placeholder_type):
campaign_feed_service = client.GetService('CampaignFeedService', 'v201809')
campaign_feeds = []
more_pages = True
selector = {
'fields': ['CampaignId', 'MatchingFunction', 'PlaceholderTypes'],
'predicates': [
{
'field': 'Status',
'operator': 'EQUALS',
'values': ['ENABLED']
},
{
'field': 'FeedId',
'operator': 'EQUALS',
'values': [feed['id']]
},
{
'field': 'PlaceholderTypes',
'operator': 'CONTAINS_ANY',
'values': [placeholder_type]
}
],
'paging': {
'startIndex': 0,
'numberResults': PAGE_SIZE
}
}
while more_pages:
page = campaign_feed_service.get(selector)
if 'entries' in page:
campaign_feeds.extend(page['entries'])
selector['paging']['startIndex'] += PAGE_SIZE
more_pages = selector['paging']['startIndex'] < int(page['totalNumEntries'])
return campaign_feeds | Get a list of Feed Item Ids used by a campaign via a given Campaign Feed.
Args:
client: an AdWordsClient instance.
feed: a Campaign Feed.
placeholder_type: the Placeholder Type.
Returns:
A list of Feed Item Ids. | juraj-google-style |
def NHWCToNCHW(input_tensor):
if isinstance(input_tensor, tensor.Tensor):
return array_ops.transpose(input_tensor, [0, 3, 1, 2])
else:
return [input_tensor[0], input_tensor[3], input_tensor[1], input_tensor[2]] | Convert the input from NHWC format to NCHW.
Args:
input_tensor: a 4-D tensor, or a 4-element array representing the same.
Returns:
the converted tensor or a shape array | github-repos |
def direct_transformers_import(path: str, file='__init__.py') -> ModuleType:
name = 'transformers'
location = os.path.join(path, file)
spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
module = sys.modules[name]
return module | Imports transformers directly
Args:
path (`str`): The path to the source file
file (`str`, *optional*): The file to join with the path. Defaults to "__init__.py".
Returns:
`ModuleType`: The resulting imported module | github-repos |
def AddRow(self, values):
if self._number_of_columns and len(values) != self._number_of_columns:
raise ValueError('Number of values is out of bounds.')
self._rows.append(values)
if not self._number_of_columns:
self._number_of_columns = len(values) | Adds a row of values.
Args:
values (list[object]): values.
Raises:
ValueError: if the number of values is out of bounds. | juraj-google-style |
def shift(x, offset, dim, wrap, name=None):
return ShiftOperation(x, offset, dim, wrap, name=name).outputs[0] | Shift operation.
Shift x right by +offset in dimension dim.
Args:
x: a Tensor
offset: an integer. If negative, shift left instead of right.
dim: a Dimension of x
wrap: a boolean - whether to wrap (True) or pad with zeros (False).
name: an optional string
Returns:
a Tensor with the same shape and dtype as x | juraj-google-style |
def go_from(self, vertex):
if self.vertex_out:
self.vertex_out.edges_out.remove(self)
self.vertex_out = vertex
vertex.edges_out.add(self) | Tell the edge to go out from this vertex.
Args:
vertex (Vertex): vertex to go from. | codesearchnet |
def get_member_information(self, query_params=None):
return self.fetch_json(uri_path=self.base_uri, query_params=(query_params or {})) | Get Information for a member. Returns a dictionary of values.
Returns:
dict | codesearchnet |
def create(self, vrf_name, rd=None):
commands = [('vrf definition %s' % vrf_name)]
if rd:
commands.append(('rd %s' % rd))
return self.configure(commands) | Creates a new VRF resource
Note: A valid RD has the following format admin_ID:local_assignment.
The admin_ID can be an AS number or globally assigned IPv4 address.
The local_assignment can be an integer between 0-65,535 if the
admin_ID is an IPv4 address and can be between 0-4,294,967,295 if
the admin_ID is an AS number. If the admin_ID is an AS number the
local_assignment could also be in the form of an IPv4 address.
Args:
vrf_name (str): The VRF name to create
rd (str): The value to configure the vrf rd
Returns:
True if create was successful otherwise False | codesearchnet |
def _compute_causal_mask(self, query, value=None):
q_seq_length = ops.shape(query)[1]
v_seq_length = q_seq_length if value is None else ops.shape(value)[1]
ones_mask = ops.ones((1, q_seq_length, v_seq_length), dtype='int32')
row_index = ops.cumsum(ones_mask, axis=-2)
col_index = ops.cumsum(ones_mask, axis=-1)
return ops.greater_equal(row_index, col_index) | Computes a causal mask (e.g., for masked self-attention layers).
For example, if query and value both contain sequences of length 4,
this function returns a boolean tensor equal to:
```
[[[True, False, False, False],
[True, True, False, False],
[True, True, True, False],
[True, True, True, True]]]
```
Args:
query: query tensor of shape `(B, T, ...)`.
value: value tensor of shape `(B, S, ...)` (optional, defaults to
query).
Returns:
mask: a boolean tensor of shape `(1, T, S)` containing a lower
triangular matrix of shape `(T, S)`. | github-repos |
def compose(*funcs):
if not funcs:
return lambda *args: args[0] if args else None
if len(funcs) == 1:
return funcs[0]
last = funcs[-1]
rest = funcs[0:-1]
return lambda *args: reduce(lambda ax, func: func(ax),
reversed(rest), last(*args)) | chained function composition wrapper
creates function f, where f(x) = arg0(arg1(arg2(...argN(x))))
if *funcs is empty, an identity function is returned.
Args:
*funcs: list of functions to chain
Returns:
a new function composed of chained calls to *args | juraj-google-style |
def GetAttributeContainerByIndex(self, index):
if index < 0:
raise IndexError(
'Unsupported negative index value: {0:d}.'.format(index))
if index < len(self._list):
return self._list[index]
return None | Retrieves a specific serialized attribute container from the list.
Args:
index (int): attribute container index.
Returns:
bytes: serialized attribute container data or None if not available.
Raises:
IndexError: if the index is less than zero. | juraj-google-style |
def Parse(self, raw_data):
self.results = raw_data
for f in self.filters:
self.results = f.Parse(self.results)
return self.results | Take the results and yield results that passed through the filters.
The output of each filter is used as the input for successive filters.
Args:
raw_data: An iterable series of rdf values.
Returns:
A list of rdf values that matched all filters. | codesearchnet |
def launch_external_file(filename: str, raise_if_fails: bool = False) -> None:
log.info("Launching external file: {!r}", filename)
try:
if sys.platform.startswith('linux'):
cmdargs = ["xdg-open", filename]
subprocess.call(cmdargs)
else:
os.startfile(filename)
except Exception as e:
log.critical("Error launching {!r}: error was {}.\n\n{}",
filename, str(e), traceback.format_exc())
if raise_if_fails:
raise | Launches a file using the operating system's standard launcher.
Args:
filename: file to launch
raise_if_fails: raise any exceptions from
``subprocess.call(["xdg-open", filename])`` (Linux)
or ``os.startfile(filename)`` (otherwise)? If not, exceptions
are suppressed. | juraj-google-style |
def update_unexpected_keys(self, model, unexpected_keys: List[str], prefix: str) -> List[str]:
return unexpected_keys | Override this method if you want to adjust the `unexpected_keys`.
Args:
unexpected_keys (`List[str]`, *optional*):
The list of unexpected keys in the checkpoint compared to the state dict of the model | github-repos |
def list_media_endpoint_keys(access_token, subscription_id, rgname, msname):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', rgname, '/providers/microsoft.media/', '/mediaservices/', msname, '/listKeys?api-version=', MEDIA_API])
return do_get(endpoint, access_token) | list the media endpoint keys in a media service
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
rgname (str): Azure resource group name.
msname (str): Media service name.
Returns:
HTTP response. JSON body. | codesearchnet |
def get_load_balancer(self, id):
return LoadBalancer.get_object(api_token=self.token, id=id) | Returns a Load Balancer object by its ID.
Args:
id (str): Load Balancer ID | juraj-google-style |
def AdManagerDateTimePacker(cls, value, version):
if isinstance(value, datetime.datetime):
if value.tzinfo is None:
raise googleads.errors.GoogleAdsValueError(
'Datetime %s is not timezone aware.' % value
)
return {
'date': cls.AdManagerDateTimePacker(value.date(), version),
'hour': value.hour,
'minute': value.minute,
'second': value.second,
'timeZoneId' if version >= 'v201811' else 'timeZoneID':
value.tzinfo.zone,
}
elif isinstance(value, datetime.date):
return {'year': value.year, 'month': value.month, 'day': value.day} | Returns dicts formatted for Ad Manager SOAP based on date/datetime.
Args:
value: A date or datetime object to be converted.
version: the version of the current API, e.g. 'v201811'
Returns:
The value object correctly represented for Ad Manager SOAP. | juraj-google-style |
def optimal_partitions(sizes, counts, num_part):
if (num_part < 2):
return [(sizes[0], sizes[(- 1)])]
if (num_part >= len(sizes)):
partitions = [(x, x) for x in sizes]
return partitions
nfps = _compute_nfps_real(counts, sizes)
(partitions, _, _) = _compute_best_partitions(num_part, sizes, nfps)
return partitions | Compute the optimal partitions given a distribution of set sizes.
Args:
sizes (numpy.array): The complete domain of set sizes in ascending
order.
counts (numpy.array): The frequencies of all set sizes in the same
order as `sizes`.
num_part (int): The number of partitions to create.
Returns:
list: A list of partitions in the form of `(lower, upper)` tuples,
where `lower` and `upper` are lower and upper bound (inclusive)
set sizes of each partition. | codesearchnet |
def get(self, block=True, timeout=None):
if (not block):
(success, item) = ray.get(self.actor.get.remote())
if (not success):
raise Empty
elif (timeout is None):
(success, item) = ray.get(self.actor.get.remote())
while (not success):
(success, item) = ray.get(self.actor.get.remote())
elif (timeout < 0):
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = (time.time() + timeout)
success = False
while ((not success) and (time.time() < endtime)):
(success, item) = ray.get(self.actor.get.remote())
if (not success):
raise Empty
return item | Gets an item from the queue.
Uses polling if block=True, so there is no guarantee of order if
multiple consumers get from the same empty queue.
Returns:
The next item in the queue.
Raises:
Empty if the queue is empty and blocking is False. | codesearchnet |
def _restructure_if_volume_follows_journal(left, right):
def _get_volume_keyword_op_and_remaining_subtree(right_subtree):
if (isinstance(right_subtree, NotOp) and isinstance(right_subtree.op, KeywordOp) and (right_subtree.op.left == Keyword('volume'))):
return (None, None)
elif (isinstance(right_subtree, AndOp) and isinstance(right_subtree.left, NotOp) and isinstance(right_subtree.left.op, KeywordOp) and (right_subtree.left.op.left == Keyword('volume'))):
return (None, right_subtree.right)
elif (isinstance(right_subtree, KeywordOp) and (right_subtree.left == Keyword('volume'))):
return (right_subtree, None)
elif (isinstance(right_subtree, AndOp) and (right_subtree.left.left == Keyword('volume'))):
return (right_subtree.left, right_subtree.right)
journal_value = left.right.value
volume_and_remaining_subtree = _get_volume_keyword_op_and_remaining_subtree(right)
if (not volume_and_remaining_subtree):
return
(volume_node, remaining_subtree) = volume_and_remaining_subtree
if volume_node:
left.right.value = ','.join([journal_value, volume_node.right.value])
return (AndOp(left, remaining_subtree) if remaining_subtree else left) | Remove volume node if it follows a journal logically in the tree hierarchy.
Args:
left (ast.ASTElement): The journal KeywordOp node.
right (ast.ASTElement): The rest of the tree to be restructured.
Return:
(ast.ASTElement): The restructured tree, with the volume node removed.
Notes:
This happens to support queries like "journal Phys.Rev. and vol d85". Appends the value of KeywordOp with
Keyword 'volume' and discards 'volume' KeywordOp node from the tree. | codesearchnet |
def _UpdateStatus(
self, status, display_name, number_of_consumed_sources, storage_writer,
force=False):
current_timestamp = time.time()
if not force and current_timestamp < (
self._last_status_update_timestamp + self._STATUS_UPDATE_INTERVAL):
return
if status == definitions.STATUS_INDICATOR_IDLE:
status = definitions.STATUS_INDICATOR_RUNNING
used_memory = self._process_information.GetUsedMemory() or 0
self._processing_status.UpdateForemanStatus(
self._name, status, self._pid, used_memory, display_name,
number_of_consumed_sources, storage_writer.number_of_event_sources, 0,
storage_writer.number_of_events, 0, 0, 0, 0, 0,
storage_writer.number_of_warnings)
if self._status_update_callback:
self._status_update_callback(self._processing_status)
self._last_status_update_timestamp = current_timestamp | Updates the processing status.
Args:
status (str): human readable status of the processing e.g. 'Idle'.
display_name (str): human readable of the file entry currently being
processed.
number_of_consumed_sources (int): number of consumed sources.
storage_writer (StorageWriter): storage writer for a session storage.
force (Optional[bool]): True if the update should be forced ignoring
the last status update time. | juraj-google-style |
def diet_expert(x, hidden_size, params):
@fn_with_diet_vars(params)
def diet_expert_internal(x):
dim = x.get_shape().as_list()[(- 1)]
h = tf.layers.dense(x, hidden_size, activation=tf.nn.relu, use_bias=False)
y = tf.layers.dense(h, dim, use_bias=False)
y *= tf.rsqrt(tf.to_float((dim * hidden_size)))
return y
return diet_expert_internal(x) | A two-layer feed-forward network with relu activation on hidden layer.
Uses diet variables.
Recomputes hidden layer on backprop to save activation memory.
Args:
x: a Tensor with shape [batch, io_size]
hidden_size: an integer
params: a diet variable HParams object.
Returns:
a Tensor with shape [batch, io_size] | codesearchnet |
def unload(self):
unloaded = False
if self._lib is not None:
if self._winlib is not None:
ctypes.windll.kernel32.FreeLibrary.argtypes = (
ctypes.c_void_p,
)
ctypes.windll.kernel32.FreeLibrary(self._lib._handle)
ctypes.windll.kernel32.FreeLibrary(self._winlib._handle)
self._lib = None
self._winlib = None
unloaded = True
else:
del self._lib
self._lib = None
unloaded = True
if self._temp is not None:
os.remove(self._temp.name)
self._temp = None
return unloaded | Unloads the library's DLL if it has been loaded.
This additionally cleans up the temporary DLL file that was created
when the library was loaded.
Args:
self (Library): the ``Library`` instance
Returns:
``True`` if the DLL was unloaded, otherwise ``False``. | juraj-google-style |
def render(self, fname=''):
import qnet.visualization.circuit_pyx as circuit_visualization
from tempfile import gettempdir
from time import time, sleep
if (not fname):
tmp_dir = gettempdir()
fname = os.path.join(tmp_dir, 'tmp_{}.png'.format(hash(time)))
if circuit_visualization.draw_circuit(self, fname):
done = False
for k in range(20):
if os.path.exists(fname):
done = True
break
else:
sleep(0.5)
if done:
return fname
raise CannotVisualize() | Render the circuit expression and store the result in a file
Args:
fname (str): Path to an image file to store the result in.
Returns:
str: The path to the image file | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.