code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def restore_walker(self, dumped_state):
selector_string = dumped_state.get(u'selector')
if selector_string is None:
raise ArgumentError("Invalid stream walker state in restore_walker, missing 'selector' key", state=dumped_state)
selector = DataStreamSelector.FromString(selector_string)
walker = self.create_walker(selector)
walker.restore(dumped_state)
return walker | Restore a stream walker that was previously serialized.
Since stream walkers need to be tracked in an internal list for
notification purposes, we need to be careful with how we restore
them to make sure they remain part of the right list.
Args:
dumped_state (dict): The dumped state of a stream walker
from a previous call to StreamWalker.dump()
Returns:
StreamWalker: The correctly restored StreamWalker subclass. | juraj-google-style |
def _get(self, feed_item):
result = store.get(self._entity, feed_item.get(FieldMap.CREATIVE_ASSET_ID, None))
if not result:
result = {'id': feed_item.get(FieldMap.CREATIVE_ASSET_ID, None), 'assetIdentifier': {'name': feed_item.get(FieldMap.CREATIVE_ASSET_NAME, None), 'type': feed_item.get(FieldMap.CREATIVE_TYPE, None)}}
store.set(self._entity, [feed_item.get(FieldMap.CREATIVE_ASSET_ID, None)], result)
return result | Retrieves an item from DCM or the local cache.
Args:
feed_item: The feed item representing the creative asset from the
Bulkdozer feed.
Returns:
Instance of the DCM object either from the API or from the local cache. | github-repos |
def default_output_fn(prediction, accept):
return _worker.Response(response=_encoders.encode(prediction, accept), mimetype=accept) | Function responsible to serialize the prediction for the response.
Args:
prediction (obj): prediction returned by predict_fn .
accept (str): accept content-type expected by the client.
Returns:
(worker.Response): a Flask response object with the following args:
* Args:
response: the serialized data to return
accept: the content-type that the data was transformed to. | codesearchnet |
def nvals(self):
return self._row_splits[-1] | Returns the number of values partitioned by this `RowPartition`.
If the sequence partitioned by this `RowPartition` is a tensor, then
`nvals` is the size of that tensor's outermost dimension -- i.e.,
`nvals == values.shape[0]`.
Returns:
scalar integer Tensor | github-repos |
def api(self, name, namespace='pyeapi.api'):
module = load_module('{}.{}'.format(namespace, name))
if hasattr(module, 'initialize'):
module.initialize(self)
if hasattr(module, 'instance'):
return module.instance(self)
return module | Loads the specified api module
This method is the API autoload mechanism that will load the API
module specified by the name argument. The API module will be loaded
and look first for an initialize() function and secondly for an
instance() function. In both cases, the node object is passed to
the module.
Args:
name (str): The name of the module to load. The name should be
the name of the python file to import
namespace (str): The namespace to use to load the module. The
default value is 'pyeapi.api'
Returns:
The API module loaded with the node instance. | codesearchnet |
def threshold(self) -> float:
return self._tracker.get() | Returns the current quantile-based threshold value.
Returns:
float: The dynamically calculated threshold value based on the quantile
tracker. | github-repos |
def _format_origin_stack(origin_stack, call_traceback_proto):
string_to_id = {}
string_to_id[None] = 0
for frame in origin_stack:
file_path, lineno, func_name, line_text = frame
call_traceback_proto.origin_stack.traces.add(file_id=_string_to_id(file_path, string_to_id), lineno=lineno, function_id=_string_to_id(func_name, string_to_id), line_id=_string_to_id(line_text, string_to_id))
id_to_string = call_traceback_proto.origin_id_to_string
for key, value in string_to_id.items():
id_to_string[value] = key if key is not None else '' | Format a traceback stack for a `CallTraceback` proto.
Args:
origin_stack: The stack list as returned by `traceback.extract_stack()`.
call_traceback_proto: A `CallTraceback` proto whose fields are to be
populated. | github-repos |
def update_script_from_item(self, item):
(script, path_to_script, script_item) = item.get_script()
dictator = list(script_item.to_dict().values())[0]
for instrument in list(script.instruments.keys()):
script.instruments[instrument]['settings'] = dictator[instrument]['settings']
del dictator[instrument]
for sub_script_name in list(script.scripts.keys()):
sub_script_item = script_item.get_subscript(sub_script_name)
self.update_script_from_item(sub_script_item)
del dictator[sub_script_name]
script.update(dictator)
script.data_path = self.gui_settings['data_folder'] | updates the script based on the information provided in item
Args:
script: script to be updated
item: B26QTreeItem that contains the new settings of the script | codesearchnet |
def gfortran_search_path(library_dirs):
cmd = ('gfortran', '-print-search-dirs')
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
return_code = process.wait()
if (return_code != 0):
return library_dirs
cmd_output = process.stdout.read().decode('utf-8')
search_lines = cmd_output.strip().split('\n')
library_lines = [line[len(FORTRAN_LIBRARY_PREFIX):] for line in search_lines if line.startswith(FORTRAN_LIBRARY_PREFIX)]
if (len(library_lines) != 1):
msg = GFORTRAN_MISSING_LIBS.format(cmd_output)
print(msg, file=sys.stderr)
return library_dirs
library_line = library_lines[0]
accepted = set(library_dirs)
for part in library_line.split(os.pathsep):
full_path = os.path.abspath(part.strip())
if os.path.isdir(full_path):
accepted.add(full_path)
else:
msg = GFORTRAN_BAD_PATH.format(full_path)
print(msg, file=sys.stderr)
return sorted(accepted) | Get the library directory paths for ``gfortran``.
Looks for ``libraries: =`` in the output of ``gfortran -print-search-dirs``
and then parses the paths. If this fails for any reason, this method will
print an error and return ``library_dirs``.
Args:
library_dirs (List[str]): Existing library directories.
Returns:
List[str]: The library directories for ``gfortran``. | codesearchnet |
def get(cls, **kwargs):
fields = {}
for field in cls.url_fields:
value = kwargs.pop(field, None)
if (value is None):
cls._handle_wrong_field(field, ATTR_TYPE_URL)
fields[field] = value
model = cls(**fields)
model._populate(**kwargs)
return model | Retrieve an object by making a GET request to Transifex.
Each value in `kwargs` that corresponds to a field
defined in `self.url_fields` will be used in the URL path
of the request, so that a particular entry of this model
is identified and retrieved.
Raises:
AttributeError: if not all values for parameters in `url_fields`
are passed as kwargs
txlib.http.exceptions.NotFoundError: if the object with these
attributes is not found on the remote server
txlib.http.exceptions.ServerError subclass: depending on
the particular server response
Example:
# Note: also catch exceptions
>>> obj = MyModel.get(attr1=value1, attr2=value2) | codesearchnet |
def prompt_for_password(url, user=None, default_user=None):
if user is None:
default_user = default_user or getpass.getuser()
while user is None:
user = compat.console_input(
"Enter username for {} [{}]: ".format(url, default_user)
)
if user.strip() == "" and default_user:
user = default_user
if user:
pw = getpass.getpass(
"Enter password for {}@{} (Ctrl+C to abort): ".format(user, url)
)
if pw or pw == "":
return (user, pw)
return None | Prompt for username and password.
If a user name is passed, only prompt for a password.
Args:
url (str): hostname
user (str, optional):
Pass a valid name to skip prompting for a user name
default_user (str, optional):
Pass a valid name that is used as default when prompting
for a user name
Raises:
KeyboardInterrupt if user hits Ctrl-C
Returns:
(username, password) or None | juraj-google-style |
async def undo_check_in(self):
res = (await self.connection('POST', 'tournaments/{}/participants/{}/undo_check_in'.format(self._tournament_id, self._id)))
self._refresh_from_json(res) | Undo the check in for this participant
|methcoro|
Warning:
|unstable|
Raises:
APIException | codesearchnet |
def get_json_type(obj):
if hasattr(obj, 'get_config'):
serialized = serialization.serialize_keras_object(obj)
serialized['__passive_serialization__'] = True
return serialized
if type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj.item()
if callable(obj):
return obj.__name__
if type(obj).__name__ == type.__name__:
return obj.__name__
if tf.available and isinstance(obj, tf.compat.v1.Dimension):
return obj.value
if tf.available and isinstance(obj, tf.TensorShape):
return obj.as_list()
if tf.available and isinstance(obj, tf.DType):
return obj.name
if isinstance(obj, collections.abc.Mapping):
return dict(obj)
if obj is Ellipsis:
return {'class_name': '__ellipsis__'}
if tf.available and isinstance(obj, tf.TypeSpec):
from tensorflow.python.framework import type_spec_registry
try:
type_spec_name = type_spec_registry.get_name(type(obj))
return {'class_name': 'TypeSpec', 'type_spec': type_spec_name, 'serialized': obj._serialize()}
except ValueError:
raise ValueError(f'Unable to serialize {obj} to JSON, because the TypeSpec class {type(obj)} has not been registered.')
if tf.available and isinstance(obj, tf.__internal__.CompositeTensor):
spec = tf.type_spec_from_value(obj)
tensors = []
for tensor in tf.nest.flatten(obj, expand_composites=True):
tensors.append((tensor.dtype.name, tensor.numpy().tolist()))
return {'class_name': 'CompositeTensor', 'spec': get_json_type(spec), 'tensors': tensors}
if isinstance(obj, enum.Enum):
return obj.value
if isinstance(obj, bytes):
return {'class_name': '__bytes__', 'value': obj.decode('utf-8')}
raise TypeError(f'Unable to serialize {obj} to JSON. Unrecognized type {type(obj)}.') | Serializes any object to a JSON-serializable structure.
Args:
obj: the object to serialize
Returns:
JSON-serializable structure representing `obj`.
Raises:
TypeError: if `obj` cannot be serialized. | github-repos |
def IsRaised(self):
class IsRaisedContext(_EmptySubject):
def __init__(self, actual, get_actual_message):
super(IsRaisedContext, self).__init__(actual)
self._get_actual_message = get_actual_message
def __enter__(self):
return self
@asserts_truth
def __exit__(self, exc_type, exc, exc_tb):
if exc:
if issubclass(exc_type, type(self._actual)):
if hasattr(self._actual, 'message'):
AssertThat(exc).HasMessage(self._get_actual_message())
AssertThat(exc).HasArgsThat().ContainsExactlyElementsIn(self._actual.args).InOrder()
else:
self._FailWithSubject('should have been raised, but caught <{0!r}>'.format(exc))
else:
self._Resolve()
self._FailWithSubject('should have been raised, but was not')
return True
return IsRaisedContext(self._actual, self._GetActualMessage) | Asserts that an exception matching this subject is raised.
The raised exception must be the same type as (or a subclass of) this
subject's. The raised exception's "message" and "args" attributes must
match this subject's exactly. As this is a fairly strict match,
_ExceptionClassSubject.IsRaised() may be easier to use.
Returns:
A context within which an expected exception may be raised. | github-repos |
def date_clean(date, dashboard_style=False):
if dashboard_style:
dt = str(date)
out = ((((dt[4:6] + '/') + dt[6:]) + '/') + dt[:4])
else:
dt = str(date)
out = ((((dt[:4] + '-') + dt[4:6]) + '-') + dt[6:])
return out | Clean the numerical date value in order to present it.
Args:
boo: numerical date (20160205)
Returns:
Stringified version of the input date ("2016-02-05") | codesearchnet |
def _finished_callback(self, batch_fut, todo):
self._running.remove(batch_fut)
err = batch_fut.get_exception()
if err is not None:
tb = batch_fut.get_traceback()
for (fut, _) in todo:
if not fut.done():
fut.set_exception(err, tb) | Passes exception along.
Args:
batch_fut: the batch future returned by running todo_tasklet.
todo: (fut, option) pair. fut is the future return by each add() call.
If the batch fut was successful, it has already called fut.set_result()
on other individual futs. This method only handles when the batch fut
encountered an exception. | juraj-google-style |
def __eq__(self, other):
if type(self) is type(other) and \
self.kernel == other.kernel and \
self.discriminator == other.discriminator:
return True
return False | Two Acquires are the same if they are of the same type
and have the same kernel and discriminator.
Args:
other (Acquire): Other Acquire
Returns:
bool: are self and other equal. | juraj-google-style |
class InstructBlipVideoForConditionalGenerationModelOutput(ModelOutput):
loss: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
vision_outputs: Optional[torch.FloatTensor] = None
qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
def to_tuple(self) -> Tuple[Any]:
return tuple((self[k] if k not in ['vision_outputs', 'qformer_outputs', 'language_model_outputs'] else getattr(self, k).to_tuple() for k in self.keys())) | Class defining the outputs of [`InstructBlipVideoForConditionalGeneration`].
Args:
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Language modeling loss from the language model.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head of the language model.
vision_outputs (`BaseModelOutputWithPooling`):
Outputs of the vision encoder.
qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`):
Outputs of the Q-Former (Querying Transformer).
language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):
Outputs of the language model. | github-repos |
def convert_to_rgb(self, image: ImageInput) -> ImageInput:
return convert_to_rgb(image) | Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
as is.
Args:
image (ImageInput):
The image to convert.
Returns:
ImageInput: The converted image. | github-repos |
def write_gff_file(self, outfile, force_rerun=False):
if ssbio.utils.force_rerun(outfile=outfile, flag=force_rerun):
with open(outfile, 'w') as out_handle:
GFF.write([self], out_handle)
self.feature_path = outfile | Write a GFF file for the protein features, ``features`` will now load directly from this file.
Args:
outfile (str): Path to new FASTA file to be written to
force_rerun (bool): If an existing file should be overwritten | codesearchnet |
def get_servo_torque(self):
data = []
data.append(9)
data.append(self.servoid)
data.append(RAM_READ_REQ)
data.append(PWM_RAM)
data.append(BYTE2)
send_data(data)
rxdata = []
try:
rxdata = SERPORT.read(13)
if (ord(rxdata[10]) <= 127):
return (((ord(rxdata[10]) & 3) << 8) | (ord(rxdata[9]) & 255))
else:
return ((((ord(rxdata[10]) - 255) * 255) + (ord(rxdata[9]) & 255)) - 255)
except HerkulexError:
raise HerkulexError('could not communicate with motors') | Gets the current torque of Herkulex
Gives the current load on the servo shaft.
It is actually the PWM value to the motors
Args:
none
Returns:
int: the torque on servo shaft. range from -1023 to 1023
Raises:
SerialException: Error occured while opening serial port | codesearchnet |
def __init__(self, model):
self._model = model
if self.ALLOWED_SETTINGS:
self.update_settings({setting: self.ALLOWED_SETTINGS[setting][0]
for setting in self.ALLOWED_SETTINGS}) | Create a new instance of this visualization.
`BaseVisualization` is an interface and should only be instantiated via
a subclass.
Args:
model (:obj:`.models.model.BaseModel`): NN model to be
visualized. | juraj-google-style |
def __init__(self, location):
super(MarkLocation, self).__init__(location)
self.location = location
self.validate() | Create a new MarkLocation at the specified Location.
Args:
location: Location object, must not be at a property field in the query
Returns:
new MarkLocation object | juraj-google-style |
def get_mail_keys(message, complete=True):
if complete:
log.debug("Get all headers")
all_headers_keys = {i.lower() for i in message.keys()}
all_parts = ADDRESSES_HEADERS | OTHERS_PARTS | all_headers_keys
else:
log.debug("Get only mains headers")
all_parts = ADDRESSES_HEADERS | OTHERS_PARTS
log.debug("All parts to get: {}".format(", ".join(all_parts)))
return all_parts | Given an email.message.Message, return a set with all email parts to get
Args:
message (email.message.Message): email message object
complete (bool): if True returns all email headers
Returns:
set with all email parts | juraj-google-style |
def fermi_energy_from_outcar( filename='OUTCAR' ):
outcar = open(filename, "r").read()
fermi_energy = re.search(r"E-fermi\s*:\s*([-.\d]*)", outcar)
fermi_energy = float(fermi_energy.group(1))
return fermi_energy | Finds and returns the fermi energy.
Args:
-filename: the name of the outcar file to be read
Returns:
(Float): The fermi energy as found in the OUTCAR | juraj-google-style |
def is_namedtuple(instance, strict=False):
return _pywrap_utils.IsNamedtuple(instance, strict) | Returns True iff `instance` is a `namedtuple`.
Args:
instance: An instance of a Python object.
strict: If True, `instance` is considered to be a `namedtuple` only if it is
a "plain" namedtuple. For instance, a class inheriting from a `namedtuple`
will be considered to be a `namedtuple` iff `strict=False`.
Returns:
True if `instance` is a `namedtuple`. | github-repos |
def DeleteAddress(self, script_hash):
coin_keys_toremove = []
coins_to_remove = []
for key, coinref in self._coins.items():
if coinref.Output.ScriptHash.ToBytes() == script_hash.ToBytes():
coin_keys_toremove.append(key)
coins_to_remove.append(coinref)
for k in coin_keys_toremove:
del self._coins[k]
ok = False
if script_hash.ToBytes() in self._contracts.keys():
ok = True
del self._contracts[script_hash.ToBytes()]
elif script_hash in self._watch_only:
ok = True
self._watch_only.remove(script_hash)
return ok, coins_to_remove | Deletes an address from the wallet (includes watch-only addresses).
Args:
script_hash (UInt160): a bytearray (len 20) representing the public key.
Returns:
tuple:
bool: True if address removed, False otherwise.
list: a list of any ``neo.Wallet.Coin`` objects to be removed from the wallet. | juraj-google-style |
def load_hgnc_bulk(self, gene_objs):
LOG.info("Loading gene bulk with length %s", len(gene_objs))
try:
result = self.hgnc_collection.insert_many(gene_objs)
except (DuplicateKeyError, BulkWriteError) as err:
raise IntegrityError(err)
return result | Load a bulk of hgnc gene objects
Raises IntegrityError if there are any write concerns
Args:
gene_objs(iterable(scout.models.hgnc_gene))
Returns:
result (pymongo.results.InsertManyResult) | juraj-google-style |
def forward(self, index: int, output: torch.Tensor, multi_stage_features: List[torch.Tensor], multi_stage_positional_embeddings: List[torch.Tensor], attention_mask: Optional[torch.Tensor]=None, query_embeddings: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=False):
level_index = index % self.num_feature_levels
attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False
output, cross_attn_weights = self.cross_attn(output, multi_stage_features[level_index], memory_mask=attention_mask, memory_key_padding_mask=None, pos=multi_stage_positional_embeddings[level_index], query_pos=query_embeddings)
output, self_attn_weights = self.self_attn(output, output_mask=None, output_key_padding_mask=None, query_pos=query_embeddings)
output = self.ffn(output)
outputs = (output,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs | Args:
index (`int`): index of the layer in the Transformer decoder.
output (`torch.FloatTensor`): the object queries of shape `(N, batch, hidden_dim)`
multi_stage_features (`List[torch.Tensor]`): the multi-scale features from the pixel decoder.
multi_stage_positional_embeddings (`List[torch.Tensor]`):
positional embeddings for the multi_stage_features
attention_mask (`torch.FloatTensor`): attention mask for the masked cross attention layer
query_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys in the self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. | github-repos |
def _ProcessDirectory(self, mediator, file_entry):
self.processing_status = definitions.STATUS_INDICATOR_COLLECTING
if self._processing_profiler:
self._processing_profiler.StartTiming('collecting')
for sub_file_entry in file_entry.sub_file_entries:
if self._abort:
break
try:
if (not sub_file_entry.IsAllocated()):
continue
except dfvfs_errors.BackEndError as exception:
warning_message = 'unable to process directory entry: {0:s} with error: {1!s}'.format(sub_file_entry.name, exception)
mediator.ProduceExtractionWarning(warning_message, path_spec=file_entry.path_spec)
continue
if (sub_file_entry.type_indicator == dfvfs_definitions.TYPE_INDICATOR_TSK):
if (file_entry.IsRoot() and (sub_file_entry.name == '$OrphanFiles')):
continue
event_source = event_sources.FileEntryEventSource(path_spec=sub_file_entry.path_spec)
stat_object = sub_file_entry.GetStat()
if stat_object:
event_source.file_entry_type = stat_object.type
mediator.ProduceEventSource(event_source)
self.last_activity_timestamp = time.time()
if self._processing_profiler:
self._processing_profiler.StopTiming('collecting')
self.processing_status = definitions.STATUS_INDICATOR_RUNNING | Processes a directory file entry.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
file_entry (dfvfs.FileEntry): file entry of the directory. | codesearchnet |
def on_get(self, req, resp, handler=None, **kwargs):
self.handle((handler or self.retrieve), req, resp, **kwargs) | Respond on GET HTTP request assuming resource retrieval flow.
This request handler assumes that GET requests are associated with
single resource instance retrieval. Thus default flow for such requests
is:
* Retrieve single resource instance of prepare its representation by
calling retrieve method handler.
Args:
req (falcon.Request): request object instance.
resp (falcon.Response): response object instance to be modified
handler (method): list method handler to be called. Defaults
to ``self.list``.
**kwargs: additional keyword arguments retrieved from url template. | codesearchnet |
def _updated_config(self):
from tensorflow.python.keras import __version__ as keras_version
config = self.get_config()
model_config = {'class_name': self.__class__.__name__, 'config': config, 'keras_version': keras_version, 'backend': backend.backend()}
return model_config | Util shared between different serialization methods.
Returns:
Model config with Keras version information added. | github-repos |
def __subject_map__(self, map_iri):
subject_map = SimpleNamespace()
subject_map_bnode = self.rml.value(
subject=map_iri,
predicate=NS_MGR.rr.subjectMap.rdflib)
if subject_map_bnode is None:
return
subject_map.class_ = self.rml.value(
subject=subject_map_bnode,
predicate=getattr(NS_MGR.rr, "class").rdflib)
subject_map.template = self.rml.value(
subject=subject_map_bnode,
predicate=NS_MGR.rr.template.rdflib)
subject_map.termType = self.rml.value(
subject=subject_map_bnode,
predicate=NS_MGR.rr.termType.rdflib)
subject_map.deduplicate = self.rml.value(
subject=subject_map_bnode,
predicate=NS_MGR.kds.deduplicate.rdflib)
subject_map.reference = self.rml.value(
subject=subject_map_bnode,
predicate=NS_MGR.rr.reference.rdflib)
return subject_map | Creates a SimpleNamespace for the TripleMap's subjectMap and
populates properties from the RML RDF graph
Args:
-----
map_iri: rdflib.URIRef,TripleMap IRI
Returns:
--------
SimpleNamespace | juraj-google-style |
def _define_loop(graph, logdir, train_steps, eval_steps):
loop = tools.Loop(
logdir, graph.step, graph.should_log, graph.do_report,
graph.force_reset)
loop.add_phase(
'train', graph.done, graph.score, graph.summary, train_steps,
report_every=train_steps,
log_every=train_steps
checkpoint_every=None,
feed={graph.is_training: True})
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=eval_steps
checkpoint_every=10 * eval_steps,
feed={graph.is_training: False})
return loop | Create and configure a training loop with training and evaluation phases.
Args:
graph: Object providing graph elements via attributes.
logdir: Log directory for storing checkpoints and summaries.
train_steps: Number of training steps per epoch.
eval_steps: Number of evaluation steps per epoch.
Returns:
Loop object. | juraj-google-style |
def mac_hex_to_ascii(mac_hex, inc_dots):
v = mac_hex[2:]
ret = ''
for i in range(0, len(v), 4):
ret += v[i:i+4]
if ((inc_dots) & ((i+4) < len(v))):
ret += '.'
return ret | Format a hex MAC string to ASCII
Args:
mac_hex: Value from SNMP
inc_dots: 1 to format as aabb.ccdd.eeff, 0 to format aabbccddeeff
Returns:
String representation of the mac_hex | juraj-google-style |
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
return missing_keys | Override this method if you want to adjust the `missing_keys`.
Args:
missing_keys (`List[str]`, *optional*):
The list of missing keys in the checkpoint compared to the state dict of the model | github-repos |
def merge(self, workdir, gswfk_file, dfpt_files, gkk_files, out_gkk, binascii=0):
raise NotImplementedError('This method should be tested')
gswfk_file = os.path.absath(gswfk_file)
dfpt_files = [os.path.abspath(s) for s in list_strings(dfpt_files)]
gkk_files = [os.path.abspath(s) for s in list_strings(gkk_files)]
print(('Will merge %d 1WF files, %d GKK file in output %s' % (len(dfpt_files), len(gkk_files), out_gkk)))
if self.verbose:
for (i, f) in enumerate(dfpt_files):
print((' [%d] 1WF %s' % (i, f)))
for (i, f) in enumerate(gkk_files):
print((' [%d] GKK %s' % (i, f)))
(self.stdin_fname, self.stdout_fname, self.stderr_fname) = map(os.path.join, (3 * [workdir]), ['mrggkk.stdin', 'mrggkk.stdout', 'mrggkk.stderr'])
inp = StringIO()
inp.write((out_gkk + '\n'))
inp.write((str(binascii) + '\n'))
inp.write((gswfk_file + '\n'))
dims = ' '.join([str(d) for d in dims])
inp.write((dims + '\n'))
for fname in dfpt_files:
inp.write((fname + '\n'))
for fname in gkk_files:
inp.write((fname + '\n'))
self.stdin_data = [s for s in inp.getvalue()]
with open(self.stdin_fname, 'w') as fh:
fh.writelines(self.stdin_data)
fh.flush()
os.fsync(fh.fileno())
self.execute(workdir)
return out_gkk | Merge GGK files, return the absolute path of the new database.
Args:
gswfk_file: Ground-state WFK filename
dfpt_files: List of 1WFK files to merge.
gkk_files: List of GKK files to merge.
out_gkk: Name of the output GKK file
binascii: Integer flat. 0 --> binary output, 1 --> ascii formatted output | codesearchnet |
def replaceWith(self, el):
self.childs = el.childs
self.params = el.params
self.endtag = el.endtag
self.openertag = el.openertag
self._tagname = el.getTagName()
self._element = el.tagToString()
self._istag = el.isTag()
self._isendtag = el.isEndTag()
self._iscomment = el.isComment()
self._isnonpairtag = el.isNonPairTag() | Replace value in this element with values from `el`.
This useful when you don't want change all references to object.
Args:
el (obj): :class:`HTMLElement` instance. | codesearchnet |
def post_state(self, name, state):
self.post_command(OPERATIONS.CMD_UPDATE_STATE, {'name': name, 'new_status': state}) | Asynchronously try to update the state for a service.
If the update fails, nothing is reported because we don't wait for a
response from the server. This function will return immmediately and
not block.
Args:
name (string): The name of the service
state (int): The new state of the service | codesearchnet |
def diff_packages(pkg1, pkg2=None):
if pkg2 is None:
it = iter_packages(pkg1.name)
pkgs = [x for x in it if x.version < pkg1.version]
if not pkgs:
raise RezError("No package to diff with - %s is the earliest "
"package version" % pkg1.qualified_name)
pkgs = sorted(pkgs, key=lambda x: x.version)
pkg2 = pkgs[-1]
def _check_pkg(pkg):
if not (pkg.vcs and pkg.revision):
raise RezError("Cannot diff package %s: it is a legacy format "
"package that does not contain enough information"
% pkg.qualified_name)
_check_pkg(pkg1)
_check_pkg(pkg2)
path = mkdtemp(prefix="rez-pkg-diff")
paths = []
for pkg in (pkg1, pkg2):
print "Exporting %s..." % pkg.qualified_name
path_ = os.path.join(path, pkg.qualified_name)
vcs_cls_1 = plugin_manager.get_plugin_class("release_vcs", pkg1.vcs)
vcs_cls_1.export(revision=pkg.revision, path=path_)
paths.append(path_)
difftool = config.difftool
print "Opening diff viewer %s..." % difftool
proc = Popen([difftool] + paths)
proc.wait() | Invoke a diff editor to show the difference between the source of two
packages.
Args:
pkg1 (`Package`): Package to diff.
pkg2 (`Package`): Package to diff against. If None, the next most recent
package version is used. | juraj-google-style |
def find_log_dir(log_dir=None):
if log_dir:
dirs = [log_dir]
elif FLAGS['log_dir'].value:
dirs = [FLAGS['log_dir'].value]
else:
dirs = ['/tmp/', './']
for d in dirs:
if (os.path.isdir(d) and os.access(d, os.W_OK)):
return d
_absl_logger.fatal("Can't find a writable directory for logs, tried %s", dirs) | Returns the most suitable directory to put log files into.
Args:
log_dir: str|None, if specified, the logfile(s) will be created in that
directory. Otherwise if the --log_dir command-line flag is provided,
the logfile will be created in that directory. Otherwise the logfile
will be created in a standard location. | codesearchnet |
def append(self, species, coords, coords_are_cartesian=False, validate_proximity=False, properties=None):
return self.insert(len(self), species, coords, coords_are_cartesian=coords_are_cartesian, validate_proximity=validate_proximity, properties=properties) | Append a site to the structure.
Args:
species: Species of inserted site
coords (3x1 array): Coordinates of inserted site
coords_are_cartesian (bool): Whether coordinates are cartesian.
Defaults to False.
validate_proximity (bool): Whether to check if inserted site is
too close to an existing site. Defaults to False.
properties (dict): Properties of the site.
Returns:
New structure with inserted site. | codesearchnet |
def kill_redis(self, check_alive=True):
self._kill_process_type(ray_constants.PROCESS_TYPE_REDIS_SERVER, check_alive=check_alive) | Kill the Redis servers.
Args:
check_alive (bool): Raise an exception if any of the processes
were already dead. | codesearchnet |
def _get_definitions(source):
max_len = 0
descs = collections.OrderedDict()
lines = (s.strip() for s in source.splitlines())
non_empty_lines = (s for s in lines if s)
for line in non_empty_lines:
if line:
arg, desc = re.split(r'\s\s+', line.strip())
arg_len = len(arg)
if arg_len > max_len:
max_len = arg_len
descs[arg] = desc
return descs, max_len | Extract a dictionary of arguments and definitions.
Args:
source: The source for a section of a usage string that contains
definitions.
Returns:
A two-tuple containing a dictionary of all arguments and definitions as
well as the length of the longest argument. | juraj-google-style |
def ChangeScaleFactor(self, newfactor):
if ((float(newfactor) > 0) and (float(newfactor) < self._MAX_ZOOM)):
self._zoomfactor = newfactor | Changes the zoom of the graph manually.
1.0 is the original canvas size.
Args:
# float value between 0.0 and 5.0
newfactor: 0.7 | codesearchnet |
def field(self, field_name, boost=1, extractor=None):
if ('/' in field_name):
raise ValueError('Field {} contains illegal character `/`')
self._fields[field_name] = Field(field_name, boost, extractor) | Adds a field to the list of document fields that will be indexed.
Every document being indexed should have this field. None values for
this field in indexed documents will not cause errors but will limit
the chance of that document being retrieved by searches.
All fields should be added before adding documents to the index. Adding
fields after a document has been indexed will have no effect on already
indexed documents.
Fields can be boosted at build time. This allows terms within that
field to have more importance on search results. Use a field boost to
specify that matches within one field are more important that other
fields.
Args:
field_name (str): Name of the field to be added, must not include
a forward slash '/'.
boost (int): Optional boost factor to apply to field.
extractor (callable): Optional function to extract a field from
the document.
Raises:
ValueError: If the field name contains a `/`. | codesearchnet |
def strip_cdata(text):
if (not is_cdata(text)):
return text
xml = '<e>{0}</e>'.format(text)
node = etree.fromstring(xml)
return node.text | Removes all CDATA blocks from `text` if it contains them.
Note:
If the function contains escaped XML characters outside of a
CDATA block, they will be unescaped.
Args:
A string containing one or more CDATA blocks.
Returns:
An XML unescaped string with CDATA block qualifiers removed. | codesearchnet |
def from_class(cls, target_class):
module_name = target_class.__module__
class_name = target_class.__name__
return cls(module_name, '__init__', class_name) | Create a FunctionDescriptor from a class.
Args:
cls: Current class which is required argument for classmethod.
target_class: the python class used to create the function
descriptor.
Returns:
The FunctionDescriptor instance created according to the class. | codesearchnet |
def transmute_sites( self, old_site_label, new_site_label, n_sites_to_change ):
selected_sites = self.select_sites( old_site_label )
for site in random.sample( selected_sites, n_sites_to_change ):
site.label = new_site_label
self.site_labels = set( [ site.label for site in self.sites ] ) | Selects a random subset of sites with a specific label and gives them a different label.
Args:
old_site_label (String or List(String)): Site label(s) of the sites to be modified..
new_site_label (String): Site label to be applied to the modified sites.
n_sites_to_change (Int): Number of sites to modify.
Returns:
None | juraj-google-style |
def open_remote_url(urls, **kwargs):
if isinstance(urls, str):
urls = [urls]
for url in urls:
try:
web_file = requests.get(url, stream=True, **kwargs)
if 'html' in web_file.headers['content-type']:
raise ValueError("HTML source file retrieved.")
return web_file
except Exception as ex:
logger.error('Fail to open remote url - {}'.format(ex))
continue | Open the url and check that it stores a file.
Args:
:urls: Endpoint to take the file | juraj-google-style |
def load(cls, campaign_dir):
if not Path(campaign_dir).is_absolute():
raise ValueError("Path is not absolute")
if not Path(campaign_dir).exists():
raise ValueError("Directory does not exist")
filename = "%s.json" % os.path.split(campaign_dir)[1]
filepath = os.path.join(campaign_dir, filename)
try:
tinydb = TinyDB(filepath)
assert set(
tinydb.table('config').all()[0].keys()) == set(['script',
'params',
'commit'])
except:
os.remove(filepath)
raise ValueError("Specified campaign directory seems corrupt")
return cls(tinydb, campaign_dir) | Initialize from an existing database.
It is assumed that the database json file has the same name as its
containing folder.
Args:
campaign_dir (str): The path to the campaign directory. | juraj-google-style |
def extract_output_file_path(args):
if args and args[-1].endswith('>'):
raise SyntaxError('Redirect file path is empty')
elif args and args[-1].startswith('>'):
try:
_parse_interval(args[-1])
if len(args) > 1 and args[-2].startswith('-'):
output_file_path = None
else:
output_file_path = args[-1][1:]
args = args[:-1]
except ValueError:
output_file_path = args[-1][1:]
args = args[:-1]
elif len(args) > 1 and args[-2] == '>':
output_file_path = args[-1]
args = args[:-2]
elif args and args[-1].count('>') == 1:
gt_index = args[-1].index('>')
if gt_index > 0 and args[-1][gt_index - 1] == '=':
output_file_path = None
else:
output_file_path = args[-1][gt_index + 1:]
args[-1] = args[-1][:gt_index]
elif len(args) > 1 and args[-2].endswith('>'):
output_file_path = args[-1]
args = args[:-1]
args[-1] = args[-1][:-1]
else:
output_file_path = None
return (args, output_file_path) | Extract output file path from command arguments.
Args:
args: (list of str) command arguments.
Returns:
(list of str) Command arguments with the output file path part stripped.
(str or None) Output file path (if any).
Raises:
SyntaxError: If there is no file path after the last ">" character. | github-repos |
def _send_script(self, client, uuid, chunk, key, chunk_status):
conn_id = self._validate_connection('send_script', uuid, key)
if (conn_id is None):
return
conn_data = self._connections[uuid]
conn_data['last_touch'] = monotonic()
slug = self._build_device_slug(uuid)
(index, count) = chunk_status
if (index == 0):
conn_data['script'] = bytes()
conn_data['script'] += chunk
if (index != (count - 1)):
return
conn_data['last_progress'] = None
try:
resp = (yield self._manager.send_script(conn_id, conn_data['script'], (lambda x, y: self._notify_progress_async(uuid, client, x, y))))
(yield None)
conn_data['script'] = bytes()
except Exception as exc:
self._logger.exception('Error in manager send_script')
resp = {'success': False, 'reason': ('Internal error: %s' % str(exc))}
payload = {'client': client, 'type': 'response', 'operation': 'send_script', 'success': resp['success']}
if (resp['success'] is False):
payload['failure_reason'] = resp['reason']
self._publish_response(slug, payload) | Send a script to the connected device.
Args:
client (string): The client that sent the rpc request
uuid (int): The id of the device we're opening the interface on
chunk (bytes): The binary script to send to the device
key (string): The key to authenticate the caller
last_chunk (tuple): the chunk index and count of chunks of this script
so that we know to either accumulate it or send it on to the device
immediately. | codesearchnet |
def _check_create_file_writer_args(inside_function, **kwargs):
for arg_name, arg in kwargs.items():
if not isinstance(arg, ops.EagerTensor) and tensor_util.is_tf_type(arg):
if inside_function:
raise ValueError(f"Invalid graph Tensor argument '{arg_name}={arg}' to create_file_writer() inside an @tf.function. The create call will be lifted into the outer eager execution context, so it cannot consume graph tensors defined inside the function body.")
else:
raise ValueError(f"Invalid graph Tensor argument '{arg_name}={arg}' to eagerly executed create_file_writer().") | Helper to check the validity of arguments to a create_file_writer() call.
Args:
inside_function: whether the create_file_writer() call is in a tf.function
**kwargs: the arguments to check, as kwargs to give them names.
Raises:
ValueError: if the arguments are graph tensors. | github-repos |
def authenticate(self, request, email=None, password=None, username=None):
email = (email or username)
try:
email_instance = models.EmailAddress.objects.get(is_verified=True, email=email)
except models.EmailAddress.DoesNotExist:
return None
user = email_instance.user
if user.check_password(password):
return user
return None | Attempt to authenticate a set of credentials.
Args:
request:
The request associated with the authentication attempt.
email:
The user's email address.
password:
The user's password.
username:
An alias for the ``email`` field. This is provided for
compatability with Django's built in authentication
views.
Returns:
The user associated with the provided credentials if they
are valid. Returns ``None`` otherwise. | codesearchnet |
async def _location_auth_protect(self, location):
netloc_sans_port = self.host.split(':')[0]
netloc_sans_port = netloc_sans_port.replace(re.match(_WWX_MATCH, netloc_sans_port)[0], '')
base_domain = '.'.join(netloc_sans_port.split('.')[(- 2):])
(l_scheme, l_netloc, _, _, _, _) = urlparse(location)
location_sans_port = l_netloc.split(':')[0]
location_sans_port = location_sans_port.replace(re.match(_WWX_MATCH, location_sans_port)[0], '')
location_domain = '.'.join(location_sans_port.split('.')[(- 2):])
if (base_domain == location_domain):
if (l_scheme < self.scheme):
return False
else:
return True | Checks to see if the new location is
1. The same top level domain
2. As or more secure than the current connection type
Returns:
True (bool): If the current top level domain is the same
and the connection type is equally or more secure.
False otherwise. | codesearchnet |
def search(self, query_string):
query = self.create_query()
parser = QueryParser(query_string, query)
parser.parse()
return self.query(query) | Performs a search against the index using lunr query syntax.
Results will be returned sorted by their score, the most relevant
results will be returned first.
For more programmatic querying use `lunr.Index.query`.
Args:
query_string (str): A string to parse into a Query.
Returns:
dict: Results of executing the query. | juraj-google-style |
def __init__(self, closure, type_spec):
self._closure = closure
self._type_spec = type_spec
self._values = None
self._has_fetched_to_local = False
self._has_fetched_to_local_lock = threading.Lock()
self._fetched_tensors = None
self._error = None
self._status_available_event = threading.Event()
self._status = remote_value.RemoteValueStatus.NOT_READY | Initializes a `RemoteValueImpl`.
Args:
closure: The closure from which the `RemoteValue` is created.
type_spec: The type spec for this `RemoteValue` which is used to trace
functions that take this `RemoteValue` as input. | github-repos |
def strip_html_tags(text, allowed_tags=None):
if text is None:
return
if allowed_tags is None:
allowed_tags = ALLOWED_TAGS
return bleach.clean(text, tags=allowed_tags, attributes=['id', 'class', 'style', 'href', 'title'], strip=True) | Strip all tags from a string except those tags provided in `allowed_tags` parameter.
Args:
text (str): string to strip html tags from
allowed_tags (list): allowed list of html tags
Returns: a string without html tags | juraj-google-style |
def _identify_eds_ing(first, second):
A = set([first.L, first.R])
A.update(first.D)
B = set([second.L, second.R])
B.update(second.D)
depend_set = (A & B)
(left, right) = sorted(list((A ^ B)))
return (left, right, depend_set) | Find nodes connecting adjacent edges.
Args:
first(Edge): Edge object representing the first edge.
second(Edge): Edge object representing the second edge.
Returns:
tuple[int, int, set[int]]: The first two values represent left and right node
indicies of the new edge. The third value is the new dependence set. | codesearchnet |
def get_mysql_vars(mysql: str,
host: str,
port: int,
user: str) -> Dict[str, str]:
cmdargs = [
mysql,
"-h", host,
"-P", str(port),
"-e", "SHOW VARIABLES; SHOW STATUS",
"-u", user,
"-p"
]
log.info("Connecting to MySQL with user: {}", user)
log.debug(cmdargs)
process = subprocess.Popen(cmdargs, stdout=subprocess.PIPE)
out, err = process.communicate()
lines = out.decode("utf8").splitlines()
mysqlvars = {}
for line in lines:
var, val = line.split("\t")
mysqlvars[var] = val
return mysqlvars | Asks MySQL for its variables and status.
Args:
mysql: ``mysql`` executable filename
host: host name
port: TCP/IP port number
user: username
Returns:
dictionary of MySQL variables/values | juraj-google-style |
def bot_intent(self) -> 'IntentAPI':
if (not self._bot_intent):
self._bot_intent = IntentAPI(self.bot_mxid, self, state_store=self.state_store, log=self.intent_log)
return self._bot_intent | Get the intent API for the appservice bot.
Returns:
The IntentAPI for the appservice bot. | codesearchnet |
def radar_xsect(scatterer, h_pol=True):
Z = scatterer.get_Z()
if h_pol:
return ((2 * np.pi) * (((Z[(0, 0)] - Z[(0, 1)]) - Z[(1, 0)]) + Z[(1, 1)]))
else:
return ((2 * np.pi) * (((Z[(0, 0)] + Z[(0, 1)]) + Z[(1, 0)]) + Z[(1, 1)])) | Radar cross section for the current setup.
Args:
scatterer: a Scatterer instance.
h_pol: If True (default), use horizontal polarization.
If False, use vertical polarization.
Returns:
The radar cross section. | codesearchnet |
def status_update(self, crits_id, crits_type, status):
obj_type = self._type_translation(crits_type)
patch_url = "{0}/{1}/{2}/".format(self.url, obj_type, crits_id)
params = {
'api_key': self.api_key,
'username': self.username,
}
data = {
'action': 'status_update',
'value': status,
}
r = requests.patch(patch_url, params=params, data=data,
verify=self.verify, proxies=self.proxies)
if r.status_code == 200:
log.debug('Object {} set to {}'.format(crits_id, status))
return True
else:
log.error('Attempted to set object id {} to '
'Informational, but did not receive a '
'200'.format(crits_id))
log.error('Error message was: {}'.format(r.text))
return False | Update the status of the TLO. By default, the options are:
- New
- In Progress
- Analyzed
- Deprecated
Args:
crits_id: The object id of the TLO
crits_type: The type of TLO. This must be 'Indicator', ''
status: The status to change.
Returns:
True if the status was updated. False otherwise.
Raises:
CRITsInvalidTypeError | juraj-google-style |
def comments_2(self, value=None):
if value is not None:
try:
value = str(value)
except ValueError:
raise ValueError('value {} need to be of type str '
'for field `comments_2`'.format(value))
if ',' in value:
raise ValueError('value should not contain a comma '
'for field `comments_2`')
self._comments_2 = value | Corresponds to IDD Field `comments_2`
Args:
value (str): value for IDD Field `comments_2`
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def error_message():
sys.stderr.write('valid commands:\n')
for cmd in get_valid_commands():
sys.stderr.write(('\t%s\n' % cmd))
return (- 1) | Writes out error message specifying the valid commands.
Returns:
Failure code for system exit | codesearchnet |
def configure_plugin(self, name, options):
url = self._url('/plugins/{0}/set', name)
data = options
if isinstance(data, dict):
data = ['{0}={1}'.format(k, v) for k, v in six.iteritems(data)]
res = self._post_json(url, data=data)
self._raise_for_status(res)
return True | Configure a plugin.
Args:
name (string): The name of the plugin. The ``:latest`` tag is
optional, and is the default if omitted.
options (dict): A key-value mapping of options
Returns:
``True`` if successful | juraj-google-style |
def concept_distance(c1, c2):
cause_purview = tuple(set(c1.cause.purview + c2.cause.purview))
effect_purview = tuple(set(c1.effect.purview + c2.effect.purview))
return (repertoire_distance(c1.expand_cause_repertoire(cause_purview),
c2.expand_cause_repertoire(cause_purview)) +
repertoire_distance(c1.expand_effect_repertoire(effect_purview),
c2.expand_effect_repertoire(effect_purview))) | Return the distance between two concepts in concept space.
Args:
c1 (Concept): The first concept.
c2 (Concept): The second concept.
Returns:
float: The distance between the two concepts in concept space. | juraj-google-style |
def send(self, response):
self._connection.connection.set('{}:{}'.format(SIGNAL_REDIS_PREFIX, response.uid),
pickle.dumps(response)) | Send a response back to the client that issued a request.
Args:
response (Response): Reference to the response object that should be sent. | juraj-google-style |
def insert(self, iterable, index=0, data=None, weight=1.0):
if index == len(iterable):
self.is_terminal = True
self.key = iterable
self.weight = weight
if data:
self.data.add(data)
else:
if iterable[index] not in self.children:
self.children[iterable[index]] = TrieNode()
self.children[iterable[index]].insert(iterable, index + 1, data) | Insert new node into tree
Args:
iterable(hashable): key used to find in the future.
data(object): data associated with the key
index(int): an index used for insertion.
weight(float): the wait given for the item added. | juraj-google-style |
def isset(alias_name):
warnings.warn('Will be removed in v1.0', DeprecationWarning, stacklevel=2)
raw_value = read(alias_name, allow_none=True)
if raw_value:
if re.compile('.+:
return True
else:
warnings.warn('"{0}_PORT={1}" does not look like a docker link.'.format(alias_name, raw_value), stacklevel=2)
return False
return False | Return a boolean if the docker link is set or not and is a valid looking docker link value.
Args:
alias_name: The link alias name | codesearchnet |
def decompress(self, value: LocalizedValue) -> List[str]:
result = []
for lang_code, _ in settings.LANGUAGES:
if value:
result.append(value.get(lang_code))
else:
result.append(None)
return result | Decompresses the specified value so
it can be spread over the internal widgets.
Arguments:
value:
The :see:LocalizedValue to display in this
widget.
Returns:
All values to display in the inner widgets. | juraj-google-style |
def _wait_for_any_job(provider, job_ids, poll_interval):
if not job_ids:
return
while True:
tasks = provider.lookup_job_tasks({'*'}, job_ids=job_ids)
running_jobs = set()
failed_jobs = set()
for t in tasks:
status = t.get_field('task-status')
job_id = t.get_field('job-id')
if status in ['FAILURE', 'CANCELED']:
failed_jobs.add(job_id)
if status == 'RUNNING':
running_jobs.add(job_id)
remaining_jobs = running_jobs.difference(failed_jobs)
if failed_jobs or len(remaining_jobs) != len(job_ids):
return remaining_jobs
SLEEP_FUNCTION(poll_interval) | Waits until any of the listed jobs is not running.
In particular, if any of the jobs sees one of its tasks fail,
we count the whole job as failing (but do not terminate the remaining
tasks ourselves).
Args:
provider: job service provider
job_ids: a list of job IDs (string) to wait for
poll_interval: integer seconds to wait between iterations
Returns:
A set of the jobIDs with still at least one running task. | juraj-google-style |
def goto(directory, create=False):
current = os.getcwd()
directory = os.path.abspath(directory)
if os.path.isdir(directory) or (create and mkdir(directory)):
logger.info("goto -> %s", directory)
os.chdir(directory)
try:
yield True
finally:
logger.info("goto <- %s", directory)
os.chdir(current)
else:
logger.info(
"goto(%s) - directory does not exist, or cannot be " "created.",
directory,
)
yield False | Context object for changing directory.
Args:
directory (str): Directory to go to.
create (bool): Create directory if it doesn't exists.
Usage::
>>> with goto(directory) as ok:
... if not ok:
... print 'Error'
... else:
... print 'All OK' | juraj-google-style |
def remove_child(self, child):
if ((child in self.children.values()) and hasattr(child, 'identifier')):
for k in self.children.keys():
if hasattr(self.children[k], 'identifier'):
if (self.children[k].identifier == child.identifier):
if (k in self._render_children_list):
self._render_children_list.remove(k)
self.children.pop(k)
break | Removes a child instance from the Tag's children.
Args:
child (Tag): The child to be removed. | codesearchnet |
def add_migrations(self, migrations):
if self.__closed:
raise MigrationSessionError("Can't change applied session")
self._to_apply.extend(migrations) | Add migrations to be applied.
Args:
migrations: a list of migrations to add of the form [(app, migration_name), ...]
Raises:
MigrationSessionError if called on a closed MigrationSession | juraj-google-style |
def booleans_processing(config, **kwargs):
final_booleans = {}
if 'output_attentions' in kwargs:
final_booleans['output_attentions'] = kwargs['output_attentions'] if kwargs['output_attentions'] is not None else config.output_attentions
final_booleans['output_hidden_states'] = kwargs['output_hidden_states'] if kwargs['output_hidden_states'] is not None else config.output_hidden_states
final_booleans['return_dict'] = kwargs['return_dict'] if kwargs['return_dict'] is not None else config.return_dict
if 'use_cache' in kwargs:
final_booleans['use_cache'] = kwargs['use_cache'] if kwargs['use_cache'] is not None else getattr(config, 'use_cache', None)
return final_booleans | Process the input booleans of each model.
Args:
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The boolean parameters
Returns:
A dictionary with the proper values for each boolean | github-repos |
def __init__(self, isbn):
super(Isbn, self).__init__()
self._isbn = isbn
if len(isbn) in (9, 12):
self.isbn = _isbn_cleanse(isbn, False)
else:
self.isbn = _isbn_cleanse(isbn) | Initialise a new ``Isbn`` object.
Args:
isbn (str): ISBN string | juraj-google-style |
def AddUserAccount(self, user_account, session_identifier=CURRENT_SESSION):
if (session_identifier not in self._user_accounts):
self._user_accounts[session_identifier] = {}
user_accounts = self._user_accounts[session_identifier]
if (user_account.identifier in user_accounts):
raise KeyError('User account: {0:s} already exists.'.format(user_account.identifier))
user_accounts[user_account.identifier] = user_account | Adds an user account.
Args:
user_account (UserAccountArtifact): user account artifact.
session_identifier (Optional[str])): session identifier, where
CURRENT_SESSION represents the active session.
Raises:
KeyError: if the user account already exists. | codesearchnet |
def get_file_type(variant_source):
file_type = 'unknown'
valid_vcf_suffixes = ('.vcf', '.vcf.gz')
if variant_source:
logger.debug("Check file type with file: {0}".format(variant_source))
if variant_source.endswith('.db'):
file_type = 'gemini'
logger.debug("File {0} is a gemini database".format(variant_source))
elif variant_source.endswith(valid_vcf_suffixes):
file_type = 'vcf'
logger.debug("File {0} is a vcf".format(variant_source))
else:
logger.debug("File is in a unknown format")
return file_type | Check what kind of file variant source is
Args:
variant_source (str): Path to variant source
Returns:
file_type (str): 'vcf', 'gemini' or 'unknown' | juraj-google-style |
def add_to_writer(self, writer: PdfFileWriter, start_recto: bool=True) -> None:
if self.is_html:
pdf = get_pdf_from_html(html=self.html, header_html=self.header_html, footer_html=self.footer_html, wkhtmltopdf_filename=self.wkhtmltopdf_filename, wkhtmltopdf_options=self.wkhtmltopdf_options)
append_memory_pdf_to_writer(pdf, writer, start_recto=start_recto)
elif self.is_filename:
if (start_recto and ((writer.getNumPages() % 2) != 0)):
writer.addBlankPage()
writer.appendPagesFromReader(PdfFileReader(open(self.filename, 'rb')))
else:
raise AssertionError("PdfPlan: shouldn't get here!") | Add the PDF described by this class to a PDF writer.
Args:
writer: a :class:`PyPDF2.PdfFileWriter`
start_recto: start a new right-hand page? | codesearchnet |
def depth_soil_density(self, value=None):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `depth_soil_density`'.format(value))
self._depth_soil_density = value | Corresponds to IDD Field `depth_soil_density`
Args:
value (float): value for IDD Field `depth_soil_density`
Unit: kg/m3
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | codesearchnet |
def submit_evaluation(self, variant_obj, user_obj, institute_obj, case_obj, link, criteria):
variant_specific = variant_obj['_id']
variant_id = variant_obj['variant_id']
user_id = user_obj['_id']
user_name = user_obj.get('name', user_obj['_id'])
institute_id = institute_obj['_id']
case_id = case_obj['_id']
evaluation_terms = [evluation_info['term'] for evluation_info in criteria]
classification = get_acmg(evaluation_terms)
evaluation_obj = build_evaluation(
variant_specific=variant_specific,
variant_id=variant_id,
user_id=user_id,
user_name=user_name,
institute_id=institute_id,
case_id=case_id,
classification=classification,
criteria=criteria
)
self._load_evaluation(evaluation_obj)
self.update_acmg(institute_obj, case_obj, user_obj, link, variant_obj, classification)
return classification | Submit an evaluation to the database
Get all the relevant information, build a evaluation_obj
Args:
variant_obj(dict)
user_obj(dict)
institute_obj(dict)
case_obj(dict)
link(str): variant url
criteria(list(dict)):
[
{
'term': str,
'comment': str,
'links': list(str)
},
.
.
] | juraj-google-style |
def WriteSerialized(cls, attribute_container):
json_dict = cls.WriteSerializedDict(attribute_container)
return json.dumps(json_dict) | Writes an attribute container to serialized form.
Args:
attribute_container (AttributeContainer): attribute container.
Returns:
str: A JSON string containing the serialized form. | juraj-google-style |
def _send_http_request(self, xml_request):
headers = {'Host': self._host, 'Content-Type': 'text/xml', 'Recipient': self._storage}
try:
self._connection.request('POST', self._selector_url, xml_request, headers)
response = self._connection.getresponse()
except (httplib.CannotSendRequest, httplib.BadStatusLine):
Debug.warn('\nRestarting socket, resending message!')
self._open_connection()
self._connection.request('POST', self._selector_url, xml_request, headers)
response = self._connection.getresponse()
data = response.read()
return data | Send a request via HTTP protocol.
Args:
xml_request -- A fully formed xml request string for the CPS.
Returns:
The raw xml response string. | codesearchnet |
def label_count(self, label_list_ids=None):
count = collections.defaultdict(int)
for utterance in self.utterances.values():
for (label_value, utt_count) in utterance.label_count(label_list_ids=label_list_ids).items():
count[label_value] += utt_count
return count | Return a dictionary containing the number of times, every label-value in this corpus is occurring.
Args:
label_list_ids (list): If not None, only labels from label-lists with an id contained in this list
are considered.
Returns:
dict: A dictionary containing the number of occurrences with the label-value as key. | codesearchnet |
def signature_to_callable(self, sig):
base_cls = self.ctx.convert.function_type
ret = sig.annotations.get('return', self.ctx.convert.unsolvable)
if not sig.kwonly_params and (self._detailed or sig.mandatory_param_count() == sig.maximum_param_count()):
args = [sig.annotations.get(name, self.ctx.convert.unsolvable) for name in sig.param_names]
params = {abstract_utils.ARGS: self.ctx.convert.merge_values(args), abstract_utils.RET: ret}
params.update(enumerate(args))
return abstract.CallableClass(base_cls, params, self.ctx)
else:
params = {abstract_utils.ARGS: self.ctx.convert.unsolvable, abstract_utils.RET: ret}
return abstract.ParameterizedClass(base_cls, params, self.ctx) | Converts a function.Signature object into a callable object.
Args:
sig: The signature to convert.
Returns:
An abstract.CallableClass representing the signature, or an
abstract.ParameterizedClass if the signature has a variable number of
arguments. | github-repos |
def sspro_summary(self):
summary = {}
records = ssbio.protein.sequence.utils.fasta.load_fasta_file(self.out_sspro)
for r in records:
seq_summary = {}
seq_summary['percent_H-sspro'] = (r.seq.count('H') / float(len(r)))
seq_summary['percent_E-sspro'] = (r.seq.count('E') / float(len(r)))
seq_summary['percent_C-sspro'] = (r.seq.count('C') / float(len(r)))
summary[r.id] = seq_summary
return summary | Parse the SSpro output file and return a summary of secondary structure composition.
The output file is just a FASTA formatted file, so you can get residue level
information by parsing it like a normal sequence file.
Returns:
dict: Percentage of:
H: helix
E: strand
C: the rest | codesearchnet |
def get_feature_variable_string(self, feature_key, variable_key, user_id, attributes=None):
variable_type = entities.Variable.Type.STRING
return self._get_feature_variable_for_type(feature_key, variable_key, variable_type, user_id, attributes) | Returns value for a certain string variable attached to a feature.
Args:
feature_key: Key of the feature whose variable's value is being accessed.
variable_key: Key of the variable whose value is to be accessed.
user_id: ID for user.
attributes: Dict representing user attributes.
Returns:
String value of the variable. None if:
- Feature key is invalid.
- Variable key is invalid.
- Mismatch with type of variable. | codesearchnet |
def claim(self, file_readers):
(prefix_to_reader,
unclaimed_readers) = self._find_strelka_files(file_readers)
prefix_by_patients = self._split_prefix_by_patient(prefix_to_reader)
self._validate_vcf_readers(prefix_by_patients)
vcf_readers = self._create_vcf_readers(prefix_to_reader)
return (unclaimed_readers, vcf_readers) | Recognizes and claims Strelka VCFs form the set of all input VCFs.
Each defined caller has a chance to evaluate and claim all the incoming
files as something that it can process.
Args:
file_readers: the collection of currently unclaimed files
Returns:
A tuple of unclaimed readers and StrelkaVcfReaders. | juraj-google-style |
def op_signature_def(op, key):
return build_signature_def(outputs={key: utils.build_tensor_info_from_op(op)}) | Creates a signature def with the output pointing to an op.
Note that op isn't strictly enforced to be an Op object, and may be a Tensor.
It is recommended to use the build_signature_def() function for Tensors.
Args:
op: An Op (or possibly Tensor).
key: Key to graph element in the SignatureDef outputs.
Returns:
A SignatureDef with a single output pointing to the op. | github-repos |
def add_object_to_path(self, obj, location):
location = self._handle_location(location)
location.append(obj.as_list_data())
results = [item for item in location.getchildren() if (item.findtext('id') == obj.id)][0]
return results | Add an object of type JSSContainerObject to location.
This method determines the correct list representation of an
object and adds it to "location". For example, add a Computer to
a ComputerGroup. The ComputerGroup will not have a child
Computers/Computer tag with subelements "name" and "id".
Args:
obj: A JSSContainerObject subclass.
location: Element or a string path argument to find()
Returns:
Element for the object just added. | codesearchnet |
def report(
vulnerabilities,
fileobj,
print_sanitised,
):
TZ_AGNOSTIC_FORMAT = "%Y-%m-%dT%H:%M:%SZ"
time_string = datetime.utcnow().strftime(TZ_AGNOSTIC_FORMAT)
machine_output = {
'generated_at': time_string,
'vulnerabilities': [
vuln.as_dict() for vuln in vulnerabilities
if print_sanitised or not isinstance(vuln, SanitisedVulnerability)
]
}
result = json.dumps(
machine_output,
indent=4
)
with fileobj:
fileobj.write(result) | Prints issues in JSON format.
Args:
vulnerabilities: list of vulnerabilities to report
fileobj: The output file object, which may be sys.stdout | juraj-google-style |
def consume(self, callback, queue):
self.consumers[queue] = callback
if self._client_ready.called:
return self.client.consume(callback, queue) | Register a new consumer.
This consumer will be configured for every protocol this factory
produces so it will be reconfigured on network failures. If a connection
is already active, the consumer will be added to it.
Args:
callback (callable): The callback to invoke when a message arrives.
queue (str): The name of the queue to consume from. | juraj-google-style |
def from_json(cls, data):
assert 'name' in data, 'Required keyword "name" is missing!'
assert 'data_type' in data, 'Required keyword "data_type" is missing!'
if cls._type_enumeration is None:
cls._type_enumeration = _DataTypeEnumeration(import_modules=False)
if data['data_type'] == 'GenericType':
assert 'base_unit' in data, \
'Keyword "base_unit" is missing and is required for GenericType.'
return cls._type_enumeration._GENERICTYPE(data['name'], data['base_unit'])
elif data['data_type'] in cls._type_enumeration._TYPES:
clss = cls._type_enumeration._TYPES[data['data_type']]
if data['data_type'] == data['name'].title().replace(' ', ''):
return clss()
else:
instance = clss()
instance._name = data['name']
return instance
else:
raise ValueError(
'Data Type {} could not be recognized'.format(data['data_type'])) | Create a data type from a dictionary.
Args:
data: Data as a dictionary.
{
"name": data type name of the data type as a string
"data_type": the class name of the data type as a string
"base_unit": the base unit of the data type
} | juraj-google-style |
def get_vocabulary(self, include_special_tokens=True):
if self.lookup_table.size() == 0:
vocab, indices = ([], [])
else:
keys, values = self.lookup_table.export()
vocab, indices = (values, keys) if self.invert else (keys, values)
vocab, indices = (self._tensor_vocab_to_numpy(vocab), indices.numpy())
lookup = collections.defaultdict(lambda: self.oov_token, zip(indices, vocab))
vocab = [lookup[x] for x in range(self.vocabulary_size())]
if self.mask_token is not None and self.output_mode == 'int':
vocab[0] = self.mask_token
if not include_special_tokens:
vocab = vocab[self._token_start_index():]
if self.vocabulary_dtype == 'string':
return [i.decode('utf-8') if isinstance(i, bytes) else i for i in vocab]
else:
return vocab | Returns the current vocabulary of the layer.
Args:
include_special_tokens: If `True`, the returned vocabulary
will include mask and OOV tokens,
and a term's index in the vocabulary
will equal the term's index when calling the layer.
If `False`, the returned vocabulary will not include
any mask or OOV tokens. | github-repos |
def occurs_in_type(v, type2):
pruned_type2 = prune(type2)
if (pruned_type2 == v):
return True
elif isinstance(pruned_type2, TypeOperator):
return occurs_in(v, pruned_type2.types)
return False | Checks whether a type variable occurs in a type expression.
Note: Must be called with v pre-pruned
Args:
v: The TypeVariable to be tested for
type2: The type in which to search
Returns:
True if v occurs in type2, otherwise False | codesearchnet |
def _GenerateSshKey(self, key_type, key_dest):
with tempfile.NamedTemporaryFile(prefix=key_type, delete=True) as temp:
temp_key = temp.name
command = ['ssh-keygen', '-t', key_type, '-f', temp_key, '-N', '', '-q']
try:
self.logger.info('Generating SSH key %s.', key_dest)
subprocess.check_call(command)
except subprocess.CalledProcessError:
self.logger.warning('Could not create SSH key %s.', key_dest)
return
shutil.move(temp_key, key_dest)
shutil.move(('%s.pub' % temp_key), ('%s.pub' % key_dest))
file_utils.SetPermissions(key_dest, mode=384)
file_utils.SetPermissions(('%s.pub' % key_dest), mode=420) | Generate a new SSH key.
Args:
key_type: string, the type of the SSH key.
key_dest: string, a file location to store the SSH key. | codesearchnet |
def assert_positive_definite(self, name='assert_positive_definite'):
with self._name_scope(name):
return self._assert_positive_definite() | Returns an `Op` that asserts this operator is positive definite.
Here, positive definite means that the quadratic form `x^H A x` has positive
real part for all nonzero `x`. Note that we do not require the operator to
be self-adjoint to be positive definite.
Args:
name: A name to give this `Op`.
Returns:
An `Assert` `Op`, that, when run, will raise an `InvalidArgumentError` if
the operator is not positive definite. | github-repos |
def createEditor(self, parent, option, index):
editor = BigIntSpinbox(parent)
try:
editor.setMinimum(self.minimum)
editor.setMaximum(self.maximum)
editor.setSingleStep(self.singleStep)
except TypeError as err:
pass
return editor | Returns the widget used to edit the item specified by index for editing. The parent widget and style option are used to control how the editor widget appears.
Args:
parent (QWidget): parent widget.
option (QStyleOptionViewItem): controls how editor widget appears.
index (QModelIndex): model data index. | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.