code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def from_corpus(cls, corpus):
ds = Corpus()
tracks = copy.deepcopy(list(corpus.tracks.values()))
track_mapping = ds.import_tracks(tracks)
issuers = copy.deepcopy(list(corpus.issuers.values()))
issuer_mapping = ds.import_issuers(issuers)
utterances = copy.deepcopy(list(corpus.utterances.values()))
for utterance in utterances:
utterance.track = track_mapping[utterance.track.idx]
if (utterance.issuer is not None):
utterance.issuer = issuer_mapping[utterance.issuer.idx]
ds.import_utterances(utterances)
subviews = copy.deepcopy(corpus.subviews)
for (subview_idx, subview) in subviews.items():
ds.import_subview(subview_idx, subview)
for (feat_container_idx, feature_container) in corpus.feature_containers.items():
ds.new_feature_container(feat_container_idx, feature_container.path)
return ds | Create a new modifiable corpus from any other CorpusView.
This for example can be used to create a independent modifiable corpus from a subview.
Args:
corpus (CorpusView): The corpus to create a copy from.
Returns:
Corpus: A new corpus with the same data as the given one. | codesearchnet |
def test_string(self, string: str) -> bool:
if self.input.startswith(string, self.offset):
self.offset += len(string)
return True
return False | If `string` comes next, return ``True`` and advance offset.
Args:
string: string to test | juraj-google-style |
def allocate(self, size, max_time_to_block_ms):
with self._lock:
if self._free:
return self._free.popleft()
elif self._poolable_size == 0:
return io.BytesIO()
else:
buf = None
more_memory = threading.Condition(self._lock)
self._waiters.append(more_memory)
while buf is None:
start_wait = time.time()
more_memory.wait(max_time_to_block_ms / 1000.0)
end_wait = time.time()
if self.wait_time:
self.wait_time.record(end_wait - start_wait)
if self._free:
buf = self._free.popleft()
else:
self._waiters.remove(more_memory)
raise Errors.KafkaTimeoutError(
"Failed to allocate memory within the configured"
" max blocking time")
removed = self._waiters.popleft()
assert removed is more_memory, 'Wrong condition'
if self._free and self._waiters:
self._waiters[0].notify()
return buf | Allocate a buffer of the given size. This method blocks if there is not
enough memory and the buffer pool is configured with blocking mode.
Arguments:
size (int): The buffer size to allocate in bytes [ignored]
max_time_to_block_ms (int): The maximum time in milliseconds to
block for buffer memory to be available
Returns:
io.BytesIO | juraj-google-style |
def sort_dict(d, desc=True):
sort = sorted(d.items(), key=lambda x: x[1], reverse=desc)
return OrderedDict(sort) | Sort an ordered dictionary by value, descending.
Args:
d (OrderedDict): An ordered dictionary.
desc (bool): If true, sort desc.
Returns:
OrderedDict: The sorted dictionary. | juraj-google-style |
async def bootstrap(self, addrs):
log.debug('Attempting to bootstrap node with %i initial contacts', len(addrs))
cos = list(map(self.bootstrap_node, addrs))
gathered = (await asyncio.gather(*cos))
nodes = [node for node in gathered if (node is not None)]
spider = NodeSpiderCrawl(self.protocol, self.node, nodes, self.ksize, self.alpha)
return (await spider.find()) | Bootstrap the server by connecting to other known nodes in the network.
Args:
addrs: A `list` of (ip, port) `tuple` pairs. Note that only IP
addresses are acceptable - hostnames will cause an error. | codesearchnet |
def _has_requirements(self):
self._closed()
return any([self.has_workflow_step, self.has_scatter_requirement, self.has_multiple_inputs]) | Returns True if the workflow needs a requirements section.
Returns:
bool: True if the workflow needs a requirements section, False
otherwise. | codesearchnet |
def evaluate(nodes, x_val, y_val):
(_, num_nodes) = nodes.shape
if (num_nodes == 1):
raise ValueError('A point cannot be implicitized')
elif (num_nodes == 2):
return (((nodes[(0, 0)] - x_val) * (nodes[(1, 1)] - y_val)) - ((nodes[(0, 1)] - x_val) * (nodes[(1, 0)] - y_val)))
elif (num_nodes == 3):
(val_a, val_b, val_c) = (nodes[(0, :)] - x_val)
val_b *= 2
(val_d, val_e, val_f) = (nodes[(1, :)] - y_val)
val_e *= 2
sub1 = ((val_b * val_f) - (val_c * val_e))
sub2 = ((val_a * val_f) - (val_c * val_d))
sub_det_a = (((- val_e) * sub1) + (val_f * sub2))
sub_det_d = ((val_b * sub1) - (val_c * sub2))
return ((val_a * sub_det_a) + (val_d * sub_det_d))
elif (num_nodes == 4):
return _evaluate3(nodes, x_val, y_val)
else:
raise _helpers.UnsupportedDegree((num_nodes - 1), supported=(1, 2, 3)) | r"""Evaluate the implicitized bivariate polynomial containing the curve.
Assumes `algebraic curve`_ containing :math:`B(s, t)` is given by
:math:`f(x, y) = 0`. This function evaluates :math:`f(x, y)`.
.. note::
This assumes, but doesn't check, that ``nodes`` has 2 rows.
.. note::
This assumes, but doesn't check, that ``nodes`` is not degree-elevated.
If it were degree-elevated, then the Sylvester matrix will always
have zero determinant.
Args:
nodes (numpy.ndarray): ``2 x N`` array of nodes in a curve.
x_val (float): ``x``-coordinate for evaluation.
y_val (float): ``y``-coordinate for evaluation.
Returns:
float: The computed value of :math:`f(x, y)`.
Raises:
ValueError: If the curve is a point.
.UnsupportedDegree: If the degree is not 1, 2 or 3. | codesearchnet |
def __init__(self, max_tries=5, max_wait=10, *args, **kwargs):
self._max_tries = max_tries
if self._max_tries < 1:
raise TypeError('max_tries must be a positive integer')
self._max_wait = max_wait
if self._max_wait < 1:
raise TypeError('max_wait must be >= 1')
super(NetworkType, self).__init__(*args, **kwargs) | Validation type for external resources
Attempts to connect to the resource, backing off on failure.
Args:
max_tries: Max number of times to attempt a connection before failing
max_wait: Max number of seconds to wait between connection attempts. This can be
used to cap the exponential backoff. | juraj-google-style |
def _stream_output(process):
exit_code = None
while exit_code is None:
stdout = process.stdout.readline().decode("utf-8")
sys.stdout.write(stdout)
exit_code = process.poll()
if exit_code != 0:
raise RuntimeError("Process exited with code: %s" % exit_code)
return exit_code | Stream the output of a process to stdout
This function takes an existing process that will be polled for output. Only stdout
will be polled and sent to sys.stdout.
Args:
process(subprocess.Popen): a process that has been started with
stdout=PIPE and stderr=STDOUT
Returns (int): process exit code | juraj-google-style |
def put(self, obj):
self._queue.put(obj, block=True, timeout=self._queue_put_timeout)
if (obj is _SHUTDOWNREQUEST):
return | Put request into queue.
Args:
obj (cheroot.server.HTTPConnection): HTTP connection
waiting to be processed | codesearchnet |
def concat(self, axis, other_blocks):
if (type(other_blocks) is list):
other_blocks = [blocks.partitions for blocks in other_blocks]
return self.__constructor__(np.concatenate(([self.partitions] + other_blocks), axis=axis))
else:
return self.__constructor__(np.append(self.partitions, other_blocks.partitions, axis=axis)) | Concatenate the blocks with another set of blocks.
Note: Assumes that the blocks are already the same shape on the
dimension being concatenated. A ValueError will be thrown if this
condition is not met.
Args:
axis: The axis to concatenate to.
other_blocks: the other blocks to be concatenated. This is a
BaseFrameManager object.
Returns:
A new BaseFrameManager object, the type of object that called this. | codesearchnet |
def post_transform(self, args):
args = (args[1:] if (args and (args[0] == 'az')) else args)
post_transform_commands = []
for (i, arg) in enumerate(args):
if (is_alias_command(['create'], args) and (i > 0) and (args[(i - 1)] in ['-c', '--command'])):
post_transform_commands.append(arg)
else:
post_transform_commands.append(os.path.expandvars(arg))
AliasManager.write_alias_config_hash(self.alias_config_hash)
AliasManager.write_collided_alias(self.collided_alias)
return post_transform_commands | Inject environment variables, and write hash to alias hash file after transforming alias to commands.
Args:
args: A list of args to post-transform. | codesearchnet |
def as_dict(value):
return {field.name: getattr(value, field.name) for field in value._tf_extension_type_fields()} | Extracts the attributes of `value` and their values to a dict format.
Unlike `dataclasses.asdict()`, this function is not recursive and in case of
nested `ExtensionType` objects, only the top level object is converted to a
dict.
Args:
value: An `ExtensionType` object.
Returns:
A dict that contains the attributes of `value` and their values. | github-repos |
def load_from_dict(self, conf_dict=None):
self.set_to_default()
self._update_dict(self._config, conf_dict)
self._update_python_paths() | Load the configuration from a dictionary.
Args:
conf_dict (dict): Dictionary with the configuration. | codesearchnet |
def recipe_sa_report(config, auth_sa, auth_bq, dataset, table, report, is_incremental_load):
sa(config, {'description': 'Create a dataset for bigquery tables.', 'auth': auth_sa, 'body': report, 'out': {'bigquery': {'auth': auth_bq, 'dataset': dataset, 'table': table, 'is_incremental_load': is_incremental_load, 'header': True}}}) | Move SA360 report to BigQuery.
Args:
auth_sa (authentication) - Credentials used for writing data.
auth_bq (authentication) - Authorization used for writing data.
dataset (string) - Existing BigQuery dataset.
table (string) - Table to create from this report.
report (json) - Body part of report request API call.
is_incremental_load (boolean) - Clear data in destination table during this report's time period, then append report data to destination table. | github-repos |
def AddArguments(cls, argument_group):
argument_group.add_argument(
'-o', '--output_format', '--output-format', metavar='FORMAT',
dest='output_format', default='dynamic', help=(
'The output format. Use "-o list" to see a list of available '
'output formats.'))
argument_group.add_argument(
'-w', '--write', metavar='OUTPUT_FILE', dest='write',
help='Output filename.')
arguments = sys.argv[1:]
argument_index = 0
if '-o' in arguments:
argument_index = arguments.index('-o') + 1
elif '--output_format' in arguments:
argument_index = arguments.index('--output_format') + 1
elif '--output-format' in arguments:
argument_index = arguments.index('--output-format') + 1
if 0 < argument_index < len(arguments):
names = [name.strip() for name in arguments[argument_index].split(',')]
else:
names = ['dynamic']
if names and names != ['list']:
manager.ArgumentHelperManager.AddCommandLineArguments(
argument_group, category='output', names=names) | Adds command line arguments to an argument group.
This function takes an argument parser or an argument group object and adds
to it all the command line arguments this helper supports.
Args:
argument_group (argparse._ArgumentGroup|argparse.ArgumentParser):
argparse group. | juraj-google-style |
def get_countries(is_legacy_xml=False):
countries = {}
if ((sys.platform == 'win32') and getattr(sys, 'frozen', False)):
data_dir = path.dirname(sys.executable)
else:
data_dir = path.dirname(__file__)
if is_legacy_xml:
log.debug('Opening country code legacy XML: {0}'.format((str(data_dir) + '/data/iso_3166-1_list_en.xml')))
f = io.open((str(data_dir) + '/data/iso_3166-1_list_en.xml'), 'r', encoding='ISO-8859-1')
data = f.read()
if (not data):
return {}
dom = parseString(data)
entries = dom.getElementsByTagName('ISO_3166-1_Entry')
for entry in entries:
code = entry.getElementsByTagName('ISO_3166-1_Alpha-2_Code_element')[0].firstChild.data
name = entry.getElementsByTagName('ISO_3166-1_Country_name')[0].firstChild.data
countries[code] = name.title()
else:
log.debug('Opening country code CSV: {0}'.format((str(data_dir) + '/data/iso_3166-1_list_en.xml')))
f = io.open((str(data_dir) + '/data/iso_3166-1.csv'), 'r', encoding='utf-8')
csv_reader = csv.reader(f, delimiter=',', quotechar='"')
for row in csv_reader:
code = row[0]
name = row[1]
countries[code] = name
return countries | The function to generate a dictionary containing ISO_3166-1 country codes
to names.
Args:
is_legacy_xml (:obj:`bool`): Whether to use the older country code
list (iso_3166-1_list_en.xml).
Returns:
dict: A mapping of country codes as the keys to the country names as
the values. | codesearchnet |
def _on_connection_close(self, connection, reply_code_or_reason, reply_text=None):
self._channel = None
if isinstance(reply_code_or_reason, pika_errs.ConnectionClosed):
reply_code = reply_code_or_reason.reply_code
reply_text = reply_code_or_reason.reply_text
elif isinstance(reply_code_or_reason, int):
reply_code = reply_code_or_reason
else:
reply_code = 0
reply_text = str(reply_code_or_reason)
if reply_code == 200:
_log.info("Server connection closed (%s), shutting down", reply_text)
connection.ioloop.stop()
else:
_log.warning(
"Connection to %s closed unexpectedly (%d): %s",
connection.params.host,
reply_code,
reply_text,
)
self.call_later(1, self.reconnect) | Callback invoked when a previously-opened connection is closed.
Args:
connection (pika.connection.SelectConnection): The connection that
was just closed.
reply_code_or_reason (int|Exception): The reason why the channel
was closed. In older versions of pika, this is the AMQP code.
reply_text (str): The human-readable reason the connection was
closed (only in older versions of pika) | juraj-google-style |
def Evaluate(self, client_obj):
if self.match_mode == ForemanClientRuleSet.MatchMode.MATCH_ALL:
quantifier = all
elif self.match_mode == ForemanClientRuleSet.MatchMode.MATCH_ANY:
quantifier = any
else:
raise ValueError("Unexpected match mode value: %s" % self.match_mode)
return quantifier(rule.Evaluate(client_obj) for rule in self.rules) | Evaluates rules held in the rule set.
Args:
client_obj: Either an aff4 client object or a client_info dict as returned
by ReadFullInfoClient if the relational db is used for reading.
Returns:
A bool value of the evaluation.
Raises:
ValueError: The match mode is of unknown value. | juraj-google-style |
def writelines(self, lines, sep=b'\n', echo=None):
self.write(sep.join(lines + [b'']), echo) | Write a list of byte sequences to the channel and terminate them
with a separator (line feed).
Args:
lines(list of bytes): The lines to send.
sep(bytes): The separator to use after each line.
echo(bool): Whether to echo the written data to stdout.
Raises:
EOFError: If the channel was closed before all data was sent. | juraj-google-style |
def slice_vec(expr, start, stop):
weld_obj = WeldObject(encoder_, decoder_)
expr_var = weld_obj.update(expr)
if isinstance(expr, WeldObject):
expr_var = expr.obj_id
weld_obj.dependencies[expr_var] = expr
weld_template = '\n slice(%(expr)s, %(start)sL, %(stop)sL)\n '
weld_obj.weld_code = (weld_template % {'expr': expr_var, 'start': start, 'stop': stop})
return weld_obj | Slices the vector.
Args:
expr (WeldObject)
start (Long)
stop (Long) | codesearchnet |
def _radix_int_handler_factory(radix_indicators, charset, parse_func):
def assertion(c, ctx):
return ((c in radix_indicators) and (((len(ctx.value) == 1) and (ctx.value[0] == _ZERO)) or ((len(ctx.value) == 2) and (ctx.value[0] == _MINUS) and (ctx.value[1] == _ZERO))) and (ctx.ion_type == IonType.INT))
return _numeric_handler_factory(charset, (lambda prev, c, ctx, trans: _illegal_character(c, ctx)), assertion, radix_indicators, parse_func, illegal_at_end=radix_indicators) | Generates a handler co-routine which tokenizes a integer of a particular radix.
Args:
radix_indicators (sequence): The set of ordinals of characters that indicate the radix of this int.
charset (sequence): Set of ordinals of legal characters for this radix.
parse_func (callable): Called upon ending the numeric value. Accepts the current token value and returns a
thunk that lazily parses the token. | codesearchnet |
def get_content_type(content_type):
m = email.message.Message()
m['Content-Type'] = content_type
return m.get_content_type() | Extract the MIME type value from a content type string.
Removes any subtype and parameter values that may be present in the string.
Args:
content_type: str
String with content type and optional subtype and parameter fields.
Returns:
str: String with only content type
Example:
::
Input: multipart/form-data; boundary=aBoundaryString
Returns: multipart/form-data | juraj-google-style |
def GetAdGroups(self, client_customer_id, campaign_id):
self.client.SetClientCustomerId(client_customer_id)
selector = {
'fields': ['Id', 'Name', 'Status'],
'predicates': [
{
'field': 'CampaignId',
'operator': 'EQUALS',
'values': [campaign_id]
},
{
'field': 'Status',
'operator': 'NOT_EQUALS',
'values': ['REMOVED']
}
]
}
adgroups = self.client.GetService('AdGroupService').get(selector)
if int(adgroups['totalNumEntries']) > 0:
return adgroups['entries']
else:
return None | Retrieves all AdGroups for the given campaign that haven't been removed.
Args:
client_customer_id: str Client Customer Id being used in API request.
campaign_id: str id of the campaign for which to fetch ad groups.
Returns:
list List of AdGroup data objects. | juraj-google-style |
def available_partitions_for_topic(self, topic):
if topic not in self._partitions:
return None
return set([partition for partition, metadata
in six.iteritems(self._partitions[topic])
if metadata.leader != -1]) | Return set of partitions with known leaders
Arguments:
topic (str): topic to check for partitions
Returns:
set: {partition (int), ...}
None if topic not found. | juraj-google-style |
def copy(self, dest):
if os.path.isfile(self.path):
shutil.copy2(self.path, dest)
else:
shutil.copytree(self.path, dest, symlinks=False, ignore=None) | Copy item to the given `dest` path.
Args:
* dest: destination path to copy. | juraj-google-style |
def get_voigt_dict(rank):
vdict = {}
for ind in itertools.product(*([range(3)] * rank)):
v_ind = ind[:(rank % 2)]
for j in range((rank
pos = ((rank % 2) + (2 * j))
v_ind += (reverse_voigt_map[ind[pos:(pos + 2)]],)
vdict[ind] = v_ind
return vdict | Returns a dictionary that maps indices in the tensor to those
in a voigt representation based on input rank
Args:
rank (int): Tensor rank to generate the voigt map | codesearchnet |
def search_by_age(cls, *, limit=100, page=1, accounts=None, locations=None, age=720, properties=None, include_disabled=False):
qry = cls.search(limit=limit, page=page, accounts=accounts, locations=locations, properties=properties, include_disabled=include_disabled, return_query=True)
age_alias = aliased(ResourceProperty)
qry = qry.join(age_alias, (Resource.resource_id == age_alias.resource_id)).filter((age_alias.name == 'launch_date'), (cast(func.JSON_UNQUOTE(age_alias.value), DATETIME) < (datetime.now() - timedelta(days=age))))
total = qry.count()
qry = qry.limit(limit)
qry = qry.offset((((page - 1) * limit) if (page > 1) else 0))
return (total, [cls(x) for x in qry.all()]) | Search for resources based on the provided filters
Args:
limit (`int`): Number of results to return. Default: 100
page (`int`): Pagination offset for results. Default: 1
accounts (`list` of `int`): A list of account id's to limit the returned resources to
locations (`list` of `str`): A list of locations as strings to limit the search for
age (`int`): Age of instances older than `age` days to return
properties (`dict`): A `dict` containing property name and value pairs. Values can be either a str or a list
of strings, in which case a boolean OR search is performed on the values
include_disabled (`bool`): Include resources from disabled accounts. Default: False
Returns:
`list` of `Resource` | codesearchnet |
def handle_new_task(self, task_name, record):
record.msg = ColorFormatter.colored('default', START_TASK_MSG)
record.task = task_name
self.tasks[task_name] = Task(name=task_name, maxlen=self.buffer_size)
if self.should_show_by_depth():
self.pretty_emit(record, is_header=True) | Do everything needed when a task is starting
Params:
task_name (str): name of the task that is starting
record (logging.LogRecord): log record with all the info
Returns:
None | codesearchnet |
def add_prefix(self, name, *args, **kwargs):
if os.path.exists(self.join(name)):
raise LagoPrefixAlreadyExistsError(name, self.path)
self.prefixes[name] = self.prefix_class(self.join(name), *args, **kwargs)
self.prefixes[name].initialize()
if (self.current is None):
self.set_current(name)
return self.prefixes[name] | Adds a new prefix to the workdir.
Args:
name(str): Name of the new prefix to add
*args: args to pass along to the prefix constructor
*kwargs: kwargs to pass along to the prefix constructor
Returns:
The newly created prefix
Raises:
LagoPrefixAlreadyExistsError: if prefix name already exists in the
workdir | codesearchnet |
def set_all_ylims(self, ylim, dy, yscale, fontsize=None):
self._set_all_lims('y', ylim, dy, yscale, fontsize)
return | Set limits and ticks for y axis for whole figure.
This will set y axis limits and tick marks for the entire figure.
It can be overridden in the SinglePlot class.
Args:
ylim (len-2 list of floats): The limits for the axis.
dy (float): Amount to increment by between the limits.
yscale (str): Scale of the axis. Either `log` or `lin`.
fontsize (int, optional): Set fontsize for y axis tick marks.
Default is None. | codesearchnet |
def filter_params(self, fn, override=None):
override = override or {}
result = {}
for name, value in self.target_params.items():
if has_arg(fn, name):
result.update({name: value})
result.update(override)
return result | Filters `target_params` and return those in `fn`'s arguments.
Args:
fn : arbitrary function
override: dict, values to override target_params
Returns:
result : dict, dictionary containing variables
in both target_params and fn's arguments. | juraj-google-style |
def page_format(self, topmargin, bottommargin):
tL = topmargin%256
tH = topmargin/256
BL = bottommargin%256
BH = topmargin/256
if (tL+tH*256) < (BL + BH*256):
self.send(chr(27)+'('+'c'+chr(4)+chr(0)+chr(tL)+chr(tH)+chr(BL)+chr(BH))
else:
raise RuntimeError('The top margin must be less than the bottom margin') | Specify settings for top and bottom margins. Physically printable area depends on media.
Args:
topmargin: the top margin, in dots. The top margin must be less than the bottom margin.
bottommargin: the bottom margin, in dots. The bottom margin must be less than the top margin.
Returns:
None
Raises:
RuntimeError: Top margin must be less than the bottom margin. | juraj-google-style |
def blocking_save(self, query_dict=None, meta=None, index_fields=None):
query_dict = (query_dict or {})
for query in query_dict:
self.setattr(query, query_dict[query])
self.save(meta=meta, index_fields=index_fields)
while (not self.objects.filter(key=self.key, **query_dict).count()):
time.sleep(0.3)
return self | Saves object to DB. Waits till the backend properly indexes the new object.
Args:
query_dict(dict) : contains keys - values of the model fields
meta (dict): JSON serializable meta data for logging of save operation.
{'lorem': 'ipsum', 'dolar': 5}
index_fields (list): Tuple list for indexing keys in riak (with 'bin' or 'int').
bin is used for string fields, int is used for integer fields.
[('lorem','bin'),('dolar','int')]
Returns:
Model instance. | codesearchnet |
def add_alias(self, alias, index):
if (index >= len(self._datasets)):
raise DataInvalidIndex('A dataset with index {} does not exist'.format(index))
self._aliases[alias] = index | Add an alias pointing to the specified index.
Args:
alias (str): The alias that should point to the given index.
index (int): The index of the dataset for which an alias should be added.
Raises:
DataInvalidIndex: If the index does not represent a valid dataset. | codesearchnet |
def write_alias_config_hash(alias_config_hash='', empty_hash=False):
with open(GLOBAL_ALIAS_HASH_PATH, 'w') as alias_config_hash_file:
alias_config_hash_file.write(('' if empty_hash else alias_config_hash)) | Write self.alias_config_hash to the alias hash file.
Args:
empty_hash: True if we want to write an empty string into the file. Empty string in the alias hash file
means that we have to perform a full load of the command table in the next run. | codesearchnet |
def Current():
if os.name == 'nt':
return OperatingSystem.WINDOWS
elif 'linux' in sys.platform:
return OperatingSystem.LINUX
elif 'darwin' in sys.platform:
return OperatingSystem.MACOSX
elif 'cygwin' in sys.platform:
return OperatingSystem.CYGWIN
elif 'msys' in sys.platform:
return OperatingSystem.MSYS
return None | Determines the current operating system.
Returns:
OperatingSystemTuple, One of the OperatingSystem constants or None if it
cannot be determined. | github-repos |
def _create_query(node, context):
visited_nodes = [node]
output_columns = _get_output_columns(visited_nodes, context)
filters = _get_filters(visited_nodes, context)
selectable = sql_context_helpers.get_node_selectable(node, context)
query = select(output_columns).select_from(selectable).where(and_(*filters))
return query | Create a query from a SqlNode.
Args:
node: SqlNode, the current node.
context: CompilationContext, global compilation state and metadata.
Returns:
Selectable, selectable of the generated query. | codesearchnet |
def access(self, path, mode, dir_fd=None, follow_symlinks=None):
if ((follow_symlinks is not None) and (sys.version_info < (3, 3))):
raise TypeError("access() got an unexpected keyword argument 'follow_symlinks'")
path = self._path_with_dir_fd(path, self.access, dir_fd)
try:
stat_result = self.stat(path, follow_symlinks=follow_symlinks)
except OSError as os_error:
if (os_error.errno == errno.ENOENT):
return False
raise
if is_root():
mode &= (~ os.W_OK)
return ((mode & ((stat_result.st_mode >> 6) & 7)) == mode) | Check if a file exists and has the specified permissions.
Args:
path: (str) Path to the file.
mode: (int) Permissions represented as a bitwise-OR combination of
os.F_OK, os.R_OK, os.W_OK, and os.X_OK.
dir_fd: If not `None`, the file descriptor of a directory, with
`path` being relative to this directory.
New in Python 3.3.
follow_symlinks: (bool) If `False` and `path` points to a symlink,
the link itself is queried instead of the linked object.
New in Python 3.3.
Returns:
bool, `True` if file is accessible, `False` otherwise. | codesearchnet |
def to_number(result_type, value, default=None, minimum=None, maximum=None):
try:
return capped(result_type(value), minimum, maximum)
except (TypeError, ValueError):
return default | Cast `value` to numeric `result_type` if possible
Args:
result_type (type): Numerical type to convert to (one of: int, float, ...)
value (str | unicode): Value to convert
default (result_type.__class__ | None): Default to use `value` can't be turned into an int
minimum (result_type.__class__ | None): If specified, result can't be below this minimum
maximum (result_type.__class__ | None): If specified, result can't be above this maximum
Returns:
Corresponding numeric value | codesearchnet |
def op(name, data, display_name=None, description=None, collections=None):
import tensorflow.compat.v1 as tf
if (display_name is None):
display_name = name
summary_metadata = metadata.create_summary_metadata(display_name=display_name, description=description)
with tf.name_scope(name):
with tf.control_dependencies([tf.assert_scalar(data)]):
return tf.summary.tensor_summary(name='scalar_summary', tensor=tf.cast(data, tf.float32), collections=collections, summary_metadata=summary_metadata) | Create a legacy scalar summary op.
Arguments:
name: A unique name for the generated summary node.
data: A real numeric rank-0 `Tensor`. Must have `dtype` castable
to `float32`.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A TensorFlow summary op. | codesearchnet |
def _copy(src, dst, src_is_storage, dst_is_storage):
if src_is_storage and dst_is_storage:
system_src = get_instance(src)
system_dst = get_instance(dst)
if system_src is system_dst:
if system_src.relpath(src) == system_dst.relpath(dst):
raise same_file_error(
"'%s' and '%s' are the same file" % (src, dst))
try:
return system_dst.copy(src, dst)
except (UnsupportedOperation, ObjectException):
pass
for caller, called, method in (
(system_dst, system_src, 'copy_from_%s'),
(system_src, system_dst, 'copy_to_%s')):
if hasattr(caller, method % called.storage):
try:
return getattr(caller, method % called.storage)(
src, dst, called)
except (UnsupportedOperation, ObjectException):
continue
with cos_open(src, 'rb') as fsrc:
with cos_open(dst, 'wb') as fdst:
for stream in (fsrc, fdst):
try:
buffer_size = getattr(stream, '_buffer_size')
break
except AttributeError:
continue
else:
buffer_size = COPY_BUFSIZE
copyfileobj(fsrc, fdst, buffer_size) | Copies file from source to destination
Args:
src (str or file-like object): Source file.
dst (str or file-like object): Destination file.
src_is_storage (bool): Source is storage.
dst_is_storage (bool): Destination is storage. | juraj-google-style |
def node_inputs(self, node_name, is_control=False, device_name=None):
if not self._debug_graphs:
raise LookupError('Node inputs are not loaded from partition graphs yet.')
device_name = self._infer_device_name(device_name, node_name)
if is_control:
return self._debug_graphs[device_name].node_ctrl_inputs[node_name]
else:
return self._debug_graphs[device_name].node_inputs[node_name] | Get the inputs of given node according to partition graphs.
Args:
node_name: Name of the node.
is_control: (`bool`) Whether control inputs, rather than non-control
inputs, are to be returned.
device_name: (`str`) name of the device. If there is only one device or if
node_name exists on only one device, this argument is optional.
Returns:
(`list` of `str`) inputs to the node, as a list of node names.
Raises:
LookupError: If node inputs and control inputs have not been loaded
from partition graphs yet. | github-repos |
def set_doc_ids(self, doc_ids):
if isinstance(doc_ids, list):
self.set_documents(dict.fromkeys(doc_ids))
else:
self.set_documents({doc_ids: None}) | Build xml documents from a list of document ids.
Args:
doc_ids -- A document id or a lost of those. | codesearchnet |
def from_file(cls, weafile, timestep=1, is_leap_year=False):
assert os.path.isfile(weafile), 'Failed to find {}'.format(weafile)
location = Location()
with open(weafile, readmode) as weaf:
first_line = weaf.readline()
assert first_line.startswith('place'), \
'Failed to find place in header. ' \
'{} is not a valid wea file.'.format(weafile)
location.city = ' '.join(first_line.split()[1:])
location.latitude = float(weaf.readline().split()[-1])
location.longitude = -float(weaf.readline().split()[-1])
location.time_zone = -int(weaf.readline().split()[-1]) / 15
location.elevation = float(weaf.readline().split()[-1])
weaf.readline()
direct_normal_irradiance = []
diffuse_horizontal_irradiance = []
for line in weaf:
dirn, difh = [int(v) for v in line.split()[-2:]]
direct_normal_irradiance.append(dirn)
diffuse_horizontal_irradiance.append(difh)
return cls.from_values(location, direct_normal_irradiance,
diffuse_horizontal_irradiance, timestep, is_leap_year) | Create wea object from a wea file.
Args:
weafile:Full path to wea file.
timestep: An optional integer to set the number of time steps per hour.
Default is 1 for one value per hour. If the wea file has a time step
smaller than an hour adjust this input accordingly.
is_leap_year: A boolean to indicate if values are representing a leap year.
Default is False. | juraj-google-style |
def get_extana_led(self, cached=True):
if cached and self.led_state is not None:
return self.led_state
extana_led = self.get_characteristic_handle_from_uuid(UUID_EXTANA_LED)
if extana_led is None:
logger.warn('Failed to find handle for ExtAna LED')
return None
rgb = self.dongle._read_attribute(self.conn_handle, extana_led, israw=True)
if rgb is None:
return rgb
return list(map(lambda x: int(x * (LED_MAX / INT_LED_MAX)), struct.unpack('<HHH', rgb))) | Returns the current (R, G, B) colour of the SK8-ExtAna LED.
Args:
cached (bool): if True, returns the locally cached state of the LED (based
on the last call to :meth:`set_extana_led`). Otherwise query the device
for the current state.
Returns:
a 3-tuple (r, g, b) (all unsigned integers) in the range 0-255, or `None` on error. | juraj-google-style |
def depth_august_average_ground_temperature(self, value=None):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `depth_august_average_ground_temperature`'.format(value))
self._depth_august_average_ground_temperature = value | Corresponds to IDD Field `depth_august_average_ground_temperature`
Args:
value (float): value for IDD Field `depth_august_average_ground_temperature`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def split(self, amount):
split_objs = list(self.all())
if not split_objs:
raise NoSplitsFoundForRecurringCost()
portions = [split_obj.portion for split_obj in split_objs]
split_amounts = ratio_split(amount, portions)
return [
(split_objs[i], split_amount)
for i, split_amount
in enumerate(split_amounts)
] | Split the value given by amount according to the RecurringCostSplit's portions
Args:
amount (Decimal):
Returns:
list[(RecurringCostSplit, Decimal)]: A list with elements in the form (RecurringCostSplit, Decimal) | juraj-google-style |
def process_action(resource, action, action_issuer='unknown'):
from cinq_collector_aws import AWSRegionCollector
func_action = action_mapper[resource.resource_type][action]
extra_info = {}
action_status = ActionStatus.UNKNOWN
if func_action:
if (action_mapper[resource.resource_type]['service_name'] == 'lambda'):
client = get_aws_session(AWSAccount.get(dbconfig.get('rds_collector_account', AWSRegionCollector.ns, ''))).client('lambda', dbconfig.get('rds_collector_region', AWSRegionCollector.ns, ''))
else:
client = get_aws_session(AWSAccount(resource.account)).client(action_mapper[resource.resource_type]['service_name'], region_name=resource.location)
try:
logger.info(f'Trying to {action} resource {resource.id} for account {resource.account.account_name} / region {resource.location}')
(action_status, extra_info) = func_action(client, resource)
Enforcement.create(resource.account.account_id, resource.id, action, datetime.now(), extra_info)
except Exception as ex:
action_status = ActionStatus.FAILED
logger.exception('Failed to apply action {} to {}: {}'.format(action, resource.id, ex))
finally:
auditlog(event='{}.{}.{}.{}'.format(action_issuer, resource.resource_type, action, action_status), actor=action_issuer, data={'resource_id': resource.id, 'account_name': resource.account.account_name, 'location': resource.location, 'info': extra_info})
return action_status
else:
logger.error('Failed to apply action {} to {}: Not supported'.format(action, resource.id))
return ActionStatus.FAILED | Process an audit action for a resource, if possible
Args:
resource (:obj:`Resource`): A resource object to perform the action on
action (`str`): Type of action to perform (`kill` or `stop`)
action_issuer (`str`): The issuer of the action
Returns:
`ActionStatus` | codesearchnet |
def accept_confirm(self, text=None, wait=None):
with self.driver.accept_modal("confirm", text=text, wait=wait):
yield | Execute the wrapped code, accepting a confirm.
Args:
text (str | RegexObject, optional): Text to match against the text in the modal.
wait (int | float, optional): Maximum time to wait for the modal to appear after
executing the wrapped code.
Raises:
ModalNotFound: If a modal dialog hasn't been found. | juraj-google-style |
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = utils.BytearrayStream()
if self._unique_identifier:
self._unique_identifier.write(local_stream, kmip_version=kmip_version)
if self._cryptographic_parameters:
self._cryptographic_parameters.write(local_stream, kmip_version=kmip_version)
if self._data:
self._data.write(local_stream, kmip_version=kmip_version)
else:
raise ValueError('invalid payload missing the data attribute')
if self._iv_counter_nonce:
self._iv_counter_nonce.write(local_stream, kmip_version=kmip_version)
self.length = local_stream.length()
super(DecryptRequestPayload, self).write(output_stream, kmip_version=kmip_version)
output_stream.write(local_stream.buffer) | Write the data encoding the Decrypt request payload to a stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
Raises:
ValueError: Raised if the data attribute is not defined. | codesearchnet |
def send_put(self, mri, attribute_name, value):
q = Queue()
request = Put(
path=[mri, attribute_name, "value"],
value=value)
request.set_callback(q.put)
IOLoopHelper.call(self._send_request, request)
response = q.get()
if isinstance(response, Error):
raise response.message
else:
return response.value | Abstract method to dispatch a Put to the server
Args:
mri (str): The mri of the Block
attribute_name (str): The name of the Attribute within the Block
value: The value to put | juraj-google-style |
def go_in(self, vertex):
if self.vertex_in:
self.vertex_in.edges_in.remove(self)
self.vertex_in = vertex
vertex.edges_in.add(self) | Tell the edge to go into this vertex.
Args:
vertex (Vertex): vertex to go into. | codesearchnet |
def make_selector(value):
if is_callable(value):
return value
if is_string(value):
return a_(value)
raise ValueError("Unable to create callable selector from '{0}'".format(value)) | Create a selector callable from the supplied value.
Args:
value: If is a callable, then returned unchanged. If a string is used
then create an attribute selector. If in an integer is used then
create a key selector.
Returns:
A callable selector based on the supplied value.
Raises:
ValueError: If a selector cannot be created from the value. | juraj-google-style |
def _parse_line(self, line_no, line):
try:
matched = statement.parseString(line)
except ParseException as exc:
raise DataError("Error parsing line in TileBus file", line_number=line_no, column=exc.col, contents=line)
if 'symbol' in matched:
self._parse_cmd(matched)
elif 'filename' in matched:
self._parse_include(matched)
elif 'variable' in matched:
self._parse_assignment(matched)
elif 'configvar' in matched:
self._parse_configvar(matched) | Parse a line in a TileBus file
Args:
line_no (int): The line number for printing useful error messages
line (string): The line that we are trying to parse | juraj-google-style |
def __init__(self, identifier, configuration):
super(GuppyMemoryProfiler, self).__init__()
self._identifier = identifier
self._path = configuration.directory
self._profiling_sample = 0
self._profiling_sample_rate = configuration.sample_rate
self._heapy = None
self._sample_file = '{0!s}.hpy'.format(identifier)
if self._path:
self._sample_file = os.path.join(self._path, self._sample_file)
if hpy:
self._heapy = hpy() | Initializes a memory profiler.
Args:
identifier (str): unique name of the profile.
configuration (ProfilingConfiguration): profiling configuration. | juraj-google-style |
def _close_rpc_interface(self, connection_id, callback):
try:
context = self.connections.get_context(connection_id)
except ArgumentError:
callback(connection_id, self.id, False, "Could not find connection information")
return
self.connections.begin_operation(connection_id, 'close_interface', callback, self.get_config('default_timeout'))
try:
service = context['services'][TileBusService]
header_characteristic = service[ReceiveHeaderChar]
payload_characteristic = service[ReceivePayloadChar]
except KeyError:
self.connections.finish_operation(connection_id, False, "Can't find characteristics to open rpc interface")
return
self.bable.set_notification(
enabled=False,
connection_handle=context['connection_handle'],
characteristic=header_characteristic,
on_notification_set=[self._on_interface_closed, context, payload_characteristic],
timeout=1.0
) | Disable RPC interface for this IOTile device
Args:
connection_id (int): The unique identifier for the connection
callback (callback): Callback to be called when this command finishes
callback(conn_id, adapter_id, success, failure_reason) | juraj-google-style |
def rename(df, **kwargs):
return df.rename(columns={v: k for k, v in kwargs.items()}) | Renames columns, where keyword argument values are the current names
of columns and keys are the new names.
Args:
df (:obj:`pandas.DataFrame`): DataFrame passed in via `>>` pipe.
Kwargs:
**kwargs: key:value pairs where keys are new names for columns and
values are current names of columns. | juraj-google-style |
def __init__(self, name, value):
acceptable_types = [basestring, bool, list, int]
acceptable = False
for acceptable_type in acceptable_types:
if isinstance(value, acceptable_type):
acceptable = True
if acceptable_type == bool:
logger.debug("Converting parameter %s boolean '%s' "
"to string.", name, value)
value = str(value).lower()
break
if acceptable_type == int:
logger.debug("Converting parameter %s integer '%s' "
"to string.", name, value)
value = str(value)
break
if not acceptable:
raise ValueError(
"CFNParameter (%s) value must be one of %s got: %s" % (
name, "str, int, bool, or list", value))
self.name = name
self.value = value | Wrapper around a value to indicate a CloudFormation Parameter.
Args:
name (str): the name of the CloudFormation Parameter
value (str, list, int or bool): the value we're going to submit as
a CloudFormation Parameter. | juraj-google-style |
def _RemoveIllegalXMLCharacters(self, xml_string):
if (not isinstance(xml_string, py2to3.STRING_TYPES)):
return xml_string
return self._ILLEGAL_XML_RE.sub('�', xml_string) | Removes illegal characters for XML.
If the input is not a string it will be returned unchanged.
Args:
xml_string (str): XML with possible illegal characters.
Returns:
str: XML where all illegal characters have been removed. | codesearchnet |
def __wizard(rho, epsilon=None):
if (epsilon is None):
epsilon = 0.0
dim = len(rho)
rho_wizard = np.zeros([dim, dim])
(v, w) = np.linalg.eigh(rho)
for j in range(dim):
if (v[j] < epsilon):
tmp = v[j]
v[j] = 0.0
x = 0.0
for k in range((j + 1), dim):
x += (tmp / (dim - (j + 1)))
v[k] = (v[k] + (tmp / (dim - (j + 1))))
for j in range(dim):
rho_wizard = (rho_wizard + (v[j] * outer(w[(:, j)])))
return rho_wizard | Returns the nearest positive semidefinite operator to an operator.
This method is based on reference [1]. It constrains positivity
by setting negative eigenvalues to zero and rescaling the positive
eigenvalues.
Args:
rho (array_like): the input operator.
epsilon(float or None): threshold (>=0) for truncating small
eigenvalues values to zero.
Returns:
numpy.array: A positive semidefinite numpy array. | codesearchnet |
def send_graph_tracebacks(destinations, run_key, origin_stack, graph, send_source=True):
_send_call_tracebacks(destinations, origin_stack, is_eager_execution=False, call_key=run_key, graph=graph, send_source=send_source) | Send the tracebacks of a graph execution call to debug server(s).
Args:
destinations: gRPC destination addresses, a `str` or a `list` of `str`s,
e.g., "localhost:4242". If a `list`, gRPC requests containing the same
`CallTraceback` proto payload will be sent to all the destinations.
run_key: A string describing the feeds, fetches (and targets) names of the
`tf.Session.run` call.
origin_stack: The traceback of the `tf.Session.run()` invocation.
graph: A Python `tf.Graph` object (i.e., *not* a `tf.compat.v1.GraphDef`),
which contains op tracebacks.
send_source: Whether the source files involved in the op tracebacks but
outside the TensorFlow library are to be sent. | github-repos |
def sample_shape_tensor(self, name="sample_shape_tensor"):
with tf.compat.v1.name_scope(name):
if isinstance(self._sample_shape, tf.Tensor):
return self._sample_shape
return tf.convert_to_tensor(
value=self.sample_shape.as_list(), dtype=tf.int32) | Sample shape of random variable as a 1-D `Tensor`.
Args:
name: name to give to the op
Returns:
sample_shape: `Tensor`. | juraj-google-style |
def _GetPathSegmentIndexForSimilarityWeights(self, similarity_weights, occurrence_weights, value_weights):
largest_weight = similarity_weights.GetLargestWeight()
if (largest_weight > 0):
similarity_weight_indexes = similarity_weights.GetIndexesForWeight(largest_weight)
number_of_similarity_indexes = len(similarity_weight_indexes)
else:
number_of_similarity_indexes = 0
path_segment_index = None
if (number_of_similarity_indexes == 0):
path_segment_index = self._GetPathSegmentIndexForOccurrenceWeights(occurrence_weights, value_weights)
elif (number_of_similarity_indexes == 1):
path_segment_index = similarity_weight_indexes[0]
else:
largest_weight = 0
largest_value_weight = 0
for similarity_index in similarity_weight_indexes:
occurrence_weight = occurrence_weights.GetWeightForIndex(similarity_index)
if ((largest_weight > 0) and (largest_weight == occurrence_weight)):
value_weight = value_weights.GetWeightForIndex(similarity_index)
if (largest_value_weight < value_weight):
largest_weight = 0
if ((not path_segment_index) or (largest_weight < occurrence_weight)):
largest_weight = occurrence_weight
path_segment_index = similarity_index
largest_value_weight = value_weights.GetWeightForIndex(similarity_index)
return path_segment_index | Retrieves the index of the path segment based on similarity weights.
Args:
similarity_weights: the similarity weights object (instance of
_PathSegmentWeights).
occurrence_weights: the occurrence weights object (instance of
_PathSegmentWeights).
value_weights: the value weights object (instance of _PathSegmentWeights).
Returns:
An integer containing the path segment index. | codesearchnet |
def __getitem__(self, key: Union[int, str]) -> Node:
node: Node = None
if isinstance(key, int):
node = self._nodes.get(key)
if isinstance(key, str):
node = self._node_name_map.get(key)
if node is None:
raise IndexError("Invalid key.")
return node | Returns the node corresponding to the given key.
If the given key is an integer, then the node with the given index will be returned.
If the given key is a string, then the node with the given name will be returned.
Arguments:
key (Union[int, str]): The key that identifies the node to return.
Raises:
IndexError: If the index is invalid or out of range. | juraj-google-style |
def log_coroutine(self, cor, *args, **kwargs):
if self.stopping:
raise LoopStoppingError(('Could not launch coroutine because loop is shutting down: %s' % cor))
self.start()
cor = _instaniate_coroutine(cor, args, kwargs)
def _run_and_log():
task = self.loop.create_task(cor)
task.add_done_callback((lambda x: _log_future_exception(x, self._logger)))
if self.inside_loop():
_run_and_log()
else:
self.loop.call_soon_threadsafe(_run_and_log) | Run a coroutine logging any exception raised.
This routine will not block until the coroutine is finished
nor will it return any result. It will just log if any
exception is raised by the coroutine during operation.
It is safe to call from both inside and outside the event loop.
There is no guarantee on how soon the coroutine will be scheduled.
Args:
cor (coroutine): The coroutine that we wish to run in the
background and wait until it finishes. | codesearchnet |
def check_peft_version(min_version: str) -> None:
if not is_peft_available():
raise ValueError('PEFT is not installed. Please install it with `pip install peft`')
is_peft_version_compatible = version.parse(importlib.metadata.version('peft')) >= version.parse(min_version)
if not is_peft_version_compatible:
raise ValueError(f'The version of PEFT you are using is not compatible, please use a version that is greater than {min_version}') | Checks if the version of PEFT is compatible.
Args:
version (`str`):
The version of PEFT to check against. | github-repos |
def divide(x1, x2, output_shape=None, name=None):
output_shape = convert_to_shape(output_shape)
if (not isinstance(x2, Tensor)):
return ScalarMultiplyOperation(x1, (1.0 / x2)).outputs[0]
with tf.name_scope(name, default_name='divide'):
(x1, x2) = binary_arguments_to_tensors(x1, x2)
return multiply(x1, reciprocal(x2), output_shape=output_shape) | Binary division with broadcasting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | codesearchnet |
def Put(self, message, block=True, timeout=1000):
message = message.SerializeToString()
if (not block):
if self.Full():
raise queue.Full
else:
t0 = time.time()
while self.Full():
time.sleep(1)
self._heart_beat_cb()
if ((time.time() - t0) > timeout):
raise queue.Full
with self._lock:
self._queue.appendleft(message)
self._total_size += len(message) | Put a message on the queue, blocking if it is too full.
Blocks when the queue contains more than the threshold.
Args:
message: rdf_flows.GrrMessage The message to put.
block: bool If True, we block and wait for the queue to have more space.
Otherwise, if the queue is full, we raise.
timeout: int Maximum time (in seconds, with 1 sec resolution) we spend
waiting on the queue.
Raises:
queue.Full: if the queue is full and block is False, or
timeout is exceeded. | codesearchnet |
def create_room(self, alias=None, is_public=False, invitees=None):
response = self.api.create_room(alias=alias, is_public=is_public, invitees=invitees)
return self._mkroom(response['room_id']) | Create a new room on the homeserver.
Args:
alias (str): The canonical_alias of the room.
is_public (bool): The public/private visibility of the room.
invitees (str[]): A set of user ids to invite into the room.
Returns:
Room
Raises:
MatrixRequestError | codesearchnet |
def transition_block(x, reduction, name):
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-05, name=name + '_bn')(x)
x = layers.Activation('relu', name=name + '_relu')(x)
x = layers.Conv2D(int(x.shape[bn_axis] * reduction), 1, use_bias=False, name=name + '_conv')(x)
x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
return x | A transition block.
Args:
x: input tensor.
reduction: float, compression rate at transition layers.
name: string, block label.
Returns:
Output tensor for the block. | github-repos |
def get_dimensions(js_dict, naming):
dimensions = []
dim_names = []
if check_version_2(js_dict):
dimension_dict = js_dict
else:
dimension_dict = js_dict['dimension']
for dim in dimension_dict['id']:
dim_name = js_dict['dimension'][dim]['label']
if (not dim_name):
dim_name = dim
if (naming == 'label'):
dim_label = get_dim_label(js_dict, dim)
dimensions.append(dim_label)
dim_names.append(dim_name)
else:
dim_index = get_dim_index(js_dict, dim)
dimensions.append(dim_index)
dim_names.append(dim)
return (dimensions, dim_names) | Get dimensions from input data.
Args:
js_dict (dict): dictionary containing dataset data and metadata.
naming (string, optional): dimension naming. Possible values: 'label' \
or 'id'.
Returns:
dimensions (list): list of pandas data frames with dimension \
category data.
dim_names (list): list of strings with dimension names. | codesearchnet |
def unpatchify(self, patchified_pixel_values, original_image_size: Optional[Tuple[int, int]]=None):
patch_size, num_channels = (self.config.patch_size, self.config.num_channels)
original_image_size = original_image_size if original_image_size is not None else (self.config.image_size, self.config.image_size)
original_height, original_width = original_image_size
num_patches_h = original_height
num_patches_w = original_width
tf.debugging.assert_equal(num_patches_h * num_patches_w, shape_list(patchified_pixel_values)[1], message=f'The number of patches in the patchified pixel values is {shape_list(patchified_pixel_values)[1]} does not match the patches of original image {num_patches_w}*{num_patches_h}')
batch_size = shape_list(patchified_pixel_values)[0]
patchified_pixel_values = tf.reshape(patchified_pixel_values, (batch_size, num_patches_h, num_patches_w, patch_size, patch_size, num_channels))
patchified_pixel_values = tf.einsum('nhwpqc->nhpwqc', patchified_pixel_values)
pixel_values = tf.reshape(patchified_pixel_values, (batch_size, num_patches_h * patch_size, num_patches_w * patch_size, num_channels))
return pixel_values | Args:
patchified_pixel_values (`tf.Tensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`:
Patchified pixel values.
original_image_size (`Tuple[int, int]`, *optional*):
Original image size.
Returns:
`tf.Tensor` of shape `(batch_size, height, width, num_channels)`:
Pixel values. | github-repos |
def read_until(self, s, echo=None):
s_len = len(s)
buf = self.read(s_len, echo)
while (buf[(- s_len):] != s):
buf += self.read(1, echo)
return buf | Read until a certain string is encountered..
Args:
s(bytes): The string to wait for.
echo(bool): Whether to write the read data to stdout.
Returns:
bytes: The data up to and including *s*.
Raises:
EOFError: If the channel was closed. | codesearchnet |
def _vec(A):
N, m, n = A.shape
return A.reshape((N, m*n, 1), order='F') | Linear operator _vec() from Wiktorsson2001 p478
Args:
A: a rank 3 array of shape N x m x n, giving a matrix A[j] for each
interval of time j in 0..N-1
Returns:
array of shape N x mn x 1, made by stacking the columns of matrix A[j] on
top of each other, for each j in 0..N-1 | juraj-google-style |
def with_transform(self, transform: MLTransformProvider):
self._validate_transform(transform)
self.transforms.append(transform)
return self | Add a transform to the MLTransform pipeline.
Args:
transform: A BaseOperation instance.
Returns:
A MLTransform instance. | github-repos |
def __init__(self, channel):
self.Log = channel.unary_unary(
'/pulumirpc.Engine/Log',
request_serializer=engine__pb2.LogRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.GetRootResource = channel.unary_unary(
'/pulumirpc.Engine/GetRootResource',
request_serializer=engine__pb2.GetRootResourceRequest.SerializeToString,
response_deserializer=engine__pb2.GetRootResourceResponse.FromString,
)
self.SetRootResource = channel.unary_unary(
'/pulumirpc.Engine/SetRootResource',
request_serializer=engine__pb2.SetRootResourceRequest.SerializeToString,
response_deserializer=engine__pb2.SetRootResourceResponse.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def input_vars(self, transitive: bool=False) -> Set[str]:
input_vars = set()
def list_var_refs(k, v, p):
del k, p
if isinstance(v, Function):
return pg.TraverseAction.CONTINUE
if isinstance(v, SymbolReference):
input_vars.add(v.name)
return pg.TraverseAction.ENTER
pg.traverse(self, list_var_refs)
if transitive:
parent_func = self.parent_func()
if parent_func is not None:
unresolved_vars = input_vars.copy()
for i in reversed(range(self.line_number())):
line = parent_func.body[i]
line_output_vars = line.output_vars()
if line_output_vars & unresolved_vars:
line_input_vars = line.input_vars()
input_vars.update(line_input_vars)
unresolved_vars -= line_output_vars
unresolved_vars.update(line_input_vars)
assert unresolved_vars.issubset(set(parent_func.args)), unresolved_vars
return input_vars | Returns the input context from this code entity.
Args:
transitive: If True, transitive input context will be included.
Returns:
A set of context. | github-repos |
def check_config(config, path):
messages = []
config_copy = get_frozen_copy(config)
missing_keys = set(DEFAULT_CONFIG.keys()) - set(config_copy.keys())
if missing_keys:
messages.append("Missing config keys {}!".format(missing_keys))
for key, value in config_copy.items():
if key not in DEFAULT_CONFIG:
messages.append("Unknown key {} in {}!".format(key, path))
continue
if value is None:
messages.append(_VALUE_UNDEFINED_MESSAGE.format(path=path, key=key))
else:
value_type = type(value)
if isinstance(DEFAULT_CONFIG[key], Mapping) and 'by-cot-product' in DEFAULT_CONFIG[key]:
default_type = type(DEFAULT_CONFIG[key]['by-cot-product'][config['cot_product']])
else:
default_type = type(DEFAULT_CONFIG[key])
if value_type is not default_type:
messages.append(
"{} {}: type {} is not {}!".format(path, key, value_type, default_type)
)
if value in ("...", b"..."):
messages.append(_VALUE_UNDEFINED_MESSAGE.format(path=path, key=key))
if key in ("provisioner_id", "worker_group", "worker_type", "worker_id") and not _is_id_valid(value):
messages.append('{} doesn\'t match "{}" (required by Taskcluster)'.format(key, _GENERIC_ID_REGEX.pattern))
return messages | Validate the config against DEFAULT_CONFIG.
Any unknown keys or wrong types will add error messages.
Args:
config (dict): the running config.
path (str): the path to the config file, used in error messages.
Returns:
list: the error messages found when validating the config. | juraj-google-style |
def rename(name, new_name):
if six.PY2:
name = _to_unicode(name)
new_name = _to_unicode(new_name)
current_info = info(name)
if not current_info:
raise CommandExecutionError('User \'{0}\' does not exist'.format(name))
new_info = info(new_name)
if new_info:
raise CommandExecutionError(
'User \'{0}\' already exists'.format(new_name)
)
with salt.utils.winapi.Com():
c = wmi.WMI(find_classes=0)
try:
user = c.Win32_UserAccount(Name=name)[0]
except IndexError:
raise CommandExecutionError('User \'{0}\' does not exist'.format(name))
result = user.Rename(new_name)[0]
if not result == 0:
error_dict = {0: 'Success',
1: 'Instance not found',
2: 'Instance required',
3: 'Invalid parameter',
4: 'User not found',
5: 'Domain not found',
6: 'Operation is allowed only on the primary domain controller of the domain',
7: 'Operation is not allowed on the last administrative account',
8: 'Operation is not allowed on specified special groups: user, admin, local, or guest',
9: 'Other API error',
10: 'Internal error'}
raise CommandExecutionError(
'There was an error renaming \'{0}\' to \'{1}\'. Error: {2}'
.format(name, new_name, error_dict[result])
)
return info(new_name).get('name') == new_name | Change the username for a named user
Args:
name (str): The user name to change
new_name (str): The new name for the current user
Returns:
bool: True if successful, otherwise False
CLI Example:
.. code-block:: bash
salt '*' user.rename jsnuffy jshmoe | juraj-google-style |
def get(feature_name):
implementations = MetadataExtractor._implementations()
try:
return implementations[feature_name]
except KeyError:
raise UnsupportedFeatureException('no MetadataExtractor registered for feature "{feature_name}" (try any of the following: {supported_features})'.format(feature_name=feature_name, supported_features=', '.join(sorted(implementations)))) | Returns the MetadataExtractor that can extract information about the
provided feature name.
Raises:
UnsupportedFeature: If no extractor exists for the feature name. | codesearchnet |
def pooled_sample_variance(sample1, sample2):
deg_freedom = len(sample1) + len(sample2) - 2
mean1 = statistics.mean(sample1)
squares1 = ((x - mean1) ** 2 for x in sample1)
mean2 = statistics.mean(sample2)
squares2 = ((x - mean2) ** 2 for x in sample2)
return (math.fsum(squares1) + math.fsum(squares2)) / float(deg_freedom) | Find the pooled sample variance for two samples.
Args:
sample1: one sample.
sample2: the other sample.
Returns:
Pooled sample variance, as a float. | juraj-google-style |
def CheckSpacingForFunctionCall(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
fncall = line
for pattern in ('\\bif\\s*\\((.*)\\)\\s*{', '\\bfor\\s*\\((.*)\\)\\s*{', '\\bwhile\\s*\\((.*)\\)\\s*[{;]', '\\bswitch\\s*\\((.*)\\)\\s*{'):
match = Search(pattern, line)
if match:
fncall = match.group(1)
break
if ((not Search('\\b(if|for|while|switch|return|new|delete|catch|sizeof)\\b', fncall)) and (not Search(' \\([^)]+\\)\\([^)]*(\\)|,$)', fncall)) and (not Search(' \\([^)]+\\)\\[[^\\]]+\\]', fncall))):
if Search('\\w\\s*\\(\\s(?!\\s*\\\\$)', fncall):
error(filename, linenum, 'whitespace/parens', 4, 'Extra space after ( in function call')
elif Search('\\(\\s+(?!(\\s*\\\\)|\\()', fncall):
error(filename, linenum, 'whitespace/parens', 2, 'Extra space after (')
if (Search('\\w\\s+\\(', fncall) and (not Search('_{0,2}asm_{0,2}\\s+_{0,2}volatile_{0,2}\\s+\\(', fncall)) and (not Search('
if Search('\\boperator_*\\b', line):
error(filename, linenum, 'whitespace/parens', 0, 'Extra space before ( in function call')
else:
error(filename, linenum, 'whitespace/parens', 4, 'Extra space before ( in function call')
if Search('[^)]\\s+\\)\\s*[^{\\s]', fncall):
if Search('^\\s+\\)', fncall):
error(filename, linenum, 'whitespace/parens', 2, 'Closing ) should be moved to the previous line')
else:
error(filename, linenum, 'whitespace/parens', 2, 'Extra space before )') | Checks for the correctness of various spacing around function calls.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | codesearchnet |
def __schemas_descriptor(self):
result = {}
for (schema_key, schema_value) in self.__parser.schemas().iteritems():
field_keys = schema_value.keys()
key_result = {}
if ('properties' in field_keys):
key_result['properties'] = schema_value['properties'].copy()
for (prop_key, prop_value) in schema_value['properties'].iteritems():
if ('enum' in prop_value):
num_enums = len(prop_value['enum'])
key_result['properties'][prop_key]['enumDescriptions'] = ([''] * num_enums)
elif ('default' in prop_value):
if (prop_value.get('type') == 'boolean'):
prop_value['default'] = ('true' if prop_value['default'] else 'false')
else:
prop_value['default'] = str(prop_value['default'])
key_result['properties'][prop_key].pop('required', None)
for key in ('type', 'id', 'description'):
if (key in field_keys):
key_result[key] = schema_value[key]
if key_result:
result[schema_key] = key_result
for schema_value in result.itervalues():
for field_value in schema_value.itervalues():
if isinstance(field_value, dict):
if ('$ref' in field_value):
field_value['type'] = 'object'
return result | Describes the schemas section of the discovery document.
Returns:
Dictionary describing the schemas of the document. | codesearchnet |
def validate(self, read_tuple_name):
if reg_lrn.match(read_tuple_name) is None:
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_read_tuple_name_structure",
message="'{}' is not matched".format(reg_lrn),
)
else:
parts = read_tuple_name.split("__")
if reg_prefix_part.match(parts[0]) is None:
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_prefix_part",
message="'{}' is not matched".format(reg_prefix_part),
)
if reg_id_part.match(parts[1]) is None:
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_id_part",
message="'{}' is not matched".format(reg_id_part),
)
if reg_segmental_part.match(parts[2]) is None:
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_segmental_part",
message="'{}' is not matched".format(reg_segmental_part),
)
if reg_suffix_part.match(parts[3]) is None:
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_suffix_part",
message="'{}' is not matched".format(reg_suffix_part),
)
if not self.rnf_profile.check(read_tuple_name):
self.report_error(
read_tuple_name=read_tuple_name,
error_name="wrong_profile",
message="Read has a wrong profile (wrong widths). It should be: {} but it is: {}.".format(
self.rnf_profile,
rnftools.rnfformat.RnfProfile(read_tuple_name=read_tuple_name),
),
warning=True,
) | Check RNF validity of a read tuple.
Args:
read_tuple_name (str): Read tuple name to be checked.s | juraj-google-style |
def __init__(self, validate_args=False, name="absolute_value"):
self._graph_parents = []
self._name = name
with self._name_scope("init"):
super(AbsoluteValue, self).__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
name=name) | Instantiates the `AbsoluteValue` bijector.
Args:
validate_args: Python `bool` indicating whether arguments should be
checked for correctness, in particular whether inputs to `inverse` and
`inverse_log_det_jacobian` are non-negative.
name: Python `str` name given to ops managed by this object. | juraj-google-style |
def create(self, members=(), admins=()):
memberObjs = [{'id': '8:{0}'.format(self.skype.userId), 'role': 'Admin'}]
for id in members:
if (id == self.skype.userId):
continue
memberObjs.append({'id': '8:{0}'.format(id), 'role': ('Admin' if (id in admins) else 'User')})
resp = self.skype.conn('POST', '{0}/threads'.format(self.skype.conn.msgsHost), auth=SkypeConnection.Auth.RegToken, json={'members': memberObjs})
return self.chat(resp.headers['Location'].rsplit('/', 1)[1]) | Create a new group chat with the given users.
The current user is automatically added to the conversation as an admin. Any other admin identifiers must also
be present in the member list.
Args:
members (str list): user identifiers to initially join the conversation
admins (str list): user identifiers to gain admin privileges | codesearchnet |
def _check_properties(cls, property_names, require_indexed=True):
assert isinstance(property_names, (list, tuple)), repr(property_names)
for name in property_names:
assert isinstance(name, basestring), repr(name)
if '.' in name:
name, rest = name.split('.', 1)
else:
rest = None
prop = cls._properties.get(name)
if prop is None:
cls._unknown_property(name)
else:
prop._check_property(rest, require_indexed=require_indexed) | Internal helper to check the given properties exist and meet specified
requirements.
Called from query.py.
Args:
property_names: List or tuple of property names -- each being a string,
possibly containing dots (to address subproperties of structured
properties).
Raises:
InvalidPropertyError if one of the properties is invalid.
AssertionError if the argument is not a list or tuple of strings. | juraj-google-style |
def attention_lm_decoder(decoder_input,
decoder_self_attention_bias,
hparams,
name="decoder"):
x = decoder_input
with tf.variable_scope(name):
for layer in range(hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(
x, hparams), None, decoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
x = common_layers.layer_postprocess(x, y, hparams)
with tf.variable_scope("ffn"):
y = common_layers.conv_hidden_relu(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout)
x = common_layers.layer_postprocess(x, y, hparams)
return common_layers.layer_preprocess(x, hparams) | A stack of attention_lm layers.
Args:
decoder_input: a Tensor
decoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
Returns:
y: a Tensors | juraj-google-style |
def store_to_file(self, filename):
with tf.gfile.Open(filename, "w") as f:
for i in range(len(self._id_to_token)):
f.write(self._id_to_token[i] + "\n") | Write vocab file to disk.
Vocab files have one token per line. The file ends in a newline. Reserved
tokens are written to the vocab file as well.
Args:
filename: Full path of the file to store the vocab to. | juraj-google-style |
def cluster_spec(self):
tf_config = _load_tf_config(self._port)
if 'cluster' not in tf_config:
return ClusterSpec({})
return ClusterSpec(tf_config['cluster']) | Returns a ClusterSpec based on the SageMaker environment variables.
Returns:
A ClusterSpec with information from the SageMaker environment variables. | github-repos |
def __init__(self, req, config, section):
self.req = req
self.exclude = None
self.include = None
self.range = [None, None]
self.config = config
self._req_type = ''
self._section = section
self._initialized = None
self._error_message = []
self.parse_single_req() | Initializes a version or dependency requirement object.
Args:
req: List that contains individual supported versions or a single string
that contains `range` definition.
e.g. [`range(1.0, 2.0) include(3.0) exclude(1.5)`]
e.g. [`1.0`, `3.0`, `7.1`]
config: String that is the configuration name.
e.g. `platform`
section: String that is the section name from the `.ini` config file
under which the requirement is defined.
e.g. `Required`, `Optional`, `Unsupported`, `Dependency` | github-repos |
def GetUser(self, sid=None, uid=None, username=None):
if sid:
for user in self.users:
if (user.sid == sid):
return user
return None
if uid:
for user in self.users:
if (user.uid == uid):
return user
if username:
for user in self.users:
if (user.username == username):
if (uid and user.uid and (user.uid != uid)):
return None
else:
return user | Retrieve a User based on sid, uid or username.
On windows we first get a SID and use it to find the username. We want to
avoid combining users with name collisions, which occur when local users
have the same username as domain users (something like Admin is particularly
common). So if a SID is provided, don't also try to match by username.
On linux we first get a username, then use this to find the UID, so we want
to combine these records or we end up with multiple partially-filled user
records.
TODO(user): this won't work at all well with a query for uid=0 because
that is also the default for User objects that don't have uid
set.
Args:
sid: Windows user sid
uid: Linux/Darwin user id
username: string
Returns:
rdf_client.User or None | codesearchnet |
def ParseConversationRow(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = TangoAndroidConversationEventData()
event_data.conversation_identifier = self._GetRowValue(
query_hash, row, 'conv_id')
date_time = dfdatetime_semantic_time.NotSet()
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_NOT_A_TIME)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a conversation row from the database.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row resulting from query. | juraj-google-style |
def __init__(self, channel):
self.Activate = channel.unary_unary(
'/enterprise.API/Activate',
request_serializer=client_dot_enterprise_dot_enterprise__pb2.ActivateRequest.SerializeToString,
response_deserializer=client_dot_enterprise_dot_enterprise__pb2.ActivateResponse.FromString,
)
self.GetState = channel.unary_unary(
'/enterprise.API/GetState',
request_serializer=client_dot_enterprise_dot_enterprise__pb2.GetStateRequest.SerializeToString,
response_deserializer=client_dot_enterprise_dot_enterprise__pb2.GetStateResponse.FromString,
)
self.Deactivate = channel.unary_unary(
'/enterprise.API/Deactivate',
request_serializer=client_dot_enterprise_dot_enterprise__pb2.DeactivateRequest.SerializeToString,
response_deserializer=client_dot_enterprise_dot_enterprise__pb2.DeactivateResponse.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def requestA(self):
work_context = self.getContext()
self.setContext('request[v4A]')
self.m_serial_port.write((('2f3f'.decode('hex') + self.m_meter_address) + '3030210d0a'.decode('hex')))
self.m_raw_read_a = self.m_serial_port.getResponse(self.getContext())
unpacked_read_a = self.unpackStruct(self.m_raw_read_a, self.m_blk_a)
self.convertData(unpacked_read_a, self.m_blk_a)
self.m_kwh_precision = int(self.m_blk_a[Field.kWh_Scale][MeterData.NativeValue])
self.m_a_crc = self.crcMeterRead(self.m_raw_read_a, self.m_blk_a)
self.setContext(work_context)
return self.m_a_crc | Issue an A read on V4 meter.
Returns:
bool: True if CRC match at end of call. | codesearchnet |
def pack_rpc_payload(arg_format, args):
code = _create_respcode(arg_format, args)
packed_result = struct.pack(code, *args)
unpacked_validation = struct.unpack(code, packed_result)
if (tuple(args) != unpacked_validation):
raise RPCInvalidArgumentsError('Passed values would be truncated, please validate the size of your string', code=code, args=args)
return packed_result | Pack an RPC payload according to arg_format.
Args:
arg_format (str): a struct format code (without the <) for the
parameter format for this RPC. This format code may include the final
character V, which means that it expects a variable length bytearray.
args (list): A list of arguments to pack according to arg_format.
Returns:
bytes: The packed argument buffer. | codesearchnet |
def ParseFileObject(self, parser_mediator, file_object):
fixed_section_data_map = self._GetDataTypeMap('job_fixed_length_data_section')
try:
(fixed_length_section, file_offset) = self._ReadStructureFromFileObject(file_object, 0, fixed_section_data_map)
except (ValueError, errors.ParseError) as exception:
raise errors.UnableToParseFile('Unable to parse fixed-length data section with error: {0!s}'.format(exception))
if (not (fixed_length_section.product_version in self._PRODUCT_VERSIONS)):
raise errors.UnableToParseFile('Unsupported product version in: 0x{0:04x}'.format(fixed_length_section.product_version))
if (not (fixed_length_section.format_version == 1)):
raise errors.UnableToParseFile('Unsupported format version in: {0:d}'.format(fixed_length_section.format_version))
variable_section_data_map = self._GetDataTypeMap('job_variable_length_data_section')
try:
(variable_length_section, data_size) = self._ReadStructureFromFileObject(file_object, file_offset, variable_section_data_map)
except (ValueError, errors.ParseError) as exception:
raise errors.UnableToParseFile('Unable to parse variable-length data section with error: {0!s}'.format(exception))
file_offset += data_size
event_data = self._ParseEventData(variable_length_section)
date_time = self._ParseLastRunTime(parser_mediator, fixed_length_section)
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_LAST_RUN)
parser_mediator.ProduceEventWithEventData(event, event_data)
trigger_data_map = self._GetDataTypeMap('job_trigger')
for trigger_index in range(0, variable_length_section.number_of_triggers):
try:
(trigger, data_size) = self._ReadStructureFromFileObject(file_object, file_offset, trigger_data_map)
except (ValueError, errors.ParseError) as exception:
raise errors.UnableToParseFile('Unable to parse trigger: {0:d} with error: {2!s}'.format(trigger_index, exception))
file_offset += data_size
event_data.trigger_type = trigger.trigger_type
date_time = self._ParseTriggerStartTime(parser_mediator, trigger)
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_SCHEDULED_TO_START, time_zone=parser_mediator.timezone)
parser_mediator.ProduceEventWithEventData(event, event_data)
date_time = self._ParseTriggerEndTime(parser_mediator, trigger)
if date_time:
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_SCHEDULED_TO_START, time_zone=parser_mediator.timezone)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a Windows job file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): a file-like object.
Raises:
UnableToParseFile: when the file cannot be parsed. | codesearchnet |
def WriteFixedString(self, value, length):
towrite = value.encode('utf-8')
slen = len(towrite)
if slen > length:
raise Exception("string longer than fixed length: %s " % length)
self.WriteBytes(towrite)
diff = length - slen
while diff > 0:
self.WriteByte(0)
diff -= 1 | Write a string value to the stream.
Args:
value (str): value to write to the stream.
length (int): length of the string to write. | juraj-google-style |
def _ExportEvent(self, output_module, event, deduplicate_events=True):
if event.timestamp != self._export_event_timestamp:
self._FlushExportBuffer(
output_module, deduplicate_events=deduplicate_events)
self._export_event_timestamp = event.timestamp
self._export_event_heap.PushEvent(event) | Exports an event using an output module.
Args:
output_module (OutputModule): output module.
event (EventObject): event.
deduplicate_events (Optional[bool]): True if events should be
deduplicated. | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.