code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _print_drift_report(self):
try:
response = self._cloud_formation.describe_stack_resources(StackName=self._stack_name)
rows = []
for resource in response.get('StackResources', []):
row = []
row.append(resource.get('LogicalResourceId', 'unknown'))
row.append(resource.get('PhysicalResourceId', 'unknown'))
row.append(resource.get('ResourceStatus', 'unknown'))
row.append(resource.get('DriftInformation', {}).get('StackResourceDriftStatus', 'unknown'))
rows.append(row)
print('Drift Report:')
print(tabulate(rows, headers=[
'Logical ID',
'Physical ID',
'Resource Status',
'Drift Info'
]))
except Exception as wtf:
logging.error(wtf, exc_info=True)
return False
return True | Report the drift of the stack.
Args:
None
Returns:
Good or Bad; True or False
Note: not yet implemented | juraj-google-style |
def __init__(self, session, object_factory):
check_type(session, RestSession)
super(PeopleAPI, self).__init__()
self._session = session
self._object_factory = object_factory | Initialize a new PeopleAPI object with the provided RestSession.
Args:
session(RestSession): The RESTful session object to be used for
API calls to the Webex Teams service.
Raises:
TypeError: If the parameter types are incorrect. | juraj-google-style |
def liquid_precipitation_depth(self, value=999.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `liquid_precipitation_depth`'.format(value))
self._liquid_precipitation_depth = value | Corresponds to IDD Field `liquid_precipitation_depth`
Args:
value (float): value for IDD Field `liquid_precipitation_depth`
Unit: mm
Missing value: 999.0
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | juraj-google-style |
def RestrictFeedItemToAdGroup(client, feed_item, adgroup_id):
feed_item_target_service = client.GetService(
'FeedItemTargetService', 'v201809')
ad_group_target = {
'xsi_type': 'FeedItemAdGroupTarget',
'feedId': feed_item['feedId'],
'feedItemId': feed_item['feedItemId'],
'adGroupId': adgroup_id
}
operation = {'operator': 'ADD', 'operand': ad_group_target}
response = feed_item_target_service.mutate([operation])
new_ad_group_target = response['value'][0]
print('Feed item target for feed ID %s and feed item ID %s was created to '
'restrict serving to ad group ID %s' %
(new_ad_group_target['feedId'],
new_ad_group_target['feedItemId'],
new_ad_group_target['adGroupId'])) | Restricts the feed item to an ad group.
Args:
client: an AdWordsClient instance.
feed_item: The feed item.
adgroup_id: The ad group ID. | juraj-google-style |
def log_metric(self, name, value, unit=None, global_step=None, extras=None):
if (not isinstance(value, numbers.Number)):
tf.logging.warning('Metric value to log should be a number. Got %s', type(value))
return
if extras:
extras = [{'name': k, 'value': v} for (k, v) in sorted(extras.items())]
else:
extras = []
with tf.gfile.GFile(os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), 'a') as f:
metric = {'name': name, 'value': float(value), 'unit': unit, 'global_step': global_step, 'timestamp': datetime.datetime.now().strftime(_DATE_TIME_FORMAT_PATTERN), 'extras': extras}
try:
json.dump(metric, f)
f.write('\n')
except (TypeError, ValueError) as e:
tf.logging.warning('Failed to dump metric to log file: name %s, value %s, error %s', name, value, e) | Log the benchmark metric information to local file.
Currently the logging is done in a synchronized way. This should be updated
to log asynchronously.
Args:
name: string, the name of the metric to log.
value: number, the value of the metric. The value will not be logged if it
is not a number type.
unit: string, the unit of the metric, E.g "image per second".
global_step: int, the global_step when the metric is logged.
extras: map of string:string, the extra information about the metric. | codesearchnet |
def get(cls, resource_type):
if isinstance(resource_type, str):
obj = getattr(db, cls.__name__).find_one(cls.resource_type == resource_type)
elif isinstance(resource_type, int):
obj = getattr(db, cls.__name__).find_one(cls.resource_type_id == resource_type)
elif isinstance(resource_type, cls):
return resource_type
else:
obj = None
if not obj:
obj = cls()
obj.resource_type = resource_type
db.session.add(obj)
db.session.commit()
db.session.refresh(obj)
return obj | Returns the ResourceType object for `resource_type`. If no existing object was found, a new type will
be created in the database and returned
Args:
resource_type (str): Resource type name
Returns:
:obj:`ResourceType` | juraj-google-style |
def run_step(context):
logger.debug('started')
context.assert_child_key_has_value('fileWriteYaml', 'path', __name__)
out_path = context.get_formatted_string(context['fileWriteYaml']['path'])
is_payload_specified = ('payload' in context['fileWriteYaml'])
yaml_writer = pypyr.yaml.get_yaml_parser_roundtrip_for_context()
logger.debug(f'opening destination file for writing: {out_path}')
os.makedirs(os.path.abspath(os.path.dirname(out_path)), exist_ok=True)
with open(out_path, 'w') as outfile:
if is_payload_specified:
payload = context['fileWriteYaml']['payload']
formatted_iterable = context.get_formatted_iterable(payload)
else:
formatted_iterable = context.get_formatted_iterable(context)
yaml_writer.dump(formatted_iterable, outfile)
logger.info(f'formatted context content and wrote to {out_path}')
logger.debug('done') | Write payload out to yaml file.
Args:
context: pypyr.context.Context. Mandatory.
The following context keys expected:
- fileWriteYaml
- path. mandatory. path-like. Write output file to
here. Will create directories in path for you.
- payload. optional. Write this to output file. If not
specified, output entire context.
Returns:
None.
Raises:
pypyr.errors.KeyNotInContextError: fileWriteYaml or
fileWriteYaml['path'] missing in context.
pypyr.errors.KeyInContextHasNoValueError: fileWriteYaml or
fileWriteYaml['path'] exists but is None. | codesearchnet |
def _analyze_input_data(self, entry, k, depth=1, max_depth=3, max_list=3):
class _elementInfo(object):
def __init__(self, el, pos, depth=0, max_list=3):
self.shape = ''
self.type = type(el).__name__
self.dtype = ''
self.range = ''
self.sub_elements = []
self.ident = (' ' * (depth * 2))
self.pos = pos
numpy_scalar_types = list(itertools.chain(*np.sctypes.values()))
if isinstance(el, (int, float, bool)):
self.range = ' with value {}'.format(el)
elif (type(el) is np.ndarray):
self.shape = ' of shape {}'.format(el.shape)
self.dtype = ':{}'.format(str(el.dtype))
self.range = ' in range [{}, {}]'.format(el.min(), el.max())
elif (type(el) in numpy_scalar_types):
self.range = ' with value {}'.format(el)
elif isinstance(el, list):
self.shape = ' of len {}'.format(len(el))
if (depth < max_depth):
for (k, subel) in enumerate(el):
if (k < max_list):
self.sub_elements.append(_elementInfo(subel, k, (depth + 1), max_list))
else:
self.sub_elements.append(((' ' * ((depth + 1) * 2)) + '...'))
break
elif (len(el) > 0):
self.sub_elements.append(((' ' * ((depth + 1) * 2)) + ' ...'))
def __str__(self):
strings = []
vals = (self.ident, self.pos, self.type, self.dtype, self.shape, self.range)
strings.append('{}{}: {}{}{}{}'.format(*vals))
for (k, el) in enumerate(self.sub_elements):
strings.append(str(el))
return '\n'.join(strings)
return str(_elementInfo(entry, k, depth, max_list)) | Gather useful debug information from a datapoint.
Args:
entry: the datapoint component
k (int): index of this component in current datapoint
depth (int, optional): recursion depth
max_depth, max_list: same as in :meth:`__init__`.
Returns:
string: debug message | codesearchnet |
def _remove_string_from_commastring(self, field, string):
commastring = self.data.get(field, '')
if string in commastring:
self.data[field] = commastring.replace(string, '')
return True
return False | Remove a string from a comma separated list of strings
Args:
field (str): Field containing comma separated list
string (str): String to remove
Returns:
bool: True if string removed or False if not | juraj-google-style |
def size(self):
if (len(self.grouping_column_types) > 1):
index_type = WeldStruct([self.grouping_column_types])
else:
index_type = self.grouping_column_types[0]
index_name = self.grouping_column_names[0]
return SeriesWeld(grizzly_impl.groupby_size(self.columns, self.column_types, self.grouping_columns, self.grouping_column_types), WeldLong(), index_type=index_type, index_name=index_name) | Returns the sizes of the groups as series.
Returns:
TYPE: Description | codesearchnet |
def _get_required_params_for_conversion(self, event_key, event_tags):
snapshot = {}
event_dict = {self.EventParams.EVENT_ID: self.config.get_event(event_key).id, self.EventParams.TIME: self._get_time(), self.EventParams.KEY: event_key, self.EventParams.UUID: str(uuid.uuid4())}
if event_tags:
revenue_value = event_tag_utils.get_revenue_value(event_tags)
if (revenue_value is not None):
event_dict[event_tag_utils.REVENUE_METRIC_TYPE] = revenue_value
numeric_value = event_tag_utils.get_numeric_value(event_tags, self.config.logger)
if (numeric_value is not None):
event_dict[event_tag_utils.NUMERIC_METRIC_TYPE] = numeric_value
if (len(event_tags) > 0):
event_dict[self.EventParams.TAGS] = event_tags
snapshot[self.EventParams.EVENTS] = [event_dict]
return snapshot | Get parameters that are required for the conversion event to register.
Args:
event_key: Key representing the event which needs to be recorded.
event_tags: Dict representing metadata associated with the event.
Returns:
Dict consisting of the decisions and events info for conversion event. | codesearchnet |
def read_saved_model(saved_model_dir):
path_to_pbtxt = os.path.join(compat.as_bytes(saved_model_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
path_to_pb = os.path.join(compat.as_bytes(saved_model_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
if not file_io.file_exists(path_to_pbtxt) and (not file_io.file_exists(path_to_pb)):
raise IOError('SavedModel file does not exist at: %s' % saved_model_dir)
saved_model = saved_model_pb2.SavedModel()
if file_io.file_exists(path_to_pb):
with file_io.FileIO(path_to_pb, 'rb') as f:
file_content = f.read()
try:
saved_model.ParseFromString(file_content)
return saved_model
except message.DecodeError as e:
raise IOError('Cannot parse proto file %s: %s.' % (path_to_pb, str(e)))
elif file_io.file_exists(path_to_pbtxt):
with file_io.FileIO(path_to_pbtxt, 'rb') as f:
file_content = f.read()
try:
text_format.Merge(file_content.decode('utf-8'), saved_model)
return saved_model
except text_format.ParseError as e:
raise IOError('Cannot parse pbtxt file %s: %s.' % (path_to_pbtxt, str(e)))
else:
raise IOError('SavedModel file does not exist at: %s/{%s|%s}' % (saved_model_dir, constants.SAVED_MODEL_FILENAME_PBTXT, constants.SAVED_MODEL_FILENAME_PB)) | Reads the saved_model.pb or saved_model.pbtxt file containing `SavedModel`.
Args:
saved_model_dir: Directory containing the SavedModel file.
Returns:
A `SavedModel` protocol buffer.
Raises:
IOError: If the file does not exist, or cannot be successfully parsed. | github-repos |
def keypath(self, key):
return fs.path(self.path, self.escape_key(key)) | Get the filesystem path for a key.
Arguments:
key: Key.
Returns:
str: Absolute path. | codesearchnet |
def CreateSignatureContract(publicKey):
script = Contract.CreateSignatureRedeemScript(publicKey)
params = b'\x00'
encoded = publicKey.encode_point(True)
pubkey_hash = Crypto.ToScriptHash(encoded, unhex=True)
return Contract(script, params, pubkey_hash) | Create a signature contract.
Args:
publicKey (edcsa.Curve.point): e.g. KeyPair.PublicKey.
Returns:
neo.SmartContract.Contract: a Contract instance. | codesearchnet |
def status(self):
return BackendStatus(backend_name=self.name(), backend_version=__version__, operational=True, pending_jobs=0, status_msg='') | Return backend status.
Returns:
BackendStatus: the status of the backend. | codesearchnet |
def load_template(filename):
template_file = os.path.join(PKG_DIR, 'templates', filename)
with open(template_file) as fp:
return fp.read() | Load template from file.
The templates are part of the package and must be included as
``package_data`` in project ``setup.py``.
Args:
filename (str):
The template path. Relative to `peltak` package directory.
Returns:
str: The content of the chosen template. | juraj-google-style |
def get_central_coors(self, row, col):
if ((row < 0) or (row >= self.nRows) or (col < 0) or (col >= self.nCols)):
raise ValueError(('The row (%d) or col (%d) must be >=0 and less than nRows (%d) or nCols (%d)!' % (row, col, self.nRows, self.nCols)))
else:
tmpx = (self.xMin + ((col + 0.5) * self.dx))
tmpy = (self.yMax - ((row + 0.5) * self.dx))
return (tmpx, tmpy) | Get the coordinates of central grid.
Args:
row: row number, range from 0 to (nRows - 1).
col: col number, range from 0 to (nCols - 1).
Returns:
XY coordinates. If the row or col are invalid, raise ValueError. | codesearchnet |
def _constant_value(ragged_factory, inner_factory, pylist, dtype, ragged_rank, inner_shape):
if ragged_tensor.is_ragged(pylist):
raise TypeError('pylist may not be a RaggedTensor or RaggedTensorValue.')
if not isinstance(pylist, (list, tuple)) and np.ndim(pylist) == 0:
if ragged_rank is not None and ragged_rank != 0:
raise ValueError('Invalid pylist=%r: incompatible with ragged_rank=%d' % (pylist, ragged_rank))
if inner_shape is not None and inner_shape:
raise ValueError('Invalid pylist=%r: incompatible with dim(inner_shape)=%d' % (pylist, len(inner_shape)))
return inner_factory(pylist, dtype, ())
if ragged_rank is not None and ragged_rank < 0:
raise ValueError('Invalid ragged_rank=%r: must be nonnegative' % ragged_rank)
scalar_depth, max_depth = _find_scalar_and_max_depth(pylist)
if scalar_depth is not None:
if max_depth > scalar_depth:
raise ValueError('Invalid pylist=%r: empty list nesting is greater than scalar value nesting' % pylist)
if ragged_rank is not None and max_depth < ragged_rank:
raise ValueError(f'Invalid pylist={pylist}, max depth smaller than ragged_rank={ragged_rank}')
if inner_shape is not None and ragged_rank is not None:
expected_depth = ragged_rank + len(inner_shape) + 1
if scalar_depth is not None and expected_depth != scalar_depth or (scalar_depth is None and expected_depth < max_depth):
raise ValueError('Invalid pylist=%r: incompatible with ragged_rank=%d and dim(inner_shape)=%d' % (pylist, ragged_rank, len(inner_shape)))
if ragged_rank == 0 or (ragged_rank is None and (max_depth < 2 or (inner_shape is not None and max_depth - len(inner_shape) < 2))):
return inner_factory(pylist, dtype, inner_shape)
if inner_shape is None:
if ragged_rank is None:
inner_shape = ()
else:
inner_shape = _default_inner_shape_for_pylist(pylist, ragged_rank)
if ragged_rank is None:
if scalar_depth is None:
ragged_rank = max(1, max_depth - 1)
else:
ragged_rank = max(1, scalar_depth - 1 - len(inner_shape))
nested_splits = []
values = pylist
for dim in range(ragged_rank):
nested_splits.append([0])
concatenated_values = []
for row in values:
nested_splits[dim].append(nested_splits[dim][-1] + len(row))
concatenated_values.extend(row)
values = concatenated_values
values = inner_factory(values, dtype=dtype, shape=(len(values),) + inner_shape, name='values')
for row_splits in reversed(nested_splits):
values = ragged_factory(values, row_splits)
return values | Constructs a constant RaggedTensor or RaggedTensorValue.
Args:
ragged_factory: A factory function with the signature:
`ragged_factory(values, row_splits)`
inner_factory: A factory function with the signature: `inner_factory(pylist,
dtype, shape, name)`
pylist: A nested `list`, `tuple` or `np.ndarray`.
dtype: Data type for returned value.
ragged_rank: Ragged rank for returned value.
inner_shape: Inner value shape for returned value.
Returns:
A value returned by `ragged_factory` or `inner_factory`.
Raises:
ValueError: If the scalar values in `pylist` have inconsistent nesting
depth; or if ragged_rank or inner_shape are incompatible with `pylist`. | github-repos |
def _Open(self, path_spec, mode='rb'):
if not path_spec.HasParent():
raise errors.PathSpecError(
'Unsupported path specification without parent.')
file_object = resolver.Resolver.OpenFileObject(
path_spec.parent, resolver_context=self._resolver_context)
try:
fsapfs_container = pyfsapfs.container()
fsapfs_container.open_file_object(file_object)
except:
file_object.close()
raise
self._file_object = file_object
self._fsapfs_container = fsapfs_container | Opens the file system defined by path specification.
Args:
path_spec (PathSpec): a path specification.
mode (Optional[str])): file access mode. The default is 'rb' read-only
binary.
Raises:
AccessError: if the access to open the file was denied.
IOError: if the file system object could not be opened.
PathSpecError: if the path specification is incorrect.
ValueError: if the path specification is invalid. | juraj-google-style |
def common_vector_root(vec1, vec2):
root = []
for v1, v2 in zip(vec1, vec2):
if v1 == v2:
root.append(v1)
else:
return root
return root | Return common root of the two vectors.
Args:
vec1 (list/tuple): First vector.
vec2 (list/tuple): Second vector.
Usage example::
>>> common_vector_root([1, 2, 3, 4, 5], [1, 2, 8, 9, 0])
[1, 2]
Returns:
list: Common part of two vectors or blank list. | juraj-google-style |
def __init__(
self, resolver_context, encryption_method=None, file_object=None):
if file_object is not None and encryption_method is None:
raise ValueError(
'File-like object provided without corresponding encryption method.')
super(EncryptedStream, self).__init__(resolver_context)
self._current_offset = 0
self._decrypted_data = b''
self._decrypted_data_offset = 0
self._decrypted_data_size = 0
self._decrypted_stream_size = None
self._decrypter = None
self._encrypted_data = b''
self._encryption_method = encryption_method
self._file_object = file_object
self._file_object_set_in_init = bool(file_object)
self._path_spec = None
self._realign_offset = True | Initializes a file-like object.
If the file-like object is chained do not separately use the parent
file-like object.
Args:
resolver_context (Context): resolver context.
encryption_method (Optional[str]): method used to the encrypt the data.
file_object (Optional[FileIO]): parent file-like object.
Raises:
ValueError: if file_object provided but encryption_method is not. | juraj-google-style |
def optimized_for_xmon(circuit: circuits.Circuit, new_device: Optional[xmon_device.XmonDevice]=None, qubit_map: Callable[([ops.Qid], devices.GridQubit)]=(lambda e: cast(devices.GridQubit, e)), allow_partial_czs: bool=False) -> circuits.Circuit:
copy = circuit.copy()
opts = (_OPTIMIZERS_PART_CZ if allow_partial_czs else _OPTIMIZERS)
for optimizer in opts:
optimizer(copy)
return circuits.Circuit.from_ops((op.transform_qubits(qubit_map) for op in copy.all_operations()), strategy=circuits.InsertStrategy.EARLIEST, device=(new_device or copy.device)) | Optimizes a circuit with XmonDevice in mind.
Starts by converting the circuit's operations to the xmon gate set, then
begins merging interactions and rotations, ejecting pi-rotations and phasing
operations, dropping unnecessary operations, and pushing operations earlier.
Args:
circuit: The circuit to optimize.
new_device: The device the optimized circuit should be targeted at. If
set to None, the circuit's current device is used.
qubit_map: Transforms the qubits (e.g. so that they are GridQubits).
allow_partial_czs: If true, the optimized circuit may contain partial CZ
gates. Otherwise all partial CZ gates will be converted to full CZ
gates. At worst, two CZ gates will be put in place of each partial
CZ from the input.
Returns:
The optimized circuit. | codesearchnet |
def list_adb_devices_by_usb_id():
out = adb.AdbProxy().devices(['-l'])
clean_lines = new_str(out, 'utf-8').strip().split('\n')
results = []
for line in clean_lines:
tokens = line.strip().split()
if ((len(tokens) > 2) and (tokens[1] == 'device')):
results.append(tokens[2])
return results | List the usb id of all android devices connected to the computer that
are detected by adb.
Returns:
A list of strings that are android device usb ids. Empty if there's
none. | codesearchnet |
def isanytargetmethod(object):
decorators, target = tf_decorator.unwrap(object)
for decorator in decorators:
if _inspect.ismethod(decorator.decorated_target):
return True
while isinstance(target, functools.partial):
target = target.func
return callable(target) and (not _inspect.isfunction(target)) | Checks if `object` or a TF Decorator wrapped target contains self or cls.
This function could be used along with `tf_inspect.getfullargspec` to
determine if the first argument of `object` argspec is self or cls. If the
first argument is self or cls, it needs to be excluded from argspec when we
compare the argspec to the input arguments and, if provided, the tf.function
input_signature.
Like `tf_inspect.getfullargspec` and python `inspect.getfullargspec`, it
does not unwrap python decorators.
Args:
obj: An method, function, or functool.partial, possibly decorated by
TFDecorator.
Returns:
A bool indicates if `object` or any target along the chain of TF decorators
is a method. | github-repos |
def ParseCookieRow(self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
cookie_name = self._GetRowValue(query_hash, row, 'name')
cookie_data = self._GetRowValue(query_hash, row, 'value')
hostname = self._GetRowValue(query_hash, row, 'host_key')
if hostname.startswith('.'):
hostname = hostname[1:]
httponly = self._GetRowValue(query_hash, row, 'httponly')
path = self._GetRowValue(query_hash, row, 'path')
persistent = self._GetRowValue(query_hash, row, 'persistent')
secure = self._GetRowValue(query_hash, row, 'secure')
if secure:
scheme = 'https'
else:
scheme = 'http'
url = '{0:s}:
event_data = ChromeCookieEventData()
event_data.cookie_name = cookie_name
event_data.data = cookie_data
event_data.host = hostname
event_data.httponly = bool(httponly)
event_data.path = path
event_data.persistent = bool(persistent)
event_data.query = query
event_data.secure = bool(secure)
event_data.url = url
timestamp = self._GetRowValue(query_hash, row, 'creation_utc')
date_time = dfdatetime_webkit_time.WebKitTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'last_access_utc')
date_time = dfdatetime_webkit_time.WebKitTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_LAST_ACCESS)
parser_mediator.ProduceEventWithEventData(event, event_data)
timestamp = self._GetRowValue(query_hash, row, 'expires_utc')
if timestamp:
date_time = dfdatetime_webkit_time.WebKitTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_EXPIRATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
for plugin in self._cookie_plugins:
if cookie_name != plugin.COOKIE_NAME:
continue
try:
plugin.UpdateChainAndProcess(
parser_mediator, cookie_data=cookie_data, cookie_name=cookie_name,
url=url)
except Exception as exception:
parser_mediator.ProduceExtractionWarning(
'plugin: {0:s} unable to parse cookie with error: {1!s}'.format(
plugin.NAME, exception)) | Parses a cookie row.
Args:
parser_mediator (ParserMediator): parser mediator.
query (str): query that created the row.
row (sqlite3.Row): row resulting from the query. | juraj-google-style |
def change_subscription(self, topics):
if self._user_assignment:
raise IllegalStateError(self._SUBSCRIPTION_EXCEPTION_MESSAGE)
if isinstance(topics, six.string_types):
topics = [topics]
if self.subscription == set(topics):
log.warning("subscription unchanged by change_subscription(%s)",
topics)
return
for t in topics:
self._ensure_valid_topic_name(t)
log.info('Updating subscribed topics to: %s', topics)
self.subscription = set(topics)
self._group_subscription.update(topics)
for tp in set(self.assignment.keys()):
if tp.topic not in self.subscription:
del self.assignment[tp] | Change the topic subscription.
Arguments:
topics (list of str): topics for subscription
Raises:
IllegalStateErrror: if assign_from_user has been used already
TypeError: if a topic is None or a non-str
ValueError: if a topic is an empty string or
- a topic name is '.' or '..' or
- a topic name does not consist of ASCII-characters/'-'/'_'/'.' | juraj-google-style |
def __init__(self, channel):
self.ListGroups = channel.unary_unary(
"/google.monitoring.v3.GroupService/ListGroups",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.ListGroupsRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.ListGroupsResponse.FromString,
)
self.GetGroup = channel.unary_unary(
"/google.monitoring.v3.GroupService/GetGroup",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.GetGroupRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__pb2.Group.FromString,
)
self.CreateGroup = channel.unary_unary(
"/google.monitoring.v3.GroupService/CreateGroup",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.CreateGroupRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__pb2.Group.FromString,
)
self.UpdateGroup = channel.unary_unary(
"/google.monitoring.v3.GroupService/UpdateGroup",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.UpdateGroupRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__pb2.Group.FromString,
)
self.DeleteGroup = channel.unary_unary(
"/google.monitoring.v3.GroupService/DeleteGroup",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.DeleteGroupRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.ListGroupMembers = channel.unary_unary(
"/google.monitoring.v3.GroupService/ListGroupMembers",
request_serializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.ListGroupMembersRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_monitoring__v3_dot_proto_dot_group__service__pb2.ListGroupMembersResponse.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def value_container(val):
container = None
if not isinstance(val, values_lib.DistributedVariable):
if hasattr(val, '_distributed_container'):
container = val._distributed_container()
elif isinstance(val, composite_tensor.CompositeTensor) and hasattr(val, 'handle') and hasattr(val.handle, '_distributed_container'):
container = val.handle._distributed_container()
return container if container is not None else val | Returns the container that this per-replica `value` belongs to.
Args:
val: A value returned by `call_for_each_replica()` or a variable created in
`scope()`.
Returns:
A container that `value` belongs to.
If value does not belong to any container (including the case of
container having been destroyed), returns the value itself. | github-repos |
def __and__(self, other):
other = self._cast_to_frameset(other)
if other is NotImplemented:
return NotImplemented
return self.from_iterable(self.items & other.items, sort=True) | Overloads the ``&`` operator.
Returns a new :class:`FrameSet` that holds only the
frames `self` and `other` have in common.
Note:
The order of operations is irrelevant:
``(self & other) == (other & self)``
Args:
other (:class:`FrameSet`):
Returns:
:class:`FrameSet`:
:class:`NotImplemented`: if `other` fails to convert to a :class:`FrameSet` | juraj-google-style |
def prepare_prop_defs(prop_defs, prop_name, cls_names):
def get_def(prop_defs, def_fields, default_val=None):
rtn_list = []
for fld in def_fields:
if prop_defs.get(fld):
rtn_list += prop_defs.get(fld)
if not rtn_list and default_val:
rtn_list.append(default_val)
elif rtn_list:
try:
rtn_list = list(set(rtn_list))
except TypeError as e:
new_rtn = []
for item in rtn_list:
if isinstance(item, MODULE.rdfclass.RdfClassBase):
new_rtn.append(\
"|".join(merge_rdf_list(item['owl_unionOf'])))
elif isinstance(item, list):
new_rtn.append("|".join(item))
else:
new_rtn.append(item)
rtn_list = list(set(new_rtn))
new_rtn = []
for item in rtn_list:
if "|" in item:
new_rtn.append([Uri(domain) \
for domain in item.split("|")])
else:
new_rtn.append(Uri(item))
rtn_list = new_rtn
return rtn_list
required_def_defaults = {
Uri('kds_rangeDef'): [{}],
Uri('rdfs_range'): [Uri("xsd_string")],
Uri('rdfs_domain'): cls_names,
Uri('rdfs_label'): [NSM.nouri(prop_name)],
Uri('kds_formDefault'): [{
Uri('kds:appliesToClass'): Uri('kdr:AllClasses'),
Uri('kds:formFieldName'): "emailaddr",
Uri('kds:formLabelName'): [NSM.nouri(prop_name)],
Uri('kds:formFieldHelp'): find_values(DESCRIPTION_FIELDS,
prop_defs,
None),
Uri('kds:fieldType'): {
Uri('rdf:type'): Uri('kdr:TextField')
}
}],
Uri('kds_propertyValidation'): [],
Uri('kds_propertySecurity'): [],
Uri('kds_propertyProcessing'): []
}
for prop in required_def_defaults:
if prop not in prop_defs.keys():
prop_defs[prop] = required_def_defaults[prop]
prop_defs['rdfs_domain'] = get_def(prop_defs, DOMAIN_FIELDS, cls_names)
prop_defs['rdfs_range'] = get_def(prop_defs, RANGE_FIELDS,
Uri('xsd_string'))
return prop_defs | Examines and adds any missing defs to the prop_defs dictionary for
use with the RdfPropertyMeta.__prepare__ method
Args:
-----
prop_defs: the defintions from the rdf vocabulary defintion
prop_name: the property name
cls_names: the name of the associated classes
Returns:
--------
prop_defs | juraj-google-style |
def _items(self, cart_status, category=None):
if not isinstance(cart_status, Iterable):
cart_status = [cart_status]
status_query = (
Q(productitem__cart__status=status) for status in cart_status
)
in_cart = Q(productitem__cart__user=self.user)
in_cart = in_cart & reduce(operator.__or__, status_query)
quantities_in_cart = When(
in_cart,
then="productitem__quantity",
)
quantities_or_zero = Case(
quantities_in_cart,
default=Value(0),
)
products = inventory.Product.objects
if category:
products = products.filter(category=category)
products = products.select_related("category")
products = products.annotate(quantity=Sum(quantities_or_zero))
products = products.filter(quantity__gt=0)
out = []
for prod in products:
out.append(ProductAndQuantity(prod, prod.quantity))
return out | Aggregates the items that this user has purchased.
Arguments:
cart_status (int or Iterable(int)): etc
category (Optional[models.inventory.Category]): the category
of items to restrict to.
Returns:
[ProductAndQuantity, ...]: A list of product-quantity pairs,
aggregating like products from across multiple invoices. | juraj-google-style |
def add(self, name: str, path_or_url: str) -> Source:
logger.info('adding source: %s -> %s', name, path_or_url)
if (name in self.__sources):
logger.info('name already used by existing source: %s', name)
raise NameInUseError(name)
is_url = False
try:
scheme = urllib.parse.urlparse(path_or_url).scheme
is_url = (scheme in ['http', 'https'])
logger.debug('source determined to be remote: %s', path_or_url)
except ValueError:
logger.debug('source determined to be local: %s', path_or_url)
if is_url:
url = path_or_url
path = url.replace('https:
path = path.replace('/', '_')
path = path.replace('.', '_')
path = os.path.join(self.__path, path)
shutil.rmtree(path, ignore_errors=True)
try:
logger.debug('cloning repository %s to %s', url, path)
repo = git.Repo.clone_from(url, path)
logger.debug('cloned repository %s to %s', url, path)
sha = repo.head.object.hexsha
version = repo.git.rev_parse(sha, short=8)
except:
shutil.rmtree(path, ignore_errors=True)
logger.error('failed to download remote source to local: %s -> %s', url, path)
raise IOError("failed to download remote source to local installation: '{}' -> '{}'".format(url, path))
source = RemoteSource(name, path, url, version)
else:
path = os.path.abspath(path_or_url)
if (not os.path.isdir(path)):
raise IOError('no directory found at path: {}'.format(path))
source = LocalSource(name, path)
self.load(source)
self.save()
logger.info('added source: %s', name) | Attempts to register a source provided by a given URL or local path
under a given name.
Returns:
a description of the registered source.
Raises:
NameInUseError: if an existing source is already registered under
the given name.
IOError: if no directory exists at the given path.
IOError: if downloading the remote source failed. (FIXME) | codesearchnet |
def set_name(self, vid, name=None, default=False, disable=False):
cmds = self.command_builder('name', value=name, default=default,
disable=disable)
return self.configure_vlan(vid, cmds) | Configures the VLAN name
EosVersion:
4.13.7M
Args:
vid (str): The VLAN ID to Configures
name (str): The value to configure the vlan name
default (bool): Defaults the VLAN ID name
disable (bool): Negates the VLAN ID name
Returns:
True if the operation was successful otherwise False | juraj-google-style |
def as_list(self, value):
if isinstance(value, tensor_lib.Tensor):
return [value]
elif isinstance(value, IndexedSlices):
return [value]
elif isinstance(value, value_lib.Mirrored):
return value.values
else:
raise ValueError('unwrap: unsupported input type: %s' % type(value)) | An utility to convert a `Mirrored`, `Tensor` or `IndexedSlices` to a list.
The reason it exists is to provide a uniformed view of returned value of
"reduce" calls, especially across tf.function boundaries. Returning
`Mirrored` from a tf.function will only evaluate the primary value, which
makes collective ops of non-primary device being pruned, and will eventually
cause hanging.
Args:
value: the value to convert, can be one of `Mirrored`, `Tensor` and
`IndexedSlices`.
Returns:
A list of `Tensor` or `IndexedSlices`. | github-repos |
def DisplayAccountTree(account, accounts, links, depth=0):
prefix = '-' * depth * 2
print '%s%s, %s' % (prefix, account['customerId'], account['name'])
if account['customerId'] in links:
for child_link in links[account['customerId']]:
child_account = accounts[child_link['clientCustomerId']]
DisplayAccountTree(child_account, accounts, links, depth + 1) | Displays an account tree.
Args:
account: dict The account to display.
accounts: dict Map from customerId to account.
links: dict Map from customerId to child links.
depth: int Depth of the current account in the tree. | juraj-google-style |
def get_keys_from_shelve(file_name, file_location):
temp_list = list()
file = __os.path.join(file_location, file_name)
shelve_store = __shelve.open(file)
for key in shelve_store:
temp_list.append(key)
shelve_store.close()
return temp_list | Function to retreive all keys in a shelve
Args:
file_name: Shelve storage file name
file_location: The location of the file, derive from the os module
Returns:
a list of the keys | juraj-google-style |
def from_proto(cls, struct_def_proto: message.Message, backbone_element_path: Optional[str]=None) -> 'QuantityStructureDataType':
struct_type = StructureDataType.from_proto(struct_def_proto=struct_def_proto, backbone_element_path=backbone_element_path, parent_definitions=None)
return cls(structure_definition=struct_type.structure_definition, backbone_element_path=struct_type.backbone_element_path, base_type=struct_type.base_type, element_type=struct_type.element_type, _child_defs=struct_type._child_defs, _slices=struct_type._slices, _raw_url=struct_type._raw_url, root_element_definition=struct_type.root_element_definition, cardinality=struct_type.cardinality) | Creates a QuantityStructureDataType from a proto.
Args:
struct_def_proto: Proto containing information about the structure
definition.
backbone_element_path: Optional path to the structure def.
Returns:
A QuantityStructureDataType. | github-repos |
def left_margin(self, margin):
if margin <= 255 and margin >= 0:
self.send(chr(27)+'I'+chr(margin))
else:
raise RuntimeError('Invalid margin parameter.') | Specify the left margin.
Args:
margin: The left margin, in character width. Must be less than the media's width.
Returns:
None
Raises:
RuntimeError: Invalid margin parameter. | juraj-google-style |
def set_Tc(self, Tc, T=None):
if isinstance(Tc, Iterable):
if len(Tc)==len(T):
x = np.concatenate(([-ttconf.BIG_NUMBER], T, [ttconf.BIG_NUMBER]))
y = np.concatenate(([Tc[0]], Tc, [Tc[-1]]))
self.Tc = interp1d(x,y)
else:
self.logger("need Tc values and Timepoints of equal length",2,warn=True)
self.Tc = interp1d([-ttconf.BIG_NUMBER, ttconf.BIG_NUMBER], [1e-5, 1e-5])
else:
self.Tc = interp1d([-ttconf.BIG_NUMBER, ttconf.BIG_NUMBER],
[Tc+ttconf.TINY_NUMBER, Tc+ttconf.TINY_NUMBER])
self.calc_integral_merger_rate() | initialize the merger model with a coalescent time
Args:
- Tc: a float or an iterable, if iterable another argument T of same shape is required
- T: an array like of same shape as Tc that specifies the time pivots corresponding to Tc
Returns:
- None | juraj-google-style |
def _decode_exp(self, access_token=None):
c = self.get_credentials()
jwt = (access_token or c.access_token)
x = self.decode_jwt_payload(jwt)
if ('exp' in x):
try:
exp = int(x['exp'])
except ValueError:
raise PanCloudError('Expiration time (exp) must be an integer')
else:
self.jwt_exp = exp
return exp
else:
raise PanCloudError('No exp field found in payload') | Extract exp field from access token.
Args:
access_token (str): Access token to decode. Defaults to ``None``.
Returns:
int: JWT expiration in epoch seconds. | codesearchnet |
def plot_wigner_seitz(lattice, ax=None, **kwargs):
ax, fig, plt = get_ax3d_fig_plt(ax)
if "color" not in kwargs:
kwargs["color"] = "k"
if "linewidth" not in kwargs:
kwargs["linewidth"] = 1
bz = lattice.get_wigner_seitz_cell()
ax, fig, plt = get_ax3d_fig_plt(ax)
for iface in range(len(bz)):
for line in itertools.combinations(bz[iface], 2):
for jface in range(len(bz)):
if iface < jface and any(
np.all(line[0] == x) for x in bz[jface]) \
and any(np.all(line[1] == x) for x in bz[jface]):
ax.plot(*zip(line[0], line[1]), **kwargs)
return fig, ax | Adds the skeleton of the Wigner-Seitz cell of the lattice to a matplotlib Axes
Args:
lattice: Lattice object
ax: matplotlib :class:`Axes` or None if a new figure should be created.
kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to black
and linewidth to 1.
Returns:
matplotlib figure and matplotlib ax | juraj-google-style |
async def getNodeByBuid(self, buid):
node = self.livenodes.get(buid)
if (node is not None):
return node
props = {}
proplayr = {}
for layr in self.layers:
layerprops = (await layr.getBuidProps(buid))
props.update(layerprops)
proplayr.update({k: layr for k in layerprops})
node = s_node.Node(self, buid, props.items(), proplayr=proplayr)
(await asyncio.sleep(0))
if (node.ndef is None):
return None
self.buidcache.append(node)
self.livenodes[buid] = node
return node | Retrieve a node tuple by binary id.
Args:
buid (bytes): The binary ID for the node.
Returns:
Optional[s_node.Node]: The node object or None. | codesearchnet |
def _ParseCacheEntry(
self, parser_mediator, file_object, display_name, block_size):
cache_entry, event_data = self._ReadCacheEntry(
file_object, display_name, block_size)
date_time = dfdatetime_posix_time.PosixTime(
timestamp=cache_entry.last_fetched_time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_LAST_VISITED)
parser_mediator.ProduceEventWithEventData(event, event_data)
if cache_entry.last_modified_time:
date_time = dfdatetime_posix_time.PosixTime(
timestamp=cache_entry.last_modified_time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data)
if cache_entry.expiration_time:
date_time = dfdatetime_posix_time.PosixTime(
timestamp=cache_entry.expiration_time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_EXPIRATION)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parses a cache entry.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): a file-like object.
display_name (str): display name.
block_size (int): block size. | juraj-google-style |
def dframe(self, dimensions=None, multi_index=False):
if dimensions is None:
dimensions = [d.name for d in self.dimensions()]
else:
dimensions = [self.get_dimension(d, strict=True).name for d in dimensions]
df = self.interface.dframe(self, dimensions)
if multi_index:
df = df.set_index([d for d in dimensions if d in self.kdims])
return df | Convert dimension values to DataFrame.
Returns a pandas dataframe of columns along each dimension,
either completely flat or indexed by key dimensions.
Args:
dimensions: Dimensions to return as columns
multi_index: Convert key dimensions to (multi-)index
Returns:
DataFrame of columns corresponding to each dimension | juraj-google-style |
def remove_child(self, child):
if (not isinstance(child, Node)):
raise TypeError('child must be a Node')
try:
self.children.remove(child)
child.parent = None
except:
raise RuntimeError('Attempting to remove non-existent child') | Remove child from ``Node`` object
Args:
``child`` (``Node``): The child to remove | codesearchnet |
def encode(signer, payload, header=None, key_id=None):
if header is None:
header = {}
if key_id is None:
key_id = signer.key_id
header.update({'typ': 'JWT', 'alg': 'RS256'})
if key_id is not None:
header['kid'] = key_id
segments = [
_helpers.unpadded_urlsafe_b64encode(
json.dumps(header).encode('utf-8')
),
_helpers.unpadded_urlsafe_b64encode(
json.dumps(payload).encode('utf-8')
),
]
signing_input = b'.'.join(segments)
signature = signer.sign(signing_input)
segments.append(
_helpers.unpadded_urlsafe_b64encode(signature)
)
return b'.'.join(segments) | Make a signed JWT.
Args:
signer (google.auth.crypt.Signer): The signer used to sign the JWT.
payload (Mapping[str, str]): The JWT payload.
header (Mapping[str, str]): Additional JWT header payload.
key_id (str): The key id to add to the JWT header. If the
signer has a key id it will be used as the default. If this is
specified it will override the signer's key id.
Returns:
bytes: The encoded JWT. | juraj-google-style |
def measure(self) -> np.ndarray:
probs = np.real(bk.evaluate(self.probabilities()))
indices = np.asarray(list(np.ndindex(*([2] * self.qubit_nb))))
res = np.random.choice(probs.size, p=probs.ravel())
res = indices[res]
return res | Measure the state in the computational basis.
Returns:
A [2]*bits array of qubit states, either 0 or 1 | codesearchnet |
def deps_from_pydit_json(requires, runtime=True):
parsed = []
for req in requires:
name, specs = None, None
reqs = req.split(' ')
name = reqs[0]
if len(reqs) == 2:
specs = reqs[1]
specs = specs.split(",")
specs = [re.sub('[()]', '', spec) for spec in specs]
specs = [re.split('([0-9])', spec, 1) for spec in specs]
for spec in specs:
spec[1:3] = [''.join(spec[1:3])]
if specs:
for spec in specs:
if '!' in spec[0]:
parsed.append(['Conflicts', name, '=', spec[1]])
elif specs[0] == '==':
parsed.append(['Requires', name, '=', spec[1]])
else:
parsed.append(['Requires', name, spec[0], spec[1]])
else:
parsed.append(['Requires', name])
if not runtime:
for pars in parsed:
pars[0] = 'Build' + pars[0]
return parsed | Parses dependencies returned by pydist.json, since versions
uses brackets we can't use pkg_resources to parse and we need a separate
method
Args:
requires: list of dependencies as written in pydist.json of the package
runtime: are the dependencies runtime (True) or build time (False)
Returns:
List of semi-SPECFILE dependecies (see dependency_to_rpm for format) | juraj-google-style |
def _find_test_class():
try:
return utils.find_subclass_in_module(base_test.BaseTestClass, sys.modules['__main__'])
except ValueError:
logging.exception('Exactly one subclass of `base_test.BaseTestClass` should be in the main file.')
sys.exit(1) | Finds the test class in a test script.
Walk through module members and find the subclass of BaseTestClass. Only
one subclass is allowed in a test script.
Returns:
The test class in the test module.
Raises:
SystemExit: Raised if the number of test classes is not exactly one. | github-repos |
def center_text(text, width=80):
centered = []
for line in text.splitlines():
centered.append(line.center(width))
return "\n".join(centered) | Center all lines of the text.
It is assumed that all lines width is smaller then B{width}, because the
line width will not be checked.
Args:
text (str): Text to wrap.
width (int): Maximum number of characters per line.
Returns:
str: Centered text. | juraj-google-style |
def isregex_expr(expr):
if not isinstance(expr, str):
return False
return all([
len(expr) > 3,
expr.startswith('re/'),
expr.endswith('/')
]) | Returns ``True`` is the given expression value is a regular expression
like string with prefix ``re/`` and suffix ``/``, otherwise ``False``.
Arguments:
expr (mixed): expression value to test.
Returns:
bool | juraj-google-style |
def init_logger(level, printout=True):
root_logger = logging.getLogger("boussole")
root_logger.setLevel(level)
if not printout:
from io import StringIO
dummystream = StringIO()
handler = logging.StreamHandler(dummystream)
else:
handler = logging.StreamHandler()
handler.setFormatter(
colorlog.ColoredFormatter(
'%(asctime)s - %(log_color)s%(message)s',
datefmt="%H:%M:%S"
)
)
root_logger.addHandler(handler)
return root_logger | Initialize app logger to configure its level/handler/formatter/etc..
Todo:
* A mean to raise click.Abort or sys.exit when CRITICAL is used;
Args:
level (str): Level name (``debug``, ``info``, etc..).
Keyword Arguments:
printout (bool): If False, logs will never be outputed.
Returns:
logging.Logger: Application logger. | juraj-google-style |
def readpar(par_file, root):
par_nml = deepcopy(PAR_DEFAULT)
if PAR_DFLT_FILE.is_file():
_enrich_with_par(par_nml, PAR_DFLT_FILE)
else:
PAR_DFLT_FILE.parent.mkdir(exist_ok=True)
f90nml.write(par_nml, str(PAR_DFLT_FILE))
if (not par_file.is_file()):
raise NoParFileError(par_file)
par_main = f90nml.read(str(par_file))
if ('default_parameters_parfile' in par_main):
par_dflt = par_main['default_parameters_parfile'].get('par_name_defaultparameters', 'par_defaults')
par_dflt = (root / par_dflt)
if (not par_dflt.is_file()):
raise NoParFileError(par_dflt)
_enrich_with_par(par_nml, par_dflt)
_enrich_with_par(par_nml, par_file)
par_out = ((root / par_nml['ioin']['output_file_stem']) / '_parameters.dat')
if par_out.is_file():
_enrich_with_par(par_nml, par_out)
par_out = ((root / par_nml['ioin']['hdf5_output_folder']) / 'parameters.dat')
if par_out.is_file():
_enrich_with_par(par_nml, par_out)
return par_nml | Read StagYY par file.
The namelist is populated in chronological order with:
- :data:`PAR_DEFAULT`, an internal dictionary defining defaults;
- :data:`PAR_DFLT_FILE`, the global configuration par file;
- ``par_name_defaultparameters`` if it is defined in ``par_file``;
- ``par_file`` itself;
- ``parameters.dat`` if it can be found in the StagYY output directories.
Args:
par_file (:class:`pathlib.Path`): path of par file.
root (:class:`pathlib.Path`): path on which other paths are rooted.
This is usually par.parent.
Returns:
:class:`f90nml.namelist.Namelist`: case insensitive dict of dict of
values with first key being the namelist and second key the variables'
name. | codesearchnet |
def filter_by_months_per_hour(self, months_per_hour):
_filt_values = []
_filt_datetimes = []
for i, d in enumerate(self.datetimes):
if d in months_per_hour:
_filt_datetimes.append(d)
_filt_values.append(self._values[i])
return MonthlyPerHourCollection(
self.header.duplicate(), _filt_values, _filt_datetimes) | Filter the Data Collection based on a list of months per hour (as strings).
Args:
months_per_hour: A list of tuples representing months per hour.
Each tuple should possess two values: the first is the month
and the second is the hour. (eg. (12, 23) = December at 11 PM)
Return:
A new Data Collection with filtered data | juraj-google-style |
def __init__(self, git, rev):
self.git = git
self.rev = rev | Create GitTree instance
Args:
git (dvc.scm.Git):
branch: | juraj-google-style |
def run_inference(self, batch: Sequence[dict[str, Union[tf.Tensor, torch.Tensor]]], model: Union[AutoModel, TFAutoModel], inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]:
inference_args = {} if not inference_args else inference_args
if self._inference_fn:
return self._inference_fn(batch, model, self._device, inference_args, self._model_uri)
if self._framework == 'tf':
return _run_inference_tensorflow_keyed_tensor(batch, model, self._device, inference_args, self._model_uri)
else:
return _run_inference_torch_keyed_tensor(batch, model, self._device, inference_args, self._model_uri) | Runs inferences on a batch of Keyed Tensors and returns an Iterable of
Tensors Predictions.
This method stacks the list of Tensors in a vectorized format to optimize
the inference call.
Args:
batch: A sequence of Keyed Tensors. These Tensors should be batchable,
as this method will call `tf.stack()`/`torch.stack()` and pass in
batched Tensors with dimensions (batch_size, n_features, etc.) into
the model's predict() function.
model: A Tensorflow/PyTorch model.
inference_args: Non-batchable arguments required as inputs to the
model's inference function. Unlike Tensors in `batch`,
these parameters will not be dynamically batched.
Returns:
An Iterable of type PredictionResult. | github-repos |
def _get_connection(self):
if getattr(self, '_connection', None):
logger.debug('Connection to sqlite db already exists. Using existing one.')
else:
dsn = self._dsn
if (dsn == 'sqlite:
dsn = ':memory:'
else:
dsn = dsn.replace('sqlite:
logger.debug('Creating new apsw connection.\n dsn: {}, config_dsn: {}'.format(dsn, self._dsn))
self._connection = apsw.Connection(dsn)
return self._connection | Returns connection to sqlite db.
Returns:
connection to the sqlite db who stores mpr data. | codesearchnet |
def delete_row_range(self, format_str, start_game, end_game):
row_keys = make_single_array(
self.tf_table.keys_by_range_dataset(
format_str.format(start_game),
format_str.format(end_game)))
row_keys = list(row_keys)
if not row_keys:
utils.dbg('No rows left for games %d..%d' % (
start_game, end_game))
return
utils.dbg('Deleting %d rows: %s..%s' % (
len(row_keys), row_keys[0], row_keys[-1]))
row_keys.reverse()
total_keys = len(row_keys)
utils.dbg('Deleting total of %d keys' % total_keys)
concurrency = min(MAX_BT_CONCURRENCY,
multiprocessing.cpu_count() * 2)
with multiprocessing.Pool(processes=concurrency) as pool:
batches = []
with tqdm(desc='Keys', unit_scale=2, total=total_keys) as pbar:
for b in utils.iter_chunks(bigtable.row.MAX_MUTATIONS,
row_keys):
pbar.update(len(b))
batches.append((self.btspec, b))
if len(batches) >= concurrency:
pool.map(_delete_rows, batches)
batches = []
pool.map(_delete_rows, batches)
batches = [] | Delete rows related to the given game range.
Args:
format_str: a string to `.format()` by the game numbers
in order to create the row prefixes.
start_game: the starting game number of the deletion.
end_game: the ending game number of the deletion. | juraj-google-style |
def DecompressMessageList(cls, packed_message_list):
compression = packed_message_list.compression
if compression == rdf_flows.PackedMessageList.CompressionType.UNCOMPRESSED:
data = packed_message_list.message_list
elif (compression ==
rdf_flows.PackedMessageList.CompressionType.ZCOMPRESSION):
try:
data = zlib.decompress(packed_message_list.message_list)
except zlib.error as e:
raise DecodingError("Failed to decompress: %s" % e)
else:
raise DecodingError("Compression scheme not supported")
try:
result = rdf_flows.MessageList.FromSerializedString(data)
except rdfvalue.DecodeError:
raise DecodingError("RDFValue parsing failed.")
return result | Decompress the message data from packed_message_list.
Args:
packed_message_list: A PackedMessageList rdfvalue with some data in it.
Returns:
a MessageList rdfvalue.
Raises:
DecodingError: If decompression fails. | juraj-google-style |
def api_representation(self, content_type):
payload = dict(Subject=self.subject, Body=dict(ContentType=content_type, Content=self.body))
if (self.sender is not None):
payload.update(From=self.sender.api_representation())
if any((isinstance(item, str) for item in self.to)):
self.to = [Contact(email=email) for email in self.to]
recipients = [contact.api_representation() for contact in self.to]
payload.update(ToRecipients=recipients)
if self.cc:
if any((isinstance(email, str) for email in self.cc)):
self.cc = [Contact(email) for email in self.cc]
cc_recipients = [contact.api_representation() for contact in self.cc]
payload.update(CcRecipients=cc_recipients)
if self.bcc:
if any((isinstance(email, str) for email in self.bcc)):
self.bcc = [Contact(email) for email in self.bcc]
bcc_recipients = [contact.api_representation() for contact in self.bcc]
payload.update(BccRecipients=bcc_recipients)
if self._attachments:
payload.update(Attachments=[attachment.api_representation() for attachment in self._attachments])
payload.update(Importance=str(self.importance))
return dict(Message=payload) | Returns the JSON representation of this message required for making requests to the API.
Args:
content_type (str): Either 'HTML' or 'Text' | codesearchnet |
def get_value_at_percentile(self, percentile):
count_at_percentile = self.get_target_count_at_percentile(percentile)
total = 0
for index in range(self.counts_len):
total += self.get_count_at_index(index)
if (total >= count_at_percentile):
value_at_index = self.get_value_from_index(index)
if percentile:
return self.get_highest_equivalent_value(value_at_index)
return self.get_lowest_equivalent_value(value_at_index)
return 0 | Get the value for a given percentile
Args:
percentile: a float in [0.0..100.0]
Returns:
the value for the given percentile | codesearchnet |
def __init__(self, enum, value=None, tag=enums.Tags.DEFAULT):
super(Enumeration, self).__init__(tag, enums.Types.ENUMERATION)
self.value = value
self.enum = enum
self.length = Enumeration.LENGTH
self.validate() | Create an Enumeration.
Args:
enum (class): The enumeration class of which value is a member
(e.g., Tags). Required.
value (int): The value of the Enumeration, must be an integer
(e.g., Tags.DEFAULT). Optional, defaults to None.
tag (Tags): An enumeration defining the tag of the Enumeration.
Optional, defaults to Tags.DEFAULT. | juraj-google-style |
def has_node_with_value(self, value):
for node in self.node_list:
if (node.value == value):
return True
else:
return False | Whether any node in ``self.node_list`` has the value ``value``.
Args:
value (Any): The value to find in ``self.node_list``
Returns: bool
Example:
>>> from blur.markov.node import Node
>>> node_1 = Node('One')
>>> graph = Graph([node_1])
>>> graph.has_node_with_value('One')
True
>>> graph.has_node_with_value('Foo')
False | codesearchnet |
def _add_dispatch(x, y, name=None):
if ops.is_auto_dtype_conversion_enabled():
return add(x, y, name=name)
if not isinstance(y, tensor_lib.Tensor) and (not isinstance(y, sparse_tensor.SparseTensor)):
y = ops.convert_to_tensor(y, dtype_hint=x.dtype.base_dtype, name='y')
if x.dtype == dtypes.string:
return gen_math_ops.add(x, y, name=name)
else:
return gen_math_ops.add_v2(x, y, name=name) | The operation invoked by the `Tensor.__add__` operator.
Purpose in the API:
This method is exposed in TensorFlow's API so that library developers
can register dispatching for `Tensor.__add__` to allow it to handle
custom composite tensors & other custom objects.
The API symbol is not intended to be called by users directly and does
appear in TensorFlow's generated documentation.
Args:
x: The left-hand side of the `+` operator.
y: The right-hand side of the `+` operator.
name: an optional name for the operation.
Returns:
The result of the elementwise `+` operation. | github-repos |
def __init__(self, table, num_oov_buckets, hasher_spec=FastHashSpec, name=None, key_dtype=None):
if name:
name = name.rstrip('/')
if table:
if key_dtype is None:
key_dtype = table.key_dtype
supported_table_key_dtypes = (dtypes.int64, dtypes.string)
if table.key_dtype not in supported_table_key_dtypes:
raise TypeError(f'Invalid `key_dtype`, expected one of {supported_table_key_dtypes}, received {key_dtype}.')
if table.key_dtype.is_integer != key_dtype.is_integer:
raise TypeError('Invalid `key dtype`, expected %s but got %s.' % ('integer' if key_dtype.is_integer else 'non-integer', table.key_dtype))
if table.value_dtype != dtypes.int64:
raise TypeError('Invalid `value_dtype`: expected int64 but got %s.' % table.value_dtype)
self._table = table
name = name or self._table.name
else:
if num_oov_buckets <= 0:
raise ValueError('`oov_buckets` must be > 0 if no `table` is supplied.')
key_dtype = dtypes.string if key_dtype is None else key_dtype
self._table = None
name = name or 'hash_bucket'
if not key_dtype.is_integer and dtypes.string != key_dtype:
raise TypeError(f'Invalid `key_dtype`, expected integer or string, got {key_dtype}.')
self._num_oov_buckets = num_oov_buckets
if not isinstance(hasher_spec, HasherSpec):
raise TypeError(f'`hasher_spec` must be of type HasherSpec, got {type(hasher_spec)}.')
self._hasher_spec = hasher_spec
if name:
self._table_name = name.split('/')[-1]
else:
self._table_name = None
super(IdTableWithHashBuckets, self).__init__(key_dtype, dtypes.int64) | Construct a `IdTableWithHashBuckets` object.
Args:
table: Table that maps `tf.string` or `tf.int64` keys to `tf.int64` ids.
num_oov_buckets: Number of buckets to use for out-of-vocabulary keys.
hasher_spec: A `HasherSpec` to specify the hash function to use for
assignation of out-of-vocabulary buckets (optional).
name: A name for the operation (optional).
key_dtype: Data type of keys passed to `lookup`. Defaults to
`table.key_dtype` if `table` is specified, otherwise `tf.string`. Must
be string or integer, and must be castable to `table.key_dtype`.
Raises:
ValueError: when `table` in None and `num_oov_buckets` is not positive.
TypeError: when `hasher_spec` is invalid. | github-repos |
def users_setPhoto(self, *, image: Union[str, IOBase], **kwargs) -> SlackResponse:
self._validate_xoxp_token()
return self.api_call("users.setPhoto", files={"image": image}, data=kwargs) | Set the user profile photo
Args:
image (str): Supply the path of the image you'd like to upload.
e.g. 'myimage.png' | juraj-google-style |
def create_box_comments(self, box_key, message, **kwargs):
uri = '/'.join([
self.api_uri,
self.boxes_suffix,
box_key,
self.comments_suffix
])
if not (box_key and message):
return requests.codes.bad_request, None
kwargs.update({'message':message})
new_cmt = StreakComment(**kwargs)
code, r_data = self._req('put', uri, new_cmt.to_dict())
return code, r_data | Creates a comments in a box with the provided attributes.
Args:
box_key key for box
message message string
kwargs {} see StreakComment object for more information
return (status code, comment dict) | juraj-google-style |
def Reload(self):
with self._generator_mutex:
for event in self._generator.Load():
self._ProcessEvent(event)
return self | Loads all events added since the last call to `Reload`.
If `Reload` was never called, loads all events in the file.
Returns:
The `EventAccumulator`. | codesearchnet |
def _cast_dict(self, data_dict):
for key, value in data_dict.iteritems():
data_dict[key] = self._cast_value(value)
if 'resp_body_data' in data_dict:
del data_dict['resp_body_data']
return data_dict | Internal method that makes sure any dictionary elements
are properly cast into the correct types, instead of
just treating everything like a string from the csv file.
Args:
data_dict: dictionary containing bro log data.
Returns:
Cleaned Data dict. | juraj-google-style |
def create_sns_event(app_name, env, region, rules):
session = boto3.Session(profile_name=env, region_name=region)
sns_client = session.client('sns')
topic_name = rules.get('topic')
lambda_alias_arn = get_lambda_alias_arn(app=app_name, account=env, region=region)
topic_arn = get_sns_topic_arn(topic_name=topic_name, account=env, region=region)
protocol = 'lambda'
statement_id = '{}_sns_{}'.format(app_name, topic_name)
principal = 'sns.amazonaws.com'
add_lambda_permissions(function=lambda_alias_arn, statement_id=statement_id, action='lambda:InvokeFunction', principal=principal, source_arn=topic_arn, env=env, region=region)
sns_client.subscribe(TopicArn=topic_arn, Protocol=protocol, Endpoint=lambda_alias_arn)
LOG.debug('SNS Lambda event created')
LOG.info('Created SNS event subscription on topic %s', topic_name) | Create SNS lambda event from rules.
Args:
app_name (str): name of the lambda function
env (str): Environment/Account for lambda function
region (str): AWS region of the lambda function
rules (str): Trigger rules from the settings | codesearchnet |
def checkout(request, user_id=None):
if (user_id is not None):
if request.user.is_staff:
user = User.objects.get(id=int(user_id))
else:
raise Http404()
else:
user = request.user
current_cart = CartController.for_user(user)
if (('fix_errors' in request.GET) and (request.GET['fix_errors'] == 'true')):
current_cart.fix_simple_errors()
try:
current_invoice = InvoiceController.for_cart(current_cart.cart)
except ValidationError as ve:
return _checkout_errors(request, ve)
return redirect('invoice', current_invoice.invoice.id) | Runs the checkout process for the current cart.
If the query string contains ``fix_errors=true``, Registrasion will attempt
to fix errors preventing the system from checking out, including by
cancelling expired discounts and vouchers, and removing any unavailable
products.
Arguments:
user_id (castable to int):
If the requesting user is staff, then the user ID can be used to
run checkout for another user.
Returns:
render or redirect:
If the invoice is generated successfully, or there's already a
valid invoice for the current cart, redirect to ``invoice``.
If there are errors when generating the invoice, render
``registrasion/checkout_errors.html`` with the following data::
{
"error_list", [str, ...] # The errors to display.
} | codesearchnet |
def diff_lineMode(self, text1, text2, deadline):
(text1, text2, linearray) = self.diff_linesToChars(text1, text2)
diffs = self.diff_main(text1, text2, False, deadline)
self.diff_charsToLines(diffs, linearray)
self.diff_cleanupSemantic(diffs)
diffs.append((self.DIFF_EQUAL, ''))
pointer = 0
count_delete = 0
count_insert = 0
text_delete = ''
text_insert = ''
while pointer < len(diffs):
if diffs[pointer][0] == self.DIFF_INSERT:
count_insert += 1
text_insert += diffs[pointer][1]
elif diffs[pointer][0] == self.DIFF_DELETE:
count_delete += 1
text_delete += diffs[pointer][1]
elif diffs[pointer][0] == self.DIFF_EQUAL:
if count_delete >= 1 and count_insert >= 1:
subDiff = self.diff_main(text_delete, text_insert, False, deadline)
diffs[pointer - count_delete - count_insert : pointer] = subDiff
pointer = pointer - count_delete - count_insert + len(subDiff)
count_insert = 0
count_delete = 0
text_delete = ''
text_insert = ''
pointer += 1
diffs.pop()
return diffs | Do a quick line-level diff on both strings, then rediff the parts for
greater accuracy.
This speedup can produce non-minimal diffs.
Args:
text1: Old string to be diffed.
text2: New string to be diffed.
deadline: Time when the diff should be complete by.
Returns:
Array of changes. | juraj-google-style |
def __init__(self, instrumentation_key, wsgi_application, *args, **kwargs):
if not instrumentation_key:
raise Exception('Instrumentation key was required but not provided')
if not wsgi_application:
raise Exception('WSGI application was required but not provided')
telemetry_channel = kwargs.pop('telemetry_channel', None)
if not telemetry_channel:
sender = applicationinsights.channel.AsynchronousSender()
queue = applicationinsights.channel.AsynchronousQueue(sender)
telemetry_channel = applicationinsights.channel.TelemetryChannel(None, queue)
self.client = applicationinsights.TelemetryClient(instrumentation_key, telemetry_channel)
self.client.context.device.type = "PC"
self._wsgi_application = wsgi_application
self._common_properties = kwargs.pop('common_properties', {}) | Initialize a new instance of the class.
Args:
instrumentation_key (str). the instrumentation key to use while sending telemetry to the service.\n
wsgi_application (func). the WSGI application that we're wrapping. | juraj-google-style |
def __update(self, score, values, error):
if self._minimize:
if self._best_score is None or score > self._best_score:
self._best_score = score
self._best_values = values.copy()
self._best_error = error
self._logger.log(
'debug',
'New best food source memorized: {}'.format(
self._best_error
)
)
return True
elif not self._minimize:
if self._best_score is None or score < self._best_score:
self._best_score = score
self._best_values = values.copy()
self._best_error = error
self._logger.log(
'debug',
'New best food source memorized: {}'.format(
self._best_error
)
)
return True
return False | Update the best score and values if the given score is better than
the current best score
Args:
score (float): new score to evaluate
values (list): new value ranges to evaluate
error (float): new fitness function return value to evaluate
Returns:
bool: True if new score is better, False otherwise | juraj-google-style |
def imresize_like(img, dst_img, return_scale=False, interpolation='bilinear'):
(h, w) = dst_img.shape[:2]
return imresize(img, (w, h), return_scale, interpolation) | Resize image to the same size of a given image.
Args:
img (ndarray): The input image.
dst_img (ndarray): The target image.
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Same as :func:`resize`.
Returns:
tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`. | codesearchnet |
def ComponentsToPath(components):
precondition.AssertIterableType(components, Text)
for component in components:
if (not component):
raise ValueError('Empty path component in: {}'.format(components))
if ('/' in component):
raise ValueError("Path component with '/' in: {}".format(components))
if components:
return ('/' + '/'.join(components))
else:
return '' | Converts a list of path components to a canonical path representation.
Args:
components: A sequence of path components.
Returns:
A canonical MySQL path representation. | codesearchnet |
def get_subscribers(object_type: str) -> List[str]:
return DB.get_list(_keys.subscribers(object_type)) | Get the list of subscribers to events of the object type.
Args:
object_type (str): Type of object.
Returns:
List[str], list of subscriber names. | juraj-google-style |
def __call__(self, request: beam.Row, *args, **kwargs):
try:
entity_id = request._asdict()[self.row_key]
except KeyError:
raise KeyError('Enrichment requests to Vertex AI Feature Store should contain a field: %s in the input `beam.Row` to join the input with fetched response. This is used as the `FeatureViewDataKey` to fetch feature values corresponding to this key.' % self.row_key)
try:
selector = aiplatform.gapic.FeatureSelector(id_matcher=aiplatform.gapic.IdMatcher(ids=self.feature_ids))
response = self.client.read_feature_values(request=aiplatform.gapic.ReadFeatureValuesRequest(entity_type=self.entity_type_path, entity_id=entity_id, feature_selector=selector))
except NotFound:
raise ValueError(_not_found_err_message(self.feature_store_id, self.entity_type_id, entity_id))
response_dict = {}
proto_to_dict = proto.Message.to_dict(response.entity_view)
for key, msg in zip(response.header.feature_descriptors, proto_to_dict['data']):
if msg and 'value' in msg:
response_dict[key.id] = list(msg['value'].values())[0]
elif self.exception_level == ExceptionLevel.RAISE:
raise ValueError(_not_found_err_message(self.feature_store_id, self.entity_type_id, entity_id))
elif self.exception_level == ExceptionLevel.WARN:
_LOGGER.warning(_not_found_err_message(self.feature_store_id, self.entity_type_id, entity_id))
return (request, beam.Row(**response_dict)) | Fetches feature value for an entity-id from
Vertex AI Feature Store (Legacy).
Args:
request: the input `beam.Row` to enrich. | github-repos |
def issorted(list_, op=operator.le):
return all((op(list_[ix], list_[(ix + 1)]) for ix in range((len(list_) - 1)))) | Determines if a list is sorted
Args:
list_ (list):
op (func): sorted operation (default=operator.le)
Returns:
bool : True if the list is sorted | codesearchnet |
def _is_current_explicit_device(device_type):
device_type = device_type.upper()
if device_type not in ['CPU', 'GPU']:
raise ValueError('`device_type` should be either "CPU" or "GPU".')
device = _get_current_tf_device()
return device is not None and device.device_type == device_type.upper() | Check if the current device is explicitly set on the device type specified.
Args:
device_type: A string containing `GPU` or `CPU` (case-insensitive).
Returns:
A boolean indicating if the current device scope is explicitly set on the
device type.
Raises:
ValueError: If the `device_type` string indicates an unsupported device. | github-repos |
def glyph_has_ink(font: TTFont, name: Text) -> bool:
if 'glyf' in font:
return ttf_glyph_has_ink(font, name)
elif ('CFF ' in font) or ('CFF2' in font):
return cff_glyph_has_ink(font, name)
else:
raise Exception("Could not find 'glyf', 'CFF ', or 'CFF2' table.") | Checks if specified glyph has any ink.
That is, that it has at least one defined contour associated.
Composites are considered to have ink if any of their components have ink.
Args:
font: the font
glyph_name: The name of the glyph to check for ink.
Returns:
True if the font has at least one contour associated with it. | juraj-google-style |
def sample_observed_state(self, s: pd.Series) -> Dict:
return {n[0]: {i.name: np.random.normal((s[n[0]] * i.mean), i.stdev) for i in n[1]['indicators'].values()} for n in self.nodes(data=True)} | Sample observed state vector. This is the implementation of the
emission function.
Args:
s: Latent state vector.
Returns:
Observed state vector. | codesearchnet |
def _ip_int_from_prefix(self, prefixlen=None):
if prefixlen is None:
prefixlen = self._prefixlen
return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen) | Turn the prefix length netmask into a int for comparison.
Args:
prefixlen: An integer, the prefix length.
Returns:
An integer. | juraj-google-style |
def RegisterDecoder(cls, decoder):
encoding_method = decoder.ENCODING_METHOD.lower()
if encoding_method in cls._decoders:
raise KeyError(
'Decoder for encoding method: {0:s} already set.'.format(
decoder.ENCODING_METHOD))
cls._decoders[encoding_method] = decoder | Registers a decoder for a specific encoding method.
Args:
decoder (type): decoder class.
Raises:
KeyError: if the corresponding decoder is already set. | juraj-google-style |
def take_bug_reports(ads, test_name=None, begin_time=None, destination=None):
if begin_time is None:
begin_time = mobly_logger.get_log_file_timestamp()
else:
begin_time = mobly_logger.sanitize_filename(str(begin_time))
def take_br(test_name, begin_time, ad, destination):
ad.take_bug_report(test_name=test_name, begin_time=begin_time, destination=destination)
args = [(test_name, begin_time, ad, destination) for ad in ads]
utils.concurrent_exec(take_br, args) | Takes bug reports on a list of android devices.
If you want to take a bug report, call this function with a list of
android_device objects in on_fail. But reports will be taken on all the
devices in the list concurrently. Bug report takes a relative long
time to take, so use this cautiously.
Args:
ads: A list of AndroidDevice instances.
test_name: Name of the test method that triggered this bug report.
If None, the default name "bugreport" will be used.
begin_time: timestamp taken when the test started, can be either
string or int. If None, the current time will be used.
destination: string, path to the directory where the bugreport
should be saved. | github-repos |
def get_nn_images(self, structure, n):
return [e['image'] for e in self.get_nn_info(structure, n)] | Get image location of all near neighbors of site with index n in
structure.
Args:
structure (Structure): input structure.
n (integer): index of site for which to determine the image
location of near neighbors.
Returns:
images (list of 3D integer array): image locations of
near neighbors. | codesearchnet |
def grid_reload_from_name(job_name):
gk = get_api_client()
sites = get_all_sites_obj()
jobs = []
for site in [s for s in sites if (s.uid not in gk.excluded_site)]:
logger.info(('Reloading %s from %s' % (job_name, site.uid)))
_jobs = site.jobs.list(name=job_name, state='waiting,launching,running')
if (len(_jobs) == 1):
logger.info(('Reloading %s from %s' % (_jobs[0].uid, site.uid)))
jobs.append(_jobs[0])
elif (len(_jobs) > 1):
raise EnosG5kDuplicateJobsError(site, job_name)
return jobs | Reload all running or pending jobs of Grid'5000 with a given name.
By default all the sites will be searched for jobs with the name
``job_name``. Using EnOSlib there can be only one job per site with name
``job_name``.
Note that it honors the ``exluded_sites`` attribute of the client so the
scan can be reduced.
Args:
job_name (str): the job name
Returns:
The list of the python-grid5000 jobs retrieved.
Raises:
EnosG5kDuplicateJobsError: if there's several jobs with the same name
on a site. | codesearchnet |
def get_relavent_units(self):
relavent_units = {}
for (location, unit) in self.units.items():
if self.unit_is_related(location, self.worksheet):
relavent_units[location] = unit
return relavent_units | Retrieves the relevant units for this data block.
Returns:
All flags related to this block. | codesearchnet |
def _to_json_like(self, include_defaults):
all_attrs = self.properties_with_values(include_defaults=include_defaults)
subtype = getattr(self.__class__, '__subtype__', None)
if ((subtype is not None) and (subtype != self.__class__.__view_model__)):
attrs = {}
for (attr, value) in all_attrs.items():
if (attr in self.__class__.__dict__):
continue
else:
attrs[attr] = value
else:
attrs = all_attrs
for (k, v) in attrs.items():
if (isinstance(v, float) and (v == float('inf'))):
attrs[k] = None
return attrs | Returns a dictionary of the attributes of this object, in
a layout corresponding to what BokehJS expects at unmarshalling time.
This method does not convert "Bokeh types" into "plain JSON types,"
for example each child Model will still be a Model, rather
than turning into a reference, numpy isn't handled, etc.
That's what "json like" means.
This method should be considered "private" or "protected",
for use internal to Bokeh; use ``to_json()`` instead because
it gives you only plain JSON-compatible types.
Args:
include_defaults (bool) : whether to include attributes
that haven't been changed from the default. | codesearchnet |
class MgpstrTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
def __init__(self, vocab_file, unk_token='[GO]', bos_token='[GO]', eos_token='[s]', pad_token='[GO]', **kwargs):
with open(vocab_file, encoding='utf-8') as vocab_handle:
self.vocab = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.vocab.items()}
super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
vocab = dict(self.vocab).copy()
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
char_tokens = []
for s in text:
char_tokens.extend(s)
return char_tokens
def _convert_token_to_id(self, token):
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error('Vocabulary path ({}) should be a directory'.format(save_directory))
return
vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
with open(vocab_file, 'w', encoding='utf-8') as f:
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + '\n')
return (vocab_file,) | Construct a MGP-STR char tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str`, *optional*, defaults to `"[GO]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"[GO]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[s]"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation. | github-repos |
def ParseFileObject(self, parser_mediator, file_object):
display_name = parser_mediator.GetDisplayName()
if (not zipfile.is_zipfile(file_object)):
raise errors.UnableToParseFile('[{0:s}] unable to parse file: {1:s} with error: {2:s}'.format(self.NAME, display_name, 'Not a Zip file.'))
try:
zip_file = zipfile.ZipFile(file_object, 'r', allowZip64=True)
self._ProcessZipFileWithPlugins(parser_mediator, zip_file)
zip_file.close()
except (zipfile.BadZipfile, struct.error) as exception:
raise errors.UnableToParseFile('[{0:s}] unable to parse file: {1:s} with error: {2!s}'.format(self.NAME, display_name, exception)) | Parses a compound ZIP file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): a file-like object.
Raises:
UnableToParseFile: when the file cannot be parsed. | codesearchnet |
def split(self, bitindex):
if (bitindex < 0):
raise ValueError('bitindex must be larger or equal to 0.')
if (bitindex > len(self)):
raise ValueError(("bitindex larger than the array's size. Len: %s; bitindex: %s" % (len(self), bitindex)))
if (bitindex == 0):
return (None, self)
if (bitindex == len(self)):
return (self, None)
left = TDOPromise(self._chain, self._bitstart, bitindex, _parent=self)
right = TDOPromise(self._chain, 0, (len(self) - bitindex), _parent=self)
self._components = []
self._addsub(left, 0)
self._addsub(right, bitindex)
return (left, right) | Split a promise into two promises at the provided index.
A common operation in JTAG is reading/writing to a
register. During the operation, the TMS pin must be low, but
during the writing of the last bit, the TMS pin must be
high. Requiring all reads or writes to have full arbitrary
control over the TMS pin is unrealistic.
Splitting a promise into two sub promises is a way to mitigate
this issue. The final read bit is its own subpromise that can
be associated with a different primitive than the 'rest' of
the subpromise.
Returns:
Two TDOPromise instances: the 'Rest' and the 'Tail'.
The 'Rest' is the first chunk of the original promise.
The 'Tail' is a single bit sub promise for the final bit
in the operation
If the 'Rest' would have a length of 0, None is returned | codesearchnet |
def HasDateExceptionOn(self, date, exception_type=_EXCEPTION_TYPE_ADD):
if date in self.date_exceptions:
return exception_type == self.date_exceptions[date][0]
return False | Test if this service period has a date exception of the given type.
Args:
date: a string of form "YYYYMMDD"
exception_type: the exception type the date should have. Defaults to
_EXCEPTION_TYPE_ADD
Returns:
True iff this service has service exception of specified type at date. | juraj-google-style |
def random_brightness(x, brightness_range, scale=True):
if len(brightness_range) != 2:
raise ValueError(f'`brightness_range should be tuple or list of two floats. Received: {brightness_range}')
u = np.random.uniform(brightness_range[0], brightness_range[1])
return apply_brightness_shift(x, u, scale) | Performs a random brightness shift.
DEPRECATED.
Args:
x: Input tensor. Must be 3D.
brightness_range: Tuple of floats; brightness range.
scale: Whether to rescale the image such that minimum and maximum values
are 0 and 255 respectively. Default: True.
Returns:
Numpy image tensor.
Raises:
ValueError if `brightness_range` isn't a tuple. | github-repos |
def restore(self, x):
with tf.name_scope('pad_reduce/restore'):
x = tf.scatter_nd(indices=self.nonpad_ids, updates=x, shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0))
return x | Add padding back to the given tensor.
Args:
x (tf.Tensor): of shape [dim_compressed,...]
Returns:
a tensor of shape [dim_origin,...] with dim_compressed >= dim_origin. The
dim is restored from the original reference tensor | codesearchnet |
def _LinearFoldByteStream(self, mapped_value, **unused_kwargs):
try:
return self._operation.WriteTo(mapped_value)
except Exception as exception:
error_string = (
'Unable to write: {0:s} to byte stream with error: {1!s}').format(
self._data_type_definition.name, exception)
raise errors.FoldingError(error_string) | Folds the data type into a byte stream.
Args:
mapped_value (object): mapped value.
Returns:
bytes: byte stream.
Raises:
FoldingError: if the data type definition cannot be folded into
the byte stream. | juraj-google-style |
def add_get_parameters(url, parameters, percent_encode=True):
url_parts = list(parse.urlparse(url))
query = dict(parse.parse_qs(url_parts[4]))
query.update(parameters)
if percent_encode:
url_parts[4] = parse.urlencode(query)
else:
url_parts[4] = '&'.join([((key + '=') + value) for (key, value) in query.items()])
return parse.urlunparse(url_parts) | Utility function to add GET parameters to an existing URL.
Args:
parameters
A dictionary of the parameters that should be added.
percent_encode
Whether the query parameters should be percent encoded.
Returns:
The updated URL. | codesearchnet |
def set_router_id(self, value=None, default=False, disable=False):
cmd = self.command_builder('router-id', value=value, default=default, disable=disable)
return self.configure_ospf(cmd) | Controls the router id property for the OSPF Proccess
Args:
value (str): The router-id value
default (bool): Controls the use of the default keyword
disable (bool): Controls the use of the no keyword
Returns:
bool: True if the commands are completed successfully | codesearchnet |
class DacDecoderOutput(ModelOutput):
audio_values: Optional[torch.FloatTensor] = None | Args:
audio_values (`torch.FloatTensor` of shape `(batch_size, input_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Dac. | github-repos |
def unique(self, name=None) -> 'DatasetV2':
from tensorflow.python.data.ops import unique_op
return unique_op._unique(self, name) | A transformation that discards duplicate elements of a `Dataset`.
Use this transformation to produce a dataset that contains one instance of
each unique element in the input. For example:
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 37, 2, 37, 2, 1])
>>> dataset = dataset.unique()
>>> sorted([a.item() for a in dataset.as_numpy_iterator()])
[1, 2, 37]
Note: This transformation only supports datasets which fit into memory
and have elements of either `tf.int32`, `tf.int64` or `tf.string` type.
Args:
name: (Optional.) A name for the tf.data operation.
Returns:
A new `Dataset` with the transformation applied as described above. | github-repos |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.